Science.gov

Sample records for complexes potent antitumor

  1. Synthesis, Structural Characterization, and Cytotoxic Activity of Novel Paramagnetic Platinum Hematoporphyrin IX Complexes: Potent Antitumor Agents

    PubMed Central

    Gencheva, G.; Tsekova, D.; Gochev, G.; Momekov, G.; Tyuliev, G.; Skumryev, V.; Karaivanova, M.; Bontchev, P. R.

    2007-01-01

    Three novel stable Pt(III) complexes with distorted octahedral structure and (dz2)1 ground state have been obtained in the course of Pt(II)-hematoporphyrin IX ((7,12-bis(1-hydroxyethyl)-3,8,13,17-tetramethyl-21H-23H-porphyn-2,18-dipropionic acid), Hp) interaction in alkaline aqueous medium and aerobic conditions. A redox interaction also takes place together with the complexation process leading to the formation of Pt(III) species and organic radicals. The processes in the reaction system and the structure of the complexes formed cis-[Pt(III)(NH3)2(Hp−3H)(H2O)2]⋅H2O 1, [Pt(III)(Hp−3H)(H2O)2]⋅H2O 2, and [Pt((O,O)Hp−2H)Cl(H2O)3] 3, were studied by UV-Vis, IR, EPR and XPS spectra, thermal (TGS, DSC), potentiometric and magnetic methods. The newly synthesized complexes show promising cytotoxic activity comparable with that of cis-platin in in vitro tests against a panel of human leukemia cell lines. The observed cytotoxicity of the complex 2 against SKW-3 cells (KE-37 derivative) is due to induction of cell death through apoptosis. PMID:18309370

  2. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity.

    PubMed

    Turkson, James; Zhang, Shumin; Palmer, Jay; Kay, Heidi; Stanko, Joseph; Mora, Linda B; Sebti, Said; Yu, Hua; Jove, Richard

    2004-12-01

    DNA-alkylating agents that are platinum complexes induce apoptotic responses and have wide application in cancer therapy. The potential for platinum compounds to modulate signal transduction events that contribute to their therapeutic outcome has not been extensively examined. Among the signal transducer and activator of transcription (STAT) proteins, Stat3 activity is frequently up-regulated in many human tumors. Various lines of evidence have established a causal role for aberrant Stat3 activity in malignant transformation and provided validation for its targeting in the development of small-molecule inhibitors as novel cancer therapeutics. We report here that platinum-containing compounds disrupt Stat3 signaling and suppress its biological functions. The novel platinum (IV) compounds, CPA-1, CPA-7, and platinum (IV) tetrachloride block Stat3 activity in vitro at low micromolar concentrations. In malignant cells that harbor constitutively activated Stat3, CPA-1, CPA-7, and platinum (IV) tetrachloride inhibit cell growth and induce apoptosis in a manner that reflects the attenuation of persistent Stat3 activity. By contrast, cells that do not contain persistent Stat3 activity are marginally affected or are not affected by these compounds. Moreover, CPA-7 induces the regression of mouse CT26 colon tumor, which correlates with the abrogation of persistent Stat3 activity in tumors. Thus, the modulation of oncogenic signal transduction pathways, such as Stat3, may be one of the key molecular mechanisms for the antitumor effects of platinum (IV)-containing complexes.

  3. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics.

    PubMed

    Le, V H; Inai, M; Williams, R M; Kan, T

    2015-02-01

    The ecteinascidin family comprises a number of biologically active compounds, containing two to three tetrahydroisoquinoline subunits. Although isolated from marine tunicates, these compounds share a common pentacyclic core with several antimicrobial compounds found in terrestrial bacteria. Among the tetrahydroisoquinoline natural products, ecteinascidin 743 (Et-743) stands out as the most potent antitumor antibiotics that it is recently approved for treatment of a number of soft tissue sarcomas. In this article, we will review the backgrounds, the mechanism of action, the biosynthesis, and the synthetic studies of Et-743. Also, the development of Et-743 as an antitumor drug is discussed.

  4. Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R.; Devi, V.; Adavallan, K.; Saranya, D.

    2011-12-01

    In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV-vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.

  5. Methylenedioxy- and ethylenedioxy-fused indolocarbazoles: potent human topoisomerase I inhibitors and antitumor agents.

    PubMed

    Zembower, David E; Xie, Yongping; Koohang, Ali; Kuffel, Mary J; Ames, Matthew M; Zhou, Yasheen; Mishra, Rama; Mar, Aye Aye; Flavin, Michael T; Xu, Ze-Qi

    2012-11-01

    The indolo[2,3-a]carbazole alkaloids constitute an important class of natural products with interesting and diverse biological activities. A series of novel ring-fused indolocarbazoles were synthesized and evaluated for inhibition of topoisomerase I-mediated relaxation of supercoiled DNA and in vitro antitumor activity. The derivatives bearing a methylenedioxy or an ethylenedioxy ring fused onto the nonglycosylated indole (1a, 1b) demonstrated more potent anti-topoisomerase I activity. The isopropylenedioxy analogue 1c was approximately half as active as 1a, while the O-dimethoxy analogue 1d and the regioisomers 2a and 2b were essentially devoid of measurable activity, implying that the stacking with the intact DNA strand has been impeded by these compounds due to steric hindrance. The newly synthesized indolocarbazoles were screened against the NCI's 60 tumor cell lines. The order of activity, based on the mean GI50 values, is as follows: 1a > 2a ~ 1d > 1b > MCR-47 > 2b. Though in general the analogues that showed potent activity against topoisomerase I (1a, 1b) also showed potent in vitro inhibition of tumor cell growth, the antitumor activity of the anti-topoisomerase I inactive 1d and 2a were intriguing. COMPARE analyses confirmed that the topoisomerase I is the primary target for 1a and 1b; however, other target(s) or pathway(s) may also be involved, with PLD1 and MERTK suggested. Further investigation of these molecular targets against these indolocarbazoles is warranted.

  6. Design, synthesis and 3D-QSAR of beta-carboline derivatives as potent antitumor agents.

    PubMed

    Cao, Rihui; Guan, Xiangdong; Shi, Buxi; Chen, Zhiyong; Ren, Zhenhua; Peng, Wenlie; Song, Huacan

    2010-06-01

    In a continuing effort to develop novel beta-carbolines endowed with better pharmacological profiles, a series of beta-carboline derivatives were designed and synthesized based on the previously developed SARs. Cytotoxicities in vitro of these compounds against a panel of human tumor cell lines were also investigated. The results demonstrated that the N2-benzylated beta-carbolinium bromides 56-60 represented the most potent compounds with IC50 values lower than 10 microM. The application of 3D-QSAR to these compounds explored the structural basis for their biological activities. CoMFA (q2=0.513, r2=0.862) and CoMSIA (q2=0.503, r2=0.831) models were developed for a set of 47 beta-carbolines. The results indicated that the antitumor pharmacophore of these molecules were marked at position-1, -2, -3, -7 and -9 of beta-carboline ring.

  7. Recent Progress on C-4-Modified Podophyllotoxin Analogs as Potent Antitumor Agents

    PubMed Central

    Liu, Ying-Qian; Tian, Jing; Qian, Keduo; Zhao, Xiao-Bo; Morris-Natschke, Susan L.; Yang, Liu; Nan, Xiang; Tian, Xuan; Lee, Kuo-Hsiung

    2015-01-01

    Podophyllotoxin (PPT), as well as its congeners and derivatives, exhibits pronounced biological activities, especially antineoplastic effects. Its strong inhibitory effect on tumor cell growth led to the development of three of the most highly prescribed anticancer drugs in the world, etoposide, teniposide, and the water-soluble prodrug etoposide phosphate. Their clinical success as well as intriguing mechanism of action stimulated great interest in further modification of PPT for better antitumor activity. The C-4 position has been a major target for structural derivatization aimed at either producing more potent compounds or overcoming drug resistance. Accordingly, numerous PPT derivatives have been prepared via hemisynthesis and important structure–activity relationship (SAR) correlations have been identified. Several resulting compounds, including GL-331, TOP-53, and NK611, reached clinical trials. Some excellent reviews on the distribution, sources, applications, synthesis, and SAR of PPT have been published. This review focuses on a second generation of new etoposide-related drugs and provides detailed coverage of the current status and recent development of C-4-modified PPT analogs as anticancer clinical trial candidates. PMID:24827545

  8. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    SciTech Connect

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-05-28

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  9. Potent antitumor activity of quinolone compounds with an unsaturated aminoazabicyclo group at the C-7 position of the quinolone ring.

    PubMed

    Arakawa, H; Mano, E; Hakoda, N; Yoshinari, T; Nakagawa, S; Okura, A

    1996-04-01

    Relationships between the substituents on the quinolone nucleus of 2 and related compounds and their biological activities were studied. 2, 3 and 1 carrying a (1R, 2R, 6R)-2-amino-8-azabicyclo[4.3.0.]non-3-en-8-yl group at the C-7 position increased the rate of formation of DNA-protein complexes in cells, and inhibited the growth of tumor cells more strongly than the compounds with other substituents. The introduction of a fluorine atom or a methoxy group at the 8-position and an amino group at the 5-position increased the activity still further. The three compounds listed were all effective against P388 leukemia in mice. Subcutaneous injection of 2 at 2 mg/kg strongly suppressed the growth of human MX-1 breast cancer cells in nude mice. 1 has various functional groups that increase the cytotoxic potential of quinolone derivatives: a (1R, 2R, 6R)-2-amino-8-azabicyclo[4.3.0.]non-3-en-8-yl moiety at C-7, a cyclopropyl group at the 1-position, fluorine atoms at the 6- and 8-positions, and an amino group at the 5-position of the quinoline carboxylic acid. These data suggest that this series of compounds provide good models for the further design of potent antitumor quinolones.

  10. Synthesis and biological evaluation of diarylthiazole derivatives as antimitotic and antivascular agents with potent antitumor activity.

    PubMed

    Wang, Fang; Yang, Zhuang; Liu, Yibin; Ma, Liang; Wu, Yuzhe; He, Lin; Shao, Mingfeng; Yu, Kun; Wu, Wenshuang; Pu, Yuzhi; Nie, Chunlai; Chen, Lijuan

    2015-07-01

    By switching position of the N and S atom in the thiazole ring which were similar to the previously reported agent 5-(4-ethoxyphenyl)-4-(3',4',5'-trimethoxyphenyl)thiazol-2-amine, a series of 4,5-diarylthiazole derivatives were synthesized using Friedel-Crafts reaction based on chemical modification of Combrestatatin A-4 (CA-4). Their antiproliferative activities were evaluated and identified as new microtubule destabilizing agents. Structure-activity relationship study indicated that compound 8a with 3,4,5-trimethoxyphenyl group at the C-4 position and 4-ethoxyphenyl group at the C-5 position of 2-amino substituted thiazole was of the most potent inhibitory activity in this series. 8a was found to exhibit the IC50 values of 8.4-26.4nM in five human cancer cell lines, with comparable inhibition effects to CA-4. Moreover, 8a showed potency as a tubulin polymerization inhibitor, with colchicine site binding ability and comparable extent of inhibition against the growth of P-glycoprotein over-expressing multidrug resistant cell lines. Mechanism studies revealed that 8a could block the progression of cell cycle in the G2/M phase and result in cellular apoptosis in cancer cells. As a new tubulin destabilizing agent, 8a was also found high antivascular activity as it concentration-dependently reduced the cell migration and disrupted capillary like tube formation of HUVEC cells. Furthermore, 8a significantly suppressed the tumor growth in HCT116 and SK-OV-3 xenograft models with tumor growth inhibitory rate of 55.12% and 72.7%, respectively. Our studies highlighted that 8a was a promising microtubule targeting antitumor agent.

  11. Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives.

    PubMed

    Srivastava, Sanjay K; Jha, Amrita; Agarwal, Shiv K; Mukherjee, Rama; Burman, Anand C

    2007-11-01

    The disease of cancer has been ranked second after cardiovascular diseases and plant-derived molecules have played an important role for the treatment of cancer. Nine cytotoxic plant-derived molecules such as vinblastine, vincristine, navelbine, etoposide, teniposide, taxol, taxotere, topotecan and irinotecan have been approved as anticancer drugs. Recently, epothilones are being emerging as future potential anti-tumor agents. However, targeted cancer therapy has now been rapidly expanding and small organic molecules are being exploited for this purpose. Amongst target specific small organic molecules, quinazoline was found as one of the most successful chemical class in cancer chemotherapy as three drugs namely Gefitinib, Erlotinib and Canertinib belong to this series. Now, quinazoline related chemical classes such as quinolines and naphthyridines are being exploited in cancer chemotherapy and a number of molecules such as compounds EKB-569 (52), HKI-272 (78) and SNS-595 (127a) are in different phases of clinical trials. This review presents the synthesis of quinolines and naphthyridines derivatives, screened for anticancer activity since year 2000. The synthesis of most potent derivatives in each prototype has been delineated. A brief structure activity relationship for each prototype has also been discussed. It has been observed that aniline group at C-4, aminoacrylamide substituents at C-6, cyano group at C-3 and alkoxy groups at C-7 in the quinoline ring play an important role for optimal activity. While aminopyrrolidine functionality at C-7, 2'-thiazolyl at N-1 and carboxy group at C-3 in 1,8-naphthyridine ring are essential for eliciting the cytotoxicity. This review would help the medicinal chemist to design and synthesize molecules for targeted cancer chemotherapy.

  12. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  13. Design and synthesis of 2-(3-alkylaminophenyl)-6-(pyrrolidin-1-yl)quinolin-4-ones as potent antitumor agents.

    PubMed

    Huang, Shih-Ming; Cheng, Yung-Yi; Chen, Ming-Hua; Huang, Chi-Hung; Huang, Li-Jiau; Hsu, Mei-Hua; Kuo, Sheng-Chu; Lee, Kuo-Hsiung

    2013-02-01

    2-(3-Alkylaminophenyl)-6-(pyrrolidin-1-yl)quinolin-4-ones 1-3 were synthesized and screened for anti-proliferative activity against three human cancer cell lines, as well as the normal cell line Detroit 551. All of the synthesized target compounds 1-3 demonstrated potent cytotoxic activity against the cancer cell lines, but weak inhibitory activity toward the normal cell line. 2-(3-Methyl aminophenyl)-6-(pyrrolidin-1-yl)quinolin-4-one (1), one of the potent compounds in vitro, was also tested in an in vivo Hep3B xenograft nude mice model, and its significant anticancer activity was reconfirmed. Therefore, compound 1 merits further investigation as an antitumor clinical trial candidate and potential anticancer agent.

  14. Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity

    PubMed Central

    Guo, Zong Sheng; Liu, Zuqiang; Bartlett, David L.

    2014-01-01

    Oncolytic viruses (OVs) are novel immunotherapeutic agents whose anticancer effects come from both oncolysis and elicited antitumor immunity. OVs induce mostly immunogenic cancer cell death (ICD), including immunogenic apoptosis, necrosis/necroptosis, pyroptosis, and autophagic cell death, leading to exposure of calreticulin and heat-shock proteins to the cell surface, and/or released ATP, high-mobility group box 1, uric acid, and other damage-associated molecular patterns as well as pathogen-associated molecular patterns as danger signals, along with tumor-associated antigens, to activate dendritic cells and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive antitumor immunity. The mode of cancer cell death may be modulated by individual OVs and cancer cells as they often encode and express genes that inhibit/promote apoptosis, necroptosis, or autophagic cell death. We can genetically engineer OVs with death-pathway-modulating genes and thus skew the infected cancer cells toward certain death pathways for the enhanced immunogenicity. Strategies combining with some standard therapeutic regimens may also change the immunological consequence of cancer cell death. In this review, we discuss recent advances in our understanding of danger signals, modes of cancer cell death induced by OVs, the induced danger signals and functions in eliciting subsequent antitumor immunity. We also discuss potential combination strategies to target cells into specific modes of ICD and enhance cancer immunogenicity, including blockade of immune checkpoints, in order to break immune tolerance, improve antitumor immunity, and thus the overall therapeutic efficacy. PMID:24782985

  15. Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents.

    PubMed

    Wang, Shengzheng; Fang, Kun; Dong, Guoqiang; Chen, Shuqiang; Liu, Na; Miao, Zhenyuan; Yao, Jianzhong; Li, Jian; Zhang, Wannian; Sheng, Chunquan

    2015-08-27

    A critical question in natural product-based drug discovery is how to translate the product into drug-like molecules with optimal pharmacological properties. The generation of natural product-inspired scaffold diversity is an effective but challenging strategy to investigate the broader chemical space and identify promising drug leads. Extending our efforts to the natural product evodiamine, a diverse library containing 11 evodiamine-inspired novel scaffolds and their derivatives were designed and synthesized. Most of them showed good to excellent antitumor activity against various human cancer cell lines. In particular, 3-chloro-10-hydroxyl thio-evodiamine (66c) showed excellent in vitro and in vivo antitumor efficacy with good tolerability and low toxicity. Antitumor mechanism and target profiling studies indicate that compound 66c is the first-in-class triple topoisomerase I/topoisomerase II/tubulin inhibitor. Overall, this study provided an effective strategy for natural product-based drug discovery.

  16. Cell-specific expression of artificial microRNAs targeting essential genes exhibit potent antitumor effect on hepatocellular carcinoma cells.

    PubMed

    Mao, Chenyu; Liu, Hao; Chen, Ping; Ye, Jingjia; Teng, Lisong; Jia, Zhenyu; Cao, Jiang

    2015-03-20

    To achieve specific and potent antitumor effect of hepatocyte carcinoma cells, replication defective adenoviral vectors, namely rAd/AFP-amiRG, rAd/AFP-amiRE and rAd/AFP-amiRP, were constructed which were armed with artificial microRNAs (amiRs) targeting essential functional genes glyceraldehyde-3-phosphate dehydrogenase, eukaryotic translation initiation factor 4E and DNA polymerase α respectively under the control of a recombinant promoter comprised of human α-fetoprotein enhancer and basal promoter. The AFP enhancer/promoter showed specific high transcription activity in AFP-positive HCC cells Hep3B, HepG2 and SMMC7721, while low in AFP-negative cell Bcap37. All artificial microRNAs exhibited efficient knockdown of target genes. Decreased ATP production and protein synthesis was observed in rAd/AFP-amiRG and rAd/AFP-amiRE treated HCC cells. All three recombinant adenoviruses showed efficient blockage of cell cycle progression and significant suppression of HCC cells in vitro. In nude mice model bearing Hep3B xenograft, administration of rAd/AFP-amiRG showed potent antitumor effect. The strategy of tumor-specific knockdown of genes essential for cell survival and proliferation may suggest a novel promising approach for HCC gene therapy.

  17. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma

    PubMed Central

    2012-01-01

    Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro) than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system. PMID:22321574

  18. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma.

    PubMed

    Casucci, Monica; Nicolis di Robilant, Benedetta; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Genovese, Pietro; Gentner, Bernhard; Gullotta, Fabiana; Ponzoni, Maurilio; Bernardi, Massimo; Marcatti, Magda; Saudemont, Aurore; Bordignon, Claudio; Savoldo, Barbara; Ciceri, Fabio; Naldini, Luigi; Dotti, Gianpietro; Bonini, Chiara; Bondanza, Attilio

    2013-11-14

    Genetically targeted T cells promise to solve the feasibility and efficacy hurdles of adoptive T-cell therapy for cancer. Selecting a target expressed in multiple-tumor types and that is required for tumor growth would widen disease indications and prevent immune escape caused by the emergence of antigen-loss variants. The adhesive receptor CD44 is broadly expressed in hematologic and epithelial tumors, where it contributes to the cancer stem/initiating phenotype. In this study, silencing of its isoform variant 6 (CD44v6) prevented engraftment of human acute myeloid leukemia (AML) and multiple myeloma (MM) cells in immunocompromised mice. Accordingly, T cells targeted to CD44v6 by means of a chimeric antigen receptor containing a CD28 signaling domain mediated potent antitumor effects against primary AML and MM while sparing normal hematopoietic stem cells and CD44v6-expressing keratinocytes. Importantly, in vitro activation with CD3/CD28 beads and interleukin (IL)-7/IL-15 was required for antitumor efficacy in vivo. Finally, coexpressing a suicide gene enabled fast and efficient pharmacologic ablation of CD44v6-targeted T cells and complete rescue from hyperacute xenogeneic graft-versus-host disease modeling early and generalized toxicity. These results warrant the clinical investigation of suicidal CD44v6-targeted T cells in AML and MM.

  19. A Novel Immunomodulatory Hemocyanin from the Limpet Fissurella latimarginata Promotes Potent Anti-Tumor Activity in Melanoma

    PubMed Central

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C.; Manubens, Augusto; De Ioannes, Alfredo E.; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy. PMID

  20. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity

    PubMed Central

    Ohashi, Akihiro; Ohori, Momoko; Iwai, Kenichi; Nambu, Tadahiro; Miyamoto, Maki; Kawamoto, Tomohiro; Okaniwa, Masanori

    2015-01-01

    Centromere-associated protein E (CENP-E) regulates both chromosome congression and the spindle assembly checkpoint (SAC) during mitosis. The loss of CENP-E function causes chromosome misalignment, leading to SAC activation and apoptosis during prolonged mitotic arrest. Here, we describe the biological and antiproliferative activities of a novel small-molecule inhibitor of CENP-E, Compound-A (Cmpd-A). Cmpd-A inhibits the ATPase activity of the CENP-E motor domain, acting as a time-dependent inhibitor with an ATP-competitive-like behavior. Cmpd-A causes chromosome misalignment on the metaphase plate, leading to prolonged mitotic arrest. Treatment with Cmpd-A induces antiproliferation in multiple cancer cell lines. Furthermore, Cmpd-A exhibits antitumor activity in a nude mouse xenograft model, and this antitumor activity is accompanied by the elevation of phosphohistone H3 levels in tumors. These findings demonstrate the potency of the CENP-E inhibitor Cmpd-A and its potential as an anticancer therapeutic agent. PMID:26649895

  1. Elimination of IL-10-inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent antitumor activity.

    PubMed

    Cecil, Denise L; Holt, Gregory E; Park, Kyong Hwa; Gad, Ekram; Rastetter, Lauren; Childs, Jennifer; Higgins, Doreen; Disis, Mary L

    2014-05-15

    Immunization against self-tumor antigens can induce T-regulatory cells, which inhibit proliferation of type I CD4(+) T-helper (TH1) and CD8(+) cytotoxic T cells. Type I T cells are required for potent antitumor immunity. We questioned whether immunosuppressive epitopes could be identified and deleted from a cancer vaccine targeting insulin-like growth factor-binding protein (IGFBP-2) and enhance vaccine efficacy. Screening breast cancer patient lymphocytes with IFN-γ and interleukin (IL)-10 ELISPOT, we found epitopes in the N-terminus of IGFBP-2 that elicited predominantly TH1 whereas the C-terminus stimulated TH2 and mixed TH1/TH2 responses. Epitope-specific TH2 demonstrated a higher functional avidity for antigen than epitopes, which induced IFN-γ (P = 0.014). We immunized TgMMTV-neu mice with DNA constructs encoding IGFBP-2 N-and C-termini. T cell lines expanded from the C-terminus vaccinated animals secreted significantly more type II cytokines than those vaccinated with the N-terminus and could not control tumor growth when infused into tumor-bearing animals. In contrast, N-terminus epitope-specific T cells secreted TH1 cytokines and significantly inhibited tumor growth, as compared with naïve T cells, when adoptively transferred (P = 0.005). To determine whether removal of TH2-inducing epitopes had any effect on the vaccinated antitumor response, we immunized mice with the N-terminus, C-terminus, and a mix of equivalent concentrations of both vaccines. The N-terminus vaccine significantly inhibited tumor growth (P < 0.001) as compared with the C-terminus vaccine, which had no antitumor effect. Mixing the C-terminus with the N-terminus vaccine abrogated the antitumor response of the N-terminus vaccine alone. The clinical efficacy of cancer vaccines targeting self-tumor antigens may be greatly improved by identification and removal of immunosuppressive epitopes.

  2. Organometallic osmium arene complexes with potent cancer cell cytotoxicity.

    PubMed

    Fu, Ying; Habtemariam, Abraha; Pizarro, Ana M; van Rijt, Sabine H; Healey, David J; Cooper, Patricia A; Shnyder, Steven D; Clarkson, Guy J; Sadler, Peter J

    2010-11-25

    Iodido osmium(II) complexes [Os(η(6)-arene)(XY)I](+) (XY = p-hydroxy or p-dimethylaminophenylazopyridine, arene = p-cymene or biphenyl) are potently cytotoxic at nanomolar concentrations toward a panel of human cancer cell lines; e.g., IC(50) = 140 nM for [Os(η(6)-bip)(azpy-NMe(2))I](+) toward A2780 ovarian cancer cells. They exhibit low toxicity and negligible deleterious effects in a colon cancer xenograft model, giving rise to the possibility of a broad therapeutic window. The most active complexes are stable and inert toward aquation. Their cytotoxic activity appears to involve redox mechanisms.

  3. New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents.

    PubMed

    Tung, Truong Thanh; Oanh, Dao Thi Kim; Dung, Phan Thi Phuong; Hue, Van Thi My; Park, Sang Ho; Han, Byung Woo; Kim, Youngsoo; Hong, Jin-Tae; Han, Sang-Bae; Nam, Nguyen-Hai

    2013-12-01

    Results from clinical studies have demonstrated that inhibitors of histone deacetylase (HDAC) enzymes possess promise for the treatment of several types of cancer. Zolinza(®) (widely known as SAHA) has been approved by the FDA for the treatment of T-cell lymphoma. As a continuity of our ongoing research to find novel small molecules to target these important enzymes, we synthesized a series of benzothiazole-containing analogues of SAHA and found several compounds with very potent anticancer cytotoxicity. In this study, three more compounds of this type, including N(1)-(6-chlorobenzo[d]thiazol-2-yl)-N(8)-hydroxyoctanediamide (3a), N(1)-[6-(trifluoromethyl)benzo[d]thiazol-2-yl]-N(8)-hydroxyoctanediamide (3b) and N(1)-(thiazol-2-yl)-N(8)-hydroxyoctanediamide (6) were synthesized and evaluated for HDAC inhibition and cytotoxic activities. All three compounds showed very potent HDAC inhibitory effects. Docking revealed that both two compounds 3a, 3b showed higher affinities towards HDAC(8) compared to SAHA. In vitro, compound 3a exhibited cytotoxicity equipotent to SAHA against five human cancer cell lines. In term of in vivo activity, compound 3a demonstrated equivalent efficacy to SAHA in mouse xenograft model.

  4. Prostate Cancer-Specific and Potent Antitumor Effect of a DD3-Controlled Oncolytic Virus Harboring the PTEN Gene

    PubMed Central

    Ding, Miao; Cao, Xin; Xu, Hai-neng; Fan, Jun-kai; Huang, Hong-ling; Yang, Dong-qin; Li, Yu-hua; Wang, Jian; Li, Runsheng; Liu, Xin-Yuan

    2012-01-01

    Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential. PMID:22509396

  5. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma

    SciTech Connect

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi; Xu, Jing-Wen; Li, Zeng-Qiang; Shen, Qi-Rong; Wang, Zhi-Wei; Zhang, Wei-Ge; Wu, Ying-Liang

    2014-12-12

    Highlights: • COH-203 exhibits anti-hepatoma effects in vitro and in vivo with low toxicity. • COH-203 inhibits tubulin polymerization. • COH-203 induces mitotic arrest followed by mitotic slippage in BEL-7402 cells. • COH-203 induces p53-dependent senescence in BEL-7402 cells. - Abstract: 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1, 2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal liver cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14{sup Arf}–p53–p21 and p16{sup INK4α}–Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.

  6. Targeting PI3K/mTOR signaling exerts potent antitumor activity in pheochromocytoma in vivo.

    PubMed

    Lee, Misu; Minaskan, Ninelia; Wiedemann, Tobias; Irmler, Martin; Beckers, Johannes; Yousefi, Behrooz H; Kaissis, Georgios; Braren, Rickmer; Laitinen, Iina; Pellegata, Natalia S

    2017-01-01

    Pheochromocytomas (PCCs) are mostly benign tumors, amenable to complete surgical resection. However, 10-17% of cases can become malignant, and once metastasized, there is no curative treatment for this disease. Given the need to identify the effective therapeutic approaches for PCC, we evaluated the antitumor potential of the dual-PI3K/mTOR inhibitor BEZ235 against these tumors. We employed an in vivo model of endogenous PCCs (MENX mutant rats), which closely recapitulate the human tumors. Mutant rats with PCCs were treated with 2 doses of BEZ235 (20 and 30 mg/kg), or with placebo, for 2 weeks. Treatment with BEZ235 induced cytostatic and cytotoxic effects on rat PCCs, which could be appreciated by both staining the tumors ex vivo with appropriate markers and non-invasively by functional imaging (diffusion-weighted magnetic resonance imaging) in vivo Transcriptomic analyses of tumors from rats treated with BEZ235 or placebo-identified potential mediators of therapy response were performed. Slc6a2, encoding the norepinephrine transporter (NET), was downregulated in a dose-dependent manner by BEZ235 in rat PCCs. Moreover, BEZ235 reduced Slc6a2/NET expression in PCC cell lines (MPC) also. Studies of a BEZ235-resistant derivative of the MPC cell line confirmed that the reduction of NET expression associates with the response to the drug. Reduction of NET expression after BEZ235 treatment in vivo could be monitored by positron emission tomography (PET) using a tracer targeting NET. Altogether, here we demonstrate the efficacy of BEZ235 against PCC in vivo, and show that functional imaging can be employed to monitor the response of PCC to PI3K/mTOR inhibition therapy.

  7. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II

    PubMed Central

    Cui, Guozhen; Chan, Judy Yuet-Wa; Wang, Li; Li, Chuwen; Shan, Luchen; Xu, Changjiang; Zhang, Qingwen; Wang, Yuqiang; Di, Lijun; Lee, Simon Ming-Yuen

    2016-01-01

    The mitochondrial respiratory chain, including mitochondrial complex II, has emerged as a potential target for cancer therapy. In the present study, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), DT-010, was synthesized. Our results showed that DT-010 is more potent than its parental compounds separately or in combination, in inhibiting the proliferation of MCF-7 and MDA-MB-231 cells by inducing cytotoxicity and promoting cell cycle arrest. It also inhibited the growth of 4T1 breast cancer cells in vivo. DT-010 suppressed the fundamental parameters of mitochondrial function in MCF-7 cells, including basal respiration, ATP turnover, maximal respiration. Treatment with DT-010 in MCF-7 and MDA-MB-231 cells resulted in the loss of mitochondrial membrane potential and decreased ATP production. DT-010 also promoted ROS generation, while treatment with ROS scavenger, NAC (N-acetyl-L-cysteine), reversed DT-010-induced cytotoxicity. Further study showed that DT-010 suppressed succinate-induced mitochondrial respiration and impaired mitochondrial complex II enzyme activity indicating that DT-010 may inhibit mitochondrial complex II. Overall, our results suggested that the antitumor activity of DT-010 is associated with inhibition of mitochondrial complex II, which triggers ROS generation and mitochondrial dysfunction in breast cancer cells. PMID:27081033

  8. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma.

    PubMed

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-02-02

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma.

  9. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma

    PubMed Central

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  10. Potent anti-tumor effects of EGFR-targeted hybrid peptide on mice bearing liver metastases.

    PubMed

    Gaowa, Arong; Horibe, Tomohisa; Kohno, Masayuki; Harada, Hiroshi; Hiraoka, Masahiro; Kawakami, Koji

    2016-01-01

    In this study, we investigated the therapeutic efficacy of EGFR2R-lytic hybrid peptide for the treatment of liver metastasis from colon carcinoma. The cytotoxic activity of the hybrid peptide against luciferase-expressing human colon cancer (HCT-116-luc) cells was determined by the WST-8 assay. The experimental mouse model of liver metastases was generated by splenic injection of HCT-116-luc cells. The hybrid peptide was intravenously injected into mice the day after cell implantation at a dose of 5 mg/kg and this was repeated on alternate days for a total of 7 doses. Saline-treated mice were used as controls. Tumor growth and therapeutic responses were monitored by an IVIS imaging system. It was shown that the hybrid peptide exhibited potent cytotoxic activity against HCT-116-luc cells and the liver metastases were significantly reduced after intravenous injections of hybrid peptide compared with controls. Furthermore, Kaplan–Meier analysis showed that hybrid peptide-treated mice had significantly longer survival than controls. In addition, bright-field and ex vivo imaging of liver tissue revealed that mice treated with the hybrid peptide had significantly fewer tumors compared with controls. These results demonstrated that the EGFR2R-lytic hybrid peptide is a potential treatment option for patients with colorectal cancer metastases in the liver.

  11. The anti-erbB3 antibody MM-121/SAR256212 in combination with trastuzumab exerts potent antitumor activity against trastuzumab-resistant breast cancer cells

    PubMed Central

    2013-01-01

    Background Elevated expression of erbB3 receptor has been reported to induce resistance to therapeutic agents, including trastuzumab in erbB2-overexpressing breast cancer. Our recent studies indicate that erbB3 interacts with both erbB2 and IGF-1 receptor to form a heterotrimeric complex in trastuzumab-resistant breast cancer cells. Herein, we investigate the antitumor activity of MM-121/SAR256212, a fully human anti-erbB3 antibody (Ab), against two erbB2-overexpressing breast cancer cell lines resistant to trastuzumab. Methods MTS-based proliferation assays were used to determine cell viability upon treatment of trastuzumab and/or MM-121/SAR256212. Cell cycle progression was examined by flow cytometric analysis. Western blot analyses were performed to determine the expression and activation of proteins. Tumor xenografts were established by inoculation of the trastuzumab-resistant BT474-HR20 cells into nude mice. The tumor-bearing mice were treated with trastuzumab and/or MM-121/SAR256212 via i.p injection to determine the Abs’ antitumor activity. Immunohistochemical analyses were carried out to study the Abs’ inhibitory effects on tumor cell proliferation and induction of apoptosis in vivo. Results MM-121 significantly enhanced trastuzumab-induced growth inhibition in two sensitive and two resistant breast cancer cell lines. MM-121 in combination with trastuzumab resulted in a dramatic reduction of phosphorylated erbB3 (P-erbB3) and Akt (P-Akt) in the in vitro studies. MM-121 combined with trastuzumab did not induce apoptosis in the trastuzumab-resistant cell lines under our cell culture condition, rather induced cell cycle G1 arrest mainly associated with the upregulation of p27kip1. Interestingly, in the tumor xenograft model established from the trastuzumab-resistant cells, MM-121 in combination with trastuzumab as compared to either agent alone dramatically inhibited tumor growth correlated with a significant reduction of Ki67 staining and increase of

  12. Design and synthesis of a tetrahydroisoquinoline-based hydroxamate derivative (ZYJ-34v), an oral active histone deacetylase inhibitor with potent antitumor activity.

    PubMed

    Zhang, Yingjie; Liu, Chunxi; Chou, C James; Wang, Xuejian; Jia, Yuping; Xu, Wenfang

    2013-08-01

    In our previous study, we developed a novel series of tetrahydroisoquinoline-based hydroxamic acid derivatives as histone deacetylase inhibitors (Bioorg Med Chem, 2010, 18, 1761-1772; J Med Chem, 2011, 54, 2823-2838), among which, compound ZYJ-34c (1) was identified and validated as the most potent one with marked in vitro and in vivo antitumor potency (J Med Chem, 2011, 54, 5532-5539.). Herein, further modification in 1 afforded another oral active analog ZYJ-34v (2) with simplified structure and lower molecular weight. Biological evaluation of compound 2 showed efficacious inhibition against histone deacetylase 1, 2, 3, and 6, which was confirmed by Western blot analysis results. Most importantly, compound 2 exhibited similar even more potent in vitro and in vivo antitumor activities relative to the approved histone deacetylase inhibitor SAHA.

  13. Enantioselective synthesis of pactamycin, a complex antitumor antibiotic.

    PubMed

    Malinowski, Justin T; Sharpe, Robert J; Johnson, Jeffrey S

    2013-04-12

    Medicinal application of many complex natural products is precluded by the impracticality of their chemical synthesis. Pactamycin, the most structurally intricate aminocyclopentitol antibiotic, displays potent antiproliferative properties across multiple phylogenetic domains, but it is highly cytotoxic. A limited number of analogs produced by genetic engineering technologies show reduced cytotoxicity against mammalian cells, renewing promise for therapeutic applications. For decades, an efficient synthesis of pactamycin amenable to analog derivatizations has eluded researchers. Here, we present a short asymmetric total synthesis of pactamycin. An enantioselective Mannich reaction and symmetry-breaking reduction sequence was designed to enable assembly of the entire carbon core skeleton in under five steps and control critical three-dimensional (stereochemical) functional group relationships. This modular route totals 15 steps and is immediately amenable for structural analog synthesis.

  14. Murine Dendritic Cells Pulsed with Whole Tumor Lysates Mediate Potent Antitumor Immune Responses in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Fields, R. C.; Shimizu, K.; Mule, J. J.

    1998-08-01

    The highly efficient nature of dendritic cells (DC) as antigen-presenting cells raises the possibility of uncovering in tumor-bearing hosts very low levels of T cell reactivity to poorly immunogenic tumors that are virtually undetectable by other means. Here, we demonstrate the in vitro and in vivo capacities of murine bone marrow-derived, cytokine-driven DC to elicit potent and specific anti-tumor responses when pulsed with whole tumor lysates. Stimulation of naive spleen-derived T cells by tumor lysate-pulsed DC generated tumor-specific proliferative cytokine release and cytolytic reactivities in vitro. In addition, in two separate strains of mice with histologically distinct tumors, s.c. injections of DC pulsed with whole tumor lysates effectively primed these animals to reject subsequent lethal challenges with viable parental tumor cells and, important to note, also mediated significant reductions in the number of metastases established in the lungs. Tumor rejection depended on host-derived CD8+ T cells and, to a lesser extent, CD4+ T cells. Spleens from mice that had rejected their tumors contained specific precursor cytotoxic T lymphocytes. The use of whole tumor lysates as a source of tumor-associated antigen(s) for pulsing of DC circumvents several limitations encountered with other methods as well as provides certain distinct advantages, which are discussed. These data serve as rationale for our recent initiation of a phase I clinical trial of immunization with autologous tumor lysate-pulsed DC in adult and pediatric cancer patients.

  15. Copper(II) complexes with saccharinate and glutamate as antitumor agents. Cyto- and genotoxicity in human osteosarcoma cells.

    PubMed

    Cadavid-Vargas, J F; León, I E; Etcheverry, S B; Santi, E; Torre, M H; Di Virgilio, A L

    2016-05-13

    We report herein the antitumor actions of three copper(II) complexes on MG-63 human osteosarcoma cells. The three complexes: Cu-sac, Cu-gln and Cu-sac-gln (sac= saccharinate, gln= glutamine) caused a decline in cell viability. The half-maximal inhibitory concentration in MG-63 cells for Cu-sac-gln is 170 µM, showing the strongest antiproliferative effect. Moreover, only Cu-sac-gln caused a decrease of the mitochondrial activity from 100 μM. Our results indicate that the copper(II) complexes studied here produce DNA damage and suggest that the rise of reactive oxygen species (ROS) is the central mechanism action. Genotoxicity studied by the Cytokinesis-block micronucleus (MN) assay and the Single cell gel electrophoresis (comet assay) could be observed in MG-63 cells treated with Cu-sac-gln from 100 and 50 μM, respectively. Cu-sac and Cu-gln also induced DNA damage; however their effect was definitively weaker. The generation of reactive oxygen species increased from 50 μM of Cu-sac-gln and Cu-sac and only from 250 μM of Cu-gln, as well as a reduction of the GSH/GSSG ratio from 50 μM. When cells were treated with several concentrations of the complexes in addition to a combination of 50 μM of vitamin C plus 50 μM of vitamin E, a total recovery in cell survival was obtained for Cu-gln in the whole range of tested concentrations while only a partial viability recovery was obtained from 250 μM of Cu-sac and Cu-sac-gln. Overall, our results point to a differential cyto- and genotoxicity of the three copper(II) complexes and demonstrate that the complexation with both ligands confers the most potent antitumor action in human osteosarcoma cells.

  16. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs

    PubMed Central

    2014-01-01

    -γ production and cytolytic activity of spleen cells from treated mice. More importantly, combined treatment of anti-PD-1/GITR mAb and chemotherapeutic drugs (cisplatin or paclitaxel) further increased the antitumor efficacy with 80% of mice obtaining tumor-free long-term survival in murine ID8 ovarian cancer and 4 T1 breast cancer models. Conclusions Combined anti-PD-1/GITR mAb treatment induces a potent antitumor immunity, which can be further promoted by chemotherapeutic drugs. A combined strategy of anti-PD-1/GITR mAb plus cisplatin or paclitaxel should be considered translation into clinic. PMID:24502656

  17. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity

    NASA Astrophysics Data System (ADS)

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-10-01

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.

  18. EBI-907, a novel BRAFV600E inhibitor, has potent oral anti-tumor activity and a broad kinase selectivity profile

    PubMed Central

    Zhang, Jiayin; Lu, Biao; Liu, Dong; Shen, Ru; Yan, Yinfa; Yang, Liuqing; Zhang, Minsheng; Zhang, Lei; Cao, Guoqing; Cao, Hu; Fu, Beibei; Gong, Aishen; Sun, Qiming; Wan, Hong; Zhang, Lianshan; Tao, Weikang; Cao, Jingsong

    2016-01-01

    abstract The oncogenic mutation of BRAFV600E has been found in approximately 8% of all human cancers, including more than 60% of melanoma and 10% of colorectal cancers. The clinical proof of concept in treating BRAFV600E-driving melanoma patients with the BRAF inhibitors has been well established. We have sought to identify and develop novel BRAFV600E inhibitors with more favorable profiles. Our chemistry effort has led to the discovery of EBI-907 as a novel BRAFV600E inhibitor with potent anti-tumor activity in vitro and in vivo. In a LanthaScreen BRAFV600E kinase assay, EBI-907 showed an IC50 of 4.8 nM, which is >10 -fold more potent than Vemurafenib (IC50 = 58.5 nM). In addition, EBI-907 showed a broader kinase selectivity profile, with potent activity against a number of important oncogenic kinases including FGFR1-3, RET, c-Kit, and PDGFRb. Concomitant with such properties, EBI-907 exhibits potent and selective cytotoxicity against a broader range of BRAFV600E-dependent cell lines including certain colorectal cancer cell lines with innate resistance to Vemurafenib. In BRAFV600E-dependent human Colo-205 and A375 tumor xenograft mouse models, EBI-907 caused a marked tumor regression in a dose-dependent manner, with superior efficacy to Vemurafenib. Our results also showed that combination with EGFR or MEK inhibitor enhanced the potency of EBI-907 in cell lines with innate or acquired resistance to BRAF inhibition alone. Our findings present EBI-907 as a potent and promising BRAF inhibitor, which might be useful in broader indications. PMID:26810733

  19. DNA binding, antitumor activities, and hydroxyl radical scavenging properties of novel oxovanadium (IV) complexes with substituted isoniazid.

    PubMed

    Liao, Xiangwen; Lu, Jiazheng; Ying, Peng; Zhao, Ping; Bai, Yinliang; Li, Wengjie; Liu, Mingpei

    2013-12-01

    Four novel oxovanadium(IV) complexes—[VO(PAHN)(phen)] (1; PAHN is 4-pyridinecarboxylic acid, 2-[(2-hydroxy)-1-naphthalenylene] hydrazide, phen is 1,10-phenanthroline), [VO(PAHN)(bpy)] (2; bpy is 2,2′-bipyridine), [VO(PAH)(phen)] (3; PAH is 4-pyridinecarboxylic acid, 2-[(2-hydroxy)-1-phenyl]methylene hydrazide), and [VO(PAH)(bpy)] (4)—have been synthesized and characterized by elemental analysis, UV–vis spectroscopy, electrospray ionization mass spectrometry, IR spectroscopy, 1H-NMR spectroscopy, and 13C-NMR spectroscopy. Their interactions with calf thymus DNA were investigated. The results suggest that these complexes bind to DNA in an intercalative mode. All four complexes exhibited highly cytotoxic activity against tumor cells (SH-SY5Y, MCF-7, and SK-N-SH), with 50 % inhibitory concentrations of the same order of magnitude as for cisplatin or of lower order of magnitude. Complex 1 exhibited the highest interaction ability and was found to be the most potent antitumor agent among the four complexes. It can cause G2/M phase arrest of the cell cycle, induces significant apoptosis in SK-N-SH cells, and displays typical morphological apoptotic characteristics. In addition, their hydroxyl radical scavenging properties have been tested, and complex 1 was the best inhibitor.

  20. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  1. The discovery of potent antitumor agent C11-deoxypsymberin/irciniastatin A: total synthesis and biology of advanced psymberin analogs.

    PubMed

    Huang, Xianhai; Shao, Ning; Huryk, Robert; Palani, Anandan; Aslanian, Robert; Seidel-Dugan, Cynthia

    2009-02-19

    Structure-activity relationship (SAR) studies by modification of the unsaturated side chain of potent anticancer marine natural product psymberin/irciniastatin A (1) suggest that substitution at C4 and C5 is important for the cytotoxicity of psymberin, but the terminal double bond is not essential for activity. An aryl group is a good replacement for the olefin. The total synthesis of structurally simplified C11-deoxypsymberin (29) was completed, and its activity is consistently more potent than the natural product which provides a unique opportunity for further SAR studies in the psymberin and pederin family. Preliminary mechanism studies suggest the mode of action of psymberin is through cell apoptosis.

  2. Synthesis, cytotoxicity and antitumor activity of platinum(II) complexes of cyclopentanecarboxylic acid hydrazide.

    PubMed

    Kushev, D; Gorneva, G; Taxirov, S; Spassovska, N; Grancharov, K

    1999-11-01

    New platinum(II) complexes of cyclopentanecarboxylic acid hydrazide (cpcah) were prepared, characterized by elemental analysis, IR and 1H NMR spectra, and evaluated for in vitro cytotoxicity in Friend leukemia (FL) and A2780 ovarian tumor cells, induction of apoptosis in FL cells, as well as for in vivo antitumor activity toward murine L1210 leukemia and Lewis lung carcinoma. The spectral analyses indicated a cis-square planar structure of the complexes with hydrazide ligand coordinated via the NH2 group. The compounds exerted significantly lower in vitro and in vivo toxicities as compared with those of cisplatin (cis-diamminedichloroplatinum(II), DDP). On the other hand, the complex [Pt(NH3)(cpcah)Cl2] exhibited antitumor activity against L1210 leukemia in mice comparable to that of cisplatin, resulting at a dose of 42 mg/kg (administered 3 times) in a T/C (mean survival time) of 280%. This compound displayed an in vitro macromolecular synthesis inhibition pattern similar to that of DDP. At concentrations close to the cytostatic ones (10-20 microM) this complex, as well as DDP, was able to induce apoptosis in FL cells as shown by neutral comet assay and morphological analysis. We concluded that there is a correlation between the ability of platinum complexes to induce apoptosis and their antitumor activity.

  3. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  4. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    PubMed Central

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  5. Pazopanib, a novel multi-kinase inhibitor, shows potent antitumor activity in colon cancer through PUMA-mediated apoptosis.

    PubMed

    Zhang, Lingling; Wang, Huanan; Li, Wei; Zhong, Juchang; Yu, Rongcheng; Huang, Xinfeng; Wang, Honghui; Tan, Zhikai; Wang, Jiangang; Zhang, Yingjie

    2017-01-10

    Colon cancer is still the third most common cancer which has a high mortality but low five-year survival rate. Novel tyrosine kinase inhibitors (TKI) such as pazopanib become effective antineoplastic agents that show promising clinical activity in a variety of carcinoma, including colon cancer. However, the precise underlying mechanism against tumor is unclear. Here, we demonstrated that pazopanib promoted colon cancer cell apoptosis through inducing PUMA expression. Pazopanib induced p53-independent PUMA activation by inhibiting PI3K/Akt signaling pathway, thereby activating Foxo3a, which subsequently bound to the promoter of PUMA to activate its transcription. After induction, PUMA activated Bax and triggered the intrinsic mitochondrial apoptosis pathway. Furthermore, administration of pazopanib highly suppressed tumor growth in a xenograft model. PUMA deletion in cells and tumors led to resistance of pazopanib, indicating PUMA-mediated pro-apoptotic and anti-tumor effects in vitro and in vivo. Combing pazopanib with some conventional or novel drugs, produced heightened and synergistic antitumor effects that were associated with potentiated PUMA induction via different pathways. Taken together, these results establish a critical role of PUMA in mediating the anticancer effects of pazopanib in colon cancer cells and provide the rationale for clinical evaluation.

  6. Potent antitumor 9-anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: synthesis and biological activity.

    PubMed

    Su, Tsann-Long; Lin, Yi-Wen; Chou, Ting-Chao; Zhang, Xiuguo; Bacherikov, Valeriy A; Chen, Ching-Huang; Liu, Leroy F; Tsai, Tsong-Jen

    2006-06-15

    A series of 9-anilinoacridine and acridine derivatives bearing an alkylating N-mustard residue at C4 of the acridine chromophore were synthesized. The N-mustard pharmacophore was linked to the C4 of the acridine ring with an O-ethyl (O-C(2)), O-propyl (O-C(3)), or O-butyl (O-C(4)) spacer. It revealed that all newly synthesized compounds were very potent cytotoxic agents against human leukemia and various solid tumors in vitro. These agents did not exhibit cross-resistance against vinblastine-resistant (CCRF-CEM/VBL) or taxol-resistant (CCRF-CEM/taxol) cells. It also showed that these agents were DNA cross-linking agents rather than topoisomerase II inhibitors. Of these agents, compounds 27a and 27c were shown to have potent antitumor activity in nude mice bearing the human breast carcinoma MX-1 xenograft. The therapeutic efficacies of these two agents are comparable to that of taxol.

  7. The CDK9 Inhibitor Dinaciclib Exerts Potent Apoptotic and Antitumor Effects in Preclinical Models of MLL-Rearranged Acute Myeloid Leukemia.

    PubMed

    Baker, Adele; Gregory, Gareth P; Verbrugge, Inge; Kats, Lev; Hilton, Joshua J; Vidacs, Eva; Lee, Erwin M; Lock, Richard B; Zuber, Johannes; Shortt, Jake; Johnstone, Ricky W

    2016-03-01

    Translocations of the mixed lineage leukemia (MLL) gene occur in 60% to 80% of all infant acute leukemias and are markers of poor prognosis. MLL-AF9 and other MLL fusion proteins aberrantly recruit epigenetic regulatory proteins, including histone deacetylases (HDAC), histone methyltransferases, bromodomain-containing proteins, and transcription elongation factors to mediate chromatin remodeling and regulate tumorigenic gene expression programs. We conducted a small-molecule inhibitor screen to test the ability of candidate pharmacologic agents targeting epigenetic and transcriptional regulatory proteins to induce apoptosis in leukemic cells derived from genetically engineered mouse models of MLL-AF9-driven acute myeloid leukemia (AML). We found that the CDK inhibitor dinaciclib and HDAC inhibitor panobinostat were the most potent inducers of apoptosis in short-term in vitro assays. Treatment of MLL-rearranged leukemic cells with dinaciclib resulted in rapidly decreased expression of the prosurvival protein Mcl-1, and accordingly, overexpression of Mcl-1 protected AML cells from dinaciclib-induced apoptosis. Administration of dinaciclib to mice bearing MLL-AF9-driven human and mouse leukemias elicited potent antitumor responses and significantly prolonged survival. Collectively, these studies highlight a new therapeutic approach to potentially overcome the resistance of MLL-rearranged AML to conventional chemotherapies and prompt further clinical evaluation of CDK inhibitors in AML patients harboring MLL fusion proteins.

  8. Design and synthesis of 2-(3-benzo[b]thienyl)-6,7-methylenedioxyquinolin-4-one analogues as potent antitumor agents that inhibit tubulin assembly.

    PubMed

    Chang, Yu-Hsun; Hsu, Mei-Hua; Wang, Sheng-Hung; Huang, Li-Jiau; Qian, Keduo; Morris-Natschke, Susan L; Hamel, Ernest; Kuo, Sheng-Chu; Lee, Kuo-Hsiung

    2009-08-13

    As part of our continuing investigation of azo-flavonoid derivatives as potential anticancer drug candidates, a series of 2-aryl-6,7-methylenedioxyquinolin-4-one analogues was designed and synthesized. The design combined structural features of 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one (CHM-1), a previously discovered compound with potent in vivo antitumor activity, and 2-arylquinolin-4-ones, identified by CoMFA models. The newly synthesized analogues were evaluated for cytotoxicity against seven human cancer cell lines, and structure-activity relationship (SAR) correlations were established. Analogues 1, 37, and 39 showed potent cytotoxicity against different cancer cell lines. Compound 1 demonstrated selective cytotoxicity against Hep 3B (hepatoma) cells. Compound 37 was cytotoxic against HL-60 (leukemia), HCT-116 (colon cancer), Hep 3B (hepatoma), and SK-MEL-5 (melanoma) cells. Compound 39 exhibited broad cytotoxicity against all seven cancer cell lines, with IC50 values between 0.07 and 0.19 microM. Results from mechanism of action studies revealed that these new quinolone derivatives function as antitubulin agents.

  9. Antitumor activities and interaction with DNA of oxaliplatin-type platinum complexes with linear or branched alkoxyacetates as leaving groups.

    PubMed

    Yin, Runting; Gou, Shaohua; Liu, Xia; Lou, Liguang

    2011-08-01

    Five oxaliplatin-typed platinum complexes containing trans-1R, 2R-diaminocyclohexane chelating platinum cores, characteristic of linear or branched alkoxycarboxylates as leaving groups, were biologically evaluated. These compounds showed higher antitumor activity, lower toxicity in vivo than cisplatin or oxaliplatin. And the results revealed that the antitumor activity and interaction with DNA of these compounds were highly related to the nature of leaving groups. Among these complexes, 5a, cis-(trans-1R, 2R-diaminocyclohexane) bis (2-tert-butoxyacetate) platinum(II), showed the highest antitumor activity and the lowest toxicity.

  10. Synthesis and Characterization of Some New Bis-Pyrazolyl-Thiazoles Incorporating the Thiophene Moiety as Potent Anti-Tumor Agents

    PubMed Central

    Gomha, Sobhi M.; Edrees, Mastoura M.; Altalbawy, Farag M. A.

    2016-01-01

    A new series of 1,4-bis(1-(5-(aryldiazenyl)thiazol-2-yl)-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)benzenes 3a–i were synthesized via reaction of 5,5′-(1,4-phenylene)bis(3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide) (1) with hydrazonoyl halides 2a–i. In addition, reaction of 1 with ethyl chloroacetate afforded bis-thiazolone derivative 8 as the end product. Reaction of compound 8 with methyl glyoxalate gave bis-thiazolone derivative 10. The structures of the newly synthesized compounds were established on the basis of spectroscopic evidences and their alternative syntheses. All the synthesized compounds were evaluated for their anti-tumor activities against hepatocellular carcinoma (HepG2) cell lines, and the results revealed promising activities of compounds 3g, 5e, 3e, 10, 5f, 3i, and 3f with IC50 equal 1.37 ± 0.15, 1.41 ± 0.17, 1.62 ± 0.20, 1.86 ± 0.20, 1.93 ± 0.08, 2.03 ± 0.25, and 2.09 ± 0.19 μM, respectively. PMID:27618013

  11. Single-domain antibody-based and linker-free bispecific antibodies targeting FcγRIII induce potent antitumor activity without recruiting regulatory T cells.

    PubMed

    Rozan, Caroline; Cornillon, Amélie; Pétiard, Corinne; Chartier, Martine; Behar, Ghislaine; Boix, Charlotte; Kerfelec, Brigitte; Robert, Bruno; Pèlegrin, André; Chames, Patrick; Teillaud, Jean-Luc; Baty, Daniel

    2013-08-01

    Antibody-dependent cell-mediated cytotoxicity, one of the most prominent modes of action of antitumor antibodies, suffers from important limitations due to the need for optimal interactions with Fcγ receptors. In this work, we report the design of a new bispecific antibody format, compact and linker-free, based on the use of llama single-domain antibodies that are capable of circumventing most of these limitations. This bispecific antibody format was created by fusing single-domain antibodies directed against the carcinoembryonic antigen and the activating FcγRIIIa receptor to human Cκ and CH1 immunoglobulin G1 domains, acting as a natural dimerization motif. In vitro and in vivo characterization of these Fab-like bispecific molecules revealed favorable features for further development as a therapeutic molecule. They are easy to produce in Escherichia coli, very stable, and elicit potent lysis of tumor cells by human natural killer cells at picomolar concentrations. Unlike conventional antibodies, they do not engage inhibitory FcγRIIb receptor, do not compete with serum immunoglobulins G for receptor binding, and their cytotoxic activity is independent of Fc glycosylation and FcγRIIIa polymorphism. As opposed to anti-CD3 bispecific antitumor antibodies, they do not engage regulatory T cells as these latter cells do not express FcγRIII. Studies in nonobese diabetic/severe combined immunodeficient gamma mice xenografted with carcinoembryonic antigen-positive tumor cells showed that Fab-like bispecific molecules in the presence of human peripheral blood mononuclear cells significantly slow down tumor growth. This new compact, linker-free bispecific antibody format offers a promising approach for optimizing antibody-based therapies.

  12. Azido- and chlorido-cobalt complex as carrier-prototypes for antitumoral prodrugs.

    PubMed

    Pires, Bianca M; Giacomin, Letícia C; Castro, Frederico A V; Cavalcanti, Amanda dos S; Pereira, Marcos D; Bortoluzzi, Adailton J; Faria, Roberto B; Scarpellini, Marciela

    2016-04-01

    Cobalt(III) complexes are well-suited systems for cytotoxic drug release under hypoxic conditions. Here, we investigate the effect of cytotoxic azide release by cobalt-containing carrier-prototypes for antitumoral prodrugs. In addition, we study the species formed after reduction of Co(3+) → Co(2+) in the proposed models for these prodrugs. Three new complexes, [Co(III)(L)(N3)2]BF4(1), [{Co(II)(L)(N3)}2](ClO4)2(2), and [Co(II)(L)Cl]PF6(3), L=[(bis(1-methylimidazol-2-yl)methyl)(2-(pyridyl-2-yl)ethyl)amine], were synthesized and studied by several spectroscopic, spectrometric, electrochemical, and crystallographic methods. Reactivity and spectroscopic data reveal that complex 1 is able to release N3(-) either after reduction with ascorbic acid, or by ambient light irradiation, in aqueous phosphate buffer (pH6.2, 7.0 and 7.4) and acetonitrile solutions. The antitumoral activities of compounds 1-3 were tested in normoxia on MCF-7 (human breast adenocarcinoma), PC-3 (human prostate) and A-549 (human lung adenocarcinoma epithelial) cell lines, after 24h of exposure. Either complexes or NaN3 presented IC50 values higher than 200 μM, showing lower cytotoxicity than the clinical standard antitumoral complex cisplatin, under the same conditions. Complexes 1-3 were also evaluated in hypoxia on A-549 and results indicate high IC50 data (>200 μM) after 24h of exposure. However, an increase of cancer cell susceptibility to 1 and 2 was observed at 300 μM. Regarding complex 3, no cytotoxic activity was observed in the same conditions. The data presented here indicate that the tridentate ligand L is able to stabilize both oxidation states of cobalt (+3 and +2). In addition, the cobalt(III) complex generates the low cytotoxic cobalt(II) species after reduction, which supports their use as as carrier prototypes for antitumoral prodrugs.

  13. Discovery of hybrid dual N-acylhydrazone and diaryl urea derivatives as potent antitumor agents: design, synthesis and cytotoxicity evaluation.

    PubMed

    Zhai, Xin; Huang, Qiang; Jiang, Nan; Wu, Di; Zhou, Hongyu; Gong, Ping

    2013-03-04

    Based on the hybrid pharmacophore design concept, a novel series of dual diaryl urea and N-acylhydrazone derivatives were synthesized and evaluated for their in vitro cytotoxicity by the standard MTT assay. The pharmacological results indicated that most compounds exhibited moderate to excellent activity. Moreover, compound 2g showed the most potent cytotoxicity against HL-60, A549 and MDA-MB-231 cell lines, with IC50 values of 0.22, 0.34 and 0.41 μM, respectively, which was 3.8 to 22.5 times more active than the reference compounds sorafenib and PAC-1. The promising compound 2g thus emerges as a lead for further structural modifications.

  14. DNA Binding and Antitumor Activity of α-Diimineplatinum(II) and Palladium(II) Dithiocarbamate Complexes

    PubMed Central

    Mansouri-Torshizi, Hassan; Saeidifar, Maryam; Khosravi, Fatemeh; Divsalar, Adeleh; Saboury, Ali Akbar; Hassani, Fatemeh

    2011-01-01

    The two water-soluble designed platinum(II) complex, [Pt(Oct-dtc)(bpy)]NO3 (Oct-dtc = Octyldithiocarbamate and bpy = 2,2′ -bipyridine) and palladium(II) complex, [Pd(Oct-dtc)(bpy)]NO3, have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR, 1H NMR, and electronic spectra studies. Studies of antitumor activity of these complexes against human cell tumor lines (K562) have been carried out. They show Ic50 values lower than that of cisplatin. The complexes have been investigated for their interaction with calf thymus DNA (CT-DNA) by utilizing the electronic absorption spectroscopy, fluorescence spectra, and ethidium bromide displacement and gel filtration techniques. Both of these water-soluble complexes bound cooperatively and intercalatively to the CT-DNA at very low concentrations. Several binding and thermodynamic parameters are also described. PMID:22110410

  15. IMGN853, a Folate Receptor-α (FRα)-Targeting Antibody-Drug Conjugate, Exhibits Potent Targeted Antitumor Activity against FRα-Expressing Tumors.

    PubMed

    Ab, Olga; Whiteman, Kathleen R; Bartle, Laura M; Sun, Xiuxia; Singh, Rajeeva; Tavares, Daniel; LaBelle, Alyssa; Payne, Gillian; Lutz, Robert J; Pinkas, Jan; Goldmacher, Victor S; Chittenden, Thomas; Lambert, John M

    2015-07-01

    A majority of ovarian and non-small cell lung adenocarcinoma cancers overexpress folate receptor α (FRα). Here, we report the development of an anti-FRα antibody-drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules. From screening a large panel of anti-FRα monoclonal antibodies, we selected the humanized antibody M9346A as the best antibody for targeted delivery of a maytansinoid payload into FRα-positive cells. We compared M9346A conjugates with various linker/maytansinoid combinations, and found that a conjugate, now denoted as IMGN853, with the N-succinimidyl 4-(2-pyridyldithio)-2-sulfobutanoate (sulfo-SPDB) linker and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) exhibited the most potent antitumor activity in several FRα-expressing xenograft tumor models. The level of expression of FRα on the surface of cells was a major determinant in the sensitivity of tumor cells to the cytotoxic effect of the conjugate. Efficacy studies of IMGN853 in xenografts of ovarian cancer and non-small cell lung cancer cell lines and of a patient tumor-derived xenograft model demonstrated that the ADC was highly active against tumors that expressed FRα at levels similar to those found on a large fraction of ovarian and non-small cell lung cancer patient tumors, as assessed by immunohistochemistry. IMGN853 displayed cytotoxic activity against FRα-negative cells situated near FRα-positive cells (bystander cytotoxic activity), indicating its ability to eradicate tumors with heterogeneous expression of FRα. Together, these findings support the clinical development of IMGN853 as a novel targeted therapy for patients with FRα-expressing tumors.

  16. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents.

    PubMed

    Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A

    2015-11-03

    In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  17. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses.

    PubMed

    Rosalia, Rodney A; Cruz, Luis J; van Duikeren, Suzanne; Tromp, Angelino T; Silva, Ana L; Jiskoot, Wim; de Gruijl, Tanja; Löwik, Clemens; Oostendorp, Jaap; van der Burg, Sjoerd H; Ossendorp, Ferry

    2015-02-01

    Dendritic cells (DC) play a prominent role in the priming of CD8(+) T cells. Vaccination is a promising treatment to boost tumor-specific CD8(+) T cells which is crucially dependent on adequate delivery of the vaccine to DC. Upon subcutaneous (s.c.) injection, only a small fraction of the vaccine is delivered to DC whereas the majority is cleared by the body or engulfed by other immune cells. To overcome this, we studied vaccine delivery to DC via CD40-targeting using a multi-compound particulate vaccine with the aim to induce potent CD8(+) T cell responses. To this end, biodegradable poly(lactic-co-glycolic acid) nanoparticles (NP) were formulated encapsulating a protein Ag, Pam3CSK4 and Poly(I:C) and coated with an agonistic αCD40-mAb (NP-CD40). Targeting NP to CD40 led to very efficient and selective delivery to DC in vivo upon s.c. injection and improved priming of CD8(+) T cells against two independent tumor associated Ag. Therapeutic application of NP-CD40 enhanced tumor control and prolonged survival of tumor-bearing mice. We conclude that CD40-mediated delivery to DC of NP-vaccines, co-encapsulating Ag and adjuvants, efficiently drives specific T cell responses, and therefore, is an attractive method to improve the efficacy of protein based cancer vaccines undergoing clinical testing in the clinic.

  18. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives containing diaryl urea moiety as potent antitumor agents.

    PubMed

    Liu, Zijian; Wang, Yu; Lin, Huafang; Zuo, Dazhuang; Wang, Lihui; Zhao, Yanfang; Gong, Ping

    2014-10-06

    Two series of thieno[3,2-d]pyrimidine derivatives containing diaryl urea moiety were designed, synthesized and evaluated for their biological activity. The preliminary investigation showed that most compounds displayed good to excellent potency against four tested cancer cell lines as compared with GDC-0941 and sorafenib. In particular, the most promising compound 29a showed the most potent antitumor activities with IC50 values of 0.081 μM, 0.058 μM, 0.18 μM, and 0.23 μM against H460, HT-29, MKN-45 and MDA-MB-231 cell lines, respectively. The SAR analyses indicated that compounds with mono-halogen groups at 4-position on the terminal phenyl ring were more active than those with double-halogen groups or methyl groups. In addition, the introduction of chlorine atoms into 6,7-position of thieno[3,2-d]pyrimidine moiety led to a slight decline, but more selective activity against H460 and HT-29 cell lines.

  19. Antitumor agents 292. Design, synthesis and pharmacological study of S- and O-substituted 7-mercapto- or hydroxy-coumarins and chromones as potent cytotoxic agents.

    PubMed

    Chen, Ying; Liu, Hong-Rui; Liu, Hong-Shan; Cheng, Ming; Xia, Peng; Qian, Keduo; Wu, Pei-Chi; Lai, Chin-Yu; Xia, Yi; Yang, Zheng-Yu; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2012-03-01

    Thirty-five S- and O-substituted 7-mercaptocoumarin (9-23) and 7-hydroxy- or 7-mercapto-chromone (24-43) analogs were designed, synthesized and evaluated in vitro against four human tumor cell lines [KB (nasopharyngeal), KB-vin (vincristine-resistant subline), A549 (lung) and DU145 (prostate)] with paclitaxel as the positive control. Many of the synthesized compounds exhibited potent cytotoxic activity. Among them, compounds 10 and 18 showed broad spectrum activity with GI(50) values ranging from 0.92 to 2.11 μM and 2.06-14.07 μM, respectively. However, 33, a 3-brominated compound, displayed significant and selective inhibition against MDR KB-vin with a GI(50) of 5.84 μM. Regardless of the size of the 7-alkoxy group, 2-α-bromoethyl-8-bromomethyl compounds (40-43) exhibited increased cytotoxicity compared with 2-ethyl-8-bromomethyl compounds (36-39). Moreover, in a preliminary pharmacological study, 10 not only remarkably increased cellular apoptosis in a concentration-dependent manner, but also clearly induced A549 cell cycle arrest at the G2/M phase. Thus, these coumarin derivatives merit investigation as novel potential antitumor agents with further structural modification to produce an optimal lead compound and elucidate the detailed pharmacological mechanism(s).

  20. Molecular-targeted antitumor agents: the Saururus cernuus dineolignans manassantin B and 4-O-demethylmanassantin B are potent inhibitors of hypoxia-activated HIF-1.

    PubMed

    Hodges, Tyler W; Hossain, Chowdhury Faiz; Kim, Yong-Pil; Zhou, Yu-Dong; Nagle, Dale G

    2004-05-01

    The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key regulator of tumor cell adaptation and survival under hypoxic conditions. Selective HIF-1 inhibitors represent an important new class of potential molecular-targeted antitumor therapeutic agents. Extracts of plants and marine organisms were evaluated using a T47D human breast tumor cell-based reporter assay for HIF-1 inhibitors. Bioassay-guided fractionation of the lipid extract of Saururus cernuus resulted in the isolation of manassantin B (1) and a new compound, 4-O-demethylmanassantin B (2). The structure of 2 was determined spectroscopically. The absolute configurations of manassantin-type dineolignans have not been previously reported. Therefore, the absolute configurations of the chiral centers in each side chain were deduced from spectroscopic analysis of the Mosher MTPA ester derivatives of 1. Both 1 and 2 are among the most potent small molecule HIF-1 inhibitors discovered, to date, with IC(50) values of 3 and 30 nM, respectively. Compounds 1 and 2 selectively inhibited hypoxia-activated HIF-1 in contrast to iron chelator-activated HIF-1. Compounds 1 and 2 also inhibited hypoxic induction of the angiogenic factor VEGF. Further study revealed that 1 selectively blocked the induction of HIF-1alpha protein, the oxygen regulated HIF-1 subunit that determines HIF-1 activity.

  1. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    PubMed

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-04

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes.

  2. Vanadium and cancer treatment: antitumoral mechanisms of three oxidovanadium(IV) complexes on a human osteosarcoma cell line.

    PubMed

    León, I E; Butenko, N; Di Virgilio, A L; Muglia, C I; Baran, E J; Cavaco, I; Etcheverry, S B

    2014-05-01

    We report herein the antitumor actions of three oxidovanadium(IV) complexes on MG-63 human osteosarcoma cell line. The three complexes: VO(oda), VO(oda)bipy and VO(oda)phen (oda=oxodiacetate), caused a concentration dependent inhibition of cell viability. The antiproliferative action of VO(oda)phen could be observed in the whole range of concentrations (at 2.5 μM), while VO(oda)bipy and VO(oda) showed a decrease of cell viability only at higher concentrations (at 50 and 75 μM, respectively) (p<0.01). Moreover, VO(oda)phen caused a decrease of lysosomal and mitochondrial activities at 2.5 μM, while VO(oda) and VO(oda)bipy affected neutral red uptake and mitochondrial metabolism at 50 μM (p<0.01). On the other hand, no DNA damage studied by the Comet assay could be observed in MG-63 cells treated with VO(oda) at 2.5-10 μM. Nevertheless, VO(oda)phen and VO(oda)bipy induced DNA damage at 2.5 and 10 μM, respectively (p<0.01). The generation of reactive oxygen species increased at 10 μM of VO(oda)phen and only at 100 μM of VO(oda) and VO(oda)bipy (p<0.01). Besides, VO(oda)phen and VO(oda)bipy triggered apoptosis as determined by externalization of the phosphatidylserine. The determination of DNA cleavage by agarose gel electrophoresis showed that the ability of VO(oda)(bipy) is similar to that of VO(oda), while VO(oda)(phen) showed the highest nuclease activity in this series. Overall, our results showed a good relationship between the bioactivity of the complexes and their structures since VO(oda)phen presented the most potent antitumor action in human osteosarcoma cells followed by VO(oda)bipy and then by VO(oda) according to the number of intercalating heterocyclic moieties.

