Sample records for complexes synthesis molecular

  1. Synthesis and CV Studies of Dithiol-terminated Metal Terpyridine Complexes

    NASA Technical Reports Server (NTRS)

    Asano, Sylvia; Fan, Wendy; Ng, Hou-Tee; Han, Jie; Meyyappan, M.

    2003-01-01

    Transition metal coordination complexes possess unique electronic structures that should be a good model for studying electronic transport behavior at a molecular level. The discrete, multiple redox states, low redox potential and the superb ability to establish contact with other molecular and electronic components by coordination chemistry have made this a subject of investigation for their possible application as active electronic components in molecular devices. We present the synthesis and electrochemical characterization of 4'-thioacetylphenyl-2'2:6',2"-terpyridine iron(II) complex and compare it with a model bis-terpyridine iron(II) complex by cyclic voltammetry. With the use of different working electrodes, the behavior of these complexes show different electron transfer rates.

  2. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy

    DOE PAGES

    A. T. Bollinger; Wu, J.; Bozovic, I.

    2016-03-15

    In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.

  3. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.

    2012-06-01

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.

  4. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    DTIC Science & Technology

    2009-11-01

    dynamics of the complex predicted by multiple molecular dynamics simulations , and discuss further structural optimization to achieve better in vivo efficacy...complex with BoNTAe and the dynamics of the complex predicted by multiple molecular dynamics simulations (MMDSs). On the basis of the 3D model, we discuss...is unlimited whereas AHP exhibited 54% inhibition under the same conditions (Table 1). Computer Simulation Twenty different molecular dynamics

  5. Molecular complexes in close and far away

    PubMed Central

    Klemperer, William; Vaida, Veronica

    2006-01-01

    In this review, gas-phase chemistry of interstellar media and some planetary atmospheres is extended to include molecular complexes. Although the composition, density, and temperature of the environments discussed are very different, molecular complexes have recently been considered as potential contributors to chemistry. The complexes reviewed include strongly bound aggregates of molecules with ions, intermediate-strength hydrogen bonded complexes (primarily hydrates), and weakly bonded van der Waals molecules. In low-density, low-temperature environments characteristic of giant molecular clouds, molecular synthesis, known to involve gas-phase ion-molecule reactions and chemistry at the surface of dust and ice grains is extended here to involve molecular ionic clusters. At the high density and high temperatures found on planetary atmospheres, molecular complexes contribute to both atmospheric chemistry and climate. Using the observational, laboratory, and theoretical database, the role of molecular complexes in close and far away is discussed. PMID:16740667

  6. Stereodivergent synthesis with a programmable molecular machine

    NASA Astrophysics Data System (ADS)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Marcos, Vanesa; Palmer, Leoni I.; Pisano, Simone

    2017-09-01

    It has been convincingly argued that molecular machines that manipulate individual atoms, or highly reactive clusters of atoms, with Ångström precision are unlikely to be realized. However, biological molecular machines routinely position rather less reactive substrates in order to direct chemical reaction sequences, from sequence-specific synthesis by the ribosome to polyketide synthases, where tethered molecules are passed from active site to active site in multi-enzyme complexes. Artificial molecular machines have been developed for tasks that include sequence-specific oligomer synthesis and the switching of product chirality, a photo-responsive host molecule has been described that is able to mechanically twist a bound molecular guest, and molecular fragments have been selectively transported in either direction between sites on a molecular platform through a ratchet mechanism. Here we detail an artificial molecular machine that moves a substrate between different activating sites to achieve different product outcomes from chemical synthesis. This molecular robot can be programmed to stereoselectively produce, in a sequential one-pot operation, an excess of any one of four possible diastereoisomers from the addition of a thiol and an alkene to an α,β-unsaturated aldehyde in a tandem reaction process. The stereodivergent synthesis includes diastereoisomers that cannot be selectively synthesized through conventional iminium-enamine organocatalysis. We anticipate that future generations of programmable molecular machines may have significant roles in chemical synthesis and molecular manufacturing.

  7. Dearomatization Strategies in the Synthesis of Complex Natural Products

    PubMed Central

    Roche, Stéphane P.; Porco, John A.

    2014-01-01

    Evolution in the field of the total synthesis of natural products has led to exciting developments over the last decade. Numerous chemo-selective and enantioselective methodologies have emerged from total syntheses, resulting in efficient access to many important natural product targets. This Review highlights recent developments concerning dearomatization, a powerful strategy for the total synthesis of architecturally complex natural products wherein planar, aromatic scaffolds are converted to three-dimensional molecular architectures. PMID:21506209

  8. Surface Modification and Nanojunction Fabrication with Molecular Metal Wires

    DTIC Science & Technology

    2014-02-17

    Title: Transition Metal Complexes of a Super Rigid Anthyridine Ligand: Structural, Magnetic and DFT Studies. Transition metal complexes of iron ( II ...Compounds with Masked Diazonium Capping Groups (J. Organomet. Chem. 2013, 745, 93). (3) New Diruthenium( II ,III) Compounds Bearing Terminal Olefin Groups...2012, 36, 2340). (2) Synthesis , Structure, Magnetism, and Single Molecular Conductance of Linear Trinickel String Complexes with Sulfur-Containing

  9. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules.

    PubMed

    Xu, Liang; Zhang, Shuai; Li, Pengfei

    2015-12-21

    In the context of modular and rapid construction of molecular diversity and complexity for applications in organic synthesis, biomedical and materials sciences, a generally useful strategy has emerged based on boron-selective chemical transformations. In the last decade, these types of reactions have evolved from proof-of-concept to some advanced applications in the efficient preparation of complex natural products and even automated precise manufacturing on the molecular level. These advances have shown the great potential of boron-selective reactions in simplifying synthetic design and experimental operations, and should inspire new developments in related chemical and technological areas. This tutorial review will highlight the original contributions and representative advances in this emerging field.

  10. Synthesis, Characterization, and Handling of Eu(II)-Containing Complexes for Molecular Imaging Applications

    NASA Astrophysics Data System (ADS)

    Basal, Lina A.; Allen, Matthew J.

    2018-03-01

    Considerable research effort has focused on the in vivo use of responsive imaging probes that change imaging properties upon reacting with oxygen because hypoxia is relevant to diagnosing, treating, and monitoring diseases. One promising class of compounds for oxygen-responsive imaging is Eu(II)-containing complexes because the Eu(II/III) redox couple enables imaging with multiple modalities including magnetic resonance and photoacoustic imaging. The use of Eu(II) requires care in handling to avoid unintended oxidation during synthesis and characterization. This review describes recent advances in the field of imaging agents based on discrete Eu(II)-containing complexes with specific focus on the synthesis, characterization, and handling of aqueous Eu(II)-containing complexes.

  11. Chemical synthesis of water-soluble, chiral conducting-polymer complexes

    DOEpatents

    Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng

    2003-01-01

    The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.

  12. Computer aided drug design

    NASA Astrophysics Data System (ADS)

    Jain, A.

    2017-08-01

    Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.

  13. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization

    NASA Astrophysics Data System (ADS)

    Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.

    2017-02-01

    Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.

  14. Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile

    NASA Astrophysics Data System (ADS)

    Grishin, D. F.; Grishin, I. D.

    2015-07-01

    Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.

  15. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular Knots

    PubMed Central

    Fielden, Stephen D. P.; Woltering, Steffen L.

    2017-01-01

    Abstract The first synthetic molecular trefoil knot was prepared in the late 1980s. However, it is only in the last few years that more complex small‐molecule knot topologies have been realized through chemical synthesis. The steric restrictions imposed on molecular strands by knotting can impart significant physical and chemical properties, including chirality, strong and selective ion binding, and catalytic activity. As the number and complexity of accessible molecular knot topologies increases, it will become increasingly useful for chemists to adopt the knot terminology employed by other disciplines. Here we give an overview of synthetic strategies towards molecular knots and outline the principles of knot, braid, and tangle theory appropriate to chemistry and molecular structure. PMID:28477423

  17. Constructing Molecular Complexity and Diversity: Total Synthesis of Natural Products of Biological and Medicinal Importance

    PubMed Central

    Nicolaou, K. C.; Hale, Christopher R. H.; Nilewski, Christian; Ioannidou, Heraklidia A.

    2012-01-01

    The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules—natural and designed—of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products—the organic molecules of nature—is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature’s molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years. PMID:22743704

  18. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance.

    PubMed

    Nicolaou, K C; Hale, Christopher R H; Nilewski, Christian; Ioannidou, Heraklidia A

    2012-08-07

    The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.

  19. [Nucleolus transformation in oocytes of mouse antral follicles. Revealing of coilin and RNA polymerase I complex components].

    PubMed

    Pochukalina, G N; Parfenov, V N

    2008-01-01

    This study is the continuation of our previous investigation of the nucleolus transformation in growing oocytes from mouse multilayer follicles (Pochukalina, Parfenov, 2006). Here in the present research we have examined the features of organization and molecular composition of nucleolus like body, or postnucleolus, in two groups of oocytes with different chromatin configuration from mouse antral follicles. Using light and electron immunocytochemistry, we have defined the dynamics of ribosomal RNA synthesis and processing molecular component distribution in postnucleolus. Considerable changes in RNA polymerase I distribution and its colocalization with coilin at the periphery of postnucleolus were revealed. Putative role of coilin in formation of complexes with ribosomal RNA synthesis/processing components is discussed.

  20. Influence of Countercation Hydration Enthalpies on the Formation of Molecular Complexes: A Thorium–Nitrate Example

    DOE PAGES

    Jin, Geng Bang; Lin, Jian; Estes, Shanna L.; ...

    2017-11-17

    Here, the influence of countercations (A n+) in directing the composition of monomeric metal–ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of A n+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A + hydration enthalpies found for two related series of thorium (Th)–nitrate molecular compounds obtained by evaporating acidic aqueous Th–nitrate solutions in the presence of A + counterions. Analyses of their chemical composition and solid-state structures demonstrate that A + not only affects the overall solid-state packing of the Th–nitrato complexes but also influences themore » composition of the Th–nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A + hydration enthalpies, such that the A + with smaller hydration enthalpies associate with less hydrated and more anionic Th–nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of A n+, opens a new avenue for the design and synthesis of targeted metal–ligand complexes.« less

  1. Influence of Countercation Hydration Enthalpies on the Formation of Molecular Complexes: A Thorium–Nitrate Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Geng Bang; Lin, Jian; Estes, Shanna L.

    Here, the influence of countercations (A n+) in directing the composition of monomeric metal–ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of A n+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A + hydration enthalpies found for two related series of thorium (Th)–nitrate molecular compounds obtained by evaporating acidic aqueous Th–nitrate solutions in the presence of A + counterions. Analyses of their chemical composition and solid-state structures demonstrate that A + not only affects the overall solid-state packing of the Th–nitrato complexes but also influences themore » composition of the Th–nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A + hydration enthalpies, such that the A + with smaller hydration enthalpies associate with less hydrated and more anionic Th–nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of A n+, opens a new avenue for the design and synthesis of targeted metal–ligand complexes.« less

  2. The mammalian iris-ciliary complex affects organization and synthesis of cytoskeletal proteins of organ and tissue cultured lens epithelial cells.

    PubMed

    Banerjee, A; Emanuel, K; Parafina, J; Bagchi, M

    1992-10-01

    A water soluble growth inhibitor was isolated from the mammalian ocular iris-ciliary complex. The molecular weight of this protein is 10 kD or lower as determined by ultrafiltration fractionation. The iris-ciliary (IC) complex water soluble protein(s) significantly inhibits synthesis of lower molecular weight proteins of the epithelial cells of the organ cultured mammalian ocular lens. It was also found that this inhibitory effect of IC is mediated via the structural organization of the lens. Monolayer cultures of the lens epithelial cells exposed to IC did not manifest any inhibition of their protein synthesis. Moreover, these tissue cultured lens epithelial (TCLE) cells showed a significant increase in their protein synthetic activities in response to the presence of IC factors in the culture medium. It is postulated that the IC activity is modulated via either the lens capsule, an extracellular matrix, or due to the specific organization of the intact lens. The specific effects of IC on the cytoskeletal organization and synthesis in the organ cultured lens epithelial (OCLE) and TCLE cells were also examined. Both groups, treated with IC factors, manifested significant alterations in their protein synthetic activities and cytoskeletal architecture. The 3H-leucine incorporation experiments showed that alpha-actin and alpha-tubulin synthesis is partially inhibited by IC factors in OCLE cells but vimentin synthesis is not, whereas in TCLE cells all of them showed increased synthesis in response to IC factors. Turnover rates of these proteins in both OCLE and TCLE cells were also computed. The immunofluorescence and microscopic evaluation of OCLE and TCLE cells exposed to IC factors illustrated significant alteration in the cytoarchitecture of the filaments. We demonstrate that an inhibitor(s) molecule of 10 kD or lower size isolated from IC inhibited protein synthesis of OCLE cells and stimulated protein synthesis in TCLE cells. The IC factor also affects the synthesis and organization of cytoskeletal filaments of both the OCLE and TCLE cells.

  3. Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study

    NASA Astrophysics Data System (ADS)

    Mekahlia, S.; Bouzid, B.

    2009-11-01

    The antimicrobial activity of chitosan is unstable and sensitive to many factors such as molecular weight. Recent investigations showed that low molecular weight chitosan exhibited strong bactericidal activities compared to chitosan with high molecular weight. Since chitosan degradation can be caused by the coordinating bond, we attempt to synthesize and characterize the chitosan-Cu (II) complex, and thereafter study the coordinating bond effect on its antibacterial activity against Salmonella enteritidis. Seven chitosan-copper complexes with different copper contents were prepared and characterized by FT-IR, UV-vis, XRD and atomic absorption spectrophotometry (AAS). Results indicated that for chitosan-Cu (II) complexes with molar ratio close to 1:1, the inhibition rate reached 100%.

  4. Catenanes: Fifty Years of Molecular Links

    PubMed Central

    Gil-Ramírez, Guzmán; Leigh, David A; Stephens, Alexander J

    2015-01-01

    Half a century after Schill and Lüttringhaus carried out the first directed synthesis of a [2]catenane, a plethora of strategies now exist for the construction of molecular Hopf links (singly interlocked rings), the simplest type of catenane. The precision and effectiveness with which suitable templates and/or noncovalent interactions can arrange building blocks has also enabled the synthesis of intricate and often beautiful higher order interlocked systems, including Solomon links, Borromean rings, and a Star of David catenane. This Review outlines the diverse strategies that exist for synthesizing catenanes in the 21st century and examines their emerging applications and the challenges that still exist for the synthesis of more complex topologies. PMID:25951013

  5. A Multidimensional Diversity‐Oriented Synthesis Strategy for Structurally Diverse and Complex Macrocycles

    PubMed Central

    Nie, Feilin; Kunciw, Dominique L.; Wilcke, David; Stokes, Jamie E.; Galloway, Warren R. J. D.; Bartlett, Sean; Sore, Hannah F.

    2016-01-01

    Abstract Synthetic macrocycles are an attractive area in drug discovery. However, their use has been hindered by a lack of versatile platforms for the generation of structurally (and thus shape) diverse macrocycle libraries. Herein, we describe a new concept in library synthesis, termed multidimensional diversity‐oriented synthesis, and its application towards macrocycles. This enabled the step‐efficient generation of a library of 45 novel, structurally diverse, and highly‐functionalized macrocycles based around a broad range of scaffolds and incorporating a wide variety of biologically relevant structural motifs. The synthesis strategy exploited the diverse reactivity of aza‐ylides and imines, and featured eight different macrocyclization methods, two of which were novel. Computational analyses reveal a broad coverage of molecular shape space by the library and provides insight into how the various diversity‐generating steps of the synthesis strategy impact on molecular shape. PMID:27484830

  6. A novel multi-tiered experimental approach unfolding the mechanisms behind cyclodextrin-vitamin inclusion complexes for enhanced vitamin solubility and stability.

    PubMed

    Braithwaite, Miles C; Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Tomar, Lomas K; Tyagi, Charu; Pillay, Viness

    2017-10-30

    This study was conducted to provide a mechanistic account for understanding the synthesis, characterization and solubility phenomena of vitamin complexes with cyclodextrins (CD) for enhanced solubility and stability employing experimental and in silico molecular modeling strategies. New geometric, molecular and energetic analyses were pursued to explicate experimentally derived cholecalciferol complexes. Various CD molecules (α-, β-, γ-, and hydroxypropyl β-) were complexed with three vitamins: cholecalciferol, ascorbic acid and α-tocopherol. The Inclusion Efficiency (IE%) was computed for each CD-vitamin complex. The highest IE% achieved for a cholecalciferol complex was for 'βCDD 3 -8', after utilizing a unique CD:cholecalciferol molar synthesis ratio of 2.5:1, never before reported as successful. 2HPβCD-cholecalciferol, γCD-cholecalciferol and α-tocopherol inclusion complexes (IC's) reached maximal IE% with a CD:vitamin molar ratio of 5:1. The results demonstrate that IE%, thermal stability, concentration, carrier solubility, molecular mechanics and intended release profile are key factors to consider when synthesizing vitamin-CD complexes. Phase-solubility data provided insights into the design of formulations with IC's that may provide analogous oral vitamin release profiles even when hydrophobic and hydrophilic vitamins are co-incorporated. Static lattice atomistic simulations were able to validate experimentally derived cholecalciferol IE phenomena and are invaluable parameters when approaching formulation strategies using CD's for improved solubility and efficacy of vitamins. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Extending and expanding the Darwinian synthesis: the role of complex systems dynamics.

    PubMed

    Weber, Bruce H

    2011-03-01

    Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Design, synthesis and evaluation of a new Mn - Contrast agent for MR imaging of myocardium based on the DTPA-phenylpentadecanoic acid complex

    NASA Astrophysics Data System (ADS)

    Belyanin, Maxim L.; Stepanova, Elena V.; Valiev, Rashid R.; Filimonov, Victor D.; Usov, Vladimir Y.; Borodin, Oleg Y.; Ågren, Hans

    2016-11-01

    In the present paper we describe the first synthesis and evaluation of a novel Mn (II) complex (DTPA-PPDA Mn (II)) which contains a C-15 fatty acid moiety that has high affinity to the heart muscle. The complexation energy of DTPA-PPDA Mn (II) evaluated by quantum chemistry methodology indicates that it essentially exceeds the corresponding value for the known DTPA Mn (II) complex. Molecular docking revealed that the affinity of the designed complex to the heart-type transport protein H-FABP well exceeds that of lauric acid. Phantom experiments in low-field MRI the designed contrast agent provides MR imaging comparable to gadopentetic acid.

  9. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    PubMed

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  10. Supported cluster catalysts synthesized to be small, simple, selective, and stable

    DOE PAGES

    Guan, Erjia; Fang, Chia-Yu; Yang, Dong; ...

    2018-01-01

    Molecular metal complexes on supports have drawn wide attention as catalysts offering new properties and opportunities for precise synthesis to make uniform catalytic species that can be understood in depth.

  11. Distinguishing molecular environments in supported Pt catalysts and their influences on activity and selectivity

    NASA Astrophysics Data System (ADS)

    Jones, Louis Chin

    This thesis entails the synthesis, automated catalytic testing, and in situ molecular characterization of supported Pt and Pt-alloy nanoparticle (NP) catalysts, with emphasis on how to assess the molecular distributions of Pt environments that are affecting overall catalytic activity and selectivity. We have taken the approach of (a) manipulating nucleation and growth of NPs using oxide supports, surfactants, and inorganic complexes to create Pt NPs with uniform size, shape, and composition, (b) automating batch and continuous flow catalytic reaction tests, and (c) characterizing the molecular environments of Pt surfaces using in situ infrared (IR) spectroscopy and solid-state 195Pt NMR. The following will highlight the synthesis and characterization of Ag-doped Pt NPs and their influence on C 2H2 hydrogenation selectivity, and the implementation of advanced solid-state 195Pt NMR techniques to distinguish how distributions of molecular Pt environments vary with nanoparticle size, support, and surface composition.

  12. Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors.

    PubMed

    Hormann, Jan; Malina, Jaroslav; Lemke, Oliver; Hülsey, Max J; Wedepohl, Stefanie; Potthoff, Jan; Schmidt, Claudia; Ott, Ingo; Keller, Bettina G; Brabec, Viktor; Kulak, Nora

    2018-05-07

    Many drugs that are applied in anticancer therapy such as the anthracycline doxorubicin contain DNA-intercalating 9,10-anthraquinone (AQ) moieties. When Cu(II) cyclen complexes were functionalized with up to three (2-anthraquinonyl)methyl substituents, they efficiently inhibited DNA and RNA synthesis resulting in high cytotoxicity (selective for cancer cells) accompanied by DNA condensation/aggregation phenomena. Molecular modeling suggests an unusual bisintercalation mode with only one base pair between the two AQ moieties and the metal complex as a linker. A regioisomer, in which the AQ moieties point in directions unfavorable for such an interaction, had a much weaker biological activity. The ligands alone and corresponding Zn(II) complexes (used as redox inert control compounds) also exhibited lower activity.

  13. Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles.

    PubMed

    Crowley, James D; Hänni, Kevin D; Leigh, David A; Slawin, Alexandra M Z

    2010-04-14

    A synthesis of [2]rotaxanes in which Zn(II) or Cu(II) Lewis acids catalyze a Diels-Alder cycloaddition to form the axle while simultaneously acting as the template for the assembly of the interlocked molecules is described. Coordination of the Lewis acid to a multidentate endotopic 2,6-di(methyleneoxymethyl)pyridyl- or bipyridine-containing macrocycle orients a chelated dienophile through the macrocycle cavity. Lewis acid activation of the double bond causes it to react with an incoming "stoppered" diene, affording the [2]rotaxane in up to 91% yield. Unusually for an active-template synthesis, the metal binding site "lives on" in these rotaxanes. This was exploited in the synthesis of a molecular shuttle containing two different ligating sites in which the position of the macrocycle could be switched by complexation with metal ions [Zn(II) and Pd(II)] with different preferred coordination geometries.

  14. DNA synthesis involving a complexes form of DNA polymerase I in extracts of Escherichia coli.

    PubMed Central

    Hendler, R W; Pereira, M; Scharff, R

    1975-01-01

    DNA polymerase I (EC 2.7.7.7; deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase) has been recovered as a complex of about 390,000 molecular weight. The complex displays an ATP-stimulated DNA-synthesizing activity that prefers native to heat-denatured DNA. Genetic evidence indicates that the recBC enzyme is associated with the polymerase in the complex. Preliminary evidence for complexes involving DNA polymerases II and III is also presented. PMID:1094453

  15. Synthesis of (±)-amathaspiramide F and discovery of an unusual stereocontrolling element for the [2,3]-Stevens rearrangement.

    PubMed

    Soheili, Arash; Tambar, Uttam K

    2013-10-04

    A formal total synthesis of (±)-amathaspiramide F through a tandem palladium-catalyzed allylic amination/[2,3]-Stevens rearrangement is reported. The unexpected diastereoselectivity of the [2,3]-Stevens rearrangement was controlled by the substitution patterns of an aromatic ring. This discovery represents a new stereocontrolling element for [2,3]-sigmatropic rearrangements in complex molecular settings.

  16. Synthesis of Polycyclic Natural Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tuan Hoang

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents amore » worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.« less

  17. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    PubMed

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular Library Synthesis Using Complex Substrates: Expanding the Framework of Triterpenoids

    PubMed Central

    Ignatenko, Vasily A.; Han, Yong; Tochtrop, Gregory P.

    2013-01-01

    The remodelling of a natural product core framework by means of diversity-oriented synthesis (DOS) is a valuable approach to access diverse/biologically relevant chemical space and to overcome the limitations of combinatorial-type compounds. Here we provide proof of principle and a thorough conformational analysis for a general strategy whereby the inherent complexity of a starting material is used to define the regio- and stereochemical outcomes of reactions in chemical library construction. This is in contrast to the traditional DOS logic employing reaction development and catalysis to drive library diversity PMID:23245400

  19. Docking studies on a new human immunodeficiency virus integrase-Mg-DNA complex: phenyl ring exploration and synthesis of 1H-benzylindole derivatives through fluorine substitutions.

    PubMed

    Ferro, Stefania; De Luca, Laura; Barreca, Maria Letizia; Iraci, Nunzio; De Grazia, Sara; Christ, Frauke; Witvrouw, Myriam; Debyser, Zeger; Chimirri, Alba

    2009-01-22

    A new model of HIV-1 integrase-Mg-DNA complex that is useful for docking experiments has been built. It was used to study the binding mode of integrase strand transfer inhibitor 1 (CHI-1043) and other fluorine analogues. Molecular modeling results prompted us to synthesize the designed derivatives which showed potent enzymatic inhibition at nanomolar concentration, high antiviral activity, and low toxicity. Microwave assisted organic synthesis (MAOS) was employed in several steps of the synthetic pathway, thus reducing reaction times and improving yields.

  20. Synthesis and studies of polypeptide materials: Enantioselective polymerization of gamma-benzyl glutamate-N-carboxyanhydride and synthesis of optically active poly(beta-peptides)

    NASA Astrophysics Data System (ADS)

    Cheng, Jianjun

    A class of zero-valent transition metal complexes have been developed by Deming et al for the controlled polymerization of alpha-aminoacid-N-carboxyanhydrides (alpha-NCAs). This discovery provided a superior starting point for the development of enantioselective polymerizations of racemic alpha-NCAs. Bidentate chiral ligands were synthesized and tested for their abilities to induce enantioselective polymerization of gamma-benzyl-glutamate NCA (Glu NCA) when they were coordinated to zero-valent nickel complexes. When optically active 2-pyridinyl oxazoline ligands were mixed with bis(1,5-cyclooctadiene)nickel in THF, chiral nickel complexes were formed that selectively polymerized one enantiomer of Glu NCA over the other. The highest selectivity was observed with the nickel complex of (S)-4-tert-butyl-2-pyridinyl oxazoline, which gave a ratio of enantiomeric polymerization rate constants (kD/kL) of 5.2. It was found that subtle modification of this ligand by incorporation of additional substituents had a substantial impact on initiator enantioselectivities. In separate efforts, methodology was developed for the general synthesis of optically active beta-aminoacid-N-carboxyanhydrides (beta-NCAs) via cyclization of Nbeta-Boc- or Nbeta-Cbz-beta-amino acids using phosphorus tribromide. The beta-NCA molecules could be polymerized in good yields using strong bases or transition metal complexes to give optically active poly(beta-peptides) bearing proteinogenic side chains. The resulting poly(beta-peptides), which have moderate molecular weights, adopt stable helical conformations in solution. Poly(beta-homoglutamate and poly(beta-homolysine), the side-chain deprotected polymers, were found to display pH dependent helix-coil conformation transitions in aqueous solution, similar to their alpha-analogs. A novel method for poly(beta-aspartate) synthesis was developed via the polymerization of L-aspartate alkyl ester beta lactams using metal-amido complexes. Poly(beta-aspartates) bearing short ethylene glycol side chains were obtained with controlled molecular weights and narrow molecular weight distributions when Sc(N(TMS)2)3 was used as initiator for the beta-lactam polymerizations. Polymer chain lengths could be controlled by both stoichiometry and monomer conversion, characteristic of a living polymerization system. Di- and tri-block copoly(beta-peptides) with desired chain lengths were also synthesized using this method. It was found that these techniques were generally applicable for the synthesis of poly(beta-peptides), bearing other proteinogetic side chains. Synthesis and studies of polypeptide materials were extended to unexplored areas by incorporation of both alpha- and beta-amino acid residues into single polymer chains. Two sequence specific polypeptides bearing alternating beta-alpha, or beta-alpha-alpha amino acid residues were synthesized. Both polymers were found to adopt unprecedented stable conformations in solution.

  1. Molecular Models of Ruthenium(II) Organometallic Complexes

    ERIC Educational Resources Information Center

    Coleman, William F.

    2007-01-01

    This article presents the featured molecules for the month of March, which appear in the paper by Ozerov, Fafard, and Hoffman, and which are related to the study of the reactions of a number of "piano stool" complexes of ruthenium(II). The synthesis of compound 2a offers students an alternative to the preparation of ferrocene if they are only…

  2. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.

  3. Synthesis, characterization and DFT studies of two new silver(I) complexes with 3,4-lutidine

    NASA Astrophysics Data System (ADS)

    Soliman, Saied M.; Assem, Rania; Abu-Youssef, Morsy A. M.; Kassem, Taher S.

    2015-04-01

    The synthesis, characterization and molecular structure of two new Ag(I) complexes with 3,4-lutidine (34lut) have been reported. The [Ag(34lut)3(OAC)]; 1 and [Ag(34lut)2(TFA)]; 2 complexes, where OAC and TFA are acetate and trifluoroacetate respectively, have been characterized using elemental analysis, FTIR, NMR and mass spectra. Their molecular structures were calculated using DFT quantum chemical calculations. Both 1 and 2 were found to have distorted tetrahedral geometry around the Ag(I). The spectroscopic properties of the studied complexes have been calculated using the same level of theory. The Infrared vibrational frequencies of the COO stretches confirmed that the OAC is monodentate in 1 while the TFA is bidentate in 2. The calculated polarizability (α0) and HOMO-LUMO energy gap (ΔE) values indicated that 1 has higher NLO activity than 2. The electronic spectra of these complexes are calculated using the TD-DFT calculations. The calculated 1H NMR chemical shift values using GIAO approach showed good correlations with the experimental data. The interaction energies using the second order perturbation theory have been used to study the different intramolecular charge transfer interactions in the studied complexes. The NBO calculations indicated that both the Agsbnd O bonds are almost identical in 2 but not in 1.

  4. Ion transport in pigmentation.

    PubMed

    Bellono, Nicholas W; Oancea, Elena V

    2014-12-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.

  5. Ion transport in pigmentation

    PubMed Central

    Bellono, Nicholas W.; Oancea, Elena V.

    2014-01-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system,, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis. PMID:25034214

  6. Alumoxanes: Rationalization of Black Box Materials

    DTIC Science & Technology

    1993-05-18

    complexes for the synthesis of polyketones , ICH2CH(R)C(O)in. The activity observed is comparable to commercial systems but without the instability issues...see below). Commercial samples of polyketones suffer from severe thermal decomposition during melt processing. The Patent literature describes the...as well as the structure and molecular weight of the polymer. We intend to further our work with the catalytic synthesis of polyketones . We will

  7. Modulation of protein synthesis by polyamines.

    PubMed

    Igarashi, Kazuei; Kashiwagi, Keiko

    2015-03-01

    Polyamines are ubiquitous small basic molecules that play important roles in cell growth and viability. Since polyamines mainly exist as a polyamine-RNA complex, we looked for proteins whose synthesis is preferentially stimulated by polyamines at the level of translation, and thus far identified 17 proteins in Escherichia coli and 6 proteins in eukaryotes. The mechanisms of polyamine stimulation of synthesis of these proteins were investigated. In addition, the role of eIF5A, containing hypusine formed from spermidine, on protein synthesis is described. These results clearly indicate that polyamines and eIF5A contribute to cell growth and viability through modulation of protein synthesis. © 2015 International Union of Biochemistry and Molecular Biology.

  8. Studies on N-picolinoyl-N‧-benzothioylhydrazide and its Zn(II) complex: Synthesis, structure, antibacterial activity, thermal analysis and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kushawaha, S. K.; Dani, R. K.; Bharty, M. K.; Chaudhari, U. K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.

    2014-04-01

    A new Zn(II) complex [Zn(pbth)2] (where Hpbth = N-picolinoyl-N‧-benzothioylhydrazide) has been synthesized and characterized by elemental analyses, IR, UV-Visible and single crystal X-ray data. The distorted octahedral complex [Zn(pbth)2] crystallizes in monoclinic system with space group C2/c and is stabilized by various types of inter and intramolecular extended hydrogen bonding providing supramolecular framework. The optimized molecular geometry of N-picolinoyl-N‧-benzothioylhydrazide (Hpbth) and the zinc complex in the ground state have been calculated by using the DFT method using B3LYP functional with 6-311 G(d,p){C,H,N,O,S}/Lanl2DZ basis set. The results of the optimized molecular geometry are presented and compared with the experimental X-ray diffraction data. In addition, quantum chemical calculations of Hpbth and the complex, molecular electrostatic potential (MEP), contour map and frontier molecular orbital analysis were performed. The solid state electrical conductivity and thermal behaviour (TGA) of the complex were investigated. The bioefficacy of the complex has been examined against the growth of bacteria in vitro to evaluate its anti-microbial potential.

  9. Synthesis of the sulfur amino acids: cysteine and methionine.

    PubMed

    Wirtz, Markus; Droux, Michel

    2005-12-01

    This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.

  10. Solar Synthesis: Prospects in Visible Light Photocatalysis

    PubMed Central

    Schultz, Danielle M.; Yoon, Tehshik P.

    2015-01-01

    Chemists have long aspired to synthesize molecules the way that plants do — using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions. PMID:24578578

  11. Solar synthesis: prospects in visible light photocatalysis.

    PubMed

    Schultz, Danielle M; Yoon, Tehshik P

    2014-02-28

    Chemists have long aspired to synthesize molecules the way that plants do-using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light-absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions.

  12. Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex

    PubMed Central

    Chen, Yalei; Deffenbaugh, Nathan C.; Anderson, Charles T.; Hancock, William O.

    2014-01-01

    The constituents of large, multisubunit protein complexes dictate their functions in cells, but determining their precise molecular makeup in vivo is challenging. One example of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellulose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-containing particles in living Arabidopsis thaliana cells using variable-angle epifluorescence microscopy and developed a set of information-based step detection procedures to estimate the number of GFP molecules in each particle. The step detection algorithms account for changes in signal variance due to changing numbers of fluorophores, and the subsequent analysis avoids common problems associated with fitting multiple Gaussian functions to binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can exist in each particle. These procedures can be applied to photobleaching data for any protein complex with large numbers of fluorescently tagged subunits, providing a new analytical tool with which to probe complex composition and stoichiometry. PMID:25232006

  13. Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex

    DOE PAGES

    Chen, Yalei; Deffenbaugh, Nathan C.; Anderson, Charles T.; ...

    2014-09-17

    The constituents of large, multisubunit protein complexes dictate their functions in cells, but determining their precise molecular makeup in vivo is challenging. One example of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellulose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-containing particles in living Arabidopsis thaliana cells usingmore » variable-angle epifluorescence microscopy and developed a set of information-based step detection procedures to estimate the number of GFP molecules in each particle. The step detection algorithms account for changes in signal variance due to changing numbers of fluorophores, and the subsequent analysis avoids common problems associated with fitting multiple Gaussian functions to binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can exist in each particle. In conclusion, these procedures can be applied to photobleaching data for any protein complex with large numbers of fluorescently tagged subunits, providing a new analytical tool with which to probe complex composition and stoichiometry.« less

  14. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.

    2003-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.

  15. Lanthanide complexes with aromatic o-phosphorylated ligands: synthesis, structure elucidation and photophysical properties.

    PubMed

    Shuvaev, Sergey; Utochnikova, Valentina; Marciniak, Łukasz; Freidzon, Alexandra; Sinev, Ilya; Van Deun, Rik; Freire, Ricardo O; Zubavichus, Yan; Grünert, Wolfgang; Kuzmina, Natalia

    2014-02-28

    Lanthanide complexes LnL3 (Ln = Sm, Eu, Tb, Dy, Tm, Yb, Lu) with aromatic o-phosphorylated ligands (HL(1) and HL(2)) have been synthesized and identified. Their molecular structure was proposed on the basis of a new complex approach, including DFT calculations, Sparkle/PM3 modelling, EXAFS spectroscopy and luminescent probing. The photophysical properties of all of the complexes were investigated in detail to obtain a deeper insight into the energy transfer processes.

  16. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com, E-mail: s-shuwen@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W.

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms frommore » a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.« less

  17. Scaffold Diversity Synthesis Delivers Complex, Structurally, and Functionally Distinct Tetracyclic Benzopyrones

    PubMed Central

    Sankar, Muthukumar G.; Roy, Sayantani; Tran, Tuyen Thi Ngoc; Wittstein, Kathrin; Bauer, Jonathan O.; Strohmann, Carsten; Ziegler, Slava

    2018-01-01

    Abstract Complexity‐generating chemical transformations that afford novel molecular scaffolds enriched in sp 3 character are highly desired. Here, we present a highly stereoselective scaffold diversity synthesis approach that utilizes cascade double‐annulation reactions of diverse pairs of zwitterionic and non‐zwitterionic partners with 3‐formylchromones to generate highly complex tetracyclic benzopyrones. Each pair of annulation partners adds to the common chroman‐4‐one scaffold to build two new rings, supporting up to four contiguous chiral centers that include an all‐carbon quaternary center. Differently ring‐fused benzopyrones display different biological activities, thus demonstrating their immense potential in medicinal chemistry and chemical biology research. PMID:29721402

  18. Synthesis, crystal structure and study of magnetocaloric effect and single molecular magnetic behaviour in discrete lanthanide complexes.

    PubMed

    Adhikary, Amit; Sheikh, Javeed Ahmad; Biswas, Soumava; Konar, Sanjit

    2014-06-28

    The synthesis, crystal structure and magnetic properties of four polynuclear lanthanide coordination complexes having molecular formulae, [Gd3(2)(1)L(H2O)8(Cl)](Cl)4·10H2O (1), [Dy3L(2)(1)(H2O)9](Cl)5·6H2O (2) [Gd6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (3) and [Dy6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (4) (where H2L(1) = bis[(2-pyridyl)methylene]pyridine-2,6-dicarbohydrazide and H4L(2) = bis[2-hydroxy-benzylidene]pyridine-2,6-dicarbohydrazide) are reported. Structural investigation by X-ray crystallography reveals similar structural features for complexes 1 and 2 and they exhibit butterfly like shapes of the molecules. Non-covalent interactions between the molecules create double helical arrangements for both molecules. Complexes 3 and 4 are isostructural and the core structures feature four distorted hemi-cubanes connected by vertex sharing. Magnetic studies unveil significant magnetic entropy changes for complexes 1, 3 and slow relaxation of magnetization for both dysprosium analogues 2 and 4.

  19. Hairpin-shaped tetranuclear palladium(II) complex: synthesis, crystal structure, DNA binding and cytotoxicity activity studies.

    PubMed

    Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei

    2010-07-01

    A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. Crown Copyright (c) 2010. Published by Elsevier Masson SAS. All rights reserved.

  20. Synthesis of single-molecule nanocars.

    PubMed

    Vives, Guillaume; Tour, James M

    2009-03-17

    The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the "top-down" approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the "bottom-up" approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C(60) fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new p-carborane- and ruthenium-based wheels with greater solubility in organic solvents. Although fullerene wheels must be attached in the final synthetic step, p-carborane- and ruthenium-based wheels do not inhibit organometallic coupling reactions, which allows a more convergent synthesis of molecular machines. We also prepared functional nanotrucks for the transport of atoms and molecules, as well as self-assembling nanocars and nanotrains. Although engineering challenges such as movement over long distance and non-atomically flat surfaces remain, the greatest current research challenge is imaging. The detailed study of nanocars requires complementary single molecule imaging techniques such as STM, AFM, TEM, or single-molecule fluorescence microscopy. Further developments in engineering and synthesis could lead to enzyme-like manipulation and assembly of atoms and small molecules in nonbiological environments.

  1. Biomimetic molecular design tools that learn, evolve, and adapt.

    PubMed

    Winkler, David A

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  2. Biomimetic molecular design tools that learn, evolve, and adapt

    PubMed Central

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  3. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphyhaline

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-01

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, 1H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ).

  4. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand

    PubMed Central

    Kuriyama, Shogo; Arashiba, Kazuya; Nakajima, Kazunari; Matsuo, Yuki; Tanaka, Hiromasa; Ishii, Kazuyuki; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2016-01-01

    Synthesis and reactivity of iron-dinitrogen complexes have been extensively studied, because the iron atom plays an important role in the industrial and biological nitrogen fixation. As a result, iron-catalyzed reduction of molecular dinitrogen into ammonia has recently been achieved. Here we show that an iron-dinitrogen complex bearing an anionic PNP-pincer ligand works as an effective catalyst towards the catalytic nitrogen fixation, where a mixture of ammonia and hydrazine is produced. In the present reaction system, molecular dinitrogen is catalytically and directly converted into hydrazine by using transition metal-dinitrogen complexes as catalysts. Because hydrazine is considered as a key intermediate in the nitrogen fixation in nitrogenase, the findings described in this paper provide an opportunity to elucidate the reaction mechanism in nitrogenase. PMID:27435503

  5. The Formation and Function of Plant Cuticles1

    PubMed Central

    Yeats, Trevor H.; Rose, Jocelyn K.C.

    2013-01-01

    The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field. PMID:23893170

  6. Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles using automatic photoreactor

    PubMed Central

    2014-01-01

    A novel optimized protocol for solid-state synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) with specificity for antibiotic vancomycin is described. The experimental objective was optimization of the synthesis parameters (factors) affecting the yield of obtained nanoparticles which have been synthesized using the first prototype of an automated solid-phase synthesizer. Applications of experimental design (or design of experiments) in optimization of nanoMIP yield were carried out using MODDE 9.0 software. The factors chosen in the model were the amount of functional monomers in the polymerization mixture, irradiation time, temperature during polymerization, and elution temperature. In general, it could be concluded that the irradiation time is the most important and the temperature was the least important factor which influences the yield of nanoparticles. Overall, the response surface methodology proved to be an effective tool in reducing time required for optimization of complex experimental conditions. PMID:24685151

  7. Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles using automatic photoreactor.

    PubMed

    Muzyka, Kateryna; Karim, Khalku; Guerreiro, Antonio; Poma, Alessandro; Piletsky, Sergey

    2014-03-31

    A novel optimized protocol for solid-state synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) with specificity for antibiotic vancomycin is described. The experimental objective was optimization of the synthesis parameters (factors) affecting the yield of obtained nanoparticles which have been synthesized using the first prototype of an automated solid-phase synthesizer. Applications of experimental design (or design of experiments) in optimization of nanoMIP yield were carried out using MODDE 9.0 software. The factors chosen in the model were the amount of functional monomers in the polymerization mixture, irradiation time, temperature during polymerization, and elution temperature. In general, it could be concluded that the irradiation time is the most important and the temperature was the least important factor which influences the yield of nanoparticles. Overall, the response surface methodology proved to be an effective tool in reducing time required for optimization of complex experimental conditions.

  8. Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles using automatic photoreactor

    NASA Astrophysics Data System (ADS)

    Muzyka, Kateryna; Karim, Khalku; Guerreiro, Antonio; Poma, Alessandro; Piletsky, Sergey

    2014-03-01

    A novel optimized protocol for solid-state synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) with specificity for antibiotic vancomycin is described. The experimental objective was optimization of the synthesis parameters (factors) affecting the yield of obtained nanoparticles which have been synthesized using the first prototype of an automated solid-phase synthesizer. Applications of experimental design (or design of experiments) in optimization of nanoMIP yield were carried out using MODDE 9.0 software. The factors chosen in the model were the amount of functional monomers in the polymerization mixture, irradiation time, temperature during polymerization, and elution temperature. In general, it could be concluded that the irradiation time is the most important and the temperature was the least important factor which influences the yield of nanoparticles. Overall, the response surface methodology proved to be an effective tool in reducing time required for optimization of complex experimental conditions.

  9. Accelerating spirocyclic polyketide synthesis using flow chemistry.

    PubMed

    Newton, Sean; Carter, Catherine F; Pearson, Colin M; de C Alves, Leandro; Lange, Heiko; Thansandote, Praew; Ley, Steven V

    2014-05-05

    Over the past decade, the integration of synthetic chemistry with flow processing has resulted in a powerful platform for molecular assembly that is making an impact throughout the chemical community. Herein, we demonstrate the extension of these tools to encompass complex natural product synthesis. We have developed a number of novel flow-through processes for reactions commonly encountered in natural product synthesis programs to achieve the first total synthesis of spirodienal A and the preparation of spirangien A methyl ester. Highlights of the synthetic route include an iridium-catalyzed hydrogenation, iterative Roush crotylations, gold-catalyzed spiroketalization and a late-stage cis-selective reduction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis.

    PubMed

    Kärkäs, Markus D; Porco, John A; Stephenson, Corey R J

    2016-09-14

    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis.

  11. An inhibitor of eIF2 activity in the sRNA pool of eukaryotic cells.

    PubMed

    Centrella, Michael; Porter, David L; McCarthy, Thomas L

    2011-08-15

    Eukaryotic protein synthesis is a multi-step and highly controlled process that includes an early initiation complex containing eukaryotic initiation factor 2 (eIF2), GTP, and methionine-charged initiator methionyl-tRNA (met-tRNAi). During studies to reconstruct formation of the ternary complex containing these molecules, we detected a potent inhibitor in low molecular mass RNA (sRNA) preparations of eukaryotic tRNA. The ternary complex inhibitor (TCI) was retained in the total sRNA pool after met-tRNAi was charged by aminoacyl tRNA synthetase, co-eluted with sRNA by size exclusion chromatography, but resolved from met-tRNAi by ion exchange chromatography. The adverse effect of TCI was not overcome by high GTP or magnesium omission and was independent of GTP regeneration. Rather, TCI suppressed the rate of ternary complex formation, and disrupted protein synthesis and the accumulation of heavy polymeric ribosomes in reticulocyte lysates in vitro. Lastly, a component or components in ribosome depleted cell lysate significantly reversed TCI activity. Since assembly of the met-tRNAi/eIF2/GTP ternary complex is integral to protein synthesis, awareness of TCI is important to avoid confusion in studies of translation initiation. A clear definition of TCI may also allow a better appreciation of physiologic or pathologic situations, factors, and events that control protein synthesis in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Translation initiation mediated by nuclear cap-binding protein complex.

    PubMed

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  13. The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers.

    PubMed

    Hofman, Anton H; Reza, Mehedi; Ruokolainen, Janne; Ten Brinke, Gerrit; Loos, Katja

    2017-09-01

    Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electron and Ion Reactions in Molecular Solids: from astrochemistry to radiobiology

    NASA Astrophysics Data System (ADS)

    Huels, Michael A.

    2001-05-01

    Wherever ionizing radiation interacts with matter, it initiates reaction cascades involving ions, radicals, and ballistic secondary electrons; these reactions occur on fs time-scales, and may lead to substantial physical and chemical modifications of a medium. Here I present measurements of 0-80 eV electron and ion reactions in condensed films ranging from simple to complex, and astrophysical to biological in nature. Targets contain either: small molecules, hydrocarbons of increasing complexity (incl. bases, sugars, single/double stranded DNA), molecules on rare gas matrices, or mixed cryogenic films resembling astrophysical or planetary surface ices containing O2, H2O, methane, and aromatic hydrocarbons. The basic electron or ion reaction mechanisms and pathways are found to be fundamentally universal, but are modulated by the physical and chemical nature of the medium; depending on the latter, a reaction cascade may lead to different end-points, e.g. a decrease in molecular complexity via molecular fragmentations, or increases in complexity via secondary ion collision induced synthesis of larger molecules in hydrocarbon rich surface ices.

  15. Platinum CCC-NHC benzimidazolyl pincer complexes: synthesis, characterization, photostability, and theoretical investigation of a blue-green emitter.

    PubMed

    Huckaba, Aron J; Cao, Bei; Hollis, T Keith; Valle, Henry U; Kelly, John T; Hammer, Nathan I; Oliver, Allen G; Webster, Charles Edwin

    2013-06-28

    The recently reported metallation/transmetallation route for the synthesis of CCC-bis(NHC) pincer ligand architectures was extended to 1,3-bis(3'-(trimethylsilylmethyl)-benzimidizol-1'-yl)benzene. The precursor was metallated with Zr(NMe2)4 and transmetallated to Pt using [Pt(COD)Cl2]. This Pt complex was found to resist photobleaching under UV irradiation in ambient conditions. Density functional theory (DFT) computations were used to generate the emission spectrum of the complex and reveal that this spectrum is the result of a transition from the triplet excited state (T1) to the ground state (S0). The Pt complex's molecular structure was determined by X-ray crystallography. The UV-vis absorption and emission spectra in solution and the solid-state emission spectra are reported. The solid-state photostability data and the radiative lifetime is also reported.

  16. Feasibility study of molecular memory device based on DNA using methylation to store information

    NASA Astrophysics Data System (ADS)

    Jiang, Liming; Qiu, Wanzhi; Al-Dirini, Feras; Hossain, Faruque M.; Evans, Robin; Skafidas, Efstratios

    2016-07-01

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.

  17. New concepts for molecular magnets

    NASA Astrophysics Data System (ADS)

    Pilawa, Bernd

    1999-03-01

    Miller and Epstein (1994) define molecular magnets as magnetic materials which are prepared by the low-temperature methods of the preparative chemistry. This definition includes molecular crystals of neutral radicals, radical salts and charge transfer complexes as well as metal complexes and polymers with unpaired spins (Dormann 1995). The challenge of molecular magnets consists in tailoring magnetic properties by specific modifications of the molecular units. The combination of magnetism with mechanical or electrical properties of molecular compounds promise materials of high technical interest (Gatteschi 1994a and 1994b, Möhwald 1996) and both the chemical synthesis of new molecular materials with magnetic properties as well as the physical investigation and explanation of these properties is important, in order to achieve any progress. This work deals with the physical characterization of the magnetic properties of molecular materials. It is organized as follows. In the first part molecular crystals of neutral radicals are studied. After briefly discussing the general magnetic properties of these materials and after an overview over the physical principles of exchange interaction between organic radicals I focus on the interplay between the crystallographic structure and the magnetic properties of various derivatives of the verdazyl and nitronyl nitroxide radicals. The magnetic properties of metal complexes are the subject of the second part. After an overview over the experimental and theoretical tools which are used for the investigation of the magnetic properties I shortly discuss the exchange coupling of transition metal ions and the magnetic properties of complexes of two and three metal ions. Special emphasis is given to spin cluster compounds. Spin cluster denote complexes of many magnetic ions. They are attractive as building blocks of molecular magnets as well as magnetic model compounds for the study of spin frustration, molecular super-paramagnetism and quasi one-dimensional magnets.

  18. Spiroacetal formation through telescoped cycloaddition and carbon-hydrogen bond functionalization: total synthesis of bistramide A.

    PubMed

    Han, Xun; Floreancig, Paul E

    2014-10-06

    Spiroacetals can be formed through a one-pot sequence of a hetero-Diels-Alder reaction, an oxidative carbon-hydrogen bond cleavage, and an acid treatment. This convergent approach expedites access to a complex molecular subunit which is present in numerous biologically active structures. The utility of the protocol is demonstrated through its application to a brief synthesis of the actin-binding cytotoxin bistramide A. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Divergent Synthesis and Real-Time Biological Annotation of Optically Active Tetrahydrocyclopenta[c]pyranone Derivatives

    PubMed Central

    2016-01-01

    Sp3-rich compounds are underrepresented in libraries for probe- and drug-discovery, despite their promise of extending the range of accessible molecular shapes beyond planar geometries. With this in mind, a collection of single-enantiomer bicyclic, fused cyclopentenones underpinned by a complexity-generating Pauson–Khand cyclization was synthesized. A fingerprint of biological actions of these compounds was determined immediately after synthesis using real-time annotation−a process relying on multiplexed measurements of alterations in cell morphological features. PMID:27978655

  20. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  1. Molecular engineering of polymersome surface topology

    PubMed Central

    Ruiz-Pérez, Lorena; Messager, Lea; Gaitzsch, Jens; Joseph, Adrian; Sutto, Ludovico; Gervasio, Francesco Luigi; Battaglia, Giuseppe

    2016-01-01

    Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles. PMID:27152331

  2. Synthesis, structure and DFT conformation analysis of CpNiX(NHC) and NiX2(NHC)2 (X = SPh or Br) complexes

    NASA Astrophysics Data System (ADS)

    Malan, Frederick P.; Singleton, Eric; van Rooyen, Petrus H.; Conradie, Jeanet; Landman, Marilé

    2017-11-01

    The synthesis, density functional theory (DFT) conformational study and structure analysis of novel two-legged piano stool Ni N-heterocyclic carbene (NHC) complexes and square planar Ni bis-N-heterocyclic carbene complexes, all containing either bromido- or thiophenolato ligands, are described. [CpNi(SPh)(NHC)] complexes were obtained from the neutral 18-electron [CpNiBr(NHC)] complexes by substitution of a bromido ligand with SPh, using NEt3 as a base to abstract the proton of HSPh. The 16-electron biscarbene complexes [Ni(SPh)2{NHC}2] were isolated when an excess of HSPh was added to the reaction mixture. Biscarbene complexes of the type [NiBr2(NHC)2] were obtained in the reaction of NiCp2 with a slight excess of the specific imidazolium bromide salt. The molecular and electronic structures of the mono- and bis-N-heterocyclic carbene complexes have been analysed using single crystal diffraction and density functional theory (DFT) calculations, to give insight into their structural properties.

  3. A mononuclear Cu(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: Synthesis, crystal structure, DNA- and BSA-binding, molecular modeling, and anticancer activity against MCF-7, A-549, and HT-29 cell lines.

    PubMed

    Anjomshoa, Marzieh; Hadadzadeh, Hassan; Torkzadeh-Mahani, Masoud; Fatemi, Seyed Jamilaldin; Adeli-Sardou, Mahboubeh; Rudbari, Hadi Amiri; Nardo, Viviana Mollica

    2015-01-01

    The copper(II) complex of 1,2,4-triazine derivatives, [Cu(dppt)2(H2O)](PF6)2(dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), has been synthesized and fully characterized by spectroscopic methods and single crystal X-ray diffraction. The in vitro DNA-binding studies of the complex have been investigated by several methods. The results showed that the complex intercalates into the base pairs of DNA. The complex also indicated good binding propensity to BSA. The results of molecular docking and molecular dynamic simulation methods confirm the experimental results. Finally, the in vitro cytotoxicity indicate that the complex has excellent anticancer activity against the three human carcinoma cell lines, MCF-7, A-549, and HT-29, with IC50 values of 9.8, 7.80, and 4.50 μM, respectively. The microscopic analyses of the cancer cells demonstrate that the Cu(II) complex apparently induced apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  5. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline.

    PubMed

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-25

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, (1)H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis

    PubMed Central

    2016-01-01

    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis. PMID:27120289

  7. From Synthesis to Biological Impact of Pd (II) Complexes: Synthesis, Characterization, and Antimicrobial and Scavenging Activity

    PubMed Central

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    The Pd (II) complexes with a series of halosubstituted benzylamine ligands (BLs) have been synthesized and characterized with different spectroscopic technique such as FTIR, UV/Vis, LCMS, 1H, and 13C NMR. Their molecular sustainability in different solvents such as DMSO, DMSO : H2O, and DMSO : PBS at physiological condition (pH 7.2) was determined by UV/Vis spectrophotometer. The in vitro antibacterial and antifungal activities of the complexes were investigated against Gram-positive and Gram-negative microbes and two different fungi indicated their significant biological potential. Additionally, their antioxidant activity has been analyzed with DPPH• free radical through spectrophotometric method and the result inferred them as an antioxidant. The stronger antibacterial and antioxidant activities of the synthesized complexes suggested them as a stronger antimicrobial agent. Our study advances the biological importance of palladium (II) amine complexes in the field of antimicrobial and antioxidant activities. PMID:27119023

  8. Whole-cell biocomputing

    NASA Technical Reports Server (NTRS)

    Simpson, M. L.; Sayler, G. S.; Fleming, J. T.; Applegate, B.

    2001-01-01

    The ability to manipulate systems on the molecular scale naturally leads to speculation about the rational design of molecular-scale machines. Cells might be the ultimate molecular-scale machines and our ability to engineer them is relatively advanced when compared with our ability to control the synthesis and direct the assembly of man-made materials. Indeed, engineered whole cells deployed in biosensors can be considered one of the practical successes of molecular-scale devices. However, these devices explore only a small portion of cellular functionality. Individual cells or self-organized groups of cells perform extremely complex functions that include sensing, communication, navigation, cooperation and even fabrication of synthetic nanoscopic materials. In natural systems, these capabilities are controlled by complex genetic regulatory circuits, which are only partially understood and not readily accessible for use in engineered systems. Here, we focus on efforts to mimic the functionality of man-made information-processing systems within whole cells.

  9. Laboratory and modeling studies of chemistry in dense molecular clouds

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Prasad, S. S.; Mitchell, G. F.

    1980-01-01

    A chemical evolutionary model with a large number of species and a large chemical library is used to examine the principal chemical processes in interstellar clouds. Simple chemical equilibrium arguments show the potential for synthesis of very complex organic species by ion-molecule radiative association reactions.

  10. Towards a molecular interpretation of astringency: synthesis, 3D structure, colloidal state, and human saliva protein recognition of procyanidins.

    PubMed

    Cala, Olivier; Fabre, Sandy; Pinaud, Noël; Dufourc, Erick J; Fouquet, Eric; Laguerre, Michel; Pianet, Isabelle

    2011-07-01

    Astringency is a sensation in the mouth used in judging the quality of red wine. The rough, dry, and puckering sensation called astringency is the result of an interaction between tannins and saliva proteins, mainly proline-rich proteins (PRP), which leads to the formation and precipitation of a complex. A dry and rough sensation is then perceived in the mouth. To get an insight into astringency at the molecular level we investigated: (i) An efficient and iterative method for 4-8 procyanidin synthesis, which gives rise to all possible 4-8 procyanidins up to the tetramer with total control of degree of oligomerization and stereochemistry. (ii) The 3D-structural preferences, which take into account their internal movements, using 2D NMR and molecular modeling. (iii) The self-association process in water or hydroalcoholic solutions using diffusion NMR spectroscopy that gives the active proportion of tannins able to fix proteins. (iv) A comprehensive description of the PRP-procyanidin complex formation to get information about stoichiometry, binding site localization, and affinity constants for different procyanidins. The data collected suggest that the interactions are controlled by both procyanidin conformational and colloidal state preferences. All these results provide new insights into the molecular interpretation of tannin astringency. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Iron piano-stool complexes containing NHC ligands outfitted with pendent arms: synthesis, characterization, and screening for catalytic transfer hydrogenation

    Treesearch

    Parthapratim Das; Thomas Elder; William W. Brennessel; Stephen C. Chmely

    2016-01-01

    Catalysis is a fundamental technology that is widely used in the food, petrochemical, pharmaceutical, and agricultural sectors to produce chemical products on an industrial scale. Well-defined molecular organometallic species are a cornerstone of catalytic methodology, and the activity and selectivity of these complexes can be modulated by judicious choice of metal and...