  3. Endonuclease cleavage of blocked replication forks: An indirect pathway of DNA damage from antitumor drug-topoisomerase complexes

    NASA Astrophysics Data System (ADS)

    Hong, George; Kreuzer, Kenneth N.

    2003-04-01

    The cytotoxicity of several important antitumor drugs depends on formation of the covalent topoisomerase-DNA cleavage complex. However, cellular processes such as DNA replication are necessary to convert the cleavage complex into a cytotoxic lesion, but the molecular mechanism of this conversion and the precise nature of the cytotoxic lesion are unknown. Using a bacteriophage T4 model system, we have previously shown that antitumor drug-induced cleavage complexes block replication forks in vivo. In this report, we show that these blocked forks can be cleaved by T4 endonuclease VII to create overt DNA breaks. The accumulation of blocked forks increased in endonuclease VII-deficient infections, suggesting that endonuclease cleavage contributes to fork processing in vivo. Furthermore, purified endonuclease VII cleaved the blocked forks in vitro close to the branch points. These results suggest that an indirect pathway of branched-DNA cleavage contributes to the cytotoxicity of antitumor drugs that target DNA topoisomerases.

  4. Antitumor drug nogalamycin binds DNA in both grooves simultaneously: molecular structure of nogalamycin-DNA complex.

    PubMed

    Liaw, Y C; Gao, Y G; Robinson, H; van der Marel, G A; van Boom, J H; Wang, A H

    1989-12-26

    The three-dimensional molecular structures of the complexes between an interesting antitumor drug, nogalamycin, and two DNA hexamers, d[CGT(pS)ACG] and d[m5CGT(pS)Am5CG], were determined at high resolution by X-ray diffraction analyses. Two nogalamycins bind to the DNA double helix in a 2:1 ratio with the aglycon chromophore intercalated between the CpG steps at both ends of the helix. The nogalose and aminoglucose sugars lie in the minor and major grooves, respectively, of the distorted B-DNA double helix. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through. Specific hydrogen bonds are found in the complex between the drug and guanine bases. We suggest that nogalamycin may prefer GC sequences embedded in a stretch of AT sequences.

  5. Metal-N-heterocyclic carbene complexes as anti-tumor agents.

    PubMed

    Hu, Chunqi; Li, Xin; Wang, Wei; Zhang, Ruoyu; Deng, Liping

    2014-04-01

    It has been a long story of the development of anticancer metallopharmaceuticals since the identification of cisplatin. Advances in metallodrugs discovery during the past 40 years have made it an ever-growing area of research in medicinal inorganic chemistry. Meanwhile, the emerging of N-heterocyclic carbene (NHC) chemistry has stimulated the newly burgeoning interests in the biomedical applications of metal-NHC complexes. This review will detail what have been achieved hitherto in the research of metal-NHC complexes as potential anti-tumor agents coupled with gold, silver, copper, platinum and palladium. Their mechanism of action will also be discussed. All the results obtained indicate that this promising approach is worthy of more focuses and further studies.

  6. An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent antitumor effects

    PubMed Central

    Cho, Hyun-Il; Jung, Soo-Hyun; Sohn, Hyun-Jung; Celis, Esteban; Kim, Tai-Gyu

    2015-01-01

    Therapeutic cancer vaccines are an attractive alternative to conventional therapies for treating malignant tumors, and successful tumor eradication depends primarily on obtaining high numbers of long-lasting tumor-reactive CD8+ T cells. Dendritic cell (DC)-based vaccines constitute a promising approach for treating cancer, but in most instances low immune responses and suboptimal therapeutic effects are achieved indicating that further optimization is required. We describe here a novel vaccination strategy with peptide-loaded DCs followed by a mixture of synthetic peptides, polyinosine-polycytidylic acid (poly-IC) and anti-CD40 antibodies (TriVax) for improving the immunogenicity and therapeutic efficacy of DC-based vaccines in a melanoma mouse model. TriVax immunization 7–12 d after priming with antigen-loaded DCs generated large numbers of long-lasting multiple antigen-specific CD8+ T cells capable of recognizing tumor cells. These responses were far superior to those generated by homologous immunizations with either TriVax or DCs. CD8+ T cells but not CD4+ T cells or NK cells mediated the therapeutic efficacy of this heterologous prime-boost strategy. Moreover, combinations of this vaccination regimen with programmed cell death-1 (PD-1) blockade or IL2 anti-IL2 antibody complexes led to complete disease eradication and survival enhancement in melanoma-bearing mice. The overall results suggest that similar strategies would be applicable for the design of effective therapeutic vaccination for treating viral diseases and various cancers, which may circumvent current limitations of cell-based cancer vaccines. PMID:26451316

  7. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents

    PubMed Central

    Sestak, Vit; Stariat, Jan; Cermanova, Jolana; Potuckova, Eliska; Chladek, Jaroslav; Roh, Jaroslav; Bures, Jan; Jansova, Hana; Prusa, Petr; Sterba, Martin; Micuda, Stanislav; Simunek, Tomas; Kalinowski, Danuta S.; Richardson, Des R.; Kovarikova, Petra

    2015-01-01

    Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment. PMID:26623727

  8. Anti-CCR7 therapy exerts a potent anti-tumor activity in a xenograft model of human mantle cell lymphoma

    PubMed Central

    2013-01-01

    Background The chemokine receptor CCR7 mediates lymphoid dissemination of many cancers, including lymphomas and epithelial carcinomas, thus representing an attractive therapeutic target. Previous results have highlighted the potential of the anti-CCR7 monoclonal antibodies to inhibit migration in transwell assays. The present study aimed to evaluate the in vivo therapeutic efficacy of an anti-CCR7 antibody in a xenografted human mantle cell lymphoma model. Methods NOD/SCID mice were either subcutaneously or intravenously inoculated with Granta-519 cells, a human cell line derived from a leukemic mantle cell lymphoma. The anti-CCR7 mAb treatment (3 × 200 μg) was started on day 2 or 7 to target lymphoma cells in either a peri-implantation or a post-implantation stage, respectively. Results The anti-CCR7 therapy significantly delayed the tumor appearance and also reduced the volumes of tumors in the subcutaneous model. Moreover, an increased number of apoptotic tumor cells was detected in mice treated with the anti-CCR7 mAb compared to the untreated animals. In addition, significantly reduced number of Granta-519 cells migrated from subcutaneous tumors to distant lymphoid organs, such as bone marrow and spleen in the anti-CCR7 treated mice. In the intravenous models, the anti-CCR7 mAb drastically increased survival of the mice. Accordingly, dissemination and infiltration of tumor cells in lymphoid and non-lymphoid organs, including lungs and central nervous system, was almost abrogated. Conclusions The anti-CCR7 mAb exerts a potent anti-tumor activity and might represent an interesting therapeutic alternative to conventional therapies. PMID:24305507

  9. Antitumor activity of phenylene bridged binuclear bis(imino-quinolyl)palladium(II) and platinum(II) complexes.

    PubMed

    Motswainyana, William M; Onani, Martin O; Madiehe, Abram M; Saibu, Morounke

    2014-04-01

    Antitumor effects of a known bis(imino-quinolyl)palladium(II) complex 1 and its newly synthesized platinum(II) analogue 2 were evaluated against human breast (MCF-7) and human colon (HT-29) cancer cell lines. The complexes gave cytotoxicity profiles that were better than the reference drug cisplatin. The highest cytotoxic activities were pronounced in complex 2 across the two examined cancer cell lines. Both compounds represent potential active drugs based on bimetallic complexes.

  10. Complex of C60 Fullerene with Doxorubicin as a Promising Agent in Antitumor Therapy

    NASA Astrophysics Data System (ADS)

    Prylutska, Svitlana V.; Skivka, Larysa M.; Didenko, Gennadiy V.; Prylutskyy, Yuriy I.; Evstigneev, Maxim P.; Potebnya, Grygoriy P.; Panchuk, Rostyslav R.; Stoika, Rostyslav S.; Ritter, Uwe; Scharff, Peter

    2015-12-01

    The main aim of this work was to evaluate the effect of doxorubicin in complex with C60 fullerene (C60 + Dox) on the growth and metastasis of Lewis lung carcinoma in mice and to perform a primary screening of the potential mechanisms of C60 + Dox complex action. We found that volume of tumor from mice treated with the C60 + Dox complex was 1.4 times less than that in control untreated animals. The number of metastatic foci in lungs of animals treated with C60 + Dox complex was two times less than that in control untreated animals. Western blot analysis of tumor lysates revealed a significant decrease in the level of heat-shock protein 70 in animals treated with C60 + Dox complex. Moreover, the treatment of tumor-bearing mice was accompanied by the increase of cytotoxic activity of immune cells. Thus, the potential mechanisms of antitumor effect of C60 + Dox complex include both its direct action on tumor cells by inducing cell death and increasing of stress sensitivity and an immunomodulating effect. The obtained results provide a scientific basis for further application of C60 + Dox nanocomplexes as treatment agents in cancer chemotherapy.

  11. Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III) complexes.

    PubMed

    Zhou, J; Wang, L F; Wang, J Y; Tang, N

    2001-01-01

    Eight rare earth metal(II) complexes with quercetin ML3 x 6H2O [L=quercetin (3-OH group deprotonated); M = La, Nd, Eu, Gd, Tb, Dy, Tm and Y] have been synthesized and characterized by elemental analysis, complexometric titration, thermal analysis, conductivity, IR, UV, 1HNMR and fluorescence spectra techniques as well as cyclic voltammetry. The quercetin:metal stoichiometry and the equilibrium stability constant for metal binding to quercetin have been determined. The antioxidative and antitumor activities of quercetin x 2H2O and the complexes were tested by both the MTT and SRB methods. The results show that the suppression ratio of the complexes against the tested tumour cells are superior to quercetin x 2H2O. The property of LaL3 x 6H2O reacting with calf thymus DNA was studied by fluorescence methods. The La-complex binding to DNA has been determined by fluorescence titration in 0.05 M Tris-HCl, 0.5 M NaCl buffer (pH 7.0). The results indicate that the interaction of the complex with DNA is very evident.

  12. 2-Deoxyglucose conjugated platinum (II) complexes for targeted therapy: design, synthesis, and antitumor activity.

    PubMed

    Mi, Qian; Ma, Yuru; Gao, Xiangqian; Liu, Ran; Liu, Pengxing; Mi, Yi; Fu, Xuegang; Gao, Qingzhi

    2016-11-01

    Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1's substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.

  13. Copper (II) complexes possessing alkyl-substituted polypyridyl ligands: Structural characterization and in vitro antitumor activity.

    PubMed

    Angel, Noah R; Khatib, Raneen M; Jenkins, Julia; Smith, Michelle; Rubalcava, Justin M; Le, Brian Khoa; Lussier, Daniel; Chen, Zhuo Georgia; Tham, Fook S; Wilson, Emma H; Eichler, Jack F

    2017-01-01

    In an effort to find alternatives to the antitumor drug cisplatin, a series of copper (II) complexes possessing alkyl-substituted polypyridyl ligands have been synthesized. Eight new complexes are reported herein: μ-dichloro-bis{2,9-di-sec-butyl-1,10-phenanthrolinechlorocopper(II)} {[((di-sec-butyl)phen)ClCu(μ-Cl)2CuCl((di-sec-butyl)phen)]}(1), 2-sec-butyl-1,10-phenanthrolinedichlorocopper(II) {([mono-sec-butyl)phen) CuCl2} (2), 2,9-di-n-butyl-1,10-phenanthrolinedichlorocopper(II) {[(di-n-butyl)phen) CuCl2}(3), 2-n-butyl-1,10-phenanthrolinedichlorocopper(II) {[(mono-n-butyl)phen) CuCl2} (4), 2,9-di-methyl-1,10-phenanthrolineaquadichlorocopper(II) {[(di-methyl)phen) Cu(H2O)Cl2}(5), μ-dichloro-bis{6-sec-butyl-2,2'-bipyridinedichlorocopper(II)} {((mono-sec-butyl)bipy) ClCu(μ-Cl)2CuCl((mono-sec-butyl)bipy)} (6), 6,6'-di-methyl-2,2'-bipyridinedichlorocopper(II) {(6,6'-di-methyl)bipy) CuCl2} (7), and 4,4'-dimethyl-2,2'-bipyridinedichlorocopper(II) {(4,4'-di-methyl)bipy) CuCl2} (8). These complexes have been characterized via elemental analysis, UV-vis spectroscopy, and mass spectrometry. Single crystal X-ray diffraction experiments revealed the complexes synthesized with the (di-sec-butyl)phen ligand (1) and (mono-sec-butyl)bipy ligand (6) crystallized as dimers in which two copper(II) centers are bridged by two chloride ligands. Conversely, complexes 2, 7, and 8 were isolated as monomeric species possessing distorted tetrahedral geometries, and the [((di-methyl)phen)Cu(H2O)Cl2] (5) complex was isolated as a distorted square pyramidal monomer possessing a coordinating aqua ligand. Compounds 1-8 were evaluated for their in vitro antitumor efficacy. Compounds 1, 5, and 7 in particular were found to exhibit remarkable activity against human derived lung cancer cells, yet this class of copper(II) compounds had minimal cytotoxic effect on non-cancerous cells. In vitro control experiments indicate the activity of the copper(II) complexes most likely does not arise from the

  14. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes.

    PubMed

    Ge, Wei; Hu, Pei-Zhen; Huang, Yang; Wang, Xiao-Ming; Zhang, Xiu-Min; Sun, Yu-Jing; Li, Zeng-Shan; Si, Shao-Yan; Sui, Yan-Fang

    2009-10-01

    Our previous study showed that nanoemulsion-encapsulated MAGE1-HSP70/SEA (MHS) complex protein vaccine elicited MAGE-1 specific immune response and antitumor effects against MAGE-1-expressing tumor and nanoemulsion is a useful vehicle with possible important implications for cancer biotherapy. The purpose of this study was to compare the immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70 and SEA as NE(MHS) vaccine following different administration routes and to find out the new and effective immune routes. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. C57BL/6 mice were immunized with NE(MHS) via po., i.v., s.c. or i.p., besides mice s.c. injected with PBS or NE(-) as control. The cellular immunocompetence was detected by ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were also examined. The results showed that the immune responses against MAGE-1 expressing murine tumors elicited by NE(MHS) via 4 different routes were approximately similar and were all stronger than that elicited by PBS or NE(-), suggesting that this novel nanoemulsion carrier can exert potent antitumor immunity against antigens encapsulated in it. Especially, the present results indicated that nanoemulsion vaccine adapted to administration via different routes including peroral, and may have broader applications in the future.

  15. Formation of complexes of antimicrobial agent norfloxacin with antitumor antibiotics of anthracycline series

    NASA Astrophysics Data System (ADS)

    Evstigneev, M. P.; Rybakova, K. A.; Davies, D. B.

    2007-05-01

    The formation of complexes in solutions of the norfloxacin antimicrobial agent (NOR) with daunomycin (DAU) and nogalamycin (NOG), antitumor anthracycline antibiotics, was studied using 1H NMR spectroscopy. Based on the concentration and temperature dependences of the chemical shifts of the protons of interacting molecules, the equilibrium constants and thermodynamic parameters (enthalpy and entropy) of heteroassociation of the antibiotics were calculated. It was shown that NOR interacts with DAU (NOG) in aqueous solutions forming stacked heterocomplexes with parallel orientation of the molecular chromophores. The conclusion was drawn that such interactions should be taken into account when anthracyclines and quinolones are jointly administered during combined chemotherapy, since they can contribute to the medico-biological synergistic effect of these antibiotics.

  16. Gold(I) Complexes of 9-Deazahypoxanthine as Selective Antitumor and Anti-Inflammatory Agents

    PubMed Central

    Vančo, Ján; Gáliková, Jana; Hošek, Jan; Dvořák, Zdeněk; Paráková, Lenka; Trávníček, Zdeněk

    2014-01-01

    The gold(I) mixed-ligand complexes involving O-substituted derivatives of 9-deazahypoxanthine (HLn) and triphenylphosphine (PPh3) with the general formula [Au(Ln)(PPh3)] (1–5) were prepared and thoroughly characterized by elemental analysis, FT-IR and multinuclear NMR spectroscopy, ESI+ mass spectrometry, single crystal X-ray (HL5 and complex 2) and TG/DTA analyses. Complexes 1–5 were evaluated for their in vitro antitumor activity against nine human cancer lines, i.e. MCF7 (breast carcinoma), HOS (osteosarcoma), A549 (adenocarcinoma), G361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) and THP-1 (monocytic leukaemia), for their in vitro anti-inflammatory activity using a model of LPS-activated macrophages, and for their in vivo antiedematous activity by λ-carrageenan-induced hind paw edema model on rats. The results showed that the complexes 1–5 exhibit selective in vitro cytotoxicity against MCF7, HOS, 22Rv1, A2780 and A2780R, with submicromolar IC50 values for 2 against the MCF7 (0.6 µM) and HOS (0.9 µM). The results of in vitro cytotoxicity screening on primary culture of human hepatocytes (HEP220) revealed up to 30-times lower toxicity of compounds against healthy cells as compared with cancer cells. Additionally, the complexes 1–5 significantly influence the secretion and expression of pro-inflammatory cytokines TNF-α and IL-1β by a similar manner as a commercially used anti-arthritic drug Auranofin. The tested complexes also significantly influence the rate and overall volume of the edema, caused by the intraplantar application of λ-carrageenan polysaccharide to rats. Based on these promising results, the presented compounds could qualify to become feasible candidates for advanced testing as potential antitumor and anti-inflammatory drug-like compounds. PMID:25333949

  17. High antitumor activity of 5,7-dihalo-8-quinolinolato cerium complexes.

    PubMed

    Chen, Zhen-Feng; Wei, Jian-Hua; Liu, Yan-Cheng; Liu, Mei; Gu, Yun-Qiong; Huang, Ke-Bin; Wang, Meng; Liang, Hong

    2013-10-01

    Three cerium complexes: [Ce(ClQ)4] (1) (H-ClQ=5,7-dichloro-8-hydroxylquinoline), [Ce(ClIQ)4]·CH2Cl2·0.5H2O (2) (H-ClIQ=5-chloro-7-iodo-8-hydroxylquinoline) and [Ce2(BrQ)4(H-BrQ)(H2O)3Cl2]·1.5H2O (3) (H-BrQ=5,7-dibromo-8-hydroxylquinoline) were synthesized. The structures of 1 and 2 are mononuclear whereas 3 has a binuclear structure. Compared with the H-ClQ, H-ClIQ and H-BrQ, complexes 1-3 exhibited significantly higher cytotoxicity (IC50=0.09-5.23 μM) to SK-OV-3 and BEL-7404, 1 and 2 exhibited higher cytotoxicity to NCI-H460. Most the complexes and ligands exhibited higher cytotoxicity than cisplatin. Complexes 1-3 are much more sensitive to SK-OV-3 than to human normal liver cell HL-7702. Their antitumor activities were achieved through cell apoptosis and arrest at G0/G1-phase. Studies on the binding properties of 1-3 to DNA indicate that intercalation is the most probable binding mode.

  18. Nickel(II) diacetyl monoxime-2-pyridyl hydrazone complex can inhibit Ehrlich solid tumor growth in mice: A potential new antitumor drug.

    PubMed

    Saad, Entsar A; Hassanien, Mohamed M; El-Lban, Faten W

    2017-03-11

    The chief chemotherapeutic drug, cisplatin had common bad effects such as nephrotoxicity, ototoxicity and bone marrow depression. This led us to develop a new potential anticancer drug based on nickel metal ion that may be less toxic. Nickel(II) diacetyl monoxime-2-pyridyl hydrazone complex cytoprotective effect, superoxide dismutase (SOD)-like activity and anticancer activities were studied. In vitro, the complex showed SOD-like activity of 86.62%. It was capable to kill 90.2% of Ehrlich ascites carcinoma (EAC) cells and to protect 92.48% of human RBCs. In vivo, the complex lowered the tumor burden markedly in a concentration-dependent manner. Noticeably, solid tumor growth was suppressed; tumor volume and weight were reduced and mice life span was lengthened. The hematological indices were improved, catalase activity was re-elevated and malondialdehyde (MDA) level was reversed towards normal. Nucleic acids, cholesterol, triglycerides, liver enzymes, urea and creatinine contents were reduced to near normal ranges. Glutathione (GSH), SOD, albumin and total protein levels were increased. In conclusion, our results revealed that the complex has the ability to suppress Ehrlich solid tumor growth in mice with minimal side effects. This may possibly via its redox activity. Surprisingly, nickel complex antitumor activities were more potent than those of cisplatin.

  19. Anti-tumor and immunomodulatory activity of iron hepta-tungsten phosphate oxygen clusters complex.

    PubMed

    Zhang, Bisong; Qiu, Jianping; Wu, Changsheng; Li, Yunxia; Liu, Zhenxiang

    2015-12-01

    Polyoxometalates (POMs) have attracted a considerable attention due to their unique structural characteristics, physicochemical properties and biological activities. In this study, iron hepta-tungsten phosphate oxygen clusters complex Na12H[Fe(HPW7O28)2]·44H2O (IHTPO) was synthesized and evaluated for in vitro cytotoxic activities on human hepatoma HepG2, leukemia K562, lung carcinoma A549, and large cell lung cancer NCI-H460 cells, therapeutic efficacies on mice transplantable tumor, and immunomodulatory potentials on the immune response in tumor-bearing mice. IHTPO exhibited lower in vitro cytotoxic activities against four human tumor cell lines, with the IC50 values being higher than 62.5μM (ca. 300μg/ml). IHTPO, however, significantly inhibited the growth of S180 sarcoma transplanted in mice. It was further showed that IHTPO could not only significantly promote splenocytes proliferation, NK cell and CTL activity from splenocytes, but remarkably enhance serum antigen-specific IgG, IgG2a and IgG2b antibody levels in S180-bearing mice. IHTPO also significantly promoted Th1 cytokines IFN-γ and IL-2 production, and up-regulated the mRNA expression levels of IFN-γ, IL-2 and Th1 transcription factors T-bet and STAT-4 in splenocytes from the S180-bearing mice. These results suggested that IHTPO significantly inhibited the growth of mice transplantable tumor, and that its in vivo antitumor activity might be achieved by improving Th1 protective cell-mediated immunity. IHTPO could act as antitumor agent with immunomodulatory activity.

  20. Novel antitumor adamantane-azole gold(I) complexes as potential inhibitors of thioredoxin reductase.

    PubMed

    Garcia, Adriana; Machado, Rafael Carvalhaes; Grazul, Richard Michael; Lopes, Miriam Teresa Paz; Corrêa, Charlane Cimini; Dos Santos, Hélio F; de Almeida, Mauro Vieira; Silva, Heveline

    2016-04-01

    Gold complexes that could act as antitumor agents have attracted great attention. Heterocyclic compounds and their metal complexes display a broad spectrum of pharmacological properties. The present study reports the preparation and characterization of four novel gold(I) complexes containing tertiary phosphine and new ligands 5-adamantyl-1,3-thiazolidine-2-thione, 3-methyladamantane-1,3,4-oxadiazole-2-thione. Spectroscopic data suggest that gold is coordinated to the exocyclic sulfur atom in all cases, as confirmed by X-ray crystallographic data obtained for complex (1) and supported by quantum-mechanical calculations. The cytotoxicity of the compounds has been evaluated in comparison to cisplatin and auranofin in three different tumor cell lines, colon cancer (CT26WT), metastatic skin melanoma (B16F10), mammary adenocarcinoma (4T1) and kidney normal cell (BHK-21). The gold complexes were more active than their respective free ligands and able to inhibit the thioredoxin reductase (TrxR) enzyme, even in the presence of albumin. Molecular modeling studies were carried out to understand the interaction between the compounds and the TrxR enzyme, considered as a potential target for new compounds in cancer treatment. The docking results show that the adamantane ring is essential to stabilize the ligand-enzyme complex prior the formation of covalent bond with gold center. The structure of the new gold compounds was established on the basis of spectroscopic data, DFT calculations and X-ray diffraction. TrxR inhibition was evaluated and the results correlated with the assays in tumor cells, suggesting the TrxR as possible target for these compounds.

  1. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors.

    PubMed

    Lazarus, Michael B; Novotny, Chris J; Shokat, Kevan M

    2015-01-16

    Autophagy is a conserved cellular process that involves the degradation of cellular components for energy maintenance and cytoplasmic quality control that has recently gained interest as a novel target for a variety of human diseases, including cancer. A prime candidate to determine the potential therapeutic benefit of targeting autophagy is the kinase ULK1, whose activation initiates autophagy. Here, we report the first structures of ULK1, in complex with multiple potent inhibitors. These structures show features unique to the enzyme and will provide a path for the rational design of selective compounds as cellular probes and potential therapeutics.

  2. Synthesis of antitumor azolato-bridged dinuclear platinum(ii) complexes with in vivo antitumor efficacy and unique in vitro cytotoxicity profiles.

    PubMed

    Komeda, Seiji; Takayama, Hiroshi; Suzuki, Toshihiro; Odani, Akira; Yamori, Takao; Chikuma, Masahiko

    2013-05-01

    We synthesised four tetrazolato-bridged dinuclear Pt(ii) complexes, [{cis-Pt(NH3)2}2(μ-OH)(μ-5-R-tetrazolato-N2,N3)](n+), where R is CH3 (1), C6H5 (2), CH2COOC2H5 (3), or CH2COO(-) (4) and n = 2 (1-3) or 1 (4). Their structures were characterised by (1)H, (13)C, and (195)Pt NMR spectroscopy, mass spectrometry, and elemental analysis, and the crystal structure of 1 was determined by X-ray crystallography. The cytotoxicities of the complexes to human non-small-cell lung cancer (NSCLC) cell lines sensitive and resistant to cisplatin were assayed. Complex 1 was more cytotoxic than cisplatin in both PC-9 and PC-14 NSCLC cell lines, and cross-resistance to 1 in the cisplatin-resistant cells was largely circumvented. Complex 3 was moderately cytotoxic, whereas 2 and 4 were only marginally cytotoxic. We also determined the growth inhibitory activities of 1 and 3, as well as prototype azolato-bridged complexes [{cis-Pt(NH3)2}2(μ-OH)(μ-pyrazolato)](2+) (AMPZ), [{cis-Pt(NH3)2}2(μ-OH)(μ-1,2,3-triazolato-N1,N2)](2+) (AMTA), [{cis-Pt(NH3)2}2(μ-OH)(μ-tetrazolato-N1,N2)](2+) (5-H-X), and [{cis-Pt(NH3)2}2(μ-OH)(μ-tetrazolato-N2,N3)](2+) (5-H-Y), against a panel of 39 human cancer cell lines (JFCR39). The average 50% growth inhibition concentrations of the complexes against the JFCR39 cell lines ranged from 0.933 to 23.4 μM. The cytotoxicity fingerprints of the complexes based on the JFCR39 cytotoxicity data were similar to one another but completely different from the fingerprints of clinical platinum-based anticancer drugs. Complex 3 exhibited marked antitumor efficiency when tested in vivo on xenografts of PANC-1 pancreatic cancer in nude mice. The high potency of 3 confirmed that the tetrazolato-bridged structure exhibits high in vivo antitumor efficacy.

  3. Mirror-image organometallic osmium arene iminopyridine halido complexes exhibit similar potent anticancer activity.

    PubMed

    Fu, Ying; Soni, Rina; Romero, María J; Pizarro, Ana M; Salassa, Luca; Clarkson, Guy J; Hearn, Jessica M; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J

    2013-11-04

    Four chiral Os(II) arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 1, and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction.

  4. New transition metal ion complexes with benzimidazole-5-carboxylic acid hydrazides with antitumor activity.

    PubMed

    Galal, Shadia A; Hegab, Khaled H; Kassab, Ahmed S; Rodriguez, Mireya L; Kerwin, Sean M; el-Khamry, Abdel-Mo'men A; el-Diwani, Hoda I

    2009-04-01

    Metal complexes of 2-methyl-1H-benzimidazole-5-carboxylic acid hydrazide (4a; L(1)) and its Schiff base 2-methyl-N-(propan-2-ylidene)-1H-benzimidazole-5-carbohydrazide (5a; L(2)) with transition metal ions e.g., copper, silver, nickel, iron and manganese were prepared. The complexes formed were 1:1 or 1:2 M:L complexes and have the structural formulae [Cu(L(1))Cl(H(2)O)]Cl x 3 H(2)O (6), [Ag(L(1))NO(3)(H(2)O)] (7), [Ni(L(1))Cl(2)(H(2)O)(2)] x H(2)O (8), [Fe(L(1))Cl(3)(H(2)O)] x 3 H(2)O (9) and [Mn(L(1))(2)Cl(H(2)O)]Cl x 3 H(2)O (10) for ligand L(1), and [Cu(L(2))Cl(2)(H(2)O)(2)] x H(2)O (11), [Ag(L(2))(2)]NO(3) x H(2)O (12), [Ni(L(2))(2)Cl(2)] x 5 H(2)O (13), [Fe(L(2))(2)Cl(2)]Cl x 2 H(2)O (14) and [Mn(L(2))Cl(2)(H(2)O)(2)] x H(2)O (15) for ligand L(2). The antitumor activity of the synthesized compounds has been studied. The silver complex 7 was found to display cytotoxicity (IC(50)=2 microM) against both human lung cancer cell line A549 and human breast cancer cell line MCF-7.

  5. Studies on the mechanism of action of antitumor bis(aminophenolate) ruthenium(III) complexes.

    PubMed

    Dömötör, Orsolya; de Almeida, Rodrigo F M; Côrte-Real, Leonor; Matos, Cristina P; Marques, Fernanda; Matos, António; Real, Carla; Kiss, Tamás; Enyedy, Éva Anna; Helena Garcia, M; Tomaz, Ana Isabel

    2017-03-01

    Two recently published Ru(III) complexes bearing (N2O2) tetradentate bis(aminophenolate) ligands, formulated as [Ru(III)(salan)(PPh3)Cl] (salan is the tetradentate ligand 6,6'-(1S,2S)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(3-methoxyphenol) in complex 1, or 2,2'-(1S,2S)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(4-methoxyphenol) in complex 2; PPh3 is triphenylphosphane) and found very active against ovarian and breast adenocarcinoma human cells were studied to outline their antitumor mode of action. The human cisplatin-sensitive ovarian adenocarcinoma line A2780 was used herein as the cell model. At a 24h challenge (similarly as found before for 72h) both complexes are active, their cytotoxicity being comparable to that of cisplatin in the same conditions. As a possible target in the cell for their action, the interaction of 1 and 2 with DNA was assessed through displacement of well-established DNA fluorescent probes (ethidium bromide, EB, and 4',6-diamidino-2-phenylindole, DAPI) through steady-state and time-resolved fluorescence spectroscopy. The whole emission spectra were analyzed globally for the binary DNA-probe and ternary DNA-probe-Ru(III) complex systems. Both Ru(III) complexes can displace EB and bind to DNA with similar and moderate strong affinity with conditional stability constants of logK'=(5.05±0.01) for 1 and logK'=(4.79±0.01) for 2. The analysis of time-domain fluorescence intensity decays confirmed both qualitatively and quantitatively the model used to describe the binding and competition processes. Cell studies indicated that apoptosis is the major mechanism of cell death for both complexes, with 2 (the more active complex) promoting that process more efficiently than 1. Transmission electron micrographs revealed clear alterations on intracellular organization consistent with the induction of programmed cell death processes.

  6. Antitumor agents 279. Structure-activity relationship and in vivo studies of novel 2-(furan-2-yl)naphthalen-1-ol (FNO) analogs as potent and selective anti-breast cancer agents

    PubMed Central

    Dong, Yizhou; Nakagawa-Goto, Kyoko; Lai, Chin-Yu; Kim, Yoon; Morris-Natschke, Susan L.; Lee, Eva Y.-H. P.; Bastow, Kenneth F.; Lee, Kuo-Hsiung

    2010-01-01

    In our ongoing modification study of neo-tanshinlactone (1), we discovered 2-(furan-2-yl)naphthalen-1-ol (FNO) derivatives 3 and 4 as a new class of anti-tumor agents. To explore structure-activity relationships (SAR) of this scaffold, 18 new analogs, 6–12 and 14–24, were designed and synthesized. The C11-esters 7 and 12 displayed broad anti-tumor activity (ED50 1.1–4.3 µg/mL against seven cancer cell lines), while C11-hydroxymethyl 14 showed unique selectivity against the SKBR-3 breast cancer cell line (ED50 0.73 µg/mL). Compounds 15 and 22 displayed potent and selective anti-breast tumor activity (ED50 1.7 and 0.85 µg/mL, respectively, against MDA-MB-231). The SAR results demonstrated that the substitutions from the ring-opened lactone ring C of 1 are critical to the anti-tumor potency as well as the apparent tumor-tissue type selectivity. Treatment with 3 in Brca1f11/f11p53f5&6/f5&6Crec mice models significantly inhibited the proliferation of mammary epithelial cells and branching of mammary glands. PMID:21147529

  7. Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives.

    PubMed

    Li, Ying; Lu, Liping; Zhu, Miaoli; Wang, Qingming; Yuan, Caixia; Xing, Shu; Fu, Xueqi; Mei, Yuhua

    2011-12-01

    A series of copper complexes with multi-benzimidazole derivatives, including mono- and di-nuclear, were synthesized and characterized by Fourier transform IR spectroscopy, UV-Vis spectroscopy, elemental analysis, electrospray ionization mass spectrometry. The speciation of Cu/NTB in aqueous solution was investigated by potentiometric pH titrations. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) were evaluated in vitro. The five copper complexes exhibit potent inhibition against PTP1B, TCPTP and PTP-MEG2 with almost same inhibitory effects with IC(50) at submicro molar level and about tenfold weaker inhibition versus SHP-1, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Fluorescence study on the interaction between PTP1B and complex 2 or 4 suggests that the complexes bind to PTP1B with the formation of a 1:1 complex. The binding constant are about 1.14 × 10(6) and 1.87 × 10(6) M(-1) at 310 K for 2 and 4, respectively.

  8. Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhou, Tao; Xu, Zhou-Qing; Gu, Xin-Nan; Wu, Wei-Na; Chen, Hong; Wang, Yuan; Jia, Lei; Zhu, Tao-Feng; Chen, Ru-Hua

    2017-01-01

    Five complexes, [Cu(L)2]·4.5H2O (1), [Cu(HL)2](NO3)2·CH3OH (2) {[Cu2(L)2(NO3)(H2O)2]·(NO3)}n (3), [Cu2(HL)2(SO4)2]·2CH3OH (4) and [Cu4(L)4Cl4]·5H2O (5) based on HL (where HL = 2-acetylpyrazine isonicotinoyl hydrazone) have been synthesized and characterized by X-ray diffraction analyses. The counter anion and organic base during the synthesis procedure influence the structures of the complexes efficiently, which generate five complexes as mono-, bi-, tetra-nuclear and one-dimensional structures. The antitumor activities of the complexes 1-5 (except for complex 3 with the poor solubility) against the Patu8988 human pancreatic cancer, ECA109 human esophagus cancer and SGC7901 human gastric cancer cell lines are screened by MTT assay. The results indicate that the chelation of Cu(II) with the ligand is responsible for the observed high cytotoxicity of the copper(II) complexes and the 1:2 copper species 1 and 2 demonstrate lower antitumor activities than that of the 1:1 copper species 4 and 5. In addition, the in vitro apoptosis inducing activity of the copper(II) complex 5 against SGC7901 cell line is determined. And the results show that the complex can bring about apoptosis of the cancerous cells in vitro.

  9. Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer.

    PubMed

    Collery, Philippe; Mohsen, Ahmed; Kermagoret, Anthony; Corre, Samantha; Bastian, Gérard; Tomas, Alain; Wei, Ming; Santoni, François; Guerra, Nadia; Desmaële, Didier; d'Angelo, Jean

    2015-08-01

    Rhenium (I)-diselenother (Re-diselenoether) is a water soluble metal-based compound, combining one atom of rhenium and two atoms of selenium. This compound has been reported to exhibit marked activities against several solid tumor cell lines. We now disclose an improved synthesis of this complex. The Re-diselenoether showed a potent inhibitory effect on MDA-MB231 cell division in vitro, which lasted when the complex was no longer present in the culture. Re-diselenoether induced a remarkable reduction of the volume of the primitive breast tumors and of the pulmonary metastases without clinical signs of toxicity, in mice-bearing a MDA-MB231 Luc+ tumor, orthotopically transplanted, after a daily oral administration at the dose of 10 mg/kg/d. Interestingly, an antagonism was observed when cisplatin was administered as a single i.p. injection 1 week after the end of the Re-diselenoether administration. In an effort to gain insight of the mechanisms of action of Re-diselenoether complex, interaction with 9-methylguanine as a nucleic acid base model was studied. We have shown that Re-diselenoether gave both mono- and bis-guanine Re adducts, the species assumed to be responsible for the DNA intrastrand lesions.

  10. The Elastin Receptor Complex: A Unique Matricellular Receptor with High Anti-tumoral Potential

    PubMed Central

    Scandolera, Amandine; Odoul, Ludivine; Salesse, Stéphanie; Guillot, Alexandre; Blaise, Sébastien; Kawecki, Charlotte; Maurice, Pascal; El Btaouri, Hassan; Romier-Crouzet, Béatrice; Martiny, Laurent; Debelle, Laurent; Duca, Laurent

    2016-01-01

    Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDPs), named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although, several receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-3), their main receptor remains the elastin receptor complex (ERC). This heterotrimer comprises a peripheral subunit, named elastin binding protein (EBP), associated to the protective protein/cathepsin A (PPCA). The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1). The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered. PMID:26973522

  11. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.

    PubMed

    Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V

    2010-09-01

    Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.

  12. Design, synthesis, and structure-activity relationships of novel benzothiazole derivatives bearing the ortho-hydroxy N-carbamoylhydrazone moiety as potent antitumor agents.

    PubMed

    Ma, Junjie; Chen, Dong; Lu, Kuan; Wang, Lihui; Han, Xiaoqi; Zhao, Yanfang; Gong, Ping

    2014-10-30

    A series of novel benzothiazole derivatives bearing the ortho-hydroxy N-carbamoylhydrazone moiety were designed and synthesized and their cytotoxic activities against five cancer cell lines (NCI-H226, SK-N-SH, HT29, MKN45, and MDA-MB-231) were screened in vitro. Most of them showed moderate to excellent activity against all the tested cell lines. Among them, compounds 15g (procaspase-3 EC50 = 1.42 μM) and 16b (procaspase-3 EC50 = 0.25 μM) exhibited excellent antitumor activity with IC50 values ranging from 0.14 μM to 0.98 μM against all cancer cell lines, which were 1.8-8.7 times more active than the first procaspase activating compound (PAC-1) (procaspase-3 EC50 = 4.08 μM). The structure-activity relationship (SAR) analyses indicated that the introduction of a lipophilic group (a benzyloxy or heteroaryloxy group) at the 4-position of the 2-hydroxy phenyl ring was beneficial to antitumor activity, and the presence of substituents containing nitrogen that are positively charged at physiological pH could also improve antitumor activity. It was also confirmed that the steric effect of the 4-position substituent of the benzyloxy group had a significant influence on cytotoxic activity.

  13. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells.

    PubMed

    García-Vilas, Javier A; Quesada, Ana R; Medina, Miguel A

    2015-01-26

    Damnacanthal, an anthraquinone present in noni plants, targets several tyrosine kinases and has antitumoral effects. This study aims at getting additional insight on the potential of damnacanthal as a natural antitumor compound. The direct effect of damnacanthal on c-Met was tested by in vitro activity assays. Additionally, Western blots of c-Met phosphorylation in human hepatocellular carcinoma Hep G2 cells were performed. The antitumor effects of damnacanthal were tested by using cell growth, soft agar clonogenic, migration and invasion assays. Their mechanisms were studied by Western blot, and cell cycle, apoptosis and zymographic assays. Results show that damnacanthal targets c-Met both in vitro and in cell culture. On the other hand, damnacanthal also decreases the phosphorylation levels of Akt and targets matrix metalloproteinase-2 secretion in Hep G2 cells. These molecular effects are accompanied by inhibition of the growth and clonogenic potential of Hep G2 hepatocellular carcinoma cells, as well as induction of Hep G2 apoptosis. Since c-Met has been identified as a new potential therapeutical target for personalized treatment of hepatocellular carcinoma, damnacanthal and noni extract supplements containing it could be potentially interesting for the treatment and/or chemoprevention of hepatocellular carcinoma through its inhibitory effects on the HGF/c-Met axis.

  14. The antitumor activity of a red alga polysaccharide complexes carrying 5-fluorouracil.

    PubMed

    Wang, Xiaomei; Zhang, Zhongshan

    2014-08-01

    Porphyran is a sulfated galactan isolated from red algae Porphyra haitanensis, and have been reported to have many kinds of biological activities such as antitumor activity. In order to provide a water-soluble macromolecule prodrug of 5-Fu showing slow release of 5-Fu and reducing side-effect, we carried out fixation of 5-Fu to porphyran at 6-position. In this study, the antitumor and immunomodulation activities of low MW porphyran carrying 5-Fu on transplanted S180 tumor mice were studied. Weight of immune organ, proliferation ratio of lymphocyte concentration of TNF-α and NO from the transplanted S180 tumor mice were also determined. Results indicated that the conjugate could enhance antitumor activity of 5-Fu and improve immunocompetence damaged by 5-Fu.

  15. Crystal structure of HIV-1 primary receptor CD4 in complex with a potent antiviral antibody.

    PubMed

    Freeman, Michael M; Seaman, Michael S; Rits-Volloch, Sophia; Hong, Xinguo; Kao, Chia-Ying; Ho, David D; Chen, Bing

    2010-12-08

    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 Å resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121-125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalent forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.

  16. Crystal structure of HIV-1 primary receptor CD4 in complex with a potent antiviral antibody

    PubMed Central

    Freeman, Michael M.; Seaman, Michael S.; Rits-Volloch, Sophia; Hong, Xinguo; Kao, Chia-Ying; Ho, David D.; Chen, Bing

    2010-01-01

    Summary Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 Å resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121-125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalent forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry. PMID:21134642

  17. Antitumor effects of a tetradentate amido-carboxylate ligands and corresponding square-planar palladium(II) complexes toward some cancer cells. Crystal structure, DFT modeling and ligand to DNA probe docking simulation.

    PubMed

    Matović, Zoran D; Mrkalić, Emina; Bogdanović, Gordana; Kojić, Vesna; Meetsma, Auke; Jelić, Ratomir

    2013-04-01

    Novel square-planar palladium(II) complexes with O-N-N-O-type ligands H4mda (H4mda=malamido-N,N'-diacetic acid) and H4obp (H4obp=oxamido-N,N'-di-3-propionic acid) were prepared and characterized. The ligands coordinate to the palladium(II) ion via two pairs of deprotonated ligating atoms with square chelation. A four coordinate, square-planar geometry was verified crystallographicaly for the K2[Pd(mda)]·H2O complex. The binary and ternary systems of Pd(II) ion with H4mda or H4obp (L) as primary ligands and guanosine (A) as secondary ligand were studied in aqueous solutions in 0.1 M NaCl ionic medium at 25 °C by potentiometric titrations. In addition, calculations based on density functional methods (DFT) were carried out. A natural bonding orbital analysis indicated that the Pd-N bonds are three-centric in nature and mainly governed by charge transfer via a strong delocalization of the oxygen lone pair with "p" character into the bonding Pd-N orbital. Mononuclear palladium(II) complexes together with amido acid N,O-containing ligands were tested against several tumor cells and reveal significant antitumor activity and lower resistance of tumor cells in vitro than cisplatin. In this paper, interactions of palladium complexes with DNA are discussed in order to provide guidance and determine structure and antitumor activity relationships for continuing studies of these systems. Docking simulation on DNA dodecamer or 29-mer (Lippard solved crystal structures), suggests several favorable interactions with the hydrogen pocket/binding site for the incoming ligands. These results support amidoacids/Pd complexes as novel antitumor drugs and suggest that their potent cell life inhibition may contribute to its anti-cancer efficacy.

  18. Evaluation of antitumor, immunomodulatory and free radical scavenging effects of a new herbal prescription seaweed complex preparation

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shao, Changlun; Kong, Wenwen; Fang, Yuchun; Wang, Changyun

    2013-09-01

    Seaweed Complex Preparation (SCP) is a clinical traditional Chinese medicine preparation which is composed of seven traditional Chinese herbs, and it has been used for treatment of lung cancer, liver cancer and digestive cancer. However, little information is available about the pharmacodynamic basis. The antitumor, immunomodulatory and free radical scavenging effects of SCP were evaluated in this study. Transplanted tumor in vivo method was used to determine the antitumor effect. The effects on splenocyte proliferation and phagocytosis of macrophages in tumor-bearing mice were measured by the MTT method and the phagocytizing cock red blood cell (CRBC) method respectively. The scavenging activities of SCP on DPPH and hydroxyl radicals in vitro were investigated. It was found that the medium-dose and high-dose of SCP could significantly inhibit the growth of transplanted hepatic tumor of murine hepatocarcinoma cell line H22, and promote proliferation of splenocytes and phagocytosis of macrophages. SCP possessed noticeable scavenging activities on DPPH and hydroxyl radicals. The antitumor effects of SCP might be achieved by improving immune system and scavenging free radicals, which is in accordance with the viewpoint of traditional Chinese medicine in promoting the body resistance and eliminating pathogenic factors for cancer treatment.

  19. Total Synthesis of the Potent HIF-1 Inhibitory Antitumor Natural Product, (8R)-Mycothiazole, via Baldwin-Lee CsF/CuI sp(3)-sp(2)-Stille Cross-Coupling. Confirmation of the Crews Reassignment.

    PubMed

    Wang, Liping; Hale, Karl J

    2015-09-04

    A convenient asymmetric total synthesis of the potent HIF-1 inhibitory antitumor natural product, (-)- or (+)-(8R)-mycothiazole (1), is described. Not only does our synthesis confirm the 2006 structural reassignment made by Crews ( Crews , P. , et al. J. Nat. Prod. 2006 , 69 , 145 ), it revises the [α]D data previously reported for this molecule in MeOH from -13.7° to +42.3°. The newly developed route to (8R)-1 sets the C(8)-OH stereocenter via Sharpless AE/2,3-epoxy alcohol reductive ring opening and utilizes two Baldwin-Lee CsF/cat. CuI Stille cross-coupling reactions with vinylstannanes 8 and 3 to efficiently elaborate the C(1)-C(4) and C(14)-C(18) sectors.

  20. Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway

    PubMed Central

    Guo, Chunmei; Liu, Shuqing; Dong, Panpan; Zhao, Dongting; Wang, Chengyi; Tao, Zhiwei; Sun, Ming-Zhong

    2015-01-01

    Previously, we characterized the biological properties of Akbu-LAAO, a novel L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom (SV). Current work investigated its in vitro anti-tumor activity and underlying mechanism on HepG2 cells. Akbu-LAAO inhibited HepG2 growth time and dose-dependently with an IC50 of ~38.82 μg/mL. It could induce the apoptosis of HepG2 cells. Akbu-LAAO exhibited cytotoxicity by inhibiting growth and inducing apoptosis of HepG2 as it showed no effect on its cell cycle. The inhibition of Akbu-LAAO to HepG2 growth partially relied on enzymatic-released H2O2 as catalase only partially antagonized this effect. cDNA microarray results indicated TGF-β signaling pathway was linked to the cytotoxicity of Akbu-LAAO on HepG2. TGF-β pathway related molecules CYR61, p53, GDF15, TOB1, BTG2, BMP2, BMP6, SMAD9, JUN, JUNB, LOX, CCND1, CDK6, GADD45A, CDKN1A were deregulated in HepG2 following Akbu-LAAO stimulation. The presence of catalase only slightly restored the mRNA changes induced by Akbu-LAAO for differentially expressed genes. Meanwhile, LDN-193189, a TGF-β pathway inhibitor reduced Akbu-LAAO cytotoxicity on HepG2. Collectively, we reported, for the first time, SV-LAAO showed anti-tumor cell activity via TGF-β pathway. It provides new insight of SV-LAAO exhibiting anti-tumor effect via a novel signaling pathway. PMID:26655928

  1. Synthesis and SAR of 1-acetanilide-4-aminopyrazole-substituted quinazolines: selective inhibitors of Aurora B kinase with potent anti-tumor activity.

    PubMed

    Foote, Kevin M; Mortlock, Andrew A; Heron, Nicola M; Jung, Frédéric H; Hill, George B; Pasquet, Georges; Brady, Madeleine C; Green, Stephen; Heaton, Simon P; Kearney, Sarah; Keen, Nicholas J; Odedra, Rajesh; Wedge, Stephen R; Wilkinson, Robert W

    2008-03-15

    A new class of 1-acetanilide-4-aminopyrazole-substituted quinazoline Aurora kinase inhibitors has been discovered possessing highly potent cellular activity. Continuous infusion into athymic mice bearing SW620 tumors of the soluble phosphate derivative 2 led to dose-proportional exposure of the des-phosphate compound 8 with a high-unbound fraction. The combination of potent cell activity and high free-drug exposure led to pharmacodynamic changes in the tumor at low doses, indicative of Aurora B-kinase inhibition and a reduction in tumor volume.

  2. Design, synthesis, biological evaluation and preliminary mechanism study of novel benzothiazole derivatives bearing indole-based moiety as potent antitumor agents.

    PubMed

    Ma, Junjie; Bao, Guanglong; Wang, Limei; Li, Wanting; Xu, Boxuan; Du, Baoquan; Lv, Jie; Zhai, Xin; Gong, Ping

    2015-01-01

    Through a structure-based molecular hybridization approach, a series of novel benzothiazole derivatives bearing indole-based moiety were designed, synthesized and screened for in vitro antitumor activity against four cancer cell lines (HT29, H460, A549 and MDA-MB-231). Most of them showed moderate to excellent activity against all the tested cell lines. Among them, compounds 20a-w with substituted benzyl-1H-indole moiety showed better selectivity against HT29 cancer cell line than other compounds. Compound 20d exhibited excellent antitumor activity with IC50 values of 0.024, 0.29, 0.84 and 0.88 μM against HT29, H460, A549 and MDA-MB-231, respectively. Further mechanism studies indicated that the marked pharmacological activity of compound 20d might be ascribed to activation of procaspase-3 (apoptosis-inducing) and cell cycle arrest, which had emerged as a lead for further structural modifications. Furthermore, 3D-QSAR model (training set: q(2) = 0.850, r(2) = 0.987, test set: r(2) = 0.811) was built to provide a comprehensive guide for further structural modification and optimization.

  3. Trichlorobenzene-substituted azaaryl compounds as novel FGFR inhibitors exhibiting potent antitumor activity in bladder cancer cells in vitro and in vivo.

    PubMed

    Chen, Chun-Han; Liu, Yi-Min; Pan, Shiow-Lin; Liu, Yun-Ru; Liou, Jing-Ping; Yen, Yun

    2016-05-03

    In the present study, we examined the antitumor activity of a series of trichlorobenzene-substituted azaaryl compounds and identified MPT0L145 as a novel FGFR inhibitor with better selectivity for FGFR1, 2 and 3. It was preferentially effective in FGFR-activated cancer cells, including bladder cancer cell lines expressing FGFR3-TACC3 fusion proteins (RT-112, RT-4). MPT0L145 decreased the phosphorylation of FGFR1, FGFR3 and their downstream proteins (FRS2, ERK and Akt). Mechanistically, cDNA microarray analysis revealed that MPT0L145 decreased genes associated cell cycle progression, and increased genes associated with autophagy pathway. Accordingly, the data revealed that MPT0L145 induced G0/G1 cell cycle arrest and decreased protein levels of cyclin E. Moreover, we provided the evidence that autophagy contributes to FGFR inhibitor-related cell death. Finally, MPT0L145 exhibited comparable antitumor activity to cisplatin with better safety in a RT-112 xenograft model. Taken together, these findings support the utility of MPT0L145 as a novel FGFR inhibitor, providing a strong rationale for further evaluation of this compound as a therapeutic agent for bladder cancers.

  4. VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent anti-tumor activity against breast cancer

    PubMed Central

    Wang, Youfu; Ren, Xueyan; Wang, Tong; Chen, Zhiguo; Tang, Mingying; Sun, Fumou; Li, Zhaoting; Wang, Min; Zhang, Juan

    2016-01-01

    Binding of MHC class I-related chain molecules A and B (MICA/B) to the natural killer (NK) cell receptor NK group 2, member D (NKG2D) is thought critical for activating NK-mediated immunosurveillance. Angiogenesis is important for tumor growth and interfering with angiogenesis using the fully human IgG1 anti-VEGFR2 (vascular endothelial growth factor receptor 2) antibody (mAb04) can be effective in treating malignancy. In an effort to make mAb04 more effective we have generated a novel antibody fusion protein (mAb04-MICA) consisting of mAb04 and MICA. We found that mAb04-MICA maintained the anti-angiogenic and antineoplastic activities of mAb04, and also enhanced immunosurveillance activated by the NKG2D pathway. Moreover, in human breast tumor-bearing nude mice, mAb04-MICA demonstrated superior anti-tumor efficacy compared to combination therapy of mAb04 + Docetaxel or Avastin + Docetaxel, highlighting the immunostimulatory effect of MICA. In conclusion, mAb04-MICA provided new inspiration for anti-tumor treatment and had prospects for clinical application. PMID:26909862

  5. Trichlorobenzene-substituted azaaryl compounds as novel FGFR inhibitors exhibiting potent antitumor activity in bladder cancer cells in vitro and in vivo

    PubMed Central

    Chen, Chun-Han; Liu, Yi-Min; Pan, Shiow-Lin; Liu, Yun-Ru

    2016-01-01

    In the present study, we examined the antitumor activity of a series of trichlorobenzene-substituted azaaryl compounds and identified MPT0L145 as a novel FGFR inhibitor with better selectivity for FGFR1, 2 and 3. It was preferentially effective in FGFR-activated cancer cells, including bladder cancer cell lines expressing FGFR3-TACC3 fusion proteins (RT-112, RT-4). MPT0L145 decreased the phosphorylation of FGFR1, FGFR3 and their downstream proteins (FRS2, ERK and Akt). Mechanistically, cDNA microarray analysis revealed that MPT0L145 decreased genes associated cell cycle progression, and increased genes associated with autophagy pathway. Accordingly, the data revealed that MPT0L145 induced G0/G1 cell cycle arrest and decreased protein levels of cyclin E. Moreover, we provided the evidence that autophagy contributes to FGFR inhibitor-related cell death. Finally, MPT0L145 exhibited comparable antitumor activity to cisplatin with better safety in a RT-112 xenograft model. Taken together, these findings support the utility of MPT0L145 as a novel FGFR inhibitor, providing a strong rationale for further evaluation of this compound as a therapeutic agent for bladder cancers. PMID:27029060

  6. Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor

    SciTech Connect

    Mochalkin, Igor; Knafels, John D.; Lightle, Sandra

    2008-04-02

    The cell wall in Gram-negative bacteria is surrounded by an outer membrane comprised of charged lipopolysaccharide (LPS) molecules that prevent entry of hydrophobic agents into the cell and protect the bacterium from many antibiotics. The hydrophobic anchor of LPS is lipid A, the biosynthesis of which is essential for bacterial growth and viability. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is an essential zinc-dependant enzyme that catalyzes the conversion of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)glucosamine and acetate in the biosynthesis of lipid A, and for this reason, LpxC is an attractive target for antibacterial drug discovery. Here we disclose a 1.9 A resolution crystal structure of LpxC from Pseudomonas aeruginosa (paLpxC) in a complex with the potent BB-78485 inhibitor. To our knowledge, this is the first crystal structure of LpxC with a small-molecule inhibitor that shows antibacterial activity against a wide range of Gram-negative pathogens. Accordingly, this structure can provide important information for lead optimization and rational design of the effective small-molecule LpxC inhibitors for successful treatment of Gram-negative infections.

  7. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus.

    PubMed

    Haeili, Mehri; Moore, Casey; Davis, Christopher J C; Cochran, James B; Shah, Santosh; Shrestha, Tej B; Zhang, Yaofang; Bossmann, Stefan H; Benjamin, William H; Kutsch, Olaf; Wolschendorf, Frank

    2014-07-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface.

  8. Synthesis and Evaluation of 1,5-Disubstituted Tetrazoles as Rigid Analogues of Combretastatin A-4 with Potent Antiproliferative and Antitumor Activity

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Preti, Delia; Tabrizi, Mojgan Aghazadeh; Brancale, Andrea; Fu, Xian-Hua; Li, Jun; Zhang, Su-Zhan; Hamel, Ernest; Bortolozzi, Roberta; Basso, Giuseppe; Viola, Giampietro

    2012-01-01

    Tubulin, the major structural component of microtubules, is a target for the development of anticancer agents. Two series of 1,5-diaryl substituted 1,2,3,4-tetrazoles were concisely synthesized, using a palladium-catalyzed cross-coupling reaction, and identified as potent antiproliferative agents and novel tubulin polymerization inhibitors that act at the colchicine site. SAR analysis indicated that compounds with a 4-ethoxyphenyl group at the N-1 or C-5 position of the 1,2,3,4-tetrazole ring exhibited maximal activity. Several of these compounds also had potent activity in inhibiting the growth of multidrug resistant cells overexpressing P-glycoprotein. Active compounds induced apoptosis through the mitochondrial pathway with activation of caspase-9 and caspase-3. Furthermore, compound 4l significantly reduced in vivo the growth of the HT-29 xenograft in a nude mouse model, suggesting that 4l is a promising new antimitotic agent with clinical potential. PMID:22136312

  9. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells

    PubMed Central

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy. PMID:27092488

  10. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells.

    PubMed

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-04-15

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  11. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes.

    PubMed

    Ramadan, Ramadan M; Abu Al-Nasr, Ahmad K; Noureldeen, Amani F H

    2014-11-11

    Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.

  12. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Noureldeen, Amani F. H.

    2014-11-01

    Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.

  13. Allorestricted T lymphocytes with a high avidity T-cell receptor towards NY-ESO-1 have potent anti-tumor activity.

    PubMed

    Krönig, Holger; Hofer, Kathrin; Conrad, Heinke; Guilaume, Philippe; Müller, Julia; Schiemann, Matthias; Lennerz, Volker; Cosma, Antonio; Peschel, Christian; Busch, Dirk H; Romero, Pedro; Bernhard, Helga

    2009-08-01

    The cancer-testis antigen NY-ESO-1 has been targeted as a tumor-associated antigen by immunotherapeutical strategies, such as cancer vaccines. The prerequisite for a T-cell-based therapy is the induction of T cells capable of recognizing the NY-ESO-1-expressing tumor cells. In this study, we generated human T lymphocytes directed against the immunodominant NY-ESO-1(157-165) epitope known to be naturally presented with HLA-A*0201. We succeeded to isolate autorestricted and allorestricted T lymphocytes with low, intermediate or high avidity TCRs against the NY-ESO-1 peptide. The avidity of the established CTL populations correlated with their capacity of lysing HLA-A2-positive, NY-ESO-1-expressing tumor cell lines derived from different origins, e.g. melanoma and myeloma. The allorestricted NY-ESO-1-specific T lymphocytes displayed TCRs with the highest avidity and best anti-tumor recognition activity. TCRs derived from allorestricted, NY-ESO-1-specific T cells may be useful reagents for redirecting primary T cells by TCR gene transfer and, therefore, may facilitate the development of adoptive transfer regimens based on TCR-transduced T cells for the treatment of NY-ESO-1-expressing hematological malignancies and solid tumors.

  14. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade.

    PubMed

    Xue, Wei; Metheringham, Rachael L; Brentville, Victoria A; Gunn, Barbara; Symonds, Peter; Yagita, Hideo; Ramage, Judith M; Durrant, Lindy G

    2016-06-01

    Checkpoint blockade has demonstrated promising antitumor responses in approximately 10-40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NY-ESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses.

  15. Synthesis, spectral properties, and antitumor activity of a new axially substituted phthalocyanine complex of zirconium(IV) with citric acid.

    PubMed

    Tomachynski, Larisa A; Chernii, Victor Y; Gorbenko, Helena N; Filonenko, Valeriy V; Volkov, Sergey V

    2004-06-01

    The new axially substituted phthalocyanine (pc) complex of zirconium(IV) with citric acid is reported. It has been shown that the replacement of two Cl-atoms with two citric acid fragments takes place as the result of the reaction between [ZrCl2(pc)] and citric acid. The complex [Zr(citrate)2(pc)] was formed. The spectroscopic properties of the synthesized compound in DMSO, RPMI 1640 medium with and without fetal calf serum (FCS), H2O, and buffer (Tris) solutions have been described. Antitumor activity of this compound has been studied. The cytostatic activity was observed in the concentration range of 6.1-9.0x10(9) molecules [Zr(citrate)2(pc)]/cell and occurred in 4-6 h after treatment with [Zr(citrate)2(pc)] solution.

  16. Chimeric, divalent and tetravalent anti-CD19 monoclonal antibodies with potent in vitro and in vivo antitumor activity against human B-cell lymphoma and pre-B acute lymphoblastic leukemia cell lines.

    PubMed

    Liu, Xiao-Yun; Pop, Laurentiu M; Tsai, Lydia; Pop, Iliodora V; Vitetta, Ellen S

    2011-07-15

    CD19 is an attractive therapeutic target for treating human B-cell tumors. In our study, chimeric (c) divalent (cHD37) and tetravalent (cHD37-DcVV) anti-CD19 monoclonal antibodies (MAbs) were constructed, expressed and evaluated for their binding to human 19-positive (CD19(+)) tumor cell lines. They were also tested for proapoptotic activity and the ability to mediate effector functions. The antitumor activity of these MAbs was further tested in mice xenografted with the CD19(+) Burkitt's lymphoma cell line, Daudi or the pre-B acute lymphoblastic leukemia (ALL) cell line, NALM-6. The cHD37 and cHD37-DcVV MAbs exhibited specific binding and comparable proapoptotic activity on CD19(+) tumor cell lines in vitro. In addition, the cHD37 and cHD37-DcVV MAbs were similar in their ability to mediate antibody-dependent cell-mediated phagocytosis (ADCP). However, the tetravalent cHD37-DcVV MAb bound more avidly, had a slower dissociation rate, and did not internalize as well. It also had enhanced antibody-dependent cellular cytotoxicity (ADCC) with human but not murine effector cells. The cHD37 and cHD37-DcVV MAbs exhibited comparable affinity for the human neonatal Fc receptor (FcRn) and similar pharmacokinetics (PKs) in mice. Moreover, all the HD37 constructs were similar in extending the survival of mice xenografted with Daudi or NALM-6 tumor cells. Therefore, the cHD37 and cHD37-DcVV MAbs have potent antitumor activity and should be further developed for use in humans. Although not evident in mice, due to its increased ability to mediate ADCC with human but not mouse effector cells, the cHD37-DcVV MAb should have superior therapeutic efficacy in humans.

  17. Biomarkers of sensitivity to potent and selective antitumor 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F203) in ovarian cancer.

    PubMed

    Callero, Mariana A; Luzzani, Gabriela A; De Dios, Diana O; Bradshaw, Tracey D; Perez, Andrea I Loaiza

    2013-10-01

    2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole (5F203, NSC 703786) lysylamide belongs to a novel mechanistic class of antitumor agents. It elicits activity against ovarian, breast, kidney and colorectal cancer models. In sensitive breast cancer cells, 5F203 activates aryl hydrocarbon receptor (AhR) signaling. Herein, we evaluate the role of AhR in 5F203 activity in two ovarian cancer cell lines: IGROV-1 (sensitive to 5F203), SKOV-3 (resistant to this agent). In addition, cancer cells have been isolated from ascites fluid of ovarian cancer patients; sensitivity to 5F203 and concurrent AhR signal transduction has been examined in ascites-isolated ovarian cancer patients' cells. 5F203 induced enhanced CYP1A1 expression, AhR translocation and ROS formation in IGROV-1 cells and ascites-isolated ovarian cancer cells that were sensitive to 5F203. In IGROV-1 cells 5F203-induced ROS formation was accompanied by JNK, ERK and P38MAPK phosphorylation, DNA damage and cell cycle arrest prior to apoptosis. In contrast, 5F203 failed to induce CYP1A1 expression, AhR translocation or oxidative stress in 5F203-resistant SKOV-3 cells, or in ovarian cancer ascites cells inherently resistant to this agent. We propose that AhR may represent a new molecular target in the treatment of ovarian tumors and 5F203 may exemplify a potential novel treatment. Furthermore, putative biomarkers of sensitivity to this agent have been identified.

  18. Low-Dose Metronomic Cyclophosphamide Combined with Vascular Disrupting Therapy Induces Potent Anti-Tumor Activity in Preclinical Human Tumor Xenograft Models

    PubMed Central

    Daenen, Laura G.; Shaked, Yuval; Man, Shan; Xu, Ping; Voest, Emile E.; Hoffman, Robert M.; Chaplin, David; Kerbel, Robert S.

    2009-01-01

    Purpose Vascular disrupting agents (VDAs) preferentially target the established but abnormal tumor vasculature, resulting in extensive intratumoral hypoxia and cell death. However, a rim of viable tumor tissue remains from which angiogenesis-dependent regrowth can occur, in part via mobilization and tumor colonization of circulating endothelial progenitor cells (CEPs). Co-treatment with an agent that blocks CEPs, such as VEGF-pathway targeting biologic antiangiogenic drugs, results in enhanced anti-tumor efficacy. We asked whether an alternative therapeutic modality – low-dose metronomic (LDM) chemotherapy could achieve the same result, given its CEP targeting effects. Experimental Design We studied the combination of the VDA OXi-4503 with daily administration of CEP-inhibiting, low-dose metronomic (LDM) cyclophosphamide to treat primary orthotopic tumors using the 231/LM2-4 breast cancer cell line and MeWo melanoma cell line. In addition, CEP mobilization and various tumor characteristics were assessed. Results We found that daily oral LDM cyclophosphamide was capable of preventing the CEP spike and tumor colonization induced by OXi-4503; this was associated with a decrease in the tumor rim and marked suppression of primary 231/LM2-4 growth in nude as well as SCID mice. Similar results were found in MeWo bearing nude mice. The delay in tumor growth was accompanied by significant decreases in micro-vessel density, perfusion and proliferation, and a significant increase in tumor cell apoptosis. No overt toxicity was observed. Conclusions The combination of OXi-4503 and metronomic chemotherapy results in prolonged tumor control, thereby expanding the list of therapeutic agents that can be successfully integrated with metronomic low-dose chemotherapy. PMID:19825805

  19. New binary and ternary platinum(II) formamidine complexes: Synthesis, characterization, structural studies and in-vitro antitumor activity

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed A.; Alajrawy, Othman I.; Attaby, Fawzy A.; Linert, W.

    2016-07-01

    A series of new binary and ternary platinum(II) complexes of the type [Pt(L1-4)Cl2].xH2O and [Pt(L1-4)ox].xH2O where L = formamidine ligands and ox = oxalate, have been synthesized and characterized by elemental analyses, magnetic susceptibility, UV-vis, infrared (IR), mass spectroscopy, thermal analysis and theoretical calculations. The spectroscopic data indicated that the formamidine ligands act as bidentate N2 donors. The complexes (1-8) are diamagnetic and the optimization of their structures indicated that the geometry is distorted square planar with Cl-Pt-Cl, O-Pt-O and N-Pt-N bond angles ranged 81.73°-95.82° which is acceptable for the heteroleptic complexes. The electronic energies (a.u.) of the complexes (-893.53 to -1989.84) indicate that the complexes are more stable than the ligands. The energies of the HOMO (-0.218 to -0.244) and LUMO (-.0111to -0.134) orbitals of the complexes were negative which indicates that the complexes are stable compounds. The dipole moment of the complexes (6.23-19.89 Debye) indicates that the complexes are polarized. The complexes are thermally stable as shown from their relatively higher overall activation energies (889-2066 kJ mol-1). The complexes are proved to have a good cytotoxicity with IC50 (μM) against MCF-7 (0.040-0.117), HCT-116 (0.085-0.119) and HepG-2 (0.058-0.131) cell lines, which open the field for further application as antitumor compounds.

  20. Optimized S-trityl-L-cysteine-based inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models.

    PubMed

    Good, James A D; Wang, Fang; Rath, Oliver; Kaan, Hung Yi Kristal; Talapatra, Sandeep K; Podgórski, Dawid; MacKay, Simon P; Kozielski, Frank

    2013-03-14

    The mitotic kinesin Eg5 is critical for the assembly of the mitotic spindle and is a promising chemotherapy target. Previously, we identified S-trityl-L-cysteine as a selective inhibitor of Eg5 and developed triphenylbutanamine analogues with improved potency, favorable drug-like properties, but moderate in vivo activity. We report here their further optimization to produce extremely potent inhibitors of Eg5 (K(i)(app) < 10 nM) with broad-spectrum activity against cancer cell lines comparable to the Phase II drug candidates ispinesib and SB-743921. They have good oral bioavailability and pharmacokinetics and induced complete tumor regression in nude mice explanted with lung cancer patient xenografts. Furthermore, they display fewer liabilities with CYP-metabolizing enzymes and hERG compared with ispinesib and SB-743921, which is important given the likely application of Eg5 inhibitors in combination therapies. We present the case for this preclinical series to be investigated in single and combination chemotherapies, especially targeting hematological malignancies.

  1. Design, Synthesis and Antitumor Activity of Novel link-bridge and B-Ring Modified Combretastatin A-4 (CA-4) Analogues as Potent Antitubulin Agents

    PubMed Central

    Duan, Yong-Tao; Man, Ruo-Jun; Tang, Dan-Jie; Yao, Yong-Fang; Tao, Xiang-Xiang; Yu, Chen; Liang, Xin-Yi; Makawana, Jigar A.; Zou, Mei-Juan; Wang, Zhong-Chang; Zhu, Hai-Liang

    2016-01-01

    A series of 12 novel acylhydrazone, chalcone and amide–bridged analogues of combretastatin A-4 were designed and synthesized toward tubulin. All these compounds were determined by elemental analysis, 1H NMR, and MS. Among them, compound 7 with acylhydrazone-bridge, bearing a benzyl at the indole-N position, was identified as a potent antiproliferative agent against a panel of cancer cell lines with IC50 values ranging from 0.08 to 35.6 μM. In contrast, its cytotoxic effects on three normal human cells were minimal. Cellular studies have revealed that the induction of apoptosis by compound 7 was associated with a collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, alterations in the expression of some cell cycle-related proteins (Cyclin B1, Cdc25c, Cdc2, P21) and some apoptosis-related proteins (Bax, PARP, Bcl-2, Caspase3). The docking mode showed the binding posture of CA-4 and compound 7 are similar in the colchicine-binding pocket of tubulin, as confirmed by colchicine-tubulin competitive binding assay, tubulin polymerization inhibitory activity, extracellular protein expression determination assay and confocal immunofluorescence microscopy. In vivo study, compound 7 effectively inhibited A549 xenograft tumor growth without causing significant loss of body weight suggesting that compound 7 is a promising new antimitotic agent with clinical potential. PMID:27138035

  2. Design, synthesis, and preclinical evaluation of new 5,6- (or 6,7-) disubstituted-2-(fluorophenyl)quinolin-4-one derivatives as potent antitumor agents.