  12. Complex of simian virus 40 large-T antigen and host 53,000-molecular-weight protein in monkey cells.

    PubMed Central

    Harlow, E; Pim, D C; Crawford, L V

    1981-01-01

    Mouse cells transformed by simian virus 40 (SV40) have been shown to contain a complex of the virus-coded large-T antigen with a host 53,000-molecular-weight (53K) protein. Initial attempts to detect a similar complex in lytically infected cells were unsuccessful, and it therefore seemed that the complex might be peculiar to transformed or abortively transformed nonpermissive cells. Immunoprecipitation of [32P]phosphate-labeled extracts of SV40-infected CV-1 African green monkey kidney cells with antibodies specific for large-T or the 53K protein revealed that the large-T-53K protein complex was formed during lytic infections. Only a minor fraction of the large-T present was associated with 53K protein, and large-T and the 53K host protein cosedimented during centrifugation through sucrose gradients. We used monospecific sera and monoclonal antibodies to study the rate of synthesis and phosphorylation of the 53K protein during lytic infections. Infection of CV-1 cells with SV40 increased the rate of synthesis of the 53K protein fivefold over that in mock-infected cells. At the same time, the rate of phosphorylation of the 53K protein increased more than 30-fold compared with control cultures. Monkey cells transformed by UV-irradiated SV40 (Gluzman et al., J. Virol. 22:256-266, 1977) also contained the large-T-53K protein complex. The formation of the complex is therefore not a peculiarity of SV40-transformed rodent cells but is a common feature of SV40 infections. Images PMID:6163871

  13. Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt-Jakob Disease.

    PubMed

    Ansoleaga, Belén; Garcia-Esparcia, Paula; Llorens, Franc; Hernández-Ortega, Karina; Carmona Tech, Margarita; Antonio Del Rio, José; Zerr, Inga; Ferrer, Isidro

    2016-06-12

    Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  14. Evaluating molecular cobalt complexes for the conversion of N2 to NH3.

    PubMed

    Del Castillo, Trevor J; Thompson, Niklas B; Suess, Daniel L M; Ung, Gaël; Peters, Jonas C

    2015-10-05

    Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain very rare despite decades of interest and are currently limited to systems featuring molybdenum or iron. This report details the synthesis of a molecular cobalt complex that generates superstoichiometric yields of NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. While the NH3 yields reported herein are modest by comparison to those of previously described iron and molybdenum systems, they intimate that other metals are likely to be viable as molecular N2 reduction catalysts. Additionally, a comparison of the featured tris(phosphine)borane Co-N2 complex with structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction performance of potential precatalysts is. These studies enable consideration of the structural and electronic effects that are likely relevant to N2 conversion activity, including the π basicity, charge state, and geometric flexibility.

  15. Synthesis, characterization and molecular modeling of some transition metal complexes of Schiff base derived from 5-aminouracil and 2-benzoyl pyridine

    NASA Astrophysics Data System (ADS)

    Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.

    2018-01-01

    Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).

  16. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol

    NASA Astrophysics Data System (ADS)

    Fonseca, Matheus C.; Nascimento, Clebio S.; Borges, Keyller B.

    2016-02-01

    The purpose of this Letter was to study for the first time the interaction process of tramadol (TRM) with distinct functional monomers (FM) in the formation of molecular imprinted polymer (MIP), using density functional theory (DFT) calculations at B3LYP/6-31G(d,p). As result we were able to establish that the best MIP synthesis conditions are obtained with acrylic acid as FM in 1:3 molar ratio and with chloroform as solvent. This condition presented the lowest stabilization energy for the pre-polymerization complexes. Besides, the intermolecular hydrogen bonds found between the template molecule and functional monomers play a primary role to the complex stability.

  17. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  18. Discovery and development of microporous metal carboxylates.

    PubMed

    Mori, Wasuke; Sato, Tomohiko; Kato, Chika Nozaki; Takei, Tohru; Ohmura, Tetsushi

    2005-01-01

    We have found a form of copper(II) terephthalate that occluded an enormous amount of gases such as N2, Ar, O2, and Xe. Copper(II) terephthalate is the first metal complex found capable of adsorbing gases. This complex has opened a new field of adsorbent chemistry and is recognized as a leader in the construction of microporous metal complexes. In extending the route for the synthesis of microporous complexes, we obtained many new porous materials that are widely recognized as useful materials for applications in areas such as gas storage, molecular sieves, catalysis, inclusion complexes, and surface science. 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  19. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine.

    PubMed

    Ciardiello, J J; Stewart, H L; Sore, H F; Galloway, W R J D; Spring, D R

    2017-06-01

    Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mycorrhizal synthesis between Boletus edulis species complex and rockroses (Cistus sp.).

    PubMed

    Águeda, Beatriz; Parladé, Javier; Fernández-Toirán, Luz Marina; Cisneros, Óscar; de Miguel, Ana María; Modrego, María Pilar; Martínez-Peña, Fernando; Pera, Joan

    2008-10-01

    Ectomycorrhizas of Boletus aereus, Boletus edulis, and Boletus reticulatus were synthesized with Cistus sp. under laboratory conditions using synthesis tubes filled with a mixture of sterilized peat-vermiculite and nutrient solution. The fungal strains isolated from sporocarps were identified by molecular techniques. The inoculated seedlings were grown for 4-5 months. The ectomycorrhizas formed were described based on standard morphological and anatomical characters. The three ectomycorrhizas described were very similar, with white monopodial-pinnate morphology, a three-layered plectenchymatous mantle on plan view and boletoid rhizomorphs.

  1. Cellulose Synthesis and Its Regulation

    PubMed Central

    Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying

    2014-01-01

    Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis. PMID:24465174

  2. Feasibility study of molecular memory device based on DNA using methylation to store information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Liming; Al-Dirini, Feras; Center for Neural Engineering

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibriummore » Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.« less

  3. Multinuclear Phthalocyanine-Fused Molecular Nanoarrays: Synthesis, Spectroscopy, and Semiconducting Property.

    PubMed

    Shang, Hong; Xue, Zheng; Wang, Kang; Liu, Huibiao; Jiang, Jianzhuang

    2017-06-27

    The post-cyclization strategy rather than the conventional ante-cyclotetramerization method was employed for the synthesis of multinuclear phthalocyanine-fused molecular nanoarrays. Reaction of 2,3,9,10,16,17-hexakis(2,6-dimethylphenoxy)-23,24-diaminophthalocyaninato zinc(II) with 2,7-di-tert-butylpyrene-4,5-dione, 2,7-di-tert-butylpyrene-4,5,9,10-tetraone, and hexaketocyclohexane in refluxing acetic acid afforded the corresponding mono-, bi-, and trinuclear phthalocyanine-fused zinc complexes (Pz-pyrene){Zn[Pc(OC 8 H 9 ) 6 ]} (1), (Pz 2 -pyrene){Zn[Pc(OC 8 H 9 ) 6 ]} 2 (2), {(HAT){Zn[Pc(OC 8 H 9 ) 6 ]} 3 } (3) in 46, 13, and 25 % yield, respectively, which extend the scope of multinuclear phthalocyanine-fused nanoarrays with different molecular skeletons. The self-assembly behavior of trinuclear phthalocyanine 3 in THF/CH 3 CN was investigated by electronic absorption spectroscopy and SEM, and the fabricated nanorods showed interesting semiconducting properties, which suggest good application potential of these multinuclear phthalocyanine-fused molecular nanoarrays. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mitoregulin: A lncRNA-Encoded Microprotein that Supports Mitochondrial Supercomplexes and Respiratory Efficiency.

    PubMed

    Stein, Colleen S; Jadiya, Pooja; Zhang, Xiaoming; McLendon, Jared M; Abouassaly, Gabrielle M; Witmer, Nathan H; Anderson, Ethan J; Elrod, John W; Boudreau, Ryan L

    2018-06-26

    Mitochondria are composed of many small proteins that control protein synthesis, complex assembly, metabolism, and ion and reactive oxygen species (ROS) handling. We show that a skeletal muscle- and heart-enriched long non-coding RNA, LINC00116, encodes a highly conserved 56-amino-acid microprotein that we named mitoregulin (Mtln). Mtln localizes to the inner mitochondrial membrane, where it binds cardiolipin and influences protein complex assembly. In cultured cells, Mtln overexpression increases mitochondrial membrane potential, respiration rates, and Ca 2+ retention capacity while decreasing mitochondrial ROS and matrix-free Ca 2+ . Mtln-knockout mice display perturbations in mitochondrial respiratory (super)complex formation and activity, fatty acid oxidation, tricarboxylic acid (TCA) cycle enzymes, and Ca 2+ retention capacity. Blue-native gel electrophoresis revealed that Mtln co-migrates alongside several complexes, including the complex I assembly module, complex V, and supercomplexes. Under denaturing conditions, Mtln remains in high-molecular-weight complexes, supporting its role as a sticky molecular tether that enhances respiratory efficiency by bolstering protein complex assembly and/or stability. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Synthesis of Novel Hydrocarbon Soluble Multifunctional Anionic Initiators: Tools for Synthesis of Novel Dendrimer and Molecular Brush Polymer Architectures

    DTIC Science & Technology

    2015-02-09

    Synthesis of Novel Dendrimer and Molecular Brush Polymer Architectures. Research Area:7.4 The views, opinions and/or findings contained in this report...journals: Final Report: Synthesis of Novel Hydrocarbon Soluble Multifunctional Anionic Initiators: Tools for Synthesis of Novel Dendrimer and Molecular

  6. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  7. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  8. Synthesis, crystal growth and characterization of bioactive material: 2-amino-1H-benzo[d]imidazol-3-ium salicylate single crystal-a proton transfer molecular complex

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Anitha, K.

    2017-05-01

    The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.

  9. Transcriptome Sequencing of Gracilariopsis lemaneiformis to Analyze the Genes Related to Optically Active Phycoerythrin Synthesis.

    PubMed

    Huang, Xiaoyun; Zang, Xiaonan; Wu, Fei; Jin, Yuming; Wang, Haitao; Liu, Chang; Ding, Yating; He, Bangxiang; Xiao, Dongfang; Song, Xinwei; Liu, Zhu

    2017-01-01

    Gracilariopsis lemaneiformis (aka Gracilaria lemaneiformis) is a red macroalga rich in phycoerythrin, which can capture light efficiently and transfer it to photosystemⅡ. However, little is known about the synthesis of optically active phycoerythrinin in G. lemaneiformis at the molecular level. With the advent of high-throughput sequencing technology, analysis of genetic information for G. lemaneiformis by transcriptome sequencing is an effective means to get a deeper insight into the molecular mechanism of phycoerythrin synthesis. Illumina technology was employed to sequence the transcriptome of two strains of G. lemaneiformis- the wild type and a green-pigmented mutant. We obtained a total of 86915 assembled unigenes as a reference gene set, and 42884 unigenes were annotated in at least one public database. Taking the above transcriptome sequencing as a reference gene set, 4041 differentially expressed genes were screened to analyze and compare the gene expression profiles of the wild type and green mutant. By GO and KEGG pathway analysis, we concluded that three factors, including a reduction in the expression level of apo-phycoerythrin, an increase of chlorophyll light-harvesting complex synthesis, and reduction of phycoerythrobilin by competitive inhibition, caused the reduction of optically active phycoerythrin in the green-pigmented mutant.

  10. An intrinsically disordered peptide from Ebola virus VP35 controls viral RNA synthesis by modulating nucleoprotein-RNA interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Daisy  W.; Borek, Dominika; Luthra, Priya

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNP NTD complex, solved to 3.7 Å resolution, reveals how NPBP peptidemore » occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.« less

  11. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor; Bahti, Husein H.

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, andmore » using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.« less

  12. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    NASA Astrophysics Data System (ADS)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  13. An intrinsically disordered peptide from Ebola virus VP35 controls viral RNA synthesis by modulating nucleoprotein-RNA interactions

    DOE PAGES

    Leung, Daisy  W.; Borek, Dominika; Luthra, Priya; ...

    2015-04-01

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNP NTD complex, solved to 3.7 Å resolution, reveals how NPBP peptidemore » occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.« less

  14. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions.

    PubMed

    Leung, Daisy W; Borek, Dominika; Luthra, Priya; Binning, Jennifer M; Anantpadma, Manu; Liu, Gai; Harvey, Ian B; Su, Zhaoming; Endlich-Frazier, Ariel; Pan, Juanli; Shabman, Reed S; Chiu, Wah; Davey, Robert A; Otwinowski, Zbyszek; Basler, Christopher F; Amarasinghe, Gaya K

    2015-04-21

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Synthesis, characterization and anticancer activity of new Schiff bases bearing neocryptolepine

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa M.; El Sayed, Ibrahim E. T.; Ayad, Mohamed I.; Hathout, Heba M. R.

    2017-10-01

    The synthesis of new Shiff base ligands denoted L1, HL2 and HL3 starting from the appropriate aminoneocryptolepine and salicaldehyde were described. The chelation abilities of L1, HL2 and HL3 ligands towards Co(II), Ni(II), Cu(II) and Pd(II) salts have been studied. A series of square planar complexes containing Cu(II) salts, PdCl2 and octahedral chelates containing NiCl2, CoCl2 salts (2 and 7) have been isolated. Also, the pentacoordinated Co(II) complex [Co(L1)2Cl]·Cl.0.5H2O·1.25EtOH (1) has been prepared. The mode of bonding and geometrical structure of complexes has been confirmed by elemental analyses and different spectroscopic methods together with thermal, magnetic moment studies, molecular modeling and X-ray diffraction. Furthermore, the synthesized ligands, in comparison to some of their metal complexes were screened for their anticancer activity against colorectal adenocarcinoma (HT-29) cells. The results showed that Co(II) complexes (1 and 7) exhibited higher anticancer activity when compared to the corresponding ligands.

  16. Mixed-ligand cobalt(II) complexes of bioinorganic and medicinal relevance, involving dehydroacetic acid and β-diketones: Their synthesis, hyphenated experimental-DFT, thermal and bactericidal facets

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N.

    2015-11-01

    The present report pertains to synthesis and combined experimental-DFT studies of a series of four novel mixed-ligand complexes of cobalt(II) of the general composition [Co(dha)(L)(H2O)2], where dhaH = dehydroacetic acid, LH = β-ketoenolates viz., o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH) or 1-benzoylacetone (1-bac). The resulting complexes were formulated based on elemental analysis, molar conductance, magnetic measurements, mass spectrometric, IR, electronic, electron spin resonance and cyclic voltammetric studies. The TGA based thermal behavior of one representative complex was evaluated. Molecular geometry optimizations and vibrational frequency calculations have been performed with Gaussian 09 software package by using density functional theory (DFT) methods with B3LYP/LANL2MB combination for dhaH and one of its complexes, [Co(dha)(1-bac)(H2O)2]. Theoretical data has been found in an excellent agreement with the experimental results. Based on experimental and theoretical data, suitable trans-octahedral structure has been proposed for the present class of complexes. Moreover, the complexes also showed a satisfactory antibacterial activity.

  17. Complexes of platinum and palladium with β-diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies

    NASA Astrophysics Data System (ADS)

    do Couto Almeida, J.; Marzano, I. M.; de Paula, F. C. Silva; Pivatto, M.; Lopes, N. P.; de Souza, P. C.; Pavan, F. R.; Formiga, A. L. B.; Pereira-Maia, E. C.; Guerra, W.

    2014-10-01

    This work reports on the synthesis and characterization of new complexes of the type [MCl(L)DMSO], where L = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (HTPB) or 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (HTTA) and M = Pt2+ or Pd2+. These complexes were characterized by elemental analyses, conductivity measurements, FT-IR, UV-Vis, high-resolution mass spectra (HRESIMS) and TG/DTA. In the complexes, the metallic ions bind to β-diketone via the oxygen atoms and to DMSO molecule via sulfur atom. The structures of complexes were optimized and theoretical data showed good agreement with the experimental results. The cytotoxic activity of the compounds was evaluated in a chronic myelogenous leukemia cell line. The platinum complexes were more cytotoxic than the free ligands and carboplatin and are promising candidates for further investigations. As example, the compound [PtCl(TPB)(DMSO)] inhibits the growth of K562 cells with an IC50 value equal to 2.5 μM. Furthermore, microbiological assays against Mycobacterium tuberculosis showed that all complexes exhibit low cytotoxicity against this bacterial strain while the free ligands exhibited MIC values of approximately 10 μg mL-1.

  18. Programmable disorder in random DNA tilings

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu

    2017-03-01

    Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures.

  19. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA

    NASA Astrophysics Data System (ADS)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-01

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  20. Synthesis and Biological Evaluation of Ru(II) and Pt(II) Complexes Bearing Carboxyl Groups as Potential Anticancer Targeted Drugs.

    PubMed

    Martínez, Ma Ángeles; Carranza, M Pilar; Massaguer, Anna; Santos, Lucia; Organero, Juan A; Aliende, Cristina; de Llorens, Rafael; Ng-Choi, Iteng; Feliu, Lidia; Planas, Marta; Rodríguez, Ana M; Manzano, Blanca R; Espino, Gustavo; Jalón, Félix A

    2017-11-20

    The synthesis and characterization of Pt(II) (1 and 2) and Ru(II) arene (3 and 4) or polypyridine (5 and 6) complexes is described. With the aim of having a functional group to form bioconjugates, one uncoordinated carboxyl group has been introduced in all complexes. Some of the complexes were selected for their potential in photodynamic therapy (PDT). The molecular structures of complexes 2 and 5, as well as that of the sodium salt of the 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine ligand (cptpy), were determined by X-ray diffraction. Different techniques were used to evaluate the binding capacity to model DNA molecules, and MTT cytotoxicity assays were performed against four cell lines. Compounds 3, 4, and 5 showed little tendency to bind to DNA and exhibited poor biological activity. Compound 2 behaves as bonded to DNA probably through a covalent interaction, although its cytotoxicity was very low. Compound 1 and possibly 6, both of which contain a cptpy ligand, were able to intercalate with DNA, but toxicity was not observed for 6. However, compound 1 was active in all cell lines tested. Clonogenic assays and apoptosis induction studies were also performed on the PC-3 line for 1. The photodynamic behavior for complexes 1, 5, and 6 indicated that their nuclease activity was enhanced after irradiation at λ = 447 nm. The cell viability was significantly reduced only in the case of 5. The different behavior in the absence or presence of light makes complex 5 a potential prodrug of interest in PDT. Molecular docking studies followed by molecular dynamics simulations for 1 and the counterpart without the carboxyl group confirmed the experimental data that pointed to an intercalation mechanism. The cytotoxicity of 1 and the potential of 5 in PDT make them good candidates for subsequent conjugation, through the carboxyl group, to "selected peptides" which could facilitate the selective vectorization of the complex toward receptors that are overexpressed in neoplastic cell lines.

  1. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.

    2015-06-01

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.

  2. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative.

    PubMed

    Al-Harbi, Sami A; Bashandy, Mahmoud S; Al-Saidi, Hammed M; Emara, Adel A A; Mousa, Tarek A A

    2015-06-15

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Novel polyelectrolyte complex based carbon nanotube composite architectures

    NASA Astrophysics Data System (ADS)

    Razdan, Sandeep

    This study focuses on creating novel architectures of carbon nanotubes using polyelectrolytes. Polyelectrolytes are unique polymers possessing resident charges on the macromolecular chains. This property, along with their biocompatibility (true for most polymers used in this study) makes them ideal candidates for a variety of applications such as membranes, drug delivery systems, scaffold materials etc. Carbon nanotubes are also unique one-dimensional nanoscale materials that possess excellent electrical, mechanical and thermal properties owing to their small size, high aspect ratio, graphitic structure and strength arising from purely covalent bonds in the molecular structure. The present study tries to investigate the synthesis processes and material properties of carbon nanotube composites comprising of polyelectrolyte complexes. Carbon nanotubes are dispersed in a polyelectrolyte and are induced into taking part in a complexation process with two oppositely charged polyelectrolytes. The resulting stoichiometric precipitate is then drawn into fiber form and dried as such. The material properties of the carbon nanotube fibers were characterized and related to synthesis parameters and material interactions. Also, an effort was made to understand and predict fiber morphology resulting from the complexation and drawing process. The study helps to delineate the synthesis and properties of the said polyelectrolyte complex-carbon nanotube architectures and highlights useful properties, such as electrical conductivity and mechanical strength, which could make these structures promising candidates for a variety of applications.

  4. Hormone synthesis and secretion by rat parathyroid glands in tissue culture.

    PubMed

    Au, W Y; Poland, A P; Stern, P H; Raisz, L G

    1970-09-01

    Rat parathyroid glands maintained in organ culture secrete biologically active parathyroid hormone (PTH) and synthesize and secrete labeled proteins from (3)H- or (14)C-labeled amino acids added to the medium. The amounts of biological activity and labeled protein in the medium are both inversely proportional to the calcium concentration. Some of the labeled low molecular weight protein was identified as PTH which had been synthesized and secreted in culture by preliminary isolation on Sephadex G-100 columns and further purification using an antibody to bovine PTH which cross-reacted with rat PTH. The cross-reacting antibody inhibited the biological effects of rat PTH and caused hypocalcemia in intact rats. The antibody bound some of the labeled low molecular weight protein of the medium at neutral pH so that it migrated as a large molecular weight complex on Sephadex. Biologically active, labeled PTH was recovered by dissociation of this complex in acid and rechromatography.

  5. Robust hydrogen-bonded self-assemblies from biimidazole complexes. Synthesis and structural characterization of [M(biimidazole)2(OH2)2]2+ (M = Co2+, Ni2+) complexes and carboxylate modules.

    PubMed

    Atencio, Reinaldo; Chacón, Mirbel; González, Teresa; Briceño, Alexander; Agrifoglio, Giuseppe; Sierraalta, Anibal

    2004-02-21

    A robust heteromeric hydrogen-bonded synthon [R2(2) (9)-Id] is exploited to drive the modular self-assembly of four coordination complexes [M(H2biim)2(OH2)2]2+ (M = Co2+, Ni2+) and carboxylate counterions. This strategy allowed us to build molecular architectures of 0-, 1-, and 2-dimensions. A hydrogen-bonded 2D-network with cavities has been designed, which maintains its striking integrity after reversible water desorption-resorption processes.

  6. Synthesis and the crystal and molecular structure of the germanium(IV) complex with propylene-1,3-diaminetetraacetic acid [Ge(Pdta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergienko, V. S., E-mail: sergienko@igic.ras.ru; Martsinko, E. E.; Seifullina, I. I.

    2015-09-15

    The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H{sub 4}Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge(Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta{sup 4–} ligand. An extended system of weak C—H···O hydrogen bonds connects complex molecules into a supramolecular 3D framework.

  7. Synthesis and the crystal and molecular structure of the germanium(IV) complex with propylene-1,3-diaminetetraacetic acid [Ge( Pdta)

    NASA Astrophysics Data System (ADS)

    Sergienko, V. S.; Martsinko, E. E.; Seifullina, I. I.; Churakov, A. V.; Chebanenko, E. A.

    2015-09-01

    The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H4 Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge( Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta 4- ligand. An extended system of weak С—Н···О hydrogen bonds connects complex molecules into a supramolecular 3D framework.

  8. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    PubMed

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  9. Collective synthesis of natural products by means of organocascade catalysis

    PubMed Central

    Jones, Spencer B.; Simmons, Bryon; Mastracchio, Anthony; MacMillan, David W. C.

    2012-01-01

    Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine. PMID:21753848

  10. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.

    PubMed

    Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A

    2008-10-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.

  11. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation

    PubMed Central

    Suryawan, Agus; Jeyapalan, Asumthia S.; Orellana, Renan A.; Wilson, Fiona A.; Nguyen, Hanh V.; Davis, Teresa A.

    2008-01-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E·eIF4G complex and increased eIF4E·4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein β-subunit-like protein (GβL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors. PMID:18682538

  12. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  13. Potent Inhibitors of the Hepatitis C Virus NS3 Protease: Design and Synthesis of Macrocyclic Substrate-Based [beta]-Strand Mimics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudreau, Nathalie; Brochu, Christian; Cameron, Dale R.

    2008-06-30

    The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring {beta}-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.

  14. Synthetic Elucidation of Design Principles for Molecular Qubits

    NASA Astrophysics Data System (ADS)

    Graham, Michael James

    Quantum information processing (QIP) is an emerging computational paradigm with the potential to enable a vast increase in computational power, fundamentally transforming fields from structural biology to finance. QIP employs qubits, or quantum bits, as its fundamental units of information, which can exist in not just the classical states of 0 or 1, but in a superposition of the two. In order to successfully perform QIP, this superposition state must be sufficiently long-lived. One promising paradigm for the implementation of QIP involves employing unpaired electrons in coordination complexes as qubits. This architecture is highly tunable and scalable, however coordination complexes frequently suffer from short superposition lifetimes, or T2. In order to capitalize on the promise of molecular qubits, it is necessary to develop a set of design principles that allow the rational synthesis of complexes with sufficiently long values of T2. In this dissertation, I report efforts to use the synthesis of series of complexes to elucidate design principles for molecular qubits. Chapter 1 details previous work by our group and others in the field. Chapter 2 details the first efforts of our group to determine the impact of varying spin and spin-orbit coupling on T2. Chapter 3 examines the effect of removing nuclear spins on coherence time, and reports a series of vanadyl bis(dithiolene) complexes which exhibit extremely long coherence lifetimes, in excess of the 100 mus threshold for qubit viability. Chapters 4 and 5 form two complimentary halves of a study to determine the exact relationship between electronic spin-nuclear spin distance and the effect of the nuclear spins on T2. Finally, chapter 6 suggests next directions for the field as a whole, including the potential for work in this field to impact the development of other technologies as diverse as quantum sensors and magnetic resonance imaging contrast agents.

  15. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components

    NASA Astrophysics Data System (ADS)

    Thubagere, Anupama J.; Thachuk, Chris; Berleant, Joseph; Johnson, Robert F.; Ardelean, Diana A.; Cherry, Kevin M.; Qian, Lulu

    2017-02-01

    Biochemical circuits made of rationally designed DNA molecules are proofs of concept for embedding control within complex molecular environments. They hold promise for transforming the current technologies in chemistry, biology, medicine and material science by introducing programmable and responsive behaviour to diverse molecular systems. As the transformative power of a technology depends on its accessibility, two main challenges are an automated design process and simple experimental procedures. Here we demonstrate the use of circuit design software, combined with the use of unpurified strands and simplified experimental procedures, for creating a complex DNA strand displacement circuit that consists of 78 distinct species. We develop a systematic procedure for overcoming the challenges involved in using unpurified DNA strands. We also develop a model that takes synthesis errors into consideration and semi-quantitatively reproduces the experimental data. Our methods now enable even novice researchers to successfully design and construct complex DNA strand displacement circuits.

  16. Ferrocenyl-substituted dinuclear Cu(II) complex: Synthesis, spectroscopy, electrochemistry, DFT calculations and catecholase activity

    NASA Astrophysics Data System (ADS)

    Emirik, Mustafa; Karaoğlu, Kaan; Serbest, Kerim; Menteşe, Emre; Yilmaz, Ismail

    2016-02-01

    A new ferrocenyl-substituted heterocyclic hydrazide ligand and its Cu(II) complex were prepared. The DFT calculations were performed to determine the electronic and molecular structures of the title compounds. The electronic spectra were calculated by using time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the compounds. The bands assignments of IR spectra were achieved in the light of the theoretical vibrational spectral data and total energy distribution values calculated at DFT/B3LYP/6-311++G(d,p) level. The redox behaviors of the ferrocene derivatives were investigated by cyclic voltammetry. The compounds show reversible redox couple assignable to Fc+/Fc couple. The copper(II) complex behaves as an effective catalyst towards oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone derivative in DMF saturated with O2. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers 2.32 × 103.

  17. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.

    Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.

  18. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE PAGES

    Koziol, Lucas; Goldman, Nir

    2015-04-21

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  19. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koziol, Lucas; Goldman, Nir

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  20. Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid.

    PubMed

    Menon, Deepak; Salloum, Darin; Bernfeld, Elyssa; Gorodetsky, Elizabeth; Akselrod, Alla; Frias, Maria A; Sudderth, Jessica; Chen, Pei-Hsuan; DeBerardinis, Ralph; Foster, David A

    2017-04-14

    mTOR, the mammalian target of rapamycin, integrates growth factor and nutrient signals to promote a transformation from catabolic to anabolic metabolism, cell growth, and cell cycle progression. Phosphatidic acid (PA) interacts with the FK506-binding protein-12-rapamycin-binding (FRB) domain of mTOR, which stabilizes both mTOR complexes: mTORC1 and mTORC2. We report here that mTORC1 and mTORC2 are activated in response to exogenously supplied fatty acids via the de novo synthesis of PA, a central metabolite for membrane phospholipid biosynthesis. We examined the impact of exogenously supplied fatty acids on mTOR in KRas-driven cancer cells, which are programmed to utilize exogenous lipids. The induction of mTOR by oleic acid was dependent upon the enzymes responsible for de novo synthesis of PA. Suppression of the de novo synthesis of PA resulted in G 1 cell cycle arrest. Although it has long been appreciated that mTOR is a sensor of amino acids and glucose, this study reveals that mTOR also senses the presence of lipids via production of PA. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Mechanisms of Translation Control Underlying Long-lasting Synaptic Plasticity and the Consolidation of Long-term Memory

    PubMed Central

    Santini, Emanuela; Huynh, Thu N.; Klann, Eric

    2018-01-01

    The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation (LTP). New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation have enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we will discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation. PMID:24484700

  2. Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin.