    PubMed

    Chou, Li-Chen; Tsai, Meng-Tung; Hsu, Mei-Hua; Wang, Sheng-Hung; Way, Tzong-Der; Huang, Chi-Hung; Lin, Hui-Yi; Qian, Keduo; Dong, Yizhou; Lee, Kuo-Hsiung; Huang, Li-Jiau; Kuo, Sheng-Chu

    2010-11-25

    Our previous exploration of 2-phenylquinolin-4-ones (2-PQs) has led to an anticancer drug candidate 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one monosodium phosphate (CHM-1-P-Na). In order to develop additional new drug candidates, novel 2-PQs were designed, synthesized, and evaluated for cytotoxic activity. Most analogues, including 1b, 2a,b, 3a,b, 4a,b, and 5a,b, exhibited significant inhibitory activity (IC(50) of 0.03-8.2 μM) against all tested tumor cell lines. As one of the most potent analogue, 2-(3-fluorophenyl)-5-hydroxy-6-methoxyquinolin-4-one (3b) selectively inhibited 14 out of 60 cancer cell lines in a National Cancer Institute (NCI) evaluation. Preliminary mechanism of action study suggested that 3b had a significant effect on the tyrosine autophosphorylation of insulin-like growth factor-1 receptor (IGF-1R). Safety pharmacology profiling of 3b showed no significant effect on normal biological functions of most enzymes tested. Furthermore, sodium 2-(3-fluorophenyl)-6-methoxy-4-oxo-1,4-dihydroquinolin-5-yl phosphate (15), the monophosphate of 3b, exceeded the activity of doxorubicin and was comparable to CHM-1-P-Na in a Hep3B xenograft nude mice model. In summary, 15 is a promising clinical candidate and is currently under preclinical study.

  3. Selective inhibition of EZH2 by ZLD1039 blocks H3K27methylation and leads to potent anti-tumor activity in breast cancer

    PubMed Central

    Song, Xuejiao; Gao, Tiantao; Wang, Ningyu; Feng, Qiang; You, Xinyu; Ye, Tinghong; Lei, Qian; Zhu, Yongxia; Xiong, Menghua; Xia, Yong; Yang, Fangfang; Shi, Yaojie; Wei, Yuquan; Zhang, Lidan; Yu, Luoting

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) is a candidate oncogenic driver due to its prevalent overexpression and aberrant repression of tumor suppressor genes in diverse cancers. Therefore, blocking EZH2 enzyme activity may present a valid therapeutic strategy for the treatment of cancers with EZH2 overexpression including breast cancers. Here, we described ZLD1039 a potent, highly selective, and orally bioavailable small molecule inhibitor of EZH2, which inhibited breast tumor growth and metastasis. ZLD1039 considerably inhibited EZH2 methyltransferase activity with nanomolar potency, decreased global histone-3 lysine-27 (H3K27) methylation, and reactivated silenced tumor suppressors connected to increased survival of patients with breast cancer. Comparable to conditional silencing of EZH2, its inhibition by ZLD1039 decreased cell proliferation, cell cycle arrest, and induced apoptosis. Comparably, treatment of xenograft-bearing mice with ZLD1039 led to tumor growth regression and metastasis inhibition. These data confirmed the dependency of breast cancer progression on EZH2 activity and the usefulness of ZLD1039 as a promising treatment for breast cancer. PMID:26868841

  4. Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities.

    PubMed

    Xi, Jian-Bei; Fang, Yan-Fen; Frett, Brendan; Zhu, Meng-Li; Zhu, Tong; Kong, Yan-Nan; Guan, Feng-Jie; Zhao, Yun; Zhang, Xiong-Wen; Li, Hong-Yu; Ma, Ming-Liang; Hu, Wenhao

    2017-01-27

    We present herein the discovery and development of novel and potent Nek2 inhibitors with distinctive in vitro and in vivo antitumor activity based on an imidazo[1,2-a]pyridine scaffold. Our studies identified a nonlinear SAR for activity against both Nek2 and cancer cells. Bioisostere and structure-based design techniques were employed to identify compounds 42c (MBM-17, IC50 = 3.0 nM) and 42g (MBM-55, IC50 = 1.0 nM), which displayed low nanomolar activity and excellent selectivity for Nek2. Both compounds effectively inhibited the proliferation of cancer cells by inducing cell cycle arrest and apoptosis. Importantly, the salts form of these two compounds (MBM-17S and MBM-55S) significantly suppressed tumor growth in vivo without apparent toxicity based on appearance and changes in body weight. In summary, MBM-17 and MBM-55 displayed the potential for substantial therapeutic application in cancer treatment.

  5. A Novel Sulindac Derivative That Does Not Inhibit Cyclooxygenases but Potently Inhibits Colon Tumor Cell Growth and Induces Apoptosis with Antitumor Activity

    PubMed Central

    Piazza, Gary A.; Keeton, Adam B.; Tinsley, Heather N.; Gary, Bernard D.; Whitt, Jason D.; Mathew, Bini; Thaiparambil, Jose; Coward, Lori; Gorman, Gregory; Li, Yonghe; Sani, Brahma; Hobrath, Judith V.; Maxuitenko, Yulia Y.; Reynolds, Robert C.

    2011-01-01

    Nonsteroidal anti-inflammatory drugs such as sulindac have shown promising antineoplastic activity, although toxicity from cyclooxygenase (COX) inhibition and the suppression of prostaglandin synthesis limits their use for chemoprevention. Previous studies have concluded that the mechanism responsible for their antineoplastic activity may be COX independent. To selectively design out the COX inhibitory activity of sulindac sulfide (SS), in silico modeling studies were done that revealed the crucial role of the carboxylate moiety for COX-1 and COX-2 binding. These studies prompted the synthesis of a series of SS derivatives with carboxylate modifications that were screened for tumor cell growth and COX inhibitory activity. A SS amide (SSA) with a N,N-dimethylethyl amine substitution was found to lack COX-1 and COX-2 inhibitory activity, yet potently inhibit the growth of human colon tumor cell lines, HT-29, SW480, and HCT116 with IC50 values of 2 to 5 µmol/L compared with 73 to 85 µmol/L for SS. The mechanism of growth inhibition involved the suppression of DNA synthesis and apoptosis induction. Oral administration of SSA was well-tolerated in mice and generated plasma levels that exceeded its in vitro IC50 for tumor growth inhibition. In the human HT-29 colon tumor xenograft mouse model, SSA significantly inhibited tumor growth at a dosage of 250 mg/kg. Combined treatment of SSA with the chemotherapeutic drug, Camptosar, caused a more sustained suppression of tumor growth compared with Camptosar treatment alone. These results indicate that SSA has potential safety and efficacy advantages for colon cancer chemoprevention as well as utility for treating malignant disease if combined with chemotherapy. PMID:19470791

  6. A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity.

    PubMed

    Piazza, Gary A; Keeton, Adam B; Tinsley, Heather N; Gary, Bernard D; Whitt, Jason D; Mathew, Bini; Thaiparambil, Jose; Coward, Lori; Gorman, Gregory; Li, Yonghe; Sani, Brahma; Hobrath, Judith V; Maxuitenko, Yulia Y; Reynolds, Robert C

    2009-06-01

    Nonsteroidal anti-inflammatory drugs such as sulindac have shown promising antineoplastic activity, although toxicity from cyclooxygenase (COX) inhibition and the suppression of prostaglandin synthesis limits their use for chemoprevention. Previous studies have concluded that the mechanism responsible for their antineoplastic activity may be COX independent. To selectively design out the COX inhibitory activity of sulindac sulfide (SS), in silico modeling studies were done that revealed the crucial role of the carboxylate moiety for COX-1 and COX-2 binding. These studies prompted the synthesis of a series of SS derivatives with carboxylate modifications that were screened for tumor cell growth and COX inhibitory activity. A SS amide (SSA) with a N,N-dimethylethyl amine substitution was found to lack COX-1 and COX-2 inhibitory activity, yet potently inhibit the growth of human colon tumor cell lines, HT-29, SW480, and HCT116 with IC(50) values of 2 to 5 micromol/L compared with 73 to 85 micromol/L for SS. The mechanism of growth inhibition involved the suppression of DNA synthesis and apoptosis induction. Oral administration of SSA was well-tolerated in mice and generated plasma levels that exceeded its in vitro IC(50) for tumor growth inhibition. In the human HT-29 colon tumor xenograft mouse model, SSA significantly inhibited tumor growth at a dosage of 250 mg/kg. Combined treatment of SSA with the chemotherapeutic drug, Camptosar, caused a more sustained suppression of tumor growth compared with Camptosar treatment alone. These results indicate that SSA has potential safety and efficacy advantages for colon cancer chemoprevention as well as utility for treating malignant disease if combined with chemotherapy.

  7. Real-time in situ monitoring via europium emission of the photo-release of antitumor cisplatin from a Eu-Pt complex.

    PubMed

    Li, Hongguang; Lan, Rongfeng; Chan, Chi-Fai; Jiang, Lijun; Dai, Lixiong; Kwong, Daniel W J; Lam, Michael Hon-Wah; Wong, Ka-Leung

    2015-09-25

    A water-soluble light-responsive antitumor agent, PtEuL, based on a cisplatin-linked europium-cyclen complex has been synthesized and evaluated for controlled cisplatin release by linear/two-photon excitation in vitro with concomitant turn-on and long-lived europium emission as a responsive traceable signal.

  8. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: Structure-property relationship

    NASA Astrophysics Data System (ADS)

    Elhusseiny, Amel F.; Hassan, Hammed H. A. M.

    2013-02-01

    Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes.

  9. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: structure-property relationship.

    PubMed

    Elhusseiny, Amel F; Hassan, Hammed H A M

    2013-02-15

    Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes.

  10. BU74, a complex oripavine derivative with potent kappa opioid receptor agonism and delayed opioid antagonism.

    PubMed

    Husbands, Stephen M; Neilan, Claire L; Broadbear, Jillian; Grundt, Peter; Breeden, Simon; Aceto, Mario D; Woods, James H; Lewis, John W; Traynor, John R

    2005-02-21

    In the search for opioid agonists with delayed antagonist actions as potential treatments for substance abuse, the bridged morphinan BU74 (17-cyclopropylmethyl-3-hydroxy-[5beta,7beta,3',5']-pyrrolidino-2'[S]-phenyl-7alpha-methyl-6,14-endoetheno morphinan) (3f) was synthesized. In isolated tissue and [35S]GTPgammaS opioid receptor functional assays BU74 was shown to be a potent long-lasting kappa opioid receptor agonist, delta opioid receptor partial agonist and mu opioid receptor antagonist. In antinociceptive tests in the mouse, BU74 showed high efficacy and potent kappa opioid receptor agonism. When its agonist action had waned BU74 became an antagonist of kappa and mu opioid receptor agonists in the tail flick assay and of delta, kappa and mu opioid receptor agonists in the acetic acid writhing assay. The slow onset, long-duration kappa opioid receptor agonist effects of BU74 suggests that it could be a lead compound for the discovery of a treatment for cocaine abuse.

  11. Ru(η6-arene) complexes of combretastatin-analogous oxazoles with enhanced anti-tumoral impact.

    PubMed

    Biersack, Bernhard; Effenberger, Katharina; Knauer, Sebastian; Ocker, Matthias; Schobert, Rainer

    2010-11-01

    Oxazole-bridged combretastatin A-4 analogues bind to tubulin and exert anti-vascular and anti-angiogenic effects. When linked to Ru(η(6)-arene) complex fragments, conjugates with additional cytotoxic activity result which can ruthenate bionucleophiles such as DNA and proteins. For instance, the Ru(II)(p-cymene)(isonicotinate)Cl(2) complex 6a of the known 4-(3,4,5-trimethoxyphenyl)-5-(3-hydroxy-4-methoxyphenyl)-oxazole 4a was far more active than the latter against cells of the p53-competent wild-type form of HCT-116 colon carcinoma at low 0.01 μM concentrations. A fast reaction of 6a with nucleophilic N-acetyl-L-cysteine was observed in NMR studies. The Ru(arene) complexes 6a-c were also more efficacious against combretastatin-refractory p53(+) cells of human HT-29 colon carcinoma when compared to their parent 4-(3,4-dimethoxy-5-methoxy/halo-phenyl)-5-(3-hydroxy-4-methoxyphenyl)-oxazoles 4a-c. These cells are rich in ABC-transporters which are responsible for their multi-drug resistance and for which conjugates 6 are less good substrates than the phenols 4. Unlike 4a, its complex 6a also diminished the motility of human 518A2 melanoma cells in a wound-healing assay which is indicative of anti-metastatic activity in solid tumors. Overall, the Ru(arene) complex conjugates 6 broaden the anti-tumoral spectrum of the combretastatin A-4 analogues 4 considerably.

  12. Block ionomer complex micelles based on the self-assembly of poly(ethylene glycol)-block-poly(acrylic acid) and CdCl₂ for anti-tumor drug delivery.

    PubMed

    An, Liping; Wang, Yapei; Liu, Xiaomei; Ma, Ning; Du, Haiying; Jin, Minghua; Liu, Ying; Zhang, Long; Xu, Yanling; Huang, Peili; Sun, Zhiwei

    2011-01-01

    A novel block ionomer complex micelles as drug carrier is developed utilizing self-assemble of poly(ethylene glycol)-block-poly(acrylic acid) (PEG-b-PAA) and cadmium chloride. This micelles are characterized to be have good bio-compatibility, hydrophilicity, passive targeting and sustained slow release property which shows great potential for liver cancer therapy. Block ionomer complex micelles based on PEG-b-PAA and cadmium chloride can self-assemble in distilled water, and Cd(²+) agent is entrapped into the core stabilized by PEG shells. Results showed the block ionomer complex micelles to be spherically shaped. Cadmium was incorporated easily into the ionic core with remarkably high efficiency (34.25% weight (wt)/wt). The cadmium-loaded polymeric micelles exhibited sustained and slow release behavior of cadmium and a potent cytotoxicity against SMMC-7721 in vitro. This novel block ionomer complex micelles with cores of metal antitumor drug indicates to be potential carriers for effective drug delivery.

  13. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models.

    PubMed

    Desale, Swapnil S; Raja, Srikumar M; Kim, Jong Oh; Mohapatra, Bhopal; Soni, Kruti S; Luan, Haitao; Williams, Stetson H; Bielecki, Timothy A; Feng, Dan; Storck, Matthew; Band, Vimla; Cohen, Samuel M; Band, Hamid; Bronich, Tatiana K

    2015-06-28

    ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full

  14. Activation of C-H bonds in nitrones leads to iridium hydrides with antitumor activity.

    PubMed

    Song, Xiaoda; Qian, Yong; Ben, Rong; Lu, Xiang; Zhu, Hai-Liang; Chao, Hui; Zhao, Jing

    2013-08-22

    We report the design and synthesis of a series of new cyclometalated iridium hydrides derived from the C-H bond activation of aromatic nitrones and the biological evaluation of these iridium hydrides as antitumor agents. The nitrone ligands are based on the structure of a popular antioxidant, α-phenyl-N-tert-butylnitrone (PBN). Compared to cisplatin, the iridium hydrides exhibit excellent antitumor activity on HepG2 cells. The metal-coordinated compound with the most potent anticancer activity, 2f, was selected for further analysis because of its ability to induce apoptosis and interact with DNA. During in vitro studies and in vivo efficacy analysis with tumor xenograft models in Institute of Cancer Research (ICR) mice, complex 2f exhibited antitumor activity that was markedly superior to that of cisplatin. Our results suggest, for the first time, that metal hydrides could be a new type of metal-based antitumor agent.

  15. Nitro/Nitrosyl-Ruthenium Complexes Are Potent and Selective Anti-Trypanosoma cruzi Agents Causing Autophagy and Necrotic Parasite Death

    PubMed Central

    Bastos, Tanira M.; Barbosa, Marília I. F.; da Silva, Monize M.; da C. Júnior, José W.; Meira, Cássio S.; Guimaraes, Elisalva T.; Ellena, Javier; Moreira, Diogo R. M.; Batista, Alzir A.

    2014-01-01

    cis-[RuCl(NO2)(dppb)(5,5′-mebipy)] (complex 1), cis-[Ru(NO2)2(dppb)(5,5′-mebipy)] (complex 2), ct-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 3), and cc-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 4), where 5,5′-mebipy is 5,5′-dimethyl-2,2′-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruzi activity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 μM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 μM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 μM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 μmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that its in vitro activity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations. PMID:25092707

  16. Group 11 complexes with amino acid derivatives: Synthesis and antitumoral studies.

    PubMed

    Ortego, Lourdes; Meireles, Margarida; Kasper, Cornelia; Laguna, Antonio; Villacampa, M Dolores; Gimeno, M Concepción

    2016-03-01

    Gold(I), gold(III), silver(I) and copper(I) complexes with modified amino acid esters and phosphine ligands have been prepared in order to test their cytotoxic activity. Two different phosphine fragments, PPh3 and PPh2py (py=pyridine), have been used. The amino acid esters have been modified by introducing an aromatic amine as pyridine that coordinates metal fragments through the nitrogen atom, giving complexes of the type [M(L)(PR3)](+) or [AuCl3(L)] (L=l-valine-N-(4-pyridylcarbonyl) methyl ester (L1), l-alanine-N-(4-pyridylcarbonyl) methyl ester (L2), l-phenylalanine-N-(4-pyridylcarbonyl) methyl-ester) (L3); M=Au(I), Ag(I), Cu(I), PR3=PPh3, PPh2py). The in vitro cytotoxic activity of metal complexes was tested against four tumor human cell lines and one tumor mouse cell line. A metabolic activity test (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT) was used and IC50 values were compared with those obtained for cisplatin. Several complexes displayed significant cytotoxic activities. In order to determine whether antiproliferation and cell death are associated with apoptosis, NIH-3T3 cells were exposed to five selected complexes (Annexin V+ FITC, PI) and analyzed by flow cytometry. These experiments showed that the mechanism by which the complexes inhibit cell proliferation inducing cell death in NIH-3T3 cells is mainly apoptotic.

  17. One-dimensional chiral copper (II) complexes with novel nano-structures and superior antitumor activity.

    PubMed

    Zhang, Wei Chuan; Tang, Xue; Lu, Xiaoming

    2016-03-01

    Three novel copper(II) compounds of formulas {[Cu(Phen)(Ala)]·NO3·H2O}n (1), {[Cu(Phen)(Ala)]·NO3}n (2) and [Cu(Ala)2]n (3) have been synthesized and determined by X-ray diffraction. 1 and 2 are shown in one dimensional long-chain chiral structures, and 3 is a two dimensional checkerboard-type structure. Both 1 and 2 displayed a higher anticancer activity than 3 against various cancer cells, even higher than the similar mononuclear complexes and clinical anticancer drug 5-fluorouracil. The noncancerous cell lines (CCC-HEL-1) have showed that complexes 1-3 have hardly any cytotoxicity. Transmission electron microscopy was studied to show the nano-structure and π function of two complexes. The ligand 1,10-phenanthroline inserted into its enantiomer lead complex 1 stable, and the π-π interaction outside the chain made complex 2 active, which is easy to crack and pile up together. In addition, the energy gaps, UV-vis, luminescent and cyclic voltammetry were experimented to show the stable one dimensional long-chain chiral structure and the π function of two complexes.

  18. Potent anticancer activity of photo-activated oxo-bridged diiron(III) complexes.

    PubMed

    Chanu, S Binita; Banerjee, Samya; Roy, Mithun

    2017-01-05

    Cancer-specific anticancer drugs are still an elusive goal. Using light as the temporal control to generate cytotoxic species from photo-activated prodrug in the presence or absence of molecular oxygen has shown potential application targeted chemotherapy as in photodynamic therapy (PDT). In the present work we explored the chemistry of several photo-active (μ-oxo)diiron(III) complexes of the following formulation [{Fe(μ-O) (L-his)(B)}2](ClO4)2 (1a-1c), [Fe2(μ-O)(H2O)2B4](ClO4)4 (2b, 2c) and [Fe2(μ-O)(μ-O2CMe)B4](ClO4)3 (3b, 3c), L-his = l-histidine, B is 2,2'-bipyridine, 1,10-phenanthroline (phen) and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) complexes for tumor-specific anticancer activity. Facile redox chemistry and photochemical aspects of the complexes prompted us to investigate the cytotoxic as well as the photo-activated cytotoxic properties of the complexes to the cancer cells. In the present investigation we explored the cancer-specific condition of excess concentration of H2O2 for our approach to targeted chemotherapy. Cytotoxic effect of the complexes to the cancer cells was found to be significantly higher than in normal cells indicating tumor-specific anticancer activity of the complexes. Cytotoxic effect was even more pronounced when the cancer cells treated with the complexes were exposed to the visible light (400-700 nm). There was >12 fold increase in cytotoxicity of the photoactivated complexes in cancer cells (MCF-7) in comparison to the normal cells (MCF-10a). We have defined a factor viz. cancer cell specificity factor (f) describing the targeted photochemotherapeutic effect of the complexes at their specific concentration. The factor (f) > 1 indicated the cancer cell specificity of the complexes, while f > 2.5 for the complexes under the visible light exposure suggested photodynamic effect. DCFDA assay indicated the presence of excess of ROS in the treated HeLa cells. ROS concentration was found to increase even more on visible

  19. Synthesis and antitumor activity of a series of osmium(VI) nitrido complexes bearing quinolinolato ligands.

    PubMed

    Tang, Quan; Ni, Wen-Xiu; Leung, Chi-Fai; Man, Wai-Lun; Lau, Kenneth King-Kwan; Liang, Yimin; Lam, Yun-Wah; Wong, Wai-Yeung; Peng, Shie-Ming; Liu, Gui-Jian; Lau, Tai-Chu

    2013-11-04

    A series of osmium(VI) nitrido complexes supported by quinolinolato ligands have been prepared and they exhibit promising in vitro anti-cancer activities. These results establish that Os(VI)≡N is a potentially versatile and promising platform for the design of a variety of high-valent anti-cancer drugs.

  20. Inhibition of endonuclease cleavage and DNA replication of E. coli plasmid by the antitumor rhodium(II) complex.

    PubMed

    Rahman, Md Masudur; Yasuda, Hachiro; Katsura, Shinji; Mizuno, Akira

    2007-08-01

    Binding effect of the antitumor complex rhodium(II) acetate [Rh(2)(O(2)CCH(3))(4)] (Rh1) to the plasmid pUC19 DNA has been studied under different molar ratio of Rh1 compound to base pair of pUC19 DNA (R(f)) and reaction time. The Rh1 binding inhibited the activity of restriction enzyme. The binding effect was monitored using gel electrophoresis. The results indicate that at least one Rh1 binds with the recognition sequence and the binding has no preference between A-T and G-C pairs. At high value of R(f)=100, ICP-MS (Inductively Coupled Plasma Mass Spectrometry) measurement confirmed that 46% of Rh1 binds to DNA. PCR amplification of the DNA was also inhibited by the Rh1 binding. The transformation experiment using Escherichia coli suggested that the cell growth was inhibited after binding the Rh1 to the plasmid. These results indicated that DNA synthesis could be inhibited both in vitro and in vivo by the Rh(2)(O(2)CCH(3))(4) binding.

  1. In Vitro Antitumor Active Gold(I) Triphenylphosphane Complexes Containing 7-Azaindoles

    PubMed Central

    Štarha, Pavel; Trávníček, Zdeněk; Drahoš, Bohuslav; Dvořák, Zdeněk

    2016-01-01

    A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (1–8) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivatives (naza) are coordinated to the metal centre through the N1 atom of their pyrrole ring, as proved by a single crystal X-ray analysis of the complexes [Au(3I5Braza)(PPh3)] (7) and [Au(2Me4Claza)(PPh3)]·½H2O (8′). The in vitro cytotoxicity of the complexes 1–8 was studied against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the MRC-5 human normal fibroblast cell line. The complexes 4, 5, and 8, containing deprotonated 3-iodo-7-azaindole, 5-bromo-7-azaindole, and 2-methyl-4-chloro-7-azaindole (2Me4Claza), respectively, showed significantly higher potency (IC50 = 2.8–3.5 µM) than cisplatin (IC50 = 20.3 µM) against the A2780 cells and markedly lower effect towards the MRC-5 non-cancerous cells (IC50 = 26.0–29.2 µM), as compared with the mentioned A2780 cancer cells. The results of the flow cytometric studies of the A2780 cell cycle perturbations revealed a G2-cell cycle phase arrest of the cells treated by the representative complexes 1 and 5, which is indicative of a different mechanism of action from cisplatin (induced S-cell cycle phase arrest). The stability of the representative complex 8 in the water-containing solution as well as its ability to interact with the reduced glutathione, cysteine and bovine serum albumin was also studied using 1H and 31P-NMR spectroscopy (studied in the 50% DMF-d7/50% D2O mixture) and ESI+ mass spectrometry (studied in the 50% DMF/50% H2O mixture); DMF = dimethylformamide. The obtained results are indicative for the release of the N-donor azaindole-based ligand in the presence of the used biomolecules. PMID:27973440

  2. The DREAM complex in anti-tumor activity of imatinib mesylate in gastrointestinal stromal tumors (GISTs)

    PubMed Central

    DeCaprio, James A.; Duensing, Anette

    2014-01-01

    Purpose of review Although most gastrointestinal stromal tumors (GISTs) respond well to treatment with the small molecule kinase inhibitor imatinib mesylate (Gleevec), the majority of patients achieve disease stabilization and complete remissions are rare. Furthermore, discontinuation of treatment in the presence of residual tumor mass almost inevitably leads to tumor progression. These observations suggest that a subset of tumor cells not only persists under imatinib treatment, but remains viable. The current article reviews the molecular basis for these findings and explores strategies to exploit them therapeutically. Recent findings Although imatinib can induce apoptosis in a subset of GIST cells, it can induce a reversible exit from the cell division cycle and entry into G0, a cell cycle state called quiescence, in the remaining cells. Mechanistically, this process involves the DREAM complex, a newly identified key regulator of quiescence. Interfering with DREAM complex formation either by siRNA-mediated knockdown or by pharmacological inhibition of the regulatory kinase DYRK1A was shown to enhance imatinib-induced GIST cell death. Summary Targeting the DREAM complex and imatinib-induced quiescence could provide opportunities for future therapeutic interventions toward more efficient imatinib responses. PMID:24840522

  3. Verteporfin, a suppressor of YAP–TEAD complex, presents promising antitumor properties on ovarian cancer

    PubMed Central

    Feng, Juntao; Gou, Jinhai; Jia, Jia; Yi, Tao; Cui, Tao; Li, Zhengyu

    2016-01-01

    Yes-associated protein (YAP) is a key transcriptional coactivator of Hippo pathway and has been shown to be an oncoprotein in ovarian cancer (OC). Verteporfin (VP), clinically used in photodynamic therapy for neovascular macular degeneration, has been recently proven to be a suppressor of YAP–TEAD complex and has shown potential in anticancer treatment. In this study, we aimed to explore the potential effect of VP in the treatment of OC. Our results showed that VP led to inhibition of proliferation in a time- and dose-dependent manner and to the suppression of migratory and invasive capacities of OC cells. Western blot and real-time polymerase chain reaction demonstrated that VP induced YAP cytoplasmic retention and deregulated inducible YAP and CCNs in OC cells. In vivo, VP exerted a significant effect on tumor growth in OVCAR8 xenograft mice, resulting in tumor nodules with lower average weight and reduced volume of gross ascites. In addition, VP treatment remarkably upregulated cytoplasmic YAP and phosphorylation YAP and downregulated CCN1 and CCN2, but exerted little effect on YAP-upstream components in Hippo pathway. In conclusion, our results suggested that VP may be a promising agent for OC, acting by suppressing YAP–TEAD complex. PMID:27621651

  4. Synthesis and in vitro antitumor activity of novel iridium(III) complexes with enantiopure C2-symmetrical vicinal diamine ligands.

    PubMed

    Yang, Qing; Chang, Jun; Song, Jiao; Qian, Meng-Ting; Yu, Jian-Ming; Sun, Xun

    2013-08-15

    Four novel iridium(III) complexes with enantiopure C2-symmetrical vicinal diamine ligands were designed, synthesized, and characterized by FT-IR, NMR, and MS. The cytotoxicities of all of the complexes against the human solid tumor cell lines A2780, A549, KB, and MDA-MB-231 were evaluated. Both R,R-configured complexes (R,R)-5a and (R,R)-5b exhibited more potent or similar activity compared with oxaliplatin, whereas their corresponding (S,S)-isomers (S,S)-5a and (S,S)-5b were found to be mostly inactive. As indicated by the activation of caspase-3, the cleavage of PARP, and the upregulation of p53, the preliminary mechanism studies revealed that the mode of cell death initiated by (R,R)-5a in A2780 cells was predominantly p53-mediated apoptosis. In addition, the structure of (R,R)-5a was unambiguously confirmed through single crystal X-ray structure determination.

  5. Structure-activity relationships for organometallic osmium arene phenylazopyridine complexes with potent anticancer activity.

    PubMed

    Fu, Ying; Habtemariam, Abraha; Basri, Aida M B H; Braddick, Darren; Clarkson, Guy J; Sadler, Peter J

    2011-10-28

    We report the synthesis and characterisation of 32 half sandwich phenylazopyridine Os(II) arene complexes [Os(η(6)-arene)(phenylazopyridine)X](+) in which X is chloride or iodide, the arene is p-cymene or biphenyl and the pyridine and phenyl rings contain a variety of substituents (F, Cl, Br, I, CF(3), OH or NO(2)). Ten X-ray crystal structures have been determined. Cytotoxicity towards A2780 human ovarian cancer cells ranges from high potency at nanomolar concentrations to inactivity. In general the introduction of an electron-withdrawing group (e.g. F, Cl, Br or I) at specific positions on the pyridine ring significantly increases cytotoxic activity and aqueous solubility. Changing the arene from p-cymene to biphenyl and the monodentate ligand X from chloride to iodide also increases the activity significantly. Activation by hydrolysis and DNA binding appears not to be the major mechanism of action since both the highly active complex [Os(η(6)-bip)(2-F-azpy)I]PF(6) (9) and the moderately active complex [Os(η(6)-bip)(3-Cl-azpy)I]PF(6) (23) are very stable and inert towards aquation. Studies of octanol-water partition coefficients (log P) and subcellular distributions of osmium in A2780 human ovarian cancer cells suggested that cell uptake and targeting to cellular organelles play important roles in determining activity. Although complex 9 induced the production of reactive oxygen species (ROS) in A2780 cells, the ROS level did not appear to play a role in the mechanism of anticancer activity. This class of organometallic osmium complexes has new and unusual features worthy of further exploration for the design of novel anticancer drugs.

  6. Structural basis of sialidase in complex with geranylated flavonoids as potent natural inhibitors.

    PubMed

    Lee, Youngjin; Ryu, Young Bae; Youn, Hyung-Seop; Cho, Jung Keun; Kim, Young Min; Park, Ji-Young; Lee, Woo Song; Park, Ki Hun; Eom, Soo Hyun

    2014-05-01

    Sialidase catalyzes the removal of a terminal sialic acid from glycoconjugates and plays a pivotal role in nutrition, cellular interactions and pathogenesis mediating various infectious diseases including cholera, influenza and sepsis. An array of antiviral sialidase agents have been developed and are commercially available, such as zanamivir and oseltamivir for treating influenza. However, the development of bacterial sialidase inhibitors has been much less successful. Here, natural polyphenolic geranylated flavonoids which show significant inhibitory effects against Cp-NanI, a sialidase from Clostridium perfringens, are reported. This bacterium causes various gastrointestinal diseases. The crystal structure of the Cp-NanI catalytic domain in complex with the best inhibitor, diplacone, is also presented. This structure explains how diplacone generates a stable enzyme-inhibitor complex. These results provide a structural framework for understanding the interaction between sialidase and natural flavonoids, which are promising scaffolds on which to discover new anti-sialidase agents.

  7. A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex.

    PubMed

    Suntharalingam, Kogularamanan; Lin, Wei; Johnstone, Timothy C; Bruno, Peter M; Zheng, Yao-Rong; Hemann, Michael T; Lippard, Stephen J

    2014-10-15

    The effect of a newly developed osmium(VI) nitrido complex, 1, on breast cancer stem cells (CSCs) is reported. The complex displays selective toxicity for HMLER breast cancer cells enriched with CD44-positive, CSC-like cells over the same cells having reduced CSC character. Remarkably, 1 also reduces the proportion of CSCs within a heterogeneous breast cancer cell population and irreversibly inhibits the formation of free-floating mammospheres to an extent similar to that of salinomycin, a natural product that targets CSCs. Detailed mechanistic studies reveal that in breast cancer cells 1 induces DNA damage and endoplasmic reticulum stress, the latter being responsible for the CSC selectivity. The anti-CSC properties of 1 provide a strong impetus for the development of new metal-based compounds to target CSCs and to treat chemotherapy-resistant and relapsed tumors.

  8. Structural basis of sialidase in complex with geranylated flavonoids as potent natural inhibitors

    PubMed Central

    Lee, Youngjin; Ryu, Young Bae; Youn, Hyung-Seop; Cho, Jung Keun; Kim, Young Min; Park, Ji-Young; Lee, Woo Song; Park, Ki Hun; Eom, Soo Hyun

    2014-01-01

    Sialidase catalyzes the removal of a terminal sialic acid from glycoconjugates and plays a pivotal role in nutrition, cellular interactions and pathogenesis mediating various infectious diseases including cholera, influenza and sepsis. An array of antiviral sialidase agents have been developed and are commercially available, such as zanamivir and oseltamivir for treating influenza. However, the development of bacterial sialidase inhibitors has been much less successful. Here, natural polyphenolic geranylated flavonoids which show significant inhibitory effects against Cp-NanI, a sialidase from Clostridium perfringens, are reported. This bacterium causes various gastrointestinal diseases. The crystal structure of the Cp-NanI catalytic domain in complex with the best inhibitor, diplacone, is also presented. This structure explains how diplacone generates a stable enzyme–inhibitor complex. These results provide a structural framework for understanding the interaction between sialidase and natural flavonoids, which are promising scaffolds on which to discover new anti-sialidase agents. PMID:24816104

  9. Breast Cancer Stem Cell Potent Copper(II)-Non-Steroidal Anti-Inflammatory Drug Complexes.

    PubMed

    Boodram, Janine N; Mcgregor, Iain J; Bruno, Peter M; Cressey, Paul B; Hemann, Michael T; Suntharalingam, Kogularamanan

    2016-02-18

    The breast cancer stem cell (CSC) potency of a series of copper(II)-phenanthroline complexes containing the nonsteroidal anti-inflammatory drug (NSAID), indomethacin, is reported. The most effective copper(II) complex in this series, 4, selectivity kills breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Furthermore, 4 reduces the formation, size, and viability of mammospheres, to a greater extent than salinomycin, a potassium ionophore known to selectively inhibit CSCs. Mechanistic studies revealed that the CSC-specificity observed for 4 arises from its ability to generate intracellular reactive oxygen species (ROS) and inhibit cyclooxygenase-2 (COX-2), an enzyme that is overexpressed in breast CSCs. The former induces DNA damage, activates JNK and p38 pathways, and leads to apoptosis.

  10. Novel Biologically Potent Diorganosilicon(IV) Complexes of Indole-2,3-Dione Derivatives

    PubMed Central

    Nagpal, Pooja

    2005-01-01

    The aim of the present study is to synthesize some novel ecofriendly fungicides and bactericides of indole-2,3-dione derivatives, having important pharmacodynamic significance. The ligands used in the present account are derived by the condensation of 1,3-dihydro-3-[2-(phenyl)-2-oxoethylidene]-2H-indol-2- one, 1,3-dihydro-3-[2-(4-nitrophenyl)-2-oxoethylidene]-2H-indol-2-one and 1,3-dihydro-3-[2-(4-nitro-3-methylphenyl)- 2-oxoethylidene]-2H-indol-2-one with hydrazinecarboxamide and hydrazinecarbothioamide. These imines, on interaction with diorganosilicon(IV) chlorides, yield complexes having Si–O or Si–S and Si←N bonds. The structure of these compounds have been elucidated by elemental microanalyses and spectral [(UV), (IR), 1H, 13C and 29Si NMR)] studies which unerringly point to a trigonal bipyramidal and octahedral geometries for unimolar and bimolar reactions, respectively. The potency of the synthesized compounds have been assessed by growth inhibiting potential of the complexes against variety of fungal and bacterial strains and male albino rats. The results of these biological studies have been compared with the standard fungicide, Bavistin. The studies demonstrate that, 1,3-dihydro-3-[2-(4-nitrophenyl)-2-oxoethylidene]-2H-indol-2-onehydrazincarbothioamide and its diphenylsilicon(IV) complexes have comparable antimicrobial activity and are less toxic to male albino rats than Bavistin. PMID:18365103

  11. Crystal Structure of Checkpoint Kinase 2 in Complex with Nsc 109555, a Potent and Selective Inhibitor

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Zhang, Di; Jobson, Andrew G.; Pommier, Yves; Shoemaker, Robert H.; Waugh, David S.

    2009-03-05

    Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC{sub 50} = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity.

  12. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    PubMed

    Nemashkalova, Ekaterina L; Kazakov, Alexei S; Khasanova, Leysan M; Permyakov, Eugene A; Permyakov, Sergei E

    2013-09-10

    HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.

  13. Oral delivery of a potent anti-angiogenic heparin conjugate by chemical conjugation and physical complexation using deoxycholic acid.

    PubMed

    Alam, Farzana; Al-Hilal, Taslim A; Chung, Seung Woo; Seo, Donghyun; Mahmud, Foyez; Kim, Han Sung; Kim, Sang Yoon; Byun, Youngro

    2014-08-01

    Angiogenesis, the formation of new blood vessels, plays a pivotal role in tumor progression and for this reason angiogenesis inhibitors are an important class of therapeutics for cancer treatment. Heparin-based angiogenesis inhibitors have been newly developed as one of such classes of therapeutics and possess a great promise in the clinical context. Taurocholate conjugated low molecular weight heparin derivative (LHT7) has been proven to be a potent, multi-targeting angiogenesis inhibitor against broad-spectrum angiogenic tumors. However, major limitations of LHT7 are its poor oral bioavailability, short half-life, and frequent parenteral dosing schedule. Addressing these issues, we have developed an oral formulation of LHT7 by chemically conjugating LHT7 with a tetrameric deoxycholic acid named LHTD4, and then physically complexing it with deoxycholylethylamine (DCK). The resulting LHTD4/DCK complex showed significantly enhanced oral bioavailability (34.3 ± 2.89%) and prolonged the mean residence time (7.5 ± 0.5 h). The LHTD4/DCK complex was mostly absorbed in the intestine by transcellular pathway via its interaction with apical sodium bile acid transporter. In vitro, the VEGF-induced sprouting of endothelial spheroids was significantly blocked by LHTD4. LHTD4/DCK complex significantly regressed the total vessel fractions of tumor (77.2 ± 3.9%), as analyzed by X-ray microCT angiography, thereby inhibiting tumor growth in vivo. Using the oral route of administration, we showed that LHTD4/DCK complex could be effective and chronically administered as angiogenesis inhibitor.

  14. Potent antilisterial cell-free supernatants produced by complex red-smear cheese microbial consortia.

    PubMed

    Bleicher, A; Stark, T; Hofmann, T; Bogovic Matijasić, B; Rogelj, I; Scherer, S; Neuhaus, K

    2010-10-01

    The microbial surface ripening consortia of 49 soft cheeses were investigated with respect to their inhibition of Listeria monocytogenes. When L. monocytogenes EGDe (serovar 1/2a) was cultivated in cell-free supernatants obtained from consortia grown for 8 h in liquid medium, a strong bactericidal activity was observed in several cases. The cell-free supernatants of 2 of these consortia (I and II) reduced an initial L. monocytogenes inoculum of 5 × 10(7) cfu/mL to zero after 24 h of incubation. No inhibitory substances could be washed off the complex consortia when incubated for a 10-min period. A taxonomical analysis of the antilisterial consortia I and II using Fourier transform infrared spectroscopy yielded a considerable species diversity, with lactic acid bacteria increasing strongly during the 8-h cultivation. Therefore, 23 lactic acid bacteria bacteriocin genes were assayed using specific PCR primers, identifying 3 bacteriocin genes in both microbial communities. However, no transcription of these genes was found on cheese surfaces or in consortia propagated in liquid culture. Individual lactic acid bacteria isolates of consortia I and II displayed no or only weak inhibition of L. monocytogenes on solid medium. The complex cell-free supernatants I and II, in contrast, exhibited an unusually broad inhibitory spectrum, killing L. monocytogenes ssp., Bacillus spp., Staphylococcus aureus, as well as gram-negative bacteria such as Escherichia coli DH5α and Salmonella enterica serovar Typhimurium. Inhibition could not be abolished by heating to 100°C or by proteinase K treatment. Initial purification of an inhibitory substance from consortium I by solid-phase extraction and HPLC indicates the presence of rather small, extremely stable compounds, which, most probably, are not bacteriocins.

  15. Synthesis and reactivity of the aquation product of the antitumor complex trans-[Ru(III)Cl4(indazole)2]-.

    PubMed

    Cebrián-Losantos, Berta; Reisner, Erwin; Kowol, Christian R; Roller, Alexander; Shova, Sergiu; Arion, Vladimir B; Keppler, Bernhard K

    2008-07-21

    , cyclic voltammetry, and X-ray crystallography. Electrochemical investigations give insight into the mechanistic details of the solvolytic behavior of complex 2. The lability of the aqua ligand in 2 suggests that this complex is a potential active species responsible for the high antitumor activity of trans-[Ru(III)Cl4(Hind)2](-).

  16. Optogenetic excitation of preBötzinger complex neurons potently drives inspiratory activity in vivo

    PubMed Central

    Alsahafi, Zaki; Dickson, Clayton T; Pagliardini, Silvia

    2015-01-01

    Understanding the sites and mechanisms underlying respiratory rhythmogenesis is of fundamental interest in the field of respiratory neurophysiology. Previous studies demonstrated the necessary and sufficient role of preBötzinger complex (preBötC) in generating inspiratory rhythms in vitro and in vivo. However, the influence of timed activation of the preBötC network in vivo is as yet unknown given the experimental approaches previously used. By unilaterally infecting preBötC neurons using an adeno-associated virus expressing channelrhodopsin we photo-activated the network in order to assess how excitation delivered in a spatially and temporally precise manner to the inspiratory oscillator influences ongoing breathing rhythms and related muscular activity in urethane-anaesthetized rats. We hypothesized that if an excitatory drive is necessary for rhythmogenesis and burst initiation, photo-activation of preBötC not only will increase respiratory rate, but also entrain it over a wide range of frequencies with fast onset, and have little effect on ongoing respiratory rhythm if a stimulus is delivered during inspiration. Stimulation of preBötC neurons consistently increased respiratory rate and entrained respiration up to fourfold baseline conditions. Furthermore, brief pulses of photostimulation delivered at random phases between inspiratory events robustly and consistently induced phase-independent (Type 0) respiratory reset and recruited inspiratory muscle activity at very short delays (∼100 ms). A 200 ms refractory period following inspiration was also identified. These data provide strong evidence for a fine control of inspiratory activity in the preBötC and provide further evidence that the preBötC network constitutes the fundamental oscillator of inspiratory rhythms. PMID:26010654

  17. Crystal Structure and Antitumor Activity of the Novel Zwitterionic Complex of tri-n-Butyltin(IV) with 2-Thiobarbituric Acid

    PubMed Central

    Balas, Vasilios I.; Hadjikakou, Sotiris K.; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Light, Mark E.; Hursthouse, Mike; Metsios, Apostolos K.; Karkabounas, Spyros

    2008-01-01

    A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin. PMID:18401456

  18. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  19. Crystal structure of human secretory phospholipase A2-IIA complex with the potent indolizine inhibitor 120-1032.

    PubMed

    Kitadokoro, K; Hagishita, S; Sato, T; Ohtani, M; Miki, K

    1998-04-01

    Phospholipase A2 is a key enzyme in a number of physiologically important cellular processes including inflammation and transmembrane signaling. Human secretory phospholipase A2-IIA is present at high concentrations in synovial fluid of patients with rheumatoid arthritis and in the plasma of patients with septic shock. Inhibitors of this enzyme have been suggested to be therapeutically useful non-steroidal anti-inflammatory drugs. The crystal structure of human secretory phospholipase A2-IIA bound to a novel potent indolizine inhibitor (120-1032) has been determined. The complex crystallizes in the space group P3121, with cell dimensions of a = b = 75.8 A and c = 51.3 A. The model was refined to an R-factor of 0. 183 for the intensity data collected to a resolution of 2.2 A. It was revealed that the inhibitor is located near the active site and bound to the calcium ion. Although the binding mode of the 120-1032 inhibitor to human secretory phospholipase A2-IIA is similar to that previously determined for an indole inhibitor LY311299, the specific interactions between the enzyme and the inhibitor in the present complex include the oxycarboxylate group which was introduced in this inhibitor. The oxycarboxylate group in 120-1032 is coordinated to the calcium ion and included in the water-mediated hydrogen bonding to the catalytic Asp49. In addition, the ethyl group in 120-1032 gains hydrophobic contacts with the cavity wall of the hydrophobic channel of the enzyme.

  20. Highly potent anti-proliferative effects of a gallium(III) complex with 7-chloroquinoline thiosemicarbazone as a ligand: synthesis, cytotoxic and antimalarial evaluation.

    PubMed

    Kumar, Kewal; Schniper, Sarah; González-Sarrías, Antonio; Holder, Alvin A; Sanders, Natalie; Sullivan, David; Jarrett, William L; Davis, Krystyn; Bai, Fengwei; Seeram, Navindra P; Kumar, Vipan

    2014-10-30

    A gallium(III) complex with 7-chloroquinoline thiosemicarbazone was synthesized and characterized. The complex proved to be thirty-one times more potent on colon cancer cell line, HCT-116, with considerably less cytotoxicity on non-cancerous colon fibroblast, CCD-18Co, when compared to etoposide. Its anti-malarial potential on 3D7 isolate of Plasmodium falciparum was better than lumefantrine.

  1. Improved systemic pharmacokinetics, biodistribution, and antitumor activity of CpG oligodeoxynucleotides complexed to endogenous antibodies in vivo

    PubMed Central

    Palma, Enzo; Cho, Moo J.

    2007-01-01

    CpG oligodeoxynucleotides (CpG-ODNs) fail to elicit antitumor immunity after intravenous administration presumably due to their rapid renal clearance and low tumor accumulation. To address this issue, we tested the hypothesis that endogenous IgG can be used as systemic drug carriers to improve the pharmacokinetics, tumor accumulation, and antitumor activity of intravenously administered CpG-ODNs. To this end, tritium-labeled CpG-ODNs conjugated with one or two dinitrophenyl (DNP) haptens (DNP- and DNP2-[3H]-CpG-ODN) were intravenously dosed into DNP-immunized Balb/c mice bearing subcutaneous CT26 colorectal tumors. Serum and tissue samples for pharmacokinetic and biodistribution profiling were collected at predetermined timepoints and analyzed by liquid scintillation. In antitumor efficacy studies, DNP-immunized, CT26 tumor-bearing mice were intravenously dosed with PBS, CpG-ODN, or DNP-CpG-ODN every five days. Tumor volumes and macroscopic and histological examination of resected solid tumors were used to quantitatively and qualitatively assess tumor growth inhibition. Relative to [3H]-CpG-ODN, dinitrophenylated [3H]-CpG-ODNs displayed substantial increases in systemic exposure (900–1650 fold) and half-life (100–300 fold), marked decreases in systemic clearance (750–1500 fold) and volume of tissue distribution (13–37 fold), as well as substantial and sustained tumor accumulation (~30% vs. <2% injected dose/g). Antitumor efficacy studies demonstrated that DNP-CpG-ODN inhibited tumor growth by up to 60% relative to PBS control whereas CpG-ODN treatment had no apparent effect. Macroscopic and histological examination of harvested tumors at various timepoints revealed the presence of regions of necrotic tissue only in tumors from mice treated with DNP-CpG-ODN. Collectively, these results show the potential of endogenous IgG to mediate the systemic delivery of CpG-ODN to solid tumors and to enhance their antitumor activity following intravenous administration

  2. Highly Effective Non-Viral Antitumor Gene Therapy System Comprised of Biocompatible Small Plasmid Complex Particles Consisting of pDNA, Anionic Polysaccharide, and Fully Deprotected Linear Polyethylenimine

    PubMed Central

    Koyama, Yoshiyuki; Sugiura, Kikuya; Yoshihara, Chieko; Inaba, Toshio; Ito, Tomoko

    2015-01-01

    We have reported that ternary complexes of plasmid DNA with conventional linear polyethylenimine (l-PEI) and certain polyanions were very stably dispersed, and, with no cryoprotectant, they could be freeze-dried and re-hydrated without the loss of transfection ability. These properties enabled the preparation of a concentrated suspension of very small pDNA complex, by preparing the complexes at highly diluted conditions, followed by condensation via lyophilization-and-rehydration procedure. Recently, a high potency linear polyethylenimine having no residual protective groups, i.e., Polyethylenimine “Max” (PEI “Max”), is available, which has been reported to induce much higher gene expression than conventional l-PEI. We tried to prepare the small DNA/PEI “Max”/polyanion complexes by a similar freeze-drying method. Small complex particles could be obtained without apparent aggregation, but transfection activity of the rehydrated complexes was severely reduced. Complex-preparation conditions were investigated in details to achieve the freeze-dried DNA/PEI “Max”/polyanion small ternary complexes with high transfection efficiency. DNA/PEI “Max”/polyanion complexes containing cytokine-coding plasmids were then prepared, and their anti-tumor therapeutic efficacy was examined in tumor-bearing mice. PMID:26213961

  3. Monofunctional platinum(II) complexes with potent tumor cell growth inhibitory activity: the effect of a hydrogen-bond donor/acceptor N-heterocyclic ligand.

    PubMed

    Margiotta, Nicola; Savino, Salvatore; Gandin, Valentina; Marzano, Christine; Natile, Giovanni

    2014-06-01

    In this paper we investigate the possibility of further increase the role of the N-donor aromatic base in antitumor Hollis-type compounds by conferring the possibility to act as a hydrogen-bond donor/acceptor. Therefore, we synthesized the Pt(II) complex cis-[PtCl(NH3 )2 (naph)]NO3 (1) containing the 1,8-naphthyridine (naph) ligand. The naphthyridine ligand is generally monodentate, and the second nitrogen atom can act as H-bond donor/acceptor depending upon its protonation state. The possibility of forming such an H-bond could be crucial in the interaction of the drug with DNA or proteins. Apart from the synthesis of the compound, in this study we evaluated its in vitro antitumor activity in a wide panel of tumor cell lines, also including cells selected for their sensitivity/resistance to oxaliplatin, which was compared with that of previously reported complex 2 ([PtI(2,9-dimethyl-1,10-phenanthroline)(1-methyl-cytosine)]I) and oxaliplatin and cisplatin as reference compounds. The cytotoxicity data were correlated with the cellular uptake and the DNA platination levels. Finally, the reactivity of 1 towards guanosine 5'-monophosphate (5'-GMP) and glutathione was investigated to provide insights into its mechanism of action.

  4. Structure activity-relationship and in vitro and in vivo evaluation of the potent cytotoxic anti-microtubule agent N-(4-methoxyphenyl)-N,2,6-trimethyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-aminium chloride and its analogues as antitumor agents

    PubMed Central

    Gangjee, Aleem; Zhao, Ying; Raghavan, Sudhir; Rohena, Cristina; Mooberry, Susan L.; Hamel, Ernest

    2013-01-01

    A series of 21 substituted cyclopenta[d]pyrimidines were synthesized as an extension of our discovery of the parent compound 1·HCl as an antimicrotubule agent. The structure-activity relationship indicates that the N-methyl and a 4′-methoxy groups appear important for potent activity. In addition, the 6-substituent in the parent analogue is not necessary for activity. The most potent compound 30·HCl was a 1–2 digit nanomolar inhibitor of most tumor cell proliferations and was up to 7-fold more potent than the parent compound 1·HCl. In addition, 30·HCl inhibited cancer cell proliferation regardless of Pgp or βIII-tubulin status, both of which are known to cause clinical resistance to several antitubulin agents. In vivo efficacy of 30·HCl was demonstrated against a triple negative breast cancer xenograft mouse model. Compound 30·HCl is water soluble, easily synthesized and serves as a lead compound for further preclinical evaluation as an antitumor agent. PMID:23895532

  5. New non-toxic transition metal nanocomplexes and Zn complex-silica xerogel nanohybrid: Synthesis, spectral studies, antibacterial, and antitumor activities

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Saif, M.; Nabeel, Asmaa I.; Shokry, R.

    2016-08-01

    A new chromone Schiff base and its complexes of Cu(II), Ni(II), Co(II), Fe(III), Zn(II), Cd(II), and UO2(VI) as well as Zn(II) complex-silica xerogel nanohybrid were successfully prepared in a nano domain with crystalline or amorphous structures. Structures of the Schiff base and its complexes were investigated by elemental and thermal analyses, IR, 1H NMR, electronic, ESR, mass spectra, XRD, and TEM, as well as conductivity and magnetic susceptibility measurements. The spectroscopic data revealed that the Schiff base ligand behaves as a monobasic tridentate ligand. The coordination sites with metal ions are γ-pyrone oxygen, azomethine nitrogen, and oxygen of the carboxylic group. The metal complexes exhibited octahedral geometry, except Cu(II) complex, which has a square planar geometry and UO2(VI) complex, in which uranium ion is hepta-coordinated. Transmission electron microscope (TEM) analysis showed that Ni(II) and Zn(II) complexes have aggregated spheres and rod morphologies, respectively. TEM images of Zn(II) complex-silica xerogel nanohybrid showed a nanosheet morphology with 46 nm average size and confirmed that the complex was uniformly distributed into the silica pores. The obtained nanocomplexes were tested as antimicrobial and antitumor agents. The results showed that Zn(II) nanocomplex and Zn(II) complex-silica xerogel nanohybrid have high activity. The toxicity test on mice showed that Zn(II) complex and Zn(II) complex-silica xerogel nanohybrid have lower toxicity than cisplatin.

  6. DNA interstrand cross-links of an antitumor trinuclear platinum(II) complex: thermodynamic analysis and chemical probing.

    PubMed

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2011-06-06

    The trinuclear platinum compound [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (BBR3464) belongs to the polynuclear class of platinum-based anticancer agents. These agents form in DNA long-range (Pt,Pt) interstrand cross-links, whose role in the antitumor effects of BBR3464 predominates. Our results show for the first time that the interstrand cross-links formed by BBR3464 between two guanine bases in opposite strands separated by two base pairs (1,4-interstrand cross-links) exist as two distinct conformers, which are not interconvertible, not only if these cross-links are formed in the 5'-5', but also in the less-usual 3'-3' direction. Analysis of the conformers by differential scanning calorimetry, chemical probes of DNA conformation, and minor groove binder Hoechst 33258 demonstrate that each of the four conformers affects DNA in a distinctly different way and adopts a different conformation. The results also support the thesis that the molecule of antitumor BBR3464 when forming DNA interstrand cross-links may adopt different global structures, including different configurations of the linker chain of BBR3464 in the minor groove of DNA. Our findings suggest that the multiple DNA interstrand cross-links available to BBR3464 may all contribute substantially to its cytotoxicity.

  7. Ruthenium(II) p-cymene complex bearing 2,2'-dipyridylamine targets caspase 3 deficient MCF-7 breast cancer cells without disruption of antitumor immune response.

    PubMed

    Kaluđerović, Goran N; Krajnović, Tamara; Momcilovic, Miljana; Stosic-Grujicic, Stanislava; Mijatović, Sanja; Maksimović-Ivanić, Danijela; Hey-Hawkins, Evamarie

    2015-12-01

    [Ru(η(6)-p-cym)Cl{dpa(CH2)4COOEt}][PF6] (cym=cymene; dpa=2,2'-dipyridylamine; complex 2) was prepared and characterized by elemental analysis, IR and multinuclear NMR spectroscopy, as well as ESI-MS and X-ray structural analysis. The structural analog without a side chain [Ru(η(6)-p-cym)Cl(dpa)][PF6] (1) as well as 2 were investigated in vitro against 518A2, SW480, 8505C, A253 and MCF-7 cell lines. Complex 1 is active against all investigated tumor cell lines while the activity of compound 2 is limited only to caspase 3 deficient MCF-7 breast cancer cells, however, both are less active than cisplatin. As CD4(+)Th cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells, besides testing the in vitro antitumor activity of 1 and 2, the effect of ruthenium(II) complexes on the cells of the adaptive immune system have also been evaluated. Importantly, complex 1 applied in concentrations which were effective against tumor cells did not affect immune cell viability, nor did exert a general immunosuppressive effect on cytokine production. Thus, beneficial characteristics of 1 might contribute to the overall therapeutic properties of the complex.

  8. Synthesis, structural characterization, DNA binding studies and antitumor properties of tin(II)-oxydiacetate complexes containing α-diimine as auxiliary ligand.

    PubMed

    Siddiqi, Zafar A; Sharma, Prashant K; Shahid, M; Khalid, Mohd

    2013-08-05

    Metal directed supra molecular assemblies with interesting topologies have been widely used as models for metallo-enzymes and in development of metallo-pharmaceuticals. Two novel tin(II)-oxydiacetate complexes with α-diimine (1,10-phenanthroline or 2,2'-bipyridine) as auxiliary ligand were synthesized and characterized by elemental analysis, FT-IR, (1)H-, (13)C- and (119)Sn-NMR and single crystal X-ray crystallography. The spectral investigations and X-ray data show that {Sn} is hepta coordinated with pentagonal bipyramidal (pbp) geometry of the complexes. The in vitro binding and cleavage studies using CT DNA by UV-visible, fluorescence and agarose gel electrophoresis techniques revealed that both complexes bind DNA via intercalation. The observed magnitudes of Kb for complexes (1) and (2) are 2.517×10(4) and 5.35×10(3), respectively, which suggest that (1) has strong binding affinity for CT DNA as compared to (2). The complexes were tested for antitumor properties and found highly active at 10(-4)M concentration against P388, HL-60 and A-549 cell lines.

  9. Antitumor effects of MsurvivinT34A-CaPi complex-embedded PLGA nanoparticles in combination with Doxil in mice

    NASA Astrophysics Data System (ADS)

    Tang, Jie; He, Jinfeng; Yang, Chengli; Mao, Yi; Hu, Tingting; Zhang, Lijing; Cao, Hua; Tong, Ai-ping; Song, Xiangrong; He, Gu; Guo, Gang; Luo, Youfu; Zhang, Xiaoning; Xie, Yongmei; Zheng, Yu

    2014-11-01

    A novel calcium phosphate-pDNA complex-embedded PLGA nanoparticles have been developed for delivering therapy genes. CaPi-MsurvivinT34A-PLGA-NPs (abbreviated as ms-CaPi-PLGA-NPs) containing the MsurvivinT34A plasmid and null-CaPi-PLGA-NPs containing the empty plasmid vector as control were prepared. The nanoparticles had mean size around 130 nm and encapsulation efficiency above 85 %. What is more, the drug loading content and zeta potential of ms-CaPi-PLGA-NPs were 0.734 ± 0.007 % and -3.75 ± 1.2 mV, respectively. ms-CaPi-PLGA-NPs combined with Doxil significantly inhibited the proliferation of 4T1 breast cancer cells with IC50 of 0.2937 ± 0.02 µg/mL, which was significantly lower than those of Doxil and null-CaPi-PLGA-NPs ( p < 0.05). Morphological analysis using Hoechst 33342 and PI staining suggested that a lot of 4T1 cells in combination therapy group of ms-CaPi-PLGA-NPs + Doxil showed typical morphological characteristic of late apoptosis and necrosis. Flow cytometry analysis with PI and the apoptosis marker Annexin V-FITC staining confirmed that apoptosis fraction given by ms-CaPi-PLGA-NPs + Doxil was greater than 80 %. Both ms-CaPi-PLGA-NPs and Doxil resulted in cell cycle arrest implying that their synergistic antitumor effect was probably related to the cell cycle regulation. Then, the antitumor effect of ms-CaPi-PLGA-NPs ( i.t.) + Doxil ( i.v.) in vivo was studied using BALB/c mice inoculated with 4T1 cells. The result showed that ms-CaPi-PLGA-NPs + Doxil suppressed the tumor growth most effectively among all the treatment groups. TUNEL assay together with immunohistochemical study on CD31 and VEGF indicated that the ideal antitumor effect of ms-CaPi-PLGA-NPs + Doxil was ascribed to induction of apoptosis (apoptotic index over 90 %) and inhibition of angiogenesis. Toxicity assessment showed that no significant toxic effects were produced after treatment of ms-CaPi-PLGA-NPs + Doxil. Above all, we may conclude that the calcium phosphate-pDNA complex

  10. Discovery of [7-(2,6-dichlorophenyl)-5-methylbenzo [1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-ylethoxy)phenyl]amine--a potent, orally active Src kinase inhibitor with anti-tumor activity in preclinical assays.

    PubMed

    Noronha, Glenn; Barrett, Kathy; Boccia, Antonio; Brodhag, Tessa; Cao, Jianguo; Chow, Chun P; Dneprovskaia, Elena; Doukas, John; Fine, Richard; Gong, Xianchang; Gritzen, Colleen; Gu, Hong; Hanna, Ehab; Hood, John D; Hu, Steven; Kang, Xinshan; Key, Jann; Klebansky, Boris; Kousba, Ahmed; Li, Ge; Lohse, Dan; Mak, Chi Ching; McPherson, Andrew; Palanki, Moorthy S S; Pathak, Ved P; Renick, Joel; Shi, Feng; Soll, Richard; Splittgerber, Ute; Stoughton, Silva; Tang, Suhan; Yee, Shiyin; Zeng, Binqi; Zhao, Ningning; Zhu, Hong

    2007-02-01

    We describe the identification of [7-(2,6-dichlorophenyl)-5-methylbenzo [1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-ylethoxy)phenyl]amine (3), a potent, orally active Src inhibitor with desirable PK properties, demonstrated activity in human tumor cell lines and in animal models of tumor growth.

  11. Structure of a secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agents.

    PubMed Central

    Abad-Zapatero, C.; Goldman, R.; Muchmore, S. W.; Hutchins, C.; Stewart, K.; Navaza, J.; Payne, C. D.; Ray, T. L.

    1996-01-01

    The three-dimensional structure of a secreted aspartic protease from Candida albicans complexed with a potent inhibitor reveals variations on the classical aspartic protease theme that dramatically alter the specificity of this class of enzymes. The structure presents: (1) an 8-residue insertion near the first disulfide (Cys 45-Cys 50, pepsin numbering) that results in a broad flap extending toward the active site; (2) a 7-residue deletion replacing helix hN2 (Ser 110-Tyr 114), which enlarges the S3 pocket; (3) a short polar connection between the two rigid body domains that alters their relative orientation and provides certain specificity; and (4) an ordered 11-residue addition at the carboxy terminus. The inhibitor binds in an extended conformation and presents a branched structure at the P3 position. The implications of these findings for the design of potent antifungal agents are discussed. PMID:8845753

  12. Garcinia xanthones as orally active antitumor agents.

    PubMed

    Zhang, Xiaojin; Li, Xiang; Sun, Haopeng; Wang, Xiaojian; Zhao, Li; Gao, Yuan; Liu, Xiaorong; Zhang, Shenglie; Wang, Yanyan; Yang, Yingrui; Zeng, Su; Guo, Qinglong; You, Qidong

    2013-01-10

    Using a newly developed strategy whose key step is the regioselective propargylation of hydroxyxanthone substrates, 99 structurally diverse Garcinia natural-product-like xanthones based on gambogic acid were designed and synthesized and their in vitro antitumor activity was evaluated. A set of 40 related compounds was chosen for determination of their physicochemical properties including polar surface area, log D₇.₄, aqueous solubility, and permeability at pH 7.4. In the light of the in vitro antitumor activity and the physicochemical properties, two compounds were advanced into in vivo efficacy experiments. The antitumor activity of compound 112, administered po, showed more potent in vivo oral antitumor activity than gambogic acid.

  13. Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase

    PubMed Central

    Wang, Lei; Desmoulin, Sita Kugel; Cherian, Christina; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Fulterer, Andreas; Chang, Min-Hwang; Mitchell, Shermaine; Stout, Mark; Romero, Michael F.; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2011-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series. PMID:21879757

  14. Design and optimization of (3-aryl-1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones as potent PLK4 inhibitors with oral antitumor efficacy.

    PubMed

    Li, Sze-Wan; Liu, Yong; Sampson, Peter B; Patel, Narendra Kumar; Forrest, Bryan T; Edwards, Louise; Laufer, Radoslaw; Feher, Miklos; Ban, Fuqiang; Awrey, Donald E; Hodgson, Richard; Beletskaya, Irina; Mao, Guodong; Mason, Jacqueline M; Wei, Xin; Luo, Xunyi; Kiarash, Reza; Green, Erin; Mak, Tak W; Pan, Guohua; Pauls, Henry W

    2016-10-01

    Previous efforts from our laboratory demonstrated that (E)-3-((3-(E)-vinylaryl)-1H-indazol-6-yl)methylene)-indolin-2-ones are potent PLK4 inhibitors with in vivo anticancer efficacy upon IP dosing. As part of a continued effort to develop selective and orally efficacious inhibitors, we examined variations on this theme wherein 'directly-linked' aromatics, pendant from the indazole core, replace the arylvinyl moiety. Herein, we describe the design and optimization of this series which was ultimately superseded by (3-aryl-1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones. The latter compounds are potent and selective inhibitors of PLK4 with oral exposure in rodents and in vivo anticancer activity. Compound 13b, in particular, has a bioavailability of 22% and achieved a 96% tumor growth inhibition in an MDA-MB-468 xenograft study.

  15. Lipophilic Cationic Cyanines Are Potent Complex I Inhibitors and Specific in Vitro Dopaminergic Toxins with Mechanistic Similarities to Both Rotenone and MPP(.).

    PubMed

    Kadigamuwa, Chamila C; Mapa, Mapa S T; Wimalasena, Kandatege

    2016-09-19

    We have recently reported that simple lipophilic cationic cyanines are specific and potent dopaminergic toxins with a mechanism of toxicity similar to that of the Parkinsonian toxin MPP(+). In the present study, a group of fluorescent lipophilic cyanines have been used to further exploit the structure-activity relationship of the specific dopaminergic toxicity of cyanines. Here, we report that all cyanines tested were highly toxic to dopaminergic MN9D cells with IC50s in the range of 60-100 nM and not toxic to non-neuronal HepG2 cells parallel to that previously reported for 2,2'- and 4,4'-cyanines. All cyanines nonspecifically accumulate in the mitochondria of both MN9D and HepG2 cells at high concentrations, inhibit the mitochondrial complex I with the inhibition potencies similar to the potent complex I inhibitor, rotenone. They increase the reactive oxygen species (ROS) production specifically in dopaminergic cells causing apoptotic cell death. These and other findings suggest that the complex I inhibition, the expression of low levels of antioxidant enzymes, and presence of high levels of oxidatively labile radical propagator, dopamine, could be responsible for the specific increase in ROS production in dopaminergic cells. Thus, the predisposition of dopaminergic cells to produce high levels of ROS in response to mitochondrial toxins together with their inherent greater demand for energy may contribute to their specific vulnerability toward these toxins. The novel findings that cyanines are an unusual class of potent mitochondrial toxins with specific dopaminergic toxicity suggest that their presence in the environment could contribute to the etiology of PD similar to that of MPP(+) and rotenone.

  16. A Fluorescence Polarization Assay for Binding to Macrophage Migration Inhibitory Factor and Crystal Structures for Complexes of Two Potent Inhibitors

    PubMed Central

    2016-01-01

    Human macrophage migration inhibitory factor (MIF) is both a keto–enol tautomerase and a cytokine associated with numerous inflammatory diseases and cancer. Consistent with observed correlations between inhibition of the enzymatic and biological activities, discovery of MIF inhibitors has focused on monitoring the tautomerase activity using l-dopachrome methyl ester or 4-hydroxyphenyl pyruvic acid as substrates. The accuracy of these assays is compromised by several issues including substrate instability, spectral interference, and short linear periods for product formation. In this work, we report the syntheses of fluorescently labeled MIF inhibitors and their use in the first fluorescence polarization-based assay to measure the direct binding of inhibitors to the active site. The assay allows the accurate and efficient identification of competitive, noncompetitive, and covalent inhibitors of MIF in a manner that can be scaled for high-throughput screening. The results for 22 compounds show that the most potent MIF inhibitors bind with Kd values of ca. 50 nM; two are from our laboratory, and the other is a compound from the patent literature. X-ray crystal structures for two of the most potent compounds bound to MIF are also reported here. Striking combinations of protein–ligand hydrogen bonding, aryl–aryl, and cation−π interactions are responsible for the high affinities. A new chemical series was then designed using this knowledge to yield two more strong MIF inhibitors/binders. PMID:27299179

  17. Development of a new air-stable structure-simplified nafuredin-γ analog as a potent and selective nematode complex I inhibitor.

    PubMed

    Ohtawa, Masaki; Arima, Shiho; Shimizu, Risa; Hanatani, Naomi; Shimizu, Eri; Shiomi, Kazuro; Kita, Kiyoshi; Ōmura, Satoshi; Nagamitsu, Tohru

    2017-02-22

    Nafuredin-γ, obtained from natural nafuredin, has demonstrated a potent and selective inhibitory activity against nematode complex I. However, nafuredin-γ is unstable in air since its conjugated dienes are oxygen-labile. The instability in air was naturally solved by the synthesis of structure-simplified nafuredin-γ analogs without conjugated dienes. However, these modified analogs showed lower complex I inhibitory activities. Therefore, new air-stable structure-simplified nafuredin-γ analogs were designed and synthesized herein. Among all analogs synthesized, the one bearing a unique 1-azabicyclo[3.1.0]hexane scaffold showed the highest inhibitory activity (IC50=170 nM) while presenting high selectivity against nematode complex I.The Journal of Antibiotics advance online publication, 22 February 2017; doi:10.1038/ja.2017.16.

  18. Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives

    NASA Astrophysics Data System (ADS)

    Amer, Said; El-Wakiel, Nadia; El-Ghamry, Hoda

    2013-10-01

    A series of copper (II) complexes of Schiff bases derived from 7H-2,6-diaminopurine and 4H-3,5-diamino-1,2,4-triazole with 2-pyridinecarbaldehyde, salicylaldehyde, 2,4-dihydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde have been prepared. The donor atoms and the possible geometry of the complexes were investigated by means of elemental and thermal analyses, molar conductance, magnetic moment, UV-Vis, IR, ESR and mass spectra. The ligands behaved as tetradentate, coordinating through the nitrogen atom of the azomethine group and the nearest nitrogen atom to it or oxygen atom of α-hydroxyl group. The results of simultaneous DTA & TGA analyses of the complexes showed the final degradation product for these complexes is CuO. The spectral studies confirmed a four coordinate environment around the metal ion. The obtained results were supported by 3D molecular modeling of complexes using molecular mechanics (MM+) and semiempirical molecular orbital calculations (PM3). These complexes were also tested for their in vitro antimicrobial activities against some bacterial and fungal strains. Complex 2 was investigated for its cyctotoxic effect against human breast cancer (MCF7), liver carcinoma (HEPG2) and colon carcinoma cell lines (HCT116). This compound exhibited a moderate activity against the tested cell lines with IC50 of 10.3, 9.8 and 8.7 μg/ml against MCF7, HCT116 and HEPG2, respectively.

  19. Mononuclear dioxomolybdenum(VI) thiosemicarbazonato complexes: Synthesis, characterization, structural illustration, in vitro DNA binding, cleavage, and antitumor properties

    NASA Astrophysics Data System (ADS)

    Hussein, Mouayed A.; Guan, Teoh S.; Haque, Rosenani A.; Khadeer Ahamed, Mohamed B.; Abdul Majid, Amin M. S.

    2015-02-01

    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3 μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.

  20. Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine

    PubMed Central

    Wang, Qin; Huang, Yu; Zhang, Jin-Sheng; Yang, Xin-Bin

    2014-01-01

    A novel La (III) complex, [LaL(H2O)3]NO3·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, 1H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (Kb) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 105 L mol−1 and 1.71 to 17.3 × 105 L mol−1 for the ligand L and La (III) complex, respectively, in the temperature range of 298–310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex. PMID:25371657

  1. A silver complex with tryptophan: Synthesis, structural characterization, DFT studies and antibacterial and antitumor assays in vitro

    NASA Astrophysics Data System (ADS)

    Carvalho, Marcos A.; de Paiva, Raphael E. F.; Bergamini, Fernando R. G.; Gomes, Alexandre F.; Gozzo, Fábio C.; Lustri, Wilton R.; Formiga, André L. B.; Shishido, Silvia M.; Ferreira, Carmen V.; Corbi, Pedro P.

    2013-01-01

    The synthesis, spectroscopic characterization and biological assays of a new silver(I) complex with L-tryptophan (TRP) are presented. Elemental and thermal analyses and ESI-QTOF mass spectrometric measurements of the solid compound suggest the composition AgC11H11N2O2. Infrared and solid-state NMR analyses indicate coordination of TRP to Ag(I) ion through the nitrogen of the NH2 group and also through the oxygen of carboxylate group. Theoretical (DFT) calculations permit proposing an optimized geometry for the complex. Antibacterial assays indicated that the Ag-TRP complex is effective against Staphylococcus aureus and Enterococcus faecalis (Gram-positive), and Pseudomonas aeruginosa and Escherichia coli (Gram-negative) bacterial strains. The complex was also cytotoxic against Panc-1 (human pancreatic carcinoma) and SK-Mel 103 (human melanoma) cells.

  2. Unprecedented sugar-dependent in vivo antitumor activity of carbohydrate-pendant cis-diamminedichloroplatinum(II) complexes.

    PubMed

    Mikata, Y; Shinohara, Y; Yoneda, K; Nakamura, Y; Brudziñska, I; Tanase, T; Kitayama, T; Takagi, R; Okamoto, T; Kinoshita, I; Doe, M; Orvig, C; Yano, S

    2001-12-03

    Eight carbohydrate-pendant platinum(II) complexes have been synthesized from carbohydrate-diamine conjugates. D-Glucose, D-mannose, D-galactose, D-xylose, and L-glucose are attached to the dichloroplatinum(II) moiety by 1,3- or 1,2-diaminopropane chelates through with an O-glycoside bond. All the carbohydrate moieties reduced the toxicity inherent with platinum(II) complexes.

  3. Structural analysis of a holoenzyme complex of mouse dihydrofolate reductase with NADPH and a ternary complex with the potent and selective inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b, f]azepin-5-yl)methylpteridine

    SciTech Connect

    Cody, Vivian; Pace, Jim; Rosowsky, Andre

    2008-09-01

    The structures of mouse DHFR holo enzyme and a ternary complex with NADPH and a potent inhibitor are described. It has been shown that 2, 4-diamino-6-arylmethylpteridines and 2, 4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure–activity profile observed for a series of substituted dibenz[b, f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b, f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 Å resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2′-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59–64) by 0.6 Å compared with pcDHFR ternary complexes. These data are consistent with the

  4. Hydroxynaphthoquinone Metal Complexes as Antitumor Agents X: Synthesis, Structure, Spectroscopy and In Vitro Antitumor Activity of 3-Methyl-Phenylazo Lawsone Derivatives and Their Metal Complexes Against Human Breast Cancer Cell Line MCF-7

    PubMed Central

    Gokhale, Nikhil; Newton, Chris; Pritchard, Robin

    2000-01-01

    The C-3 substituted phenylazo derivatives of lawsone (2-hydroxy-l,4 p-naphthoquinone, III) were synthesized and characterized. The X-ray crystal structure was determined for the ligand 3-(3′-methyl phenylazo) lawsone. The copper complexes of these derivatives were found to possess 1:2 metal stoichiometry and square planar geometries with intermolecular stackings, resulting in antiferromagnetic exchange interactions. The in vitro activity of all the synthesized compounds was examined against human breast cancer cell-line, MCF-7, which revealed enhanced activities for the metal complexes, the highest activity being observed for the copper compound of 3-(3′-methyl phenylazo) lawsone. PMID:18475934

  5. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl)methanone (R547), A Potent and Selective Cyclin-Dependent Kinase Inhibitor with Significiant in Vivo Antitumor Activity

    SciTech Connect

    Chu,X.; DePinto, W.; Bartkovitz, D.; So, S.; Vu, B.; Packman, K.; Lukacs, C.; Ding, Q.; Jiang, N.; et al.

    2006-01-01

    The cyclin-dependent kinases (CDKs) and their cyclin partners are key regulators of the cell cycle. Since deregulation of CDKs is found with high frequency in many human cancer cells, pharmacological inhibition of CDKs with small molecules has the potential to provide an effective strategy for the treatment of cancer. The 2,4-diamino-5-ketopyrimidines 6 reported here represent a novel class of potent and ATP-competitive inhibitors that selectively target the cyclin-dependent kinase family. This diaminopyrimidine core with a substituted 4-piperidine moiety on the C2-amino position and 2-methoxybenzoyl at the C5 position has been identified as the critical structure responsible for the CDK inhibitory activity. Further optimization has led to a good number of analogues that show potent inhibitory activities against CDK1, CDK2, and CDK4 but are inactive against a large panel of serine/threonine and tyrosine kinases (K{sub i} > 10 {mu}M). As one of these representative analogues, compound 39 (R547) has the best CDK inhibitory activities (K{sub i} = 0.001, 0.003, and 0.001 M for CDK1, CDK2, and CDK4, respectively) and excellent in vitro cellular potency, inhibiting the growth of various human tumor cell lines including an HCT116 cell line (IC{sub 50} = 0.08 {mu}M). An X-ray crystal structure of 39 bound to CDK2 has been determined in this study, revealing a binding mode that is consistent with our SAR. Compound 39 demonstrates significant in vivo efficacy in the HCT116 human colorectal tumor xenograft model in nude mice with up to 95% tumor growth inhibition. On the basis of its superior overall profile, 39 was chosen for further evaluation and has progressed into Phase I clinical trial for the treatment of cancer.

  6. Immunization with antigenic peptides complexed with β-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs.

    PubMed

    Mochizuki, Shinichi; Morishita, Hiromi; Kobiyama, Kouji; Aoshi, Taiki; Ishii, Ken J; Sakurai, Kazuo

    2015-12-28

    The induction of antigen-specific immune responses requires immunization with not only antigens, but also adjuvants. CpG oligonucleotides (CpG-ODNs) are well-known ligands for Toll-like receptor 9 and a potent adjuvant that induces both Th1-type humoral and cellular immune responses including cytotoxic T-lymphocyte responses. We previously demonstrated that β-glucan schizophyllan (SPG) can form complexes with CpG-ODNs with attached dA40 (CpG-dA/SPG), which can accumulate in macrophages in the draining inguinal lymph nodes and induce strong immune responses by co-administration of antigenic proteins, namely ovalbumin (OVA). Immunization with antigenic peptides, OVA257-264, did not induce these antigen-specific immune responses even in combination with CpG-dA/SPG, indicating that peptides require a carrier to antigen presenting cells. In this study, we prepared conjugates comprising OVA257-264 and dA40, and made complexes with SPG. Immunization with OVA257-264-dA/SPG induced peptide-specific immune responses in combination with CpG-dA regardless of complexation with SPG both in vitro and in vivo. When splenocytes from immunized mice were incubated with E.G7-OVA tumor model cells presenting OVA peptides, the number of cells drastically decreased after 24h. Furthermore, mice pre-immunized with OVA257-264-dA/SPG and CpG-ODNs exhibited a long delay in tumor growth after tumor inoculation. Therefore, these peptide-dA/SPG and CpG-dA/SPG complexes could be used as a potent vaccine for the treatment of cancers and infectious diseases.

  7. Structural and functional effects of benzimidazole/thioether-copper complexes with antitumor activity on cell membranes and molecular models.

    PubMed

    Castillo, Ivan; Suwalsky, Mario; Gallardo, María José; Troncoso, Valentina; Sánchez-Eguía, Brenda N; Santiago-Osorio, Edelmiro; Aguiñiga, Itzen; González-Ugarte, Ana K

    2016-03-01

    Two cytotoxic copper(II) complexes with N-H and N-methylated benzimidazole-derived ligands (Cu-L(2) and Cu-L(2Me)) were synthesized and made to interact with human erythrocytes and molecular models of their plasmatic membranes. The latter consisted in lipid bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), lipids of the types present in the outer and inner monolayers of the human erythrocyte membrane, respectively. Initial assessment of the interaction of the complexes with DMPC and DMPE consisted of X-ray diffraction studies, which showed preferential interactions with the former. Scanning electron microscopy (SEM) of erythrocytes incubated with solutions of the Cu(II) complexes evidenced deformation of the cells to stomatocytes and knizocytes by Cu-L(2) and Cu-L(2Me) due to interactions with the inner and outer leaflets of the cell membranes, respectively. This was further confirmed by real-time observation of the dose-dependent effects of the complexes on live erythrocytes by defocusing microscopy (DM). The combined observations, including the increased antiproliferative activity of the N-methylated complex Cu-L(2Me) over that of Cu-L(2) is rationalized based on the higher lipophilicity of the former. This property would facilitate passive diffusion of Cu-L(2Me) through the cell membrane, particularly in the initial stages when the DMPC-rich outer leaflet is involved. In contrast, the benzimidazole N-H groups of Cu-L(2) may participate in hydrogen bonding with DMPE polar groups; this result is consistent with the formation of stomatocyte induced by the latter complex.

  8. Highly and Broad-Spectrum In Vitro Antitumor Active cis-Dichloridoplatinum(II) Complexes with 7-Azaindoles

    PubMed Central

    Štarha, Pavel; Dvořák, Zdeněk; Trávníček, Zdeněk

    2015-01-01

    The cis-[PtCl2(naza)2] complexes (1–3) containing monosubstituted 7-azaindole halogeno-derivatives (naza), showed significantly higher activity than cisplatin towards ovarian carcinoma A2780, its cisplatin-resistant variant A2780R, osteosarcoma HOS, breast carcinoma MCF7 and cervix carcinoma HeLa cell lines, with the IC50 values of 3.8, 3.5, 4.5, 2.7, and 9.2 μM, respectively, obtained for the most active complex 3. As for 4 and 5 having disubstituted 7-azaindoles in their molecule, the significant cytotoxicity was detected only for 4 against A2780 (IC50 = 4.8 μM), A2780R (IC50 = 3.8 μM) and HOS (IC50 = 4.3 μM), while 5 was evaluated as having only moderate antiproliferative effect against the mentioned cancer cell lines with IC50 = 33.4, 24.7 and 46.7 μM, respectively. All the studied complexes 1–5 effectively avoided the acquired resistance of ovarian carcinoma cell line. On the other hand, the complexes did not reveal any inhibition activity on the purified 20S proteasome from the A2780 cells. The representative complexes 3 and 5 showed low ability to be hydrolysed, but their stability was markedly lowered in the presence of physiological sulphur-containing biomolecule glutathione (GSH), as proved by the 1H NMR spectroscopy and mass spectrometry studies. A rate of interaction of the studied complexes with GSH was affected by an addition of another mechanistically relevant biomolecule guanosine monophosphate. The differences in interactions of 3 and 5 with GSH correlate well with their different cytotoxicity profiles. PMID:26309251

  9. Antitumoral, antihypertensive, antimicrobial, and antioxidant effects of an octanuclear copper(II)-telmisartan complex with an hydrophobic nanometer hole.

    PubMed

    Islas, María S; Martínez Medina, Juan J; López Tévez, Libertad L; Rojo, Teófilo; Lezama, Luis; Griera Merino, Mercedes; Calleros, Laura; Cortes, María A; Rodriguez Puyol, Manuel; Echeverría, Gustavo A; Piro, Oscar E; Ferrer, Evelina G; Williams, Patricia A M

    2014-06-02

    A new Cu(II) complex with the antihypertensive drug telmisartan, [Cu8Tlm16]·24H2O (CuTlm), was synthesized and characterized by elemental analysis and electronic, FTIR, Raman and electron paramagnetic resonance spectroscopy. The crystal structure (at 120 K) was solved by X-ray diffraction methods. The octanuclear complex is a hydrate of but otherwise isostructural to the previously reported [Cu8Tlm16] complex. [Cu8Tlm16]·24H2O crystallizes in the tetragonal P4/ncc space group with a = b = 47.335(1), c = 30.894(3) Å, Z = 4 molecules per unit cell giving a macrocyclic ring with a double helical structure. The Cu(II) ions are in a distorted bipyramidal environment with a somewhat twisted square basis, cis-coordinated at their core N2O2 basis to two carboxylate oxygen and two terminal benzimidazole nitrogen atoms. Cu8Tlm16 has a toroidal-like shape with a hydrophobic nanometer hole, and their crystal packing defines nanochannels that extend along the crystal c-axis. Several biological activities of the complex and the parent ligand were examined in vitro. The antioxidant measurements indicate that the complex behaves as a superoxide dismutase mimic with improved superoxide scavenger power as compared with native sartan. The capacity of telmisartan and its copper complex to expand human mesangial cells (previously contracted by angiotensin II treatment) is similar to each other. The antihypertensive effect of the compounds is attributed to the strongest binding affinity to angiotensin II type 1 receptor and not to the antioxidant effects. The cytotoxic activity of the complex and that of its components was determined against lung cancer cell line A549 and three prostate cancer cell lines (LNCaP, PC-3, and DU 145). The complex displays some inhibitory effect on the A549 line and a high viability decrease on the LNCaP (androgen-sensitive) line. From flow cytometric analysis, an apoptotic mechanism was established for the latter cell line. Telmisartan and CuTlm show

  10. Palladium(II) complexes as biologically potent metallo-drugs: Synthesis, spectral characterization, DNA interaction studies and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Naveen Kumar, R. M.; Revanasiddappa, Hosakere D.

    2013-04-01

    Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L1-L4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, 1H NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique.

  11. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies

    PubMed Central

    Ciferri, Claudio; Chandramouli, Sumana; Leitner, Alexander; Donnarumma, Danilo; Cianfrocco, Michael A.; Gerrein, Rachel; Friedrich, Kristian; Aggarwal, Yukti; Palladino, Giuseppe; Aebersold, Ruedi; Norais, Nathalie; Settembre, Ethan C.; Carfi, Andrea

    2015-01-01

    Human Cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer) are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS) coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM) and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV. PMID:26485028

  12. 3,5-Dimethyl-1-thiocarbamoylpyrazole and its Pd(II) complexes: synthesis, spectral studies and antitumor activity.

    PubMed

    Rocha, F V; Barra, C V; Netto, A V G; Mauro, A E; Carlos, I Z; Frem, R C G; Ananias, S R; Quilles, M B; Stevanato, A; da Rocha, M C

    2010-05-01

    Complexes of the type [PdX2(tdmPz)] {X=Cl-(1), Br-(2); I-(3); SCN-(4); tdmPz=1-thiocarbamoyl-3,5-dimethylpyrazole} have been synthesized and characterized. Compound 1 was formed from the reaction between [PdCl2(CH3CN)2] and 1-thiocarbamoyl-3,5-dimethylpyrazole. Complexes 2, 3 and 4 were obtained by metathesis of the chloro groups from 1 by bromide, iodide and thiocyanate ions, respectively. All the compounds and cisplatin have been tested in vitro by MTT assay for their cytotoxicity against three murine cancer cell lines: mammary adenocarcinoma (LM3 and LMM3) and lung adenocarcinoma (LP07) as well towards normal murine peritoneal exudate cells (PEC). Promising cytotoxic effect against LM3 has been found for 3 showing IC50 equal to 24.5 microM which is comparable to the value obtained for cisplatin (30.3 microM).

  13. Anti-tumor activity of lipophilic imidazolium salts on select NSCLC cell lines.

    PubMed

    Wright, Brian D; Deblock, Michael C; Wagers, Patrick O; Duah, Ernest; Robishaw, Nikki K; Shelton, Kerri L; Southerland, Marie R; DeBord, Michael A; Kersten, Kortney M; McDonald, Lucas J; Stiel, Jason A; Panzner, Matthew J; Tessier, Claire A; Paruchuri, Sailaja; Youngs, Wiley J

    2015-07-01

    The anti-tumor activity of imidazolium salts is highly dependent upon the substituents on the nitrogen atoms of the imidazolium cation. We have synthesized and characterized a series of naphthalene-substituted imidazolium salts and tested them against a variety of non-smallcell lung cancer cell lines. Several of these complexes displayed anticancer activity comparable to cisplatin. These compounds induced apoptosis in the NCI-H460 cell line as determined by Annexin V staining, caspase-3, and PARP cleavage. These results strongly suggest that this class of compounds can serve as potent chemotherapeutic agents.

  14. The antitumor agent doxorubicin binds to Fanconi anemia group F protein.

    PubMed

    Kusayanagi, Tomoe; Tsukuda, Senko; Shimura, Satomi; Manita, Daisuke; Iwakiri, Kanako; Kamisuki, Shinji; Takakusagi, Yoichi; Takeuchi, Toshifumi; Kuramochi, Kouji; Nakazaki, Atsuo; Sakaguchi, Kengo; Kobayashi, Susumu; Sugawara, Fumio

    2012-11-01

    Doxorubicin, a commonly used cancer chemotherapy agent, elicits several potent biological effects, including synergistic-antitumor activity in combination with cisplatin. However, the mechanism of this synergism remains obscure. Here, we employed an improved T7 phage display screening method to identify Fanconi anemia group F protein (FANCF) as a doxorubicin-binding protein. The FANCF-doxorubicin interaction was confirmed by pull-down assay and SPR analysis. FANCF is a component of the Fanconi anemia complex, which monoubiquitinates D2 protein of Fanconi anemia group as a cellular response against DNA cross-linkers such as cisplatin. We observed that the monoubiquitination was inhibited by doxorubicin treatment.

  15. 1,4,7,10-tetraazacyclododecane metal complexes as potent promoters of phosphodiester hydrolysis under physiological conditions.

    PubMed

    Subat, Michael; Woinaroschy, Kristina; Gerstl, Corinna; Sarkar, Biprajit; Kaim, Wolfgang; König, Burkhard

    2008-06-02

    Previously reported mono- and dinuclear Zn(II), Cu(II), and Ni(II) complexes of 1,4,7,10-tetrazacyclododecane ([12]aneN4 or cyclen) with different heterocyclic spacers (triazine, pyridine) of various lengths (bi- and tripyridine) or an azacrown-pendant have been tested for the hydrolysis of bis(4-nitrophenyl)phosphate (BNPP) under physiological conditions (pH 7-9, 25 degrees C). All Zn(II) complexes promote the hydrolysis of BNPP under physiological conditions, while those of Cu(II) and Ni(II) do not have a significant effect on the hydrolysis reaction. The hydrolysis kinetics in buffered solutions (0.05 M Bis/Tris, TRIS, HEPES, or CHES, I=0.1 M, NaCl) at 25 degrees C were determined by the initial slope method (product conversion<5%). Comparison of the second-order pH-independent rate constants (kBNPP, M(-1) s(-1)) for the mononuclear complexes ZnL1, ZnL3, and ZnL6, which are 6.1x10 (-5), 5.1x10(-5), and 5.7x10(-5), respectively, indicate that the heterocyclic moiety improves the rate of hydrolysis up to six times over the parent Zn([12]aneN4) complex (kBNPP=1.1x10(-5) M(-1) s(-1)). The reactive species is the Zn(II)-OH- complex, in which the Zn(II)-bound OH- acts as a nucleophile. For dinuclear complexes Zn2L2, Zn2L4, and Zn2L5, the rate of reaction is defined by the degree of cooperation between the metal centers, which is determined by the spacer length. Zn2L2 and Zn2L4 possessing shorter spacers are able to hydrolyze BNPP 1 to 2 orders of magnitudes faster than Zn2L5. The second-order rate constants k of Zn2L4 and Zn2L2 at pH 7, 8, and 9 are significantly higher than those of previously reported related complexes. The high BNPP hydrolytic activity may be related to pi-stacking and hydrophobic interactions between the aromatic spacer moieties and the substrate. Complexes Zn2L4 and Zn2L2 show hydrolytic activity at pH 7 and 8, which allows for the hydrolysis of activated phosphate esters under physiological conditions.

  16. Antitumor agents 286. Design, synthesis, and structure-activity relationships of 3'R,4'R-disubstituted-2',2'-dimethyldihydropyrano[2,3-f]chromone (DSP) analogues as potent chemosensitizers to overcome multidrug resistance.

    PubMed

    Zhou, Ting; Shi, Qian; Bastow, Kenneth F; Lee, Kuo-Hsiung

    2010-12-23

    In this study, various 3'R,4'R-disubstituted-2',2'-dimethydihydropyrano[2,3-f]chromone (DSP) derivatives were discovered as potent chemosensitizers in the treatment of multidrug resistant cancer cells. Twenty-four DSP analogues (5-28) were synthesized and evaluated against a multidrug resistant (MDR) cell line (KB-Vin) with and without vincristine (VCR). All DSP analogues exhibited low intrinsic cytotoxicity. However, in combination treatment, most DSPs reversed resistance to VCR and lowered the GI₅₀ value of VCR by 12-349-fold. At a concentration of 1 μg/mL, three compounds, 11, 14, and 21, fully reversed resistance to VCR in KB-Vin cancer cells, a 2-fold increase compared to verapamil, a first-generation chemosensitizer. Detailed structure-activity relationship (SAR) conclusions were established based on 3' and 4' substitutions. Moreover, a preliminary mechanism study indicated that the chemosensitizing activity of DSP analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells.

  17. Synthesis, characterization, toxicity, cytogenetic and in vivo antitumor studies of 1,1-dithiolate Cu(II) complexes with di-, tri-, tetra- amines and 1,3-thiazoles. Structure-activity correlation.

    PubMed

    Bolos, C A; Chaviara, A T; Mourelatos, D; Iakovidou, Z; Mioglou, E; Chrysogelou, E; Papageorgiou, A

    2009-04-15

    A series of new mixed-ligand neutral copper(II) complexes of the general type [Cu(amine)(i-MNT)] and [Cu(tz)(i-MNT)] was prepared and characterized by elemental, spectroscopic methods, mu(eff), Lambda(mu) measurements and molecular modeling studies. The acute toxicity, the cytogenetic and the in vivo antitumor activity of the new complexes, is related to their chemical and physicochemical properties. Among the Cu(II) compounds tested the complex with 2-amino-5-methyl thiazole increases significantly the life span of leukemia P388 bearing mice in vivo.

  18. Novel octahedral Pt(IV) complex with di-n-propyl-(S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoato ligand exerts potent immunomodulatory effects.

    PubMed

    Miljković, Djordje; Poljarević, Jelena M; Petković, Filip; Blaževski, Jana; Momčilović, Miljana; Nikolić, Ivana; Saksida, Tamara; Stošić-Grujičić, Stanislava; Grgurić-Šipka, Sanja; Sabo, Tibor J

    2012-01-01

    We have recently reported that a novel octahedral Pt(IV) complex with di-n-propyl-(S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoato ligand has a potent cytotoxic effect on glioma, melanoma and fibrosarcoma cell lines. In this work, we investigated the influence of the Pt(IV) compound on immune cells. We determined its effect on the viability of spleen cells and lymph node cells and on their capability to produce interferon (IFN)-γ and interleukin (IL)-17. Also, we researched the compound's impact on peritoneal macrophages and generation of NO in these cells. Our results show that the complex has limited influence on cell viability of immune cells, but profound inhibitory effect on the production of examined immune mediators. These results are valuable as they show that the novel Pt(IV) complex applied in concentrations which are effective against tumor cells do not affect immune cell viability. Moreover, they also imply that the complex has immunomodulatory properties.

  19. Imino-phosphine palladium(II) and platinum(II) complexes: synthesis, molecular structures and evaluation as antitumor agents.

    PubMed

    Motswainyana, William M; Onani, Martin O; Madiehe, Abram M; Saibu, Morounke; Thovhogi, Ntevheleni; Lalancette, Roger A

    2013-12-01

    The imino-phosphine ligands L1 and L2 were prepared via condensation reaction of 2-(diphenylphosphino)benzaldehyde with substituted anilines and obtained in very good yields. An equimolar reaction of L1 and L2 with either PdCl2(cod) or PtCl2(cod) gave new palladium(II) and platinum(II) complexes 1-4. The compounds were characterized by elemental analysis, IR, (1)H and (31)P NMR spectroscopy. The molecular structures of 2, 3 and 4 were confirmed by X-ray crystallography. All the three molecular structures crystallized in monoclinic C2/c space system. The coordination geometry around the palladium and platinum atoms in respective structures exhibited distorted square planar geometry at the metal centers. The complexes were evaluated in vitro for their cytotoxic activity against human breast (MCF-7) and human colon (HT-29) cancer cells, and they exhibited growth inhibitory activities and selectivity that were superior to the standard compound cisplatin.

  20. Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses

    PubMed Central

    Tijsma, Aloys; Neyts, Johan; Spyrou, John A. B.; Ren, Jingshan; Grimes, Jonathan M.; Puerstinger, Gerhard; Leyssen, Pieter; Fry, Elizabeth E.; Rao, Zihe; Stuart, David I.

    2015-01-01

    The replication of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), which are the major cause of hand, foot and mouth disease (HFMD) in children, can be inhibited by the capsid binder GPP3. Here, we present the crystal structure of CVA16 in complex with GPP3, which clarifies the role of the key residues involved in interactions with the inhibitor. Based on this model, in silico docking was performed to investigate the interactions with the two next-generation capsid binders NLD and ALD, which we show to be potent inhibitors of a panel of enteroviruses with potentially interesting pharmacological properties. A meta-analysis was performed using the available structural information to obtain a deeper insight into those structural features required for capsid binders to interact effectively and also those that confer broad-spectrum anti-enterovirus activity. PMID:26485389

  1. Discovery of Potent, Selective, and Orally Bioavailable Small-Molecule Modulators of the Mediator Complex-Associated Kinases CDK8 and CDK19

    PubMed Central

    2016-01-01

    The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility. Compound 109 affords the optimal compromise of in vitro biochemical, pharmacokinetic, and physicochemical properties and is suitable for progression to animal models of cancer. PMID:26796641

  2. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  3. Structural Analysis of a Holoenzyme Complex of Mouse Dihydrofolate Reductase With NADPH And a Ternary Complex With the Potent And Selective Inhibitor 2,4-Diamino-6-(2'-Hydroxydibenz[b,F]azepin-5-YI)

    SciTech Connect

    Cody, V.; Pace, J.; Rosowsky, A.

    2009-05-12

    It has been shown that 2,4-diamino-6-arylmethylpteridines and 2,4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2,4-diamino-6-(2{prime}-hydroxydibenz[b,f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 A resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2{prime}-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59-64) by 0.6 A compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.

  4. Antitumoral cyclic peptide analogues of chlamydocin.

    PubMed

    Bernardi, E; Fauchere, J L; Atassi, G; Viallefont, P; Lazaro, R

    1993-01-01

    A series of cyclic tetrapeptides bearing the bioactive alkylating group on an epsilon-amino-lysyl function have been examined for their antitumoral activity on L1210 and P388 murine leukemia cell lines. One analogue belonging to the chlamydocin family and bearing a beta-chloroethylnitrosourea group was found to be potent at inhibiting L1210 cell proliferation and had a higher therapeutic index than the reference compound bis-beta-chloroethylnitrosourea (BCNU) on the in vivo P388-induced leukemia model.

  5. Therapeutic administration of IL-15 superagonist complex ALT-803 leads to long-term survival and durable antitumor immune response in a murine glioblastoma model.

    PubMed

    Mathios, Dimitrios; Park, Chul-Kee; Marcus, Warren D; Alter, Sarah; Rhode, Peter R; Jeng, Emily K; Wong, Hing C; Pardoll, Drew M; Lim, Michael

    2016-01-01

    Glioblastoma is the most aggressive primary central nervous system malignancy with a poor prognosis in patients. Despite the need for better treatments against glioblastoma, very little progress has been made in discovering new therapies that exhibit superior survival benefit than the standard of care. Immunotherapy has been shown to be a promising treatment modality that could help improve clinical outcomes of glioblastoma patients by assisting the immune system to overcome the immunosuppressive tumor environment. Interleukin-15 (IL-15), a cytokine shown to activate several effector components of the immune system, may serve as an excellent immunotherapeutic candidate for the treatment of glioblastoma. Thus, we evaluated the efficacy of an IL-15 superagonist complex (IL-15N72D:IL-15RαSu-Fc; also known as ALT-803) in a murine GL261-luc glioblastoma model. We show that ALT-803, as a single treatment as well as in combination with anti-PD-1 antibody or stereotactic radiosurgery, exhibits a robust antitumor immune response resulting in a prolonged survival including complete remission in tumor bearing mice. In addition, ALT-803 treatment results in long-term immune memory against glioblastoma tumor rechallenge. Flow cytometric analysis of tumor infiltrating immune cells shows that ALT-803 leads to increased percentage of CD8+-cell infiltration, but not the NK cells, and IFN-γ production into the tumor microenvironment. Cell depletion studies, in accordance with the flow cytometric results, show that the ALT-803 therapeutic effect is dependent on CD4+ and CD8+ cells. These results provide a rationale for evaluating the therapeutic activity of ALT-803 against glioblastoma in the clinical setting.

  6. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    SciTech Connect

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly; Sarver, Ronald; Putz, Henry; Chang, Jeanne; Subramanyam, Chakrapani; Barreiro, Gabriela; Miller, J. Richard; Pfizer

    2010-09-02

    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

  7. Synthesis, characterization and antitumoral activity of new cobalt(II)complexes: Effect of the ligand isomerism on the biological activity of the complexes.

    PubMed

    Morcelli, Samila R; Bull, Érika S; Terra, Wagner S; Moreira, Rafaela O; Borges, Franz V; Kanashiro, Milton M; Bortoluzzi, Adailton J; Maciel, Leide L F; de A Almeida, João Carlos; Júnior, Adolfo Horn; Fernandes, Christiane

    2016-08-01

    The synthesis, physico-chemical characterization and cytotoxicity against five human tumoral cell lines (THP-1, U937, Molt-4, Colo205 and H460) of three new cobalt(II) coordination compounds are reported (i.e. Co(HL1)Cl (1), Co(HL2)Cl (2) and [Co(HL3)Cl]0.0.5 (CH3)2CHOH (3)). H2L2 (2-{[[2-hydroxy-3-(1-naphthyloxy)propyl](pyridin-2-ylmethyl)amino]methyl}phenol) and H2L3 (2-{[[2-hydroxy-3-(2-naphthyloxy)propyl](pyridin-2-ylmethyl)amino]methyl}phenol) present α and β-naphthyl groups respectively, which is absent in H2L1 (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine. These compounds were characterized by a range of physico-chemical methods. X-ray diffraction studies were performed for complex (3), indicating the formation of a mononuclear complex. Complexes (2) and (3), which contain α and β-naphthyl groups respectively, have presented lower IC50 values than those exhibited by complex (1). Complex (3) presents IC50 values lower than cisplatin against Colo205 (90 and 196μmolL(-1), respectively) and H460 (147 and 197μmolL(-1), respectively). These human neoplastic cells under investigation were also more susceptible toward complex (3) than peripheral blood mononuclear cells. Transmission electron microscopy investigations are in agreement with the loss of mitochondrial membrane potential (ΔΨm) observed by JC-1 mitochondrial potential sensor and indicate that the activity of complex (3) against leukemic cell line (U937) is mediated by an apoptotic mechanism associated with mitochondrial dysfunction (intrinsic pathway).

  8. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes

    PubMed Central

    Cloutier, Nathalie; Tan, Sisareuth; Boudreau, Luc H; Cramb, Catriona; Subbaiah, Roopashree; Lahey, Lauren; Albert, Alexandra; Shnayder, Ruslan; Gobezie, Reuben; Nigrovic, Peter A; Farndale, Richard W; Robinson, William H; Brisson, Alain; Lee, David M; Boilard, Eric

    2013-01-01

    Immunoglobulins, antigens and complement can assemble to form immune complexes (IC). ICs can be detrimental as they propagate inflammation in autoimmune diseases. Like ICs, submicron extracellular vesicles termed microparticles (MP) are present in the synovial fluid from patients affected with autoimmune arthritis. We examined MPs in rheumatoid arthritis (RA) using high sensitivity flow cytometry and electron microscopy. We find that the MPs in RA synovial fluid are highly heterogeneous in size. The observed larger MPs were in fact MP-containing ICs (mpICs) and account for the majority of the detectable ICs. These mpICs frequently express the integrin CD41, consistent with platelet origin. Despite expression of the Fc receptor FcγRIIa by platelet-derived MPs, we find that the mpICs form independently of this receptor. Rather, mpICs display autoantigens vimentin and fibrinogen, and recognition of these targets by anti-citrullinated peptide antibodies contributes to the production of mpICs. Functionally, platelet mpICs are highly pro-inflammatory, eliciting leukotriene production by neutrophils. Taken together, our data suggest a unique role for platelet MPs as autoantigen-expressing elements capable of perpetuating formation of inflammatory ICs. PMID:23165896

  9. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes.

    PubMed

    Cloutier, Nathalie; Tan, Sisareuth; Boudreau, Luc H; Cramb, Catriona; Subbaiah, Roopashree; Lahey, Lauren; Albert, Alexandra; Shnayder, Ruslan; Gobezie, Reuben; Nigrovic, Peter A; Farndale, Richard W; Robinson, William H; Brisson, Alain; Lee, David M; Boilard, Eric

    2013-02-01

    Immunoglobulins, antigens and complement can assemble to form immune complexes (IC). ICs can be detrimental as they propagate inflammation in autoimmune diseases. Like ICs, submicron extracellular vesicles termed microparticles (MP) are present in the synovial fluid from patients affected with autoimmune arthritis. We examined MPs in rheumatoid arthritis (RA) using high sensitivity flow cytometry and electron microscopy. We find that the MPs in RA synovial fluid are highly heterogeneous in size. The observed larger MPs were in fact MP-containing ICs (mpICs) and account for the majority of the detectable ICs. These mpICs frequently express the integrin CD41, consistent with platelet origin. Despite expression of the Fc receptor FcγRIIa by platelet-derived MPs, we find that the mpICs form independently of this receptor. Rather, mpICs display autoantigens vimentin and fibrinogen, and recognition of these targets by anti-citrullinated peptide antibodies contributes to the production of mpICs. Functionally, platelet mpICs are highly pro-inflammatory, eliciting leukotriene production by neutrophils. Taken together, our data suggest a unique role for platelet MPs as autoantigen-expressing elements capable of perpetuating formation of inflammatory ICs.

  10. Antitumor and antiparasitic activity of novel ruthenium compounds with polycyclic aromatic ligands.

    PubMed

    Miserachs, Helena Guiset; Cipriani, Micaella; Grau, Jordi; Vilaseca, Marta; Lorenzo, Julia; Medeiros, Andrea; Comini, Marcelo A; Gambino, Dinorah; Otero, Lucía; Moreno, Virtudes

    2015-09-01

    Five novel ruthenium(II)-arene complexes with polycyclic aromatic ligands were synthesized, comprising three compounds of the formula [RuCl(η(6)-p-cym)(L)][PF6], where p-cym = 1-isopropyl-4-methylbenzene and L are the bidentate aromatic ligands 1,10-phenanthroline-5,6-dione, 1, 5-amine-1,10-phenanthroline, 4, or 5,6-epoxy-5,6-dihydro-phenanthroline, 5. In the other two complexes [RuCl2(η(6)-p-cym)(L')], the metal is coordinated to a monodentate ligand L', where L' is phenanthridine, 2, or 9-carbonylanthracene, 3. All compounds were fully characterized by mass spectrometry and elemental analysis, as well as NMR and IR spectroscopic techniques. Obtained ruthenium compounds as well as their respective ligands were tested for their antiparasitic and antitumoral activities. Even though all compounds showed lower Trypanosoma brucei activity than the free ligands, they also resulted less toxic on mammalian cells. Cytotoxicity assays on HL60 cells showed a moderate antitumoral activity for all ruthenium compounds. Compound 1 was the most potent antitumoral (IC50 = 1.26±0.78 μM) and antiparasitic (IC50 = 0.19 ± 0.05 μM) agent, showing high selectivity towards the parasites (selectivity index >100). As complex 1 was the most promising antitumoral compound, its interaction with ubiquitin as potential target was also studied. In addition, obtained ruthenium compounds were found to bind DNA, and they are thought to interact with this macromolecule mainly through intercalation of the aromatic ligand.

  11. Synthesis, Characterization And Antitumor Activity Of Copper(II) Complexes, [CuL2] [HL1-3=N,N-Diethyl-N'-(R-Benzoyl)Thiourea (R=H, o-Cl and p-NO2)

    PubMed Central

    Hernández, Wilfredo; Beyer, Lothar; Schröder, Uwe; Richter, Rainer; Ferreira, Jorge; Pavani, Mario

    2005-01-01

    The copper (II) complexes (CuL2) were prepared by reaction of Cu(CH3COO)2 with the corresponding derivatives of acylthioureas in a Cu:HL molar ratio of 1:2. Acylthiourea ligands, N,N-diethyl-N'-(R-benzoyl) thiourea (HL1-3) [R=H, o-Cl and p-NO2] were synthesized in high yield (78-83%) and characterized by elemental analysis, infrared spectroscopy, 1H and 13C NMR spectroscopy. The complexes CuL2 were characterized by elemental analysis, IR, FAB(+)-MS, magnetic susceptibility measurements, EPR and cyclic voltammetry. The crystal structure of the complex Cu(L2)2 shows a nearly square-planar geometry with two deprotonated ligands (L) coordinated to CuII through the oxygen and sulfur atoms in a cis arrangement. The antitumor activity of the copper(II) complexes with acylthiourea ligands was evaluated in vitro against the mouse mammary adenocarcinoma TA3 cell line. These complexes exhibited much higher cytotoxic activity (IC50 values in the range of 3.9-6.9 μM) than their corresponding ligands (40-240 μM), which indicates that the coordination of the chelate ligands around the CuII enhances the antitumor activity and, furthermore, this result confirmed that the participation of the nitro and chloro substituent groups in the complex activities is slightly relevant. The high accumulation of the complexes Cu(L2)2 and Cu(L3)2 in TA3 tumor cells and the much faster binding to cellular DNA than Cu(L1)2 are consistent with the in vitro cytotoxic activities found for these copper complexes. PMID:18365106

  12. Treatment with targeted Vesicular Stomatitis Virus generates therapeutic multifunctional anti-tumor memory CD4 T-cells

    PubMed Central

    Gao, Yanhua; Whitaker-Dowling, Patricia; Griffin, Judith A.; Bergman, Ira

    2011-01-01

    A generally applicable, easy-to-use method of focusing a patient's immune system to eradicate or prevent cancer has been elusive. We are attempting to develop a targeted virus to accomplish these aims. We previously created a recombinant replicating Vesicular Stomatitis Virus that preferentially infected Her2/neu expressing breast cancer cells and showed therapeutic efficacy in an implanted Balb/c mouse tumor model. The current work shows that this therapy generated therapeutic anti-tumor CD4 T-cells against multiple tumor antigens. CD4 T-cells transferred directly from cured donor mice could eradicate established tumors in host mice. T-cells were transferred directly from donor mice and were not stimulated ex vivo. Both tumors that expressed Her2/neu and those that did not were cured by transferred T-cells. Analysis of cytokines secreted by anti-tumor memory CD4 T-cells displayed a multifunctional pattern with high levels of IFNγ, IL-4 and IL-17. Anti-tumor memory CD4 T-cells traveled to the mesenteric lymph nodes and were activated there. Treatment with targeted rrVSV is a potent immune adjuvant that generates therapeutic, multifunctional anti-tumor memory CD4 T-cells that recognize multiple tumor antigens. Immunity elicited by viral therapy is independent of host major histocompatibility complex (MHC) or knowledge of tumor antigens. Virus-induced tumor immunity could have great benefit in the prevention and treatment of tumor metastases. PMID:22240921

  13. Cobalt(II), Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as photosensitizers: Quantum yield of 1O2 generation and its promising role in anti-tumor activity.

    PubMed

    Pradeepa, S M; Bhojya Naik, H S; Vinay Kumar, B; Indira Priyadarsini, K; Barik, Atanu; Ravikumar Naik, T R

    2013-01-15

    In the present investigation, a Schiff base N'1,N'3-bis[(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-dicarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant Kb of 2.6×10(4) M(-1), 5.7×10(4) M(-1) and 4.5×10(4) M(-1), respectively and they exhibited potent photodamage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions.

  14. Cobalt(II), Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as photosensitizers: Quantum yield of 1O2 generation and its promising role in anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Ravikumar Naik, T. R.

    2013-01-01

    In the present investigation, a Schiff base N'1,N'3-bis[(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-dicarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant Kb of 2.6 × 104 M-1, 5.7 × 104 M-1 and 4.5 × 104 M-1, respectively and they exhibited potent photodamage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions.

  15. Antitumor Trans Platinum DNA Adducts: NMR and HPLC Study of the Interaction Between a trans-Pt Iminoether Complex and the Deoxy Decamer d(CCTCGCTCTC)·d(GAGAGCGAGG)

    PubMed Central

    Andersen, Bjørn; Margiotta, Nicola; Coluccia, Mauro; Natile, Giovanni

    2000-01-01

    The single-stranded oligonucleotide 5′-d(CCTCGCTCTC) (I) was reacted with the antitumor trans platinum iminoderivative trans-[PtCl2{E-HN = C(OMe)Me}2] (trans-EE) and subsequently annealed with its complementary strand 5′-d(GAGAGCGAGG) (II). The platinated duplex was characterized by 1D and 2D proton NMR spectroscopy at 600 MHz. In agreement with previous studies by different techniques trans-EE was found to form a monofunctional adduct with the duplex involving the guanine residue. The modification by trans-EE has been found to induce only minor local distortion in the duplex geometry. Two key crosspeaks observed in the NOESY map corresponding to a close contact between G5-H8 and the methoxy and the methyl group, respectively, enabled us to dock the trans-EE complex with the duplex by geometry optimization. The results support the idea that the antitumor activity of trans-EE is related to lesion of DNA fundamentally different from that of cisplatin. Unexpectedly, the NOESY spectra indicated that at the high NaCl concentration used (0.2 M) the duplex was found to undergo slow deplatination. This was subsequently proved by HPLC. In a separate experiment on platination of the single strand in a salt free environment the HPLC analysis showed that the monofunctional adduct was not deplatinated, however, after 24 hours, additidnal minor isomers were detected. PMID:18475920

  16. Discovery of potent and efficacious cyanoguanidine-containing nicotinamide phosphoribosyltransferase (Nampt) inhibitors.

    PubMed

    Zheng, Xiaozhang; Baumeister, Timm; Buckmelter, Alexandre J; Caligiuri, Maureen; Clodfelter, Karl H; Han, Bingsong; Ho, Yen-Ching; Kley, Nikolai; Lin, Jian; Reynolds, Dominic J; Sharma, Geeta; Smith, Chase C; Wang, Zhongguo; Dragovich, Peter S; Oh, Angela; Wang, Weiru; Zak, Mark; Wang, Yunli; Yuen, Po-Wai; Bair, Kenneth W

    2014-01-01

    A co-crystal structure of amide-containing compound (4) in complex with the nicotinamide phosphoribosyltransferase (Nampt) protein and molecular modeling were utilized to design and discover a potent novel cyanoguanidine-containing inhibitor bearing a sulfone moiety (5, Nampt Biochemical IC50=2.5nM, A2780 cell proliferation IC50=9.7nM). Further SAR exploration identified several additional cyanoguanidine-containing compounds with high potency and good microsomal stability. Among these, compound 15 was selected for in vivo profiling and demonstrated good oral exposure in mice. It also exhibited excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model. The co-crystal structure of this compound in complex with the NAMPT protein was also determined.

  17. Structural variety of mono- and binuclear transition metal complexes of 3-[(2-hydroxy-benzylidene)-hydrazono]-1-(2-hydroxyphenyl)-butan-1-one: Synthesis, spectral, thermal, molecular modeling, antimicrobial and antitumor studies

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Adly, Omima M. I.; El-Shafiy, Hoda F.; Khalil, Saied M. E.; Taha, A.; Mahdi, Mohammed A. N.

    2017-04-01

    A new polydentate Schiff base ligand and its metal complexes were synthesized and characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The free ligand was synthesized by condensation of o-acetoacetylphenol with salicylaldehyde hydrazone. The analytical and spectroscopic tools showed that the obtained complexes are mono- and binuclear complexes, which can be generally formulated as: [(L)M2X2(H2O)m]·nZ; M = Cr, Fe, Ni or Cu, X = OAc or NO3, m = 5 or nil and n = 3, 1.5 or 0.5 and Z = EtOH or H2O, [(H2L)2M(X)m].nH2O; M = Mn, Zn, or Cd, X = EtOH, H2O or nil, m = 2 or nil and n = 3.5 or 0, [(HL)2Co2]·0.5H2O and [(H2L)2UO2(H2O)]. The metal complexes displayed octahedral, tetrahedral and square-planar geometrical arrangements, while uranium complex displayed seven-coordinate. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The molecular structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data such as IR. The antimicrobial activity of the ligand and its complexes was screened against some kinds of bacteria and fungi. The antitumor activity of the ligand and its Ni(II) and Cu(II) complexes was investigated against HepG2 cell line.

  18. Screening and analysis of potential anti-tumor components from the stipe of Ganoderma sinense using high-performance liquid chromatography/time-of-flight mass spectrometry with multivariate statistical tool.

    PubMed

    Chan, Kar-Man; Yue, Grace Gar-Lee; Li, Ping; Wong, Eric Chun-Wai; Lee, Julia Kin-Ming; Kennelly, Edward J; Lau, Clara Bik-San

    2017-03-03

    According to Chinese Pharmacopoeia 2015 edition, Ganoderma (Lingzhi) is a species complex that comprise of Ganoderma lucidum and Ganoderma sinense. The bioactivity and chemical composition of G. lucidium had been studied extensively, and it was shown to possess antitumor activities in pharmacological studies. In contrast, G. sinense has not been studied in great detail. Our previous studies found that the stipe of G. sinense exhibited more potent antitumor activity than the pileus. To identify the antitumor compounds in the stipe of G. sinense, we studied its chemical components by merging the bioactivity results with liquid chromatography-mass spectrometry-based chemometrics. The stipe of G. sinense was extracted with water, followed by ethanol precipitation and liquid-liquid partition. The resulting residue was fractionated using column chromatography. The antitumor activity of these fractions were analysed using MTT assay in murine breast tumor 4T1 cells, and their chemical components were studied using the LC-QTOF-MS with multivariate statistical tools. The chemometric and MS/MS analysis correlated bioactivity with five known cytotoxic compounds, 4-hyroxyphenylacetate, 9-oxo-(10E,12E)-octadecadienoic acid, 3-phenyl-2-propenoic acid, 13-oxo-(9E,11E)-octadecadienoic acid and lingzhine C, from the stipe of G. sinense. To the best of our knowledge, 4-hyroxyphenylacetate, 3-phenyl-2-propenoic acid and lingzhine C are firstly reported to be found in G. sinense. These five compounds will be investigated for their antitumor activities in the future.

  19. N-heterocyclic carbenes (NHC) with 1,2,4-oxadiazole-substituents related to natural products: synthesis, structure and potential antitumor activity of some corresponding gold(I) and silver(I) complexes.

    PubMed

    Maftei, Catalin V; Fodor, Elena; Jones, Peter G; Freytag, Matthias; Franz, M Heiko; Kelter, Gerhard; Fiebig, Heinz-Herbert; Tamm, Matthias; Neda, Ion

    2015-08-28

    This work presents the synthesis, characterization and application of eleven new gold (I) complexes 13-23 with 1,2,4-oxadiazole-containing N-heterocyclic carbene (NHC) ligands and of the NHC silver(I) complex 24. The 1,2,4-oxadiazole unit, which can be found in a variety of biologically active natural products such as phidianidines or quisqualic acid, was incorporated, along with a variety of other biologically active moieties (anthracene, indole, 2-pyridine, 2,3,4,5-tetra-O-acetyl-D-glucopyranose, quincorine and quincoridine), in order to change the lipophilicity of the complexes, so that the transport of the active units (M-NHC) though the cell wall barrier is facilitated. The biological activity of the complexes was investigated. In vitro assessment of anti-tumor activity in a panel of 12 human tumor cell lines by a monolayer assay revealed impressive potency (mean IC50 < 0.1 μM) and tumor selectivity for 6 compounds, with individual IC50 values in the low nanomolar range. The solid state structures of compounds 13, 14, 15, 17, 18, 19 and 24 were determined by X-ray diffraction analyses.

  20. Intracellular molecular interactions of antitumor drug amsacrine (m-AMSA) as revealed by surface-enhanced Raman spectroscopy.

    PubMed

    Chourpa, I; Morjani, H; Riou, J F; Manfait, M

    1996-11-11

    Cytotoxicity of several classes of antitumor DNA intercalators is thought to result from disturbance of DNA metabolism following trapping of the nuclear enzyme DNA topoisomerase II as a covalent complex on DNA. Here, molecular interactions of the potent antitumor drug amsacrine (m-AMSA), an inhibitor of topoisomerase II, within living K562 cancer cells have been studied using surface-enhanced Raman (SER) spectroscopy. The work is based on data of the previously performed model SER experiments dealing with amsacrine/DNA, drug/topoisomerase II and drug/DNA/topoisomerase II complexes in aqueous buffer solutions. The SER data indicated two kinds of amsacrine interactions in the model complexes with topoisomerase II alone or within ternary complex: non-specific (via the acridine moiety) and specific to the enzyme conformation (via the side chain of the drug). These two types of interactions have been both revealed by the micro-SER spectra of amsacrine within living K562 cancer cells. Our data suppose the specific interactions of amsacrine with topoisomerase II via the side chain of the drug (particular feature of the drug/topoisomerase II and ternary complexes) to be crucial for its inhibitory activity.

  1. Fibrinogen facilitates the anti-tumor effect of nonnative endostatin

    PubMed Central

    Tang, Huadong; Fu, Yan; Lei, Qingxin; Han, Qing; Ploplis, Victoria A.; Castellino, Francis J.; Li, Ling; Luo, Yongzhang

    2009-01-01

    Endostatin is a potent inhibitor of tumor angiogenesis. Interestingly, nonnative endostatin also exhibits an anti-tumor effect, which remains a mystery so far. Here we show that intravenous injection of nonnative endostatin results in tumor inhibition effect. Soluble and active endostatin is isolated from human blood after the addition of nonnative endostatin in vitro. By fractionation of the whole blood, we surprisingly identify fibrinogen specifically binding to and inhibiting the aggregation of nonnative endostatin. Moreover, the anti-tumor activity of nonnative endostatin is substantially impaired in fibrinogen-deficient mice. Our studies demonstrate that fibrinogen facilitates the anti-tumor effect of nonnative endostatin, which also provides new insights into the novel physiological function of fibrinogen. PMID:19167351

  2. Low-dimensional compounds containing bioactive ligands. Part VIII: DNA interaction, antimicrobial and antitumor activities of ionic 5,7-dihalo-8-quinolinolato palladium(II) complexes with K(+) and Cs(+) cations.

    PubMed

    Farkasová, Veronika; Drweesh, Sayed Ali; Lüköová, Andrea; Sabolová, Danica; Radojević, Ivana D; Čomić, Ljiljana R; Vasić, Sava M; Paulíková, Helena; Fečko, Stanislav; Balašková, Tatiana; Vilková, Mária; Imrich, Ján; Potočňák, Ivan

    2017-02-01

    Starting from well-defined NH2(CH3)2[PdCl2(XQ)] complexes, coordination compounds of general formula Cat[PdCl2(XQ)] have been prepared by cationic exchange of NH2(CH3)2(+) and Cat cations, where XQ are biologically active halogen derivatives of quinolin-8-ol (5-chloro-7-iodo-quinolin-8-ol (CQ), 5,7-dibromo-quinolin-8-ol (dBrQ) and 5,7-dichloro-quinolin-8-ol (dClQ)) and Cat is K(+) or Cs(+). The cation exchange of all prepared complexes, K[PdCl2(CQ)] (1), K[PdCl2(dClQ)] (2), K[PdCl2(dBrQ)] (3), Cs[PdCl2(CQ)] (4), Cs[PdCl2(dClQ)] (5) and Cs[PdCl2(dBrQ)] (6) was approved using IR spectroscopy, their structures in DMSO solution were elucidated by one- and two-dimensional NMR experiments, whereas their stability in solution was verified by UV-VIS spectroscopy. Interaction of complexes to ctDNA was investigated using UV-VIS and fluorescence emission spectroscopy. The minimum inhibitory concentration and the minimum microbicidal concentration values were detected against 15 bacterial strains and 4 yeast strains to examine the antimicrobial activity for the complexes. The in vitro antitumor properties of the complexes were studied by testing the complexes on leukemic cell line L1210, ovarian cancer cell line A2780 and non-cancerous cell line HEK293. The majority of the prepared compounds exhibited moderate antimicrobial and very high cytotoxic activity.

  3. Design, synthesis and in vitro and in vivo antitumor activities of novel bivalent β-carbolines.

    PubMed

    Shi, Buxi; Cao, Rihui; Fan, Wenxi; Guo, Liang; Ma, Qin; Chen, Xuemei; Zhang, Guoxian; Qiu, Liqin; Song, Huacan

    2013-02-01

    A series of bivalent β-carbolines with a spacer of three to ten methylene units between the indole nitrogen was synthesized and evaluated as antitumor agents. The results demonstrated that compounds 18c, 21b, 25a and 31b exhibited strong cytotoxic activities with IC(50) value of lower than 20 μM against four tumor cell lines. Acute toxicities and antitumor efficacies of the selected compounds in mice were also evaluated, compounds 18b, 21b, 26a and 31b exhibited potent antitumor activities with tumor inhibition rate of over 40% in animal models. Preliminary structure-activity relationships analysis indicated that (1) the spacer length affected antitumor potencies, and four to six methylene units were more favorable; (2) the introduction of appropriate substituent into position-1 of β-carboline facilitated antitumor potencies.

  4. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.

    PubMed

    Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2014-01-01

    Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.

  5. Mononuclear copper(II) complexes with 3,5-substituted-4-salicylidene-amino-3,5-dimethyl-1,2,4-triazole: synthesis, structure and potent inhibition of protein tyrosine phosphatases.

    PubMed

    Ma, Ling; Lu, Liping; Zhu, Miaoli; Wang, Qingming; Li, Ying; Xing, Shu; Fu, Xueqi; Gao, Zengqiang; Dong, Yuhui

    2011-06-28

    Six copper complexes of Schiff base ligands containing 3,5-substituted-4-salicylideneamino-3,5-dimethyl-1,2,4-triazole have been synthesized and well characterized. The structures of complexes 1 and 2 were determined by X-ray crystal analysis. Fluorescence and potentiometric study indicated that in the physiological pH range, one ligand was dissociated from the complexes to form 1:1 mononucleus copper complexes. The complexes potently inhibit protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) and Src homology phosphatase 1 (SHP-1) with 3-4 fold selectivity against PTP1B over TCPTP and PTP-MEG2, and 3-9 fold over SHP-1, but display almost no inhibition against Src homology phosphatase 2 (SHP-2). Complex 1 inhibits PTP1B with a competitive model with K(i) of 30 nM. Substitution with small groups at the phenyl of the ligand does not obviously influence the inhibitory ability of the complexes.

  6. Non-covalent assembly of meso-tetra-4-pyridyl porphine with single-stranded DNA to form nano-sized complexes with hydrophobicity-dependent DNA release and anti-tumor activity

    PubMed Central

    Ghosh, Supratim; Ucer, Kamil B.; D’Agostino, Ralph; Grant, Ken; Sirintrapun, Joseph; Thomas, Michael J.; Hantgan, Roy; Bharadwaj, Manish; Gmeiner, William H.

    2013-01-01

    DNA and porphyrin based therapeutics are important for anti-cancer treatment. The present studies demonstrate single-stranded DNA (ssDNA) assembles with meso-tetra-4-pyridyl porphine (MTP) forming porphyrin:DNA nano-complexes (PDN) that are stable in aqueous solution under physiologically relevant conditions and undergo dissociation with DNA release in hydrophobic environments, including cell membranes. PDN formation is DNA-dependent with the ratio of porphyrin:DNA being approximately two DNA nucleobases per porphyrin. PDN produce reactive oxygen species (ROS) in a light-dependent manner under conditions that favor nano-complex dissociation in the presence of hydrophobic solvents. PDN induce light-dependent cytotoxicity in vitro and anti-tumor activity towards bladder cancer xenografts in vivo. Light-dependent, PDN-mediated cell death results from ROS-mediated localized membrane damage due to lipid peroxidation with mass spectrometry indicating the generation of the lipid peroxidation products 9- and 13-hydroxy octadecanoic acid. Our results demonstrate that PDN have properties useful for therapeutic applications, including cancer treatment. PMID:23988714

  7. Preexisting antitumor immunity augments the antitumor effects of chemotherapy.

    PubMed

    Zhang, Lingbing; Feng, Dongdong; Yu, Lynda X; Tsung, Kangla; Norton, Jeffrey A

    2013-06-01

    Efficacy of cancer chemotherapy is generally believed to be the result of direct drug killing of tumor cells. However, increased tumor cell killing does not always lead to improved efficacy. Herein, we demonstrate that the status of antitumor immunity at the time of chemotherapy treatment is a critical factor affecting the therapeutic outcome in that tumor-bearing mice that possess preexisting antitumor immunity respond to chemotherapy much better than those that do not. Enhancing antitumor immunity before or at the time of chemotherapy-induced antigen release increases subsequent response to chemotherapy significantly. By in vitro and in vivo measurements of antitumor immunity, we found a close correlation between the intensity of antitumor immunity activated by chemotherapy and the efficacy of treatment. Immune intervention with interleukin-12 during the early phase of chemotherapy-induced immune activation greatly amplifies the antitumor response, often resulting in complete tumor eradication not only at the chemo-treated local site, but also systemically. These findings provide additional evidence for an immune-mediated antitumor response to chemotherapy. Further, our results show that timely immune modification of chemotherapy-activated antitumor immunity can result in enhanced antitumor-immune response and complete tumor eradication.

  8. Synthesis and Evaluation of In Vitro DNA/Protein Binding Affinity, Antimicrobial, Antioxidant and Antitumor Activity of Mononuclear Ru(II) Mixed Polypyridyl Complexes.

    PubMed

    Putta, Venkat Reddy; Chintakuntla, Nagamani; Mallepally, Rajender Reddy; Avudoddi, Srishailam; K, Nagasuryaprasad; Nancherla, Deepika; V V N, Yaswanth; R S, Prakasham; Surya, Satyanarayana Singh; Sirasani, Satyanarayana

    2016-01-01

    The four novel Ru(II) complexes [Ru(phen)2MAFIP](2+) (1) [MAFIP = 2-(5-(methylacetate)furan-2-yl)-1 H-imidazo[4,5-f] [1, 10]phenanthroline, phen = 1,10-Phenanthroline], [Ru(bpy)2MAFIP](2+) (2) (bpy = 2,2'-bipyridine) and [Ru(dmb)2MAFIP](2+) (3) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(hdpa)2MAFIP](2+) (4) (hdpa = 2,2-dipyridylamine) have been synthesized and fully characterized via elemental analysis, NMR spectroscopy, EI-MS and FT-IR spectroscopy. In addition, the DNA-binding behaviors of the complexes 1-4 with calf thymus DNA were investigated by UV-Vis absorption, fluorescence studies and viscosity measurement. The DNA-binding experiments showed that the complexes 1-4 interact with CT-DNA through an intercalative mode. BSA protein binding affinity of synthesized complexes was determined by UV/Vis absorption and fluorescence emission titrations. The binding affinity of ruthenium complexes was supported by molecular docking. The photoactivated cleavage of plasmid pBR322 DNA by ruthenium complexes 1-4 was investigated. All the synthesized compounds were tested for antimicrobial activity by using three Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and three Gram-positive (Micrococcus luteus, Bacillus subtilis and Bacillus megaterium) organisms, these results indicated that complex 3 was more activity compared to other complexes against all tested microbial strains while moderate antimicrobial activity profile was noticed for complex 4. The antioxidant activity experiments show that the complexes exhibit moderate antioxidant activity. The cytotoxicity of synthesized complexes on HeLa cell lines has been examined by MTT assay. The apoptosis assay was carried out with Acridine Orange (AO) staining methods and the results indicate that complexes can induce the apoptosis of HeLa cells. The cell cycle arrest investigated by flow cytometry and these results indicate that complexes 1-4 induce the cell cycle arrest at G0/G1

  9. Env-2dCD4 S60C complexes act as super immunogens and elicit potent, broadly neutralizing antibodies against clinically relevant human immunodeficiency virus type 1 (HIV-1).

    PubMed

    Killick, Mark A; Grant, Michelle L; Cerutti, Nichole M; Capovilla, Alexio; Papathanasopoulos, Maria A

    2015-11-17

    The ability to induce a broadly neutralizing antibody (bNAb) response following vaccination is regarded as a crucial aspect in developing an effective vaccine against human immunodeficiency virus type 1 (HIV-1). The bNAbs target the HIV-1 envelope glycoprotein (Env) which is exposed on the virus surface, thereby preventing cell entry. To date, conventional vaccine approaches such as the use of Env-based immunogens have been unsuccessful. We expressed, purified, characterized and evaluated the immunogenicity of several unique HIV-1 subtype C Env immunogens in small animals. Here we report that vaccine immunogens based on Env liganded to a two domain CD4 variant, 2dCD4(S60C) are capable of consistently eliciting potent, broadly neutralizing antibody responses in New Zealand white rabbits against a panel of clinically relevant HIV-1 pseudoviruses. This was irrespective of the Env protein subtype and context. Importantly, depletion of the anti-CD4 antibodies appeared to abrogate the neutralization activity in the rabbit sera. Taken together, this data suggests that the Env-2dCD4(S60C) complexes described here are "super" immunogens, and potentially immunofocus antibody responses to a unique epitope spanning the 2dCD4(60C). Recent data from the two available anti-CD4 monoclonal antibodies, Ibalizumab and CD4-Ig (and bispecific variants thereof) have highlighted that the use of these broad and potent entry inhibitors could circumvent the need for a conventional vaccine targeting HIV-1. Overall, the ability of the unique Env-2dCD4(S60C) complexes to elicit potent bNAb responses has not been described previously, reinforcing that further investigation for their utility in preventing and controlling HIV-1/SIV infection is warranted.

  10. Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides.

    PubMed

    Čobeljić, Božidar; Milenković, Milica; Pevec, Andrej; Turel, Iztok; Vujčić, Miroslava; Janović, Barbara; Gligorijević, Nevenka; Sladić, Dušan; Radulović, Siniša; Jovanović, Katarina; Anđelković, Katarina

    2016-04-01

    Square-planar azido Ni(II) complex with condensation product of 2-(diphenylphosphino)benzaldehyde and Girard's T reagent was synthesized and its crystal structure was determined. Cytotoxic activity of the azido complex and previously synthesized isothiocyanato, cyanato and chlorido Ni(II) complexes with this ligand was examined on six tumor cell lines (HeLa, A549, K562, MDA-MB-453, MDA-MB-361 and LS-174) and two normal cell line (MRC-5 and BEAS-2B). All the investigated nickel(II) complexes were cytotoxic against all tumor cell lines. The newly synthesized azido complex showed selectivity to HeLa and A549 tumor cell lines compared to the normal cells (for A549 IC50 was similar to that of cisplatin). Azido complex interferes with cell cycle phase distribution of A549 and HeLa cells and possesses nuclease activity towards supercoiled DNA. The observed selectivity of the azido complex for some tumor cell lines can be connected with its strong DNA damaging activity.

  11. Synthesis, characterization, in vitro antitumoral investigations and interaction with plasmid pBR322 DNA of R2eddp-platinum(IV) complexes (R = Et, n-Pr).

    PubMed

    Kaluderović, Goran N; Kommera, Harish; Schwieger, Sebastian; Paethanom, Anchan; Kunze, Michael; Schmidt, Harry; Paschke, Reinhard; Steinborn, Dirk

    2009-12-28

    The studies on synthetic, spectroscopic and biological properties of platinum(IV) complexes, [PtCl(4)(R(2)eddp)] (R = Et, 1; n-Pr, 2), containing kappa(2)N,N' bidentate ligands, esters of ethylenediamine-N,N'-di-3-propionic acid (HOOCCH(2)CH(2)NHCH(2)CH(2)NHCH(2)CH(2)COOH, H(2)eddp), are reported. Complexes have been characterized by infrared, (1)H and (13)C NMR spectroscopy and elemental analysis and it was concluded that the coordination of the ligands occurs via nitrogen donor atoms of the ester ligands (R(2)eddp). Cytotoxicity studies were performed for ligand precursors and corresponding platinum(IV) complexes. Although the n-Pr(2)eddp.2HCl itself showed no activity (IC(50) values > 125 microM) in selected cell lines, the activity of complex 2, via apoptotic mode of cell death, has increased significantly for a broad range of cancer cell lines tested in vitro (IC(50) = 8.6-49 microM). As it was found that complexes 1 and 2 are able to interact with pBR322 plasmid DNA, platinum(IV) complexes of this type may act as drugs and pro-drugs.

  12. Synthesis, characterization and potent superoxide dismutase like activity of novel bis(pyrazole) – 2,2′-bipyridyl mixed ligand copper(II) complexes

    PubMed Central

    Potapov, Andrei S.; Nudnova, Evgenia A.; Domina, Galina A.; Kirpotina, Liliya N.; Quinn, Mark T.; Khlebnikov, Andrei I.; Schepetkin, Igor A.

    2010-01-01

    Eleven new complexes of Cu(II) chloride and nitrate with bis(pyrazol-1-yl)propane and bis[2-(pyrazol-1-yl)ethyl]ether ligands were prepared and characterized by spectral and electrochemical methods. X-ray crystal structure determination of bis[2-(3,5-dimethylpyrazol-1-yl)ethyl]etherdinitratocopper revealed a hepta-coordinated structure with the bis(pyrazole) ligand coordinated in a tridentate NNO-fashion and both of the nitrate ions in a bidentate fashion. Reaction of Cu(II) nitrate complexes with 2,2′-bipyridyl led to the displacement of one of the nitrate ions into the outer sphere and the formation of mixed-ligand complexes. Mixed-ligand bipyridyl Cu(II) complexes demonstrated the highest superoxide dismutase (SOD)-like activity in a chemical superoxide anion-generating system, with IC50 values in the low micromolar range. Density functional theory calculations showed that introduction of a bipypidyl ligand into the complexes dramatically lowered the lowest unoccupied molecular orbital (LUMO) energy level, which explains the increased SOD-like activity of these complexes compared to non-bipy species. These bipy complexes were also effective scavengers of reactive oxygen species generated by phagocytes (human neutrophils and murine bone marrow leukocytes) ex vivo. Thus, these bipy mixed-ligand complexes represent a promising class of SOD mimetics for future development. PMID:19488447

  13. Hydroxyquinoline derived vanadium(IV and V) and copper(II) complexes as potential anti-tuberculosis and anti-tumor agents.

    PubMed

    Correia, Isabel; Adão, Pedro; Roy, Somnath; Wahba, Mohamed; Matos, Cristina; Maurya, Mannar R; Marques, Fernanda; Pavan, Fernando R; Leite, Clarice Q F; Avecilla, Fernando; Costa Pessoa, João

    2014-12-01

    Several mixed ligand vanadium and copper complexes were synthesized containing 8-hydroxyquinoline (8HQ) and a ligand such as picolinato (pic(-)), dipicolinato (dipic(2-)) or a Schiff base. The complexes were characterized by spectroscopic techniques and by single-crystal X-ray diffraction in the case of [V(V)O(L-pheolnaph-im)(5-Cl-8HQ)] and [V(V)O(OMe)(8HQ)2], which evidenced the distorted octahedral geometry of the complexes. The electronic absorption data showed the presence of strong ligand to metal charge transfer bands, significant solvent effects, and methoxido species in methanol, which was further confirmed by (51)V-NMR spectroscopy. The structures of [Cu(II)(dipic)(8HQ)]Na and [V(IV)O(pic)(8HQ)] were confirmed by EPR spectroscopy, showing only one species in solution. The biological activity of the compounds was assessed through the minimal inhibitory concentration (MIC) of the compounds against Mycobacterium tuberculosis (Mtb) and the cytotoxic activity against the cisplatin sensitive/resistant ovarian cells A2780/A2780cisR and the non-tumorigenic HEK cells (IC50 values). Almost all tested vanadium complexes were very active against Mtb and the MICs were comparable to, or better than, the MICs of drugs, such as streptomycin. The activity of the complexes against the A2780 cell line was dependent on incubation time presenting IC50 values in the 3-14 μM (at 48 h) range. In these conditions, the complexes were significantly (*P<0.05-**P<0.001) more active than cisplatin (22 μM), in the A2780 cells and even surpassing its activity in the cisplatin-resistant cells A2780cisR (2.4-8 μM vs. 75.4; **P<0.001). In the non-tumorigenic HEK cells poor selectivity toward cancer cells for most of the complexes was observed, as well as for cisplatin.

  14. Synthesis, Structure, Electrochemistry, and Spectral Characterization of Bis-Isatin Thiocarbohydrazone Metal Complexes and Their Antitumor Activity Against Ehrlich Ascites Carcinoma in Swiss Albino Mice

    PubMed Central

    Sathisha, M. P.; Revankar, V. K.; Pai, K. S. R.