    PubMed

    Webert, Holger; Freibert, Sven-Andreas; Gallo, Angelo; Heidenreich, Torsten; Linne, Uwe; Amlacher, Stefan; Hurt, Ed; Mühlenhoff, Ulrich; Banci, Lucia; Lill, Roland

    2014-10-31

    Maturation of iron-sulphur (Fe/S) proteins involves complex biosynthetic machinery. In vivo synthesis of [2Fe-2S] clusters on the mitochondrial scaffold protein Isu1 requires the cysteine desulphurase complex Nfs1-Isd11, frataxin, ferredoxin Yah1 and its reductase Arh1. The roles of Yah1-Arh1 have remained enigmatic, because they are not required for in vitro Fe/S cluster assembly. Here, we reconstitute [2Fe-2S] cluster synthesis on Isu1 in a reaction depending on Nfs1-Isd11, frataxin, Yah1, Arh1 and NADPH. Unlike in the bacterial system, frataxin is an essential part of Fe/S cluster biosynthesis and is required simultaneously and stoichiometrically to Yah1. Reduced but not oxidized Yah1 tightly interacts with apo-Isu1 indicating a dynamic interaction between Yah1-apo-Isu1. Nuclear magnetic resonance structural studies identify the Yah1-apo-Isu1 interaction surface and suggest a pathway for electron flow from reduced ferredoxin to Isu1. Together, our study defines the molecular function of the ferredoxin Yah1 and its human orthologue FDX2 in mitochondrial Fe/S cluster synthesis.

  3. Library design practices for success in lead generation with small molecule libraries.

    PubMed

    Goodnow, R A; Guba, W; Haap, W

    2003-11-01

    The generation of novel structures amenable to rapid and efficient lead optimization comprises an emerging strategy for success in modern drug discovery. Small molecule libraries of sufficient size and diversity to increase the chances of discovery of novel structures make the high throughput synthesis approach the method of choice for lead generation. Despite an industry trend for smaller, more focused libraries, the need to generate novel lead structures makes larger libraries a necessary strategy. For libraries of a several thousand or more members, solid phase synthesis approaches are the most suitable. While the technology and chemistry necessary for small molecule library synthesis continue to advance, success in lead generation requires rigorous consideration in the library design process to ensure the synthesis of molecules possessing the proper characteristics for subsequent lead optimization. Without proper selection of library templates and building blocks, solid phase synthesis methods often generate molecules which are too heavy, too lipophilic and too complex to be useful for lead optimization. The appropriate filtering of virtual library designs with multiple computational tools allows the generation of information-rich libraries within a drug-like molecular property space. An understanding of the hit-to-lead process provides a practical guide to molecular design characteristics. Examples of leads generated from library approaches also provide a benchmarking of successes as well as aspects for continued development of library design practices.

  4. Molecular rheology of branched polymers: decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling.

    PubMed

    van Ruymbeke, E; Lee, H; Chang, T; Nikopoulou, A; Hadjichristidis, N; Snijkers, F; Vlassopoulos, D

    2014-07-21

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism.

  5. Molecular interaction studies of some Co(III)-surfactants with the transport protein.

    PubMed

    Vignesh, Gopalaswamy; Parthiban, Marimuthu; Senthilkumar, Rajendran; Arunachalam, Sankaralingam

    2018-05-08

    The present work describes the synthesis and the molecular interaction of two single-chain Co(III)-coordinated surfactant complexes with a plasma protein, human serum albumin by using various biophysical and in silico techniques. The experimental data reveals that like ordinary classical surfactants, our metallosurfactants also have the tendency to associate themselves and form micelles at critical micelle concentration. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) derived from the experiment demonstrates that the alkyl chain length and the head group of the Co(III)-surfactant complexes played a vital role in the binding process. Both the physico-chemical and computational docking results indicated that the Co(III)-surfactant complexes are stabilized by hydrogen bonding, hydrophobic and/or van der Waals forces. Thus, the data acquired herein for the interesting class of surfactant complexes will be of significance in metal-based drug discovery and developmental research. Copyright © 2018. Published by Elsevier B.V.

  6. Graphene Nanocomposites with High Molecular Weight Poly(ε-caprolactone) Grafts: Controlled Synthesis and Accelerated Crystallization

    DOE PAGES

    Mondal, Titash; Ashkar, Rana; Butler, Paul; ...

    2016-02-08

    Grafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "grafting to" synthetic pathway by which high molecular weight polymer, poly(e-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets. The efficacy of this tethering route and the resultant structural arrangements within the composite are confirmed by neutron and X-ray scattering measurements in the melt and solution phase. In the semicrystalline state, Xray analysis indicates that chain tethering onto the graphiticmore » nanoplatelets results in conformational changes of the polymer chains, which enhance the nucleation process and aid formation of PCL crystallites. This is corroborated by the superior thermal properties of the composite, manifested in accelerated crystallization kinetics and a significant increase in the thermal degradation temperature. Lastly, in principle, this synthesis route can be extended to a variety of high molecular weight polymers, which can open new avenues to solution-based processing of graphitic nanomaterials and the fabrication of complex 3D patterned graphitic nanocomposites.« less

  7. Rational design of a molecularly imprinted polymer for dinotefuran: theoretical and experimental studies aimed at the development of an efficient adsorbent for microextraction by packed sorbent.

    PubMed

    Silva, Camilla Fonseca; Borges, Keyller Bastos; do Nascimento, Clebio Soares

    2017-12-18

    In this work, we studied theoretically the formation process of a molecularly imprinted polymer (MIP) for dinotefuran (DNF), testing distinct functional monomers (FM) in various solvents through density functional theory calculations. The results revealed that the best conditions for MIP synthesis were established with methacrylic acid (MAA) as FM in a 1 : 4 stoichiometry and with chloroform as the solvent. This protocol showed the most favourable stabilization energies for the pre-polymerization complexes. Furthermore, the formation of the FM/template complex is enthalpy driven and the occurrence of hydrogen bonds between the DNF and MAA plays a major role in the complex stability. To confirm the theoretical results, MIP was experimentally synthesized considering the best conditions found at the molecular level and characterized by scanning electron microscopy and thermogravimetric analysis. After that, the synthesized material was efficiently employed in microextraction by packed sorbent combined with high-performance liquid chromatography in a preliminary study of the recovery of DNF from water and artificial saliva samples.

  8. Kinetically Controlled Vapor-Diffusion Synthesis of Novel Nanostructured Metal Hydroxide and Phosphate Films using no Organic Reagents

    DTIC Science & Technology

    2005-11-01

    Ga2O3 . 7 In these studies, silicatein (a catalytically active, structure-directing enzyme8) was used as a catalyst and template for the hydrolysis...and subsequent polycondensation of water stable molecular complexes of titanium and gallium to form nanocrystalline TiO2 6 and Ga2O3 , 7 respectively

  9. Biosynthesis and degradation of mammalian glycosphingolipids.

    PubMed Central

    Sandhoff, Konrad; Kolter, Thomas

    2003-01-01

    Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid-containing glycolipids of the ganglio-series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Their de novo synthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane-active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post-translational modification is the attachment of glycolipids to proteins of the human skin. PMID:12803917

  10. Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.

    PubMed

    Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R

    2017-07-13

    We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.

  11. Synthesis and molecular structures of phenylamides of magnesium, calcium, strontium, and barium--from molecular to polymeric structures.

    PubMed

    Gärtner, Martin; Görls, Helmar; Westerhausen, Matthias

    2007-09-03

    Several preparative procedures for the synthesis of the THF complexes of the alkaline earth metal bis(phenylamides) of Mg (1), Ca (2), Sr (3), and Ba (4) are presented such as metalation of aniline with strontium and barium, metathesis reactions of MI2 with KN(H)Ph, and metalation of aniline with arylcalcium compounds or dialkylmagnesium. The THF content of these compounds is rather low and an increasing aggregation is observed with the size of the metal atom. Thus, tetrameric [(THF)2Ca{mu-N(H)Ph}2]4 (2) and polymeric [(THF)2Sr{mu-N(H)Ph}2]infinity and {[(THF)2Ba{mu-N(H)Ph}2]2[(THF)Ba{mu-N(H)Ph}2]2}infinity show six-coordinate metal atoms with increasing interactions to the pi systems of the phenyl groups with increasing the radius of the alkaline earth metal atom.

  12. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives.

    PubMed

    Wang, Yali; Sun, Yang; Guo, Yueyan; Wang, Zechen; Huang, Ling; Li, Xingshu

    2016-01-01

    Because of the complexity of Alzheimer's disease (AD), the multi-target-directed ligand (MTDL) strategy is expected to provide superior effects for the treatment of AD, instead of the classic one-drug-one-target strategy. In this context, we focused on the design, synthesis and evaluation of homoisoflavonoid derivatives as dual acetyl cholinesterase (AChE) and monoamine oxidase (MAO-B) inhibitors. Among all the synthesized compounds, compound 10 provided a desired balance of AChE and hMAO-B inhibition activities, with IC50 value of 3.94 and 3.44 μM, respectively. Further studies revealed that compound 10 was a mixed-type inhibitor of AChE and an irreversible inhibitor of hMAO-B, which was also confirmed by molecular modeling studies. Taken together, the data indicated that 10 was a promising dual functional agent for the treatment of AD.

  13. Stereo-, Temporal and Chemical Control through Photoactivation of Living Radical Polymerization: Synthesis of Block and Gradient Copolymers.

    PubMed

    Shanmugam, Sivaprakash; Boyer, Cyrille

    2015-08-12

    Nature has developed efficient polymerization processes, which allow the synthesis of complex macromolecules with a perfect control of tacticity as well as molecular weight, in response to a specific stimulus. In this contribution, we report the synthesis of various stereopolymers by combining a photoactivated living polymerization, named photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) with Lewis acid mediators. We initially investigated the tolerance of two different photoredox catalysts, i.e., Ir(ppy)3 and Ru(bpy)3, in the presence of a Lewis acid, i.e., Y(OTf)3 and Yb(OTf)3, to mediate the polymerization of N,N-dimethyl acrylamide (DMAA). An excellent control of tacticity as well as molecular weight and dispersity was observed when Ir(ppy)3 and Y(OTf)3 were employed in a methanol/toluene mixture, while no polymerization or poor control was observed with Ru(bpy)3. In comparison to a thermal system, a lower amount of Y(OTf)3 was required to achieve good control over the tacticity. Taking advantage of the temporal control inherent in our system, we were able to design complex macromolecular architectures, such as atactic block-isotactic and isotactic-block-atactic polymers in a one-pot polymerization approach. Furthermore, we discovered that we could modulate the degree of tacticity through a chemical stimulus, by varying [DMSO]0/[Y(OTf)3]0 ratio from 0 to 30 during the polymerization. The stereochemical control afforded by the addition of a low amount of DMSO in conjunction with the inherent temporal control enabled the synthesis of stereogradient polymer consisting of five different stereoblocks in one-pot polymerization.

  14. Function-Oriented Synthesis: How to Design Simplified Analogues of Antibacterial Nucleoside Natural Products?

    PubMed

    Ichikawa, Satoshi

    2016-06-01

    It is important to pursue function-oriented synthesis (FOS), a strategy for the design of less structurally complex targets with comparable or superior activity that can be made in a practical manner, because compared to synthetic drugs, many biologically relevant natural products possess large and complex chemical structures that may restrict chemical modifications in a structure-activity relationship study. In this account, we describe recent efforts to simplify complex nucleoside natural products including caprazamycins. Considering the structure-activity relationship study with several truncated analogues, three types of simplified derivatives, namely, oxazolidine, isoxazolidine, and lactam-fused isoxazolidine-containing uridine derivatives, were designed and efficiently synthesized. These simplified derivatives have exhibited promising antibacterial activities. A significant feature of our studies is the rational and drastic simplification of the molecular architecture of caprazamycins. This study provides a novel strategy for the development of a new type of antibacterial agent effective against drug-resistant bacteria. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The chemistry in circumstellar envelopes of evolved stars: following the origin of the elements to the origin of life.

    PubMed

    Ziurys, Lucy M

    2006-08-15

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C(8)H, C(3)S, SiC(3), and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO(+), SO(2), and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO(+), HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.

  16. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.

    2018-03-01

    [Ni(L)2] 1 and [Cu(L)2] 2 [HL = 2-((E)-(2-methoxyphenylimino)methyl)-4,6-dichlorophenol] Schiff base complexes have been successfully synthesized and were characterized by FT-IR, UV-Vis, fluorescence spectroscopy and thermogravimetric analysis. The crystal structures of the two complexes were determined through X-ray crystallography. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 μmolL-1), which is a positive reference. A docking analysis using the AutoDock 4.0 program could explain the inhibitory activity of the complex against urease.

  17. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid

    NASA Astrophysics Data System (ADS)

    Yang, Dan-dan; Wang, Riu; Zhu, Jin-long; Cao, Qi-yue; Qin, Jie; Zhu, Hai-liang; Qian, Shao-song

    2017-01-01

    Three novel complexes, [Cu(L)2(H2O)](1), [Zn(L)2(H2O)2]·CH3OH·1.5H2O(2), and [Ni(L)2(H2O)1.8]·CH3OH·1.2H2O (3) (HL = 2-{4-[bis(4-fluorophenyl)methyl]pipera-zin-1-yl} acetic acid), were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential Monoamine oxidase B inhibitory activity. All acquired compounds were tested against rat brain MAO-B in vitro. In accordance with the result of calculation, it showed complex 1 (IC50 = 1.85 ± 0.31 μM) have good inhibitory activity against MAO-B at the same micromolar concentrations with positive control Iproniazid Phosphate (IP, IC50 = 7.59 ± 1.17 μM). These results indicated that complex 1 was a potent MAO-B inhibitor.

  18. One pot synthesis of two Mn(II) perchlorate complexes with s-triazine NNN-pincer ligand; molecular structure, Hirshfeld analysis and DFT studies

    NASA Astrophysics Data System (ADS)

    Soliman, Saied M.; El-Faham, Ayman

    2018-07-01

    Self assembly of Mn(II) perchlorate and bis(pyrazolo)-s-triazine pincer ligand (L) in methanol-water mixture afforded the homoleptic [MnL2](ClO4)2 complex (1) as plate colorless crystals. Following the crystallization process till the near dryness of the solution, we noted few needle like crystals of the heteroleptic [MnL(H2O)3](ClO4)2·H2O complex (2). Their molecular and supramolecular structures were analyzed using single crystal structure combined with Hirshfeld analysis. The packing of complexes 1 and 2 is dominated by weak Csbnd H⋯O and strong Osbnd H⋯O hydrogen bonds, respectively, as well as anion-π stacking interactions. Using Hirshfeld analysis, the percentages of the O⋯H intermolecular contacts are 32.7% and 36.8% for 1 and 2, respectively. The Mnsbnd N distances correlated well with the atoms in molecules (AIM) topological parameters. The amount of electron density transferred from the ligand units to the manganese centre are nearly the same (0.9 e) in both complexes.

  19. Collective synthesis of natural products by means of organocascade catalysis.

    PubMed

    Jones, Spencer B; Simmons, Bryon; Mastracchio, Anthony; MacMillan, David W C

    2011-07-13

    Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine. ©2011 Macmillan Publishers Limited. All rights reserved

  20. Subsumed complexity: abiogenesis as a by-product of complex energy transduction.

    PubMed

    Adam, Z R; Zubarev, D; Aono, M; Cleaves, H James

    2017-12-28

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity , organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  1. Subsumed complexity: abiogenesis as a by-product of complex energy transduction

    NASA Astrophysics Data System (ADS)

    Adam, Z. R.; Zubarev, D.; Aono, M.; Cleaves, H. James

    2017-11-01

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity, organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  2. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  3. Hafnium(IV) chloride complexes with chelating β-ketiminate ligands: Synthesis, spectroscopic characterization and volatility study

    NASA Astrophysics Data System (ADS)

    Patil, Siddappa A.; Medina, Phillip A.; Antic, Aleks; Ziller, Joseph W.; Vohs, Jason K.; Fahlman, Bradley D.

    2015-09-01

    The synthesis and characterization of four new β-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods (1H NMR, 13C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new β-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (ΔHsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ΔHsub on the molecular weight (4a-c) and inductive effects from chlorine (4d).

  4. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.

    PubMed

    Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted

    2016-04-26

    Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.

  5. Synthesis, spectroscopic, thermal and molecular modeling studies of Zn2+, Cd2+ and UO22+ complexes of Schiff bases containing triazole moiety. Antimicrobial, anticancer, antioxidant and DNA binding studies.

    PubMed

    Gaber, Mohamed; El-Ghamry, Hoda A; Fathalla, Shaimaa K; Mansour, Mohammed A

    2018-02-01

    A novel series of Zn 2+ , Cd 2+ and UO 2 2+ complexes of ligands namely 1-[(5-mercapto-1H-1,2,4-triazole-3-ylimino) methyl]naphthalene-2-ol (HL 1 ) and [(1H-1,2,4-triazole-3-ylimino) methyl] naphthalene-2-ol (HL 2 ) have been prepared and characterized by different analytical and spectral techniques. The stoichiometry, stereochemistry, conductivity measurements and mode of bonding of the complexes have been elucidated. Accurate comparison of the IR spectra of the ligands with their metal chelates proved the involvement of nitrogen atoms of the azomethine group and/or triazole ring in chelation in addition to the deprotonated hydroxyl oxygen. The UV-Vis and molar conductance data supported the octahedral geometry for the metal complexes. TGA technique has been used to study the thermal decomposition way of the metal complexes and the thermo kinetic parameters were estimated. Valuable information is obtained from calculations of molecular parameters using the molecular modeling techniques. The interaction between the metal complexes and CT-DNA has been studied from which the binding constants (k b ) were calculated. The Schiff bases and their metal chelates have shown potent antimicrobial, antioxidant and antitumor activities. The antitumor activities of the compounds have been tested in vitro against HEPG2 cell line and in silico by the molecular docking analysis with the VEGFR-2 receptor responsible for angiogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A cobalt (II) complex with 6-methylpicolinate: Synthesis, characterization, second- and third-order nonlinear optical properties, and DFT calculations

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf; Şahin, Onur

    2016-11-01

    A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV-vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O-H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C-H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second- and third-order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz-Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first-order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second-order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10-30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.

  7. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA.

    PubMed

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-15

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Synthesis of polycyclic molecules by double C(sp2)-H/C(sp3)-H arylations with a single palladium catalyst.

    PubMed

    Pierre, Cathleen; Baudoin, Olivier

    2011-04-01

    Polycyclic molecules were obtained in good yields by double C(sp(2))-H/C(sp(3))-H arylations mediated by a single palladium/phosphine catalyst. Both double intermolecular/intramolecular and intramolecular/intramolecular C-C couplings were performed successfully, which indicates that this concept has a broad applicability for the rapid construction of molecular complexity.

  9. Recent advances in heterobimetallic palladium(II)/copper(II) catalyzed domino difunctionalization of carbon-carbon multiple bonds.

    PubMed

    Beccalli, Egle M; Broggini, Gianluigi; Gazzola, Silvia; Mazza, Alberto

    2014-09-21

    The double functionalization of carbon-carbon multiple bonds in one-pot processes has emerged in recent years as a fruitful tool for the rapid synthesis of complex molecular scaffolds. This review covers the advances in domino reactions promoted by the couple palladium(ii)/copper(ii), which was proven to be an excellent catalytic system for the functionalization of substrates.

  10. Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3-H functionalization

    NASA Astrophysics Data System (ADS)

    Shu, Wei; Lorente, Adriana; Gómez-Bengoa, Enrique; Nevado, Cristina

    2017-01-01

    The quest for selective C-H functionalization reactions, able to provide new strategic opportunities for the rapid assembly of molecular complexity, represents a major focus of the chemical community. Examples of non-directed, remote Csp3-H activation to forge complex carbon frameworks remain scarce due to the kinetic stability and thus intrinsic challenge associated to the chemo-, regio- and stereoselective functionalization of aliphatic C-H bonds. Here we describe a radical-mediated, directing-group-free regioselective 1,5-hydrogen transfer of unactivated Csp3-H bonds followed by a second Csp2-H functionalization to produce, with exquisite stereoselectivity, a variety of elaborated fused ketones. This study demonstrates that aliphatic acids can be strategically harnessed as 1,2-diradical synthons and that secondary aliphatic C-H bonds can be engaged in stereoselective C-C bond-forming reactions, highlighting the potential of this protocol for target-oriented natural product and pharmaceutical synthesis.

  11. Diversity-oriented synthetic strategy for developing a chemical modulator of protein-protein interaction

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Jung, Jinjoo; Koo, Jaeyoung; Cho, Wansang; Lee, Won Seok; Kim, Chanwoo; Park, Wonwoo; Park, Seung Bum

    2016-10-01

    Diversity-oriented synthesis (DOS) can provide a collection of diverse and complex drug-like small molecules, which is critical in the development of new chemical probes for biological research of undruggable targets. However, the design and synthesis of small-molecule libraries with improved biological relevance as well as maximized molecular diversity represent a key challenge. Herein, we employ functional group-pairing strategy for the DOS of a chemical library containing privileged substructures, pyrimidodiazepine or pyrimidine moieties, as chemical navigators towards unexplored bioactive chemical space. To validate the utility of this DOS library, we identify a new small-molecule inhibitor of leucyl-tRNA synthetase-RagD protein-protein interaction, which regulates the amino acid-dependent activation of mechanistic target of rapamycin complex 1 signalling pathway. This work highlights that privileged substructure-based DOS strategy can be a powerful research tool for the construction of drug-like compounds to address challenging biological targets.

  12. Design of two-photon molecular tandem architectures for solar cells by ab initio theory

    DOE PAGES

    Ornso, Kristian B.; Garcia-Lastra, Juan M.; De La Torre, Gema; ...

    2015-03-04

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is amore » molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.« less

  13. A complex study of 5-amino-3-methyl-4-[2-(5-amino-1,3,4-oxadiazolo)]-isoxazole monohydrate: A new low-molecular-weight immune response modifier

    NASA Astrophysics Data System (ADS)

    Ryng, Stanisław; Zimecki, Michał; Jezierska-Mazzarello, Aneta; Panek, Jarosław J.; Mączyński, Marcin; Głowiak, Tadeusz; Sawka-Dobrowolska, Wanda; Koll, Aleksander

    2011-07-01

    A new potential lead structure with immunological activity, 5-amino-3-methyl-4-[2-(5-amino-1,3,4-oxadiazolo)]-isoxazole monohydrate, was synthesized. A detailed description of synthesis is presented together with X-ray structural analysis. In vitro assays showed that the compound had a potent immunosuppressive activity. Next, Density Functional Theory (DFT) was employed to shed a light on molecular properties of the investigated isoxazole derivative. The molecular modeling part included geometric as well as electronic structure descriptions: (i) the conformational analysis was performed to localize the most appropriate conformation; (ii) the coordination energy and Basis Set Superposition Error (BSSE) were estimated for the complex of the isoxazole derivative interacting with water molecule; (iii) the potential energy distribution was used to assign molecular vibrations, and NBO population analysis served to describe the electronic structure; (iv) the electrostatic potential map was generated to provide the graphical presentation of regions exposed for intermolecular interactions. The contacts between the water molecule and the nitrogen atom of the isoxazole ring edge were present in the solid phase. On the other hand, the theoretical DFT prediction was that the oxygen atom of the edge should form a more stable complex with the water molecule.

  14. Hormone synthesis and secretion by rat parathyroid glands in tissue culture

    PubMed Central

    Au, William Y. W.; Poland, Alan P.; Stern, Paula H.; Raisz, Lawrence G.

    1970-01-01

    Rat parathyroid glands maintained in organ culture secrete biologically active parathyroid hormone (PTH) and synthesize and secrete labeled proteins from 3H- or 14C-labeled amino acids added to the medium. The amounts of biological activity and labeled protein in the medium are both inversely proportional to the calcium concentration. Some of the labeled low molecular weight protein was identified as PTH which had been synthesized and secreted in culture by preliminary isolation on Sephadex G-100 columns and further purification using an antibody to bovine PTH which cross-reacted with rat PTH. The cross-reacting antibody inhibited the biological effects of rat PTH and caused hypocalcemia in intact rats. The antibody bound some of the labeled low molecular weight protein of the medium at neutral pH so that it migrated as a large molecular weight complex on Sephadex. Biologically active, labeled PTH was recovered by dissociation of this complex in acid and rechromatography. PMID:5449703

  15. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation.

    PubMed

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-09

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  16. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  17. Simulating the control of molecular reactions via modulated light fields: from gas phase to solution

    NASA Astrophysics Data System (ADS)

    Thallmair, Sebastian; Keefer, Daniel; Rott, Florian; de Vivie-Riedle, Regina

    2017-04-01

    Over the past few years quantum control has proven to be very successful in steering molecular processes. By combining theory with experiment, even highly complex control aims were realized in the gas phase. In this topical review, we illustrate the past achievements on several examples in the molecular context. The next step for the quantum control of chemical processes is to translate the fruitful interplay between theory and experiment to the condensed phase and thus to the regime where chemical synthesis can be supported. On the theory side, increased efforts to include solvent effects in quantum control simulations were made recently. We discuss two major concepts, namely an implicit description of the environment via the density matrix algorithm and an explicit inclusion of solvent molecules. By application to chemical reactions, both concepts conclude that despite environmental perturbations leading to more complex control tasks, efficient quantum control in the condensed phase is still feasible.

  18. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα: in vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines.

    PubMed

    Tabassum, Sartaj; Zaki, Mehvash; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New metal-based anticancer chemotherapeutic drug candidates [Cu(phen)L](NO₃)₂ (1) and [Zn(phen)L](NO₃)₂ (2) were synthesized from ligand L (derived from pharmacophore scaffold barbituric acid and pyrazole). In vitro DNA binding studies of the L, 1 and 2 were carried out by various biophysical techniques revealing electrostatic mode. Complex 1 cleaves pBR322 DNA via oxidative pathway and recognizes major groove of DNA double helix. The molecular docking study was carried out to ascertain the mode of action towards the molecular target DNA and enzymes. The complex 1 exhibited remarkably good anticancer activity on a panel of human cancer cell lines (GI₅₀ values < 10 μg/ml), and to elucidate the mechanism of cancer inhibition, Topo-I enzymatic activity was carried out. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. 2-Deoxyglucose conjugated platinum (II) complexes for targeted therapy: design, synthesis, and antitumor activity.

    PubMed

    Mi, Qian; Ma, Yuru; Gao, Xiangqian; Liu, Ran; Liu, Pengxing; Mi, Yi; Fu, Xuegang; Gao, Qingzhi

    2016-11-01

    Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1's substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.

  20. Charge transfer complex between 2,3-diaminopyridine with chloranilic acid. Synthesis, characterization and DFT, TD-DFT computational studies

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2018-05-01

    New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.

  1. Formation of stable and functional HIV-1 nucleoprotein complexes in vitro.

    PubMed

    Tanchou, V; Gabus, C; Rogemond, V; Darlix, J L

    1995-10-06

    HIV genomic RNA resides within the nucleocapsid, in the interior of the virus, which serves to protect the RNA against nuclease degradation and to promote its reverse transcription. To investigate the role of nucleocapsid protein (NCp7) in the stability and replication of genomic RNA within the nucleocapsid, we used NCp7, reverse transcriptase (RT) and RNAs representing the 5' and 3' regions of the genome to reconstitute functional HIV-1 nucleocapsids. The nucleoprotein complexes generated in vitro were found to be stable, which, according to biochemical and genetic data, probably results from the tight binding of NCp7 molecules to the RNA and strong NCp7/NCp7 interactions. The nucleoprotein complexes efficiently protected viral RNA against RNase degradation and, at the same time, promoted viral DNA synthesis by RT. DNA strand transfer from the 5' to the 3' RNA template was very efficient in nucleoprotein complexes formed in the presence of both RNAs, but not when the RNAs were in separate complexes. These results indicate that the in vitro reconstituted HIV-1 nucleoprotein complexes function like virion nucleocapsids and thus provide a way to study at the molecular level this viral substructure and the synthesis of proviral DNA, and to search for new anti-HIV agents.

  2. Protein chemical synthesis by α-ketoacid-hydroxylamine ligation.

    PubMed

    Harmand, Thibault J; Murar, Claudia E; Bode, Jeffrey W

    2016-06-01

    Total chemical synthesis of proteins allows researchers to custom design proteins without the complex molecular biology that is required to insert non-natural amino acids or the biocontamination that arises from methods relying on overexpression in cells. We describe a detailed procedure for the chemical synthesis of proteins with the α-ketoacid-hydroxylamine (KAHA ligation), using (S)-5-oxaproline (Opr) as a key building block. This protocol comprises two main parts: (i) the synthesis of peptide fragments by standard fluorenylmethoxycarbonyl (Fmoc) chemistry and (ii) the KAHA ligation between fragments containing Opr and a C-terminal peptide α-ketoacid. This procedure provides an alternative to native chemical ligation (NCL) that could be valuable for the synthesis of proteins, particularly targets that do not contain cysteine residues. The ligation conditions-acidic DMSO/H2O or N-methyl-2-pyrrolidinone (NMP)/H2O-are ideally suited for solubilizing peptide segments, including many hydrophobic examples. The utility and efficiency of the protocol is demonstrated by the total chemical synthesis of the mature betatrophin (also called ANGPTL8), a 177-residue protein that contains no cysteine residues. With this protocol, the total synthesis of the betatrophin protein has been achieved in around 35 working days on a multimilligram scale.

  3. Synthesis of palladium(0) and -(II) complexes with chelating bis(N-heterocyclic carbene) ligands and their application in semihydrogenation.