    2008-01-01

    The synthesis, structure, electrochemistry, and biological studies of Co(II), Ni(II), Cu(II), and Zn(II) complexes of thiocarbohydrazone ligand are described. The ligand is synthesized starting from thiocarbohydrazide and isatin. It is evident from the IR data that in all the complexes, only one part of the ligand is coordinated to the metal ion resulting mononuclear complexes. The ligand coordinates essentially through the carbonyl oxygen of the isatin fragment, the nitrogen atom of the azomethine group, and sulfur atom after deprotonation to give five membered rings. H1 NMR spectrum of the ligand shows only one set of signals for the aromatic protons, while the NH of isatin and NH of hydrazone give rise to two different singlets in the 11–14 ppm range. The formulations, [Cu(L)Cl]·2H2O, [Cu(L)(CH3COO)]·2H2O, [Ni(L)Cl], [Ni(L)(CH3COO)], [Co(L2)], and [Zn(L2)]·2H2O are in accordance with elemental analyses, physical, and spectroscopic measurements. The complexes are soluble in organic solvents. Molar conductance values in DMF indicate the nonelectrolytic nature of the complexes. Copper complex displays quasireversible cyclic voltametric responses with Ep near −0.659 v and 0.504 v Vs Ag/AgCl at the scan rate of 0.1 V/s. Copper(II) complexes show a single line EPR signals. For the observed magnetic moment and electronic spectral data possible explanation has been discussed. From all the available data, the probable structures for the complexes have been proposed. The compounds synthesized in present study have shown promising cytotoxic activity when screened using the in vitro method and at the same time were shown to have good activity when tested using the Ehrlich ascites carcinoma (EAC) model. The antimicrobial screening showed that the cobalt complex possesses enhanced antimicrobial activity towards fungi. PMID:18320020

  15. Preparation of 6/8/11-Amino/Chloro-Oxoisoaporphine and Group-10 Metal Complexes and Evaluation of Their in Vitro and in Vivo Antitumor Activity

    PubMed Central

    Qin, Qi-Pin; Qin, Jiao-Lan; Meng, Ting; Yang, Gui-Ai; Wei, Zu-Zhuang; Liu, Yan-Cheng; Liang, Hong; Chen, Zhen-Feng

    2016-01-01

    A series of group-10 metal complexes 1–14 of oxoisoaporphine derivatives were designed and synthesized. 1–14 were more selectively cytotoxic to Hep-G2 cells comparing with normal liver cells. In vitro cytotoxicity results showed that complexes 1–6, 7, 8, 10 and 11, especially 3, were telomerase inhibitors targeting c-myc, telomeric, and bcl-2 G4s and triggered cell senescence and apoptosis; they also caused telomere/DNA damage and S phase arrest. In addition, 1–6 also caused mitochondrial dysfunction. Notably, 3 with 6-amino substituted ligand La exhibited less side effects than 6 with 8-amino substituted ligand Lb and cisplatin, but similar tumor growth inhibition efficacy in BEL-7402 xenograft model. Complex 3 has the potential to be developed as an effective anticancer agent. PMID:27898051

  16. Allogeneic IgG combined with dendritic cell stimuli induces anti-tumor T cell immunity

    PubMed Central

    Carmi, Yaron; Spitzer, Matthew H.; Linde, Ian L.; Burt, Bryan M; Prestwood, Tyler R.; Perlman, Nikola; Davidson, Matthew G.; Kenkel, Justin A.; Segal, Ehud; Pusapati, Ganesh V.; Bhattacharya, Nupur; Engleman, Edgar G.

    2015-01-01

    While cancers grow in their hosts and evade host immunity through immunoediting and immunosuppression1–5, tumors are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumors are reliably rejected by host T cells, even when the tumor and host share the same major histocompatibility complex (MHC) alleles, the most potent determinants of transplant rejection6–10. How such tumor-eradicating immunity is initiated remains unknown, though elucidating this process could provide a roadmap for inducing similar responses against naturally arising tumors. We found that allogeneic tumor rejection is initiated by naturally occurring tumor-binding IgG antibodies, which enable dendritic cells (DC) to internalize tumor antigens and subsequently activate tumor-reactive T cells. We exploited this mechanism to successfully treat autologous and autochthonous tumors. Either systemic administration of DC loaded with allogeneic IgG (alloIgG)-coated tumor cells or intratumoral injection of alloIgG in combination with DC stimuli induced potent T cell mediated anti-tumor immune responses, resulting in tumor eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumors and metastases, as well as the injected primary tumors. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumor antigens after culture with alloIgG-loaded DC, recapitulating our findings in mice. These results reveal that tumor-binding alloIgG can induce powerful anti-tumor immunity that can be exploited for cancer immunotherapy. PMID:25924063

  17. Copper(II/I) complexes of 5-pyridin-2-yl-[1,3]dioxolo[4,5-g]isoquinoline: synthesis, crystal structure, antitumor activity and DNA interaction.

    PubMed

    Huang, Ke-Bin; Chen, Zhen-Feng; Liu, Yan-Cheng; Wang, Meng; Wei, Jian-Hua; Xie, Xiao-Li; Zhang, Jian-Lian; Hu, Kun; Liang, Hong

    2013-01-01

    Three new copper(II) complexes of 5-pyridin-2-yl-[1,3]dioxolo[4,5-g]isoquinoline (PYP), i.e. [Cu₂(PYP)₂Cl₄] (1), [Cu₄(PYP)₄(ClO₄)₂(H₂O)₂](ClO₄)₂·2H₂O (2), and [Cu₂(PYP)2Cl4]n (3), were synthesized and fully characterized. In comparison to free PYP, complexes 1-3 exhibited enhanced cytotoxicity against tested human tumor cell lines BEL-7404, SK-OV-3, A549, A375, MGC-803 and NCI-H460, with IC₅₀ values ranging from 0.31 to 30.76 μM. Complexes 1-3 exhibited lower cytotoxicity to HL-7702 than them to cancer cells. Complex 1 induced apoptotic death of BEL-7404, which involved mitochondria in the process. Caspase-3 activation assay indicated that 1 could be an efficient activator of caspase-3. DNA binding studies by UV-vis, DNA-melting, competitive binding, CD, viscosity measurement and agarose gel electrophoresis, revealed that intercalation might be the most likely binding mode of 1 with DNA.

  18. Novel C,N-Cyclometalated Benzimidazole Ruthenium(II) and Iridium(III) Complexes as Antitumor and Antiangiogenic Agents: A Structure-Activity Relationship Study.

    PubMed

    Yellol, Jyoti; Pérez, Sergio A; Buceta, Alicia; Yellol, Gorakh; Donaire, Antonio; Szumlas, Piotr; Bednarski, Patrick J; Makhloufi, Gamall; Janiak, Christoph; Espinosa, Arturo; Ruiz, José

    2015-09-24

    A series of novel C,N-cyclometalated benzimidazole ruthenium(II) and iridium(III) complexes of the types [(η(6)-p-cymene)RuCl(κ(2)-N,C-L)] and [(η(5)-C5Me5)IrCl(κ(2)-N,C-L)] (HL = methyl 1-butyl-2-arylbenzimidazolecarboxylate) with varying substituents (H, Me, F, CF3, MeO, NO2, and Ph) in the R4 position of the phenyl ring of 2-phenylbenzimidazole chelating ligand of the ruthenium (3a-g) and iridium complexes (4a-g) have been prepared. The cytotoxic activity of the new ruthenium(II) and iridium(III) compounds has been evaluated in a panel of cell lines (A2780, A2780cisR, A427, 5637, LCLC, SISO, and HT29) in order to investigate structure-activity relationships. Phenyl substitution at the R4 position shows increased potency in both Ru and Ir complexes (3g and 4g, respectively) as compared to their parent compounds (3a and 4a) in all cell lines. In general, ruthenium complexes are more active than the corresponding iridium complexes. The new ruthenium and iridium compounds increased caspase-3 activity in A2780 cells, as shown for 3a,d and 4a,d. Compound 4g is able to increase the production of ROS in A2780 cells. Furthermore, all the new compounds are able to overcome the cisplatin resistance in A2780cisR cells. In addition, some of the metal complexes effectively inhibit angiogenesis in the human umbilical vein endothelial cell line EA.hy926 at 0.5 μM, the ruthenium derivatives 3g (Ph) and 3d (CF3) being the best performers. QC calculations performed on some ruthenium model complexes showed only moderate or slight electron depletion at the phenyl ring of the C,N-cyclometalated ligand and the chlorine atom on increasing the electron withdrawing effect of the R substituent.

  19. The Antitumor Effect of Singlet Oxygen.

    PubMed

    Bauer, Georg

    2016-11-01

    Tumor cells are protected against intercellular apoptosis-inducing signaling through expression of membrane-associated catalase and superoxide dismutase. Exogenous singlet oxygen derived from activated photosensitizers or from cold atmospheric plasma causes local inactivation of protective catalase which is followed by the generation of secondary extracellular singlet oxygen. This process is specific for tumor cells and is driven by a complex interaction between H2O2 and peroxynitrite. Secondary singlet oxygen has the potential for autoamplification of its generation, resulting in optimal inactivation of protective catalase and reactivation of intercellular apoptosis-inducing signaling. An increase in the endogenous NO concentration also causes inactivation of catalase and autoamplificatory generation of secondary singlet oxygen. This principle is essential for the antitumor activity of secondary plant products, such as cyanidins and other inhibitors of NO dioxygenase. It seems that the action of the established chemotherapeutic taxol and the recently established antitumor effect of certain azoles are based on the same principles.

  20. Recent advances in understanding antitumor immunity

    PubMed Central

    Munhoz, Rodrigo Ramella; Postow, Michael Andrew

    2016-01-01

    The term “antitumor immunity” refers to innate and adaptive immune responses which lead to tumor control. Turning the immune system into a destructive force against tumors has been achieved in a broad range of human cancers with the use of non-specific immunotherapies, vaccines, adoptive-cell therapy, and, more recently with significant success, through blockade of immune checkpoints. Nevertheless, the efficacy of these approaches is not universal, and tools to identify long-term responders and primarily refractory patients are warranted. In this article, we review recent advances in understanding the complex mechanisms of antitumor immunity and how these developments can be used to address open questions in a setting of growing clinical indications for the use of immunotherapy. PMID:27803807

  1. Transition metal complexes of buparvaquone as potent new antimalarial agents. 1. Synthesis, X-ray crystal-structures, electrochemistry and antimalarial activity against Plasmodium falciparum.

    PubMed

    Gokhale, Nikhil H; Padhye, Subhash B; Croft, Simon L; Kendrick, Howard D; Davies, Wendy; Anson, Christopher E; Powell, Annie K

    2003-07-01

    New Cu(II), Ni(II), Co(II), Fe(II), and Mn(II) metal complexes of buparvaquone [3-trans(4-tert.-butylcyclohexyl)methyl-2-hydroxy-1,4-naphthoquione] (L1H) have been synthesized and characterized using IR, electron paramagnetic resonance (EPR) spectroscopy, microanalytical methods and single crystal X-ray diffraction methods. The single crystal structures were determined for ligand L1H [space group P-1 with a=6.2072(14) A, b=10.379 (2) A, c=13.840 (3) A, V=878.7(3) A(3), Z=2, D(calcd.)=1.234 mg/m(3)] and copper complex [Cu(L1)(2)(C(2)H(5)OH)(2)] C1 [space group I2/a with a=17.149(14) A, b=9.4492(8) A, c=26.946(3) A, V=4335.3(7)A(3), Z=4, D(calcd.)=1.233 mg/m(3)]. All the metal complexes along with the parent ligand have been studied for their electrochemical properties using cyclic voltammetric techniques. The compounds were tested for their in vitro antimalarial activity against Plasmodium falciparum strains. A correlation between the antimalarial activity and the redox property of these complexes is presented. The copper complex C1 exhibits significantly higher growth inhibitory activity both in vitro and in vivo than the parent ligand.

  2. Synthesis and characterization of water-insoluble and water-soluble dibutyltin(IV) porphinate complexes based on the tris(pyridinyl)porphyrin moiety, their anti-tumor activity in vitro and interaction with DNA.

    PubMed

    Han, Gaoyi; Yang, Pin

    2002-07-25

    The water-insoluble and water-soluble organotin(IV)porphinate complexes based on the tris-(4-pyridinyl)porphyrin and tris(N-methyl-4-pyridiniumyl)porphyrin moieties were synthesized and characterized by elemental analysis, (1)H NMR, IR and electrospray ionization mass spectra. The in vitro activity of the compounds against P388 leukemia and A-549 was determined. The results show that the anti-tumor activities of organotin(IV)porphinate is related to the water solubility of the compounds and the central ion in the porphyrin ring. The interaction between the water-soluble dibutyltin(IV) porphinate (7 and 10) complexes and DNA has been investigated. The result shows that compounds 7 and 10 cause DNA hypochromism measured by A(260), a slight increase in the viscosity of the DNA, and an increase in the melting point of DNA by 2.9 and 1.6 degrees C, respectively at DNA(base)/Drug(Por) ratios of 60. The binding constants to DNA were 1.35+/-0.16 x 10(7) M(-1) (7) and 1.45+/-0.12 x 10(6) M(-1) (10) determined using EB competition method based on the porphyrin concentration, which is 20 and five times greater than that of precursor porphyrins [5-p,o-(carboxy)methoxyphenyl-10,15,20-tris(N-methyl-4-pyridiniumyl)] porphyrin (p,o-tMPyPac) to DNA. Electrophoresis test shows that the compounds cannot cleave the DNA. According to the electrophoresis test result and all the above results, the cytotoxic activity against P388 and A-549 tumor cells appears not to come from the cleavage of DNA caused by the compounds but from the high affinity of compounds to DNA.

  3. Structure and dynamics of the antitumor drugs nogalamycin and disnogalamycin complexed to d(CGTACG)2: comparison of crystal and solution structures.

    PubMed

    Robinson, H; Yang, D; Wang, A H

    1994-11-04

    The nuclear magnetic resonance (NMR) solution structures of the 2:1 complexes of nogalamycin-d(CGTACG)2 (Ng-CGTACG) and disnogalamycin-d(CGTACG)2 (DNg-CGTACG) have been determined by a quantitative treatment of two-dimensional nuclear Overhauser effect (2D-NOE) crosspeak intensities. The 1.3 A resolution crystal structure of the 2:1 complex of Ng-CGTACG was used as a starting model for refinement using the procedure, SPEDREF [Robinson and Wang, Biochemistry 31 (1992) 3524-3533], which incorporates full matrix relaxation theory and simulated annealing minimization. The refined solution structures have R-factors of 16.1 and 19.6% between the observed and simulated NOEs for Ng-CGTACG and DNg-CGTACG, respectively. The refined NMR structures retain major features of the crystal structure in which the elongated aglycone chromophore is intercalated between the CpG steps with its nogalose and aminoglucose lying in the minor and major grooves, respectively. The root mean square deviation between the solution and crystal structure for the complexes is 1.01 A (Ng-CGTACG) and 1.20 A (DNg-CGTACG) for the drug, plus the three base pairs surrounding the drug, indicating a very similar local structure at the intercalation site. In the NMR structure, the two G:C Watson-Crick base pairs (C1:G12 and G2:C11) that wrap around the aglycone have large buckles, as do those seen in the crystal structure. There is a 22 degree bend at the T3-A4 step in the refined solution structure. This rearrangement of the solution conformation is likely due to the absence of crystal packing. Specific hydrogen bonds between the drug and G:C bases in both grooves of the helix are preserved in the solution structure. A separate study of the 2:1 complex at low pH showed that the terminal G-C base pairing is destabilized.

  4. Mycalamides, pederin and psymberin as natural carbohydrates and potential antitumor agents: past and future perspectives.

    PubMed

    Witczak, Zbigniew J; Rampulla, Ricky M; Bommareddy, Ajay

    2012-12-01

    The mycalamide class of potent antiviral and antitumor natural compounds originally isolated from marine sponges in 1988 is a new interdisciplinary approach to molecular recognition. We review new synthetic approaches to this new family of natural products with remarkable biological activity. Some biological evaluation data are compiled and compared to other structurally similar molecular targets.

  5. Novel natural-product-like caged xanthones with improved druglike properties and in vivo antitumor potency.

    PubMed

    Wu, Yue; Hu, Mingyang; Yang, Li; Li, Xiang; Bian, Jinlei; Jiang, Fen; Sun, Haopeng; You, Qidong; Zhang, Xiaojin

    2015-06-15

    DDO-6101, a natural-product-like caged xanthone discovered previously in our laboratory based on the pharmacophoric scaffold of Garcinia natural product gambogic acid (GA), shows potent cytotoxicity in vitro but poor efficacy in vivo due to its poor druglike properties. In order to improve the druglike properties and in vivo cytotoxic potency, a novel series of 19 prenyl group-modified derivatives of DDO-6101 was synthesized and evaluated for their in vitro antitumor activity and druglike properties. The SAR and SPR information of these compounds was also obtained. In the light of the in vitro antitumor activity and druglike properties such as aqueous solubility and permeability, compound 6f (named as DDO-6306) was advanced into in vivo efficacy experiment. The results showed that DDO-6306 is more potent than DDO-6101 in vivo and is a promising antitumor candidate for further evaluation.

  6. Chromatin folding and DNA replication inhibition mediated by a highly antitumor-active tetrazolato-bridged dinuclear platinum(II) complex

    PubMed Central

    Imai, Ryosuke; Komeda, Seiji; Shimura, Mari; Tamura, Sachiko; Matsuyama, Satoshi; Nishimura, Kohei; Rogge, Ryan; Matsunaga, Akihiro; Hiratani, Ichiro; Takata, Hideaki; Uemura, Masako; Iida, Yutaka; Yoshikawa, Yuko; Hansen, Jeffrey C.; Yamauchi, Kazuto; Kanemaki, Masato T.; Maeshima, Kazuhiro

    2016-01-01

    Chromatin DNA must be read out for various cellular functions, and copied for the next cell division. These processes are targets of many anticancer agents. Platinum-based drugs, such as cisplatin, have been used extensively in cancer chemotherapy. The drug–DNA interaction causes DNA crosslinks and subsequent cytotoxicity. Recently, it was reported that an azolato-bridged dinuclear platinum(II) complex, 5-H-Y, exhibits a different anticancer spectrum from cisplatin. Here, using an interdisciplinary approach, we reveal that the cytotoxic mechanism of 5-H-Y is distinct from that of cisplatin. 5-H-Y inhibits DNA replication and also RNA transcription, arresting cells in the S/G2 phase, and are effective against cisplatin-resistant cancer cells. Moreover, it causes much less DNA crosslinking than cisplatin, and induces chromatin folding. 5-H-Y will expand the clinical applications for the treatment of chemotherapy-insensitive cancers. PMID:27094881

  7. Synthesis, X-ray diffraction structures, spectroscopic properties, and in vitro antitumor activity of isomeric (1H-1,2,4-triazole)Ru(III) complexes.

    PubMed

    Arion, Vladimir B; Reisner, Erwin; Fremuth, Madeleine; Jakupec, Michael A; Keppler, Bernhard K; Kukushkin, Vadim Yu; Pombeiro, Armando J L

    2003-09-22

    Three ruthenium(III) complexes containing 1H-1,2,4-triazole (Htrz), viz., (H(2)trz)[cis-RuCl(4)(Htrz)(2)], 1, (H(2)trz)[trans-RuCl(4)(Htrz)(2)], 2, and (Ph(3)PCH(2)Ph)[trans-RuCl(4)(Htrz)(2)], 3, have been synthesized by reaction between RuCl(3) and excess of the triazole in 2.38 M HCl (1 and 2), while 3 was obtained by metathesis of 2 and [Ph(3)PCH(2)Ph]Cl in water. The products were characterized by IR, UV-vis, electrospray mass spectrometry, cyclic voltammetry, and X-ray crystallography (1 and 3). X-ray diffraction study revealed cis and trans arrangements of the triazole ligands in 1 and 3, correspondingly, and unprecedented monodentate coordination of the triazole through N2 and stabilization of its 4H tautomeric form, which is the disfavored one for the free triazole. The cytotoxicity of 1 and 2 has been assayed in three human carcinoma cell lines SW480, HT29 (colon carcinoma), and SK-BR-3 (mammary carcinoma). Both compounds exhibit antiproliferative activity in vitro. Time-dependent response of all three lines to 1 and 2 and a structure-activity relationship, i.e., higher activity of the trans-isomer 2 than that of cis-species 1, have been observed.

  8. Antitumor Peptides from Marine Organisms

    PubMed Central

    Zheng, Lan-Hong; Wang, Yue-Jun; Sheng, Jun; Wang, Fang; Zheng, Yuan; Lin, Xiu-Kun; Sun, Mi

    2011-01-01

    The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides. PMID:22072999

  9. Antitumor peptides from marine organisms.

    PubMed

    Zheng, Lan-Hong; Wang, Yue-Jun; Sheng, Jun; Wang, Fang; Zheng, Yuan; Lin, Xiu-Kun; Sun, Mi

    2011-01-01

    The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides.

  10. New bipyridine gold(III) dithiocarbamate-containing complexes exerted a potent anticancer activity against cisplatin-resistant cancer cells independent of p53 status

    PubMed Central

    Altaf, Muhammad; Monim-ul-Mehboob, Muhammad; Kawde, Abdel-Nasser; Corona, Giuseppe; Larcher, Roberto; Ogasawara, Marcia; Casagrande, Naike; Celegato, Marta; Borghese, Cinzia; Siddik, Zahid H.; Aldinucci, Donatella; Isab, Anvarhusein A.

    2017-01-01

    We synthesized, characterized and tested in a panel of cancer cell lines, nine new bipyridine gold(III) dithiocarbamate-containing complexes. In vitro studies demonstrated that compounds 1, 2, 4, 5, 7 and 8 were the most cytotoxic in prostate, breast, ovarian cancer cell lines and in Hodgkin lymphoma cells with IC50 values lower than the reference drug cisplatin. The most active compound 1 was more active than cisplatin in ovarian (A2780cis and 2780CP-16) and breast cancer cisplatin-resistant cells. Compound 1 determined an alteration of the cellular redox homeostasis leading to increased ROS levels, a decrease in the mitochondrial membrane potential, cytochrome-c release from the mitochondria and activation of caspases 9 and 3. The ROS scavenger NAC suppressed ROS generation and rescued cells from damage. Compound 1 resulted more active in tumor cells than in normal human Mesenchymal stromal cells. Gold compounds were active independent of p53 status: exerted cytotoxic effects on a panel of non-small cell lung cancer cell lines with different p53 status and in the ovarian A2780 model where the p53 was knocked out. In conclusion, these promising results strongly indicate the need for further preclinical evaluation to test the clinical potential of these new gold(III) complexes. PMID:27888799

  11. Targeting oxidative injury and cytokines' activity in the treatment with anti-tumor necrosis factor-α antibody for complex regional pain syndrome 1.

    PubMed

    Miclescu, Adriana A; Nordquist, Lena; Hysing, Eva-Britt; Butler, Stephen; Basu, Samar; Lind, Anne-Li; Gordh, Torsten

    2013-11-01

    Cytokines and oxygen free radicals have been implicated in the potential pathogenic development of complex regional pain syndrome (CRPS). We aimed to analyze the relationship between clinical status, circulating levels of cytokines, and markers of oxidative damage during the treatment with anti-TNFα antibodies. The patient chosen for treatment had not had improvement through a number of conventional therapies and fulfilled the current diagnostic criteria for CRPS-1. We investigated the clinical variables before and after systemic administration of 1.4 mg/kg anti-TNFα antibody (infliximab), repeated after 1 month in a dose of 3 mg/kg. Blood samples were collected before and after anti-TNFα antibodies administration, and plasma was analyzed for 8-isoprostane-prostaglandin F2α (8-iso-PGF2α, a marker of oxidative injury) and cytokines (TNF-α, IL-4, IL-6, IL-7, IL-8, IL-10, IL-17A). Plasma concentrations of 8-iso-PGF2α were measured with radioimmunoassay (RIA), and the kinetics of cytokines were detected in plasma by antibody-based proximity ligation (PLA). Pathologically high levels of 8-iso-PGF2α were found in the patient. Immediately after each administration of infliximab, the levels of 8-iso-PGF2α decreased. Although the patient showed an improvement of the cutaneous dystrophic symptoms and diminished pain associated with these lesions, the levels of circulating TNFα increased after the administration of anti-TNFα antibodies. In a patient with CRPS-1 treated with anti-TNFα antibodies, we report increased levels of circulating TNFα and a temporary mitigation of oxidative stress as measured by plasma F2 -isoprostane. This case report provides evidence 2 supporting the indication of monitoring the oxidative stress biomarkers during treatment with anti-TNFα antibodies in CRPS 1.

  12. Antitumor effects of electrochemical treatment

    PubMed Central

    González, Maraelys Morales; Zamora, Lisset Ortíz; Cabrales, Luis Enrique Bergues; Sierra González, Gustavo Victoriano; de Oliveira, Luciana Oliveira; Zanella, Rodrigo; Buzaid, Antonio Carlos; Parise, Orlando; Brito, Luciana Macedo; Teixeira, Cesar Augusto Antunes; Gomes, Marina das Neves; Moreno, Gleyce; Feo da Veiga, Venicio; Telló, Marcos; Holandino, Carla

    2013-01-01

    Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas. This treatment is noted for its great effectiveness, minimal invasiveness and local effect. Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy. In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained. By this reason, researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells. Although, it is generally accepted this treatment induces electrolysis, electroosmosis and electroporation in tumoral tissues. However, action mechanism of this alternative modality on the tumor tissue is not well understood. Although the principle of Electrochemical treatment is simple, a standardized method is not yet available. The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process. The present work analyzes the latest and most important research done on the electrochemical treatment of tumors. We conclude with our point of view about the destruction mechanism features of this alternative therapy. Also, we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy. In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done. Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods. PMID:23592904

  13. Diorganotin(IV) complexes of biologically potent 4(3H)-quinazolinone derived Schiff bases: synthesis, spectroscopic characterization, DNA interaction studies and antimicrobial activity.

    PubMed

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Jayalakshmi, Basvegowda; Revanasiddappa, Hosakere D

    2011-10-15

    Four Schiff base ligands and their corresponding organotin(IV) complexes have been synthesized and characterized by elemental analyses, IR, (1)H NMR, MS and thermal studies. The Schiff bases are obtained by the condensation of 3-amino-2-methyl-4(3H)-quinazolinone with different substituted aldehydes. The elemental analysis data suggest the stoichiometry to be 1:1 ratio formation. Infrared spectral data agreed with the coordination to the central metal ion through imine nitrogen, lactam oxygen and deprotonated phenolic oxygen atoms. All the synthesized compounds have been evaluated for antimicrobial activity against selected species of microorganisms. In addition, DNA binding/cleavage capacity of the compounds was analyzed by absorption spectroscopy, viscosity measurements and gel electrophoresis methods.

  14. The discovery of Polo-like kinase 4 inhibitors: identification of (1R,2S).2-(3-((E).4-(((cis).2,6-dimethylmorpholino)methyl)styryl). 1H.indazol-6-yl)-5'-methoxyspiro[cyclopropane-1,3'-indolin]-2'-one (CFI-400945) as a potent, orally active antitumor agent.

    PubMed

    Sampson, Peter B; Liu, Yong; Forrest, Bryan; Cumming, Graham; Li, Sze-Wan; Patel, Narendra Kumar; Edwards, Louise; Laufer, Radoslaw; Feher, Miklos; Ban, Fuqiang; Awrey, Donald E; Mao, Guodong; Plotnikova, Olga; Hodgson, Richard; Beletskaya, Irina; Mason, Jacqueline M; Luo, Xunyi; Nadeem, Vincent; Wei, Xin; Kiarash, Reza; Madeira, Brian; Huang, Ping; Mak, Tak W; Pan, Guohua; Pauls, Henry W

    2015-01-08

    Previous publications from our laboratory have introduced novel inhibitors of Polo-like kinase 4 (PLK4), a mitotic kinase identified as a potential target for cancer therapy. The search for potent and selective PLK4 inhibitors yielded (E)-3-((1Hindazol-6-yl)methylene)indolin-2-ones, which were superseded by the bioisosteric 2-(1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones, e.g., 3. The later scaffold confers improved drug-like properties and incorporates two stereogenic centers. This work reports the discovery of a novel one-pot double SN2 displacement reaction for the stereoselective installation of the desired asymmetric centers and confirms the stereochemistry of the most potent stereoisomer, e.g., 44. Subsequent work keys on the optimization of the oral exposure of nanomolar PLK4 inhibitors with potent cancer cell growth inhibitory activity. A short list of compounds with superior potency and pharmacokinetic properties in rodents and dogs was studied in mouse models of tumor growth. We conclude with the identification of compound 48 (designated CFI-400945) as a novel clinical candidate for cancer therapy.

  15. Antitumor Compounds from Marine Actinomycetes

    PubMed Central

    Olano, Carlos; Méndez, Carmen; Salas, José A.

    2009-01-01

    Chemotherapy is one of the main treatments used to combat cancer. A great number of antitumor compounds are natural products or their derivatives, mainly produced by microorganisms. In particular, actinomycetes are the producers of a large number of natural products with different biological activities, including antitumor properties. These antitumor compounds belong to several structural classes such as anthracyclines, enediynes, indolocarbazoles, isoprenoides, macrolides, non-ribosomal peptides and others, and they exert antitumor activity by inducing apoptosis through DNA cleavage mediated by topoisomerase I or II inhibition, mitochondria permeabilization, inhibition of key enzymes involved in signal transduction like proteases, or cellular metabolism and in some cases by inhibiting tumor-induced angiogenesis. Marine organisms have attracted special attention in the last years for their ability to produce interesting pharmacological lead compounds. PMID:19597582

  16. Transloading of tumor cells with foreign major histocompatibility complex class I peptide ligand: a novel general strategy for the generation of potent cancer vaccines.

    PubMed Central

    Schmidt, W; Steinlein, P; Buschle, M; Schweighoffer, T; Herbst, E; Mechtler, K; Kirlappos, H; Birnstiel, M L

    1996-01-01

    The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers. Images Fig. 1 PMID:8790404

  17. Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity.

    PubMed

    Cao, Yu; Marks, James D; Huang, Qian; Rudnick, Stephen I; Xiong, Chiyi; Hittelman, Walter N; Wen, Xiaoxia; Marks, John W; Cheung, Lawrence H; Boland, Kim; Li, Chun; Adams, Gregory P; Rosenblum, Michael G

    2012-01-01

    Recombinant immunotoxins, consisting of single-chain variable fragments (scFv) genetically fused to polypeptide toxins, represent potentially effective candidates for cancer therapeutics. We evaluated the affinity of various anti-Her2/neu scFv fused to recombinant gelonin (rGel) and its effect on antitumor efficacy and off-target toxicity. A series of rGel-based immunotoxins were created from the human anti-Her2/neu scFv C6.5 and various affinity mutants (designated ML3-9, MH3-B1, and B1D3) with affinities ranging from 10(-8) to 10(-11) mol/L. Against Her2/neu-overexpressing tumor cells, immunotoxins with increasing affinity displayed improved internalization and enhanced autophagic cytotoxicity. Targeting indices were highest for the highest affinity B1D3/rGel construct. However, the addition of free Her2/neu extracellular domain (ECD) significantly reduced the cytotoxicity of B1D3/rGel because of immune complex formation. In contrast, ECD addition had little impact on the lower affinity constructs in vitro. In vivo studies against established BT474 M1 xenografts showed growth suppression by all immunotoxins. Surprisingly, therapy with the B1D3-rGel induced significant liver toxicity because of immune complex formation with shed Her2/neu antigen in circulation. The MH3-B1/rGel construct with intermediate affinity showed effective tumor growth inhibition without inducing hepatotoxicity or complex formation. These findings show that while high-affinity constructs can be potent antitumor agents, they may also be associated with mistargeting through the facile formation of complexes with soluble antigen leading to significant off-target toxicity. Constructs composed of intermediate-affinity antibodies are also potent agents that are more resistant to immune complex formation. Therefore, affinity is an exceptionally important consideration when evaluating the design and efficacy of targeted therapeutics.

  18. [Combined treatment of palmoplantar syndrome in patients under antitumor therapy].

    PubMed

    Kruglova, L S; Shatokhina, E A; Elfimov, M A; Illarionov, V E; Chervinskaya, A V; Portnov, V V; Filatova, E V; Petrova, M S

    2016-01-01

    Observation covered 12 patients under various antitumor medications. Group 1 was formed of patients with developed palmoplantar syndrome varying in severity, who received complex treatment including IR-therapy and local antioxidant medication. Group 2 included patients without palmoplantar syndrome, who received preventive treatment with IR-therapy. All patients of group 1 demonstrated lower severity of palmoplantar syndrome manifestations. In group 2, 80% of the patients avoided palmoplantar syndrome development, and 20% of the patients had light course of the syndrome manifestations. Patients at high risk of palmoplantar syndrome under antitumor therapy are recommended to undergo IR-therapy and local antioxidant medication.

  19. Fusogenic oncolytic herpes simplex viruses as a potent and personalized cancer vaccine.

    PubMed

    Li, Qi-Xiang; Liu, Guohong; Zhang, Xiaoliu

    2012-07-01

    The recent FDA approval of Sipuleucel-T for the treatment of prostate cancer represents an important milestone of cancer immunotherapy, which, for the first time, validates the concept of bringing true clinical benefit to cancer patients by stimulating patients' own anti-tumor immunity. Among the different experimental cancer immunotherapies, oncolytic virotherapy may represent a low-cost yet potent and personalized cancer vaccine for the treatment of solid tumors. This review describes the constructions of several human herpes simplex virus (HSV)-derived oncolytic viruses as candidate cancer vaccines, which induce specific and potent anti-tumor immunity in pre-clinical models, and thus resulting in stronger overall anti-tumor efficacy as compared to oncolytic effect alone. This article also describes the approaches to enhance the antitumor immunity of oncolytic HSVs, and in particular, the key role played by integrating membrane-fusion activity into these viruses. Additionally, this article reviews the potential effect of certain chemotherapeutic agents (e.g. cyclophosphamide) in boosting antitumor immunity induced by oncolytic HSV, and the mechanisms behind it. In summary, all the preclinical and clinical data have suggested that HSV-based oncolytic virotherapies could likely be developed as a new generation of cancer vaccines for the treatment of solid tumors.

  20. Synthesis, in vitro and in vivo antitumor activity of pyrazole-fused 23-hydroxybetulinic acid derivatives.

    PubMed

    Zhang, Hengyuan; Zhu, Peiqing; Liu, Jie; Lin, Yan; Yao, Hequan; Jiang, Jieyun; Ye, Wencai; Wu, Xiaoming; Xu, Jinyi

    2015-02-01

    A collection of pyrazole-fused 23-hydroxybetulinic acid derivatives were designed, synthesized and evaluated for their antitumor activity. Most of the newly synthesized compounds exhibited significant antiproliferative activity. Especially compound 15e displayed the most potent activity with the IC50 values of 5.58 and 6.13μM against B16 and SF763 cancer cell lines, respectively. Furthermore, the significant in vivo antitumor activity of 15e was validated in H22 liver cancer and B16 melanoma xenograft mouse models. The structure-activity relationships of these 23-hydroxybetulinic acid derivatives were also discussed based on the present investigation.

  1. New Oxidovanadium Complexes Incorporating Thiosemicarbazones and 1, 10-Phenanthroline Derivatives as DNA Cleavage, Potential Anticancer Agents, and Hydroxyl Radical Scavenger.

    PubMed

    Ying, Peng; Zeng, Pengfei; Lu, Jiazheng; Chen, Hongyuan; Liao, Xiangwen; Yang, Ning

    2015-10-01

    Four novel oxidovanadium(IV) complexes, [VO(hntdtsc)(PHIP)] (1) (hntdtsc = 2-hydroxy-1-naphthaldehyde thiosemicarbazone, PHIP= 2-phenyl-imidazo[4,5-f]1,10-phenanthroline), [VO(hntdtsc)(DPPZ)](2)(DPPZ= dipyrido[3,2-a:2',3'-c]phenazine), [VO(satsc)(PHIP)](3) (satsc=salicylaldehyde thiosemicarbazone), and [VO(satsc)(DPPZ)](4), have been prepared and characterized. The chemical nuclease activities and photocleavage reactions of the complexes were tested. All four complexes can efficiently cleave pBR322 DNA, and complex 1 has the best cleaving ability. The antitumor properties of these complexes were examined with three different tumor cell lines using MTT assay. Their antitumor mechanism has been analyzed using cell cycle analysis, fluorescence microscopy of apoptosis, and Annexin V-FITC/PI assay. The results showed that the growth of human neuroblastoma (SH-SY5Y, SK-N-SH) and human breast adenocarcinoma (MCF-7) cells were inhibited significantly with very low IC50 values. Complex 1 was found to be the most potent antitumor agent among the four complexes. It can cause G0/G1 phase arrest of the cell cycle and exhibited significant induced apoptosis in SK-N-SH cells and displayed typical morphological apoptotic characteristics. In addition, they all displayed reasonable abilities to scavenge hydroxyl radical, and complex 1 was the best inhibitor.

  2. CpG oligodeoxynucleotides potentiate the antitumor activity of anti-BST2 antibody.

    PubMed

    Hiramatsu, Kosuke; Serada, Satoshi; Kobiyama, Kouji; Nakagawa, Satoshi; Morimoto, Akiko; Matsuzaki, Shinya; Ueda, Yutaka; Fujimoto, Minoru; Yoshino, Kiyoshi; Ishii, Ken J; Enomoto, Takayuki; Kimura, Tadashi; Naka, Tetsuji

    2015-10-01

    Numerous monoclonal antibodies (mAb) targeting tumor antigens have recently been developed. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) via effector cells such as tumor-infiltrating natural killer (NK) cells and macrophages are often involved in mediating the antitumor activity of mAb. CpG oligodeoxynucleotides (ODN) have a potent antitumor activity and are considered to increase tumor infiltration of NK cells and macrophages. Our group previously reported significant antitumor activity of anti-bone marrow stromal antigen 2 (BST2) mAb against BST2-positive endometrial cancer cells through ADCC. In this study, we evaluated the synergistic antitumor activity of combination therapy with anti-BST-2 mAb and CpG ODN using SCID mice and elucidated the mechanisms underlying this activity. Anti-BST2 mAb and CpG ODN monotherapy had a significant dose-dependent antitumor activity (P = 0.0135 and P = 0.0196, respectively). Combination therapy with anti-BST2 mAb and CpG ODN had a significant antitumor activity in SCID mice (P < 0.01), but not in NOG mice. FACS analysis revealed significantly increased numbers of NK cells and macrophages in tumors treated with a combination of anti-BST2 mAb and CpG ODN and with CpG ODN alone in SCID mice (P < 0.05 and P < 0.01, respectively). These results suggested that the combination therapy with anti-BST2 mAb and CpG ODN has a significant antitumor activity and induces tumor infiltration of NK cells and macrophages. Combination therapy with CpG ODN and anti-BST2 mAb or other antitumor mAb depending on ADCC may represent a new treatment option for cancer.

  3. Antitumor Agents 286. Design, Synthesis and Structure-Activity Relationships of 3′R,4′R-Disubstituted-2′,2′-dimethyldihydropyrano[2,3-f]chromone (DSP) Analogs as Potent Chemosensitizers to Overcome Multidrug Resistance

    PubMed Central

    Zhou, Ting; Shi, Qian; Bastow, Kenneth F.; Lee, Kuo-Hsiung

    2010-01-01

    In this study, various 3′R,4′R-disubstituted-2′,2′-dimethydihydropyrano[2,3-f]chromone (DSP) derivatives were discovered as potent chemosensitizers in the treatment of multidrug resistant cancer cells. Twenty-four DSP analogs (5–28) were synthesized and evaluated against a multi-drug resistant (MDR) cell line (KB-Vin) with and without vincristine (VCR). All DSP analogs exhibited low intrinsic cytotoxicity. However, in combination treatment, most DSPs reversed resistance to VCR and lowered the GI50 value of VCR by 12–349-fold. At a concentration of 1μg/mL, three compounds, 11, 14 and 21, fully reversed resistance to VCR in KB-Vin cancer cells, a twofold increase compared to verapamil, a first generation chemosensitizer. Detailed structure-activity relationship (SAR) conclusions were established based on 3′ and 4′ substitutions. Moreover, a preliminary mechanism study indicated that the chemosensitizing activity of DSP analogs results from inhibition of P-glycoprotein (P-gp) over-expressed in MDR cancer cells.1 PMID:21082774

  4. Antitumor effect of Pt(II) amine phosphonate complexes on sarcoma sa-180 in mice. Crystal structure of cis-dichlorobis(diethyl-4-pyridylmethylphosphonate-kappaN)platinum(II) hydrate, cis-[PtCl2(4-pmpe)2].H20.

    PubMed

    Aranowska, K; Graczyk, J; Checińska, L; Pakulska, W; Ochock, J

    2006-05-01

    The cisplatin analogoues platinum (II) complexes of the general formula cis-[PtL2Cl2], where L is monodentate diethyl 2-, 3- or 4-pyridylmethylphosphonate (2-, 3- or 4-pmpe) ligand, have been synthesized and characterized by means of IR and NMR (1H, 31P, 195Pt) spectroscopy. The crystal and molecular structure of cis-[Pt(4-pmpe)2 Cl2].H2O (A3) shows a square planar geometry of PtL2Cl2, with two organic molecules and two chloride leaving ligands in a cis configuration. The antitumor activity of the platinum (II) complexes was examined against Sarcoma Sa-180 in mice. The obtained results indicate a marked anticancer effect of platinum phosphonate complexes, and moderate nephrotoxicity evaluated in the BUN and creatinine levels in comparison with cisplatin (CDDP).

  5. Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells

    PubMed Central

    Núñez de Villavicencio-Díaz, Teresa; Ramos Gómez, Yassel; Oliva Argüelles, Brizaida; Fernández Masso, Julio R.; Rodríguez-Ulloa, Arielis; Cruz García, Yiliam; Guirola-Cruz, Osmany; Perez-Riverol, Yasset; Javier González, Luis; Tiscornia, Inés; Victoria, Sabina; Bollati-Fogolín, Mariela; Besada Pérez, Vladimir; Guerra Vallespi, Maribel

    2015-01-01

    CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis. PMID:26306321

  6. Cancer immunotherapy using a potent immunodominant CTL epitope.

    PubMed

    Song, Liwen; Yang, Ming-Chieh; Knoff, Jayne; Sun, Zu-Yue; Wu, T-C; Hung, Chien-Fu

    2014-10-21

    Immunotherapy has emerged as a promising approach that can be used in conjunction with conventional chemotherapy and radiotherapy to further improve the survival rate of patients with advanced cancer. We have recently shown in previous studies that chemotherapy and radiation therapy can alter the tumor microenvironment and allow intratumoral vaccination to prime the adaptive immune system leading to the generation of antigen-specific cell-mediated immune responses. Here, we investigated whether intratumoral injection of a foreign immunodominant peptide (GP33) and the adjuvant CpG into tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and GP33 was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and GP33 also enhanced the generation of GP33-specific and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci, a process found to be mediated by the Fas-FasL apoptosis pathway. The treatment regimen presented here represents a universal approach to cancer control.

  7. Total Synthesis of the Antitumor Antibiotic (±)-Streptonigrin: First- and Second-Generation Routes for de Novo Pyridine Formation Using Ring-Closing Metathesis

    PubMed Central

    2013-01-01

    The total synthesis of (±)-streptonigrin, a potent tetracyclic aminoquinoline-5,8-dione antitumor antibiotic that reached phase II clinical trials in the 1970s, is described. Two routes to construct a key pentasubstituted pyridine fragment are depicted, both relying on ring-closing metathesis but differing in the substitution and complexity of the precursor to cyclization. Both routes are short and high yielding, with the second-generation approach ultimately furnishing (±)-streptonigrin in 14 linear steps and 11% overall yield from inexpensive ethyl glyoxalate. This synthesis will allow for the design and creation of druglike late-stage natural product analogues to address pharmacological limitations. Furthermore, assessment of a number of chiral ligands in a challenging asymmetric Suzuki–Miyaura cross-coupling reaction has enabled enantioenriched (up to 42% ee) synthetic streptonigrin intermediates to be prepared for the first time. PMID:24328139

  8. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity.

    PubMed

    Amin, Kamilia M; Barsoum, Flora F; Awadallah, Fadi M; Mohamed, Nehal E

    2016-11-10

    Efforts to develop new antitumor agents are now directed towards multitarget therapies that are believed to have high potency and low tendency to resistance compared to conventional drugs. Herein, we highlighted the synthesis and antitumor activity of five series of phthalazine-based compounds featuring a variety of bioactive chemical fragments at position 1 of the phthalazine nucleus. The antitumor activity of the target compounds was performed against fourteen cancer cell lines where all compounds were active in the nanomolar level. In addition, the mechanism of action of the target compounds was investigated through an enzymatic inhibitory assay against VEGFR-2 and EGFR kinases, revealing potent and preferential activity toward VEGFR-2. Binding mode of the most active compounds was studied using docking experiment.

  9. Cytotoxic and anti-tumor activities of lignans from the seeds of Vietnamese nutmeg Myristica fragrans.

    PubMed

    Thuong, Phuong Thien; Hung, Tran Manh; Khoi, Nguyen Minh; Nhung, Hoang Thi My; Chinh, Nguyen Thi; Quy, Nguyen Thi; Jang, Tae Su; Na, Minkyun

    2014-03-01

    Four lignans, meso-dihydroguaiaretic acid (DHGA), macelignan, fragransin A2 and nectandrin B, were isolated from the seeds of Myristica fragrans (Vietnamese nutmeg) and investigated for their cytotoxic activity against eight cancer cell lines. Of these, DHGA exhibited potent cytotoxicity against H358 with IC50 value of 10.1 μM. In addition, DHGA showed antitumor activity in allogeneic tumor-bearing mice model.

  10. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype

    PubMed Central

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  11. Ten metal complexes of vitamin B3/niacin: Spectroscopic, thermal, antibacterial, antifungal, cytotoxicity and antitumor studies of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Au(III) complexes

    NASA Astrophysics Data System (ADS)

    Al-Saif, Foziah A.; Refat, Moamen S.

    2012-08-01

    Ten coordination compounds, namely Mn(NA)2Cl2·4H2O (1), Fe(NA)Cl3(H2O)2 (2), Co(NA)2(NO3)2·6H2O (3), Ni(NA)Cl2·5H2O (4), Cu(NA)Cl2·3H2O (5), Zn(NA)(NO3)2·H2O (6), Pd(NA)2Cl2·H2O (7), Cd(NA)Cl2·H2O (8), Pt(NA)2Cl4·5H2O (9) and Au(NA)Cl3 (10) were obtained by the reactions of the corresponding transition metal salts with vitamin B3/niacin (NA) in the presence of 1:4 (v:v) distilled water: methanol solvent at 70 °C for about 30 min, and their suggested structures were determined by elemental analyses, molar conductivity, (infrared, UV-vis) spectra, effective magnetic moment in Bohr magnetons, electron spin resonance (ESR), thermal analysis (TG), X-ray powder diffraction (XRD) as well as scanning electron microscopy (SEM). The results revealed that in complexes 1, 3, 7, and 9 both of two NA ligand coordinates one metal ion to form four or six coordinated structures, while in compound 10, one NA ligand coordinate to Au+++ ion to form a square-planar geometry with N-bonded pyridine ligand is suggested, and (2, 4, 5, 6 and, 8) complexes have 1:1 structures. Antimicrobial and antitumor activities were assessment against some kind of (G+ and G-) bacteria, fungi and breast carcinoma cells (MCF-7-cell line).

  12. Antitumor Activity of Monoterpenes Found in Essential Oils

    PubMed Central

    Sobral, Marianna Vieira; Xavier, Aline Lira; Lima, Tamires Cardoso; de Sousa, Damião Pergentino

    2014-01-01

    Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented. PMID:25401162

  13. Synergistic antitumor efficacy of antibacterial helvolic acid from Cordyceps taii and cyclophosphamide in a tumor mouse model.

    PubMed

    Xiao, Jian-Hui; Zhang, Yao; Liang, Gui-You; Liu, Ru-Ming; Li, Xiao-Gang; Zhang, Ling-Tao; Chen, Dai-Xiong; Zhong, Jian-Jiang

    2017-01-01

    The antibacterial agent helvolic acid, which was isolated from the active antitumor fraction of Cordyceps taii, showed potent cytotoxicity against different human cancer cells. In the present study, the in vivo antitumor effect of helvolic acid was investigated in murine sarcoma S180 tumor-bearing mice. Doses of 10 and 20 mg/kg/day helvolic acid did not exert significant antitumor activity. Interestingly, co-administration of 10 mg/kg/day helvolic acid and 20 mg/kg/day cyclophosphamide (CTX) - a well-known chemotherapy drug - showed promising antitumor activity with a growth inhibitory rate of 70.90%, which was much higher than that of CTX alone (19.5%). Furthermore, the combination markedly prolonged the survival of tumor-bearing mice. In addition, helvolic acid enhanced the immune organ index. The protein expression levels of β-catenin, cyclin D1, and proliferating cell nuclear antigen were significantly suppressed in mice treated with 20 mg/kg/day helvolic acid and in those receiving combination therapy. Taken together, these results indicated that helvolic acid in combination with CTX showed potent in vivo synergistic antitumor efficacy, and its mechanism of action may involve the Wnt/ β-catenin signaling pathway.

  14. Antitumor activity of 6-(cyclohexylamino)-1, 3-dimethyl-5(2-pyridyl)furo[2,3-d]pyrimidine-2,4(1H,3H)-dione and Its Ti(IV), Zn(II), Fe(III), and Pd(II) complexes on K562 and Jurkat cell lines.

    PubMed

    Shabani, Fahmideh; Ghammamy, Shahriar; Mehrani, Khayroallah; Teimouri, Mohammad Bagher; Soleimani, Masoud; Kaviani, Saeid

    2008-01-01

    (6-(cyclohexylamino)-1,3-dimethyl-5(2-pyridyl)furo[2,3-d]pyrimidine-2,4(1H,3H)-dione) abbreviated as CDP was synthesized and characterized. Ti(IV), Zn(II), Fe(III), and Pd(II) metal complexes of this ligand are prepared by the reaction of salts of Ti(IV), Zn(II), Fe(III), and Pd(II) with CDP in acetonitrile. Characterization of the ligand and its complexes was made by microanalyses, FT-IR, (1)H NMR, (13)C NMR, and UV-Visible spectroscopy. All complexes were characterized by several techniques using elemental analysis (C, H, N), FT-IR, electronic spectra, and molar conductance measurements. The elemental analysis data suggest the stoichiometry to be 1:1 [M:L] ratio formation. The molar conductance measurements reveal the presence of 1:1 electrolytic nature complexes. These new complexes showed excellent antitumor activity against two kinds of cancer cells that are K562 (human chronic myeloid leukemia) cells and Jurkat (human T lymphocyte carcinoma) cells.

  15. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity.

    PubMed

    Fox, Barbara A; Sanders, Kiah L; Rommereim, Leah M; Guevara, Rebekah B; Bzik, David J

    2016-07-01

    Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP) and dense granule (GRA) proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α+ dendritic cells, the IL-12/interferon-gamma (IFN-γ) TH1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM) associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately control the

  16. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity

    PubMed Central

    Fox, Barbara A.; Sanders, Kiah L.; Rommereim, Leah M.; Bzik, David J.

    2016-01-01

    Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP) and dense granule (GRA) proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α+ dendritic cells, the IL-12/interferon-gamma (IFN-γ) TH1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM) associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately control the

  17. Hsp72 mediates stronger antigen-dependent non-classical MHC class Ib anti-tumor responses than hsc73 in Xenopus laevis.

    PubMed

    Nedelkovska, Hristina; Robert, Jacques

    2013-01-01

    The heat shock proteins (HSPs) gp96 and HSP70 mediate potent antigen-dependent anti-tumor T cell responses in both mammals and Xenopus laevis. We have shown that frogs immunized with total HSP70 generate CD8+ T cell responses against the Xenopus thymic lymphoid tumor 15/0 that expresses several non-classical MHC class Ib (class Ib) genes, but no classical MHC class Ia (class Ia). In the absence of class Ia, we hypothesized that hsp72 can prime class Ib-mediated anti-tumor unconventional CD8+ T cells in an antigen-dependent manner. To test this, we produced Xenopus recombinant HSP70 proteins (both the cognate hsc73 and the inducible hsp72) from stable 15/0 tumor transfectants. We used an in vivo cross-presentation assay to prime animals by adoptive transfer of HSP-pulsed antigen-presenting cells (APCs) and showed that both hsp72-and hsc73-Ag complexes have a similar potential to elicit class Ia-mediated T cell responses against minor histocompatibility (H) Ag skin grafts. In contrast, our in vivo cross-presentation assay revealed that hsp72 was more potent than hsc73 in generating protective immune responses against the class Ia-negative 15/0 tumors in an Ag-dependent and class Ib-mediated manner. These results suggest that hsp72 can stimulate class Ib-mediated immune responses and represents a promising candidate for immunotherapy against malignancies with downregulated class Ia expression.

  18. Antitumor Effects of Laminaria Extract Fucoxanthin on Lung Cancer

    PubMed Central

    Mei, ChengHan; Zhou, ShunChang; Zhu, Lin; Ming, JiaXiong; Zeng, FanDian; Xu, Rong

    2017-01-01

    Lung cancer is the leading cause of cancer mortality worldwide and non-small-cell lung cancer (NSCLC) is the most common type. Marine plants provide rich resources for anticancer drug discovery. Fucoxanthin (FX), a Laminaria japonica extract, has attracted great research interest for its antitumor activities. Accumulating evidence suggests anti-proliferative effects of FX on many cancer cell lines including NSCLCs, but the detailed mechanisms remain unclear. In the present investigation, we confirmed molecular mechanisms and in vivo anti-lung cancer effect of FX at the first time. Flow cytometry, real-time PCR, western blotting and immunohistochemistry revealed that FX arrested cell cycle and induced apoptosis by modulating expression of p53, p21, Fas, PUMA, Bcl-2 and caspase-3/8. These results show that FX is a potent marine drug for human non-small-cell lung cancer treatment. PMID:28212270

  19. IL-28 elicits antitumor responses against murine fibrosarcoma.

    PubMed

    Numasaki, Muneo; Tagawa, Masatoshi; Iwata, Fumi; Suzuki, Takashi; Nakamura, Akira; Okada, Masahiro; Iwakura, Yoichiro; Aiba, Setsuya; Yamaya, Mutsuo

    2007-04-15

    IL-28 is a recently described antiviral cytokine. In this study, we investigated the biological effects of IL-28 on tumor growth to evaluate its antitumor activity. IL-28 or retroviral transduction of the IL-28 gene into MCA205 cells did not affect in vitro growth, whereas in vivo growth of MCA205IL-28 was markedly suppressed along with survival advantages when compared with that of controls. When the metastatic ability of IL-28-secreting MCA205 cells was compared with that of controls, the expression of IL-28 resulted in a potent inhibition of metastases formation in the lungs. IL-28-mediated suppression of tumor growth was mostly abolished in irradiated mice, indicating that irradiation-sensitive cells, presumably immune cells, are primarily involved in the IL-28-induced suppression of tumor growth. In vivo cell depletion experiments displayed that polymorphonuclear neutrophils, NK cells, and CD8 T cells, but not CD4 T cells, play an equal role in the IL-28-mediated inhibition of in vivo tumor growth. Consistent with these findings, inoculation of MCA205IL-28 into mice evoked enhanced IFN-gamma production and cytotoxic T cell activity in spleen cells. Antitumor action of IL-28 is partially dependent on IFN-gamma and is independent of IL-12, IL-17, and IL-23. IL-28 increased the total number of splenic NK cells in SCID mice and enhanced IL-12-induced IFN-gamma production in vivo and expanded spleen cells in C57BL/6 mice. Moreover, IL-12 augmented IL-28-mediated antitumor activity in the presence or absence of IFN-gamma. These findings indicate that IL-28 has bioactivities that induce innate and adaptive immune responses against tumors.

  20. Optimization of Antitumor Modulators of Pre-mRNA Splicing

    PubMed Central

    Lagisetti, Chandraiah; Palacios, Gustavo; Goronga, Tinopiwa; Freeman, Burgess; Caufield, William; Webb, Thomas R.

    2014-01-01

    The spliceosome regulates pre-mRNA splicing, which is a critical process in normal mammalian cells. Recently recurrent mutations in numerous spliceosomal proteins have been associated with a number of cancers. Previously natural product antitumor agents have been shown to interact with one of the proteins that is subject to recurrent mutations (SF3B1). We report the optimization of a class of tumor-selective spliceosome modulators, which demonstrate significant in vivo antitumor activity. This optimization culminated in the discovery of sudemycin D6, which shows potent cytotoxic activity in the melanoma line SK-MEL-2 (IC50= 39 nM) and other tumor lines, including: JeKo-1 (IC50= 26 nM), HeLa (IC50= 50 nM), and SK-N-AS (IC50= 81 nM). We also report improved processes for the synthesis of these compounds. Our work supports the idea that sudemycin D6 is worthy of further investigation as a novel preclinical anticancer agent with application in the treatment of numerous human cancers. PMID:24325474

  1. Phenylethylchromones with In Vitro Antitumor Promoting Activity from Aquilaria filaria.

    PubMed

    Suzuki, Airi; Miyake, Katsunori; Saito, Yohei; Rasyid, Faradiba Abdul; Tokuda, Harukuni; Takeuchi, Misa; Suzuki, Nobutaka; Ichiishi, Eiichiro; Fujie, Tetsuo; Goto, Masuo; Sasaki, Yohei; Nakagawa-Goto, Kyoko

    2017-02-01

    A new chromone, 2-(2-hydroxy-2-phenylethyl)chromone (1), was isolated together with ten known phenylethyl chromones from MeOH extracts of agarwood (Aquilaria filaria). The selected compounds were evaluated in an antiproliferative assay against five human tumor cell lines, including a multidrug-resistant cell line. They were also tested for antitumor promoting activity, as mediated by 12-O-tetradecanoylphorbol-13-acetate-induced activation of the Epstein-Barr virus early antigen in Raji cells. Among all compounds, 4',7-dimethyoxy-6-hydroxychromone (2) displayed broad spectrum antiproliferative activity against all tumor cell lines tested with IC50 values of 25-38 µM, while 8 was selectively inhibitory against multidrug-resistant cells. All tested compounds suppressed tumor promotion at noncytotoxic concentrations. 4',6-Dihydroxyphenylethylchromone (7) exhibited the most potent effect with an IC50 value of 319 mol ratio relative to 12-O-tetradecanoylphorbol-13-acetate. This study is the first to report the antitumor promoting activity of 2-(2-phenylethyl)chromone derivatives, as well as the selective antiproliferative activity of 8 against a multidrug-resistant tumor cell line.

  2. Hepatitis C virus NS5A replication complex inhibitors. Part 6: Discovery of a novel and highly potent biarylimidazole chemotype with inhibitory activity toward genotypes 1a and 1b replicons.

    PubMed

    Belema, Makonen; Nguyen, Van N; Romine, Jeffrey L; St Laurent, Denis R; Lopez, Omar D; Goodrich, Jason T; Nower, Peter T; O'Boyle, Donald R; Lemm, Julie A; Fridell, Robert A; Gao, Min; Fang, Hua; Krause, Rudolph G; Wang, Ying-Kai; Oliver, A Jayne; Good, Andrew C; Knipe, Jay O; Meanwell, Nicholas A; Snyder, Lawrence B

    2014-03-13

    A medicinal chemistry campaign that was conducted to address a potential genotoxic liability associated with an aniline-derived scaffold in a series of HCV NS5A inhibitors with dual GT-1a/-1b inhibitory activity is described. Anilides 3b and 3c were used as vehicles to explore structural modifications that retained antiviral potency while removing the potential for metabolism-based unmasking of the embedded aniline. This effort resulted in the discovery of a highly potent biarylimidazole chemotype that established a potency benchmark in replicon assays, particularly toward HCV GT-1a, a strain with significant clinical importance. Securing potent GT-1a activity in a chemotype class lacking overt structural liabilities was a critical milestone in the effort to realize the full clinical potential of targeting the HCV NS5A protein.

  3. In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors.

    PubMed

    Brogi, Simone; Giovani, Simone; Brindisi, Margherita; Gemma, Sandra; Novellino, Ettore; Campiani, Giuseppe; Blackman, Michael J; Butini, Stefania

    2016-03-01

    Plasmodium falciparum subtilisin-like protease 1 (SUB1) is a novel target for the development of innovative antimalarials. We recently described the first potent difluorostatone-based inhibitors of the enzyme ((4S)-(N-((N-acetyl-l-lysyl)-l-isoleucyl-l-threonyl-l-alanyl)-2,2-difluoro-3-oxo-4-aminopentanoyl)glycine (1) and (4S)-(N-((N-acetyl-l-isoleucyl)-l-threonyl-l-alanylamino)-2,2-difluoro-3-oxo-4-aminopentanoyl)glycine (2)). As a continuation of our efforts towards the definition of the molecular determinants of enzyme-inhibitor interaction, we herein propose the first comprehensive computational investigation of the SUB1 catalytic core from six different Plasmodium species, using homology modeling and molecular docking approaches. Investigation of the differences in the binding sites as well as the interactions of our inhibitors 1,2 with all SUB1 orthologues, allowed us to highlight the structurally relevant regions of the enzyme that could be targeted for developing pan-SUB1 inhibitors. According to our in silico predictions, compounds 1,2 have been demonstrated to be potent inhibitors of SUB1 from all three major clinically relevant Plasmodium species (P. falciparum, P. vivax, and P. knowlesi). We next derived multiple structure-based pharmacophore models that were combined in an inclusive pan-SUB1 pharmacophore (SUB1-PHA). This latter was validated by applying in silico methods, showing that it may be useful for the future development of potent antimalarial agents.

  4. Synthesis and activities of antitumor agents.

    PubMed

    Suami, T; Machinami, T; Hisamatsu, T

    1979-03-01

    N-(2-Chloroethyl)-N-nitrosocarbamoyl derivatives of glycosylamines have been prepared. Six N-(2-chloroethyl)-N-nitrosoureas, including three disaccharide derivatives, were submitted to a determination of antitumor activity. All the compounds tested exhibited strong antitumor activity against leukemia L1210 in mice.

  5. Expanded Human Blood-Derived γδT Cells Display Potent Antigen-Presentation Functions

    PubMed Central

    Khan, Mohd Wajid A.; Curbishley, Stuart M.; Chen, Hung-Chang; Thomas, Andrew D.; Pircher, Hanspeter; Mavilio, Domenico; Steven, Neil M.; Eberl, Matthias; Moser, Bernhard

    2014-01-01

    Cell-based immunotherapy strategies target tumors directly (via cytolytic effector cells) or aim at mobilizing endogenous anti-tumor immunity. The latter approach includes dendritic cells (DC) most frequently in the form of in vitro cultured peripheral blood monocytes-derived DC. Human blood γδT cells are selective for a single class of non-peptide agonists (“phosphoantigens”) and develop into potent antigen-presenting cells (APC), termed γδT-APC within 1–3 days of in vitro culture. Availability of large numbers of γδT-APC would be advantageous for use as a novel cellular vaccine. We here report optimal γδT cell expansion (>107 cells/ml blood) when peripheral blood mononuclear cells (PBMC) from healthy individuals and melanoma patients were stimulated with zoledronate and then cultured for 14 days in the presence of IL-2 and IL-15, yielding γδT cell cultures of variable purity (77 ± 21 and 56 ± 26%, respectively). They resembled effector memory αβT (TEM) cells and retained full functionality as assessed by in vitro tumor cell killing as well as secretion of pro-inflammatory cytokines (IFNγ, TNFα) and cell proliferation in response to stimulation with phosphoantigens. Importantly, day 14 γδT cells expressed numerous APC-related cell surface markers and, in agreement, displayed potent in vitro APC functions. Day 14 γδT cells from PBMC of patients with cancer were equally effective as their counterparts derived from blood of healthy individuals and triggered potent CD8+ αβT cell responses following processing and cross-presentation of simple (influenza M1) and complex (tuberculin purified protein derivative) protein antigens. Of note, and in clear contrast to peripheral blood γδT cells, the ability of day 14 γδT cells to trigger antigen-specific αβT cell responses did not depend on re-stimulation. We conclude that day 14 γδT cell cultures provide a convenient source of autologous APC for use in immunotherapy of patients

  6. Expanded Human Blood-Derived γδT Cells Display Potent Antigen-Presentation Functions.

    PubMed

    Khan, Mohd Wajid A; Curbishley, Stuart M; Chen, Hung-Chang; Thomas, Andrew D; Pircher, Hanspeter; Mavilio, Domenico; Steven, Neil M; Eberl, Matthias; Moser, Bernhard

    2014-01-01

    Cell-based immunotherapy strategies target tumors directly (via cytolytic effector cells) or aim at mobilizing endogenous anti-tumor immunity. The latter approach includes dendritic cells (DC) most frequently in the form of in vitro cultured peripheral blood monocytes-derived DC. Human blood γδT cells are selective for a single class of non-peptide agonists ("phosphoantigens") and develop into potent antigen-presenting cells (APC), termed γδT-APC within 1-3 days of in vitro culture. Availability of large numbers of γδT-APC would be advantageous for use as a novel cellular vaccine. We here report optimal γδT cell expansion (>10(7) cells/ml blood) when peripheral blood mononuclear cells (PBMC) from healthy individuals and melanoma patients were stimulated with zoledronate and then cultured for 14 days in the presence of IL-2 and IL-15, yielding γδT cell cultures of variable purity (77 ± 21 and 56 ± 26%, respectively). They resembled effector memory αβT (TEM) cells and retained full functionality as assessed by in vitro tumor cell killing as well as secretion of pro-inflammatory cytokines (IFNγ, TNFα) and cell proliferation in response to stimulation with phosphoantigens. Importantly, day 14 γδT cells expressed numerous APC-related cell surface markers and, in agreement, displayed potent in vitro APC functions. Day 14 γδT cells from PBMC of patients with cancer were equally effective as their counterparts derived from blood of healthy individuals and triggered potent CD8(+) αβT cell responses following processing and cross-presentation of simple (influenza M1) and complex (tuberculin purified protein derivative) protein antigens. Of note, and in clear contrast to peripheral blood γδT cells, the ability of day 14 γδT cells to trigger antigen-specific αβT cell responses did not depend on re-stimulation. We conclude that day 14 γδT cell cultures provide a convenient source of autologous APC for use in immunotherapy of patients

  7. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity

    PubMed Central

    Demaria, Olivier; De Gassart, Aude; Coso, Sanja; Gestermann, Nicolas; Di Domizio, Jeremy; Flatz, Lukas; Gaide, Olivier; Michielin, Olivier; Hwu, Patrick; Petrova, Tatiana V.; Martinon, Fabio; Modlin, Robert L.; Speiser, Daniel E.; Gilliet, Michel

    2015-01-01

    Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma. PMID:26607445

  8. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.

    PubMed

    Demaria, Olivier; De Gassart, Aude; Coso, Sanja; Gestermann, Nicolas; Di Domizio, Jeremy; Flatz, Lukas; Gaide, Olivier; Michielin, Olivier; Hwu, Patrick; Petrova, Tatiana V; Martinon, Fabio; Modlin, Robert L; Speiser, Daniel E; Gilliet, Michel

    2015-12-15

    Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.

  9. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression12

    PubMed Central

    Chen, Chong-Sheng; Doloff, Joshua C; Waxman, David J

    2014-01-01

    Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses. PMID:24563621

  10. Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity

    PubMed Central

    Berndsen, Robert H.; Weiss, Andrea; Abdul, U. Kulsoom; Wong, Tse J.; Meraldi, Patrick; Griffioen, Arjan W.; Dyson, Paul J.; Nowak-Sliwinska, Patrycja

    2017-01-01

    Ruthenium-based compounds show strong potential as anti-cancer drugs and are being investigated as alternatives to other well-established metal-based chemotherapeutics. The organometallic compound [Ru(η6-p-cymene)Cl2(pta)], where pta = 1,3,5-triaza-7-phosphaadamantane (RAPTA-C) exhibits broad acting anti-tumor efficacy with intrinsic angiostatic activity. In the search for an optimal anti-angiogenesis drug combination, we identified synergistic potential between RAPTA-C and the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. This drug combination results in strong synergistic inhibition of cell viability in human endothelial (ECRF24 and HUVEC) and human ovarian carcinoma (A2780 and A2780cisR) cells. Additionally, erlotinib significantly enhances the cellular uptake of RAPTA-C relative to treatment with RAPTA-C alone in human ovarian carcinoma cells, but not endothelial cells. Drug combinations induce the formation of chromosome bridges that persist after mitotic exit and delay abscission in A2780 and A2780cisR, therefore suggesting initiation of cellular senescence. The therapeutic potential of these compounds and their combination is further validated in vivo on A2780 tumors grown on the chicken chorioallantoic membrane (CAM) model, and in a preclinical model in nude mice. Immunohistochemical analysis confirms effective anti-angiogenic and anti-proliferative activity in vivo, based on a significant reduction of microvascular density and a decrease in proliferating cells. PMID:28223694

  11. Synthesis and antitumor activity of new alkylphospholipids containing modifications of the phosphocholine moiety.

    PubMed

    Ukawa, K; Imamiya, E; Yamamoto, H; Mizuno, K; Tasaka, A; Terashita, Z; Okutani, T; Nomura, H; Kasukabe, T; Hozumi, M

    1989-05-01

    New antitumor alkylglycerophospholipids, in which primarily the phosphocholine moiety of the platelet activating factor (PAF) molecule was modified, were synthesized from 1-alkyl-2-substituted glycerols by introducing polar head phosphoryl groups having methylene bridges of various lengths (from 2 to 14 carbons). They were tested for PAF agonistic activity and antitumor properties. In a series of 1-octadecyl-2-acetoacetylglycerophospholipids (1a-f), an increase in the length of the methylene bridge separating the phosphate and trimethylammonio group in the polar head side chain at position 3 of the glycerol backbone resulted in a progressive decrease in PAF agonistic activity and a characteristic change in antitumor activity against human promyelocytic leukemia cells (HL-60). Maximal potency was obtained with the compound having a decamethylene bridge (1e, IC50 value = 1.5 microgram/ml). Thus, alkylphospholipids possessing a decamethylene bridge and a variety of substituents at position 2 (1g-n) were synthesized. They showed potent inhibitory activity with IC50 values ranging from 0.4 to 1.9 micrograms/ml, depending on the nature of the 2-substituent in the phospholipid molecule. In in vivo tests of the present series of alkylglycerophospholipids (1a--n), using mice bearing sarcoma 180 and mice with mammary carcinoma MM46 (both cells and compounds were given i.p.), 1-octadecyl-2-acetoacetyl-3-glyceryl omega-trimethylammoniodecyl phosphate (1e) showed the most potent life-prolonging effect. The structure-activity relationships are discussed.