    PubMed

    Sluijter, Soraya N; Warsink, Stefan; Lutz, Martin; Elsevier, Cornelis J

    2013-05-28

    A transmetallation route, using silver(I) precursors, to several zero- and di-valent palladium complexes with chelating bis(N-heterocyclic carbene) ligands bearing various N-substituents has been established. The resulting complexes have been characterized by NMR and mass spectroscopy. In addition, the structure of a representative compound, [Pd(0)(bis-(Mes)NHC)(η(2)-ma)] (3a), was confirmed by X-ray crystal structure determination. In contrast to the transfer semihydrogenation, in which only low activity was observed, complex 3a showed activity (TOF = 49 mol(sub) mol(cat)(-1) h(-1)) and selectivity comparable to its monodentate counterparts in the semihydrogenation of 1-phenyl-1-propyne with molecular hydrogen.

  4. A novel pH-responsive interpolyelectrolyte hydrogel complex for the oral delivery of levodopa. Part I. IPEC modeling and synthesis.

    PubMed

    Ngwuluka, Ndidi C; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Khan, Riaz A; Pillay, Viness

    2015-03-01

    This study was undertaken to synthesize an interpolyelectrolyte complex (IPEC) of polymethacrylate (E100) and sodium carboxymethylcellulose (NaCMC) to form a polymeric hydrogel material for application in specialized oral drug delivery of sensitive levodopa. Computational modeling was employed to proffer insight into the interactions between the polymers. In addition, the reactional profile of NaCMC and polymethacrylate was elucidated using molecular mechanics energy relationships (MMER) and molecular dynamics simulations (MDS) by exploring the spatial disposition of NaCMC and E100 with respect to each other. Computational modeling revealed that the formation of the IPEC was due to strong ionic associations, hydrogen bonding, and hydrophilic interactions. The computational results corroborated well with the experimental and the analytical data. © 2014 Wiley Periodicals, Inc.

  5. Two molecular wheels 12-MC-6 complexes: Synthesis, structure and magnetic property of [Co(μ{sub 2}-SEt){sub 2}]{sub 6} and [Fe(μ{sub 2}-SEt){sub 2}]{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Jian, Fangfang, E-mail: ffj2003@163169.net; Huang, Baoxin

    2013-08-15

    The syntheses and structures of two ethyl mercaptan molecular wheels complexes, [M(μ{sub 2}-SCH{sub 2}CH{sub 3}){sub 2}]{sub 6} (M=Fe, Co), have been reported. Each metal atom is surrounded by four S atoms of the μ{sub 2}-SCH{sub 2}CH{sub 3} ligands in a distorted square plane fashion. The edge-sharing S{sub 4} square planes connect with each other to form a ring. Six metal atoms are located at the vertices of an almost hexagon, with M···M separations in the range of 2.903(1)∼2.936(2) Å for Fe and 2.889(2)∼2.962(2) Å for Co. The diameter of the ring, defined as the average distance between two opposing metalmore » atoms, is 5.850(1) Å for Fe and 5.780(1) Å for Co, respectively. The magnetic property behaves of cobalt(II) cluster complex is studied. Highlights: • Two new ethyl mercaptan cyclic hexanuclear complexes were reported. • The crystal structures shown center formation of M{sub 6}S{sub 12} molecular wheels. • The Co{sub 6} ring cluster complex represents as weak ferromagnet.« less

  6. Tailor Made Synthesis of T-Shaped and π-STACKED Dimers in the Gas Phase: Concept for Efficient Drug Design and Material Synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Das, Aloke

    2013-06-01

    Non-covalent interactions play a key role in governing the specific functional structures of biomolecules as well as materials. Thus molecular level understanding of these intermolecular interactions can help in efficient drug design and material synthesis. It has been found from X-ray crystallography that pure hydrocarbon solids (i.e. benzene, hexaflurobenzene) have mostly slanted T-shaped (herringbone) packing arrangement whereas mixed solid hydrocarbon crystals (i.e. solid formed from mixtures of benzene and hexafluorobenzene) exhibit preferentially parallel displaced (PD) π-stacked arrangement. Gas phase spectroscopy of the dimeric complexes of the building blocks of solid pure benzene and mixed benzene-hexafluorobenzene adducts exhibit similar structural motifs observed in the corresponding crystal strcutures. In this talk, I will discuss about the jet-cooled dimeric complexes of indole with hexafluorobenzene and p-xylene in the gas phase using Resonant two photon ionzation and IR-UV double resonance spectroscopy combined with quantum chemistry calculations. In stead of studying benzene...p-xylene and benzene...hexafluorobenzene dimers, we have studied corresponding indole complexes because N-H group is much more sensitive IR probe compared to C-H group. We have observed that indole...hexafluorobenzene dimer has parallel displaced (PD) π-stacked structure whereas indole...p-xylene has slanted T-shaped structure. We have shown here selective switching of dimeric structure from T-shaped to π-stacked by changing the substituent from electron donating (-CH3) to electron withdrawing group (fluorine) in one of the complexing partners. Thus, our results demonstrate that efficient engineering of the non-covalent interactions can lead to efficient drug design and material synthesis.

  7. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life

    PubMed Central

    Ziurys, Lucy M.

    2006-01-01

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule “freeze-out,” shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This “survivor” molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells. PMID:16894164

  8. Interstellar Chemistry Special Feature: The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2006-08-01

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.

  9. Nanostructured Thin Films Obtained from Fischer Aminocarbene Complexes

    PubMed Central

    Lazo-Jiménez, Rosa E.; Ortega-Alfaro, M. Carmen; López-Cortés, José G.; Alvarez-Toledano, Cecilio; Chávez-Carvayar, José Á.; Ignés-Mullol, Jordi; González-Torres, Maykel; Carreón-Castro, Pilar

    2016-01-01

    The synthesis of four amphiphilic organometallic complexes with the general formula RC = M(CO)5NH(CH2)15CH3, where R is a ferrocenyl 2(a-b) or a phenyl 4(a-b) group as a donor moiety and a Fischer carbene of chromium (0) or tungsten (0) as an acceptor group, are reported. These four push-pull systems formed Langmuir (L) monolayers at the air-water interface, which were characterized by isotherms of surface pressure versus molecular area and compression/expansion cycles (hysteresis curves); Brewster angle microscopic images were also obtained. By using the Langmuir–Blodgett (LB) method, molecular monolayers were transferred onto glass substrates forming Z-type multilayers. LB films were characterized through ultraviolet-visible spectroscopy, atomic force microscopy and X-ray diffraction techniques. Results indicated that films obtained from 2b complex [(Ferrocenyl)(hexadecylamine)methylidene] pentacarbonyl tungsten (0) are the most stable and homogeneous; due to their properties, these materials may be incorporated into organic electronic devices. PMID:28773289

  10. Molecular Biology of Proteins Acting in Immune Response Mechanisms

    DTIC Science & Technology

    1988-06-01

    Studies of the bigsynthesis and processing of LAMP-i and LAMP-2 by pulse -labeling with [ S]methionine showed that the proteins were synthesized as...about Mr 90,000, and post-translationally processed by the addition of a heterogeneous mixture of complex-type oligosaccharides to form mature...centrifugation, and analysis of oligosaccharide processing (D’Souza et -l., 1986). Synthesis and glycosylation of the core polypeptide in the rough

  11. Solution-Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Yu, Chao; Long, Hai

    2015-05-08

    Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.

  12. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae.

    PubMed Central

    Cid, V J; Durán, A; del Rey, F; Snyder, M P; Nombela, C; Sánchez, M

    1995-01-01

    In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle. PMID:7565410

  13. Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol

    NASA Astrophysics Data System (ADS)

    Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.

    2009-03-01

    A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.

  14. A Solomon link through an interwoven molecular grid.

    PubMed

    Beves, Jonathon E; Danon, Jonathan J; Leigh, David A; Lemonnier, Jean-François; Vitorica-Yrezabal, Iñigo J

    2015-06-22

    A molecular Solomon link was synthesized through the assembly of an interwoven molecular grid consisting of four bis(benzimidazolepyridyl)benzthiazolo[5,4-d]thiazole ligands and four zinc(II), iron(II), or cobalt(II) cations, followed by ring-closing olefin metathesis. NMR spectroscopy, mass spectrometry, and X-ray crystallography confirmed the doubly interlocked topology, and subsequent demetalation afforded the wholly organic Solomon link. The synthesis, in which each metal ion defines the crossing point of two ligand strands, suggests that interwoven molecular grids should be useful scaffolds for the rational construction of other topologically complex structures. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  15. Highly efficient one-step synthesis of carbon encapsulated nanocrystals by the oxidation of metal π-complexes

    NASA Astrophysics Data System (ADS)

    Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge

    2017-08-01

    Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.

  16. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  17. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  18. A Hybrid Methacrylate-Sodium Carboxymethylcellulose Interpolyelectrolyte Complex: Rheometry and in Silico Disposition for Controlled Drug Release

    PubMed Central

    Ngwuluka, Ndidi Chinyelu; Choonara, Yahya Essop; Kumar, Pradeep; Modi, Girish; du Toit, Lisa Claire; Pillay, Viness

    2013-01-01

    The rheological behavioral changes that occurred during the synthesis of an interpolyelectrolyte complex (IPEC) of methacrylate copolymer and sodium carboxymethylcellulose were assessed. These changes were compared with the rheological behavior of the individual polymers employing basic viscosity, yield stress, stress sweep, frequency sweep, temperature ramp as well as creep and recovery testing. The rheological studies demonstrated that the end-product of the complexation of low viscous methacrylate copolymer and entangled solution of sodium carboxymethylcellulose generated a polymer, which exhibited a solid-like behavior with a three-dimensional network. Additionally, the rheological profile of the sodium carboxymethylcellulose and methacrylate copolymer with respect to the effect of various concentrations of acetic acid on the synthesis of the IPEC was elucidated using molecular mechanics energy relationships (MMER) by exploring the spatial disposition of carboxymethylcellulose and methacrylate copolymer with respect to each other and acetic acid. The computational results corroborated well with the experimental in vitro drug release data. Results have shown that the IPEC may be suitable polymeric material for achieving controlled zero-order drug delivery. PMID:28788332

  19. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet

    PubMed Central

    Sakamoto, Ryota; Hoshiko, Ken; Liu, Qian; Yagi, Toshiki; Nagayama, Tatsuhiro; Kusaka, Shinpei; Tsuchiya, Mizuho; Kitagawa, Yasutaka; Wong, Wai-Yeung; Nishihara, Hiroshi

    2015-01-01

    Two-dimensional polymeric nanosheets have recently gained much attention, particularly top-down nanosheets such as graphene and metal chalcogenides originating from bulk-layered mother materials. Although molecule-based bottom-up nanosheets manufactured directly from molecular components can exhibit greater structural diversity than top-down nanosheets, the bottom-up nanosheets reported thus far lack useful functionalities. Here we show the design and synthesis of a bottom-up nanosheet featuring a photoactive bis(dipyrrinato)zinc(II) complex motif. A liquid/liquid interfacial synthesis between a three-way dipyrrin ligand and zinc(II) ions results in a multi-layer nanosheet, whereas an air/liquid interfacial reaction produces a single-layer or few-layer nanosheet with domain sizes of >10 μm on one side. The bis(dipyrrinato)zinc(II) metal complex nanosheet is easy to deposit on various substrates using the Langmuir–Schäfer process. The nanosheet deposited on a transparent SnO2 electrode functions as a photoanode in a photoelectric conversion system, and is thus the first photofunctional bottom-up nanosheet. PMID:25831973

  20. Structure of Hepatitis C Virus Polymerase in Complex with Primer-Template RNA

    PubMed Central

    Murakami, Eisuke; Lam, Angela M.; Grice, Rena L.; Du, Jinfa; Sofia, Michael J.; Furman, Philip A.; Otto, Michael J.

    2012-01-01

    The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus. PMID:22496223

  1. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure

    PubMed Central

    Létoquart, Juliette; van Tran, Nhan; Caroline, Vonny; Aleksandrov, Alexey; Lazar, Noureddine; van Tilbeurgh, Herman; Liger, Dominique; Graille, Marc

    2015-01-01

    Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm5U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity. PMID:26438534

  2. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    PubMed Central

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  3. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex.

    PubMed

    Fox, Nicholas G; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A; Barondeau, David P

    2015-06-30

    Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex.

  4. Synthesis, Characterization and Antifertility Activity of New Unsymmetrical Macrocyclic Complexes of Tin(II)

    PubMed Central

    Sharma, Kripa; Joshi, S. C.

    2000-01-01

    A new series of unsymmetrical macrocyclic complexes of tin(ll) has been prepared by the template process using bis(3-oxo-2-butylidene)propane-1,3-diamine as precursor. This affords a method to synthesize these complexes with various ring sizes. The tetradentate macrocyclic precursor [N4mL] reacts with SnCl2 and different diamines in a 1:1:1 molar ratio in refluxing methanol to give complexes of the type [Sn(N4mL)Cl2]. The ring expansion has been achieved by varying the diamine between the two diacetyl amino nitrogen atoms. The macrocyclic precursor and its metal complexes have been characterized on the basis of elemental analysis, molar conductance, molecular weight determinations, IR, 1H NMR,13C NMR, 119Sn NMR and electronic spectral studies. An octahedral geometry around the metal ion is suggested for these complexes. On the basis of molecular weights and conductivity measurements, their monomeric and non-electrolytic nature has been confirmed. The precursor and complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential. The testicular sperm density and testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemicals parameters of reproductive organs have been examined and discussed. PMID:18475951

  5. Activation of Basal Gluconeogenesis by Coactivator p300 Maintains Hepatic Glycogen Storage

    PubMed Central

    Cao, Jia; Meng, Shumei; Ma, Anlin; Radovick, Sally; Wondisford, Fredric E.

    2013-01-01

    Because hepatic glycogenolysis maintains euglycemia during early fasting, proper hepatic glycogen synthesis in the fed/postprandial states is critical. It has been known for decades that gluconeogenesis is essential for hepatic glycogen synthesis; however, the molecular mechanism remains unknown. In this report, we show that depletion of hepatic p300 reduces glycogen synthesis, decreases hepatic glycogen storage, and leads to relative hypoglycemia. We previously reported that insulin suppressed gluconeogenesis by phosphorylating cAMP response element binding protein-binding protein (CBP) at S436 and disassembling the cAMP response element-binding protein-CBP complex. However, p300, which is closely related to CBP, lacks the corresponding S436 phosphorylation site found on CBP. In a phosphorylation-competent p300G422S knock-in mouse model, we found that mutant mice exhibited reduced hepatic glycogen content and produced significantly less glycogen in a tracer incorporation assay in the postprandial state. Our study demonstrates the important and unique role of p300 in glycogen synthesis through maintaining basal gluconeogenesis. PMID:23770612

  6. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  7. Pyrene synthesis in circumstellar envelopes and its role in the formation of 2D nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Long; Kaiser, Ralf I.; Xu, Bo; Ablikim, Utuq; Ahmed, Musahid; Joshi, Dharati; Veber, Gregory; Fischer, Felix R.; Mebel, Alexander M.

    2018-05-01

    For the past decades, the hydrogen-abstraction/acetylene-addition (HACA) mechanism has been instrumental in attempting to untangle the origin of polycyclic aromatic hydrocarbons (PAHs) as identified in carbonaceous meteorites such as Allende and Murchison. However, the fundamental reaction mechanisms leading to the synthesis of PAHs beyond phenanthrene (C14H10) are still unknown. By exploring the reaction of the 4-phenanthrenyl radical (C14H9•) with acetylene (C2H2) under conditions prevalent in carbon-rich circumstellar environments, we show evidence of a facile, isomer-selective formation of pyrene (C16H10). Along with the hydrogen-abstraction/vinylacetylene-addition (HAVA) mechanism, molecular mass growth processes from pyrene may lead through systematic ring expansions not only to more complex PAHs, but ultimately to 2D graphene-type structures. These fundamental reaction mechanisms are crucial to facilitate an understanding of the origin and evolution of the molecular universe and, in particular, of carbon in our Galaxy.

  8. An artificial molecular machine that builds an asymmetric catalyst

    NASA Astrophysics Data System (ADS)

    De Bo, Guillaume; Gall, Malcolm A. Y.; Kuschel, Sonja; De Winter, Julien; Gerbaux, Pascal; Leigh, David A.

    2018-05-01

    Biomolecular machines perform types of complex molecular-level tasks that artificial molecular machines can aspire to. The ribosome, for example, translates information from the polymer track it traverses (messenger RNA) to the new polymer it constructs (a polypeptide)1. The sequence and number of codons read determines the sequence and number of building blocks incorporated into the biomachine-synthesized polymer. However, neither control of sequence2,3 nor the transfer of length information from one polymer to another (which to date has only been accomplished in man-made systems through template synthesis)4 is easily achieved in the synthesis of artificial macromolecules. Rotaxane-based molecular machines5-7 have been developed that successively add amino acids8-10 (including β-amino acids10) to a growing peptide chain by the action of a macrocycle moving along a mono-dispersed oligomeric track derivatized with amino-acid phenol esters. The threaded macrocycle picks up groups that block its path and links them through successive native chemical ligation reactions11 to form a peptide sequence corresponding to the order of the building blocks on the track. Here, we show that as an alternative to translating sequence information, a rotaxane molecular machine can transfer the narrow polydispersity of a leucine-ester-derivatized polystyrene chain synthesized by atom transfer radical polymerization12 to a molecular-machine-made homo-leucine oligomer. The resulting narrow-molecular-weight oligomer folds to an α-helical secondary structure13 that acts as an asymmetric catalyst for the Juliá-Colonna epoxidation14,15 of chalcones.

  9. Pd (II) complexes of bidentate chalcone ligands: Synthesis, spectral, thermal, antitumor, antioxidant, antimicrobial, DFT and SAR studies

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; Awad, Mohamed K.; Atlam, Faten M.

    2018-05-01

    The ligation behavior of two chalcone ligands namely, (E)-3-(4-chlorophenyl)-1-(pyridin-2-yl)prop-2-en-1-one (L1) and (E)-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (L2), towards the Pd(II) ion is determined. The structures of the complexes are elucidated by elemental analysis, spectral methods (IR, electronic and NMR spectra) as well as the conductance measurements and thermal analysis. The metal complexes exhibit a square planar geometrical arrangement. The kinetic and thermodynamic parameters for some selected decomposition steps have been calculated. The antimicrobial, antioxidant and anticancer activities of the chalcones and their Pd(II) complexes have been evaluated. Molecular orbital computations are performed using DFT at B3LYP level with 6-31 + G(d) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations are performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry. Thermodynamic parameters for the investigated compounds are also studied. The calculations confirm that the investigated complexes have square planner geometry, which is in a good agreement with the experimental observation.

  10. In situ synthesis of di-n-butyl l-tartrate-boric acid complex chiral selector and its application in chiral microemulsion electrokinetic chromatography.

    PubMed

    Hu, Shaoqiang; Chen, Yonglei; Zhu, Huadong; Zhu, Jinhua; Yan, Na; Chen, Xingguo

    2009-11-06

    A novel procedure for in situ assembling a complex chiral selector, di-n-butyl l-tartrate-boric acid complex, by the reaction of di-n-butyl l-tartrate with boric acid in a running buffer was reported and its application in the enantioseparation of beta-blockers and structural related compounds by chiral microemulsion electrokinetic chromatography (MEEKC) has been demonstrated. In order to achieve a good enantioseparation, the effect of dibutyl l-tartrate and sodium tetraborate concentration, surfactant identity and concentration, cosurfactant, buffer pH and composition, organic modifiers, as well as applied voltage and capillary length were investigated. Ten pairs of enantiomers that could not be separated with only dibutyl l-tartrate, obtained good chiral separation using the complex chiral selector; among them, seven pairs could be baseline resolved under optimized experimental conditions. The fixation of chiral centers by the formation of five-membered rings, and being oppositely charged with basic analytes were thought to be the key factors giving the complex chiral selector a superior chiral recognition capability. The effect of the molecular structure of analytes on enantioseparation was discussed in terms of molecular interaction.

  11. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Modular and Orthogonal Synthesis of Hybrid Polymers and Networks

    PubMed Central

    Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao

    2015-01-01

    Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255

  13. Creation of Functional Micro/Nano Systems through Top-down and Bottom-up Approaches

    PubMed Central

    Wong, Tak-Sing; Brough, Branden; Ho, Chih-Ming

    2009-01-01

    Mimicking nature’s approach in creating devices with similar functional complexity is one of the ultimate goals of scientists and engineers. The remarkable elegance of these naturally evolved structures originates from bottom-up self-assembly processes. The seamless integration of top-down fabrication and bottom-up synthesis is the challenge for achieving intricate artificial systems. In this paper, technologies necessary for guided bottom-up assembly such as molecular manipulation, molecular binding, and the self assembling of molecules will be reviewed. In addition, the current progress of synthesizing mechanical devices through top-down and bottom-up approaches will be discussed. PMID:19382535

  14. Multielectron donors based on TTF-phosphine and ferrocene-phosphine hybrid complexes of a hexarhenium(III) octahedral cluster core.

    PubMed

    Perruchas, Sandrine; Avarvari, Narcis; Rondeau, David; Levillain, Eric; Batail, Patrick

    2005-05-16

    Electroactive molecular materials precursors are obtained through coordination chemistry of the hexarhenium cluster core [Re(6)Se(8)](2+) on the six available apical positions with redox-active phosphines bearing tetrathiafulvalene- or ferrocene-based moieties. Single-crystal X-ray diffraction study and electrospray mass spectrometry ascertain the synthesis of these hexasubstituted electroactive clusters, containing up to 12 redox active sites. Cyclic voltammetry experiments demonstrate that these compounds can be reversibly oxidized at rather low potentials, thus allowing an easy access to the corresponding radical species which should provide new conducting and/or magnetic molecular materials.

  15. Ribosomal Translocation: One Step Closer to the Molecular Mechanism

    PubMed Central

    Shoji, Shinichiro; Walker, Sarah E.; Fredrick, Kurt

    2010-01-01

    Protein synthesis occurs in ribosomes, the targets of numerous antibiotics. How these large and complex machines read and move along mRNA have proven to be challenging questions. In this Review, we focus on translocation, the last step of the elongation cycle in which movement of tRNA and mRNA is catalyzed by elongation factor G. Translocation entails large-scale movements of the tRNAs and conformational changes in the ribosome that require numerous tertiary contacts to be disrupted and reformed. We highlight recent progress toward elucidating the molecular basis of translocation and how various antibiotics influence tRNA–mRNA movement. PMID:19173642

  16. Calixarenes in analytical and separation chemistry.

    PubMed

    Ludwig, R

    2000-05-01

    Discovered in the 1940's, [1n]metacyclophanes with the common name calix[n]arenes which is derived from for the molecule's shape enjoyed a remarkable interest in almost all fields of chemistry since the 1980's, which is highlighted by several books [1-8]. Over 50 reviews concerning their synthesis, properties and applicabilities were published, many of those with emphasis on organic synthesis and structural properties are cited in [P. 5-6 in 2]. Of interest for analytical chemists are reviews on calixarenes and the structurally related resorcin[n]arenes (or calix[n]resorcarenes) and calixpyrroles concerning potentiometric sensors [9-12], chromo- and fluorophores [13, 14], molecular switches [15], metal ion binding in solution [16-19], redox properties [20] and anion binding [21-24]. Other recent reviews deal with thermodynamic aspects [25], organometallic compounds [26], P-containing calixarenes [27-29], as well as molecular dynamics modeling [30-33]. It is a vital field with over 200 publications per year. Therefore, this article presents only selected results on complexation, solvent extraction and membrane transport with the emphasis on ion and molecular recognition which can be used for analytical purposes, without attempting to cover all available references.

  17. Synthesis and spectral characterization of 2-((2-hydroxybenzylidene)amino)-2-methylpropane-1,3-diol derived complexes: Molecular docking and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Ansari, Istikhar A.; Sama, Farasha; Raizada, Mukul; Shahid, M.; Rajpoot, Ravi Kant; Siddiqi, Zafar A.

    2017-01-01

    A series of four homo-dinuclear transition metal complexes with stoichiometry [M2(HL)2(H2O)2] [M = Fe (1), Co (2), Ni (3) and Cu (4); H3L = 2-((2-hydroxybenzylidene)amino)-2-methylpropane-1,3-diol] has been prepared. Ligand (H3L) was obtained by the condensation of 2-amino-2-methyl-1,3-propanediol (H2ampd) with salicylaldehyde. The complexes (1-4) are characterized employing elemental analysis, FTIR, ESI mass, 1H &13C NMR, EPR, UV Visible, TGA, cyclic voltammetry, and magnetic studies. Spectral data ascertained the bonding features and the geometry of the complexes and revealed that all the complexes adopt distorted octahedral geometry with high spin state of metal ions. Thermal and ESI mass data confirmed the proposed stoichiometry of the complexes. Cyclic voltammetric (CV) studies ascertain the formation of MII/MIII quasi-reversible redox couples in solution. The antimicrobial activities of the present complexes have been examined against few bacteria (E. coli, B. subtilis, S. aureus and S. typhymurium) and fungi (C. albicans, A. fumigatus and P. marneffeiin) suggesting that the present compounds show moderate to high antimicrobial properties. Among all the compounds tested, complex (4) exhibited highest antibacterial as well as antifungal activity. Molecular docking studies of the free ligand and the complexes are performed with BDNA.

  18. Synthesis of a new class of carbon-bonded anionic sigma complexes with 1,3-dimethyl-2,6-dioxo-5-(2,4,6-trinitrophenyl)-1,2,3,6-tetrahydropyrimidin-4-olate moiety as insensitive high energy density materials -- implications from impact sensitivity and thermal testings.

    PubMed

    Kulandaiya, Rajamani; Doraisamyraja, Kalaivani

    2015-01-01

    Poly nitro aromatic compounds are high energy density materials. Carbon-bonded anionic sigma complexes derived from them have remarkable thermal stability. At present there is a strong requirement for thermally stable insensitive high energy density materials (IHEDMs) in the energetic field which necessitates the present investigation. Three new carbon-bonded anionic sigma complexes were synthesized from 2-chloro-1,3,5-trinitrobenzene, 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (1,3-dimethylbarbituric acid) and bases such as triethanolamine, pyridine and N,N-diethylaniline, characterized by UV-VIS, IR, (1)H NMR, (13)C NMR and elemental analysis data. Their molecular structures were further ascertained through single crystal X-ray diffraction studies. TGA/DTA testings were undertaken at four different heating rates (5, 10, 20 and 40 K/min) and energy of activation was determined employing Ozawa and Kissinger plots. The reported carbon-bonded anionic sigma complexes were prepared through single pot synthesis in good yield with high purity. These complexes are molecular salts comprise of cation and anion moieties. Because of the salt-like nature, they are highly stable upto 300°C and decompose in two stages on further heating. They are stable towards impact of 2 kg mass hammer upto height limit (160 cm) of the instrument. The delocalization of the negative charge and various hydrogen bonds noticed in their crystals are the added factors of their thermal stability. The new insensitive high energy density materials of the present findings may receive attention in the field of energetics in future. Graphical AbstractA new class of carbon-bonded anionic sigma complexes as insensitive high energy density materials.

  19. BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase.

    PubMed

    Moreau, Karen; Dizin, Eva; Ray, Hind; Luquain, Céline; Lefai, Etienne; Foufelle, Fabienne; Billaud, Marc; Lenoir, Gilbert M; Venezia, Nicole Dalla

    2006-02-10

    Germ line alterations in BRCA1 (breast cancer susceptibility gene 1) are associated with an increased susceptibility to breast and ovarian cancer. BRCA1 acts as a scaffold protein implicated in multiple cellular functions, such as transcription, DNA repair, and ubiquitination. However, the molecular mechanisms responsible for tumorigenesis are not yet fully understood. We have recently demonstrated that BRCA1 interacts in vivo with acetyl coenzyme A carboxylase alpha (ACCA) through its tandem of BRCA1 C terminus (BRCT) domains. To understand the biological function of the BRCA1.ACCA complex, we sought to determine whether BRCA1 is a regulator of lipogenesis through its interaction with ACCA. We showed here that RNA inhibition-mediated down-regulation of BRCA1 expression induced a marked increase in the fatty acid synthesis. We then delineated the biochemical characteristics of the complex and found that BRCA1 interacts solely with the phosphorylated and inactive form of ACCA (P-ACCA). Finally, we demonstrated that BRCA1 affects lipid synthesis by preventing P-ACCA dephosphorylation. These results suggest that BRCA1 affects lipogenesis through binding to P-ACCA, providing a new mechanism by which BRCA1 may exert a tumor suppressor function.

  20. Selective Nitrate Recognition by a Halogen‐Bonding Four‐Station [3]Rotaxane Molecular Shuttle

    PubMed Central

    Barendt, Timothy A.; Docker, Andrew; Marques, Igor; Félix, Vítor

    2016-01-01

    Abstract The synthesis of the first halogen bonding [3]rotaxane host system containing a bis‐iodo triazolium‐bis‐naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo‐triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion–rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the 1H NMR anion binding results. PMID:27436297

  1. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Papri; Prokopchuk, Demyan E.; Mock, Michael T.

    2017-03-01

    This review examines the synthesis and acid reactivity of transition metal dinitrogen complexes bearing diphosphine ligands containing pendant amine groups in the second coordination sphere. This manuscript is a review of the work performed in the Center for Molecular Electrocatalysis. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR studies on Fe were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located atmore » PNNL. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. DOE.« less

  2. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    NASA Astrophysics Data System (ADS)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  3. A melanosomal two-pore sodium channel regulates pigmentation

    PubMed Central

    Bellono, Nicholas W.; Escobar, Iliana E.; Oancea, Elena

    2016-01-01

    Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation. PMID:27231233

  4. Covalently functionalized noble metal nanoparticles for molecular imprinted polymer biosensors: Synthesis, characterization, and SERS detection

    NASA Astrophysics Data System (ADS)

    Volkert, Anna Allyse

    This dissertation evaluates how gold nanoparticle structure and local environment influence resulting sensor function when using these nanomaterials for complex sample analysis. Molecular imprinted polymers (MIPs), a class of plastic antibodies, are engineered and incorporated into these nanosensors thereby facilitating the quantitative detection of a variety of small molecules when Raman spectroscopy and surface enhanced Raman scattering (SERS) are used for detection. First, homogeneous seeded growth gold nanosphere synthesis is evaluated as a function of ionic double layer composition and thickness. Systematically increasing the citrate concentration during synthesis improves nanomaterial shape homogeneity; however, further elevations of citrate concentration increase the number of internal and/or external atomic defects in the nanomaterials which leads to decreasing solution-phase stability. Next, spherical gold nanoparticles are modified with self-assembled monolayer (SAM), modeled using interfacial energy calculations, and experimental characterized using transmission electron microscopy, NMR, extinction spectroscopy, zeta potential, X-ray photoelectron spectroscopy, and flocculation studies to assess the morphology, surface chemistry, optical properties, surface charge, SAM packing density, and nanoparticle stability, respectively. The number of molecules on the nanostructures increases with increasing ionic strength (by decreasing the electrostatic interfacial energy between assembled molecules) which subsequently promotes nanoparticle stability. Third, plastic antibodies that recognize three drugs commonly used to treat migraines are engineered. These methacrylate-based MIPs are synthesized, extracted, characterized, and used to quantitatively and directly detect over-the-counter drugs in complex samples using Raman microscopy. These results along with numerical approximation methods to estimate drug binding site densities and dissociation constants with the MIPs serve as a foundation for understanding how modest recognition selectivity of MIPs coupled with shifts in the vibrational energy modes from the drugs upon hydrogen binding to the polymer backbone promote sensitive and selective drug detection in complex samples. Finally, nanomaterial incorporation into MIPs for applications in SERS-based biosensors is evaluated. Importantly, gold nanorod concentration increases the detectability of the same drugs using MIPs as pre-concentration and recognition elements. This combination of materials, theory, and applications forms a solid foundation which should aid in the design and development of MIP nanobiosensors for specific and sensitive detection of small molecules in complex matrices.

  5. Modular Assembly of Hierarchically Structured Polymers

    NASA Astrophysics Data System (ADS)

    Leophairatana, Porakrit

    The synthesis of macromolecules with complex yet highly controlled molecular architectures has attracted significant attention in the past few decades due to the growing demand for specialty polymers that possess novel properties. Despite recent efforts, current synthetic routes lack the ability to control several important architectural variables while maintaining low polydispersity index. This dissertation explores a new synthetic scheme for the modular assembly of hierarchically structured polymers (MAHP) that allows virtually any complex polymer to be assembled from a few basic molecular building blocks using a single common coupling chemistry. Complex polymer structures can be assembled from a molecular toolkit consisting of (1) copper-catalyzed azide-alkyne cycloaddition (CuAAC), (2) linear heterobifunctional macromonomers, (3) a branching heterotrifunctional molecule, (4) a protection/deprotection strategy, (5) "click" functional solid substrates, and (6) functional and responsive polymers. This work addresses the different challenges that emerged during the development of this synthetic scheme, and presents strategies to overcome those challenges. Chapter 3 investigates the alkyne-alkyne (i.e. Glaser) coupling side reactions associated with the atom transfer radical polymerization (ATRP) synthesis of alkyne-functional macromonomers, as well as with the CuAAC reaction of alkyne functional building blocks. In typical ATRP synthesis of unprotected alkyne functional polymers, Glaser coupling reactions can significantly compromise the polymer functionality and undermine the success of subsequent click reactions in which the polymers are used. Two strategies are reported that effectively eliminate these coupling reactions: (1) maintaining low temperature post-ATRP upon exposure to air, followed by immediate removal of copper catalyst; and (2) adding excess reducing agents post-ATRP, which prevents the oxidation of Cu(I) catalyst required by the Glaser coupling mechanism. Post-ATRP Glaser coupling was also influenced by the ATRP synthesis ligand used. The order of ligand activity for catalyzing Glaser coupling was: linear bidentate > tridentate > tetradentate. Glaser coupling can also occur for alkynes held under CuAAC reaction conditions but again can be eliminated by adding appropriate reducing agents. With the strategy presented in Chapter 3, alkyne-terminated polymers of high-functionality were produced without the need for alkyne protecting groups. These "click" functional building blocks were employed to investigate the overall efficiency of the CuAAC "click" coupling reactions between alkyne- and azide-terminated macromonomers as discussed in Chapter 4. Quantitative convolution modeling of the entire molecular weight distribution post-CuAAC indicates a CuAAC efficiency of about 94% and an azide substitution efficiency of >99%. However, incomplete functionality of the azide-terminated macromonomer (˜92%) proves to be the largest factor compromising the overall efficacy of the coupling reactions, and is attributed primarily to the loss of bromine functionality during synthesis by ATRP. To address this issue, we discuss in Chapter 6 the development of a new set of molecular building blocks consisting of alkyne functional substrates and heterobifunctional degradable linkers that allow the growth and subsequent detachment of polymers from the solid substrate. Complex polymeric structures are created by progressive cycles of CuAAC and deprotection reactions that add building blocks to the growing polymer chain ends. We demonstrate that these building blocks were completely stable under both CuAAC and deprotection reaction conditions. Since the desired product is covalently bound to the solid surface, the unreacted monomers/macromonomers and by-products (i.e. non-functional building blocks) can be easily separated from the product via removal of the polymer-tethered solid substrate in one step. Chapter 5 discusses how MAHP was employed to prepare a variety of hierarchically structured polymers and copolymers with controlled branching architectures. alpha-azido,o-TIPS-alkyne-heterobifunctional and heterotrifunctional building blocks were first prepared via ATRP and organic synthesis. Preliminary NMR and SEC studies demonstrated that these building blocks all satisfied the criteria necessary for MAHP: (1) the TIPS protecting group is stable during ATRP and CuAAC, (2) the "click" functionality is completely regenerated during the deprotection step, and (3) the CuAAC reaction of branching macromonomers is quantitative (>94%). To demonstrate the concept, poly(n-butyl acrylate)-b-dipolystyrene- b-dipoly(tert-butyl acrylate) penta-block branching copolymacromer was prepared via MAHP and quantitively characterized with SEC and NMR. (Abstract shortened by ProQuest.).

  6. Mixed-ligand Ru(II) complexes with 2,2'-bipyridine and aryldiazo-beta-diketonato auxillary ligands: synthesis, physico-chemical study and antitumour properties.

    PubMed

    Mishra, Lallan; Yadaw, Ajay K; Bhattacharya, Subrato; Dubey, Santosh K

    2005-05-01

    The complexes of Ru(II)-2,2'-bipyridyl with substituted diazopentane-2,4-diones (L1H-L5H) were synthesized and characterized by elemental analyses, conductance, FAB (fast atom bombardment) mass and spectral (IR, UV/Vis (UV/visible), NMR) studies. Molecular geometry optimization of the complexes was also made. None of the complexes luminesce. However, facilitated oxidation of Ru(II) to Ru(III) was evidenced from their lower reduction potential data. The ligands and their complexes were tested for their antitumour activity against a variety of tumour cell lines. Though activity is found to vary with the type of tumour cell lines used, yet complex 5 with naphtyldiazopentane-2,4-dione as co-ligand was found to be a potential compound as it showed in general significant activity against all cell lines studied.

  7. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution.

    PubMed

    Chen, Xuehui; Sun, Yunxiang; An, Xiongbo; Ming, Dengming

    2011-10-14

    Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another. © 2011 American Institute of Physics

  8. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  9. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors

    PubMed Central

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios

    2017-01-01

    Abstract Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. PMID:28973457

  10. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.

    PubMed

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos

    2017-09-29

    Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals.

    PubMed

    Jiang, Jianwen; Babarao, Ravichandar; Hu, Zhongqiao

    2011-07-01

    Nanoporous materials have widespread applications in chemical industry, but the pathway from laboratory synthesis and testing to practical utilization of nanoporous materials is substantially challenging and requires fundamental understanding from the bottom up. With ever-growing computational resources, molecular simulations have become an indispensable tool for material characterization, screening and design. This tutorial review summarizes the recent simulation studies in zeolites, metal-organic frameworks and protein crystals, and provides a molecular overview for energy, environmental and pharmaceutical applications of nanoporous materials with increasing degree of complexity in building blocks. It is demonstrated that molecular-level studies can bridge the gap between physical and engineering sciences, unravel microscopic insights that are otherwise experimentally inaccessible, and assist in the rational design of new materials. The review is concluded with major challenges in future simulation exploration of novel nanoporous materials for emerging applications.

  12. Chemomimesis and Molecular Darwinism in Action: From Abiotic Generation of Nucleobases to Nucleosides and RNA.

    PubMed

    Saladino, Raffaele; Šponer, Judit E; Šponer, Jiří; Costanzo, Giovanna; Pino, Samanta; Di Mauro, Ernesto

    2018-06-20

    Molecular Darwinian evolution is an intrinsic property of reacting pools of molecules resulting in the adaptation of the system to changing conditions. It has no a priori aim. From the point of view of the origin of life, Darwinian selection behavior, when spontaneously emerging in the ensembles of molecules composing prebiotic pools, initiates subsequent evolution of increasingly complex and innovative chemical information. On the conservation side, it is a posteriori observed that numerous biological processes are based on prebiotically promptly made compounds, as proposed by the concept of Chemomimesis. Molecular Darwinian evolution and Chemomimesis are principles acting in balanced cooperation in the frame of Systems Chemistry. The one-pot synthesis of nucleosides in radical chemistry conditions is possibly a telling example of the operation of these principles. Other indications of similar cases of molecular evolution can be found among biogenic processes.

  13. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    NASA Astrophysics Data System (ADS)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  14. Monomeric Ti(IV) homopiperazine complexes and their exploitation for the ring opening polymerisation of rac-lactide

    PubMed Central

    2013-01-01

    Background The area of biodegradable/sustainable polymers is one of increasing importance in the 21st Century due to their positive environmental characteristics. Lewis acidic metal centres are currently one of the most popular choices for the initiator for the polymerisation. Thus, in this paper we report the synthesis and characterisation of a series of monometallic homopiperazine Ti(IV) complexes where we have systematically varied the sterics of the phenol moieties. Results When the ortho substituent of the ligand is either a Me, tBu or amyl then the β-cis isomer is isolated exclusively in the solid-state. Nevertheless, in solution multiple isomers are clearly observed from analysis of the NMR spectra. However, when the ortho substituent is an H-atom then the trans-isomer is formed in the solid-state and solely in solution. The complexes have been screened for the polymerisation of rac-lactide in solution and under the industrially preferred melt conditions. Narrow molecular weight material (PDI 1.07 – 1.23) is formed under melt conditions with controlled molecular weights. Conclusions Six new Ti(IV) complexes are presented which are highly active for the polymerisation. In all cases atactic polymer is prepared with predictable molecular weight control. This shows the potential applicability of Ti(IV) to initiate the polymerisations. PMID:23915921

  15. Design of two-photon molecular tandem architectures for solar cells by ab initio theory† †Electronic supplementary information (ESI) available: Visualizations of molecular orbitals, one-particle mechanisms and a table with Kohn–Sham eigenvalues. See DOI: 10.1039/c4sc03835e

    PubMed Central

    Garcia-Lastra, Juan M.; De La Torre, Gema; Himpsel, F. J.; Rubio, Angel

    2015-01-01

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed. PMID:29142685

  16. Light and redox switchable molecular components for molecular electronics.

    PubMed

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  17. The proteomic complexity and rise of the primordial ancestor of diversified life

    PubMed Central

    2011-01-01

    Background The last universal common ancestor represents the primordial cellular organism from which diversified life was derived. This urancestor accumulated genetic information before the rise of organismal lineages and is considered to be either a simple 'progenote' organism with a rudimentary translational apparatus or a more complex 'cenancestor' with almost all essential biological processes. Recent comparative genomic studies support the latter model and propose that the urancestor was similar to modern organisms in terms of gene content. However, most of these studies were based on molecular sequences, which are fast evolving and of limited value for deep evolutionary explorations. Results Here we engage in a phylogenomic study of protein domain structure in the proteomes of 420 free-living fully sequenced organisms. Domains were defined at the highly conserved fold superfamily (FSF) level of structural classification and an iterative phylogenomic approach was used to reconstruct max_set and min_set FSF repertoires as upper and lower bounds of the urancestral proteome. While the functional make up of the urancestral sets was complex, they represent only 5-11% of the 1,420 FSFs of extant proteomes and their make up and reuse was at least 5 and 3 times smaller than proteomes of free-living organisms, repectively. Trees of proteomes reconstructed directly from FSFs or from molecular functions, which included the max_set and min_set as articial taxa, showed that urancestors were always placed at their base and rooted the tree of life in Archaea. Finally, a molecular clock of FSFs suggests the min_set reflects urancestral genetic make up more reliably and confirms diversified life emerged about 2.9 billion years ago during the start of planet oxygenation. Conclusions The minimum urancestral FSF set reveals the urancestor had advanced metabolic capabilities, was especially rich in nucleotide metabolism enzymes, had pathways for the biosynthesis of membrane sn1,2 glycerol ester and ether lipids, and had crucial elements of translation, including a primordial ribosome with protein synthesis capabilities. It lacked however fundamental functions, including transcription, processes for extracellular communication, and enzymes for deoxyribonucleotide synthesis. Proteomic history reveals the urancestor is closer to a simple progenote organism but harbors a rather complex set of modern molecular functions. PMID:21612591

  18. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus.

    PubMed

    Sevajol, Marion; Subissi, Lorenzo; Decroly, Etienne; Canard, Bruno; Imbert, Isabelle

    2014-12-19

    The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science.

    PubMed

    Prochowicz, Daniel; Kornowicz, Arkadiusz; Lewiński, Janusz

    2017-11-22

    Readily available cyclodextrins (CDs) with an inherent hydrophobic internal cavity and hydrophilic external surface are macrocyclic entities that display a combination of molecular recognition and complexation properties with vital implications for host-guest supramolecular chemistry. While the host-guest chemistry of CDs has been widely recognized and led to their exploitation in a variety of important functions over the last five decades, these naturally occurring macrocyclic systems have emerged only recently as promising macrocyclic molecules to fabricate environmentally benign functional nanomaterials. This review surveys the development in the field paying special attention to the synthesis and emerging uses of various unmodified CD-metal complexes and CD-inorganic nanoparticle systems and identifies possible future directions. The association of a hydrophobic cavity of CDs with metal ions or various inorganic nanoparticles is a very appealing strategy for controlling the inorganic subunits properties in the very competitive water environment. In this review we provide the most prominent examples of unmodified CDs' inclusion complexes with organometallic guests and update the research in this field from the past decade. We discuss also the coordination flexibility of native CDs to metal ions in CD-based metal complexes and summarize the progress in the synthesis and characterization of CD-metal complexes and their use in catalysis and sensing as well as construction of molecular magnets. Then we provide a comprehensive overview of emerging applications of native CDs in materials science and nanotechnology. Remarkably, in the past few years CDs have appeared as attractive building units for the synthesis of carbohydrate metal-organic frameworks (CD-MOFs) in a combination of alkali-metal cations. The preparation of this new class of highly porous materials and their applications in the separation of small molecules, the loading of drug molecules, as well as efficient host templates in the construction of nanomaterials with the desired functionality, including the first-in-class devices including sensors and memristors, are highlighted. Finally, CDs as well-known "green" molecular hosts have also been used as ideal functional molecules to improve the solubility, stability, and bioavailability of inorganic nanoparticles. In this regard, we demonstrate various strategies for the preparation of native CDs-modified inorganic nanomaterials such as metal, metal oxide, and semiconductor and magnetic nanoparticles, aiming to take advantage of both the controlled properties of the inorganic core and the controlled properties of the coating molecules. The functionalization of a CD hydrophobic cavity with an inorganic nanoparticle is very prospective for the development of novel catalytic systems and new tools for highly selective and sensitive sensing platforms for various targets.

  20. Molecular genetic studies in a case series of isolated hypoaldosteronism due to biosynthesis defects or aldosterone resistance.

    PubMed

    Turan, Ihsan; Kotan, Leman Damla; Tastan, Mehmet; Gurbuz, Fatih; Topaloglu, Ali Kemal; Yuksel, Bilgin

    2018-06-01

    Hypoaldosteronism is associated with either insufficient aldosterone production or aldosterone resistance (pseudohypoaldosteronism). Patients with aldosterone defects typically present with similar symptoms and findings, which include failure to thrive, vomiting, hyponatremia, hyperkalemia and metabolic acidosis. Accurate diagnosis of these clinical conditions therefore can be challenging. Molecular genetic analyses can help to greatly clarify this complexity. The aim of this study was to obtain an overview of the clinical and genetic characteristics of patients with aldosterone defects due to biosynthesis defects or aldosterone resistance. We investigated the clinical and molecular genetic features of 8 consecutive patients with a clinical picture of aldosterone defects seen in our clinics during the period of May 2015 through October 2017. We screened CYP11B2 for aldosterone synthesis defects and NR3C2 and the three EnaC subunits (SCNN1A, SCNN1B and SCNN1G) for aldosterone resistance. We found 4 novel and 2 previously reported mutations in the genes CYP11B2, NR3C2, SCNN1A and SCNN1G in 9 affected individuals from 7 unrelated families. Molecular genetic investigations can help confidently diagnose these conditions and clarify the pathogenicity of aldosterone defects. This study may expand the clinical and genetic correlations of defects in aldosterone synthesis or resistance. © 2018 John Wiley & Sons Ltd.

  1. Pectin/zein beads for potential colon-specific drug delivery: synthesis and in vitro evaluation.

    PubMed

    Liu, LinShu; Fishman, Marshall L; Hicks, Kevin B; Kende, Meir; Ruthel, Gordon

    2006-01-01

    Novel complex hydrogel beads were prepared from two edible polymers: pectin, a carbohydrate from citrus fruits, and zein, a protein from corn. The pectin/zein complex hydrogels did not swell in physiological environments, but hydrolyzed in the presence of pectinases. An in vitro study showed the capacity of the hydrogels to endure protease attack and residence time variation. The physical and biological properties of the new hydrogels were attributed to molecular entanglement of the two polymers. The pectin networks were stabilized by the bound zein molecules. In turn, the pectin networks shielded the bound zein from protease digestion.

  2. The chemistry of bisallenes

    PubMed Central

    Markopoulos, Georgios

    2012-01-01

    Summary This review describes the preparation, structural properties and the use of bisallenes in organic synthesis for the first time. All classes of compounds containing at least two allene moieties are considered, starting from simple conjugated bisallenes and ending with allenes in which the two cumulenic units are connected by complex polycyclic ring systems, heteroatoms and/or heteroatom-containing tethers. Preparatively the bisallenes are especially useful in isomerization and cycloaddition reactions of all kinds leading to the respective target molecules with high atom economy and often in high yield. Bisallenes are hence substrates for generating molecular complexity in a small number of steps (high step economy). PMID:23209534

  3. Illuminating the Chemistry of Life: Design, Synthesis, and Applications of “Caged” and Related Photoresponsive Compounds

    PubMed Central

    Lee, Hsienming; Larson, Daniel R.; Lawrence, David S.

    2009-01-01

    Biological systems are characterized by a level of spatial and temporal organization that often lies beyond the grasp of present day methods. Light-modulated bioreagents, including analogs of low molecular weight compounds, peptides, proteins, and nucleic acids, represent a compelling strategy to probe, perturb, or sample biological phenomena with the requisite control to address many of these organizational complexities. Although this technology has created considerable excitement in the chemical community, its application to biological questions has been relatively limited. We describe the challenges associated with the design, synthesis, and use of light-responsive bioreagents, the scope and limitations associated with the instrumentation required for their application, and recent chemical and biological advances in this field. PMID:19298086

  4. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds.

    PubMed

    Lee, Hsien-Ming; Larson, Daniel R; Lawrence, David S

    2009-06-19

    Biological systems are characterized by a level of spatial and temporal organization that often lies beyond the grasp of present day methods. Light-modulated bioreagents, including analogs of low molecular weight compounds, peptides, proteins, and nucleic acids, represent a compelling strategy to probe, perturb, or sample biological phenomena with the requisite control to address many of these organizational complexities. Although this technology has created considerable excitement in the chemical community, its application to biological questions has been relatively limited. We describe the challenges associated with the design, synthesis, and use of light-responsive bioreagents; the scope and limitations associated with the instrumentation required for their application; and recent chemical and biological advances in this field.

  5. Carbohydrates in diversity-oriented synthesis: challenges and opportunities.

    PubMed

    Lenci, E; Menchi, G; Trabocchi, A

    2016-01-21

    Over the last decade, Diversity-Oriented Synthesis (DOS) has become a new paradigm for developing large collections of structurally diverse small molecules as probes to investigate biological pathways, and to provide a larger array of the chemical space. Drug discovery and chemical biology are taking advantage of DOS approaches to exploit highly-diverse and complex molecular platforms, producing advances in both target and ligand discovery. In this view, carbohydrates are attractive building blocks for DOS libraries, due to their stereochemical diversity and high density of polar functional groups, thus offering many possibilities for chemical manipulation and scaffold decoration. This review will discuss research contributions and perspectives on the application of carbohydrate chemistry to explore the accessible chemical space through appendage, stereochemical and scaffold diversity.

  6. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.

    PubMed

    Boamah, Mavis D; Sullivan, Kristal K; Shulenberger, Katie E; Soe, ChanMyae M; Jacob, Lisa M; Yhee, Farrah C; Atkinson, Karen E; Boyer, Michael C; Haines, David R; Arumainayagam, Christopher R

    2014-01-01

    In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (< 20 eV) secondary electrons, produced by cosmic rays, can also directly initiate radiolysis reactions in the condensed phase. The goal of our studies is to understand the low-energy, electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices, in which methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously thought to form exclusively via UV photons.

  7. Tert-butylalumoxanes: Synthetic Analogs for Methylalumoxane (MAO) and New Catalytic Routes to Polyolefins and Polyketones

    DTIC Science & Technology

    1994-06-15

    91-J-1934 R&T Code 4132060 Tert-butylalumoxanes: synthetic analogs for methylalumoxane (MAO) and new catalytic routes to polyolef’ms and polyketones ...and Principal Investigator: new catalytic routes to polyolefins and polyketones A. R. Barron Mailing Address: Dept. of.Chemistry Harvard University...catalyst complex,[CP2Zr(Me)] [(t~u)6,Al6(O)6(Me)]. Our studies with Pd/alumoxane polyketone synthesis have now demonstrated that high molecular weight

  8. Catalysts and process for liquid hydrocarbon fuel production

    DOEpatents

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsasser, Brigitta M.; Schoenen, Iris; Fels, Gregor

    Candida antarctica lipase B (CALB) efficiently catalyzes the ring-opening polymerization of lactones to high molecular weight products in good yield. In contrast, an efficient enzymatic synthesis of polyamides has so far not been described in the literature. This obvious difference in enzyme catalysis is the subject of our comparative study of the initial steps of a CALB catalyzed ring-opening polymerization of ε- caprolactone and ε-caprolactam. We have applied docking tools to generate the reactant state complex and performed quantum mechanical/molecular mechanical (QM/MM) calculations at the density functional theory (DFT) PBE0 level of theory to simulate the acylation of Ser105 bymore » the lactone and the lactam, respectively, via the corresponding first tetrahedral intermediates. We could identify a decisive difference in the accessibility of the two substrates in the ring-opening to the respective acyl enzyme complex as the attack of ε-caprolactam is hindered because of an energetically disfavored proton transfer during this part of the catalytic reaction while ε-caprolactone is perfectly processed along the widely accepted pathway using the catalytic triade of Ser105, His224, and Asp187. Since the generation of an acylated Ser105 species is the crucial step of the polymerization procedure, our results give an explanation for the unsatisfactory enzymatic polyamide formation and opens up new possibilities for targeted rational catalyst redesign in hope of an experimentally useful CALB catalyzed polyamide synthesis.« less

  10. Design of Molecular Materials: Supramolecular Engineering

    NASA Astrophysics Data System (ADS)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  11. Encapsulation of boswellic acid with β- and hydroxypropyl-β-cyclodextrin: Synthesis, characterization, in vitro drug release and molecular modelling studies

    NASA Astrophysics Data System (ADS)

    Tambe, Amruta; Pandita, Nancy; Kharkar, Prashant; Sahu, Niteshkumar

    2018-02-01

    Boswellic acids (BAs) are a group of pentacyclic triterpenes present in gum-resin of Boswellia serrata. They are well known for their anti-inflammatory, hypolipidemic, immunomodulatory and anti-tumor activity, but they have poor aqueous solubility and limited bioavailability. In order to enhance their aqueous solubility, inclusion complexes of BAs with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were synthesized and their drug release profiles were studied. Molecular associations of β-CD and HP-β-CD with BAs were investigated by phase solubility studies. The stability constants were found to be 380.2 and 145.9 M-1 for BA: β-CD and BA: HP-β-CD inclusion complexes, respectively with AN- type curve. BA: β-CD and BA: HP-β-CD inclusion complexes were synthesized using kneading (KN), co-precipitation (CP) and solvent evaporation (SE) methods in 1:1 as well as 1:2 ratios. Further these were characterized by Fourier transform infrared (FTIR) spectrophotometry, Powder X-ray Diffraction (P-XRD) and Differential scanning calorimetric (DSC) analysis. FTIR analysis showed shifting of frequencies in complexes as compared to CDs and BAs. P-XRD data obtained for BA: β-CD complexes synthesized by CP and SE methods showed amorphous pattern. Also, DSC analysis showed a change in thermal behaviour for synthesized complexes. In vitro drug release studies of BA: β-CD complexes showed enhanced release with 1:2 complexes than 1:1 complexes at pH 1.2 and pH 6.8. Similarly, drug release enhancement was observed more with BA: HP-β-CD complexes in 1:2 ratio than 1:1. To understand the interaction of BAs with CD cavity molecular modelling studies were performed which favored 1:2 complex formation over 1:1 complexes. The study thus highlights that CDs can be used for solubility and dissolution enhancement of BAs.

  12. Synthesis, characterization, thermal and biological evaluation of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing sulfamethaxazole moiety

    NASA Astrophysics Data System (ADS)

    Mallikarjuna, N. M.; Keshavayya, J.; Maliyappa, M. R.; Shoukat Ali, R. A.; Venkatesh, Talavara

    2018-08-01

    A novel bioactive Cu (II), Co (II) and Ni (II) complexes of the azo dye ligand (L) derived from sulfamethoxazole were synthesized. The structures of the newly synthesized compounds were characterized by elemental analysis, molar conductance, magnetic susceptibility, FTIR, UV-visible, 1H NMR, mass, thermal and powder XRD spectral techniques. Molar conductivity measurements in DMSO solution confirmed the non-electrolytic nature of the complexes. All the synthesized metal complexes were found to be monomeric and showed square planar geometry except the Co (II) complex which has six coordinate, octahedral environment. The metal complexes have exhibited potential growth inhibitory effect against tested bacterial strains as compared to the free ligand. The ligand and complexes have also shown significant antioxidant and Calf Thymus DNA cleavage activities. Further, the in silico molecular docking studies were performed to predict the possible binding sites of the ligand (L) and its metal complexes with target receptor Glu-6P.

  13. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole).

    PubMed

    Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M

    2000-03-01

    Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.

  14. Synthesis, characterization, and binding assessment with human serum albumin of three bipyridine lanthanide(III) complexes.

    PubMed

    Aramesh-Boroujeni, Zahra; Bordbar, Abdol-Khalegh; Khorasani-Motlagh, Mozhgan; Sattarinezhad, Elham; Fani, Najme; Noroozifar, Meissam

    2018-05-18

    In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2'-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV-Vis and 1 H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV-Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln 3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.

  15. Synthesis and spectroscopic behavior of highly luminescent Eu 3+-dibenzoylmethanate (DBM) complexes with sulfoxide ligands

    NASA Astrophysics Data System (ADS)

    Niyama, E.; Brito, H. F.; Cremona, M.; Teotonio, E. E. S.; Reyes, R.; Brito, G. E. S.; Felinto, M. C. F. C.

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM) 3L 2] complexes (RE = Gd and Eu) with a variety of sulfoxide ligands; L = benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu 3+-β-diketonate complexes show characteristics narrow bands arising from the 5D 0 → 7F J ( J = 0-4) transitions, which are split according to the selection rule for C n, C nv or C s site symmetries. The experimental Judd-Ofelt intensity parameters ( Ω2 and Ω4), radiative ( Arad) and non-radiative ( Anrad) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Ω2 (61.9 × 10 -20 cm 2) was obtained to the complex with PTSO ligand, indicating that Eu 3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield ( q) and emission quantum efficiency of the emitter 5D 0 level ( η) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield ( q = 1%), for the hydrated complex [Eu(DBM) 3(H 2O)], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by ( x, y) color coordinates.

  16. Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes.