  12. Understanding the Biosynthesis SF2575: A Potent Antitumor Compound With Novel Modes of Action

    DTIC Science & Technology

    2009-09-01

    analyzed on HPLC and LCMS to try to identify any potential stable intermediates that may be present (Figure 3). Using selected ion monitoring, the... polyketides . One known example is that of thermorubin, in which the salicylate moiety is Figure 6: Proposed biosynthetic pathways for the pendants 30...DISTRIBUTION STATEMENT: (Check one ) X Approved for public release; distribution unlimited Distribution limited to U.S

  13. Understanding the Biosynthesis of SF2575: A Potent Antitumor Compound with Novel Modes of Action

    DTIC Science & Technology

    2010-03-01

    this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including...1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law...no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB

  14. Oxazole: A Promising Building Block for the Development of Potent Antitumor Agents.

    PubMed

    Zhou, Hua; Cheng, Jiang-Qun; Wang, Zhi-Sen; Chen, Fei-Hu; Liu, Xin-Hua

    2016-01-01

    Oxazole derivatives are found to have a variety of biological activities. A large number of studies have revealed their outstanding anticancer activities. Here we review four different types of oxazole derivatives with anticancer potential reported over the last ten years. We focus our discussion on their activity, selectivity in different cancer cell lines, mechanisms of action, and their structural evolution.

  15. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy

    SciTech Connect

    Yu, Yao; Cai, Wei; Pei, Chong-gang; Shao, Yi

    2015-03-20

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation of breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo.

  16. Ley specific antibody with potent anti-tumor activity is internalized and degraded in lysosomes.

    PubMed Central

    Garrigues, J.; Garrigues, U.; Hellström, I.; Hellström, K. E.

    1993-01-01

    BR96 is a monoclonal antibody (MAb) that recognizes many human carcinomas and can kill antigen-positive tumor cells in vitro. Using both gold and radiolabeled MAb, the distribution and cellular processing of BR96 during cytolysis has been determined. After a brief (< 3 minutes) MAb treatment, cells in suspension are stained by the nuclear viability dye propidium iodide. Whole MAb and F(ab')2 fragments are equally cytotoxic; monovalent F(ab) fragments, however, have no effect on dye uptake unless cross-linked with goat anti-mouse IgG. The level of toxicity is dependent on both MAb dose and on cell surface receptor density. Cell contact may regulate receptor expression. BR96 receptors are more abundant on cells migrating into the open areas of a scratch wounded confluent culture than on the adjacent contact-inhibited cells. BR96 can also inhibit the anchorage-independent growth of tumor cells in soft agar showing that its effects on propidium iodide staining are not due to transient changes in membrane permeability. Immunogold electron microscopy reveals that, after a 1-minute treatment, BR96 induces significant infolding of the plasma membrane and that internalized MAb is localized to these structures. Immediately thereafter, large cell surface and intracellular vesicles form, mitochondria are swollen, and membrane integrity is lost. Therefore, BR96 seems to cause morphological changes characteristic of necrosis rather than apoptosis. When bound to adherent carcinoma cells, BR96 is distributed uniformly on the apical surface of cells labeled at 4 C and is enriched at points of cell substratum contact. Upon warming of the cells to 37 C, BR96 localizes in small perinuclear clusters and the cell margin is now devoid of label. Immunogold electron microscopy reveals that BR96 undergoes receptor mediated internalization and is localized within the same coated pits, endosomes, and lysosomes as the transferrin receptor. Quantitative studies using iodinated BR96 show that after 6 hours of chase, a maximum of 53% of the radiolabel is located within the intracellular pool. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that 84% of this fraction is nondegraded. BR96 probably cycles between the medium and intracellular pools because the remainder of the radiolabel is in the medium as intact MAb. By 24 hours of chase, the intracellular fraction drops to 30%, while the remaining 70% is present in the culture medium, mostly as low molecular weight degradation products. Images Figure 1 Figure 2 Figure 4 Figure 5 p614-a Figure 6 Figure 7 Figure 8 Figure 9 PMID:8434651

  17. Pharmacological exploitation of the phenothiazine antipsychotics to develop novel antitumor agents–A drug repurposing strategy

    PubMed Central

    Wu, Chia-Hsien; Bai, Li-Yuan; Tsai, Ming-Hsui; Chu, Po-Chen; Chiu, Chang-Fang; Chen, Michael Yuanchien; Chiu, Shih-Jiuan; Chiang, Jo-Hua; Weng, Jing-Ru

    2016-01-01

    Phenothiazines (PTZs) have been used for the antipsychotic drugs for centuries. However, some of these PTZs have been reported to exhibit antitumor effects by targeting various signaling pathways in vitro and in vivo. Thus, this study was aimed at exploiting trifluoperazine, one of PTZs, to develop potent antitumor agents. This effort culminated in A4 [10-(3-(piperazin-1-yl)propyl)-2-(trifluoromethyl)-10H-phenothiazine] which exhibited multi-fold higher apoptosis-inducing activity than the parent compound in oral cancer cells. Compared to trifluoperazine, A4 demonstrated similar regulation on the phosphorylation or expression of multiple molecular targets including Akt, p38, and ERK. In addition, A4 induced autophagy, as evidenced by increased expression of the autophagy biomarkers LC3B-II and Atg5, and autophagosomes formation. The antitumor activity of A4 also related to production of reactive oxygen species and adenosine monophosphate-activated protein kinase. Importantly, the antitumor utility of A4 was extended in vivo as it, administrated at 10 and 20 mg/kg intraperitoneally, suppressed the growth of Ca922 xenograft tumors. In conclusion, the ability of A4 to target diverse aspects of cancer cell growth suggests its value in oral cancer therapy. PMID:27277973

  18. [Synthesis of 1-furfuryl-indolin-2-one derivatives and preliminary evaluation of their antitumor activities].

    PubMed

    Dong, Xiao-Chun; Zhou, Fu-Sheng; Zheng, Jian-Bin; Wen, Ren

    2008-01-01

    In order to find new indolin-2-one derivatives as antitumor agents, a series of 3-pyrrole substituted 1-(5-formyl-2-furanylmethyl) indolin-2-one derivatives were designed and synthesized. 5-Formyl-2 ,4-dimethyl-lH-pyrrole-3-carboxylic acid ethyl ester was condensed with 5-substituted indolin-2-one 2a-2d to afford 3-[(pyrrol-2-yl) -methylidenyl] indolin-2-ones 3a-3d. Through N-alkylation, 1-(5-formyl-furfuryl) -indolin-2-one 4a-4d were prepared. Compounds 4a-4d were then condensed with indolin-2-one to afford bis-indolin-2-one derivatives 5a-5d. The structures of the synthesized compounds were determined by 1H NMR, MS and element analysis. Antitumor activities of all the synthesized compounds in vitro were tested. All the 12 synthesized compounds possess antitumor activities against SPC-A1 strain. Especially the compounds 5a-5d possess potent antitumor activities better than sunitinib. Their IC50 are all below 5 micromol x L(-1).

  19. Calcium pterin as an antitumor agent.

    PubMed

    Moheno, Phillip B B

    2004-03-01

    A series of in vivo studies are reported that provide evidence for an immunologically mediated mechanism for the antitumor response from a calcium pterin (CaPterin) suspension. Strong antitumor efficacy was demonstrated in fully immunocompetent female C3H/HeN-MTV+ mice (retired breeders) presenting spontaneous mammary gland adenocarcinomas. Comparison of results obtained by testing CaPterin in either nude or SCID mice (severely compromised immunodeficient) implanted with MDA-MB-231 human cancer cells showed a significant antitumor response in the nudes and no response in the SCIDs. This comparison argues for B-cell immunological involvement in the mechanism of CaPterin antitumor activity since nude mice possess B-cell capability while SCID mice do not. This comparison also indicates that there is no measurable direct cancer cell toxicity from the CaPterin. Results showing no CaPterin antitumor efficacy against EMT6 tumor cells implanted in Balb/c mice also suggest an antitumor mechanism involving B-cells, since transforming growth factor beta (TGF-beta), produced by EMT6 cells, is known to cause B-cell apoptosis. Taken together, these results, along with those of other researchers, indicate that CaPterin's antitumor mechanism involves antibody-dependent cellular cytotoxicity (ADCC) mediated, for example, by natural killer (NK) cells, interlukin-2, and CaPterin.

  20. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives

    PubMed Central

    Gaziano, Roberta; Moroni, Gabriella; Buè, Cristina; Miele, Martino Tony; Sinibaldi-Vallebona, Paola; Pica, Francesca

    2016-01-01

    Historically, natural products have represented a significant source of anticancer agents, with plant-derived drugs becoming increasingly explored. In particular, sanguinarine is a benzophenanthridine alkaloid obtained from the root of Sanguinaria canadensis, and from other poppy Fumaria species, with recognized anti-microbial, anti-oxidant and anti-inflammatory properties. Recently, increasing evidence that sanguinarine exibits anticancer potential through its capability of inducing apoptosis and/or antiproliferative effects on tumor cells, has been proved. Moreover, its antitumor seems to be due not only to its pro-apoptotic and inhibitory effects on tumor growth, but also to its antiangiogenic and anti-invasive properties. Although the precise mechanisms underlying the antitumor activity of this compound remain not fully understood, in this review we will focus on the most recent findings about the cellular and molecular pathways affected by sanguinarine, together with the rationale of its potential application in clinic. The complex of data currently available suggest the potential application of sanguinarine as an adjuvant in the therapy of cancer, but further pre-clinical studies are needed before such an antitumor strategy can be effectively translated in the clinical practice. PMID:26798435

  1. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives.

    PubMed

    Gaziano, Roberta; Moroni, Gabriella; Buè, Cristina; Miele, Martino Tony; Sinibaldi-Vallebona, Paola; Pica, Francesca

    2016-01-15

    Historically, natural products have represented a significant source of anticancer agents, with plant-derived drugs becoming increasingly explored. In particular, sanguinarine is a benzophenanthridine alkaloid obtained from the root of Sanguinaria canadensis, and from other poppy Fumaria species, with recognized anti-microbial, anti-oxidant and anti-inflammatory properties. Recently, increasing evidence that sanguinarine exibits anticancer potential through its capability of inducing apoptosis and/or antiproliferative effects on tumor cells, has been proved. Moreover, its antitumor seems to be due not only to its pro-apoptotic and inhibitory effects on tumor growth, but also to its antiangiogenic and anti-invasive properties. Although the precise mechanisms underlying the antitumor activity of this compound remain not fully understood, in this review we will focus on the most recent findings about the cellular and molecular pathways affected by sanguinarine, together with the rationale of its potential application in clinic. The complex of data currently available suggest the potential application of sanguinarine as an adjuvant in the therapy of cancer, but further pre-clinical studies are needed before such an antitumor strategy can be effectively translated in the clinical practice.

  2. Pegfilgrastim Enhances the Antitumor Effect of Therapeutic Monoclonal Antibodies.

    PubMed

    Cornet, Sébastien; Mathé, Doriane; Chettab, Kamel; Evesque, Anne; Matera, Eva-Laure; Trédan, Olivier; Dumontet, Charles

    2016-06-01

    Therapeutic mAbs exert antitumor activity through various mechanisms, including apoptotic signalization, complement-dependent cytotoxicity, and antibody-dependent cellular cytotoxicity (ADCC) or phagocytosis (ADCP). G-CSF and GM-CSF have been reported to increase the activity of antibodies in preclinical models and in clinical trials. To determine the potential role of pegfilgrastim as an enhancer of anticancer antibodies, we performed a comparative study of filgrastim and pegfilgrastim. We found that pegfilgrastim was significantly more potent than filgrastim in murine xenograft models treated with mAbs. This was observed with rituximab in CD20(+) models and with trastuzumab in HER2(+) models. Stimulation with pegfilgrastim was associated with significant enhancement of leukocyte content in spleen as well as mobilization of activated monocytes/granulocytes from the spleen to the tumor bed. These results suggest that pegfilgrastim could constitute a potent adjuvant for immunotherapy with mAbs possessing ADCC/ADCP properties. Mol Cancer Ther; 15(6); 1238-47. ©2016 AACR.

  3. A new cell counting method to evaluate anti-tumor compound activity.

    PubMed

    Wang, Xue-Jian; Zhang, Xiu-Rong; Zhang, Lei; Li, Qing-Hua; Wang, Lin; Shi, Li-Hong; Fang, Chun-Yan

    2014-01-01

    Determining cell quantity is a common problem in cytology research and anti-tumor drug development. A simple and low-cost method was developed to determine monolayer and adherent-growth cell quantities. The cell nucleus is located in the cytoplasm, and is independent. Thus, the nucleus cannot make contact even if the cell density is heavy. This phenomenon is the foundation of accurate cell-nucleus recognition. The cell nucleus is easily recognizable in images after fluorescent staining because it is independent. A one-to-one relationship exists between the nucleus and the cell; therefore, this method can be used to determine the quantity of proliferating cells. Results indicated that the activity of the histone deacetylase inhibitor Z1 was effective after this method was used. The nude-mouse xenograft model also revealed the potent anti-tumor activity of Z1. This research presents a new anti-tumor-drug evaluation method.

  4. [Antitumor components screening of Stellera chamaejasme L. under the case of discrete distribution of active data].

    PubMed

    Yang, Qian-Xu; Cheng, Meng-Chun; Wang, Li; Kan, Xiao-Xi; Zhu, Xiao-Xin; Xiao, Hong-Bin

    2014-06-01

    This is to report the screening, extracting and validating antitumor components and compounds from Stellera chamaejasme L. under the case of discrete distribution of active data. In this work, different components from Stellera chamaejasme L. were collected by HPD macroporous resin and polyamide resin column, and their antitumor activity on A549 were tested by MTT assay. Activity results indicate that activity of components at 30-39 min is more potent than that of Stellera chamaejasme L. extract, and the activity of components at 33.97 min is equivalent to positive drug, cis-platinum at 100 microg x mL(-1), but with totally different mode of action. Under the case of discrete activity, the weight analysis is capable of screening active components and compounds from natural products.

  5. Design, synthesis and evaluation of novel diaryl urea derivatives as potential antitumor agents.

    PubMed

    Lu, Chenshu; Tang, Ke; Li, Yan; Li, Peng; Lin, Ziyun; Yin, Dali; Chen, Xiaoguang; Huang, Haihong

    2014-04-22

    A novel series of diaryl ureas containing different linker groups were designed and synthesized. Their in vitro antitumor activity against MX-1, A375, HepG2, Ketr3 and HT-29 was evaluated using the standard MTT assay. Compounds having a rigid linker group such as vinyl, ethynyl and phenyl showed significant inhibitory activity against a variety of cancer cell lines. Specifically, compound 23 with a phenyl linker group demonstrated broad-spectrum antitumor activity with IC50 values of 5.17-6.46 μM against five tested tumor cell lines. Compound 23 is more potent than reference drug sorafenib (8.27-15.2 μM), representing a promising lead for further optimization.

  6. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents.

    PubMed

    Congiu, Cenzo; Onnis, Valentina

    2013-11-01

    We have designed, synthesized, and evaluated as potential antitumor agents a series of 2-hydroxybenzylidene derivatives of the N-(2-trifluoromethylpiridyn-4-yl)anthranilic acid hydrazide, and some analogues bearing a (2-trifluoromethyl)piridyn-4-ylamino group in 3- or 4-position of benzohydrazide or 4-position of phenylacetohydrazide. Compounds 12e, 13e, 15e, and 16e, bearing a 4-(diethylamino)salicylidene group exhibited potent cytotoxicity, with averaged GI50 values in sub-micromolar range, and a variety of cell selectivity at nanomolar concentrations. The determination of acute toxicity in athymic nudes mice proved some compounds to be non-toxic, making them good candidates for further study as antitumor agents.

  7. Allylic isothiouronium salts: The discovery of a novel class of thiourea analogues with antitumor activity.

    PubMed

    Ferreira, Misael; Assunção, Laura Sartori; Silva, Adny Henrique; Filippin-Monteiro, Fabíola Branco; Creczynski-Pasa, Tânia Beatriz; Sá, Marcus Mandolesi

    2017-03-31

    A series of 28 aryl- and alkyl-substituted isothiouronium salts were readily synthesized in high yields through the reaction of allylic bromides with thiourea, N-monosubstituted thioureas or thiosemicarbazide. The S-allylic isothiouronium salts substituted with aliphatic groups were found to be the most effective against leukemia cells. These compounds combine high antitumor activity and low toxicity toward non-tumoral cells, with selectivity index higher than 20 in some cases. Furthermore, the selected isothiouronium salts induced G2/M cell cycle arrest and cell death, possibly by apoptosis. Therefore, these compounds can be considered as a promising class of antitumor agents due to the potent cytostatic activity associated with high selectivity.

  8. Fluorinated nucleosides as antiviral and antitumor agents.

    PubMed

    Meng, Wei-Dong; Qing, Feng-Ling

    2006-01-01

    The synthesis of nucleosides and analogues with fluoride modifications on the surgar moiety are reviewed, and their biological activities as potential antiviral and anti-tumor agents are also discussed.

  9. Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin.

    PubMed

    Herrero, Ana B; Martín-Castellanos, Cristina; Marco, Esther; Gago, Federico; Moreno, Sergio

    2006-08-15

    Trabectedin (Yondelis) is a potent antitumor drug that has the unique characteristic of killing cells by poisoning the DNA nucleotide excision repair (NER) machinery. The basis for the NER-dependent toxicity has not yet been elucidated but it has been proposed as the major determinant for the drug's cytotoxicity. To study the in vivo mode of action of trabectedin and to explore the role of NER in its cytotoxicity, we used the fission yeast Schizosaccharomyces pombe as a model system. Treatment of S. pombe wild-type cells with trabectedin led to cell cycle delay and activation of the DNA damage checkpoint, indicating that the drug causes DNA damage in vivo. DNA damage induced by the drug is mostly caused by the NER protein, Rad13 (the fission yeast orthologue to human XPG), and is mainly repaired by homologous recombination. By constructing different rad13 mutants, we show that the DNA damage induced by trabectedin depends on a 46-amino acid region of Rad13 that is homologous to a DNA-binding region of human nuclease FEN-1. More specifically, an arginine residue in Rad13 (Arg961), conserved in FEN1 (Arg314), was found to be crucial for the drug's cytotoxicity. These results lead us to propose a model for the action of trabectedin in eukaryotic cells in which the formation of a Rad13/DNA-trabectedin ternary complex, stabilized by Arg961, results in cell death.

  10. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  11. Synthesis and Biological Evaluation of Novel Dehydroabietic Acid Derivatives Conjugated with Acyl-Thiourea Peptide Moiety as Antitumor Agents

    PubMed Central

    Jin, Le; Qu, Hong-En; Huang, Xiao-Chao; Pan, Ying-Ming; Liang, Dong; Chen, Zhen-Feng; Wang, Heng-Shan; Zhang, Ye

    2015-01-01

    A series of dehydroabietic acid (DHAA) acyl-thiourea derivatives were designed and synthesized as potent antitumor agents. The in vitro pharmacological screening results revealed that the target compounds exhibited potent cytotoxicity against HeLa, SK-OV-3 and MGC-803 tumor cell lines, while they showed lower cytotoxicity against HL-7702 normal human river cells. Compound 9n (IC50 = 6.58 ± 1.11 μM) exhibited the best antitumor activity against the HeLa cell line and even displayed more potent inhibitory activity than commercial antitumor drug 5-FU (IC50 = 36.58 ± 1.55 μM). The mechanism of representative compound 9n was then studied by acridine orange/ethidium bromide staining, Hoechst 33,258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay and flow cytometry, which illustrated that this compound could induce apoptosis in HeLa cells. Cell cycle analysis indicated that compound 9n mainly arrested HeLa cells in the S phase stage. Further investigation demonstrated that compound 9n induced apoptosis of HeLa cells through a mitochondrial pathway. PMID:26132564

  12. Cyclopalladated and cycloplatinated benzophenone imines: antitumor, antibacterial and antioxidant activities, DNA interaction and cathepsin B inhibition.

    PubMed

    Albert, Joan; D'Andrea, Lucía; Granell, Jaume; Pla-Vilanova, Pepita; Quirante, Josefina; Khosa, Muhammad Kaleem; Calvis, Carme; Messeguer, Ramon; Badía, Josefa; Baldomà, Laura; Font-Bardia, Mercè; Calvet, Teresa

    2014-11-01

    The antitumor, antibacterial and antioxidant activity, DNA interaction and cathepsin B inhibition of cyclo-ortho-palladated and -platinated compounds [Pd(C,N)]2(μ-X)2 [X=OAc (1), X=Cl (2)] and trans-N,P-[M(C,N)X(PPh3)] [M=Pd, X=OAc (3), M=Pd, X=Cl (4), M=Pt, X=Cl (5)] are discussed [(C,N)=cyclo-ortho-metallated benzophenone imine]. The cytotoxicity of compound 5 has been evaluated towards human breast (MDA-MB-231 and MCF-7) and colon (HCT-116) cancer cell lines and that of compounds 1-4 towards the HCT-116 human colon cancer cell line. These cytotoxicities have been compared with those previously reported for compounds 1-4 towards MDA-MB-231 and MCF-7 cancer cell lines. Compound 3 and 4 were approximately four times more active than cisplatin against the MDA-MB-231 and MCF-7 cancer cell lines, and compound 5, was approximately four times more potent than cisplatin against the HCT-116 cancer cell line. The antibacterial activity of compounds 1-5 was in between the ranges of activity of the commercial antibiotic compounds cefixime and roxithromycin. Complexes 1-2 and 4-5 presented also antioxidant activity. Compounds 1-5 alter the DNA tertiary structure in a similar way to cisplatin, but at higher concentration, and do not present a high efficiency as cathepsin B inhibitors. Compound 5 has not been previously described, and its preparation, characterization, and X-ray crystal structure are reported.

  13. N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide and its Co(II), Ni(II) and Cu(II) complexes: Synthesis, characterization, DFT computations, thermal decomposition, antioxidant and antitumor activity

    NASA Astrophysics Data System (ADS)

    Yeşilkaynak, Tuncay; Özpınar, Celal; Emen, Fatih Mehmet; Ateş, Burhan; Kaya, Kerem

    2017-02-01

    N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide (HL: C11H8ClN3O2S) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The HL was characterized by single crystal X-ray diffraction technique. It crystallizes in the monoclinic system. The HL has the space group P 1 21/c 1, Z = 4, and its unit cell parameters are a = 4.5437(5) Å, b = 22.4550(3) Å, c = 11.8947(14) Å. The ligand coordinates the metal ions as bidentate and thus essentially yields neutral complexes of the [ML2] type. ML2 complex structures were optimized using B97D/TZVP level. Molecular orbitals of both HL ligand were calculated at the same level. Thermal decomposition of the complexes has been investigated by thermogravimetry. The complexes were screened for their anticancer and antioxidant activities. Antioxidant activity of the complexes was determined by using the DPPH and ABTS assays. The anticancer activity of the complexes was studied by using MTT assay in MCF-7 breast cancer cells.

  14. IL-7 inhibits tumor growth by promoting T cell-mediated antitumor immunity in Meth A model.

    PubMed

    Tang, Jian-Cai; Shen, Guo-Bo; Wang, Shi-Min; Wan, Yong-Sheng; Wei, Yu-Quan

    2014-01-01

    Immune suppression is well documented during tumor progression, which includes loss of effect of T cells and expansion of T regulatory (Treg) cells. IL-7 plays a key role in the proliferation, survival and homeostasis of T cells and displays a potent antitumor activity in vivo. In the present study, we investigated the antitumor effect of IL-7 in Meth A model. IL-7 inhibited tumor growth and prolonged the survival of tumor-bearing mice with corresponding increases in the frequency of CD4 and CD8 T cells, Th1 (CD4(+)IFN-γ(+)), Tc1 (CD8(+)IFN-γ(+)) and T cells cytolytic activity against Meth A cells. Neutralization of CD4 or CD8 T cells reversed the antitumor benefit of IL-7. Furthermore, IL-7 decreased regulatory T Foxp3 as well as cells suppressive activity with a reciprocal increase in SMAD7. In addition, we observed an increase of the serum concentrations of IL-6 and IFN-γ, and a significant decrease of TGF-β and IL-10 after IL-7 treatment. Taken together, these results indicate that IL-7 augments T cell-mediated antitumor immunity and improves the effect of antitumor in Meth A model.

  15. Evaluation of cytotoxic and anti-tumor activity of partially purified serine protease isolate from the Indian earthworm Pheretima posthuma

    PubMed Central

    Verma, Mahendra Kumar; Xavier, Francies; Verma, Yogendra Kumar; Sobha, Kota

    2013-01-01

    Objective To isolate, partially purify and evaluate the cytotoxic and antitumor activity of a serine protease from the chosen Indian earthworm Pheretima posthuma. Methods Whole animal extract was prepared and purified its protein constituents by size and charge based chromatographic separation techniques using Sephadex G-50 and DEAE-Cellulose resin respectively. Average molecular weight of the protein isolate was determined and analyzed for its cytotoxic property against Vero cells in different dilutions (1: 20 and 1: 40) and anti-tumor activity by MTT assay (a colorimetric assay) using breast cancer cell line MCF-7, with tamoxifen as standard. Results One of the protein constituents after purification was characterized as serine protease by Caseinolytic plate diffusion assay. Average molecular weight of this purified isolate was determined, by SDS-PAGE analysis with standard protein ladder, as of 15 kDa. The performed tests suggested that the 15kDa fraction has potent cytotoxic activity and satisfactory antitumor activity as well in vitro. Conclusions Exact molecular mechanism of the cytotoxic and antitumor activities is yet to be explored and currently we are working on ultra-purification and biophysical characterization of this fraction. Further investigation into the mechanism(s) of cytotoxic and antitumor activities at molecular level would be useful in treatment of various classes of cancer and viral infections in future.

  16. Synthesis, spectral, antitumor, antioxidant and antimicrobial studies on Cu(II), Ni(II) and Co(II) complexes of 4-[(1H-Benzoimidazol-2-ylimino)-methyl]-benzene-1,3-diol

    NASA Astrophysics Data System (ADS)

    El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed

    2015-08-01

    A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H3L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC50 of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated.

  17. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin.

    PubMed

    Bhagwat, Shripad V; Gokhale, Prafulla C; Crew, Andrew P; Cooke, Andy; Yao, Yan; Mantis, Christine; Kahler, Jennifer; Workman, Jennifer; Bittner, Mark; Dudkin, Lorina; Epstein, David M; Gibson, Neil W; Wild, Robert; Arnold, Lee D; Houghton, Peter J; Pachter, Jonathan A

    2011-08-01

    The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC(50) values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Kα, PI3Kβ, PI3Kγ, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling. OSI-027 shows concentration-dependent pharmacodynamic effects on phosphorylation of 4E-BP1 and AKT in tumor tissue with resulting tumor growth inhibition. OSI-027 shows robust antitumor activity in several different human xenograft models representing various histologies. Furthermore, in COLO 205 and GEO colon cancer xenograft models, OSI-027 shows superior efficacy compared with rapamycin. Our results further support the important role of mTOR as a driver of tumor growth and establish OSI-027 as a potent anticancer agent. OSI-027 is currently in phase I clinical trials in cancer patients.

  18. 9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors.

    PubMed

    Rodrigues, Marili V N; Barbosa, Alexandre F; da Silva, Júlia F; dos Santos, Deborah A; Vanzolini, Kenia L; de Moraes, Marcela C; Corrêa, Arlene G; Cass, Quezia B

    2016-01-15

    A novel potent xanthine oxidase inhibitor, 3-nitrobenzoyl 9-deazaguanine (LSPN451), was selected from a series of 10 synthetic derivatives. The enzymatic assays were carried out using an on-flow bidimensional liquid chromatography (2D LC) system, which allowed the screening¸ the measurement of the kinetic inhibition constant and the characterization of the inhibition mode. This compound showed a non-competitive inhibition mechanism with more affinity for the enzyme-substrate complex than for the free enzyme, and inhibition constant of 55.1±9.80 nM, about thirty times more potent than allopurinol. Further details of synthesis and enzymatic studies are presented herein.

  19. Synthesis, characterization, and antioxidant/cytotoxic activity of new chromone Schiff base nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II)

    NASA Astrophysics Data System (ADS)

    Saif, M.; El-Shafiy, Hoda F.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Nabeel, A. I.; Fouad, R.

    2016-08-01

    A chromone Schiff base complexes of Zn(II) (1), Cu(II) (2), Ni(II) (3) and Co(II) (4) were successfully prepared in nano domain with crystalline or amorphous structures. The spectroscopic data revealed that the Schiff base ligand behaves as a monoanionic tridentate ligand. The metal complexes exhibited octahedral geometry. Transmission electron microscope (TEM) analysis showed that Cu(II) complex have aggregated nanospheres morphology. The obtained nano-complexes were tested as antioxidant and antitumor agents. The H2L and its Cu(II) complex (2) were found to be more potent antioxidant (IC50(H2L) = 0.93 μM; IC50(Cu(II) complex) = 1.1 μM than standard ascorbic acid (IC50 = 2.1 μM) as evaluated by DPPH• method. The H2L and its complexes (1-4) were tested for their in vitro cytotoxicity against Ehrlich Ascites Carcinoma cell line (EAC). The Cu(II) nano-complex (2) effectively inhibited EAC growth with IC50 value of 47 μM in comparison with its parent compound and other prepared complexes. The high antioxidant activity and antitumor activity of Cu(II) nano-complex (2) were attributed to their chemical structure, Cu(II) reducing capacity, and nanosize property. The toxicity test on mice showed that Zn(II) (1) and Cu(II) (2) nano-complex have lower toxicity than the standard cis-platin.

  20. Palladium(II) and platinum(II) organometallic complexes with the model nucleobase anions of thymine, uracil, and cytosine: antitumor activity and interactions with DNA of the platinum compounds.

    PubMed

    Ruiz, José; Lorenzo, Julia; Sanglas, Laura; Cutillas, Natalia; Vicente, Consuelo; Villa, María Dolores; Avilés, Francesc X; López, Gregorio; Moreno, Virtudes; Pérez, José; Bautista, Delia

    2006-08-07

    Pd(II) and Pt(II) complexes with the anions of the model nucleobases 1-methylthymine (1-MethyH), 1-methyluracil (1-MeuraH), and 1-methylcytosine (1-MecytH) of the types [Pd(dmba)(mu-L)]2 [dmba = N,C-chelating 2-((dimethylamino)methyl)phenyl; L = 1-Methy, 1-Meura or 1-Mecyt] and [M(dmba)(L)(L')] [L = 1-Methy or 1-Meura; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium complexes of the types [Pd(C6F5)(N-N)(L)] [L = 1-Methy or 1-Meura; N-N = N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bpy), or 4,4'-dimethyl-2,2'-bipyridine (Me2bpy)] and [NBu4][Pd(C6F5)(1-Methy)2(H2O)] have also been prepared. The crystal structures of [Pd(dmba)(mu-1-Methy)]2, [Pd(dmba)(mu-1-Mecyt)]2.2CHCl3, [Pd(dmba)(1-Methy)(PPh3)].3CHCl3, [Pt(dmba)(1-Methy)(PPh3)], [Pd(tmeda)(C6F5)(1-Methy)], and [NBu4][Pd(C6F5)(1-Methy)2(H2O)].H2O have been established by X-ray diffraction. The DNA adduct formation of the new platinum complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the platinum complexes on plasmid DNA pBR322 were also obtained. Values of IC50 were also calculated for the new platinum complexes against the tumor cell line HL-60. All the new platinum complexes were more active than cisplatin (up to 20-fold in some cases).

  1. Palladium-Catalyzed Arylation of Carbasugars Enables the Discovery of Potent and Selective SGLT2 Inhibitors.

    PubMed

    Ng, Wai-Lung; Lau, Kit-Man; Lau, Clara B-S; Shing, Tony K M

    2016-10-24

    Selective inhibition of the transporter protein sodium-glucose cotransporter 2 (SGLT2) has emerged as a promising way to control blood glucose level in diabetes patients. Reported herein is a short and convergent synthetic route towards some small-molecule SGLT2 inhibitors by a chemo- and diastereospecific palladium-catalyzed arylation reaction. This synthetic strategy enabled the discovery of two highly selective and potent SGLT2 inhibitors, thereby paving the way towards the development of carbasugar SGLT2 inhibitors as potential antidiabetic/antitumor agents.

  2. Synthesis, characterization and equilibrium studies of some potential antimicrobial and antitumor complexes of Cu(II), Ni(II), Zn(II) and Cd(II) ions involving 2-aminomethylbenzimidazole and glycine

    NASA Astrophysics Data System (ADS)

    Aljahdali, M.

    2013-08-01

    The ternary complexes of Cu(II), Zn(II), Ni(II) and Cd(II) with 2-aminomethylbenzimidazole (AMBI) and glycine as a representative example of amino acids have been isolated and characterized by elemental analyses, IR, ESR, UV-vis, magnetic moment, molar conductance and 1H NMR spectra. AMBI behaves as neutral bidentate ligands with coordination through imidazole and amino group nitrogens while the glycine amino acid behaves as a monodenate anion with coordination involving the amino group and carboxylate oxygen after deprotonation. The magnetic and spectral data indicates a square planar geometry for both Cu2+ and Ni2+ complexes and a tetrahedral geometry for both Zn2+ and Cd2+ complexes. The isolated chelates have been screened for their antifungal and antibacterial activities using the disc diffusion method. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. The stability constants of ternary M-AMBI-Gly complexes were determined potentiometrically in aqueous solution at I = 0.1 mol dm-3 NaCl.

  3. An in vivo highly antitumor-active tetrazolato-bridged dinuclear platinum(II) complex largely circumvents in vitro cisplatin resistance: two linkage isomers yield the same product upon reaction with 9-ethylguanine but exhibit different cytotoxic profiles.

    PubMed

    Uemura, Masako; Suzuki, Toshihiro; Nishio, Kazuto; Chikuma, Masahiko; Komeda, Seiji

    2012-07-01

    Cytotoxicity assays of azolato-bridged dinuclear Pt(II) complexes, [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-azolato)](2+), where the azolato was pyrazolato (1), 1,2,3-triazolato-N1,N2 (2), tetrazolato-N1,N2 (3), or tetrazolato-N2,N3 (4), were performed in cisplatin-sensitive and -resistant human non-small-cell lung cancer cell lines (PC-9 and PC-14). These complexes largely circumvented the cisplatin resistance in both cell lines, with resistance factors for 1-4 in the range of 0.5-0.8 and 0.9-2.0 for PC-9 and PC-14 cells, respectively. Complex 4 exhibited approximately 10 times the cytotoxicity of 3. When 3 and 4 were reacted with 2 molar equiv. of 9-ethylguanine (9EtG), they yielded an identical product, [{cis-Pt(NH(3))(2)(9EtG-N7)}(2)(μ-tetrazolato-N1,N3)](3+), that had N1,N3 platinum coordination through a Pt(II) migration process on the tetrazolate ring. The second-order rate kinetics of these isomers were almost the same as each other and faster than those of 1 and 2. The cytotoxicity of azolato-bridged complexes, except for 3, increases as their kinetic rates in the 9EtG reaction increase.

  4. Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; Serag El-Din, Azza A.

    2014-11-01

    Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.

  5. Oxoisoaporphine as Potent Telomerase Inhibitor.

    PubMed

    Wei, Zu-Zhuang; Qin, Qi-Pin; Chen, Jia-Nian; Chen, Zhen-Feng

    2016-11-14

    Two compounds previously isolated from traditional Chinese medicine, Menispermum dauricum (DC), 6-hydroxyl-oxoisoaporphine (H-L(a)), and 4,6-di(2-pyridinyl)benzo[h]isoindolo[4,5,6-de]quinolin-8(5H)-one (H-L(b)), were known to have in vitro antitumor activity and to selectively bind human telomeric, c-myc, and bcl-2 G-quadruplexes (G4s). In this study, the binding properties of these two compounds to telomerase were investigated through molecular docking and telomeric repeat amplication protocol and silver staining assay (TRAP-silver staining assay). The binding energies bound to human telomerase RNA were calculated by molecular docking to be -6.43 and -9.76 kcal/mol for H-L(a) and H-L(b), respectively. Compared with H-L(a), the ligand H-L(b) more strongly inhibited telomerase activity in the SK-OV-3 cells model.

  6. Molecular hybridization approach of bio-potent Cu(II)/Zn(II) complexes derived from N, O donor bidentate imine scaffolds: Synthesis, spectral, human serum albumin binding, antioxidant and antibacterial studies.

    PubMed

    Shakir, Mohammad; Hanif, Summaiya; Alam, Md Fazle; Younus, Hina

    2016-12-01

    Novel bio-relevant monometallic Schiff base complexes of the type, [Cu(L(1))2] (1), [Zn(L(1))2]·2H2O (2), [Cu(L(2))2]·2H2O (3) and [Zn(L(2))2]·H2O (4) [L(1)(E)-3-(((3-chloro-4-hydroxyphenyl)imino)methyl)naphthalen-2-ol and L(2)(E)-2-chloro-4-((1-(5-chloro-2-hydroxyphenyl)ethylidene)amino)phenol] were synthesized and characterized. A comparative account of analytical, spectroscopic (FT-IR, (1)H and (13)C NMR, Mass, UV-vis and EPR), thermal (TGA/DTA), XRD and SEM studies revealed a correlation between the structure and function of these biologically active molecular entities. HSA (Human serum albumin) binding profiles of the metal complexes (1-4) were monitored using biophysical techniques viz., absorbance, fluorescence, circular dichromism (CD) and foster resonance energy transfer (FRET). The intrinsic binding constant (Kb) demonstrated substantial binding propensity of L(1) linked complexes (1 and 2) in comparison to L(2) complexes (3 and 4) suggesting L(1) to be more bio-active pharmacophore due to higher planarity and conjugation as compared to L(2) ligand. The outcome of fluorescence study revealed static quenching mechanism on the basis of the quenching of HSA by the complexes (1-4). However, modifications in the secondary structure of HSA by complexes (1-4) inferred via CD measurements which revealed the enhancement of α-helicity (67.47% to 69.20%) with the preference order of 1>2>3>4. Furthermore, in-vitro antibacterial study against different bacteria and antioxidant activities against DPPH and superoxide radical (O2(-)) at variable concentrations outspread discernible bio-potencies of the metal complexes as compared to free ligand scaffolds due to the chelation effect.

  7. Listeriolysin O as a strong immunogenic molecule for the development of new anti-tumor vaccines

    PubMed Central

    Sun, Rui; Liu, Yuqin

    2013-01-01

    The pore-forming toxin listeriolysin O (LLO), which is produced by Listeria monocytogenes, mediates bacterial phagosomal escape and facilitates bacterial multiplication during infection. This toxin has recently gained attention because of its confirmed role in the controlled and specific modulation of the immune response. Currently, cancer immunotherapies are focused on conquering the immune tolerance induced by poorly immunogenic tumor antigens and eliciting strong, lasting immunological memory. An effective way to achieve these goals is the co-administration of potent immunomodulatory adjuvant components with vaccine vectors. LLO, a toxin that belongs to the family of cholesterol-dependent cytolysins (CDCs), exhibits potent cell type-non-specific toxicity and is a source of dominant CD4+ and CD8+ T cell epitopes. According to recent research, in addition to its effective cytotoxicity as a cancer immunotherapeutic drug, the non-specific adjuvant property of LLO makes it promising for the development of efficacious anti-tumor vaccines. PMID:23399758

  8. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA

    NASA Astrophysics Data System (ADS)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-01

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  9. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA.

    PubMed

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-15

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  10. Platinum (II) Compounds With Antitumor Activity Studied by Molecular Mechanics

    PubMed Central

    Georgieva, Ivelina; Nikolov, George St.

    1998-01-01

    A series of Pt(ll) complexes with antitumor properties: [1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine]PtL2 (meso-1-PtL2) and [erythro-1-(2,6-dichloro-4-hydroxyphenyl)-2-(2-halo-4-hydroxyphenyl)ethylenediamine]PtL2, [2L=2Cl−,2I−,SO42−; halo = F (erythro-8-PtL2),halo = Cl (erythro-9-PtL2)] has been modelled by molecular mechanics (MM). The MM calculations were carried out for different isomers and ligand conformations meso-δ, meso-λ, d,l-δ, d,I-λ. The compounds with the lowest MM energies have the same geometries as those obtained by X-ray analysis. The calculated MMX energy orders: meso-1-PtL2 < erythro-9-PtL2 < erythro-8-PtL2 for L=I−, Cl− and SO42− are reverse to the known antitumor activity order - the lowest energy complex (the most stable one)is the one with the highest estrogen activity (meso-1-PtL2). The type of the leaving group (L) does not alter the energy order, which is in agreement with the biological experiments that show a slight dependence of the estrogen properties on the leaving group type. PMID:18475828

  11. Platinum (II) Compounds With Antitumor Activity Studied by Molecular Mechanics.

    PubMed

    Trendafilova, N; Georgieva, I; Nikolov, G S

    1998-01-01

    A SERIES OF PT(LL) COMPLEXES WITH ANTITUMOR PROPERTIES: [1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine]PtL(2) (meso-1-PtL(2)) and [erythro-1-(2,6-dichloro-4-hydroxyphenyl)-2-(2-halo-4-hydroxyphenyl)ethylenediamine]PtL(2), [2L=2Cl-,2I-,SO(4) (2)-; halo = F (erythro-8-PtL(2)),halo = Cl (erythro-9-PtL(2))] has been modelled by molecular mechanics (MM). The MM calculations were carried out for different isomers and ligand conformations meso-delta, meso-lambda, d,l-delta, d,I-lambda. The compounds with the lowest MM energies have the same geometries as those obtained by X-ray analysis. The calculated MMX energy orders: meso-1-PtL(2) < erythro-9-PtL(2) < erythro-8-PtL(2) for L=I-, Cl- and SO(4) (2-) are reverse to the known antitumor activity order - the lowest energy complex (the most stable one)is the one with the highest estrogen activity (meso-1-PtL(2)). The type of the leaving group (L) does not alter the energy order, which is in agreement with the biological experiments that show a slight dependence of the estrogen properties on the leaving group type.

  12. CC-223, a Potent and Selective Inhibitor of mTOR Kinase: In Vitro and In Vivo Characterization.

    PubMed

    Mortensen, Deborah S; Fultz, Kimberly E; Xu, Shuichan; Xu, Weiming; Packard, Garrick; Khambatta, Godrej; Gamez, James C; Leisten, Jim; Zhao, Jingjing; Apuy, Julius; Ghoreishi, Kamran; Hickman, Matt; Narla, Rama Krishna; Bissonette, Rene; Richardson, Samantha; Peng, Sophie X; Perrin-Ninkovic, Sophie; Tran, Tam; Shi, Tao; Yang, Wen Qing; Tong, Zeen; Cathers, Brian E; Moghaddam, Mehran F; Canan, Stacie S; Worland, Peter; Sankar, Sabita; Raymon, Heather K

    2015-06-01

    mTOR is a serine/threonine kinase that regulates cell growth, metabolism, proliferation, and survival. mTOR complex-1 (mTORC1) and mTOR complex-2 (mTORC2) are critical mediators of the PI3K-AKT pathway, which is frequently mutated in many cancers, leading to hyperactivation of mTOR signaling. Although rapamycin analogues, allosteric inhibitors that target only the mTORC1 complex, have shown some clinical activity, it is hypothesized that mTOR kinase inhibitors, blocking both mTORC1 and mTORC2 signaling, will have expanded therapeutic potential. Here, we describe the preclinical characterization of CC-223. CC-223 is a potent, selective, and orally bioavailable inhibitor of mTOR kinase, demonstrating inhibition of mTORC1 (pS6RP and p4EBP1) and mTORC2 [pAKT(S473)] in cellular systems. Growth inhibitory activity was demonstrated in hematologic and solid tumor cell lines. mTOR kinase inhibition in cells, by CC-223, resulted in more complete inhibition of the mTOR pathway biomarkers and improved antiproliferative activity as compared with rapamycin. Growth inhibitory activity and apoptosis was demonstrated in a panel of hematologic cancer cell lines. Correlative analysis revealed that IRF4 expression level associates with resistance, whereas mTOR pathway activation seems to associate with sensitivity. Treatment with CC-223 afforded in vivo tumor biomarker inhibition in tumor-bearing mice, after a single oral dose. CC-223 exhibited dose-dependent tumor growth inhibition in multiple solid tumor xenografts. Significant inhibition of mTOR pathway markers pS6RP and pAKT in CC-223-treated tumors suggests that the observed antitumor activity of CC-223 was mediated through inhibition of both mTORC1 and mTORC2. CC-223 is currently in phase I clinical trials.

  13. Immunosuppression Enhances Oncolytic Adenovirus Replication and Antitumor Efficacy in the Syrian Hamster Model

    PubMed Central

    Thomas, Maria A; Spencer, Jacqueline F; Toth, Karoly; Sagartz, John E; Phillips, Nancy J; Wold, William SM

    2012-01-01

    We recently described an immunocompetent Syrian hamster model for oncolytic adenoviruses (Ads) that permits virus replication in tumor cells as well as some normal tissues. This model allows exploration of interactions between the virus, tumor, normal organs, and host immune system that could not be examined in the immunodeficient or nonpermissive animal models previously used in the oncolytic Ad field. Here we asked whether the immune response to oncolytic Ad enhances or limits antitumor efficacy. We first determined that cyclophosphamide (CP) is a potent immunosuppressive agent in the Syrian hamster and that CP alone had no effect on tumor growth. Importantly, we found that the antitumor efficacy of oncolytic Ads was significantly enhanced in immunosuppressed animals. In animals that received virus therapy plus immunosuppression, significant differences were observed in tumor histology, and in many cases little viable tumor remained. Notably, we also determined that immunosuppression allowed intratumoral virus levels to remain elevated for prolonged periods. Although favorable tumor responses can be achieved in immunocompetent animals, the rate of virus clearance from the tumor may lead to varied antitumor efficacy. Immunosuppression, therefore, allows sustained Ad replication and oncolysis, which leads to substantially improved suppression of tumor growth. PMID:18665155

  14. Immunosuppression enhances oncolytic adenovirus replication and antitumor efficacy in the Syrian hamster model.

    PubMed

    Thomas, Maria A; Spencer, Jacqueline F; Toth, Karoly; Sagartz, John E; Phillips, Nancy J; Wold, William S M

    2008-10-01

    We recently described an immunocompetent Syrian hamster model for oncolytic adenoviruses (Ads) that permits virus replication in tumor cells as well as some normal tissues. This model allows exploration of interactions between the virus, tumor, normal organs, and host immune system that could not be examined in the immunodeficient or nonpermissive animal models previously used in the oncolytic Ad field. Here we asked whether the immune response to oncolytic Ad enhances or limits antitumor efficacy. We first determined that cyclophosphamide (CP) is a potent immunosuppressive agent in the Syrian hamster and that CP alone had no effect on tumor growth. Importantly, we found that the antitumor efficacy of oncolytic Ads was significantly enhanced in immunosuppressed animals. In animals that received virus therapy plus immunosuppression, significant differences were observed in tumor histology, and in many cases little viable tumor remained. Notably, we also determined that immunosuppression allowed intratumoral virus levels to remain elevated for prolonged periods. Although favorable tumor responses can be achieved in immunocompetent animals, the rate of virus clearance from the tumor may lead to varied antitumor efficacy. Immunosuppression, therefore, allows sustained Ad replication and oncolysis, which leads to substantially improved suppression of tumor growth.

  15. Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer1

    PubMed Central

    Zhang, Tao; Chen, Yihua; Li, Jingjie; Yang, Feifei; Wu, Haigang; Dai, Fujun; Hu, Meichun; Lu, Xiaoling; Peng, Yi; Liu, Mingyao; Zhao, Yongxiang; Yi, Zhengfang

    2014-01-01

    Accumulating evidence demonstrates important roles for histone deacetylase in tumorigenesis (HDACs), highlighting them as attractive targets for antitumor drug development. Histone deactylase inhibitors (HDACIs), which have shown favorable anti-tumor activity with low toxicity in clinical investigations, are a promising class of anticancer therapeutics. Here, we screened our compound library to explore small molecules that possess anti-HDAC activity and identified a novel HDACI, YF479. Suberoylanilide hydroxamic acid (SAHA), which was the first approved HDAC inhibitor for clinical treatment by the FDA, was as positive control in our experiments. We further demonstrated YF479 abated cell viability, suppressed colony formation and tumor cell motility in vitro. To investigate YF479 with superior pharmacodynamic properties, we developed spontaneous and experimental breast cancer animal models. Our results showed YF479 significantly inhibited breast tumor growth and metastasis in vivo. Further study indicated YF479 suppressed both early and end stages of metastatic progression. Subsequent adjuvant chemotherapy animal experiment revealed the elimination of local-regional recurrence (LRR) and distant metastasis by YF479. More important, YF479 remarkably prolonged the survival of tumor-bearing mice. Intriguingly, YF479 displayed more potent anti-tumor activity in vitro and in vivo compared with SAHA. Together, our results suggest that YF479, a novel HDACI, inhibits breast tumor growth, metastasis and recurrence. In light of these results, YF479 may be an effective therapeutic option in clinical trials for patients burdened by breast cancer. PMID:25220594

  16. RIG-I activation induces the release of extracellular vesicles with antitumor activity

    PubMed Central

    Daßler-Plenker, Juliane; Reiners, Katrin S.; van den Boorn, Jasper G.; Hansen, Hinrich P.; Putschli, Bastian; Barnert, Sabine; Schuberth-Wagner, Christine; Schubert, Rolf; Tüting, Thomas; Hallek, Michael; Schlee, Martin; Hartmann, Gunther; Pogge von Strandmann, Elke; Coch, Christoph

    2016-01-01

    ABSTRACT Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5′-triphosphate-RNA (3pRNA) triggers antitumor immunity predominantly via NK cell activation and direct apoptosis induction in tumor cells. However, how NK cells are mobilized to attack the tumor cells remains elusive. Here, we show that RIG-I activation induced the secretion of extracellular vesicles (EVs) from melanoma cells, which by themselves revealed antitumor activity in vitro and in vivo. RIG-I-induced EVs from melanoma cells exhibited an increased expression of the NKp30-ligand (BAG6, BAT3) on their surface triggering NK cell-mediated lysis of melanoma cells via activation of the cytotoxicity NK cell-receptor NKp30. Moreover, systemic administration of RIG-I-induced melanoma-EVs showed a potent antitumor activity in a melanoma mouse model in vivo. In conclusion, our data establish a new RIG-I-dependent pathway leading to NK cell-mediated tumor cell killing. PMID:27853642

  17. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis

    PubMed Central

    Arlia-Ciommo, Anthony; Svistkova, Veronika; Mohtashami, Sadaf; Titorenko, Vladimir I.

    2016-01-01

    A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast. PMID:26636650

  18. Lasing the DNA fragments through β-diketimine framed Knoevenagel condensed Cu(II) and Zn(II) complexes--an in vitro and in vivo approach.

    PubMed

    Raman, Natarajan; Pravin, Narayanaperumal

    2014-01-24

    The syntheses, structures and spectroscopic properties of Cu(II) and Zn(II) complexes having Knoevenagel condensate β-diketimine Schiff base ligands have been investigated in this paper. Characterization of these complexes was carried out using FTIR, NMR, UV-Vis, elemental analysis, mass and EPR techniques. Absorption titration, electrochemical analyses and viscosity measurements have also been carried out to determine the mode of binding. The shift in ΔEp, E1/2 and Ipc values explores the interaction of CT DNA with the above metal complexes. Interaction of ligands and their complexes with DNA revealed an intercalative mode of binding between them. Antimicrobial studies showed an effective antimicrobial activity of the metal ions after coordination with the ligands. The antioxidant properties of the Schiff base ligands and their complexes were evaluated in a series of in vitro tests by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and H2O2 free radical scavengers. In vivo and in vitro antitumor functions of the complexes against Ehrlich ascites carcinoma tumor model have also been investigated. All the results support that β-diketone derived Knoevenagel condensate Schiff base complexes may act as novel antitumor drugs and suggest that their potent cell life inhibition may contribute to their anti-cancer efficacy.

  19. Lasing the DNA fragments through β-diketimine framed Knoevenagel condensed Cu(II) and Zn(II) complexes - An in vitro and in vivo approach

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Pravin, Narayanaperumal

    2014-01-01

    The syntheses, structures and spectroscopic properties of Cu(II) and Zn(II) complexes having Knoevenagel condensate β-diketimine Schiff base ligands have been investigated in this paper. Characterization of these complexes was carried out using FTIR, NMR, UV-Vis, elemental analysis, mass and EPR techniques. Absorption titration, electrochemical analyses and viscosity measurements have also been carried out to determine the mode of binding. The shift in ΔEp, E1/2 and Ipc values explores the interaction of CT DNA with the above metal complexes. Interaction of ligands and their complexes with DNA revealed an intercalative mode of binding between them. Antimicrobial studies showed an effective antimicrobial activity of the metal ions after coordination with the ligands. The antioxidant properties of the Schiff base ligands and their complexes were evaluated in a series of in vitro tests by using 1,1-diphenyl-2-picrylhydrazyl (DPPHrad ) and H2O2 free radical scavengers. In vivo and in vitro antitumor functions of the complexes against Ehrlich ascites carcinoma tumor model have also been investigated. All the results support that β-diketone derived Knoevenagel condensate Schiff base complexes may act as novel antitumor drugs and suggest that their potent cell life inhibition may contribute to their anti-cancer efficacy.

  20. Adoptive transfer of Tc1 or Tc17 cells elicits antitumor immunity against established melanoma through distinct mechanisms.

    PubMed

    Yu, Yu; Cho, Hyun-Ii; Wang, Dapeng; Kaosaard, Kane; Anasetti, Claudio; Celis, Esteban; Yu, Xue-Zhong

    2013-02-15

    Adoptive cell transfer (ACT) of ex vivo-activated autologous tumor-reactive T cells is currently one of the most promising approaches for cancer immunotherapy. Recent studies provided some evidence that IL-17-producing CD8(+) (Tc17) cells may exhibit potent antitumor activity, but the specific mechanisms have not been completely defined. In this study, we used a murine melanoma lung-metastasis model and tested the therapeutic effects of gp100-specific polarized type I CD8(+) cytotoxic T (Tc1) or Tc17 cells combined with autologous bone marrow transplantation after total body irradiation. Bone marrow transplantation combined with ACT of antitumor (gp100-specific) Tc17 cells significantly suppressed the growth of established melanoma, whereas Tc1 cells induced long-term tumor regression. After ACT, Tc1 cells maintained their phenotype to produce IFN-γ, but not IL-17. However, although Tc17 cells largely preserved their ability to produce IL-17, a subset secreted IFN-γ or both IFN-γ and IL-17, indicating the plasticity of Tc17 cells in vivo. Furthermore, after ACT, the Tc17 cells had a long-lived effector T cell phenotype (CD127(hi)/KLRG-1(low)) as compared with Tc1 cells. Mechanistically, Tc1 cells mediated antitumor immunity primarily through the direct effect of IFN-γ on tumor cells. In contrast, despite the fact that some Tc17 cells also secreted IFN-γ, Tc17-mediated antitumor immunity was independent of the direct effects of IFN-γ on the tumor. Nevertheless, IFN-γ played a critical role by creating a microenvironment that promoted Tc17-mediated antitumor activity. Taken together, these studies demonstrate that both Tc1 and Tc17 cells can mediate effective antitumor immunity through distinct effector mechanisms, but Tc1 cells are superior to Tc17 cells in mediating tumor regression.

  1. In vitro anticancer activity evaluation of new cationic platinum(II) complexes based on imidazole moiety.

    PubMed

    Rimoldi, Isabella; Facchetti, Giorgio; Lucchini, Giorgio; Castiglioni, Elisa; Marchianò, Silvia; Ferri, Nicola

    2017-03-15

    The development and the synthesis of cationic platinum(II) complexes were realized and their cytotoxic activity was tested on triple negative breast cancer MDA-MB-231 cell line and in two cell lines poorly responsive to cisplatin (DLD-1 and MCF-7). The complex 2c resulted the most potent cytotoxic agent in MDA-MB-231 (IC50=61.9µM) and more effective than cisplatin on both DLD-1 (IC50=57.4µM) and MCF-7 (IC50=79.9µM) cell lines. 2c showed different cellular uptake and pharmacodynamic properties than cisplatin, interfering with the progression of the M phase of the cell cycle. Thus, 2c represents a lead compound of a new class of cytotoxic agents with promising antitumor activity.

  2. Antitumor activity of an anti-CD98 antibody.

    PubMed

    Hayes, Gregory M; Chinn, Lawrence; Cantor, Joseph M; Cairns, Belinda; Levashova, Zoia; Tran, Hoang; Velilla, Timothy; Duey, Dana; Lippincott, John; Zachwieja, Joseph; Ginsberg, Mark H; H van der Horst, Edward

    2015-08-01

    CD98 is expressed on several tissue types and specifically upregulated on fast-cycling cells undergoing clonal expansion. Various solid (e.g., nonsmall cell lung carcinoma) as well as hematological malignancies (e.g., acute myeloid leukemia) overexpress CD98. We have identified a CD98-specific mouse monoclonal antibody that exhibits potent preclinical antitumor activity against established lymphoma tumor xenografts. Additionally, the humanized antibody designated IGN523 demonstrated robust tumor growth inhibition in leukemic cell-line derived xenograft models and was as efficacious as standard of care carboplatin in patient-derived nonsmall lung cancer xenografts. In vitro studies revealed that IGN523 elicited strong ADCC activity, induced lysosomal membrane permeabilization and inhibited essential amino acid transport function, ultimately resulting in caspase-3 and -7-mediated apoptosis of tumor cells. IGN523 is currently being evaluated in a Phase I clinical trial for acute myeloid leukemia (NCT02040506). Furthermore, preclinical data support the therapeutic potential of IGN523 in solid tumors.

  3. Antitumor Activity of Ionic Liquids Based on Ampicillin.

    PubMed

    Ferraz, Ricardo; Costa-Rodrigues, João; Fernandes, Maria H; Santos, Miguel M; Marrucho, Isabel M; Rebelo, Luís Paulo N; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, Željko; Branco, Luís C

    2015-09-01

    Significant antiproliferative effects against various tumor cell lines were observed with novel ampicillin salts as ionic liquids. The combination of anionic ampicillin with appropriate ammonium, imidazolium, phosphonium, and pyridinium cations yielded active pharmaceutical ingredient ionic liquids (API-ILs) that show potent antiproliferative activities against five different human cancer cell lines: T47D (breast), PC3 (prostate), HepG2 (liver), MG63 (osteosarcoma), and RKO (colon). Some API-ILs showed IC50 values between 5 and 42 nM, activities that stand in dramatic contrast to the negligible cytotoxic activity level shown by the ampicillin sodium salt. Moreover, very low cytotoxicity against two primary cell lines-skin (SF) and gingival fibroblasts (GF)-indicates that the majority of these API-ILs are nontoxic to normal human cell lines. The most promising combination of antitumor activity and low toxicity toward healthy cells was observed for the 1-hydroxyethyl-3-methylimidazolium-ampicillin pair ([C2 OHMIM][Amp]), making this the most suitable lead API-IL for future studies.

  4. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Dayong; Li, Jing; Guo, Shuju; Su, Hua; Fan, Xiao

    2009-05-01

    To investigate the antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo, six bromophenol derivatives 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (1), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (2), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethyl-pyrocatechol (3), 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxy-diphenylmethane (4), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (5), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane (6) were isolated from brown alga Leathesia nana, and their cytotoxicity were tested by MTT assays in human cancer cell lines A549, BGC-823, MCF-7, B16-BL6, HT-1080, A2780, Bel7402 and HCT-8. Their inhibitory activity against protein tyrosine kinase (PTK) with over-expression of c-kit was analyzed also by ELISA. The antitumor activity of ethanolic extraction of Leathesia nana (EELN) was evaluated on S180-bearing mice. All compounds showed very potent cytotoxicity against all of the eight cancer cell lines with IC50 below 10 μg/mL. In PTK inhibition study, all bromophenol derivatives showed moderate inhibitory activity and compounds 2, 5 and 6 showed significant bioactivity with the inhibition ratio of 77.5%, 80.1% and 71.4%, respectively. Pharmacological studies reveal that EELN could inhibit the growth of Sarcoma 180 tumor and increase the indices of thymus and spleen to improve the immune system remarkably in vivo. Results indicated that the bromophenol derivatives and EELN can be used as potent antitumor agents for PTK over-expression of c-kit and considered in a new therapeutic strategy for treatment of cancer.

  5. PPARγ-Independent Antitumor Effects of Thiazolidinediones

    PubMed Central

    Wei, Shuo; Yang, Jian; Lee, Su-Lin; Kulp, Samuel K.; Chen, Ching-Shih

    2009-01-01

    The thiazolidinedione (TZD) family of PPARγ agonists, especially troglitazone and ciglitazone, induce cell cycle arrest, differentiation, and apoptosis in cancer cells. Mounting evidence indicates that TZDs interfere with multiple signaling mechanisms independently of PPARγactivation, which affect many aspects of cellular functions governing cell cycle progression and survival of cancer cells. Here, we review the “off-target” mechanisms that underlie the antitumor effects of TZDs with emphasis on three key pathways, namely, inhibition of Bcl-2/Bcl-xL function, proteasomal degradation of cell cycle- and apoptosis-regulatory proteins, and transcriptional repression of androgen receptor (AR) through Sp1 degradation. Relative to tumor cells, nonmalignant cells are resistant to these PPARγ-independent antitumor effects, which underscores the translational potential of these agents. Furthermore, dissociation of these antitumor effects from their PPARγ agonist activity provides a rationale for using TZDs as scaffolds for lead optimization to develop a novel class of antitumor agents with a unique mode of mechanism. PMID:18790559

  6. Marine Antitumor Drugs: Status, Shortfalls and Strategies

    PubMed Central

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Cancer is considered as one of the deadliest diseases in the medical field. Apart from the preventive therapies, it is important to find a curative measure which holds no loopholes and acts accurately and precisely to curb cancer. Over the past few decades, there have been advances in this field and there are many antitumor compounds available on the market, which are of natural as well as synthetic origin. Marine chemotherapy is well recognized nowadays and profound development has been achieved by researchers to deal with different molecular pathways of tumors. However, the marine environment has been less explored for the production of safe and novel antitumor compounds. The reason is a number of shortfalls in this field. Though ample reviews cover the importance and applications of various anticancerous compounds from marine natural products, in the present review, we have tried to bring the current status of antitumor research based on marine inhibitors of cancer signaling pathways. In addition, focus has been placed on the shortfalls and probable strategies in the arena of marine antitumor drug discovery. PMID:21116415

  7. [Immunomodulatory and antitumor properties of polysaccharide peptide (PSP)].

    PubMed

    Piotrowski, Jakub; Jędrzejewski, Tomasz; Kozak, Wiesław

    2015-01-21

    Modern medicine successfully uses multiple immunomodulators of natural origin, that can affect biological reactions and support body's natural defense mechanisms including antitumor activities. Among them is a group of products derived from fungi, including schizophyllan, lentinan, polysaccharide Krestin (PSK), and polysaccharidepeptide (PSP). Present paper is focused on polysaccharidepeptide, which due to the negligible toxicity and numerous benefits for health, is increasingly used in China and Japan as an adjuvant in the treatment of cancer. PSP is a protein-polisaccharide complex with a molecular weight 100 kDa derived from Coriolus versicolor mushroom. The results of numerous studies and clinical trials confirm that it inhibits the growth of cancer cells in in vitro and in vivo settings as well as decreases cancer treatment-related adverse side effects such as fatigue, loss of appetite, nausea, vomiting, and pain. PSP is able to restore weakened immune response observed in patients with cancer during chemotherapy. Its anti-tumor effects seemed to be mediated through immunomodulatory regulation. PSP stimulates cells of the immune system, induces synthesis of cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α), eicosanoids including prostaglandin E2 (PGE2), histamine, reactive oxygen species and nitrogen mediators. There is a growing interest in understanding the mechanisms of PSP action. Because of its unique properties and safety, PSP may become a widely used therapeutic agent in the near future.

  8. [Study of rat blood serum biochemical indicators of cardiotoxic action of novel antitumor 4-thiazolidinone derivatives and doxorubicin in complexes with polyethylene glycol-containing polymeric carrier in the rat blood serum].

    PubMed

    Kobylyns'ka, L I; Havryliuk, D Ia; Riabtseva, A O; Mitina, N Ie; Zaichenko, O S; Zimenkovskyĭ, B S; Stoĭka, R S

    2014-01-01

    The aim of this study was to measure the activity of enzymes which reflect cardiotoxic action in rats of novel synthetic 4-thiazolidone derivatives--3882, 3288 and 3833 that demonstrated antineoplastic effect in vitro towards 60 lines of human tumor cells tested in the framework of the program of screening new anticancer drugs at the National Cancer Institute (USA). Such action of these compounds was compared with the effect of well known anticancer agent doxorubicin and after conjugation of all above mentioned substances with new polyethylenglycol-containing polymeric comb-like carrier that was synthesized by the authors. Among the biochemical indicators of cardiotoxic action of anticancer agents, activity of the following enzymes in rat blood serum showed to be the most informative: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransterase. Tenfold injection of doxorubicin in a dose of 5.5 mg/kg of weight caused rats' death, while 3882, 3288 and 3833 preparations had not such action. Application of the doxorubicin in combination with polymeric carrier prolonged the survival time to 20 days. Thus, the injection of anticancer agents in a complex with polymeric carrier provides a significant decrease in their cardiotoxicity that was confirmed by the corresponding changes in the activity of marker enzymes: creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in blood serum of treated rats.

  9. CpG Oligodeoxynucleotide1826 combined with radioresistant cancer cell vaccine confers significant antitumor effects.

    PubMed

    Zhuang, X B; Xing, N; Zhang, Q; Yuan, S J; Chen, W; Qiao, T K

    2015-01-01

    Immunotherapy is a hot issue in cancer research over the years and tumor cell vaccine is one of the increasing number of studies. Although the whole tumor cell vaccine can provide the best source of immunizing antigens, there is still a limitation that most tumors are not naturally immunogenic. CpG Oligodeoxynucleotides (CpG ODNs), synthetic oligonucleotides containing a cytosine-phosphate-guanine(CpG) motif, was shown to enhance immune responses to a wide variety of antigens. In this study, we generated the radioresistant Lewis lung cancer cell by repeated X-ray radiation and inactivated it as a whole tumor cell vaccine to enhance the immunogenicity of tumor cell vaccine. Mice were subcutaneously immunized with this inactivated vaccine combined with CpG ODN1826 and then inoculated with autologous Lewis lung cancer (LLC) to estimate the antitumor efficacy. The results showed that the radioresistant tumor cell vaccine combined with CpG ODN1826 could significantly inhibit tumor growth, increased survival of the mice and with 20% of the mice surviving tumor free in vivo compared with the unimmunized mice bearing LLC tumor. A significant increase of apoptosis was also observed in the tumor prophylactically immunized with vaccine of inactivated radioresistant tumor cell plus CpG ODN1826. The potent antitumor effect correlated with higher secretion levels of tumor necrosis factor-alpha(TNF-α) and lower levels of interleukin-10(IL-10) concentration in serum. Furthermore, the results suggested that the antitumor mechanism was probably depended on the decreased level of programmed death ligand-1(PD-L1) which plays an important role in the negative regulation of immune response by the inhibition of tumor antigen-specific T cell activation. These findings clearly demonstrated that the radioresistant tumor cell vaccine combined with CpG ODN1826 as an appropriate adjuvant could induce effective antitumor immunity in vivo.

  10. Anti-tumor activity of calcitriol: pre-clinical and clinical studies.

    PubMed

    Trump, Donald L; Hershberger, Pamela A; Bernardi, Ronald J; Ahmed, Sharmilla; Muindi, Josephia; Fakih, Marwan; Yu, Wei-Dong; Johnson, Candace S

    2004-05-01

    1,25-Dihydroxycholecalciferol (calcitriol) is recognized widely for its effects on bone and mineral metabolism. Epidemiological data suggest that low Vitamin D levels may play a role in the genesis of prostate cancer and perhaps other tumors. Calcitriol is a potent anti-proliferative agent in a wide variety of malignant cell types. In prostate, breast, colorectal, head/neck and lung cancer as well as lymphoma, leukemia and myeloma model systems calcitriol has significant anti-tumor activity in vitro and in vivo. Calcitriol effects are associated with an increase in G0/G1 arrest, induction of apoptosis and differentiation, modulation of expression of growth factor receptors. Glucocorticoids potentiate the anti-tumor effect of calcitriol and decrease calcitriol-induced hypercalcemia. Calcitriol potentiates the antitumor effects of many cytotoxic agents and inhibits motility and invasiveness of tumor cells and formation of new blood vessels. Phase I and II trials of calcitriol either alone or in combination with carboplatin, taxanes or dexamethasone have been initiated in patients with androgen dependent and independent prostate cancer and advanced cancer. Data indicate that high-dose calcitriol is feasible on an intermittent schedule, no dose-limiting toxicity has been encountered and optimal dose and schedule are being delineated. Clinical responses have been seen with the combination of high dose calcitriol+dexamethasone in androgen independent prostate cancer (AIPC) and apparent potentiation of the antitumor effects of docetaxel have been seen in AIPC. These results demonstrate that high intermittent doses of calcitriol can be administered to patients without toxicity, that the MTD is yet to be determined and that calcitriol has potential as an anti-cancer agent.

  11. Non-steroidal anti-inflammatory drugs as potent inhibitors of phospholipase A2: structure of the complex of phospholipase A2 with niflumic acid at 2.5 Angstroms resolution.

    PubMed

    Jabeen, Talat; Singh, Nagendra; Singh, Rajendra K; Sharma, Sujata; Somvanshi, Rishi K; Dey, Sharmistha; Singh, Tej P

    2005-12-01

    Phospholipase A(2) (PLA(2); EC 3.1.3.4) catalyzes the first step of the production of proinflammatory compounds collectively known as eicosanoids. The binding of phospholipid substrates to PLA(2) occurs through a well formed hydrophobic channel. Surface plasmon resonance studies have shown that niflumic acid binds to Naja naja sagittifera PLA(2) with an affinity that corresponds to a dissociation constant (K(d)) of 4.3 x 10(-5) M. Binding studies of PLA(2) with niflumic acid were also carried out using a standard PLA(2) kit that gave an approximate binding constant, K(i), of 1.26 +/- 0.05 x 10(-6) M. Therefore, in order to establish the viability of PLA(2) as a potential target molecule for drug design against inflammation, arthritis and rheumatism, the three-dimensional structure of the complex of PLA(2) with the known anti-inflammatory agent niflumic acid [2-[3-(trifluoromethyl)anilino]nicotinic acid] has been determined at 2.5 Angstroms resolution. The structure of the complex has been refined to an R factor of 0.187. The structure determination reveals the presence of one niflumic acid molecule at the substrate-binding site of PLA(2). It shows that niflumic acid interacts with the important active-site residues His48 and Asp49 through two water molecules. It is observed that the niflumic acid molecule is completely buried in the substrate-binding hydrophobic channel. The conformations of the binding site in PLA(2) as well as that of niflumic acid are not altered upon binding. However, the orientation of the side chain of Trp19, which is located at the entry of the substrate-binding site, has changed from that found in the native PLA(2), indicating its familiar role.

  12. DNA adducts of antitumor trans-[PtCl2 (E-imino ether)2].

    PubMed Central

    Brabec, V; Vrána, O; Nováková, O; Kleinwächter, V; Intini, F P; Coluccia, M; Natile, G

    1996-01-01

    It has been shown recently that some analogues of clinically ineffective trans-diamminedichloroplatinum (II) (transplatin) exhibit antitumor activity. This finding has inverted the empirical structure-antitumor activity relationships delineated for platinum(II) complexes, according to which only the cis geometry of leaving ligands in the bifunctional platinum complexes is therapeutically active. As a result, interactions of trans platinum compounds with DNA, which is the main pharmacological target of platinum anticancer drugs, are of great interest. The present paper describes the DNA binding of antitumor trans-[PtCl(2)(E-imino ether)(2)] complex (trans-EE) in a cell-free medium, which has been investigated using three experimental approaches. They involve thiourea as a probe of monofunctional DNA adducts of platinum (II) complexes with two leaving ligands in the trans configuration, ethidium bromide as a probe for distinguishing between monofunctional and bifunctional DNA adducts of platinum complexes and HPLC analysis of the platinated DNA enzymatically digested to nucleosides. The results show that bifunctional trans-EE preferentially forms monofunctional adducts at guanine residues in double-helical DNA even when DNA is incubated with the platinum complex for a relatively long time (48 h at 37 degrees C in 10 mM NaCIO(4). It implies that antitumor trans-EE modifies DNA in a different way than clinically ineffective transplatin, which forms prevalent amount of bifunctional DNA adducts after 48 h. This result has been interpreted to mean that the major adduct of trans-EE, occurring in DNA even after long reaction times, is a monofunctional adduct in which the reactivity of the second leaving group is markedly reduced. It has been suggested that the different properties of the adducts formed on DNA by transplatin and trans-EE are relevant to their distinct clinical efficacy. PMID:8628659

  13. New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: Spectral, magnetic, thermal and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.

    2015-03-01

    Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.

  14. Antitumor Effects and Immunomodulating Activities of Phellinus linteus Extract in a CT-26 Cell-Injected Colon Cancer Mouse Model

    PubMed Central

    Hwang, Seung-Lark; Yun, Ik-Jin; Do, Eun-Ju; Lee, Won-Ha; Jung, Young-Mi; Hong, Sung-Chang; Park, Dong-Chan

    2009-01-01

    The antitumor effects of Phellinus linteus extract (Keumsa Linteusan) were investigated in a CT-26 cell-injected colon cancer mouse model. When administered orally (250~1,000 mg/kg body weight), Keumsa Linteusan significantly inhibited the growth of solid colon cancer. The highest dose was highly effective, reducing tumor formation by 26% compared with the control group. The anticomplementary activity of Keumsa Linteusan increased in a dose-dependent manner. Lysosomal enzyme activity of macrophages was increased by 2-fold (100 µg/ml) compared with the control group. Keumsa Linteusan can be regarded as a potent enhancer of the innate immune response, and can be considered as a very promising candidate for antitumor action. PMID:23983521

  15. A pH-responsive chitosan-b-poly(p-dioxanone) nanocarrier: formation and efficient antitumor drug delivery

    NASA Astrophysics Data System (ADS)

    Tang, Dao-Lu; Song, Fei; Chen, Cheng; Wang, Xiu-Li; Wang, Yu-Zhong

    2013-04-01

    Increasing attention has recently been paid to the fabrication of drug delivery systems with excellent cell internalization and intracellular drug release properties. In this study, an amphiphilic block copolymer of chitosan was synthesized for the first time, which can self-assemble into micelles in a neutral aqueous solution but partially disassemble in an acidic endosomal/lysosomal environment. The antitumor drug, camptothecin (CPT), was encapsulated in the cores of the micelles for tumor cell therapy. In vitro drug release studies demonstrated that the micelles presented a much faster release of CPT at pH 5.0 than at pH 7.4. Blank micelles were found to be nontoxic in preliminary in vitro cytotoxicity assays. Cell experiments showed that the CPT-loaded micelles could be effectively internalized by Hela cells and accomplished a potent antitumor cell efficacy, indicating that the chitosan-based micelles might be an attractive new platform for efficient intracellular drug delivery.

  16. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    PubMed

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing.

  17. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent.

    PubMed

    Merchant, Mark; Ma, Xiaolei; Maun, Henry R; Zheng, Zhong; Peng, Jing; Romero, Mally; Huang, Arthur; Yang, Nai-ying; Nishimura, Merry; Greve, Joan; Santell, Lydia; Zhang, Yu-Wen; Su, Yanli; Kaufman, Dafna W; Billeci, Karen L; Mai, Elaine; Moffat, Barbara; Lim, Amy; Duenas, Eileen T; Phillips, Heidi S; Xiang, Hong; Young, Judy C; Vande Woude, George F; Dennis, Mark S; Reilly, Dorothea E; Schwall, Ralph H; Starovasnik, Melissa A; Lazarus, Robert A; Yansura, Daniel G

    2013-08-06

    Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coli-derived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion. Onartuzumab potently inhibits HGF binding and receptor phosphorylation and signaling and has antibody-like pharmacokinetics and antitumor activity. Biochemical data and a crystal structure of a ternary complex of onartuzumab antigen-binding fragment bound to a MET extracellular domain fragment, consisting of the MET Sema domain fused to the adjacent Plexins, Semaphorins, Integrins domain (MET Sema-PSI), and the HGF β-chain demonstrate that onartuzumab acts specifically by blocking HGF α-chain (but not β-chain) binding to MET. These data suggest a likely binding site of the HGF α-chain on MET, which when dimerized leads to MET signaling. Onartuzumab, therefore, represents the founding member of a class of therapeutic monovalent antibodies that overcomes limitations of antibody bivalency for targets impacted by antibody crosslinking.

  18. Synthesis and docking studies of novel antitumor benzimidazoles.

    PubMed

    Omar, Mohamed A; Shaker, Yasser M; Galal, Shadia A; Ali, Mamdouh M; Kerwin, Sean M; Li, Jing; Tokuda, Harukuni; Ramadan, Raghda A; El Diwani, Hoda I

    2012-12-15

    In this work, the benzimidazole-pyrrole conjugates 6a-h and benzimidazole-tetracycles conjugates 12-14 were prepared. The cytotoxicity of the compounds 3, 4a-h, 6a-h, 8, 10 and 12-14 was tested against lung cancer cell line A549. Compound 6b exhibited higher activity than the bis-benzoxazole natural product (UK-1), the standard. The tested 4g,h, 6a-h, 10 and 12-14 exhibited remarkable cytotoxicity activity against breast cancer cell line MCF-7 with higher activity than tamoxifen. Furthermore, compound 4h was found to be also more potent than doxurubicin. The antitumor promotion activity of synthesized compounds 4g,h, 6a-h, 10 and 12-14 has been estimated by studying their possible inhibitory effects on EBV-EA activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Among the studied compounds, the inhibitory activities of compounds 8, 13 and 14 demonstrated strong inhibitory effects on the Epstein-Barr virus early antigen (EBV-EA) activation without showing any cytotoxicity on the Raji cells and their effects being stronger than that of a representative control, oleanolic acid. Moreover, the molecular docking of the new compounds into plasminogen activator (uPA) receptor has been in correlation with the antitumor activity. All synthesized compounds 3, 4a-h, 6a-h, 8, 10 and 12-14 were docked into same groove of the binding site of the native co-crystalized (4-iodobenzo[b]thiophene-2-carboxamidine) ligand (PDB code:1c5x) for activity explaination. Compounds 4h, 6b and 13, giving the best docking results, were further studied to estimate their effect on the level of uPA using AssayMax human urokinase (uPA) ELISA kit. In case of A549 cell line, compound 6 exhibited similar activity to MMC, and for MCF-7 cell line, compound 4h exhibited similar activity to doxorubicin, in inhibiting the expression of uPA.

  19. Antitumor Activities of Metal Oxide Nanoparticles

    PubMed Central

    Vinardell, Maria Pilar; Mitjans, Montserrat

    2015-01-01

    Nanoparticles have received much attention recently due to their use in cancer therapy. Studies have shown that different metal oxide nanoparticles induce cytotoxicity in cancer cells, but not in normal cells. In some cases, such anticancer activity has been demonstrated to hold for the nanoparticle alone or in combination with different therapies, such as photocatalytic therapy or some anticancer drugs. Zinc oxide nanoparticles have been shown to have this activity alone or when loaded with an anticancer drug, such as doxorubicin. Other nanoparticles that show cytotoxic effects on cancer cells include cobalt oxide, iron oxide and copper oxide. The antitumor mechanism could work through the generation of reactive oxygen species or apoptosis and necrosis, among other possibilities. Here, we review the most significant antitumor results obtained with different metal oxide nanoparticles.

  20. T cell metabolic fitness in antitumor immunity.

    PubMed

    Siska, Peter J; Rathmell, Jeffrey C

    2015-04-01

    T cell metabolism has a central role in supporting and shaping immune responses and may have a key role in antitumor immunity. T cell metabolism is normally held under tight regulation in an immune response of glycolysis to promote effector T cell expansion and function. However, tumors may deplete nutrients, generate toxic products, or stimulate conserved negative feedback mechanisms, such as through Programmed Cell Death 1 (PD-1), to impair effector T cell nutrient uptake and metabolic fitness. In addition, regulatory T cells are favored in low glucose conditions and may inhibit antitumor immune responses. Here, we review how the tumor microenvironment modifies metabolic and functional pathways in T cells and how these changes may uncover new targets and challenges for cancer immunotherapy and treatment.

  1. Alocasia cucullata exhibits strong antitumor effect in vivo by activating antitumor immunity.

    PubMed

    Peng, Qiuxian; Cai, Hongbing; Sun, Xuegang; Li, Xin; Mo, Zhixian; Shi, Jue

    2013-01-01

    Chinese herbal medicines have long been used to treat various illnesses by modulating the human immune response. In this study, we investigate the immuno-modulating effect and antitumor activity of Alocasia Cucullata (AC), a Chinese herb traditionally used to treat infection and cancer. We found that the whole water extract of AC roots could significantly attenuate tumor growth in mouse tumor models. The median survival time of the AC-treated mice was 43 days, 16 days longer than that of the control group. Moreover, the AC-treated mice showed substantially higher induction of key antitumor cytokines, such as IL-2, IFN-γ, and TNF-α, indicating that AC may exert antitumor effect by activating antitumor immunity. To further pinpoint the cellular and molecular mechanism of AC, we studied the dose response of a human monocytic cell line, THP-1, to the whole water extract of AC. Treatment of the AC extract significantly induced THP-1 differentiation into macrophage-like cells and the differentiated THP-1 showed expression of specific macrophage surface markers, such as CD11b and CD14, as well as productions of antitumor cytokines, e.g. IFN-γ and TNF-α. Our data thus point to AC as potentially a new, alternative immuno-modulating herbal remedy for anticancer treatment.

  2. The Eltrombopag antitumor effect on hepatocellular carcinoma

    PubMed Central

    KUROKAWA, TOMOHIRO; MURATA, SOICHIRO; ZHENG, YUN-WEN; IWASAKI, KENICHI; KOHNO, KEISUKE; FUKUNAGA, KIYOSHI; OHKOHCHI, NOBUHIRO

    2015-01-01

    Currently, sorafenib is the only available chemotherapeutic agent for advanced hepatocellular carcinoma (HCC), but it cannot be used in patients with liver cirrhosis (LC) or thrombocytopenia. In these cases, sorafenib is likely effective if given in combination with treatments that increase the number of platelets, such as thrombopoietin (TPO) receptor agonists. Increasing the platelet count via TPO treatment resulted in reduction of LC. Eltrombopag (EP), a TPO receptor agonist, has been reported to have antitumor effects against certain cancers, despite their lack of TPO receptor expression. We hypothesized that EP may possess antitumor activity against HCC in addition to its ability to suppress hepatic fibrosis by increasing the platelet count. In the present study, the antitumor activity of EP was examined by assessing the inhibition of cell proliferation and then ascertaining the ability of iron supplementation to reverse these effects in HepG2, Hep3B and Huh7 cells. In addition, a cell cycle assay was performed using flow cytometry, and signal transduction was evaluated by analyzing cell cycle-related protein expression. The results of EP were compared with those of the most common iron chelator, deferoxamine (DFO). The combined effect of EP and sorafenib was also assessed. The results revealed that EP exerts antitumor activity in HCC that is mediated by the modulation of intracellular iron content. EP suppressed the expression of the cell cycle-related protein cyclin D1 and elicited cell cycle arrest in the G0/G1 phase. The activity of EP was comparable to that of DFO in HCC, and EP did not compete with sorafenib at low concentrations. In conclusion, our findings suggest that EP is a good candidate chemotherapeutic agent for the treatment of HCC in patients with LC and thrombocytopenia. PMID:26397763

  3. Impact of antitumor therapy on nutrition

    SciTech Connect

    Kokal, W.A.

    1985-01-01

    The treatment of the cancer patient by surgery, chemotherapy or radiation therapy can impose significant nutritional disabilities on the host. The nutritional disabilities seen in the tumor-bearing host from antitumor therapy are produced by factors which either limit oral intake or cause malabsorption of nutrients. The host malnutrition caused as a consequence of surgery, chemotherapy or radiation therapy assumes even more importance when one realizes that many cancer patients are already debilitated from their disease.

  4. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    SciTech Connect

    Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor

  5. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity.

    PubMed

    Liu, Yi; Piao, Hongyu; Gao, Ying; Xu, Caihong; Tian, Ye; Wang, Lihong; Liu, Jinwen; Tang, Bo; Zou, Meijuan; Cheng, Gang

    2015-01-01

    7-Ethyl-10-hydroxycamptothecin (SN38), an active metabolite of irinotecan (CPT-11), is a remarkably potent antitumor agent. The clinical application of SN38 has been extremely restricted by its insolubility in water. In this study, we successfully synthesized two macromolecular prodrugs of SN38 with different conjugate positions (chitosan-(C10-OH)SN38 and chitosan-(C20-OH)SN38) to improve the water solubility and antitumor activity of SN38. These prodrugs can self-assemble into micelles in aqueous medium. The particle size, morphology, zeta potential, and in vitro drug release of SN38 and its derivatives, as well as their cytotoxicity, pharmacokinetics, and in vivo antitumor activity in a xenograft BALB/c mouse model were studied. In vitro, chitosan-(C10-OH)SN38 (CS-(10s)SN38) and chitosan-(C20-OH) SN38 (CS-(20s)SN38) were 13.3- and 25.9-fold more potent than CPT-11 in the murine colon adenocarcinoma cell line CT26, respectively. The area under the curve (AUC)0-24 of SN38 after intravenously administering CS-(10s)SN38 and CS-(20s)SN38 to Sprague Dawley rats was greatly improved when compared with CPT-11 (both P<0.01). A larger AUC0-24 of CS-(20s)SN38 was observed when compared to CS-(10s)SN38 (P<0.05). Both of the novel self-assembled chitosan-SN38 prodrugs demonstrated superior anticancer activity to CPT-11 in the CT26 xenograft BALB/c mouse model. We have also investigated the differences between these macromolecular prodrug micelles with regards to enhancing the antitumor activity of SN38. CS-(20s)SN38 exhibited better in vivo antitumor activity than CS-(10s)SN38 at a dose of 2.5 mg/kg (P<0.05). In conclusion, both macromolecular prodrug micelles improved the in vivo conversion rate and antitumor activity of SN38, but the prodrug in which C20-OH was conjugated to macromolecular materials could be a more promising platform for SN38 delivery.

  6. Whole blood cells loaded with messenger RNA as an anti-tumor vaccine.

    PubMed

    Phua, Kyle K L; Boczkowski, David; Dannull, Jens; Pruitt, Scott; Leong, Kam W; Nair, Smita K

    2014-06-01

    The use of a cell-based vaccine composed of autologous whole blood cells loaded with mRNA is described. Mice immunized with whole blood cells loaded with mRNA encoding antigen develop anti-tumor immunity comparable to DC-RNA immunization. This approach offers a simple and affordable alternative to RNA-based cellular therapy by circumventing complex, laborious and expensive ex vivo manipulations required for DC-based immunizations.

  7. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities.

    PubMed

    Meng, Xin; Liang, Hebin; Luo, Lixin

    2016-04-07

    Mushrooms are popular folk medicines that have attracted considerable attention because of their efficient antitumor activities. This review covers existing research achievements on the mechanisms of isolated mushroom polysaccharides, particularly (1→3)-β-D-glucans. Our review also describes the function in modulating the immune system and potential tumor-inhibitory effects of polysaccharides. The antitumor mechanisms of mushroom polysaccharides are mediated by stimulated T cells or other immune cells. These polysaccharides are able to trigger various cellular responses, such as the expression of cytokines and nitric oxide. Most polysaccharides could bind other conjugate molecules, such as polypeptides and proteins, whose conjugation always possess strong antitumor activities. The purpose of this review is to summarize available information, and to reflect the present situation of polysaccharide research filed with a view for future direction.

  8. Advances in antitumor polysaccharides from phellinus sensu lato: Production, isolation, structure, antitumor activity, and mechanisms.

    PubMed

    Yan, Jing-Kun; Pei, Juan-Juan; Ma, Hai-Le; Wang, Zhen-Bin; Liu, Yuan-Shuai

    2017-04-13

    Edible and medicinal fungi (mushrooms) are widely applied to functional foods and nutraceutical products because of their proven nutritive and medicinal properties. Phellinus sensu lato is a well-known medicinal mushroom that has long been used in preventing ailments, including gastroenteric dysfunction, diarrhea, hemorrhage, and cancers, in oriental countries, particularly in China, Japan, and Korea. Polysaccharides represent a major class of bioactive molecules in Phellinus s. l., which have notable antitumor, immunomodulatory, and medicinal properties. Polysaccharides that were isolated from fruiting bodies, cultured mycelia, and filtrates of Phellinus s. l. have not only activated different immune responses of the host organism but have also directly suppressed tumor growth and metastasis. Studies suggest that polysaccharides from Phellinus s. l. are promising alternative anticancer agents or synergizers for existing antitumor drugs. This review summarizes the recent development of polysaccharides from Phellinus s. l., including polysaccharide production, extraction and isolation methods, chemical structure, antitumor activities, and mechanisms of action.

  9. Advanced research on anti-tumor effects of amygdalin.

    PubMed

    Song, Zuoqing; Xu, Xiaohong

    2014-08-01

    Malignant tumors are the major disease that cause serious damage to human health, and have been listed as the premier diseases which seriously threatened human health by World Health Organization (WHO). In recent years the development of antitumor drugs has been gradually transformed from cytotoxic drugs to improving the selectivity of drugs, overcoming multidrug resistance, development of new targeted drugs and low toxicity with high specificity drugs. Amygdalin is a natural product that owns antitumor activity, less side effects, widely sourced and relatively low priced. All these features make the amygdalin a promising antitumor drugs, if combined with conditional chemotherapy drugs, which can produce synergistic effect. In this paper, we summarized the pharmacological activity, toxicity and antitumor activity of amygdalin, mainly focused on the advanced research of amygdalin on its antitumor effects in recent years, providing new insights for the development of new anticancer drugs, new targets searching and natural antitumor mechanism investigations.

  10. Tumor cell-derived exosome-targeted dendritic cells stimulate stronger CD8+ CTL responses and antitumor immunities.

    PubMed

    Yao, Ye; Chen, Linjun; Wei, Wei; Deng, Xiaohui; Ma, Liyuan; Hao, Siguo

    2013-06-21

    Tumor cell-derived exosomes (TEX) have been widely used to induce antitumor immune responses in animal models and clinical trials. However, the efficiency of the antitumor immunity that is induced by TEX is still relatively weak. In this study, we compared the antitumor immunities between EG7 tumor cell-derived exosomes (EXO(EG7)) and EXO(EG7)-targeted dendritic cells (DC(EXO)). We found that EXO(EG7) harbored OVA and peptide major histocompatibility complex I (pMHC-I), which were expressed on its parental EG7 tmor cells, and they could transfer OVA and pMHC-I to dendritic cells (DCs) in vitro. DC(EXO) could more efficiently induce antitumor immunity than EXO(EG7). In addition, we showed that the immune stimulatory effects of EXO(EG7) were dependent on the host DCs and, whereas those of DC(EXO) were not, indicating the important role of the host DCs in TEX vaccines. Taken together, TEX-targeted DCs may be more effective for EXO-based vaccines for the induction of antitumor immunity.

  11. Infrared linear dichroism as a tool to monitor antitumor drug-induced changes of the conformational flexibility of biopolymers

    NASA Astrophysics Data System (ADS)

    Fritzsche, H.

    1990-03-01

    Conformational changes of biopolymers are often a prerequisite for their biological functioning. Drugs are able to induce restrictions of the conformational flexibility of their biopolymer targets. We studied oriented films of DNA complexed with drugs of potential antitumor activity. The infrared linear dichroism reflects quantitatively the extent of restriction, in this case the repression of the conformational transition of DNA from the B to the A form which is driven by the water activity. The investigated drugs show very different capabilities to restrict the B-A transition of DNA. Strong effects have been found with several nonintercalating as well as intercalating antitumor antibiotics which "freeze" 10-24 DNA base pairs per drug molecule which is up to 2.5 turns of the double helix. The results contribute to a rationale drug design as well as to a better understanding of their antitumor action on the molecular level.

  12. 13-Deoxytedanolide, a marine sponge-derived antitumor macrolide, binds to the 60S large ribosomal subunit.

    PubMed

    Nishimura, Shinichi; Matsunaga, Shigeki; Yoshida, Minoru; Hirota, Hiroshi; Yokoyama, Shigeyuki; Fusetani, Nobuhiro

    2005-01-17

    13-Deoxytedanolide is a potent antitumor macrolide isolated from the marine sponge Mycale adhaerens. In spite of its remarkable activity, the mode of action of 13-deoxytedanolide has not been elucidated. [11-3H]-(11S)-13-Deoxydihydrotedanolide derived from the macrolide was used for identifying the target molecule from the yeast cell lysate. Fractionation of the binding protein revealed that the labeled 13-deoxytedanolide derivative strongly bound to the 80S ribosome as well as to the 60S large subunit, but not to the 40S small subunit. In agreement with this observation, 13-deoxytedanolide efficiently inhibited the polypeptide elongation. Interestingly, competition studies demonstrated that 13-deoxytedanolide shared the binding site on the 60S large subunit with pederin and its marine-derived analogues. These results indicate that 13-deoxytedanolide is a potent protein synthesis inhibitor and is the first macrolide to inhibit the eukaryotic ribosome.

  13. Antitumor Immunity Induced after α Irradiation123

    PubMed Central

    Gorin, Jean-Baptiste; Ménager, Jérémie; Gouard, Sébastien; Maurel, Catherine; Guilloux, Yannick; Faivre-Chauvet, Alain; Morgenstern, Alfred; Bruchertseifer, Frank; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2014-01-01

    Radioimmunotherapy (RIT) is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue), and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi) irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells. PMID:24862758

  14. [Synthesis and biological evaluation of 2-(3-butynoicamidophenyl) benzothiazole derivatives as antitumor agents].

    PubMed

    Yin, Gui-Lin; Li, Yan; Tang, Ke; Jin, Xiao-Feng; Chen, Xiao-Guang; Li, Li; Feng, Zhi-Qiang

    2014-06-01

    A series of 2-(3-butynoicamidophenyl)benzothiazole derivatives were synthesized starting from 4-fluoro-3-nitrobenzoic acid. Structures of all the synthesized compounds were confirmed by 1H NMR and HR-MS. Their antitumor activities against human tumor cells lines (HCT116, Mia-PaCa2, U87-MG, A549, NCI-H1975) were evaluated by MTT assay. The results revealed that most of the synthesized compounds showed potent activities against HCT116, Mia-PaCa2, U87-MG tumor cells lines. Particularly, compounds 14c and 14h exhibited better activity with IC50 values of 1 x 10(-8) mol x L(-1) against U87-MG and HCT116 respectively. The structure-activity relationship of compounds was also discussed preliminarily.

  15. Synthesis and biological evaluation of novel exo-methylene cyclopentanone tetracyclic diterpenoids as antitumor agents.

    PubMed

    Li, Jing; Zhang, Dayong; Wu, Xiaoming

    2011-01-01

    The structure of exo-methylene cyclopentanone, which exists in nature tetracyclic diterpenoids products, has been proved to be an innate group for the treatment of cancer and inflammation. In this letter, four different scaffolds of tetracyclic diterpenoids including the structure exo-methylene cyclopentanone were synthesized from steviol and isosteviol and evaluated in vitro for their antitumor activity against three human cancer lines. Compounds 1a, 1b, 2b and 3b showed significant cytotoxicity, particularly, tetracyclic diterpenoids 2b, 3b were identified as the most potent and selective anticancer agents superior to adriamycin with IC(50) values of 0.9 μM and 1.5 μM, against Hep-G2 and MDA-MB-231 cell lines, respectively.

  16. Synthesis and antitumor activities of novel 1,4-disubstituted phthalazine derivatives.

    PubMed

    Zhang, Shulan; Zhao, Yanfang; Liu, Yajing; Chen, Dong; Lan, Weihuan; Zhao, Qiaoling; Dong, Chengcheng; Xia, Lin; Gong, Ping

    2010-08-01

    In an attempt to develop potent and selective antitumor agents, a series of novel 1,4-disubstituted phthalazine derivatives was designed and synthesized. All the prepared compounds were screened for their cytotoxic activities against A549, HT-29 and MDA-MB-231 cell lines in vitro. Among them, seven compounds (7a-7e, 7j and 7i) displayed excellent selectivity for MDA-MB-231 cells with IC(50) values in the nM range, a desirable range for pharmacological testing. The most promising compound, 7a (IC(50) = 3.79 microM, 2.32 microM, 0.84 nM), was 5.6-, 10.8- and 6.9 x 10(4)- times more active than PTK-787 (IC(50) = 21.16 microM, 22.11 microM, 57.72 microM), respectively.

  17. Synthesis and evaluation of thalidomide and phthalimide esters as antitumor agents.

    PubMed

    Zahran, Magdy A H; Abdin, Yasmin G; Osman, Amany M A; Gamal-Eldeen, Amira M; Talaat, Roba M; Pedersen, Erik B

    2014-09-01

    A series of thalidomide and phthalimide ester analogs were efficiently synthesized from N-chloromethylthalidomide, N-chloromethylphthalimide, and N-(2-bromoethyl)phthalimide derivatives with various biologically important carboxylic acids. The synthesized compounds were purified and characterized by various chromatographic and spectroscopic techniques. The antitumor activity of all the synthesized compounds was screened against human liver and breast cancer cells, which showed that phthalimide ester 6a was the best cytotoxic compound against MCF7 cells, while all of the tested compounds showed a non-cytotoxic effect against HepG2 cells. Compounds 5a, 6a, and 7a possess immunosuppressant effect, while compounds 5c, 5d, 6c, 6d, 7c, and 7d showed an immunostimmulatory effect. Meanwhile, estimation of the binding affinity for all the synthesized compounds toward the vascular endothelial growth factor receptor (VEGFR) showed that compounds 5a, 5b, and 7d were the most potent inhibitors.

  18. Antitumor and antioxidant activity of protocatechualdehyde produced from Streptomyces lincolnensis M-20.

    PubMed

    Kim, Kyoung-Ja; Kim, Mi-Ae; Jung, Jee-Hyung

    2008-12-01

    We characterized the biological functions of protocatechualdehyde (PA) isolated from the butanol extract of culture supernatant from Streptomyces lincolnensis M-20. Following butanol extraction, it was purified by silica gel and Sephadex LH-20 column chromatography. PA was analyzed by Furier Transform Infrared Spectroscopy (FT-IR), Gas chromatograph-Mass Spectrometer (GC-MS), and Nuclear Magnetic Resonance (NMR). PA had potent antioxidant activity, as measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Antitumor activity against MCF-7 human breast cancer cells was evaluated by the 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide (MTT) assay. PA treatment (0 approximately 150 muM) dose-dependently blocked apoptosis, as shown by improved cell viability and inter-nucleosomal DNA fragmentation. Our findings suggest that Streptomyces lincolnensis M-20, a lincomycin producer, also produces protocatechualdehyde.

  19. Discovery of novel diaryl urea derivatives bearing a triazole moiety as potential antitumor agents.

    PubMed

    Qin, Mingze; Yan, Shuang; Wang, Lei; Zhang, Haotian; Zhao, Yanfang; Wu, Shasha; Wu, Di; Gong, Ping

    2016-06-10

    Herein, we report a novel series of diaryl urea derivatives bearing a triazole moiety, from which potent antitumor agents have been identified. With a modified triazole, most compounds showed high level activity in both cellular and enzymatic assays, accompanied with a suitable ClogD7.4 value. The most active compound, 13i, effectively suppressed proliferation of HT-29, H460 and MDA-MB-231 cancer cells, with IC50 values of 0.90, 0.85 and 1.54 μM, respectively. Compound 13i also exhibited significant inhibition of tyrosine kinases including c-Kit, RET and FLT3. Furthermore, compound 13i could obviously induce apoptosis of HT-29 cells in a concentration-dependent manner. The study of structure-activity relationships also revealed that a hydrophilic tail at the 4-position of the triazole was crucial for high activity of the compound.

  20. Augmenting antitumor T-cell responses to mimotope vaccination by boosting with native tumor antigens.

    PubMed

    Buhrman, Jonathan D; Jordan, Kimberly R; U'ren, Lance; Sprague, Jonathan; Kemmler, Charles B; Slansky, Jill E

    2013-01-01

    Vaccination with antigens expressed by tumors is one strategy for stimulating enhanced T-cell responses against tumors. However, these peptide vaccines rarely result in efficient expansion of tumor-specific T cells or responses that protect against tumor growth. Mimotopes, or peptide mimics of tumor antigens, elicit increased numbers of T cells that crossreact with the native tumor antigen, resulting in potent antitumor responses. Unfortunately, mimotopes may also elicit cells that do not crossreact or have low affinity for tumor antigen. We previously showed that one such mimotope of the dominant MHC class I tumor antigen of a mouse colon carcinoma cell line stimulates a tumor-specific T-cell clone and elicits antigen-specific cells in vivo, yet protects poorly against tumor growth. We hypothesized that boosting the mimotope vaccine with the native tumor antigen would focus the T-cell response elicited by the mimotope toward high affinity, tumor-specific T cells. We show that priming T cells with the mimotope, followed by a native tumor-antigen boost, improves tumor immunity compared with T cells elicited by the same prime with a mimotope boost. Our data suggest that the improved tumor immunity results from the expansion of mimotope-elicited tumor-specific T cells that have increased avidity for the tumor antigen. The enhanced T cells are phenotypically distinct and enriched for T-cell receptors previously correlated with improved antitumor immunity. These results suggest that incorporation of native antigen into clinical mimotope vaccine regimens may improve the efficacy of antitumor T-cell responses.

  1. Preclinical antitumor activity of SST0116CL1: a novel heat shock protein 90 inhibitor.

    PubMed

    Vesci, Loredana; Milazzo, Ferdinando Maria; Carollo, Valeria; Pace, Silvia; Giannini, Giuseppe

    2014-10-01

    4-Amino substituted resorcino-isoxazole (SST0116CL1) (property of Sigma-Tau Research Switzerland S.A.) is a potent, second generation, small-molecule heat shock protein 90 inhibitor (Hsp90i). SST0116CL1 binds to the ATP binding pocket of Hsp90, and interferes with Hsp90 chaperone function thus resulting in client protein degradation and tumor growth inhibition. The aim of the study was to assess SST0116CL1 in various solid and haematological tumors. The antitumor properties of SST0116CL1 were assessed using in vitro cell proliferation and client protein degradation assays and in vivo different tumor xenograft models. Pharmacokinetic (PK) data were also generated in tumor-bearing mice to gain an understanding of optimal dosing schedules and regimens. SST0116CL1 was shown to inhibit recombinant Hsp90α and to induce the destabilization of different client proteins, often overexpressed and constitutively activated in different types of hematological or solid human tumors. In preclinical in vivo studies, it was revealed to induce antitumor effects in murine models of leukemia and of gastric and ovarian carcinoma. A modulation of PD biomarkers in terms of downregulation of Hsp90 client proteins in tumor-bearing mice was found. SST0116CL1 is a new clinical candidate for cancer therapy. The antitumor property of SST0116CL1, likely due to direct inhibition of the Hsp90 enzymatic activity, may prove to be a critical attribute as the compound enters phase I clinical trials.

  2. Structural Antitumoral Activity Relationships of Synthetic Chalcones

    PubMed Central

    Echeverria, Cesar; Santibañez, Juan Francisco; Donoso-Tauda, Oscar; Escobar, Carlos A.; Ramirez-Tagle, Rodrigo

    2009-01-01

    Relationships between the structural characteristic of synthetic chalcones and their antitumoral activity were studied. Treatment of HepG2 cells for 24 h with synthetic 2’-hydroxychalcones resulted in apoptosis induction and dose-dependent inhibition of cell proliferation. The calculated reactivity indexes and the adiabatic electron affinities using the DFT method including solvent effects, suggest a structure-activity relationship between the Chalcones structure and the apoptosis in HepG2 cells. The absence of methoxy substituents in the B ring of synthetic 2’-hydroxychalcones, showed the mayor structure-activity pattern along the series. PMID:19333443

  3. In vitro anticancer activities of Schiff base and its lanthanum complex

    NASA Astrophysics Data System (ADS)

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-01

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L1)2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L1), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2 M ratio with ligands L1 and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L2) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, 1H/13C NMR, thermogravimetric, XRD, and SEM analysis.

  4. Synthesis and antitumor evaluation of arctigenin derivatives based on antiausterity strategy.

    PubMed

    Kudou, Naoki; Taniguchi, Akira; Sugimoto, Kenji; Matsuya, Yuji; Kawasaki, Masashi; Toyooka, Naoki; Miyoshi, Chika; Awale, Suresh; Dibwe, Dya Fita; Esumi, Hiroyasu; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2013-02-01

    A series of new (-)-arctigenin derivatives with variably modified O-alkyl groups were synthesized and their preferential cytotoxicity was evaluated against human pancreatic cancer cell line PANC-1 under nutrient-deprived conditions. The results showed that monoethoxy derivative 4i (PC(50), 0.49 μM), diethoxy derivative 4h (PC(50), 0.66 μM), and triethoxy derivative 4m (PC(50), 0.78 μM) showed the preferential cytotoxicities under nutrient-deprived conditions, which were identical to or more potent than (-)-arctigenin (1) (PC(50), 0.80 μM). Among them, we selected the triethoxy derivative 4m and examined its in vivo antitumor activity using a mouse xenograft model. Triethoxy derivative 4m exhibited also in vivo antitumor activity with the potency identical to or slightly more than (-)-arctigenin (1). These results would suggest that a modification of (-)-arctigenin structure could lead to a new drug based on the antiausterity strategy.

  5. Generation of a Dual-Functioning Antitumor Immune Response in the Peritoneal Cavity

    PubMed Central

    Sedlacek, Abigail L.; Gerber, Scott A.; Randall, Troy D.; van Rooijen, Nico; Frelinger, John G.; Lord, Edith M.

    2014-01-01

    Tumor cell metastasis to the peritoneal cavity is observed in patients with tumors of peritoneal organs, particularly colon and ovarian tumors. Following release into the peritoneal cavity, tumor cells rapidly attach to the omentum, a tissue consisting of immune aggregates embedded in adipose tissue. Despite their proximity to potential immune effector cells, tumor cells grow aggressively on these immune aggregates. We hypothesized that activation of the immune aggregates would generate a productive antitumor immune response in the peritoneal cavity. We immunized mice i.p. with lethally irradiated cells of the colon adenocarcinoma line Colon38. Immunization resulted in temporary enlargement of immune aggregates, and after challenge with viable Colon38 cells, we did not detect tumor growth on the omentum. When Colon38-immunized mice were challenged with cells from the unrelated breast adenocarcinoma line E0771 or the melanoma line B16, these tumors also did not grow. The nonspecific response was long-lived and not present systemically, highlighting the uniqueness of the peritoneal cavity. Cellular depletions of immune subsets revealed that NK1.1+ cells were essential in preventing growth of unrelated tumors, whereas NK1.1+ cells and T cells were essential in preventing Colon38 tumor growth. Collectively, these data demonstrate that the peritoneal cavity has a unique environment capable of eliciting potent specific and nonspecific antitumor immune responses. PMID:23933065

  6. Antitumor Activity of Garcinol in Human Prostate Cancer Cells and Xenograft Mice.

    PubMed

    Wang, Yu; Tsai, Mei-Ling; Chiou, Li-Yu; Ho, Chi-Tang; Pan, Min-Hsiung

    2015-10-21

    Garcinol, which is isolated from fruit rinds of Garcinia indica, is a polyisoprenylated benzophenone. It has been studied for its antitumor activity by inducing apoptosis and inhibiting autophagy in human prostate cancer cells. The Bax/Bcl-2 ratio increased when garcinol was applied to PC-3 cells indicating a presence of apoptosis. Meanwhile, procaspases-9 and -3 were suppressed with attenuating PARP and DFF-45. Autophagy was inhibited through activating p-mTOR and p-PI3 Kinase/AKT by garcinol, which as a result induced the cells to apoptosis directly. In addition, the apoptosis effect of garcinol in a xenograft mouse model was also tested, suggesting a consistent result with PC-3 cell model. The tumor size was reduced more than 80 percent after the mouse accepted the garcinol treatment. Garcinol was demonstrated to have a strong antitumor activity through inhibiting autophagy and inducing apoptosis, which was discovered for the first time. Based on these findings, our data suggests that garcinol deserves further investigation as a potent chemopreventive agent.

  7. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects.

    PubMed

    Bolhassani, Azam; Khavari, Afshin; Bathaie, S Zahra

    2014-01-01

    Saffron, a spice derived from the flower of Crocus sativus, is rich in carotenoids. Two main natural carotenoids of saffron, crocin and crocetin, are responsible for its color. Preclinical studies have shown that dietary intake of some carotenoids have potent anti-tumor effects both in vitro and in vivo, suggesting their potential preventive and/or therapeutic roles in several tissues. The reports represent that the use of carotenoids without the potential for conversion to vitamin A may provide further protection and avoid toxicity. The mechanisms underlying cancer chemo-preventive activities of carotenoids include modulation of carcinogen metabolism, regulation of cell growth and cell cycle progression, inhibition of cell proliferation, anti-oxidant activity, immune modulation, enhancement of cell differentiation, stimulation of cell-to-cell gap junction communication, apoptosis and retinoid-dependent signaling. Taken together, different hypotheses for the antitumor actions of saffron and its components have been proposed such as a) the inhibitory effect on cellular DNA and RNA synthesis, but not on protein synthesis; b) the inhibitory effect on free radical chain reactions; c) the metabolic conversion of naturally occurring carotenoids to retinoids; d) the interaction of carotenoids with topoisomerase II, an enzyme involved in cellular DNA-protein interaction. Furthermore, the immunomodulatory activity of saffron was studied on driving toward Th1 and Th2 limbs of the immune system. In this mini-review, we briefly describe biochemical and immunological activities and chemo-preventive properties of saffron and natural carotenoids as an anticancer drug.

  8. High in Vitro Anti-Tumor Efficacy of Dimeric Rituximab/Saporin-S6 Immunotoxin

    PubMed Central

    Bortolotti, Massimo; Bolognesi, Andrea; Battelli, Maria Giulia; Polito, Letizia

    2016-01-01

    The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20+ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric) and LMW-IT (monomeric) maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates. PMID:27338475

  9. Combination antitumor effect with central nervous system depressants on rat ascites hepatomas.

    PubMed

    Koshiura, R; Miyamoto, K; Sanae, F

    1980-02-01

    Combined effect of twenty-one central nervous system depressants with several antitumor agents was studied in the in vitro and in vivo experimental systems, using rat ascites hepatoma call lines, AH13 and AH44, sensitive and insensitive to alkylating agents, respectively. Reserpine remarkably enhanced the cytotoxic effect of 1-(gamma-chloropropyl)-2-chloromethylpiperidine hydrobromide (CAP-2) both on AH13 and AH44 cells. In the in vivo combined experiments, reserpine also synergistically enhanced the life-prolonging effect of CAP-2 on AH13-bearing rats and, although CAP-2 was not potent on the prolongation of life span of AH44-bearing rats and reserpine was also ineffective at the doses examined, the life span of tumor-bearing rats receiving the combined administration was apparently prolonged compared with control groups. Thus, there was a parallelism between in vitro and in vivo experiments. These findings suggested that the antitumor-enhancing effect of reserpine might be due to the direct action on the tumor cells, and a possible mechanism that reserpine inhibited the DNA damage-repairing activity of the cells was contradictory. Other mechanisms are also discussed.

  10. Antitumor Activity of 2,9-Di-Sec-Butyl-1,10-Phenanthroline

    PubMed Central

    Amin, A. R. M. Ruhul; Rahman, Mohammad Aminur; Nannapaneni, Sreenivas; Liu, Yuan; Shin, Dong M.; Saba, Nabil F.; Eichler, Jack F.; Chen, Zhuo G.

    2016-01-01

    The anti-tumor effect of a chelating phen-based ligand 2,9-di-sec-butyl-1,10-phenanthroline (dsBPT) and its combination with cisplatin were examined in both lung and head and neck cancer cell lines and xenograft animal models in this study. The effects of this agent on cell cycle and apoptosis were investigated. Protein markers relevant to these mechanisms were also assessed. We found that the inhibitory effect of dsBPT on lung and head and neck cancer cell growth (IC50 ranged between 0.1–0.2 μM) was 10 times greater than that on normal epithelial cells. dsBPT alone induced autophagy, G1 cell cycle arrest, and apoptosis. Our in vivo studies indicated that dsBPT inhibited tumor growth in a dose-dependent manner in a head and neck cancer xenograft mouse model. The combination of dsBPT with cisplatin synergistically inhibited cancer cell growth with a combination index of 0.3. Moreover, the combination significantly reduced tumor volume as compared with the untreated control (p = 0.0017) in a head and neck cancer xenograft model. No organ related toxicities were observed in treated animals. Our data suggest that dsBPT is a novel and potent antitumor drug that warrants further preclinical and clinical development either as a single agent or in combination with known chemotherapy drugs such as cisplatin. PMID:28033401

  11. Enhanced antitumor reactivity of tumor-sensitized T cells by interferon alfa

    SciTech Connect

    Vander Woude, D.L.; Wagner, P.D.; Shu, S.; Chang, A.E. )

    1991-03-01

    Tumor-draining lymph node cells from mice bearing the methylcholanthrene-induced MCA 106 tumors can be sensitized in vitro to acquire antitumor reactivity. We examined the effect of interferon alfa on the function of cells that underwent in vitro sensitization in adoptive immunotherapy. Interferon alfa increased the antitumor reactivity of in vitro sensitized cells in the treatment of MCA 106 pulmonary metastases. This effect was evident in irradiated mice, indicating that a host response to the interferon alfa was not required. Interferon alfa treatment increased class I major histocompatibility complex antigen expression on tumor cells and increased their susceptibility to lysis by in vitro sensitized cells. These results suggest that interferon alfa enhancement of adoptive immunotherapy was mediated by its effect on tumor cells. Interferon alfa may be a useful adjunct to the adoptive immunotherapy of human cancer.

  12. Cancer preventive agents 9. Betulinic acid derivatives as potent cancer chemopreventive agents.

    PubMed

    Nakagawa-Goto, Kyoko; Yamada, Koji; Taniguchi, Masahiko; Tokuda, Harukuni; Lee, Kuo-Hsiung

    2009-07-01

    C-3 esterifications of betulinic acid (BA, 1) and its A-ring homolog, ceanothic acid (CA, 2), were carried out to provide sixteen terpenoids, 4-19, including nine new compounds (4-12). All synthesized compounds were evaluated in an in vitro antitumor-promoting assay using the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Among them, compounds 4-6, 11-14, 16, and 17 displayed remarkable inhibitory effects of EBV-EA activation. BA analog 6, which contains a prenyl-like group, showed the most potent inhibitory effect (100%, 76%, 37%, and 11% inhibition of EBA activation at 1000, 500, 100, and 10mol ratio/TPA, respectively, with IC(50) value of 285mol ratio/32pmol TPA). Compound 6 merits further development as a cancer preventive agent.

  13. Conjunctive therapy of cisplatin with the OCT2 inhibitor cimetidine: influence on antitumor efficacy and systemic clearance.

    PubMed

    Sprowl, J A; van Doorn, L; Hu, S; van Gerven, L; de Bruijn, P; Li, L; Gibson, A A; Mathijssen, R H; Sparreboom, A

    2013-11-01

    The organic cation transporter 2 (OCT2) regulates uptake of cisplatin in proximal tubules, and inhibition of OCT2 protects against severe cisplatin-induced nephrotoxicity. However, it remains uncertain whether potent OCT2 inhibitors, such as cimetidine, can influence the antitumor properties and/or disposition of cisplatin. Using an array of preclinical assays, we found that cimetidine had no effect on the uptake and cytotoxicity of cisplatin in ovarian cancer cells with high OCT2 mRNA levels (IGROV-1 cells). Moreover, the antitumor efficacy of cisplatin in mice bearing luciferase-tagged IGROV-1 xenografts was unaffected by cimetidine (P = 0.39). Data obtained in 18 patients receiving cisplatin (100 mg/m(2)) in a randomized crossover fashion with or without cimetidine (800 mg × 2) revealed that cimetidine did not alter exposure to unbound cisplatin, a marker of antitumor efficacy (4.37 vs. 4.38 µg·h/ml; P = 0.86). These results support the future clinical exploration of OCT2 inhibitors as specific modifiers of cisplatin-induced nephrotoxicity.

  14. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines.

    PubMed

    Butt, A Q; Mills, K H G

    2014-09-18

    Vaccines that promote protective adaptive immune responses have been successfully developed against a range of infectious diseases, and these are normally administered prior to exposure with the relevant virus or bacteria. Adaptive immunity also plays a critical role in the control of tumors. Immunotherapeutics and vaccines that promote effector T cell responses have the potential to eliminate tumors when used in a therapeutic setting. However, the induction of protective antitumor immunity is compromised by innate immunosuppressive mechanisms and regulatory cells that often dominate the tumor microenvironment. Recent studies have shown that blocking these suppressor cells and immune checkpoints to allow induction of antitumor immunity is a successful immunotherapeutic modality for the treatment of cancer. Furthermore, stimulation of innate and consequently adaptive immune responses with concomitant inhibition of immune suppression, especially that mediated by regulatory T (Treg) cells, is emerging as a promising approach to enhance the efficacy of therapeutic vaccines against cancer. This review describes the immunosuppressive mechanisms controlling antitumor immunity and the novel strategies being employed to design effective immunotherapeutics against tumors based on inhibition of suppressor cells or blockade of immune checkpoints to allow induction of more potent effector T cell responses. This review also discusses the potential of using a combination of adjuvants with inhibition of immune checkpoint or suppressor cells for therapeutic vaccines and the translation of pre-clinical studies to the next-generation vaccines against cancer in humans.

  15. Smart Mesoporous Nanomaterials for Antitumor Therapy

    PubMed Central

    Martínez-Carmona, Marina; Colilla, Montserrat; Vallet-Regí, Maria

    2015-01-01

    The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs) exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc.) or external (temperature, light, magnetic field, etc.) stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment. PMID:28347103

  16. Interleukin-35 limits anti-tumor immunity

    PubMed Central

    Turnis, Meghan E.; Sawant, Deepali V.; Szymczak-Workman, Andrea L.; Andrews, Lawrence P.; Delgoffe, Greg M.; Yano, Hiroshi; Beres, Amy J.; Vogel, Peter; Workman, Creg J.; Vignali, Dario A. A.

    2016-01-01

    Summary Regulatory T (Treg) cells pose a major barrier to effective anti-tumor immunity. Although Treg cell depletion enhances tumor rejection, the ensuing autoimmune sequelae limits its utility in the clinic and highlights the need for limiting Treg cell activity within the tumor microenvironment. Interleukin-35 (IL-35) is a Treg cell-secreted cytokine that inhibits T cell proliferation and function. Using an IL-35 reporter mouse, we observed substantial enrichment of IL-35+ Treg cells in tumors. Neutralization with an IL-35-specific antibody or Treg cell-restricted deletion of IL-35 production limited tumor growth in multiple murine models of human cancer. Limiting intratumoral IL-35 enhanced T cell proliferation, effector function, antigen-specific responses, and long-term T cell memory. Treg cell-derived IL-35 promoted the expression of multiple inhibitory receptors (PD1, TIM3, LAG3), thereby facilitating intratumoral T cell exhaustion. These findings reveal previously unappreciated roles for IL-35 in limiting anti-tumor immunity and contributing to T cell dysfunction in the tumor microenvironment. PMID:26872697

  17. Interleukin-35 Limits Anti-Tumor Immunity.

    PubMed

    Turnis, Meghan E; Sawant, Deepali V; Szymczak-Workman, Andrea L; Andrews, Lawrence P; Delgoffe, Greg M; Yano, Hiroshi; Beres, Amy J; Vogel, Peter; Workman, Creg J; Vignali, Dario A A

    2016-02-16

    Regulatory T (Treg) cells pose a major barrier to effective anti-tumor immunity. Although Treg cell depletion enhances tumor rejection, the ensuing autoimmune sequelae limits its utility in the clinic and highlights the need for limiting Treg cell activity within the tumor microenvironment. Interleukin-35 (IL-35) is a Treg cell-secreted cytokine that inhibits T cell proliferation and function. Using an IL-35 reporter mouse, we observed substantial enrichment of IL-35(+) Treg cells in tumors. Neutralization with an IL-35-specific antibody or Treg cell-restricted deletion of IL-35 production limited tumor growth in multiple murine models of human cancer. Limiting intratumoral IL-35 enhanced T cell proliferation, effector function, antigen-specific responses, and long-term T cell memory. Treg cell-derived IL-35 promoted the expression of multiple inhibitory receptors (PD1, TIM3, LAG3), thereby facilitating intratumoral T cell exhaustion. These findings reveal previously unappreciated roles for IL-35 in limiting anti-tumor immunity and contributing to T cell dysfunction in the tumor microenvironment.

  18. Rationally engineered polymeric cisplatin nanoparticle for improved antitumor efficacy

    PubMed Central

    Paraskar, Abhimanyu; Soni, Shivani; Basu, Sudipta; Chitra, J; Amarasiriwardena; Lupoli, Nicola; Srivats, Shyam; Roy, Rituparna Sinha; Sengupta, Shiladitya

    2011-01-01

    The use of cisplatin, a first line chemotherapy for most cancers, is dose-limited due to nephrotoxicity. While, this toxicity can be addressed through nanotechnology, previous attempts at engineering cisplatin nanoparticles have been limited by the impact on the potency of cisplatin. Here we report the rational engineering of a novel cisplatin nanoparticle by harnessing a novel polyethylene glycol-functionalized poly-isobutylene-maleic acid (PEG-PIMA) co-polymer, which can complex with cis-platinum (II) through a monocarboxylato and a coordinate bond. We show that this complex self-assembles into a nanoparticle, and exhibit an IC50 = 0.77 ± 0.11μM comparable to that of free cisplatin (IC50 = 0.44 ± 0.09 μM). The nanoparticles are internalized into the endolysosomal compartment of cancer cells, and releases cisplatin in a pH-dependent manner. Furthermore, the nanoparticles exhibited significantly improved antitumor efficacy in a 4T1 breast cancer model in vivo with limited nephrotoxicity, which can be explained by preferential biodistribution in the tumor with reduced kidney concentrations. Our results suggest that the PEG-PIMA-cisplatin nanoparticle can emerge as an attractive solution to the challenges in cisplatin chemotherapy. PMID:21576779

  19. Generation of Potent T-cell Immunotherapy for Cancer Using DAP12-Based, Multichain, Chimeric Immunoreceptors.

    PubMed

    Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C

    2015-07-01

    Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity toward B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared with standard first- and second-generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors.

  20. Induction of a heat-stable topoisomerase II-DNA cleavable complex by nonintercalative terpenoides, terpentecin and clerocidin.

    PubMed

    Kawada, S; Yamashita, Y; Fujii, N; Nakano, H

    1991-06-01

    Terpentecin and clerocidin, microbial terpenoides, have been known to be potent antitumor antibiotics. However, the critical biochemical target of these terpenoides has not been identified. Our present studies, using purified mammalian topoisomerase II, have shown that terpentecin and clerocidin induce topoisomerase II-mediated DNA cleavage in vitro with comparable potency to that of demethylepipodophyllotoxin ethylidene-beta-D-glucoside. These terpenoides produced a similar DNA cleavage pattern which is distinctly different from those generated in the presence of the known topoisomerase poisons, demethylepipodophyllotoxin ethylidene-beta-D-glucoside and 4'-(9-acridinylamino)methanesulfon-m-anisidide. Brief heating at 65 degrees C, which abolishes completely the cleavable complex with demethylepipodophyllotoxin ethylidene-beta-D-glucoside, of the reaction mixture containing these terpenoides resulted in slight reduction in DNA cleavage. Thus, differently from other topoisomerase II-active antitumor agents, terpentecin and clerocidin induce formation of a cleavable complex which is stable for heat or salt treatments. The lack of significant DNA binding or intercalation activity of terpentecin and clerocidin suggests that topoisomerase II is a cellular target for these drugs.

  1. Antitumor Indolequinones Induced Apoptosis in Human Pancreatic Cancer Cells via Inhibition of Thioredoxin Reductase and Activation of Redox Signaling

    PubMed Central

    Yan, Chao; Siegel, David; Newsome, Jeffery; Chilloux, Aurelie; Moody, Christopher J.

    2012-01-01

    Indolequinones (IQs) were developed as potential antitumor agents against human pancreatic cancer. IQs exhibited potent antitumor activity against the human pancreatic cancer cell line MIA PaCa-2 with growth inhibitory IC50 values in the low nanomolar range. IQs were found to induce time- and concentration-dependent apoptosis and to be potent inhibitors of thioredoxin reductase 1 (TR1) in MIA PaCa-2 cells at concentrations equivalent to those inducing growth-inhibitory effects. The mechanism of inhibition of TR1 by the IQs was studied in detail in cell-free systems using purified enzyme. The C-terminal selenocysteine of TR1 was characterized as the primary adduction site of the IQ-derived reactive iminium using liquid chromatography-tandem mass spectrometry analysis. Inhibition of TR1 by IQs in MIA PaCa-2 cells resulted in a shift of thioredoxin-1 redox state to the oxidized form and activation of the p38/c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathway. Oxidized thioredoxin is known to activate apoptosis signal-regulating kinase 1, an upstream activator of p38/JNK in the MAPK signaling cascade and this was confirmed in our study providing a potential mechanism for IQ-induced apoptosis. These data describe the redox and signaling events involved in the mechanism of growth inhibition induced by novel inhibitors of TR1 in human pancreatic cancer cells. PMID:22147753

  2. Expression of MicroRNA-15b and the Glycosyltransferase GCNT3 Correlates with Antitumor Efficacy of Rosemary Diterpenes in Colon and Pancreatic Cancer

    PubMed Central

    González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; Zarza, Virginia; Martín-Hernández, Roberto; García-Risco, Mónica R.; Fornari, Tiziana; Reglero, Guillermo; de Molina, Ana Ramírez

    2014-01-01

    Colorectal and pancreatic cancers remain important contributors to cancer mortality burden and, therefore, new therapeutic approaches are urgently needed. Rosemary (Rosmarinus officinalis L.) extracts and its components have been reported as natural potent antiproliferative agents against cancer cells. However, to potentially apply rosemary as a complementary approach for cancer therapy, additional information regarding the most effective composition, its antitumor effect in vivo and its main molecular mediators is still needed. In this work, five carnosic acid-rich supercritical rosemary extracts with different chemical compositions have been assayed for their antitumor activity both in vivo (in nude mice) and in vitro against colon and pancreatic cancer cells. We found that the antitumor effect of carnosic acid together with carnosol was higher than the sum of their effects separately, which supports the use of the rosemary extract as a whole. In addition, gene and microRNA expression analyses have been performed to ascertain its antitumor mechanism, revealing that up-regulation of the metabolic-related gene GCNT3 and down-regulation of its potential epigenetic modulator miR-15b correlate with the antitumor effect of rosemary. Moreover, plasmatic miR-15b down-regulation was detected after in vivo treatment with rosemary. Our results support the use of carnosic acid-rich rosemary extract as a complementary approach in colon and pancreatic cancer and indicate that GCNT3 expression may be involved in its antitumor mechanism and that miR-15b might be used as a non-invasive biomarker to monitor rosemary anticancer effect. PMID:24892299

  3. Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer.

    PubMed

    González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; Zarza, Virginia; Martín-Hernández, Roberto; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Ramírez de Molina, Ana

    2014-01-01

    Colorectal and pancreatic cancers remain important contributors to cancer mortality burden and, therefore, new therapeutic approaches are urgently needed. Rosemary (Rosmarinus officinalis L.) extracts and its components have been reported as natural potent antiproliferative agents against cancer cells. However, to potentially apply rosemary as a complementary approach for cancer therapy, additional information regarding the most effective composition, its antitumor effect in vivo and its main molecular mediators is still needed. In this work, five carnosic acid-rich supercritical rosemary extracts with different chemical compositions have been assayed for their antitumor activity both in vivo (in nude mice) and in vitro against colon and pancreatic cancer cells. We found that the antitumor effect of carnosic acid together with carnosol was higher than the sum of their effects separately, which supports the use of the rosemary extract as a whole. In addition, gene and microRNA expression analyses have been performed to ascertain its antitumor mechanism, revealing that up-regulation of the metabolic-related gene GCNT3 and down-regulation of its potential epigenetic modulator miR-15b correlate with the antitumor effect of rosemary. Moreover, plasmatic miR-15b down-regulation was detected after in vivo treatment with rosemary. Our results support the use of carnosic acid-rich rosemary extract as a complementary approach in colon and pancreatic cancer and indicate that GCNT3 expression may be involved in its antitumor mechanism and that miR-15b might be used as a non-invasive biomarker to monitor rosemary anticancer effect.

  4. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  5. A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma has Potent Anti-tumor Activity

    PubMed Central

    Mysore, Veena S.; Szablowski, Jerzy; Dervan, Peter B.; Frost, Patrick J.

    2016-01-01

    Multiple myeloma (MM) is incurable and invariably becomes resistant to chemotherapy. Although the mechanisms remain unclear, hypoxic conditions in the bone marrow have been implicated in contributing to MM progression, angiogenesis, and resistance to chemotherapy. These effects occur via adaptive cellular responses mediated by hypoxia-inducible transcription factors (HIFs), and targeting HIFs can have anti-cancer effects in both solid and hematological malignancies. Here, it was found that in most myeloma cell lines tested, HIF1α, but not HIF2α expression was oxygen dependent and this could be explained by the differential expression of the regulatory prolyl-hydroxylase isoforms. The anti-MM effects of a sequence-specific DNA-binding pyrrole-imidazole polyamide (HIF-PA), that disrupts the HIF heterodimer from binding to its cognate DNA sequences, were also investigated. HIF-PA is cell permeable, localizes to the nuclei, and binds specific regions of DNA with an affinity comparable to that of HIF transcription factors. Most of the MM cells were resistant to hypoxia-mediated apoptosis, and HIF-PA treatment could overcome this resistance in vitro. Using xenograft models, it was determined that HIF-PA significantly decreased tumor volume and increased hypoxic and apoptotic regions within solid tumor nodules and the growth of myeloma cells engrafted in the bone marrow. This provides a rationale for targeting the adaptive cellular hypoxic response of the O2-dependent activation of HIFα using polyamides. PMID:26801054

  6. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent anti-tumor activity

    PubMed Central

    Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.

    2015-01-01

    Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164

  7. YL4073 is a potent autophagy-stimulating antitumor agent in an in vivo model of Lewis lung carcinoma.

    PubMed

    Xu, You-Zhi; Li, Yong-Huai; Lu, Wen-Jie; Lu, Kun; Wang, Chun-Ting; Li, Yan; Lin, Hong-Jun; Kan, Li-Xin; Yang, Sheng-Yong; Wang, Si-Ying; Zhao, Ying-Lan

    2016-04-01

    Cancer cells activate autophagy in response to anticancer therapies. Autophagy induction is a promising therapeutic approach to treat cancer. In a previous study, YL4073 inhibited the growth of liver cancer and induced liver cancer cell apoptosis. Here, we demonstrated the anticancer activity and specific mechanisms of YL4073 in Lewis lung carcinoma LL/2 cells. Our results show that YL4073-induced autophagy was followed by apoptotic cell death. The anticancer and autophagy stimulating efficacy was confirmed by several factors, including the appearance of autophagic vacuoles, formation of acidic vesicular organelles, recruitment of microtubule-associated protein 1 light chain 3 II (LC3-II) to the autophagosomes, conversion and cleavage of LC3-I to LC3-II, upregulation of Beclin 1 expression, and formation of the Atg12-Atg5 conjugate in LL/2 cells after YL4073 treatment for 24 or 48 h. Furthermore, P53 activation and p-histone H3 phosphorylation occurred after cell exposure to YL4073 for 48 h, suggesting that cell apoptosis had occurred. Pharmacological inhibition of autophagy using 3-methyladenine increased cell apoptosis. Molecular level studies revealed that YL4073 inhibited survival signalling by blocking the activation of Akt and mTOR phosphorylation and reduced the expression of p-mTOR downstream targets for phosphorylation, including p70S6K, p-TSC, p-MAPK, and p-AMPK. This suggests that the Akt/mTOR/p70S6K and TSC/MAPK/AMPK pathways are involved in the effects of YL4073 treatment in LL/2 cells. In addition, YL4073 significantly inhibited LL/2 tumor growth and induced apoptosis in vivo. These data suggest that YL4073 has a significant anticancer effect, with a pathway-specific mechanism of autophagy both in vitro and in vivo.

  8. Modification of sPD1 with CRT induces potent anti-tumor immune responses in vitro and in vivo.

    PubMed

    Wang, Gongze; Li, Zhiying; Tian, Huiqun; Wu, Wei; Liu, Chaoqi

    2015-12-01

    As a key factor for tumor occurrence and development, tumor cells escape immune surveillance and inhibit the body immune killer effect through negative signaling pathways. In this research, we designed and expressed the fusion protein CRT-sPD1 to block PD1/PDL1 negative signal pathway, indirectly bind CRT to the tumor cell surface and to increase the cell immunogenicity activity. Results from western blotting, flow cytometry (FCM) and ELISA showed that the cell lines that stably express CRT, PD1 and CRT-sPD1 protein were obtained and the transfected cellular supernatant contained PD1 and CRT-sPD1 could bind to PDL1 on the surface of EL4 cells. Vitro experiments indicated the secreted mCRT-sPD1 protein could bind to PDL1 and enhance lymphocyte proliferation and CTL activity. We also found that fusion protein CRT-sPD1 could activate and induce the immune system to kill the tumor cells, specifically inhibit the tumor growth and prolong the survival period in mouse tumor model. And all these suggested that CRT-sPD1 could be used as drug development and utilization of cancer immunotherapy.

  9. Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia

    PubMed Central

    Liu, Hui; Li, Lu; Meng, Haitao; Qian, Qijun

    2013-01-01

    An attractive strategy among adenovirus-based oncolytic systems is to design adenoviral vectors to express pro-apoptotic genes, in which this gene-virotherapy approach significantly enhances tumor cell death by activating apoptotic pathways. However, the existence of cancer cells with apoptotic defects is one of the major obstacles in gene-virotherapy. Here, we investigated whether a strategy that combines the oncolytic effects of an adenoviral vector with simultaneous expression of Beclin-1, an autophagy gene, offers a therapeutic advantage for leukemia. A Beclin-1 cDNA was cloned in an oncolytic adenovirus with chimeric Ad5/11 fiber (SG511-BECN). SG511-BECN treatment induced significant autophagic cell death, and resulted in enhanced cell killing in a variety of leukemic cell lines and primary leukemic blasts. SG511-BECN effects were seen in chronic myeloid leukemia and acute myeloid leukemia with resistance to imatinib or chemotherapy, but exhibited much less cytotoxicity on normal cells. The SG511-BECN-induced autophagic cell death could be partially reversed by RNA interference knockdown of UVRAG, ATG5, and ATG7. We also showed that SG511-BECN strongly inhibited the growth of leukemic progenitors in vitro. In murine leukemia models, SG511-BECN prolonged the survival and decreased the xenograft tumor size by inducing autophagic cell death. Our results suggest that infection of leukemia cells with an oncolytic adenovirus overexpressing Beclin-1 can induce significant autophagic cell death and provide a new strategy for the elimination of leukemic cells via a unique mechanism of action distinct from apoptosis. PMID:23765161

  10. QS-21: a potent vaccine adjuvant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    QS-21 is an potent adjuvant derived from the bark of a Chilean tree, Quillaja saponaria. One of the advantages of this adjuvant is that it promotes a balanced humoral and cell-mediaed immune response and can be widely applicable to a variety of vaccines. This adjuvant has used for some veterinary va...

  11. Phenyltriazolinones as potent factor Xa inhibitors.

    PubMed

    Quan, Mimi L; Pinto, Donald J P; Rossi, Karen A; Sheriff, Steven; Alexander, Richard S; Amparo, Eugene; Kish, Kevin; Knabb, Robert M; Luettgen, Joseph M; Morin, Paul; Smallwood, Angela; Woerner, Francis J; Wexler, Ruth R

    2010-02-15

    We have discovered that phenyltriazolinone is a novel and potent P1 moiety for coagulation factor Xa. X-ray structures of the inhibitors with a phenyltriazolinone in the P1 position revealed that the side chain of Asp189 has reoriented resulting in a novel S1 binding pocket which is larger in size to accommodate the phenyltriazolinone P1 substrate.

  12. Analysis of cytotoxic activity at short incubation times reveals profound differences among Annonaceus acetogenins, inhibitors of mitochondrial Complex I.

    PubMed

    de Pedro, Nuria; Cautain, Bastien; Melguizo, Angeles; Cortes, Diego; Vicente, Francisca; Genilloud, Olga; Tormo, Jose R; Peláez, Fernando

    2013-02-01

    Annonaceous acetogenins are potent cytotoxic agents against tumor cell lines as well as potent inhibitors of mitochondrial Complex I (Degli Esposti and Ghelli Biochim Biophys Acta 1187:116-120, 1994; Degli Esposti et al. Biochem J 301(Pt 1):161-167, 1994; Tormo et al. Arch Biochem Biophys 369:119-126, 1999). Eighteen different ACGs belonging to seven structural sub-families were tested against six tumor and two non tumor cell lines in a MTT cytotoxicity assay to evaluate the correlation between mitochondrial Complex I inhibition and cytotoxic activity potency and selectivity. The results showed a substantial heterogeneity in potency and selectivity among the different compounds tested, although no clear overall structure-activity relationships could be established. To further characterize the biological activity of these compounds, four ACGs were selected based on their inhibition binding sites to Complex I, to evaluate their cytotoxic activity over a 15-minute to 48-hour period using a more sensitive time-course LDH cytotoxicity assay. Our results indicate that, although all of the ACGs were highly cytotoxic in HepG2 cell lines at 24 h, each sub-class behaves rather differently at shorter times. Perhaps other aspects related to how these compounds reach or bind to their target sites, or differences in their ability to cross the cell and/or the mitochondrial membranes, could help explain their different activities. This different behavior between ACGs may provide new clues for a better understanding of their potential antitumor properties.

  13. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    PubMed

    Hirai, Sachiko; Endo, Shinji; Saito, Rie; Hirose, Mitsuaki; Ueno, Takunori; Suzuki, Hideo; Yamato, Kenji; Abei, Masato; Hyodo, Ichinosuke

    2014-01-01

    Up-regulated sirtuin 1 (SIRT1), an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53). Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5). In the KatoIII cell line (TP53-null), DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  14. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems.

    PubMed

    Yokota, Yosuke; Inoue, Hiroyuki; Matsumura, Yumiko; Nabeta, Haruka; Narusawa, Megumi; Watanabe, Ayumi; Sakamoto, Chika; Hijikata, Yasuki; Iga-Murahashi, Mutsunori; Takayama, Koichi; Sasaki, Fumiyuki; Nakanishi, Yoichi; Yokomizo, Takehiko; Tani, Kenzaburo

    2012-10-25

    BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells. During GM-CSF-induced tumor regression, the defective LTB4/BLT1 signaling significantly reduced tumor-infiltrating myeloid-derived suppressor cells, increased the maturation status of dendritic cells in tumor tissues, enhanced their CD4(+) T-cell stimulation capacity and migration rate of dendritic cells that had phagocytosed tumor-associated antigens into tumor-draining lymph nodes, suggesting a positive impact on GM-CSF-sensitized innate immunity. Furthermore, KO/WGM mice displayed activated adaptive immunity by attenuating regulatory CD4(+) T subsets and increasing numbers of Th17 and memory CD44(hi)CD4(+) T subsets, both of which elicited superior antitumor effects as evidenced by adoptive cell transfer. In vivo depletion assays also revealed that CD4(+) T cells were the main effectors of the persistent antitumor immunity. Our data collectively underscore a negative role of LTB4/BLT1 signaling in effective generation and maintenance of GM-CSF-induced antitumor memory CD4(+) T cells.

  15. A vaccine that co-targets tumor cells and cancer associated fibroblasts results in enhanced antitumor activity by inducing antigen spreading.

    PubMed

    Gottschalk, Stephen; Yu, Feng; Ji, Minjun; Kakarla, Sunitha; Song, Xiao-Tong

    2013-01-01

    Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer.

  16. A Vaccine That Co-Targets Tumor Cells and Cancer Associated Fibroblasts Results in Enhanced Antitumor Activity by Inducing Antigen Spreading

    PubMed Central

    Gottschalk, Stephen; Yu, Feng; Ji, Minjun; Kakarla, Sunitha; Song, Xiao-Tong

    2013-01-01

    Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer. PMID:24349329

  17. Anti-tumoral activity of native compound morelloflavone in glioma

    PubMed Central

    Li, Xianfeng; Ai, Hongyan; Sun, Deke; Wu, Tao; He, Jian; Xu, Zhai; Ding, Li; Wang, Ling

    2016-01-01

    The aim of the study was to investigate the anti-tumoral activity of morelloflavone substances with different structures. We also studied the possible link between morelloflavone structure and its function. Various types of chromatographic techniques were used to isolate and screen morelloflavone substances from the extracts of gambogic tree trunk and the morelloflavone structures were identified by analytical techniques such as high resolution mass spectrometry and nuclear magnetism. Anti-tumoral activities of different compounds were investigated and the link between the antitumor activity and the structure of compound was exaimed. Our results showed that the isolated morelloflavone substances demonstrated a certain level of antitumor activity. The compound no. 1 had the strongest effect to inhibit glioma U87 and C6 cells followed by compound no. 2 while compound no. 5 was the weakest among them. We conducted a preliminary analysis on the structure-function relationship through the structure comparison and we concluded that the antitumor effects of morelloflavone substances with different structures were significantly different from each other. Thus, the glucose chain in C4 position of biflavone structure can enhance the antitumor activity of the compound in glioma cells. Additionally, the formation of intramolecular hydrogen bonds in biflavone compounds may also play a role in enhancing the antitumor activity and inhibition rate. PMID:27900007

  18. Classifications for carcinogenesis of antitumoral drugs.

    PubMed

    Binetti, R; Costamagna, F M; Marcello, I

    2003-12-01

    The aim of this review is to support the medical staff engaged in tumor therapy with the carcinogenicity, mutagenicity, developmental toxicity classification of a large number of chemiotherapic drugs by national and international Agencies; it also gives their rationale and the few cases for which the classification varies among, for example, the European Union and the United States of America. A large list of such drugs, producers, commercial names, CAS numbers and chemical names is reported. This list is subject to changes for the quick development in this field: many drugs are retired and many more are introduced in clinical practice. The list is updated to the summer 2003 and retains many drugs which have more than one use or have limited use. The protection of the medical personnel using antitumor chemiotherapics can need retrospective epidemiological investigations and obsolete drugs are of importance for some of the past exposures.