    PubMed

    Joseph, J; Nagashri, K; Janaki, G Boomadevi

    2012-03-01

    Copper complexes of molecular formulae, [CuL(1)(OAc)], [CuL(2)(H(2)O)], [CuL(3)(H(2)O)], [CuL(4)(H(2)O)], [CuL(5)(H(2)O)] where L(1)-L(5) represents Schiff base ligands [by the condensation of 3-hydroxyflavone with 4-aminoantipyrine (L(1))/o-aminophenol (L(2))/o-aminobenzoic acid (L(3))/o-aminothiazole (L(4))/thiosemicarbazide (L(5))], have been prepared. They were characterized using analytical and spectral techniques. The DNA binding properties of copper complexes were studied using electronic absorption spectra and viscosity measurements. Superoxide dismutase and antioxidant activities of the copper complexes have also been studied. Furthermore, the copper complexes have been found to promote pUC18 DNA cleavage in the presence of oxidant. Anti-tuberculosis activity was also performed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Identification of a New Isoindole-2-yl Scaffold as a Qo and Qi Dual Inhibitor of Cytochrome bc 1 Complex: Virtual Screening, Synthesis, and Biochemical Assay.

    PubMed

    Azizian, Homa; Bagherzadeh, Kowsar; Shahbazi, Sophia; Sharifi, Niusha; Amanlou, Massoud

    2017-09-18

    Respiratory chain ubiquinol-cytochrome (cyt) c oxidoreductase (cyt bc 1 or complex III) has been demonstrated as a promising target for numerous antibiotics and fungicide applications. In this study, a virtual screening of NCI diversity database was carried out in order to find novel Qo/Qi cyt bc 1 complex inhibitors. Structure-based virtual screening and molecular docking methodology were employed to further screen compounds with inhibition activity against cyt bc 1 complex after extensive reliability validation protocol with cross-docking method and identification of the best score functions. Subsequently, the application of rational filtering procedure over the target database resulted in the elucidation of a novel class of cyt bc 1 complex potent inhibitors with comparable binding energies and biological activities to those of the standard inhibitor, antimycin.

  18. Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids.

    PubMed

    Robin, Adeline Y; Giustini, Cécile; Graindorge, Matthieu; Matringe, Michel; Dumas, Renaud

    2016-09-01

    Growing pharmaceutical interest in benzylisoquinoline alkaloids (BIA) coupled with their chemical complexity make metabolic engineering of microbes to create alternative platforms of production an increasingly attractive proposition. However, precise knowledge of rate-limiting enzymes and negative feedback inhibition by end-products of BIA metabolism is of paramount importance for this emerging field of synthetic biology. In this work we report the structural characterization of (S)-norcoclaurine-6-O-methyltransferase (6OMT), a key rate-limiting step enzyme involved in the synthesis of reticuline, the final intermediate to be shared between the different end-products of BIA metabolism, such as morphine, papaverine, berberine and sanguinarine. Four different crystal structures of the enzyme from Thalictrum flavum (Tf 6OMT) were solved: the apoenzyme, the complex with S-adenosyl-l-homocysteine (SAH), the complexe with SAH and the substrate and the complex with SAH and a feedback inhibitor, sanguinarine. The Tf 6OMT structural study provides a molecular understanding of its substrate specificity, active site structure and reaction mechanism. This study also clarifies the inhibition of Tf 6OMT by previously suggested feedback inhibitors. It reveals its high and time-dependent sensitivity toward sanguinarine. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Linear pi-Acceptor-Templated Dynamic Clipping to Macrobicycles and[2]Rotaxanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klivansky, Liana M.; Koshkakaryan, Gayane; Cao, Dennis

    2009-04-30

    Functional rotaxanes are one of the representative nanoscale molecular machines that have found applications in many areas, including molecular electronics, nanoelectromechanical systems (NEMS), photo controllable smart surfaces, and nanovalves. With the advent of molecular recognition and self-assembly, such molecular compounds can now be obtained efficiently through template-directed synthesis. One of the common strategies of making [2]rotaxanes involves the clipping of a macrocycle around a preformed dumbbell-shaped template in a [1+1] or [2+2] manner. While early examples were based on irreversible kinetic pathway through covalent bond formation, recent advances on reversible dynamic covalent chemistry (DCC) has attracted great attention to thismore » field. By virtue of thermodynamically controlled equilibria, DCC has provided highly efficient and versatile synthetic routes in the selection of specific products from a complex system. Among the several reversible reactions in the category of DCC reactions, the imine formation has proven to be very versatile in macrocyclization to give complex interlocked molecular compounds. Cryptands are three dimensional bicyclic hosts with preorganized cavities capable of inclusion of ions and small molecules. Replacing the nitrogen bridgeheads in common cryptands with aromatic ring systems gives cyclophane-based macrobicycles. The introduction of aromatic ring systems into a preorganized cage-like geometry facilitates ion-{pi} interactions and {pi}-{pi} interactions, resulting in novel metal sandwiches, fluoride receptors, and host-guest complexes. In particular, the seminal work by Gibson, Huang and coworkers on cryptand complexation with paraquat and diquat guests have resulted in the efficient synthesis of mechanically interlocked rotaxanes. The synthesis of cyclophane-based macrobicycles, however, was mostly realized through multiple reaction steps and in high-dilution conditions, which often suffered from low yield and tedious workup. Thus, a one-step, five-component [2+3] clipping reaction that can give the desired macrobicycle is highly desirable. We are motivated by a {pi}-guest templating protocol, because not only {pi}-{pi} interactions can contribute to the formation of macrobicycles, but also the resulting host-guest system holds great promise as a forerunner in the construction of interlocked molecules. (Scheme 1c) Very simple precursors, namely 1,3,5-benzenetrialdehyde (1) and 2,2{prime}-(ethylenedioxy)diethylamine (2) were chosen as the components for desired macrobicycle. (Scheme 2) The formation of six imine bonds would connect the five components to give a macrobicycle while extending the conjugation in the C{sub 3}-symmetric aromatic 'ceiling' and 'floor', which is suitable for enhancing the {pi}-{pi} interactions with a complementary aromatic template. Meanwhile, the ethylene glycol 'pillars' can provide sufficient flexibility, proper spacing, and polar binding sites to assist guest encapsulation. Initial screening of ?-templates engaged several C{sub 3} symmetric aromatic compounds in order to match the symmetry of the desired macrobicycle, which only resulted in nonspecific mixtures. It was found instead that linear bipyridinium (BPY) containing guests effectively templated the [2+3] clipping reaction. Based on this protocol, a [2]rotaxane was successfully assembled as the single product from the six-component reaction.« less

  20. New modulated design and synthesis of quercetin-Cu(II)/Zn(II)-Sn2(IV) scaffold as anticancer agents: in vitro DNA binding profile, DNA cleavage pathway and Topo-I activity.

    PubMed

    Tabassum, Sartaj; Zaki, Mehvash; Afzal, Mohd; Arjmand, Farukh

    2013-07-21

    New molecular topologies quercetin-Cu(II)-Sn2(IV) and Zn(II)-Sn2(IV)1 and 2 were designed and synthesized to act as potential cancer chemotherapeutic agents. Their interaction with CT DNA by UV-vis and fluorescence spectroscopy was evaluated revealing an electrostatic mode of binding. Quercetin complexes are capable of promoting DNA cleavage involving both single and double strand breaks. Complex 1 cleaved pBR322 DNA via an oxidative mechanism while 2 followed a hydrolytic pathway, accessible to the minor groove of the DNA double helix in accordance with molecular docking studies with the DNA duplex of sequence d(CGCGAATTCGCG)2 dodecamer demonstrating that the complex was stabilized by additional electrostatic and hydrogen bonding interactions with the DNA. ROS such as OH˙, H2O2 and O2˙(-) are the major metabolites responsible for chronic diseases such as cancer, respiratory disorders, HIV, and diabetes etc., therefore eliminating ROS by molecular scaffolds involving SOD enzymatic activity has emerged as a potential way to develop a novel class of drugs. Therefore, in vitro superoxide dismutase activity of redox active complex 1 was evaluated by using a xanthine/xanthine oxidase-NBT assay which showed an IC50 value of 2.26 μM. Moreover, the cytotoxicity of both the complexes were screened on a panel of human carcinoma cell lines (GI50 values <8.7 μM) which revealed that 1 has a better prospect of acting as a cancer chemotherapeutic agent, and to elucidate the mechanism of tumor inhibition, Topo-I enzymatic activity was carried out. Furthermore, molecular modeling studies were carried out to understand molecular features important for drug-enzyme interactions which offer new insights into the experimental model observations.

  1. From precision polymers to complex materials and systems

    NASA Astrophysics Data System (ADS)

    Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof

    2016-05-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

  2. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of manganese (II) complex of picolinate: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Avcı, Davut; Atalay, Yusuf; Çoşut, Bünyemin; Zorlu, Yunus; Erkovan, Mustafa; Yerli, Yusuf

    2016-02-01

    A novel manganese (II) complex with picolinic acid (pyridine 2-carboxylic acid, Hpic), namely, [Mn(pic)2(H2O)2] was prepared and its crystal structure was fully characterized by using single crystal X-ray diffraction. Picolinate (pic) ligands were coordinated to the central manganese(II) ion as bidentate N,O-donors through the nitrogen atoms of pyridine rings and the oxygen atoms of carboxylate groups forming five-membered chelate rings. The spectroscopic characterization of Mn(II) complex was performed by the applications of FT-IR, Raman, UV-vis and EPR techniques. In order to support these studies, density functional theory (DFT) calculations were carried out by using B3LYP level. IR and Raman spectra were simulated at B3LYP level, and obtained results indicated that DFT calculations generally give compatible results to the experimental ones. The electronic structure of the Mn(II) complex was predicted using time dependent DFT (TD-DFT) method with polarizable continuum model (PCM). Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength were investigated by applying natural bond orbital (NBO) analysis. Nonlinear optical properties of Mn(II) complex were investigated by the determining of molecular polarizability (α) and hyperpolarizability (β) parameters.

  3. Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases.

    PubMed

    Singh, Atresh Kumar; Singh, Alok Kumar

    2012-10-01

    Some novel trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes of the general formula [Fe(3)O(OOCR)(3)(SB)(3)L(3)] (where R=C(13)H(27), C(15)H(31) or C(17)H(35,) HSB=Schiff bases and L=Ethanol) have been synthesized by the stepwise substitutions of acetate ions from μ(3)-oxo-hexa(acetato)tri(aqua)iron(II)diiron(III), first with straight chain carboxylic acids and then with Schiff bases. The complexes were characterized by elemental analyses, molecular weight determinations and spectral (electronic, infrared, FAB mass, Mössbauer and powder XRD) studies. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bridging nature of carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Mössbauer spectroscopic studies indicated two quadrupole-split doublets due to Fe(II) and Fe(III) ions at 80, 200 and 295K, confirming the complexes are mixed-valence species. This was also supported by the observed electronic spectra of the complexes. Magnetic susceptibility measurements displayed octahedral geometry around iron in mixed-valence state and a net antiferromagnetic exchange coupling via μ-oxo atom. Trinuclear nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. A plausible structure for these complexes has been established on the basis of spectral and magnetic moment data. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of Escherichia coli K-12.

    PubMed Central

    Kawaji, H; Mizuno, T; Mizushima, S

    1979-01-01

    Supplementation of the growth medium with high concentrations of sugars or low-molecular-weight dextrans results in a drastic change in the ratio of outer membrane proteins O-8 and O-9, due to induction of O-8 synthesis and suppression of O-9 synthesis. Sugars and dextrans of molecular weights greater than 600 to 700 switched the synthesis of O-9 to that of O-8 more effectively than those of lower molecular weight, although the effect was almost the same within each of the two groups irrespective of the differences in molecular weight within the group. Proteins O-8 or O-9, or both, are responsible for the formation of pores that allow the passive diffusion of hydrophilic molecules whose molecular weights are smaller than about 600 (T. Nakae, Biochem. Biophys. Res. Commun. 71:877-884, 1976). The results indicate that substances that cannot pass through the outer membrane switch the synthesis of O-9 to that of O-8 more effectively than those that can penetrate this membrane with the aid of O-8, O-9, or both. It is suggested that the osmotic pressure exerted on the outer membrane plays an important role in the regulation of synthesis of the two proteins. PMID:391802

  5. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    PubMed

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  6. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure.

    PubMed

    Létoquart, Juliette; van Tran, Nhan; Caroline, Vonny; Aleksandrov, Alexey; Lazar, Noureddine; van Tilbeurgh, Herman; Liger, Dominique; Graille, Marc

    2015-12-15

    Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm(5)U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Highly Active Electrolytes for Rechargeable Mg Batteries Based on [Mg2(μ-Cl)2]2+ Cation Complex in Dimethoxyethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Stolley, Ryan M.; Han, Kee Sung

    2015-01-01

    Highly active electrolytes based on a novel [Mg2(μ-Cl)2]2+ cation complex for reversible Mg deposition were developed and analyzed in this work. These electrolytes were formulated in dimethoxyethane through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI= bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The cation complex was identified for the first time as [Mg2(μ-Cl)2(DME)4]2+ (DME=dimethoxyethane) and its molecular structure was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR. The electrolyte synthesis process was studied and rational approaches for formulating highly active electrolytes were proposed. Through control of the anions,more » electrolytes with efficiency close to 100%, wide electrochemical window (up to 3.5V) and high ionic conductivity (> 6 mS/cm) were obtained. The electrolyte synthesis and understandings developed in this work could bring significant opportunities for rational formulation of electrolytes with the general formula [Mg2(μ-Cl)2(DME)4][anion]x for practical Mg batteries.« less

  8. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.

    PubMed

    Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-05-01

    BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.

  9. Ruthenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen.

    PubMed

    Thenert, Katharina; Beydoun, Kassem; Wiesenthal, Jan; Leitner, Walter; Klankermayer, Jürgen

    2016-09-26

    The synthesis of dimethoxymethane (DMM) by a multistep reaction of methanol with carbon dioxide and molecular hydrogen is reported. Using the molecular catalyst [Ru(triphos)(tmm)] in combination with the Lewis acid Al(OTf)3 resulted in a versatile catalytic system for the synthesis of various dialkoxymethane ethers. This new catalytic reaction provides the first synthetic example for the selective conversion of carbon dioxide and hydrogen into a formaldehyde oxidation level, thus opening access to new molecular structures using this important C1 source. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chemistry of Peptidoglycan in Mycobacterium tuberculosis Life Cycle: An off-the-wall Balance of Synthesis and Degradation.

    PubMed

    Squeglia, Flavia; Ruggiero, Alessia; Berisio, Rita

    2018-02-21

    The cell wall envelope of mycobacteria is structurally distinct from that of both Gram-positive and Gram-negative bacteria. In Mycobacterium tuberculosis, this cell wall has unique structural features and plays a crucial role in drug resistance and macrophage survival under stress conditions. Peptidoglycan is the major constituent of this cell wall, with an important structural role, giving structural strength, and counteracting the osmotic pressure of the cytoplasm. Synthesis of this complex polymer takes place in three stages that occur at three different locations in the cell, from the cytoplasm to the external side of the cell membrane, where polymerization occurs. A fine balance of peptidoglycan synthesis and degradation is responsible for a plethora of molecular mechanisms which are key to the pathogenicity of M. tuberculosis. Enlargement of mycobacterial cells can occur through the synthesis of new peptidoglycan, autolysis of old peptidoglycan, or a combination of both processes. Here, we discuss the chemical aspects of peptidoglycan synthesis and degradation, in relation to metabolic stages of M. tuberculosis. Going from inside the mycobacterial cytoplasm to outside its membrane, we describe the assembly line of peptidoglycan synthesis and polymerization, and continue with its depolymerization events and their consequences on mycobacterial life and resuscitation from dormancy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sepsis-induced alterations in protein-protein interactions within mTOR complex 1 and the modulating effect of leucine on muscle protein synthesis.

    PubMed

    Kazi, Abid A; Pruznak, Anne M; Frost, Robert A; Lang, Charles H

    2011-02-01

    Sepsis-induced muscle atrophy is produced in part by decreased protein synthesis mediated by inhibition of mTOR (mammalian target of rapamycin). The present study tests the hypothesis that alteration of specific protein-protein interactions within the mTORC1 (mTOR complex 1) contributes to the decreased mTOR activity observed after cecal ligation and puncture in rats. Sepsis decreased in vivo translational efficiency in gastrocnemius and reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein (BP) 1, S6 kinase (S6K) 1, and mTOR, compared with time-matched pair-fed controls. Sepsis decreased T246-phosphorylated PRAS40 (proline-rich Akt substrate 40) and reciprocally increased S792-phosphorylated raptor (regulatory associated protein of mTOR). Despite these phosphorylation changes, sepsis did not alter PRAS40 binding to raptor. The amount of the mTOR-raptor complex did not differ between groups. In contrast, the binding and retention of both 4E-BP1 and S6K1 to raptor were increased, and, conversely, the binding of raptor with eIF3 was decreased in sepsis. These changes in mTORC1 in the basal state were associated with enhanced 5'-AMP activated kinase activity. Acute in vivo leucine stimulation increased muscle protein synthesis in control, but not septic rats. This muscle leucine resistance was associated with coordinated changes in raptor-eIF3 binding and 4E-BP1 phosphorylation. Overall, our data suggest the sepsis-induced decrease in muscle protein synthesis may be mediated by the inability of 4E-BP1 and S6K1 to be phosphorylated and released from mTORC1 as well as the decreased recruitment of eIF3 necessary for a functional 48S complex. These data provide additional mechanistic insight into the molecular mechanisms by which sepsis impairs both basal protein synthesis and the anabolic response to the nutrient signal leucine in skeletal muscle.

  12. Cofacial Assembly of Metallomacrocycles. A Molecular Engineering Approach to Electrically Conductive Polymers.

    DTIC Science & Technology

    1981-05-13

    34molecular metals." THE COFACIAL ASSEMBLY STRATEGY Although the above molecular macrocycle, halogen cocrystalli - zation approach to the synthesis of...substitute various oxidizing quinones for halogens in the cocrystallization synthesis have failed because integrated stacK (Figure 2C,D) insulators are

  13. Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials

    NASA Astrophysics Data System (ADS)

    Gray, Tomoko O.

    Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.

  14. Catalytic Synthesis of n-Butyl Oleate by Cerium Complex Doped Y/SBA-15 Composite Molecular Sieve

    NASA Astrophysics Data System (ADS)

    Shi, Chunwei; Bian, Xue; Wu, Yongfu; Cong, Yufeng; Pei, Mingyuan

    2018-01-01

    Cerium ion was successfully incorporated into Y/SBA-15 micro-mesoporous molecular sieves via the hydrothermal synthesis method to give a series of composite materials. The prepared materials were thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and differential thermo gravimetric analysis (TG-DTG). The results showed that the prepared composite materials retained the highly ordered mesoporous two-dimensional hexagonal structure of SBA-15 and the octagonal structure of Y. The catalyst Ce-Y/SBA-15 was prepared and characterized, then the esterification of n-butanol and oleic acid was studied with bismuth phosphotungstate as a catalyst. Using this model reaction, the effects of Ce-HY/SBA-15, molar ratio of alcohol to oleic acid, amount of catalysts, reaction time and reaction temperature were investigated. The experimental results show that the optimal reaction conditions were: 1.8:1 molar ratio of alcohol to acid, 5 % catalyst amount (based on weight of oleic acid), 4 h reaction time and reflux conditions. Under these conditions, the yield of esterification was 90.6 %. The results suggest that the addition of Ce can effectively improve the catalytic properties of composite molecular sieves.

  15. Synthesis, antimicrobial, antioxidant and molecular docking studies of thiophene based macrocyclic Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-11-01

    The macrocyclic complexes of pharmaceutical importance with trivalent transition metals have been synthesized by [1 + 1] condensation of succinyldihydrazide and thiophenedicarboxaldehyde, via template method, resulting in the formation of the complex [MLX] X2; where L is (C10H10N4O2S), a macrocyclic ligand, M = Cr (III) and Fe (III) and X = Cl-, CH3COO- or NO3- . These complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, ultraviolet, infrared, far infrared, electron spin resonance, mass spectral studies and powder x-ray diffraction analysis. On the basis of all these studies, mononuclear complexes having 1:2 electrolytic nature with a five coordinated square pyramidal geometry have been proposed. Powder diffraction XRD indicates the presence of triclinic crystal system with p bravais lattice for the representative complex. All the metal complexes have also been explored for their in vitro antimicrobial and antioxidant activities.

  16. Regulation of the protein-conducting channel by a bound ribosome

    PubMed Central

    Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus

    2009-01-01

    Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480

  17. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions.

    PubMed

    Qamar, Seema; Wang, GuoZhen; Randle, Suzanne J; Ruggeri, Francesco Simone; Varela, Juan A; Lin, Julie Qiaojin; Phillips, Emma C; Miyashita, Akinori; Williams, Declan; Ströhl, Florian; Meadows, William; Ferry, Rodylyn; Dardov, Victoria J; Tartaglia, Gian G; Farrer, Lindsay A; Kaminski Schierle, Gabriele S; Kaminski, Clemens F; Holt, Christine E; Fraser, Paul E; Schmitt-Ulms, Gerold; Klenerman, David; Knowles, Tuomas; Vendruscolo, Michele; St George-Hyslop, Peter

    2018-04-19

    Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Plugging a Bipyridinium Axle into Multichromophoric Calix[6]arene Wheels Bearing Naphthyl Units at Different Rims.

    PubMed

    Orlandini, Guido; Ragazzon, Giulio; Zanichelli, Valeria; Degli Esposti, Lorenzo; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto; Secchi, Andrea; Arduini, Arturo

    2017-02-01

    Tris-( N -phenylureido)-calix[6]arene derivatives are heteroditopic non-symmetric molecular hosts that can form pseudorotaxane complexes with 4,4'-bipyridinium-type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and machines. We envisaged that the incorporation of photoactive units in the calixarene skeleton could lead to the development of systems the working modes of which can be governed and monitored by means of light-activated processes. Here, we report on the synthesis, structural characterization, and spectroscopic, photophysical, and electrochemical investigation of two calix[6]arene wheels decorated with three naphthyl groups anchored to either the upper or lower rim of the phenylureido calixarene platform. We found that the naphthyl units interact mutually and with the calixarene skeleton in a different fashion in the two compounds, which thus exhibit a markedly distinct photophysical behavior. For both hosts, the inclusion of a 4,4 ' -bipyridinium guest activates energy- and/or electron-transfer processes that lead to non-trivial luminescence changes.

  19. Spectroscopic characteristic (FT-IR, 1H, 13C NMR and UV-Vis) and theoretical calculations (MEP, DOS, HOMO-LUMO, PES, NBO analysis and keto-enol tautomerism) of new tetradentate N,N‧-bis(4-hydroxysalicylidene)-1,4-phenylenediamine ligand as chelating agent for the synthesis of dinuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajaei, Iman; Mirsattari, Seyed Nezamoddin

    2018-07-01

    The synthesis and characterization of a novel symmetrical Schiff base ligand N,Nʹ-bis(4-hydroxysalicylidene)-1,4-phenylenediamine (BHSP) was presented in this study and characterized by FT-IR, NMR (1H and 13C) and UV-Vis spectroscopy experimentally and theoretically. Also a series of binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of BHSP ligand have been synthesized by conventional sequential route in 1:1 equivalent of L:M ratio and characterized by routine physicochemical characterizations. The molecular geometry and vibrational frequencies of the BHSP in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-31G(d,p) and 6-31++G(d,p) basis sets. To study different conformations of the molecule, potential energy surface (PES) scan investigations were performed. The energetic behavior of the ligand compound (BHSP) in solvent media has been examined using B3LYP method with the 6-31G(d,p) and 6-31++G(d,p) basis sets by applying the polarized continuum model (PCM). In addition, DFT calculations of the BHSP ligand, molecular electrostatic potential (MEP), contour map, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMO) analysis, NMR analysis and TD-DFT calculations were conducted. The calculated properties are in agreement with the available experimental data and closely related molecule BSP. The calculated results show that the optimized geometry can well reproduce the crystal structural parameters.

  20. Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly

    PubMed Central

    2014-01-01

    Background Grain chalkiness is a complex trait adversely affecting appearance and milling quality, and therefore has been one of principal targets for rice improvement. Eliminating chalkiness from rice has been a daunting task due to the complex interaction between genotype and environment and the lack of molecular markers. In addition, the molecular mechanisms underlying grain chalkiness formation are still imperfectly understood. Results We identified a notched-belly mutant (DY1102) with high percentage of white-belly, which only occurs in the bottom part proximal to the embryo. Using this mutant, a novel comparison system that can minimize the effect of genetic background and growing environment was developed. An iTRAQ-based comparative display of the proteins between the bottom chalky part and the upper translucent part of grains of DY1102 was performed. A total of 113 proteins responsible for chalkiness formation was identified. Among them, 70 proteins are up-regulated and 43 down-regulated. Approximately half of these differentially expressed proteins involved in central metabolic or regulatory pathways including carbohydrate metabolism (especially cell wall synthesis) and protein synthesis, folding and degradation, providing proteomic confirmation of the notion that chalkiness formation involves diverse but delicately regulated pathways. Protein metabolism was the most abundant category, accounting for 27.4% of the total differentially expressed proteins. In addition, down regulation of PDIL 2–3 and BiP was detected in the chalky tissue, indicating the important role of protein metabolism in grain chalkiness formation. Conclusions Using this novel comparison system, our comprehensive survey of endosperm proteomics in the notched-belly mutant provides a valuable proteomic resource for the characterization of pathways contributing to chalkiness formation at molecular and biochemical levels. PMID:24924297

  1. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insight into the binding interactions of CYP450 aromatase inhibitors with their target enzyme: a combined molecular docking and molecular dynamics study.

    PubMed

    Galeazzi, Roberta; Massaccesi, Luca

    2012-03-01

    CYP450 aromatase catalyzes the terminal and rate-determining step in estrogen synthesis, the aromatization of androgens, and its inhibition is an efficient approach to treating estrogen-dependent breast cancer. Insight into the molecular basis of the interaction at the catalytic site between CYP450 aromatase inhibitors and the enzyme itself is required in order to design new and more active compounds. Hence, a combined molecular docking-molecular dynamics study was carried out to obtain the structure of the lowest energy association complexes of aromatase with some third-generation aromatase inhibitors (AIs) and with other novel synthesized letrozole-derived compounds which showed high in vitro activity. The results obtained clearly demonstrate the role of the pharmacophore groups present in the azaheterocyclic inhibitors (NSAIs)-namely the triazolic ring and highly functionalized aromatic moieties carrying H-bond donor or acceptor groups. In particular, it was pointed out that all of them can contribute to inhibition activity by interacting with residues of the catalytic cleft, but the amino acids involved are different for each compound, even if they belong to the same class. Furthermore, the azaheterocyclic group strongly coordinates with the Fe(II) of heme cysteinate in the most active NSAI complexes, while it prefers to adopt another orientation in less active ones.

  3. Novel Cage-Like Hexanuclear Nickel(II) Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides.

    PubMed

    Bilyachenko, Alexey N; Yalymov, Alexey I; Shul'pina, Lidia S; Mandelli, Dalmo; Korlyukov, Alexander A; Vologzhanina, Anna V; Es'kova, Marina A; Shubina, Elena S; Levitsky, Mikhail M; Shul'pin, Georgiy B

    2016-05-19

    New hexanuclear nickel(II) silsesquioxane [(PhSiO1.5)12(NiO)₆(NaCl)] (1) was synthesized as its dioxane-benzonitrile-water complex (PhSiO1,5)12(NiO)₆(NaCl)(C₄H₈O₂)13(PhCN)₂(H₂O)₂ and studied by X-ray and topological analysis. The compound exhibits cylinder-like type of molecular architecture and represents very rare case of polyhedral complexation of metallasilsesquioxane with benzonitrile. Complex 1 exhibited catalytic activity in activation of such small molecules as light alkanes and alcohols. Namely, oxidation of alcohols with tert-butylhydroperoxide and alkanes with meta-chloroperoxybenzoic acid. The oxidation of methylcyclohexane gave rise to the isomeric ketones and unusual distribution of alcohol isomers.

  4. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    PubMed

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structure-property-glass transition relationships in non-isocyanate polyurethanes investigated by dynamic nanoindentation

    NASA Astrophysics Data System (ADS)

    Weyand, Stephan; Blattmann, Hannes; Schimpf, Vitalij; Mülhaupt, Rolf; Schwaiger, Ruth

    2016-07-01

    Newly developed green-chemistry approaches towards the synthesis of non-isocyanate polyurethane (NIPU) systems represent a promising alternative to polyurethanes (PU) eliminating the need for harmful ingredients. A series of NIPU systems were studied using different nanoindentation techniques in order to understand the influence of molecular parameters on the mechanical behavior. Nanoindentation revealed a unique characteristic feature of those materials, i.e. stiffening with increasing deformation. It is argued that the origin of this observed stiffening is a consequence of the thermodynamic state of the polymer network, the molecular characteristics of the chemical building blocks and resulting anisotropic elastic response of the network structure. Flat-punch nanoindentation was applied in order to characterize the constitutive viscoelastic nature of the materials. The complex modulus shows distinct changes as a function of the NIPU network topology illustrating the influence of the chemical building blocks. The reproducibility of the data indicates that the materials are homogeneous over the volumes sampled by nanoindentation. Our study demonstrates that nanoindentation is very well-suited to investigate the molecular characteristics of NIPU materials that cannot be quantified in conventional experiments. Moreover, the technique provides insight into the functional significance of complex molecular architectures thereby supporting the development of NIPU materials with tailored properties.