  19. Biosynthesis of Antitumoral and Bactericidal Sanguinarine

    PubMed Central

    García, Víctor P.; Valdés, F.; Martín, R.; Luis, J. C.; Afonso, A. M.; Ayala, J. H.

    2006-01-01

    A simple, rapid, and reliable TLC method for the separation and determination of sanguinarine has been established. This intensively studied biologically active alkaloid has a wide range of potentially useful medicinal properties, such as antimicrobial, antiinflammatory, and antitumoral activities. Sanguinarine has also been incorporated into expectorant mixtures and has a strong bactericidal effect upon gram-positive bacteria, particularly Bacillus anthracis and staphylococci. These medicinal properties are due to the interaction of sanguinarine with DNA. A fibre-optic-based fluorescence instrument for in situ scanning was used for quantitative measurements. The sanguinarine was determined over the range 5–40 ng and a detection limit of 1.60 ng. The method was applied to the quantification of sanguinarine in tissue culture extracts of Chelidonium majus L. PMID:16883053

  20. New antitumor compounds from Carya cathayensis.

    PubMed

    Wu, Wei; Bi, Xiu-Li; Cao, Jia-Qing; Zhang, Kai-Qing; Zhao, Yu-Qing

    2012-03-01

    A new lignan (7R,8S,8'R)-4,4',9-trihydroxy-7,9'-epoxy-8,8'-lignan, and three new phenolics, carayensin-A, carayensin-B, and carayensin-C, together with 13 known compounds were isolated from the shells of Carya cathayensis. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. All the compounds were evaluated for cytotoxicity against several human tumor types including human colorectal cancer cell lines (HCT-116, HT-29), human lung cancer cell line (A549), and human breast cancer cell line (MCF-7). The compounds 1, 5, 6, and 16 are considered to be potential as antitumor agents, which could significantly inhibit the cancer cell growth in a dose-dependent manner.

  1. Predicting Antitumor Activity of Peptides by Consensus of Regression Models Trained on a Small Data Sample

    PubMed Central

    Radman, Andreja; Gredičak, Matija; Kopriva, Ivica; Jerić, Ivanka

    2011-01-01

    Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met) with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel) support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM) regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample. PMID:22272081

  2. Design, synthesis, and antitumor evaluation of histone deacetylase inhibitors with l-phenylglycine scaffold

    PubMed Central

    Zhang, Yingjie; Li, Xiaoguang; Hou, Jinning; Huang, Yongxue; Xu, Wenfang

    2015-01-01

    In our previous research, a novel series of histone deacetylase (HDAC) inhibitors with l-phenylglycine scaffold were designed and synthesized, among which amides D3 and D7 and ureido D18 were far superior to the positive control (suberoylanilide hydroxamic acid [SAHA]) in HDAC inhibition, but were only comparable to SAHA in antiproliferation on tumor cell lines. Herein, further structural derivation of lead compounds D3, D7, and D18 was carried out to improve their cellular activities. Most of our newly synthesized compounds exhibited more potent HDAC inhibitory activities than the positive control SAHA, and several derivatives were even better than their parent compounds. However, compared with SAHA and our lead compounds, only secondary amine series compounds exhibited improved antiproliferative activities, likely due to their appropriate topological polar surface area values and cell permeabilities. In a human histiocytic lymphoma (U937) xenograft model, the most potent secondary amine 9d exhibited similar in vivo antitumor activity to that of SAHA. PMID:26504374

  3. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor

    SciTech Connect

    Hamdi, Hamdi K. . E-mail: hkhamdi@gmail.com; Castellon, Raquel

    2005-09-02

    Oleuropein, a non-toxic secoiridoid derived from the olive tree, is a powerful antioxidant and anti-angiogenic agent. Here, we show it to be a potent anti-cancer compound, directly disrupting actin filaments in cells and in a cell-free assay. Oleuropein inhibited the proliferation and migration of advanced-grade tumor cell lines in a dose-responsive manner. In a novel tube-disruption assay, Oleuropein irreversibly rounded cancer cells, preventing their replication, motility, and invasiveness; these effects were reversible in normal cells. When administered orally to mice that developed spontaneous tumors, Oleuropein completely regressed tumors in 9-12 days. When tumors were resected prior to complete regression, they lacked cohesiveness and had a crumbly consistency. No viable cells could be recovered from these tumors. These observations elevate Oleuropein from a non-toxic antioxidant into a potent anti-tumor agent with direct effects against tumor cells. Our data may also explain the cancer-protective effects of the olive-rich Mediterranean diet.

  4. In vitro anti-tumor promoting and anti-parasitic activities of the quassinoids from Eurycoma longifolia, a medicinal plant in Southeast Asia.

    PubMed

    Jiwajinda, Suratwadee; Santisopasri, Vilai; Murakami, Akira; Sugiyama, Hiromu; Gasquet, Monique; Riad, Elias; Balansard, Guy; Ohigashi, Hajime

    2002-09-01

    Some quassinoids (1-6) isolated previously as plant growth inhibitors from the leaves of Eurycoma longifolia Jack. (Simaroubaceae) were subjected to in vitro tests on anti-tumor promoting, antischistosomal and plasmodicidal activities. The most active compound for inhibition of tumor promoter-induced Epstein-Barr virus activation (anti-tumor promotion) was 14,15beta-dihydroxyklaineanone (5, IC(50) = 5 microM). Longilactone (1) gave significant antischistosomal effect at a concentration of 200 microg/ml. 11-Dehydroklaineanone (3) and 15beta-O-acetyl-14-hydroxyklaineanone (6) showed potent plasmodicidal activity (IC(50) = 2 microg/ml). Thus it was suggested that E. longifolia possesses high medicinal values due to the occurrence of a variety of quassinoids.

  5. Dmt and opioid peptides: a potent alliance.

    PubMed

    Bryant, Sharon D; Jinsmaa, Yunden; Salvadori, Severo; Okada, Yoshio; Lazarus, Lawrence H

    2003-01-01

    The introduction of the Dmt (2',6'-dimethyl-L-tyrosine)-Tic pharmacophore into the design of opioid ligands produced an extraordinary family of potent delta-opioid receptor antagonists and heralded a new phase in opioid research. First reviewed extensively in 1998, the incorporation of Dmt into a diverse group of opioid molecules stimulated the opioid field leading to the development of unique analogues with remarkable properties. This overview will document the crucial role played by this residue in the proliferation of opioid peptides with high receptor affinity (K(i) equal to or less than 1 nM) and potent bioactivity. The discussion will include the metamorphosis between delta-opioid receptor antagonists to delta-agonists based solely on subtle structural changes at the C-terminal region of the Dmt-Tic pharmacophore as well as their behavior in vivo. Dmt may be considered promiscuous due to the acquisition of potent mu-agonism by dermorphin and endomorphin derivatives as well as by a unique class of opioidmimetics containing two Dmt residues separated by alkyl or pyrazinone linkers. Structural studies on the Dmt-Tic compounds were enhanced tremendously by x-ray diffraction data for three potent and biologically diverse Dmt-Tic opioidmimetics that led to the development of pharmacophores for both delta-opioid receptor agonists and antagonists. Molecular modeling studies of other unique Dmt opioid analogues illuminated structural differences between delta- and mu-receptor ligand interactions. The future of these compounds as therapeutic applications for various medical syndromes including the control of cancer-associated pain is only a matter of time and perseverance.

  6. Antitumoral activity of trisubstituted dihydrobenzo(a)carbazoles. Part III.

    PubMed

    Segall, A; Pizzorno, M T

    2000-10-01

    Two recently synthesized, trisubstituted dihydrobenzo(a)carbazoles were investigated regarding their anti-HIV and antitumoral activity. The compounds showed some activity against melanoma, renal cancer and breast cancer cell lines.

  7. Synthesis and evaluation of heteroarylalanine diacids as potent and selective neutral endopeptidase inhibitors.

    PubMed

    Glossop, Melanie S; Bazin, Richard J; Dack, Kevin N; Fox, David N A; MacDonald, Graeme A; Mills, Mark; Owen, Dafydd R; Phillips, Chris; Reeves, Keith A; Ringer, Tracy J; Strang, Ross S; Watson, Christine A L

    2011-06-01

    Heteroarylalanine derivatives 4 were designed as potential inhibitors of neutral endopeptidase (NEP EC 3.4.24.11). Selectivity over other zinc metalloproteinases was explored through occupation of the S2' subsite within NEP. Structural optimisation led to the identification of 5-phenyl oxazole 4f, a potent and selective NEP inhibitor. A crystal structure of the inhibitor bound complex is reported.

  8. Localized immunotherapy via liposome-anchored Anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity.

    PubMed

    Kwong, Brandon; Gai, S Annie; Elkhader, Jamal; Wittrup, K Dane; Irvine, Darrell J

    2013-03-01

    Immunostimulatory agonists such as anti-CD137 and interleukin (IL)-2 have elicited potent antitumor immune responses in preclinical studies, but their clinical use is limited by inflammatory toxicities that result upon systemic administration. We hypothesized that by rigorously restricting the biodistribution of immunotherapeutic agents to a locally accessible lesion and draining lymph node(s), effective local and systemic antitumor immunity could be achieved in the absence of systemic toxicity. We anchored anti-CD137 and an engineered IL-2Fc fusion protein to the surfaces of PEGylated liposomes, whose physical size permitted dissemination in the tumor parenchyma and tumor-draining lymph nodes but blocked entry into the systemic circulation following intratumoral injection. In the B16F10 melanoma model, intratumoral liposome-coupled anti-CD137 + IL-2Fc therapy cured a majority of established primary tumors while avoiding the lethal inflammatory toxicities caused by equivalent intratumoral doses of soluble immunotherapy. Immunoliposome therapy induced protective antitumor memory and elicited systemic antitumor immunity that significantly inhibited the growth of simultaneously established distal tumors. Tumor inhibition was CD8(+) T-cell-dependent and was associated with increased CD8(+) T-cell infiltration in both treated and distal tumors, enhanced activation of tumor antigen-specific T cells in draining lymph nodes, and a reduction in regulatory T cells in treated tumors. These data suggest that local nanoparticle-anchored delivery of immuno-agonists represents a promising strategy to improve the therapeutic window and clinical applicability of highly potent but otherwise intolerable regimens of cancer immunotherapy. Cancer Res; 73(5); 1547-58. ©2012 AACR.

  9. SKLB-163, a new benzothiazole-2-thiol derivative, exhibits potent anticancer activity by affecting RhoGDI/JNK-1 signaling pathway.

    PubMed

    Peng, X; Xie, G; Wang, Z; Lin, H; Zhou, T; Xiang, P; Jiang, Y; Yang, S; Wei, Y; Yu, L; Zhao, Y

    2014-03-27

    Small-molecule inhibitors are an attractive therapeutic approach for most types of human cancers. SKLB-163, a novel benzothiazole-2-thiol derivative, was developed via computer-aided drug design and de novo synthesis. MTT assay showed it had potent anti-proliferative activity on various human cancer cells. Treatment of cancer cells with SKLB-163 induced obvious apoptosis and inhibited proliferation in vitro. SKLB-163 administered p.o. showed a marked antitumor activity in vivo. Proteomic techniques were employed to identify possible drug target proteins. The data showed molecular mechanism of action might be involved in downregulation of RhoGDI, which finally contributed to increased apoptosis and inhibited proliferation. These findings provided the potential value of SKLB-163 as a novel candidate antitumor drug.

  10. Discovery of a potent microtubule-targeting agent: Synthesis and biological evaluation of water-soluble amino acid prodrug of combretastatin A-4 derivatives.

    PubMed

    Yu, Kun; Li, Rong; Yang, Zhuang; Wang, Fang; Wu, Wenshuang; Wang, Xiaoyan; Nie, Chunlai; Chen, Lijuan

    2015-06-01

    Amino acid prodrugs are known to be very useful for improving the aqueous solubility of sparingly water soluble drugs (Drug Discovery Today 2013, 18, 93). Therefore, we synthesized eleven novel combretastatin A-4 amino acid derivatives and evaluated their anti-tumor activities in vitro and in vivo. Among them, compound 15 (valine attached to compound 3, which was shown to be a potent tubulin polymerization inhibitor in our previous study) exhibited high efficacy in tumor-bearing mice, and pharmacokinetic analysis in rats indicated that compound 15 was an effective prodrug as well. Besides, compound 15 significantly inhibited tubulin polymerization in vitro and in vivo by binding to the colchicine binding site. In addition, compound 15 induced cell cycle arrest in the G2/M phase and triggered apoptosis in a caspase-dependent manner. In conclusion, our study showed that compound 15 could have significant anti-tumor activity as a novel microtubule polymerization disrupting agent with improved aqueous solubility.

  11. Anticancer activity of SAHA, a potent histone deacetylase inhibitor, in NCI-H460 human large-cell lung carcinoma cells in vitro and in vivo.

    PubMed

    Zhao, Yanxia; Yu, Dandan; Wu, Hongge; Liu, Hongli; Zhou, Hongxia; Gu, Runxia; Zhang, Ruiguang; Zhang, Sheng; Wu, Gang

    2014-02-01

    Suberoylanilide hydroxamic acid (SAHA), a potent pan-histone deacetylase (HDAC) inhibitor, has been clinically approved for the treatment of cutaneous T-cell lymphoma (CTCL). SAHA has also been shown to exert a variety of anticancer activities in many other types of tumors, however, few studies have been reported in large-cell lung carcinoma (LCC). Our study aimed to investigate the potential antitumor effects of SAHA on LCC cells. Here, we report that SAHA was able to inhibit the proliferation of the LCC cell line NCI-H460 in a dose- and time-dependent manner, induced cell apoptosis and G2/M cell cycle arrest, decreased AKT and ERK phosphorylation, inhibited the expression of pro-angiogenic factors (VEGF, HIF-1α) in vitro, and suppressed tumor progression in an NCI-H460 cell nude mouse xenograft model in vivo. These results indicate that SAHA can exert its strong antitumor effects in LCC patient.

  12. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models.

    PubMed

    Liu, Ningshu; Rowley, Bruce R; Bull, Cathy O; Schneider, Claudia; Haegebarth, Andrea; Schatz, Christoph A; Fracasso, Paul R; Wilkie, Dean P; Hentemann, Martin; Wilhelm, Scott M; Scott, William J; Mumberg, Dominik; Ziegelbauer, Karl

    2013-11-01

    Because of the complexity derived from the existence of various phosphoinositide 3-kinase (PI3K) isoforms and their differential roles in cancers, development of PI3K inhibitors with differential pharmacologic and pharmacokinetic profiles would allow best exploration in different indications, combinations, and dosing regimens. Here, we report BAY 80-6946, a highly selective and potent pan-class I PI3K inhibitor with sub-nanomolar IC50s against PI3Kα and PI3Kδ. BAY 80-6946 exhibited preferential inhibition (about 10-fold) of AKT phosphorylation by PI3Kα compared with PI3Kβ in cells. BAY 80-6946 showed superior antitumor activity (>40-fold) in PIK3CA mutant and/or HER2 overexpression as compared with HER2-negative and wild-type PIK3CA breast cancer cell lines. In addition, BAY 80-6946 revealed potent activity to induce apoptosis in a subset of tumor cells with aberrant activation of PI3K as a single agent. In vivo, single intravenous administration of BAY 80-6946 exhibited higher exposure and prolonged inhibition of pAKT levels in tumors versus plasma. BAY 80-6946 is efficacious in tumors with activated PI3K when dosed either continuously or intermittently. Thus, BAY 80-6946 induced 100% complete tumor regression when dosed as a single agent every second day in rats bearing HER2-amplified and PIK3CA-mutated KPL4 breast tumors. In combination with paclitaxel, weekly dosing of BAY 80-6946 is sufficient to reach sustained response in all animals bearing patient-derived non-small cell lung cancer xenografts, despite a short plasma elimination half-life (1 hour) in mice. Thus, BAY 80-6946 is a promising agent with differential pharmacologic and pharmacokinetic properties for the treatment of PI3K-dependent human tumors.

  13. Healing after death: antitumor immunity induced by oncolytic adenoviral therapy

    PubMed Central

    Jiang, Hong; Fueyo, Juan

    2014-01-01

    We recently evaluated the capacity of Delta-24-RGD oncolytic adenovirus to trigger an antitumor immune response in a syngeneic mouse glioma model. This virotherapy elicited immunity against both tumor-associated antigens and viral antigens. An immunogenic cell death accompanied by pathogen- or damage- associated patterns (PAMPs and DAMPs) induced by the virus may be responsible for the adenoviral-mediated antitumor effect. PMID:25954598

  14. Structure-based design, synthesis and antitumoral evaluation of enulosides.

    PubMed

    Santos, Jonh A M; Santos, Cosme S; Almeida, Claudia L A; Silva, Thiago D S; Freitas Filho, João R; Militão, Gardenia C G; da Silva, Teresinha G; da Cruz, Carlos H B; Freitas, Juliano C R; Menezes, Paulo H

    2017-03-10

    Enulosides, carbohydrate derivatives containing an α,β-unsaturated carbonyl unit, were designed and obtained in high yields and isomeric purity. All synthesized compounds exhibited antitumoral activity in micromolar range against four tested tumor cells lines, being the best results observed for HL-60 cells. These compounds open new possibilities to prepare an array of more active, site-specific or selective antitumor agents. 2016 Elsevier Ltd. All rights reserved.

  15. Immune Regulation and Antitumor Effect of TIM-1

    PubMed Central

    Du, Peng; Xiong, Ruihua; Li, Xiaodong; Jiang, Jingting

    2016-01-01

    T cells play an important role in antitumor immunity, and the T cell immunoglobulin domain and the mucin domain protein-1 (TIM-1) on its surface, as a costimulatory molecule, has a strong regulatory effect on T cells. TIM-1 can regulate and enhance type 1 immune response of tumor association. Therefore, TIM-1 costimulatory pathways may be a promising therapeutic target in future tumor immunotherapy. This review describes the immune regulation and antitumor effect of TIM-1. PMID:27413764

  16. New Potential Antitumor Pyrazole Derivatives: Synthesis and Cytotoxic Evaluation

    PubMed Central

    Nitulescu, George Mihai; Draghici, Constantin; Olaru, Octavian Tudorel

    2013-01-01

    New pyrazole derivatives were designed and synthesized as potential protein kinase inhibitors in the view to develop specific antitumor therapies. The structures of the compounds were elucidated using spectral and elemental analyses. The antitumor potential was estimated using wheat seeds and the general toxicity was evaluated by alternative methods, using invertebrate animals. One 3-aminopyrazole derivative emerged as a potential candidate for the development of future cytotoxic compounds. PMID:24192822

  17. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity

    PubMed Central

    Anel, Alberto; Aguiló, Juan I.; Catalán, Elena; Garaude, Johan; Rathore, Moeez G.; Pardo, Julián; Villalba, Martín

    2012-01-01

    The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized. PMID:22783260

  18. Ruthenium Polypyridyl Complex Inhibits Growth and Metastasis of Breast Cancer Cells by Suppressing FAK signaling with Enhancement of TRAIL-induced Apoptosis

    NASA Astrophysics Data System (ADS)

    Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-03-01

    Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.

  19. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy

    PubMed Central

    Wu, Zhi-Qiang; Shi, Yang-Yang; Zaorsky, Nicholas G.; Deng, Lei; Yuan, Zhi-Yong; Lu, You; Wang, Ping

    2016-01-01

    While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer. PMID:27429198

  20. Antitumor and antimetastasis effects of carboplatin liposomes with polyethylene glycol-2000 on SGC-7901 gastric cell-bearing nude mice.

    PubMed

    Zhang, Jianzhong; Huang, Changming; Huang, Heguang

    2014-11-01

    The present study aimed to analyze the characteristics of polyethylene glycol (PEG)ylated carboplatin liposomes (PL-CBPs), including size, stability, their release, entrapping and loading efficiencies, and their antitumor and antimetastatic effects on the lymph nodes. The PL-CBPs were prepared using PEG-2000 with the thin film hydration method. The liposome size and release, entrapping and loading efficiencies were detected by ultra-violet/visible spectrophotometry. A nude mouse model was established with the SGC-7901 gastric cell line to evaluate the antitumor effect of the PL-CBP. After 7 days, the mice were randomly divided into three groups (the control, CBP, and PL-CBP groups). CBP and PL-CBP were administered at a dose of 10 mg/kg for two consecutive cycles of treatment, 5 days apart, to their respective groups. In each group, two doses of 5 mg/kg were administered every 48 h. The tumor weight and volume were detected, and the food intake and body weight were measured during the administration. Apoptosis in the tumor cells was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and platinum (Pt) accumulation was detected by atomic absorption spectroscopy. Lastly, lymph node metastasis was evaluated by hematoxylin and eosin staining. The PL-CBPs were more stable when comapred with CBP alone, and the drug release efficiency was 0.7, 22.5, 48.7 and 65.1% at 37°C for 0, 12, 24 and 48 h. The results showed that the encapsulation efficiency was 85% and the loading efficiency was 0.15 mg/mg lipid. After 35 days, PL-CBP induced potent antitumor effects compared with the control and CBP groups (PL-CBP vs. control, P<0.01; PL-CBP vs. CBP, P<0.05). PL-CBP and CBP induced a lower and the lowest body weight and level of food intake, respectively, compared with the control group (CBP vs. control, P<0.05). The apoptosis rate and lymph node metastasis in the PL-CBP group was higher than that in the CBP and control groups (PL-CBP vs. control, P

  1. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex.

    PubMed

    Goh, Yan-Yih; Yan, Yaw-Kai; Tan, Nguan Soon; Goh, Su-Ann; Li, Shang; Teoh, You-Chuan; Lee, Peter P F

    2016-11-14

    Copper complexes with potent anti-tumor effect have been extensively developed. Most investigations of their modes of action focused on the biomolecular targets but not the signal transduction between target binding and cell death. We have previously shown that the cytotoxic complex pyridine(2,4-dihydroxybenzaldehyde dibenzyl semicarbazone)copper(II) (complex 1) shows selective binding to human telomeric G-quadruplex DNA over double-stranded DNA in vitro. Herein, we elucidate the mechanism of action by which complex 1 induces apoptosis in MOLT-4 cells. Complex 1 accumulates in the nuclei and differentially downregulates the expression of c-Myc, c-Kit and KRAS oncogenes. Chemical affinity capture assay results show that the complex is associated with c-Myc and KRAS quadruplex sequences in MOLT-4 cells. We further showed that the reduction in Ras protein expression resulted in attenuated MEK-ERK and PI3K-Akt signalling activities, leading to the activation of caspase-dependent apoptosis. Notably, complex 1 increased the sensitivity of MOLT-4 cells to cisplatin and vice versa. Overall, we demonstrated that complex 1 induces apoptosis, at least in part, by suppressing KRAS, c-Kit and c-Myc oncogene expression and the pro-survival MEK-ERK and PI3K-Akt signalling pathways.

  2. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex

    PubMed Central

    Goh, Yan-Yih; Yan, Yaw-Kai; Tan, Nguan Soon; Goh, Su-Ann; Li, Shang; Teoh, You-Chuan; Lee, Peter P. F.

    2016-01-01

    Copper complexes with potent anti-tumor effect have been extensively developed. Most investigations of their modes of action focused on the biomolecular targets but not the signal transduction between target binding and cell death. We have previously shown that the cytotoxic complex pyridine(2,4-dihydroxybenzaldehyde dibenzyl semicarbazone)copper(II) (complex 1) shows selective binding to human telomeric G-quadruplex DNA over double-stranded DNA in vitro. Herein, we elucidate the mechanism of action by which complex 1 induces apoptosis in MOLT-4 cells. Complex 1 accumulates in the nuclei and differentially downregulates the expression of c-Myc, c-Kit and KRAS oncogenes. Chemical affinity capture assay results show that the complex is associated with c-Myc and KRAS quadruplex sequences in MOLT-4 cells. We further showed that the reduction in Ras protein expression resulted in attenuated MEK-ERK and PI3K-Akt signalling activities, leading to the activation of caspase-dependent apoptosis. Notably, complex 1 increased the sensitivity of MOLT-4 cells to cisplatin and vice versa. Overall, we demonstrated that complex 1 induces apoptosis, at least in part, by suppressing KRAS, c-Kit and c-Myc oncogene expression and the pro-survival MEK-ERK and PI3K-Akt signalling pathways. PMID:27841290

  3. Photodynamic effect on specific antitumor immune activity

    NASA Astrophysics Data System (ADS)

    Vonarx-Coinsmann, Veronique; Foultier, Marie-Therese; Morlet, Laurent; de Brito, Leonor X.; Patrice, Thierry

    1995-03-01

    In this study the effect of PDT on the antitumoral specific immunologic response was evaluated. We compared the specific cytolytic activity (CLA) by a chromium release assay of primed mouse spleen T lymphocytes sensitized against syngeneic mastocytoma P511 cells. P511 cells, or lymphocytes, or both cells were treated or not with photofrin and/or light (514 nm). Photofrin II alone (1 (mu) g/ml, 2 hours) reduced CLA 59% when P511 were treated. Photofrin II (1 (mu) g/ml) followed by light (25 Joules/sq cm) also reduced CLA 35%. Photofrin II alone (0.5 (mu) g/ml, 2 hours) reduced CLA 8% when only lymphocytes were treated. And Photofrin II (0.5 (mu) g/ml) followed by light (25 Joules/sq cm) also reduced CLA 45%. When both cells were treated with Photofrin II alone or followed by light (25 Joules/sq cm) the CLA was also reduced respectively 19, 41%.

  4. Antitumor Immunity and Cancer Stem Cells

    PubMed Central

    Schatton, Tobias; Frank, Markus H.

    2010-01-01

    Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5+ MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy. PMID:19796244

  5. The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors.

    PubMed

    Xiang, Yibin; Hirth, Bradford; Asmussen, Gary; Biemann, Hans-Peter; Bishop, Kimberly A; Good, Andrew; Fitzgerald, Maria; Gladysheva, Tatiana; Jain, Annuradha; Jancsics, Katherine; Liu, Jinyu; Metz, Markus; Papoulis, Andrew; Skerlj, Renato; Stepp, J David; Wei, Ronnie R

    2011-05-15

    Novel benzofuran-2-carboxylic acids, exemplified by 29, 38 and 39, have been discovered as potent Pim-1 inhibitors using fragment based screening followed by X-ray structure guided medicinal chemistry optimization. The compounds demonstrate potent inhibition against Pim-1 and Pim-2 in enzyme assays. Compound 29 has been tested in the Ambit 442 kinase panel and demonstrates good selectivity for the Pim kinase family. X-ray structures of the inhibitor/Pim-1 binding complex reveal important salt-bridge and hydrogen bond interactions mediated by the compound's carboxylic acid and amino groups.

  6. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells.

    PubMed

    Ren, Ke-Wei; Li, Ya-Hua; Wu, Gang; Ren, Jian-Zhuang; Lu, Hui-Bin; Li, Zong-Ming; Han, Xin-Wei

    2017-04-01

    Quercetin is a potent cancer therapeutic agent and dietary antioxidant present in fruit and vegetables. Quercetin prevents tumor proliferation by inducing cell cycle arrest and is a well known cancer therapeutic agent and autophagy mediator. Recent studies showed that drug delivery by nanoparticles have enhanced efficacy with reduced side effects. In this regard, gold-quercetin into poly(DL-lactide-co-glycolide) nanoparticles was examined. In this study, we explored the role and possible underlying mechanisms of quercetin nanoparticle in regulation of antitumor activity in liver cancer cells. Treatment with quercetin nanoparticle effectively inhibited the liver cancer cell proliferation, cell migration and colony formation, thus suppressing liver cancer progression. Quercetin nanoparticle also upregulated apoptosis markedly. Further study suggested that quercetin nanoparticle accelerated the cleavage of caspase-9, caspase-3, and induced the up-releasing of cytochrome c (Cyto-c), contributing to apoptosis in liver cancer cells. Quercetin nanoparticles also promoted telomerase reverse transcriptase (hTERT) inhibition through reducing AP-2β expression and decreasing its binding to hTERT promoter. In addition, quercetin nanoparticle had an inhibitory role in cyclooxygenase 2 (COX-2) via suppressing the NF-κB nuclear translocation and its binding to COX-2 promoter. Quercetin nanoparticle also inactivated Akt and ERK1/2 signaling pathway. Taken together, our results suggested that quercetin nanoparticle had an antitumor effect by inactivating caspase/Cyto-c pathway, suppressing AP-2β/hTERT, inhibiting NF-κB/COX-2 and impeding Akt/ERK1/2 signaling pathways. Our results provided new mechanistic basis for further investigation of quercetin nanoparticles to find potential therapeutic strategies and possible targets for liver cancer inhibition.

  7. Deglycosylated bleomycin has the antitumor activity of bleomycin without pulmonary toxicity.

    PubMed

    Burgy, Olivier; Wettstein, Guillaume; Bellaye, Pierre S; Decologne, Nathalie; Racoeur, Cindy; Goirand, Françoise; Beltramo, Guillaume; Hernandez, Jean-François; Kenani, Abderraouf; Camus, Philippe; Bettaieb, Ali; Garrido, Carmen; Bonniaud, Philippe

    2016-02-17

    Bleomycin (BLM) is a potent anticancer drug used to treat different malignancies, mainly lymphomas, germ cell tumors, and melanomas. Unfortunately, BLM has major, dose-dependent, pulmonary toxicity that affects 20% of treated individuals. The most severe form of BLM-induced pulmonary toxicity is lung fibrosis. Deglyco-BLM is a molecule derived from BLM in which the sugar residue d-mannosyl-l-glucose disaccharide has been deleted. The objective of this study was to assess the anticancer activity and lung toxicity of deglyco-BLM. We compared the antitumor activity and pulmonary toxicity of intraperitoneally administrated deglyco-BLM and BLM in three rodent models. Pulmonary toxicity was examined in depth after intratracheal administration of both chemotherapeutic agents. The effect of both drugs was further studied in epithelial alveolar cells in vitro. We demonstrated in rodent cancer models, including a human Hodgkin's lymphoma xenograft and a syngeneic melanoma model, that intraperitoneal deglyco-BLM is as effective as BLM in inducing tumor regression. Whereas the antitumor effect of BLM was accompanied by a loss of body weight and the development of pulmonary toxicity, deglyco-BLM did not affect body weight and did not engender lung injury. Both molecules induced lung epithelial cell apoptosis after intratracheal administration, but deglyco-BLM lost the ability to induce caspase-1 activation and the production of ROS (reactive oxygen species), transforming growth factor-β1, and other profibrotic and inflammatory cytokines in the lungs of mice and in vitro. Deglyco-BLM should be considered for clinical testing as a less toxic alternative to BLM in cancer therapy.

  8. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma.

    PubMed

    Ligresti, Alessia; Moriello, Aniello Schiano; Starowicz, Katarzyna; Matias, Isabel; Pisanti, Simona; De Petrocellis, Luciano; Laezza, Chiara; Portella, Giuseppe; Bifulco, Maurizio; Di Marzo, Vincenzo

    2006-09-01

    Delta(9)-Tetrahydrocannabinol (THC) exhibits antitumor effects on various cancer cell types, but its use in chemotherapy is limited by its psychotropic activity. We investigated the antitumor activities of other plant cannabinoids, i.e., cannabidiol, cannabigerol, cannabichromene, cannabidiol acid and THC acid, and assessed whether there is any advantage in using Cannabis extracts (enriched in either cannabidiol or THC) over pure cannabinoids. Results obtained in a panel of tumor cell lines clearly indicate that, of the five natural compounds tested, cannabidiol is the most potent inhibitor of cancer cell growth (IC(50) between 6.0 and 10.6 microM), with significantly lower potency in noncancer cells. The cannabidiol-rich extract was equipotent to cannabidiol, whereas cannabigerol and cannabichromene followed in the rank of potency. Both cannabidiol and the cannabidiol-rich extract inhibited the growth of xenograft tumors obtained by s.c. injection into athymic mice of human MDA-MB-231 breast carcinoma or rat v-K-ras-transformed thyroid epithelial cells and reduced lung metastases deriving from intrapaw injection of MDA-MB-231 cells. Judging from several experiments on its possible cellular and molecular mechanisms of action, we propose that cannabidiol lacks a unique mode of action in the cell lines investigated. At least for MDA-MB-231 cells, however, our experiments indicate that cannabidiol effect is due to its capability of inducing apoptosis via: direct or indirect activation of cannabinoid CB(2) and vanilloid transient receptor potential vanilloid type-1 receptors and cannabinoid/vanilloid receptor-independent elevation of intracellular Ca(2+) and reactive oxygen species. Our data support the further testing of cannabidiol and cannabidiol-rich extracts for the potential treatment of cancer.

  9. Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment

    PubMed Central

    Narise, Kosuke; Okuda, Kensuke; Enomoto, Yukihiro; Hirayama, Tasuku; Nagasawa, Hideko

    2014-01-01

    Adaptive cellular responses resulting from multiple microenvironmental stresses, such as hypoxia and nutrient deprivation, are potential novel drug targets for cancer treatment. Accordingly, we focused on developing anticancer agents targeting the tumor microenvironment (TME). In this study, to search for selective antitumor agents blocking adaptive responses in the TME, thirteen new compounds, designed and synthesized on the basis of the arylmethylbiguanide scaffold of phenformin, were used in structure activity relationship studies of inhibition of hypoxia inducible factor (HIF)-1 and unfolded protein response (UPR) activation and of selective cytotoxicity under glucose-deprived stress conditions, using HT29 cells. We conducted luciferase reporter assays using stable cell lines expressing either an HIF-1-responsive reporter gene or a glucose-regulated protein 78 promoter-reporter gene, which were induced by hypoxia and glucose deprivation stress, respectively, to screen for TME-targeting antitumor drugs. The guanidine analog (compound 2), obtained by bioisosteric replacement of the biguanide group, had activities comparable with those of phenformin (compound 1). Introduction of various substituents on the phenyl ring significantly affected the activities. In particular, the o-methylphenyl analog compound 7 and the o-chlorophenyl analog compound 12 showed considerably more potent inhibitory effects on HIF-1 and UPR activation than did phenformin, and excellent selective cytotoxicity under glucose deprivation. These compounds, therefore, represent an improvement over phenformin. They also suppressed HIF-1- and UPR-related protein expression and secretion of vascular endothelial growth factor-A. Moreover, these compounds exhibited significant antiangiogenic effects in the chick chorioallantoic membrane assay. Our structural development studies of biguanide derivatives provided promising candidates for a novel anticancer agent targeting the TME for selective cancer

  10. Kinetics of lactone hydrolysis in antitumor drugs of camptothecin series as studied by fluorescence spectroscopy.

    PubMed

    Chourpa, I; Millot, J M; Sockalingum, G D; Riou, J F; Manfait, M

    1998-03-02

    Potent antitumor activity exhibited by 20-S-camptothecin (CPT) and numerous derivatives is known to be lost upon opening of the alpha-hydroxy-lactone ring of these drugs, hydrolyzable at neutral and basic pH. To quantify in 'real time' the lactone hydrolysis reaction in CPTs under physiological conditions, we have applied a non-perturbing approach by fluorescence spectroscopy. CPT and a set of its derivatives (21-lactam-S-CPT, 10,11-(methylenedioxy)-CPT, CPT-11, SN-38, topotecan, tricyclic ketone-CPT) with antitumor activity varying from negligible to 10 times that of CPT have been studied. Prior to the kinetic measurements, the effects of substitutions, pH, polarity of molecular environment, lactone ring opening (lactone-carboxylate transition) have been investigated in terms of the UV-visible absorption and fluorescence emission spectra of CPTs. Then the determined parameters of the fluorescence emission spectra corresponding to the respective lactone and carboxylate forms have been used to estimate the residual lactone percentage as a function of time. The reproducibility of the obtained data demonstrates that the spectroscopic approach provides a satisfactory precision for this kind of measurements. For CPT at pH 7.3, the lactone half-life was 29.4 +/- 1.7 min and the lactone percentage at equilibrium was 20.9 +/- 0.3%. Within a series of derivatives with substitutions at quinoline rings, the lactone half-life varied from 29 to 32 min and the equilibrium lactone content varied from 15% to 23%. For each compound, even slight increase of pH from 7.1 to 7.3 or from 7.3 to 7.6 logically leads to a remarkable decrease of both lactone half-life and equilibrium lactone percentage.

  11. Novel neutralizing hedgehog antibody MEDI-5304 exhibits antitumor activity by inhibiting paracrine hedgehog signaling.

    PubMed

    Michaud, Neil R; Wang, Youzhen; McEachern, Kristen A; Jordan, Jerold J; Mazzola, Anne Marie; Hernandez, Axel; Jalla, Sanjoo; Chesebrough, Jon W; Hynes, Mark J; Belmonte, Matthew A; Wang, Lidong; Kang, Jaspal S; Jovanovic, Jelena; Laing, Naomi; Jenkins, David W; Hurt, Elaine; Liang, Meina; Frantz, Christopher; Hollingsworth, Robert E; Simeone, Diane M; Blakey, David C; Bedian, Vahe

    2014-02-01

    The hedgehog pathway has been implicated in the tumorigenesis, tumor progression, and metastasis of numerous human cancers. We generated the first fully human hedgehog antibody MEDI-5304 and characterized its antitumor activity and preclinical toxicology. MEDI-5304 bound sonic hedgehog (SHH) and Indian hedgehog (IHH) with low picomolar affinity and neutralized SHH and IHH activity in cellular mGLI1 reporter assays. The antibody inhibited transcription of hedgehog target genes and osteoblast differentiation of C3H10T1/2 cells. We evaluated the activity of MEDI-5304 in vivo in model systems that allowed us to evaluate two primary hypotheses of hedgehog function in human cancer, paracrine signaling between tumor and stromal cells and cancer stem cell (CSC) self-renewal. MEDI-5304 displayed robust pharmacodynamic effects in stromal cells that translated to antitumor efficacy as a single agent in an HT-29/MEF coimplantation model of paracrine hedgehog signaling. MEDI-5304 also improved responses to carboplatin in the HT-29/MEF model. The antibody, however, had no effect as a single agent or in combination with gemcitabine on the CSC frequency or growth of several primary pancreatic cancer explant models. These findings support the conclusion that hedgehog contributes to tumor biology via paracrine tumor-stromal signaling but not via CSC maintenance or propagation. Finally, the only safety study finding associated with MEDI-5304 was ondontodysplasia in rats. Thus, MEDI-5304 represents a potent dual hedgehog inhibitor suitable for continued development to evaluate efficacy and safety in human patients with tumors harboring elevated levels of SHH or IHH.

  12. Encapsulation of trans-dehydrocrotonin in liposomes: an enhancement of the antitumor activity.

    PubMed

    Lapenda, T L S; Morais, W A; Almeida, F J F; Ferraz, M S; Lira, M C B; Santos, N P S; Maciel, M A M; Santos-Magalhães, N S

    2013-03-01

    The aim of this study was the encapsulation of trans-dehydrocrotonin (t-DCTN) and its inclusion complexes with hydropropyl-beta-cyclodextrin (HP-beta-CD) in liposomes to improve t-DCTN antitumor activity. The in vitro kinetic profiles of t-DCTN-loaded liposomes (LD) and t-DCTN:HP-beta-CD-loaded liposomes (LC) were evaluated using the dialysis technique. The antitumor activity of LD and LC were investigated against Sarcoma 180 in Swiss mice. Histopathological and hematological analyses were carried out. The amounts of t-DCTN and t-DCTN:HP-beta-CD inclusion complex encapsulated in liposomes were equivalent to 1 mg of t-DCTN. The encapsulation efficiencies of LD and LC were 95.0 +/- 3.8% and 91.1 +/- 5.6%, respectively. In relation to kinetics, the drug release profiles of t-DCTN are in substantial agreement with the Fickian model. The treatment of animals with LD and LC produced tumor inhibitions of 79.4 +/- 9.6% and 63.5 +/- 5.5%, respectively. The liposomal encapsulation of t-DCTN by entrapment in the phospholipid bilayer increased at twice the antitumor activity. Moreover, the liposomal formulations reduced the hepatotoxicity effect of the drug and no significant hematological toxicity was observed in the treated animals. However, the counting of platelets was slightly decreased. Thus, the results show that the development of liposomal formulations containing t-DCTN or t-DCTN:HP-beta-CD is an important advance for enabling this drug to be use in therapy.

  13. In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain.

    PubMed

    Báez, Roxana; Lopes, Miriam T; Salas, Carlos E; Hernández, Martha

    2007-10-01

    Stem bromelain (EC 3.4.22.32) is a major cysteine proteinase, isolated from pineapple ( Ananas comosus) stem. Its main medicinal use is recognized as digestive, in vaccine formulation, antitumoral and skin debrider for the treatment of burns. To verify the identity of the principle in stem fractions responsible for the antitumoral effect, we isolated bromelain to probe its pharmacological effects. The isolated bromelain was obtained from stems of adult pineapple plants by buffered aqueous extraction and cationic chromatography. The homogeneity of bromelain was confirmed by reverse phase HPLC, SDS-PAGE and N-terminal sequencing. The in vivo antitumoral/antileukemic activity was evaluated using the following panel of tumor lines: P-388 leukemia, sarcoma (S-37), Ehrlich ascitic tumor (EAT), Lewis lung carcinoma (LLC), MB-F10 melanoma and ADC-755 mammary adenocarcinoma. Intraperitoneal administration of bromelain (1, 12.5, 25 mg/kg), began 24 h after tumor cell inoculation in experiments in which 5-fluorouracil (5-FU, 20 mg/kg) was used as positive control. The antitumoral activity was assessed by the survival increase (% survival index) following various treatments. With the exception of MB-F10 melanoma, all other tumor-bearing animals had a significantly increased survival index after bromelain treatment. The largest increase ( approximately 318 %) was attained in mice bearing EAT ascites and receiving 12.5 mg/kg of bromelain. This antitumoral effect was superior to that of 5-FU, whose survival index was approximately 263 %, relative to the untreated control. Bromelain significantly reduced the number of lung metastasis induced by LLC transplantation, as observed with 5-FU. The antitumoral activity of bromelain against S-37 and EAT, which are tumor models sensitive to immune system mediators, and the unchanged tumor progression in the metastatic model suggests that the antimetastatic action results from a mechanism independent of the primary antitumoral effect.

  14. Ganoderma lucidum: a potent pharmacological macrofungus.

    PubMed

    Sanodiya, Bhagwan S; Thakur, Gulab Singh; Baghel, Rakesh K; Prasad, G B K S; Bisen, P S

    2009-12-01

    Ganoderma lucidum (Ling Zhi) is a basidiomycete white rot macrofungus which has been used extensively as "the mushroom of immortality" in China, Japan, Korea and other Asian countries for 2000 years. A great deal of work has been carried out on therapeutic potential of Ganoderma lucidum. The basidiocarp, mycelia and spores of Ganoderma lucidum contain approximately 400 different bioactive compounds, which mainly include triterpenoids, polysaccharides, nucleotides, sterols, steroids, fatty acids, proteins/peptides and trace elements which has been reported to have a number of pharmacological effects including immunomodulation, anti-atherosclerotic, anti-inflammatory, analgesic, chemo-preventive, antitumor, chemo and radio protective, sleep promoting, antibacterial, antiviral (including anti-HIV), hypolipidemic, anti-fibrotic, hepatoprotective, anti-diabetic, anti-androgenic, anti-angiogenic, anti-herpetic, antioxidative and radical-scavenging, anti-aging, hypoglycemic, estrogenic activity and anti-ulcer properties. Ganoderma lucidum has now become recognized as an alternative adjuvant in the treatment of leukemia, carcinoma, hepatitis and diabetes. The macrofungus is very rare in nature rather not sufficient for commercial exploitation for vital therapeutic emergencies, therefore, the cultivation on solid substrates, stationary liquid medium or by submerged cultivation has become an essential aspect to meet the driving force towards the increasing demands in the international market. Present review focuses on the pharmacological aspects, cultivation methods and bioactive metabolites playing a significant role in various therapeutic applications.

  15. Structure and function of human α-lactalbumin made lethal to tumor cells (HAMLET)-type complexes.

    PubMed

    Mossberg, Ann-Kristin; Hun Mok, Kenneth; Morozova-Roche, Ludmilla A; Svanborg, Catharina

    2010-11-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) and equine lysozyme with oleic acid (ELOA) are complexes consisting of protein and fatty acid that exhibit cytotoxic activities, drastically differing from the activity of their respective proteinaceous compounds. Since the discovery of HAMLET in the 1990s, a wealth of information has been accumulated, illuminating the structural, functional and therapeutic properties of protein complexes with oleic acid, which is summarized in this review. In vitro, both HAMLET and ELOA are produced by using ion-exchange columns preconditioned with oleic acid. However, the complex of human α-lactalbumin with oleic acid with the antitumor activity of HAMLET was found to be naturally present in the acidic fraction of human milk, where it was discovered by serendipity. Structural studies have shown that α-lactalbumin in HAMLET and lysozyme in ELOA are partially unfolded, 'molten-globule'-like, thereby rendering the complexes dynamic and in conformational exchange. HAMLET exists in the monomeric form, whereas ELOA mostly exists as oligomers and the fatty acid stoichiometry varies, with HAMLET holding an average of approximately five oleic acid molecules, whereas ELOA contains a considerably larger number (11- 48). Potent tumoricidal activity is found in both HAMLET and ELOA, and HAMLET has also shown strong potential as an antitumor drug in different in vivo animal models and clinical studies. The gain of new, beneficial function upon partial protein unfolding and fatty acid binding is a remarkable phenomenon, and may reflect a significant generic route of functional diversification of proteins via varying their conformational states and associated ligands.

  16. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes.

    PubMed

    El-Gammal, O A; Rakha, T H; Metwally, H M; Abu El-Reash, G M

    2014-06-05

    Isatinpicolinohydrazone (H2IPH) and its Zn(II), Cd(II) and Hg(II) complexes have been synthesized and investigated using physicochemical techniques viz. IR, (1)H NMR, (13)C NMR, UV-Vis spectrometric methods and magnetic moment measurements. The investigation revealed that H2IPH acts as binegative tetradentate in Zn(II), neutral tridentate in Cd(II) and as neutral bidentate towards Hg(II) complex. Octahedral geometry is proposed for all complexes. The bond length, bond angle, chemical reactivity, energy components (kcal/mol), binding energy (kcal/mol) and dipole moment (Debyes) for all the title compounds were evaluated by DFT and also MEP for the ligand is shown. Theoretical infrared intensities of H2IPH and also the theoretical electronic spectra of the ligand and its complexes were calculated. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The in vitro antibacterial studies of the complexes proved them as growth inhibiting agents. The DDPH antioxidant of the compounds have been screened. Antitumor activity, carried out in vitro on human mammary gland (breast) MCF7, have shown that Hg(II) complex exhibited potent activity followed by Zn(II), Cd(II) complexes and the ligand.

  17. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Rakha, T. H.; Metwally, H. M.; Abu El-Reash, G. M.

    2014-06-01

    Isatinpicolinohydrazone (H2IPH) and its Zn(II), Cd(II) and Hg(II) complexes have been synthesized and investigated using physicochemical techniques viz. IR, 1H NMR, 13C NMR, UV-Vis spectrometric methods and magnetic moment measurements. The investigation revealed that H2IPH acts as binegative tetradentate in Zn(II), neutral tridentate in Cd(II) and as neutral bidentate towards Hg(II) complex. Octahedral geometry is proposed for all complexes. The bond length, bond angle, chemical reactivity, energy components (kcal/mol), binding energy (kcal/mol) and dipole moment (Debyes) for all the title compounds were evaluated by DFT and also MEP for the ligand is shown. Theoretical infrared intensities of H2IPH and also the theoretical electronic spectra of the ligand and its complexes were calculated. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The in vitro antibacterial studies of the complexes proved them as growth inhibiting agents. The DDPH antioxidant of the compounds have been screened. Antitumor activity, carried out in vitro on human mammary gland (breast) MCF7, have shown that Hg(II) complex exhibited potent activity followed by Zn(II), Cd(II) complexes and the ligand.

  18. Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy

    NASA Astrophysics Data System (ADS)

    Paraskar, Abhimanyu; Soni, Shivani; Roy, Bhaskar; Papa, Anne-Laure; Sengupta, Shiladitya

    2012-02-01

    Nanoscale drug delivery vehicles have been extensively studied as carriers for cancer chemotherapeutics. However, the formulation of platinum chemotherapeutics in nanoparticles has been a challenge arising from their physicochemical properties. There are only a few reports describing oxaliplatin nanoparticles. In this study, we derivatized the monomeric units of a polyisobutylene maleic acid copolymer with glucosamine, which chelates trans-1,2-diaminocyclohexane (DACH) platinum (II) through a novel monocarboxylato and O → Pt coordination linkage. At a specific polymer to platinum ratio, the complex self-assembled into a nanoparticle, where the polymeric units act as the leaving group, releasing DACH-platinum in a sustained pH-dependent manner. Sizing was done using dynamic light scatter and electron microscopy. The nanoparticles were evaluated for efficacy in vitro and in vivo. Biodistribution was quantified using inductively coupled plasma atomic absorption spectroscopy (ICP-AAS). The PIMA-GA-DACH-platinum nanoparticle was found to be more active than free oxaliplatin in vitro. In vivo, the nanoparticles resulted in greater tumor inhibition than oxaliplatin (equivalent to 5 mg kg-1 platinum dose) with minimal nephrotoxicity or body weight loss. ICP-AAS revealed significant preferential tumor accumulation of platinum with reduced biodistribution to the kidney or liver following PIMA-GA-DACH-platinum nanoparticle administration as compared with free oxaliplatin. These results indicate that the rational engineering of a novel polymeric nanoparticle inspired by the bioactivation of oxaliplatin results in increased antitumor potency with reduced systemic toxicity compared with the parent cytotoxic. Rational design can emerge as an exciting strategy in the synthesis of nanomedicines for cancer chemotherapy.

  19. Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy

    PubMed Central

    Paraskar, Abhimanyu; Soni, Shivani; Roy, Bhaskar; Papa, Anne-Laure; Sengupta, Shiladitya

    2012-01-01

    Nanoscale drug delivery vehicles have been extensively studied as carriers for cancer chemotherapeutics. However the formulation of platinum chemotherapeutics in nanoparticles has been a challenge arising from their physicochemical properties. There are only few reports describing oxaliplatin nanoparticles. In this study, we derivatized the monomeric units of a polyisobutylene maleic acid copolymer with glucosamine, which chelates trans-1,2-diaminocyclohexane (DACH) platinum (II) through a novel monocarboxylato and O→Pt coordination linkage. At a specific polymer to platinum ratio, the complex self assembled into a nanoparticle, where the polymeric units act as the leaving group, releasing DACH-platinum in sustained pH-dependent manner. Sizing was done using dynamic light scatter and electron microscopy. The nanoparticles were evaluated for efficacy in vitro and in vivo. Biodistribution was quantified using inductive-coupled plasma-atomic absorption spectroscopy (ICP-AAS). The PIMA-GA-DACH-platinum nanoparticle was found to be more active than free oxaliplatin in vitro. In vivo, the nanoparticles resulted in greater tumor inhibition than oxaliplatin (equivalent to 5mg/kg platinum dose) with minimal nephrotoxicity or body weight loss. ICP-AAS revealed significant preferential tumor accumulation of platinum with reduced biodistribution to the kidney or liver following PIMA-GA-DACH-platinum nanoparticle administration as compared with free oxaliplatin. These results indicate that the rational engineering of a novel polymeric nanoparticle inspired by the bioactivation of oxaliplatin results in increased antitumor potency with reduced systemic toxicity compared with the parent cytotoxic. Rational design can emerge as an exciting strategy in the synthesis of nanomedicines for cancer chemotherapy. PMID:22275055

  20. Negative Impact of Total Body Irradiation on the Antitumor Activity of Rhenium-(I)-diselenoether.

    PubMed

    Collery, Philippe; Santoni, Francois; Mohsen, Ahmed; Mignard, Caroline; Desmaele, Didier

    2016-11-01

    It has been shown that a rhenium-(I)-diselenoether complex had significant antitumor activity in MDA-MB231 tumor-bearing mice after repeated oral or intraperitoneal administrations for 4 weeks at safe doses of 10 mg/kg/day. It has also been suggested that lower doses could be as effective as this dose. We, thus, tested two doses (5 and 10 mg/kg). The drug was orally administered daily by gavage for 4 weeks and for a further 2 weeks with or without 15 mg/kg paclitaxel treatment (intravenously, once a week). This experiment was performed in MDA-MB 231 tumor-bearing mice, as a model of resistant breast tumor. However, in contrast to previous studies, the mice were pretreated with total body irradiation to increase the tumor growth. These two doses were safe, even in combination with paclitaxel. The expected tumor regression was not observed with the rhenium-(I)-diselenoether complex, and there was even a significant increase of the tumor volume in mice treated with 10 mg/kg versus controls. No synergism was observed with paclitaxel. We comment on the possible negative impact of radiotherapy on the antitumor activity of the drug. Plasma and tumor rhenium and selenium concentrations are also reported.

  1. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.

    PubMed

    Christofides, Anthos; Karantanos, Theodoros; Bardhan, Kankana; Boussiotis, Vassiliki A

    2016-12-20

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.

  2. Extraction, preliminary characterization and evaluation of in vitro antitumor and antioxidant activities of polysaccharides from Mentha piperita.

    PubMed

    Liu, Xin; Sun, Zhen-Liang; Jia, Ai-Rong; Shi, Ya-Ping; Li, Rui-Hong; Yang, Pei-Ming

    2014-09-15

    This study describes the extraction, preliminary characterization and evaluation of the in vitro antitumor and antioxidant activities of polysaccharides extracted from Mentha piperita (MPP). The optimal parameters for the extraction of MPP were obtained by Box-Behnken experimental design and response surface methodology (RSM) at the ratio of water to raw material of 20, extraction time of 1.5 h and extraction temperature at 80 °C. Chemical composition analysis showed that MPP was mainly composed of glucuronic acid, galacturonic acid, glucose, galactose and arabinose, and the molecular weight of its two major fractions were estimated to be about 2.843 and 1.139 kDa, respectively. In vitro bioactivity experiments showed that MPP not only inhibited the growth of A549 cells but possessed potent inhibitory action against DNA topoisomerase I (topo I), and an appreciative antioxidant action as well. These results indicate that MPP may be useful for developing safe natural health products.

  3. Human Uterine Cervical Stromal Stem Cells (hUCESCs): Why and How they Exert their Antitumor Activity

    PubMed Central

    SCHNEIDER, JOSÉ; EIRÓ, NOEMÍ; PÉREZ-FERNÁNDEZ, ROMÁN; MARTÍNEZ-ORDÓÑEZ, ANXO; VIZOSO, FRANCISCO

    2016-01-01

    Our research team has recently isolated and characterized a new stromal stem cell line (hUCESCs) obtained from cytological smears, as routinely performed for cervical cancer screening. We have, furthermore, described that both hUCESCs directly, as well as the secretome contained in the conditioned medium used for growing them (hUCESCs-CM) have potent antitumoral, anti-inflammatory, antibiotic, antimycotic and re-epitheliasation-enhancing properties. The scientific explanation our team proposes for these pleiotropic effects are directly related to the site of origin of hUCESCs, the human cervical transition zone, which has unique features that biologically justify the different actions of hUCESCs and hUCESCs-CM. We, herein, expose our working theory for the biological activity of hUCESCs and hUCESCs-CM. PMID:27566652

  4. Extraction, Preliminary Characterization and Evaluation of in Vitro Antitumor and Antioxidant Activities of Polysaccharides from Mentha piperita

    PubMed Central

    Liu, Xin; Sun, Zhen-Liang; Jia, Ai-Rong; Shi, Ya-Ping; Li, Rui-Hong; Yang, Pei-Ming

    2014-01-01

    This study describes the extraction, preliminary characterization and evaluation of the in vitro antitumor and antioxidant activities of polysaccharides extracted from Mentha piperita (MPP). The optimal parameters for the extraction of MPP were obtained by Box-Behnken experimental design and response surface methodology (RSM) at the ratio of water to raw material of 20, extraction time of 1.5 h and extraction temperature at 80 °C. Chemical composition analysis showed that MPP was mainly composed of glucuronic acid, galacturonic acid, glucose, galactose and arabinose, and the molecular weight of its two major fractions were estimated to be about 2.843 and 1.139 kDa, respectively. In vitro bioactivity experiments showed that MPP not only inhibited the growth of A549 cells but possessed potent inhibitory action against DNA topoisomerase I (topo I), and an appreciative antioxidant action as well. These results indicate that MPP may be useful for developing safe natural health products. PMID:25226538

  5. Synthesis and Evaluation of Antitumor Activity of Novel N-Acyllavendamycin Analogues and Quinoline -5,8- diones

    PubMed Central

    Behforouz, Mohammad; Cai, Wen; Mohammadi, Farahnaz; Stocksdale, Mark G.; Gu, Zhengxiang; Ahmadian, Mohammad; Baty, Darric E.; Etling, Michele R.; Al-Anzi, Charmaine H.; Swiftney, Tyson M.; Tanzer, Lee R.; Merriman, Ronald R.; Behforouz, Nancy C.

    2007-01-01

    A series of 7-N-acyllavendamycins with zero, one or two substitutents at the C-2′, C-3′ and C-11′ were synthesized through short and efficient methods. Pictet-Spengler condensation of 7-N-acylamino-2-formylquinoline-5,8-diones with tryptamine or tryptophans produced the desired lavendamycins. Screening data on a panel of three ras oncogene transformed cell lines and the non-transformed parent cell line showed that a significant number of these analogues are potent antitumor agents and appear to be particularly active against K-ras transformed cells. Compared with the corresponding quinolinediones, these novel lavendamycins are much more inhibitory toward the transformed cells indicating that the β-carboline moiety of the lavendamycin analogues plays an important role in its potency and selective toxicity. PMID:17035024

  6. Human Uterine Cervical Stromal Stem Cells (hUCESCs): Why and How they Exert their Antitumor Activity.

    PubMed

    Schneider, José; Eiró, Noemí; Pérez-Fernández, Román; Martínez-Ordóñez, Anxo; Vizoso, Francisco

    Our research team has recently isolated and characterized a new stromal stem cell line (hUCESCs) obtained from cytological smears, as routinely performed for cervical cancer screening. We have, furthermore, described that both hUCESCs directly, as well as the secretome contained in the conditioned medium used for growing them (hUCESCs-CM) have potent antitumoral, anti-inflammatory, antibiotic, antimycotic and re-epitheliasation-enhancing properties. The scientific explanation our team proposes for these pleiotropic effects are directly related to the site of origin of hUCESCs, the human cervical transition zone, which has unique features that biologically justify the different actions of hUCESCs and hUCESCs-CM. We, herein, expose our working theory for the biological activity of hUCESCs and hUCESCs-CM.

  7. Recombination of diterpenoid structure units: synthesis of antitumor amides bearing functionalized bicyclo[3.2.1]octane ring.

    PubMed

    Mao, Zewei; Li, Yan; Chen, Jingbo; Wang, Yuanyuan; Zhang, Hongbin

    2010-07-15

    In this work, 23 new amides (14-36) bearing a representative diterpenoid structure unit, the functionalized bicyclo[3.2.1]octane ring, have been synthesized and its antitumor potential is studied. In vitro studies demonstrate that a number of amides with the bicyclo[3.2.1]oct-3-en-2-one subunit are active against HL-60, SMMC-7721, A-549, SK-BR-3, and PANC-1 tumor cell lines. The hybrid derivative, compound 20, was found to be the most potent compound (IC(50)=1.05 microM against HL-60) and more active than cisplatin (DDP), the positive control. Additionally, compound 20 exhibited broad spectrum in vitro anticancer activity with IC(50) values of 1.1-4.3 microM against the five tested cancer cell lines.

  8. Antitumor and immunomodulatory effects of low-dose 5-FU on hepatoma 22 tumor-bearing mice

    PubMed Central

    CAO, ZHIYUN; ZHANG, ZHIDENG; HUANG, ZHENGRONG; WANG, RONGPING; YANG, AILIAN; LIAO, LIANMING; DU, JIAN

    2014-01-01

    Low-dose 5-fluorouracil (5-FU), a widely used chemotherapeutic, has been reported to have immunomodulatory effects. This study aimed to evaluate the optimal dose of 5-FU that produces antitumor and immunomodulatory effects. In a hepatoma 22 tumor-bearing mouse model, 0, 10, 20 and 40 mg/kg 5-FU (i.p.) was administered for 10 days. Tumor weight and volume were measured, thymus index (TI) and spleen index (SI) were calculated, and the number of white blood cells (WBCs) and lymphocytes (LYs) were counted following treatment. The percentages of CD3+, CD4+, CD8+ and natural killer (NK) cells were measured by flow cytometry. In addition, the body weights of the mice were measured and the average diet consumption was calculated. Administration of 5-FU produced a potent antitumor effect in a dose-dependent manner (P<0.01). At 20 and 40 mg/kg, a significant reduction of body weight and food consumption was observed. TI and SI decreased in the 20- and 40-mg/kg groups (P<0.01) for 10 days. The number of WBCs significantly decreased in each group (P<0.01); however, the number of LYs only decreased in the 40-mg/kg group (P<0.01). Percentages of CD3+ and CD4+ cells were increased in the 10- and 20-mg/kg groups (P<0.01). Thus, 5-FU at 10 mg/kg inhibits tumor growth while maintaining the immune function of the mice. 5-FU may exert its antitumor effect at a low dose with low toxicity and stimulate the host immune system. Future clinical trials taking into account the immunostimulatory capacity of chemotherapeutic agents are desirable for certain patients. PMID:24660037

  9. GS-9219/VDC-1101 - a prodrug of the acyclic nucleotide PMEG has antitumor activity inspontaneous canine multiple myeloma

    PubMed Central

    2014-01-01

    Background Multiple myeloma (MM) is an important human and canine cancer for which novel therapies remain necessary. VDC-1101 (formerly GS-9219), a novel double prodrug of the anti-proliferative nucleotide analog 9-(2-phosphonylmethoxyethyl) guanine (PMEG), possesses potent cytotoxic activity in vitro in human lymphoblasts and leukemia cell lines and in vivo in spontaneous canine lymphoma. Given the similarity in lineage between lymphoma and MM, we hypothesized that VDC-1101 would be active against MM. Results We evaluated the in vitro antiproliferative effects of VDC-1101 against 3 human MM cell lines, and we performed a phase-II clinical trial in 14 dogs with spontaneous MM. Each dog was treated with a maximum of 6 doses of VDC-1101 monotherapy over 10–15 weeks. Dose-dependent antiproliferative activity was observed in all evaluated cell lines. Major antitumor responses (reduction of serum paraprotein and resolution of hypercalcemia, peripheral cytopenias and bone marrow plasmacytosis) were observed in 9 of 11 evaluable dogs for a median of 172 days, including a durable stringent complete response (>1047 days) in a dog with melphalan-refractory disease. 2 dogs were euthanized due to presumed pulmonary fibrosis; there were no other dose-limiting toxicities encountered. Conclusions In conclusion, VDC-1101 has significant anti-tumor activity at well-tolerated doses in spontaneous canine MM. PMID:24460928

  10. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy.

    PubMed Central

    Mhashilkar, A. M.; Schrock, R. D.; Hindi, M.; Liao, J.; Sieger, K.; Kourouma, F.; Zou-Yang, X. H.; Onishi, E.; Takh, O.; Vedvick, T. S.; Fanger, G.; Stewart, L.; Watson, G. J.; Snary, D.; Fisher, P. B.; Saeki, T.; Roth, J. A.; Ramesh, R.; Chada, S.

    2001-01-01

    BACKGROUND: The mda-7 gene (melanoma differentiation associated gene-7) is a novel tumor suppressor gene. The anti-proliferative activity of MDA-7 has been previously reported. In this report, we analyze the anti-tumor efficacy of Ad-mda7 in a broad spectrum of cancer lines. MATERIALS AND METHODS: Ad-mda7-transduced cancer or normal cell lines were assayed for cell proliferation (tritiated thymidine incorporation assay, Alamar blue assay, and trypan-blue exclusion assay), apoptosis (TUNEL, and Annexin V staining visualized by fluorescent microscopy or FACs analysis), and cell cycle regulation (Propidium Iodide staining and FACs analysis). RESULTS: Ad-mda7 treatment of tumor cells resulted in growth inhibition and apoptosis in a temporal and dose-dependent manner. The anti-tumor effects were independent of the genomic status of p53, RB, p16, ras, bax, and caspase 3 in these cells. In addition, normal cell lines did not show inhibition of proliferation or apoptotic response to Ad-mda7. Moreover, Ad-mda7-transduced cancer cells secreted a soluble form of MDA-7 protein. Thus, Ad-mda7 may represent a novel gene-therapeutic agent for the treatment of a variety of cancers. CONCLUSIONS: The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy. PMID:11471572

  11. Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin Bound-Paclitaxel in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gonzalez-Villasana, Vianey; Rodriguez-Aguayo, Cristian; Arumugam, Thiruvengadam; Cruz-Monserrate, Zobeida; Fuentes-Mattei, Enrique; Deng, Defeng; Hwang, Rosa F.; Wang, Huamin; Ivan, Cristina; Garza, Raul Joshua; Cohen, Evan; Gao, Hui; Armaiz-Pena, Guillermo N.; Monroig-Bosque, Paloma del C.; Philip, Bincy; Rashed, Mohammed H.; Aslan, Burcu; Erdogan, Mumin Alper; Gutierrez-Puente, Yolanda; Ozpolat, Bulent; Reuben, James M.; Sood, Anil K.; Logsdon, Craig; Lopez-Berestein, Gabriel

    2014-01-01

    Pancreatic stellate cells (PSCs) have been recognized as the principal cells responsible for the production of fibrosis in PDAC. Recently PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBPs) [pamidronate (Pam) or zoledronic acid (ZA)], which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1) and type I collagen expression. NBPs also induced PSC apoptosis and cell cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine (Gem). Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC. PMID:25193509

  12. Zoledronic acid exerts antitumor effects in NB4 acute promyelocytic leukemia cells by inducing apoptosis and S phase arrest.

    PubMed

    Liu, Shou-Sheng; Wang, Xiao-Pai; Li, Xiu-Bo; Liang, Jia-Yi; Liu, Ling-Ling; Lu, Ying; Zhong, Xue-Yun; Chen, Yun-Xian

    2014-10-01

    The aim of this study was to investigate the antitumor effect of zoledronic acid (ZOL) in the NB4 human acute promyelocytic leukemia (APL) cell line and explore the potential mechanism of action of this compound. NB4 cells were exposed to various concentrations (0-200μM) of ZOL. Cell viability was measured by MTS assay. The extent of cell apoptosis and distribution of cells in the different phases of the cell cycle were analyzed with flow cytometry. The expression of apoptosis- and cell cycle-related proteins was assayed by Western blot. The combined effect of ZOL and arsenic trioxide (ATO) on the proliferation of NB4 cells was also determined. The results of this study indicate that ZOL inhibits cell proliferation in a time- and dose-dependent fashion and also induces apoptosis and S phase arrest in a dose-dependent manner. The Western blot analysis confirmed the induction of apoptosis and S phase arrest, revealing that the pro-apoptosis proteins Bax, Puma and activated caspase-9 were upregulated and the anti-apoptosis proteins Bcl-2 and Bcl-xL were downregulated. ZOL at a concentration of 50μM synergized with 0.5μM ATO on the growth inhibition of NB4 cells. Taken together, our data indicate that ZOL exerts a potent antitumor effect on NB4 cells by inducing apoptosis and cell cycle arrest, and that ZOL can synergize with the traditional chemotherapy drug ATO.

  13. Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy.

    PubMed

    Hong, Jingyi; Li, Yanhong; Xiao, Yao; Li, Yijing; Guo, Yifei; Kuang, Haixue; Wang, Xiangtao

    2016-09-01

    Annonaceous acetogenins (ACGs) have exhibited antitumor activity against various cancers. However, these substances' poor solubility has limited clinical applications. In this study, hydroxypropyl-beta-cyclodextrin (HP-β-CD) and soybean lecithin (SPC) were self-assembled into an amphiphilic complex. ACGs nanosuspensions (ACGs-NSps) were prepared with a mean particle size of 144.4nm, a zeta potential of -22.9mV and a high drug payload of 46.17% using this complex as stabilizer. The ACGs-NSps demonstrated sustained release in vitro and good stability in plasma as well as simulated gastrointestinal fluid, and met the demand of both intravenous injection and oral administration. The ACGs-NSps demonstrated significantly increased cytotoxicity against Hela and HepG2 cancer cell lines compared to ACGs in solution (in vitro cytotoxicity assay). An in vivo study with H22-tumor bearing mice demonstrated that nanosuspensions significantly improved ACGs' antitumor activity. When orally administered, ACGs-NSps achieved a similar tumor inhibition rate at 1/10th the dose of ACGs in an oil solution (47.94% vs. 49.74%, p>0.05). Improved therapeutic efficacy was further achieved when the ACGs-NSps were intravenously injected into mice (70.31%). With the help of nanosuspension technology, ACGs may be an effective antitumor drug for clinic use.

  14. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1.

    PubMed

    Vacchelli, Erika; Ma, Yuting; Baracco, Elisa E; Sistigu, Antonella; Enot, David P; Pietrocola, Federico; Yang, Heng; Adjemian, Sandy; Chaba, Kariman; Semeraro, Michaela; Signore, Michele; De Ninno, Adele; Lucarini, Valeria; Peschiaroli, Francesca; Businaro, Luca; Gerardino, Annamaria; Manic, Gwenola; Ulas, Thomas; Günther, Patrick; Schultze, Joachim L; Kepp, Oliver; Stoll, Gautier; Lefebvre, Céline; Mulot, Claire; Castoldi, Francesca; Rusakiewicz, Sylvie; Ladoire, Sylvain; Apetoh, Lionel; Bravo-San Pedro, José Manuel; Lucattelli, Monica; Delarasse, Cécile; Boige, Valérie; Ducreux, Michel; Delaloge, Suzette; Borg, Christophe; André, Fabrice; Schiavoni, Giovanna; Vitale, Ilio; Laurent-Puig, Pierre; Mattei, Fabrizio; Zitvogel, Laurence; Kroemer, Guido

    2015-11-20

    Antitumor immunity driven by intratumoral dendritic cells contributes to the efficacy of anthracycline-based chemotherapy in cancer. We identified a loss-of-function allele of the gene coding for formyl peptide receptor 1 (FPR1) that was associated with poor metastasis-free and overall survival in breast and colorectal cancer patients receiving adjuvant chemotherapy. The therapeutic effects of anthracyclines were abrogated in tumor-bearing Fpr1(-/-) mice due to impaired antitumor immunity. Fpr1-deficient dendritic cells failed to approach dying cancer cells and, as a result, could not elicit antitumor T cell immunity. Experiments performed in a microfluidic device confirmed that FPR1 and its ligand, annexin-1, promoted stable interactions between dying cancer cells and human or murine leukocytes. Altogether, these results highlight the importance of FPR1 in chemotherapy-induced antic