  6. Novel Zn(II) complexes of 1,3-diphenyl-4-(arylazo)pyrazol-5-one derivatives: Synthesis, spectroscopic properties, DFT calculations and first order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-03-01

    Eight novel Zn(II) complexes with substituted 1,3-diphenyl-4-(arylazo)pyrazol-5-one (L1-L4) derivatives have been synthesized and elucidated using various physicochemical techniques. Quantum mechanical calculations of energies, geometries were done by DFT using B3LYP/GEN functional combined with 6.311G (d,p) and LAN2DZ basis sets. The analyses of HOMO and LUMO have been used to explain the charge transfer within the ligands and complexes. The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within Zn(II) complexes. Geometrical parameters, molecular electrostatic potential maps (MEP) and total electron densities analyses of the ligands and their Zn complexes have been carried out. Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength has been investigated by the applying of natural bond orbital (NBO) analysis. Total static dipole moment (μ), the mean polarizability (<α>), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (<β>) have been also performed. The obtained values show that Zn(II) complexes is brilliant candidate to NLO materials. The analyses of the 1:1 complexes indicate that the Zn(II) ion is five-coordinated with water molecules at axial position in case of L1, L2 and L4 whereas, six-coordinated with L3 and non-electrolytic behaviour of complexes indicates the absence of counter ion.

  7. Respiratory Complex I in Bos taurus and Paracoccus denitrificans Pumps Four Protons across the Membrane for Every NADH Oxidized.

    PubMed

    Jones, Andrew J Y; Blaza, James N; Varghese, Febin; Hirst, Judy

    2017-03-24

    Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I ( i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus ) and from the bacterium Paracoccus denitrificans , we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Absolute Molecular Orientation of Isopropanol at Ceria (100) Surfaces: Insight into Catalytic Selectivity from the Interfacial Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Benjamin; Goverapet Srinivasan, Sriram; Bryantsev, Vyacheslav S.

    The initial mechanistic steps underlying heterogeneous chemical catalysis can be described in a framework where the composition, structure, and orientation of molecules adsorbed to reactive interfaces are known. However, extracting this vital information is the limiting step in most cases due in part to challenges in probing the interfacial monolayer with enough chemical specificity to characterize the surface molecular constituents. These challenges are exacerbated at complex or spatially heterogeneous interfaces where competing processes and a distribution of local environments can uniquely drive chemistry. To address these limitations, this work presents a distinctive combination of materials synthesis, surface specific optical experiments,more » and theory to probe and understand molecular structure at catalytic interfaces. Specifically, isopropanol was adsorbed to surfaces of the model CeO 2 catalyst that were synthesized with only the (100) facet exposed. Vibrational sum-frequency generation was used to probe the molecular monolayer, and with the guidance of density functional theory calculations, was used to extract the structure and absolute molecular orientation of isopropanol at the CeO 2 (100) surface. Our results show that isopropanol is readily deprotonated at the surface, and through the measured absolute molecular orientation of isopropanol, we obtain new insight into the selectivity of the (100) surface to form propylene. Our findings reveal key insight into the chemical and physical phenomena taking place at pristine interfaces thereby pointing to intuitive structural arguments to describe catalytic selectivity in more complex systems.« less

  9. Absolute Molecular Orientation of Isopropanol at Ceria (100) Surfaces: Insight into Catalytic Selectivity from the Interfacial Structure

    DOE PAGES

    Doughty, Benjamin; Goverapet Srinivasan, Sriram; Bryantsev, Vyacheslav S.; ...

    2017-06-12

    The initial mechanistic steps underlying heterogeneous chemical catalysis can be described in a framework where the composition, structure, and orientation of molecules adsorbed to reactive interfaces are known. However, extracting this vital information is the limiting step in most cases due in part to challenges in probing the interfacial monolayer with enough chemical specificity to characterize the surface molecular constituents. These challenges are exacerbated at complex or spatially heterogeneous interfaces where competing processes and a distribution of local environments can uniquely drive chemistry. To address these limitations, this work presents a distinctive combination of materials synthesis, surface specific optical experiments,more » and theory to probe and understand molecular structure at catalytic interfaces. Specifically, isopropanol was adsorbed to surfaces of the model CeO 2 catalyst that were synthesized with only the (100) facet exposed. Vibrational sum-frequency generation was used to probe the molecular monolayer, and with the guidance of density functional theory calculations, was used to extract the structure and absolute molecular orientation of isopropanol at the CeO 2 (100) surface. Our results show that isopropanol is readily deprotonated at the surface, and through the measured absolute molecular orientation of isopropanol, we obtain new insight into the selectivity of the (100) surface to form propylene. Our findings reveal key insight into the chemical and physical phenomena taking place at pristine interfaces thereby pointing to intuitive structural arguments to describe catalytic selectivity in more complex systems.« less

  10. Small-angle X-ray solution scattering study of the multi-aminoacyl-tRNA synthetase complex reveals an elongated and multi-armed particle.

    PubMed

    Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc

    2013-08-16

    In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex.

  11. Proteinase K-catalyzed synthesis of linear and star oligo(L-phenylalanine) conjugates.

    PubMed

    Ageitos, Jose M; Baker, Peter J; Sugahara, Michihiro; Numata, Keiji

    2013-10-14

    Chemoenzymatic synthesis of peptides is a green and clean chemical reaction that offers high yields without using organic synthesis and serves as an alternative to traditional peptide synthesis methods. This report describes the chemoenzymatic synthesis of oligo(L-phenylalanine) mediated by proteinase K from Tritirachium album, which is one of the most widely used proteases in molecular biological studies. The synthesized linear oligo-phenylalanine showed a unique self-assembly in aqueous solutions. To further functionalize linear oligo(L-phenylalanine) as a low-molecular-weight gelator, it was cosynthesized with tris(2-aminoethyl)amine to obtain star-oligo(L-phenylalanine), which was bioconjugated to demonstrate its self-assembly into fluorescent fibers. The self-assembled fibers of star-oligo(L-phenylalanine) formed fibrous networks with various branching ratios, which depended on the molecular weights and molecular aspect ratios of star-oligo(L-phenylalanine). This is the first study to demonstrate that proteinase K is a suitable enzyme for chemoenzymatic cosynthesis of oligopeptides and star-shaped heteropeptides.

  12. Ursolic Acid Hydrazide Based Organometallic Complexes: Synthesis, Characterization, Antibacterial, Antioxidant and Docking Studies

    NASA Astrophysics Data System (ADS)

    Jabeen, Muafia; Ahmad, Sajjad; Shahid, Khadija; Sadiq, Abdul; Rashid, Umer

    2018-03-01

    In the current research work,eleven metal complexes were synthesized from the hydrazide derivative of ursolic acid. Metal complexes of tin, antimony and iron were synthesized and characterized by FT-IR and NMR spectroscopy. The antibacterial and antioxidant activities were performed for these complexes, which revealed that the metal complexes synthesized are more potent than their parent compounds. We observed that antioxidant activity showed by triphenyltin complex was significant and least activity have been shown by antimony trichloride complex.The synthesized metal complexes were then evaluated against two Gram-negative and two Gram-positive bacterial strains. Triphenyl tin complex emerged as potent antibacterial agent with MIC value of 8 μg/ml each against Shigellaspp, S. typhi and S. aureus. While, the MIC value againstS. pneumoniae is 4 μg/ml.Computational docking studies were carried out on molecular targets to interpret the results of antioxidant and antibacterial activities. Based on the results, it may be inferred that the metal complexes of ursolic acid are more active as compared to the parent drug and may be proved for some other pharmacological potential by further analysis.

  13. Synthesis, spectroscopic studies, DFT calculations, electrochemical evaluation, BSA binding and molecular docking of an aroylhydrazone -based cis-dioxido Mo(VI) complex

    NASA Astrophysics Data System (ADS)

    Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine

    2017-07-01

    A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.

  14. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis.

    PubMed

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2017-11-20

    Biosynthesis of polyhydroxyalkanoates (PHA) has been studied since the 1920s. The biosynthesis pathways have been well understood and various attempts have been made to improve the PHA biosynthesis efficiency. Recent progresses have been focused on systematic improvements on PHA biosynthesis including changing growth pattern for rapid proliferation, engineering to enlarge cell sizes for more PHA accumulation space, reprogramming the PHA synthesis pathways using optimized RBS and promoter, redirecting metabolic flux to PHA synthesis using CRISPR/Cas9 tools, and very importantly, the employment of non-traditional host such as halophiles for reduced complexity on PHA production. All of the efforts should lead to ultrahigh PHA accumulation, controllable PHA compositions and molecular weights, open and continuous PHA production with gravity separation processes, resulting in competitive PHA production cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evolution of Protein Synthesis from an RNA World

    PubMed Central

    Noller, Harry F.

    2012-01-01

    SUMMARY Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric “duplicator RNAs,” resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template. PMID:20610545

  16. KO(t)Bu-Mediated Coupling of Indoles and [60]Fullerene: Transition-Metal-Free and General Synthesis of 1,2-(3-Indole)(hydro)[60]fullerenes.

    PubMed

    Li, Fei; Haj Elhussin, Imad Elddin; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2015-11-06

    Direct coupling of indoles with C60 has been achieved for the first time. Transition-metal-free KO(t)Bu-mediated reaction of indoles to [60]fullerene has been developed as a practical and efficient method for the synthesis of various 1,2-(3-indole)(hydro)[60]fullerenes that are otherwise difficult to direct synthesize in an efficient and selective manner. This methodology tolerates sensitive functionalities such as chloro, ester, and nitro on indole and builds molecular complexity rapidly, with most reactions reaching completion in <1 h. A plausible reaction mechanism is proposed to explain the high regioselectivity at the 3-position of the indoles and the formation of 1,2-(3-indole)(hydro)[60]fullerenes.

  17. Synthesis and characterization of 8-hydroxyquinoline complexes of tin(IV) and their application in organic light emitting diode.

    PubMed

    Fazaeli, Yousef; Amini, Mostafa M; Najafi, Ezzatollah; Mohajerani, Ezeddin; Janghouri, Mohammad; Jalilian, Amirreza; Ng, Seik Weng

    2012-09-01

    A series of 8-hydroxyquinoline complexes of tin, Q(2)SnCl(2) (Q = 2-methyl-8-hydroxyquinoline, 8-hydroxyquinoline, 5,7-dibromo-8-hydroxyquinoline, 5-chloro-8-hydroxyquinoline, 5,7-dichloro-8-hydroxyquinoline and 5-nitro-8-hydroxyquinoline) were prepared by reacting stannous dichloride with 8-hydroxyquinoline and its derivatives. All complexes were characterized by elemental analysis, mass spectrometry and infrared, UV-vis and (1)H NMR spectroscopes. Furthermore, the molecular structure of a representative complex, dichlorido-bis(5-nitro-quinolin-8-olato-2N,O)tin(IV), was determined by single-crystal X-ray diffraction. The photoluminescence (PL) properties of all prepared compounds and electroluminescence (EL) property of a selected complex (Q = 5-chloro-8-hydroxyquinoline) were investigated. The results showed that the emission wavelength can be tuned by electron donating or withdrawing group substituent on 8-hydroxyquinoline. Application of prepared complexes in fabrication of an OLED has been demonstrated.

  18. Synthesis, crystal structure, antimicrobial activity and DNA-binding of hydrogen-bonded proton-transfer complex of 2,6-diaminopyridine with picric acid.

    PubMed

    Khan, Ishaat M; Ahmad, Afaq; Ullah, M F

    2011-04-04

    A proton-transfer (charge transfer) complex formed on the reaction between 2,6-diaminopyridine (donor) and picric acid (acceptor) was synthesized and characterized by FTIR, (1)H NMR, thermal and elemental analysis. The crystal structure determined by single-crystal X-ray diffraction indicates that cation and anion are joined together by strong N(+)-H- -O(-) type hydrogen bonds. The hydrogen-bonded charge transfer (HBCT) complex was screened for its pharmacology such as antimicrobial activity against various fungal and bacterial strains and Calf thymus DNA-binding. The results showed that HBCT complex (100μg/ml) exhibited good antibacterial antifungal activity as that of standard antibiotics Tetracycline and Nystatin. A molecular frame work through H-bonding interactions between neighboring moieties is found to be responsible for high melting point of resulting complex. This has been attributed to the formation of 1:1 HBCT complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease

    PubMed Central

    Millar, Neal L.; Gilchrist, Derek S.; Akbar, Moeed; Reilly, James H.; Kerr, Shauna C.; Campbell, Abigail L.; Murrell, George A. C.; Liew, Foo Y.; Kurowska-Stolarska, Mariola; McInnes, Iain B.

    2015-01-01

    MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury. PMID:25857925

  20. Ternary cyclodextrin polyurethanes containing phosphate groups: Synthesis and complexation of ciprofloxacin.

    PubMed

    Moreira, Mirna Pereira; Andrade, George Ricardo Santana; de Araujo, Marcia Valeria Gaspar; Kubota, Tatiana; Gimenez, Iara F

    2016-10-20

    Synthesis of ternary polyurethanes (PUs) from hexamethylenediisocyanate, β-cyclodextrin and β-glycerophosphate (acid and calcium salt) was studies varying synthesis parameters such as monomer proportion, heating method (reflux and microwave), and catalyst amount. Favorable conditions were provided by microwave irradiation and use of β-glycerophosphoric acid although the results suggest that it is possible to obtain ternary PUs with the calcium salt. FTIR data indicated the existence of secondary urea linkages. After characterization of ternary PUs by FTIR spectroscopy, XRD and thermal analysis, as well as evidences that the cyclodextrin cavities remained active toward inclusion of guest molecules, the possibility of inclusion of the antibiotic ciprofloxacin was evaluated. Absence of ciprofloxacin melting peak in DSC curves indicated that it is molecularly dispersed within the polymer, possibly included in the cyclodextrin. In vitro release experiments suggested additional non-inclusion interactions, showing also that the use of dialysis membranes may mask the actual release profile. Copyright © 2016. Published by Elsevier Ltd.

  1. Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics.

    PubMed

    Singh, Nishant; Kumar, Mohit; Miravet, Juan F; Ulijn, Rein V; Escuder, Beatriu

    2017-01-23

    This Minireview concerns recent advances in the design, synthesis, and application of low molecular-weight peptidic hydrogelators. The sequence-specific combinations of amino acid side chain functionalities combined with hydrogen bonding of amide backbones and hydrophobic (aromatic) capping groups give these peptidic molecules the intrinsic tendency to self-assemble. The most prevalent designs include N-capped amino acid residues, bolamphiphilic peptides, and amphipathic peptides. Factors such as hydrophobic effects, the Hofmeister effect, and tunable ionization influence their aggregation properties. The self-assembly of simple bio-inspired building blocks into higher organized structures allows comparisons to be drawn with proteins and their complex functionalities, providing preliminary insights into complex biological functions and also enabling their application in a wide range of fields including catalysis, biomedical applications, and mimicry of natural dissipative systems. The Minireview is concluded by a short summary and outlook, highlighting the advances and steps required to bridge the gaps in the understanding of such systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    PubMed

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-05

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Synthesis, structure, biochemical, and docking studies of a new dinitrosyl iron complex [Fe2(μ-SC4H3SCH2)2(NO)4

    NASA Astrophysics Data System (ADS)

    Davidovich, P. B.; Fischer, A. I.; Korchagin, D. V.; Panchuk, V. V.; Shchukarev, A. V.; Garabadzhiu, A. V.; Belyaev, A. N.

    2015-07-01

    A new dinitrosyl iron complex of binuclear structure [Fe2(μ-S-2-methylthiophene)2(NO)4] was first synthesized and structurally characterized by XRD and theoretical methods. Using caspase-3 as an example it was shown that [Fe2(μ-S-2-methylthiophene)2(NO)4] and its analog [Fe2(μ-S-2-methylfurane)2(NO)4] can inhibit the action of active site cysteine proteins; the difference in inhibitory activity was explained by molecular docking studies. Biochemical and in silico studies give grounds that the biological activity of dinitrosyl iron complexes is a μ-SR bridging ligand structure function. Thus the rational design strategy of [Fe2(μ-SR)2(NO)4] complexes can be applied to make NO prodrugs with high affinity to therapeutically significant targets involved in cancer and inflammation.

  4. Assignment of function to Histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; substitutions that lead to acceptance of substrates lacking the 5-carboxyl group.†

    PubMed Central

    Shim, Da Jeong; Nemeria, Natalia S.; Balakrishnan, Anand; Patel, Hetalben; Song, Jaeyoung; Wang, Junjie; Jordan, Frank; Farinas, Edgardo T.

    2011-01-01

    The first component (E1o) of the Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) was engineered to accept substrates lacking the 5-carboxylate group by subjecting H260 and H298 to saturation mutagenesis. Apparently, H260 is required for substrate recognition, but H298 could be replaced by hydrophobic residues of similar molecular volume. To interrogate whether the second component would enable synthesis of acyl-coenzymeA derivatives, hybrid complexes consisting of recombinant components of OGDHc (o) and pyruvate dehydrogenase (p) enzymes were constructed, suggesting that a different component is the ‘gatekeeper’ for specificity for these two multienzyme complexes in bacteria, E1p for pyruvate, but E2o for 2-oxoglutarate. PMID:21809826

  5. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants--structural and kinetic properties of the free and bound enzymes.

    PubMed

    Droux, M; Ruffet, M L; Douce, R; Job, D

    1998-07-01

    The last steps of cysteine synthesis in plants involve two consecutive enzymes. The first enzyme, serine acetyltransferase, catalyses the acetylation of L-serine in the presence of acetyl-CoA to form O-acetylserine. The second enzyme, O-acetylserine (thiol) lyase, converts O-acetylserine to L-cysteine in the presence of sulfide. We have, in the present work, over-produced in Escherichia coli harboring various type of plasmids, either a plant serine acetyltransferase or this enzyme with a plant O-acetylserine (thiol) lyase. The free recombinant serine acetyltransferase (subunit mass of 34 kDa) exhibited a high propensity to form high-molecular-mass aggregates and was found to be highly unstable in solution. However, these aggregates were prevented in the presence of O-acetylserine (thiol) lyase (subunit mass of 36 kDa). Under these conditions homotetrameric serine acetyltransferase associated with two molecules of homodimeric O-acetylserine (thiol) lyase to form a bienzyme complex (molecular mass approximately 300 kDa) called cysteine synthase containing 4 mol pyridoxal 5'-phosphate/mol complex. O-Acetylserine triggered the dissociation of the bienzyme complex, whereas sulfide counteracted the action of O-acetylserine. Protein-protein interactions within the bienzyme complex strongly modified the kinetic properties of plant serine acetyltransferase: there was a transition from a typical Michaelis-Menten model to a model displaying positive kinetic co-operativity with respect to serine and acetyl-CoA. On the other hand, the formation of the bienzyme complex resulted in a very dramatic decrease in the catalytic efficiency of bound O-acetylserine (thiol) lyase. The latter enzyme behaved as if it were a structural and/or regulatory subunit of serine acetyltransferase. Our results also indicated that bound serine acetyltransferase produces a build-up of O-acetylserine along the reaction path and that the full capacity for cysteine synthesis can only be achieved in the presence of a large excess of free O-acetylserine (thiol) lyase. These findings contradict the widely held belief that such a bienzyme complex is required to channel the metabolite intermediate O-acetylserine.

  6. Synthesis, crystal growth and characterization of bioactive material: 2- Amino-1H-benzimidazolium pyridine-3-carboxylate single crystal- a proton transfer molecular complex

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Kavitha, P.; Anitha, K.

    2017-09-01

    The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.

  7. A Trapped Covalent Intermediate of a Glycoside Hydrolase on the Pathway to Transglycosylation. Insights from Experiments and Quantum Mechanics/Molecular Mechanics Simulations.

    PubMed

    Raich, Lluís; Borodkin, Vladimir; Fang, Wenxia; Castro-López, Jorge; van Aalten, Daan M F; Hurtado-Guerrero, Ramón; Rovira, Carme

    2016-03-16

    The conversion of glycoside hydrolases (GHs) into transglycosylases (TGs), i.e., from enzymes that hydrolyze carbohydrates to enzymes that synthesize them, represents a promising solution for the large-scale synthesis of complex carbohydrates for biotechnological purposes. However, the lack of knowledge about the molecular details of transglycosylation hampers the rational design of TGs. Here we present the first crystallographic structure of a natural glycosyl-enzyme intermediate (GEI) of Saccharomyces cerevisiae Gas2 in complex with an acceptor substrate and demonstrate, by means of quantum mechanics/molecular mechanics metadynamics simulations, that it is tuned for transglycosylation (ΔG(⧧) = 12 kcal/mol). The 2-OH···nucleophile interaction is found to be essential for catalysis: its removal raises the free energy barrier significantly (11 and 16 kcal/mol for glycosylation and transglycosylation, respectively) and alters the conformational itinerary of the substrate (from (4)C1 → [(4)E](⧧) → (1,4)B/(4)E to (4)C1 → [(4)H3](⧧) → (4)C1). Our results suggest that changes in the interactions involving the 2-position could have an impact on the transglycosylation activity of several GHs.

  8. Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: molecular docking, molecular dynamics simulation, and binding free energy calculation.

    PubMed

    Anusuya, Shanmugam; Gromiha, M Michael

    2017-10-01

    Dengue is an important public health problem in tropical and subtropical regions of the world. Neither vaccine nor an antiviral medication is available to treat dengue. This insists the need of drug discovery for dengue. In order to find a potent lead molecule, RNA-dependent RNA polymerase which is essential for dengue viral replication is chosen as a drug target. As Quercetin showed antiviral activity against several viruses, quercetin derivatives developed by combinatorial library synthesis and mined from PubChem databases were screened for a potent anti-dengue viral agent. Our study predicted Quercetin 3-(6″-(E)-p-coumaroylsophoroside)-7-rhamnoside as a dengue polymerase inhibitor. The results were validated by molecular dynamics simulation studies which reveal water bridges and hydrogen bonds as major contributors for the stability of the polymerase-lead complex. Interactions formed by this compound with residues Trp795, Arg792 and Glu351 are found to be essential for the stability of the polymerase-lead complex. Our study demonstrates Quercetin 3-(6″-(E)-p-coumaroylsophoroside)-7-rhamnoside as a potent non-nucleoside inhibitor for dengue polymerase.

  9. A quasi-QSPR modelling for the photocatalytic decolourization rate constants and cellular viability (CV%) of nanoparticles by CORAL.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-01-01

    Most quantitative structure-property/activity relationships (QSPRs/QSARs) predict various endpoints related to organic compounds. Gradually, the variety of organic compounds has been extended to inorganic, organometallic compounds and polymers. However, the so-called molecular descriptors cannot be defined for super-complex substances such as different nanomaterials and peptides, since there is no simple and clear representation of their molecular structure. Some possible ways to define approaches for a predictive model in the case of super-complex substances are discussed. The basic idea of the approach is to change the traditionally used paradigm 'the endpoint is a mathematical function of the molecular structure' with another paradigm 'the endpoint is a mathematical function of available eclectic information'. The eclectic data can be (i) conditions of a synthesis, (ii) technological attributes, (iii) size of nanoparticles, (iv) concentration, (v) attributes related to cell membranes, and so on. Two examples of quasi-QSPR/QSAR analyses are presented and discussed. These are (i) photocatalytic decolourization rate constants (DRC) (10(-5)/s) of different nanopowders; and (ii) the cellular viability under the effect of nano-SiO(2).

  10. Theoretical Calculation of the Uv-Vis Spectral Band Locations of Pahs with Unknown Syntheses Procedures and Prospective Carcinogenic Activity

    NASA Astrophysics Data System (ADS)

    Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara

    2017-06-01

    Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.

  11. How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students' mathematical performance

    NASA Astrophysics Data System (ADS)

    Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan

    2017-12-01

    We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students' mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students' simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students' formulation and combination of equations. Several reasons may explain this difference, including the students' different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.

  12. Synthesis, in vitro and in vivo studies, and molecular modeling of N-alkylated dextromethorphan derivatives as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptor.

    PubMed

    Jozwiak, Krzysztof; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Kozak, Joanna; Ligeza, Agnieszka; Szacon, Elzbieta; Wrobel, Tomasz M; Budzynska, Barbara; Biala, Grazyna; Fornal, Emilia; Poso, Antti; Wainer, Irving W; Matosiuk, Dariusz

    2014-12-15

    9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Molecular nanomagnets with switchable coupling for quantum simulation

    DOE PAGES

    Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...

    2014-12-11

    Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less

  14. pH-specific synthesis and spectroscopic, structural, and magnetic studies of a chromium(III)-citrate species. Aqueous solution speciation of the binary chromium(III)-citrate system.

    PubMed

    Gabriel, C; Raptopoulou, C P; Terzis, A; Tangoulis, V; Mateescu, C; Salifoglou, A

    2007-04-16

    In an attempt to understand the aqueous interactions of Cr(III) with the low-molecular-mass physiological ligand citric acid, the pH-specific synthesis in the binary Cr(III)-citrate system was explored, leading to the complex (NH4)4[Cr(C6H4O7)(C6H5O7)].3H2O (1). 1 crystallizes in the monoclinic space group I2/a, with a = 19.260(10) A, b = 10.006(6) A, c = 23.400(10) A, beta = 100.73(2) degrees , V = 4431(4) A3, and Z = 8. 1 was characterized by elemental analysis and spectroscopic, structural, thermal, and magnetic susceptibility studies. Detailed aqueous speciation studies in the Cr(III)-citrate system suggest the presence of a number of species, among which is the mononuclear [Cr(C6H4O7)(C6H5O7)]4- complex, optimally present around pH approximately 5.5. The structure of 1 reveals a mononuclear octahedral complex of Cr(III) with two citrate ligands bound to it. The two citrate ligands have different deprotonation states, thus signifying the importance of the mixed deprotonation state in the coordination sphere of the Cr(III) species in aqueous speciation. The latter reveals the distribution of numerous species, including 1, for which the collective structural, spectroscopic, and magnetic data point out its physicochemical profile in the solid state and in solution. The importance of the synthetic efforts linked to 1 and the potential ramifications of Cr(III) reactivity toward both low- and high-molecular-mass biotargets are discussed in light of (a) the quest for well-characterized soluble Cr(III) species that could be detected and identified in biologically relevant fluids, (b) ongoing efforts to delineate the aqueous speciation of the Cr(III)-citrate system and its link to biotoxic Cr(III) manifestations, and (c) the synthetic utility of convenient Cr(III) precursors in the synthesis of advanced materials.

  15. High surface area silicon materials: fundamentals and new technology.

    PubMed

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  16. Parallel evolution of Nitric Oxide signaling: Diversity of synthesis & memory pathways

    PubMed Central

    Moroz, Leonid L.; Kohn, Andrea B.

    2014-01-01

    The origin of NO signaling can be traceable back to the origin of life with the large scale of parallel evolution of NO synthases (NOSs). Inducible-like NOSs may be the most basal prototype of all NOSs and that neuronal-like NOS might have evolved several times from this prototype. Other enzymatic and non-enzymatic pathways for NO synthesis have been discovered using reduction of nitrites, an alternative source of NO. Diverse synthetic mechanisms can co-exist within the same cell providing a complex NO-oxygen microenvironment tightly coupled with cellular energetics. The dissection of multiple sources of NO formation is crucial in analysis of complex biological processes such as neuronal integration and learning mechanisms when NO can act as a volume transmitter within memory-forming circuits. In particular, the molecular analysis of learning mechanisms (most notably in insects and gastropod molluscs) opens conceptually different perspectives to understand the logic of recruiting evolutionarily conserved pathways for novel functions. Giant uniquely identified cells from Aplysia and related species precent unuque opportunities for integrative analysis of NO signaling at the single cell level. PMID:21622160

  17. A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics.

    PubMed

    Green, Kayla N; Jeffery, Stephen P; Reibenspies, Joseph H; Darensbourg, Marcetta Y

    2006-05-17

    The molecular structure of the acetyl CoA synthase enzyme has clarified the role of individual nickel atoms in the dinickel active site which mediates C-C and C-S coupling reactions. The NiN2S2 portion of the biocatalyst (N2S2 = a cysteine-glycine-cysteine or CGC4- tripeptide ligand) serves as an S-donor ligand comparable to classical bidentate ligands operative in organometallic chemistry, ligating the second nickel which is redox and catalytically active. Inspired by this biological catalyst, the synthesis of NiN2S2 metalloligands, including the solid-phase synthesis of resin-bound Ni(CGC)2-, and sulfur-based derivatization with W(CO)5 and Rh(CO)2+ have been carried out. Through comparison to analogous well-characterized, solution-phase complexes, Attenuated Total Reflectance FTIR spectroscopy establishes the presence of unique heterobimetallic complexes, of the form [Ni(CGC)]M(CO)x, both in solution and immobilized on resin beads. This work provides the initial step toward exploitation of such an evolutionarily optimized nickel peptide as a solid support anchor for hybrid bioinorganic-organometallic catalysts.

  18. Synthesis, crystal structures, molecular docking, and in vitro biological activities of transition metals with 4-(2,3-dichlorophenyl)piperazine-1-carboxylic acid.

    PubMed

    Yang, Dan-Dan; Chen, Ya-Nan; Wu, Yu-Shan; Wang, Rui; Chen, Zhi-Jian; Qin, Jie; Qian, Shao-Song; Zhu, Hai-Liang

    2016-07-15

    Four novel mononuclear complexes, [Cd(L)2·2H2O] (1), [Ni(L)2·2H2O] (2) [Cu(L)2·H2O] (3), and [Zn(L)2·2H2O] (4) (CCDC numbers: 1444630-1444633 for complexes 1-4) (HL=4-(2,3-dichlorophenyl)piperazine-1-carboxylic acid) were synthesized, and have been characterized by IR spectroscopy, elemental analysis, and X-ray crystallography. Molecular docking study preliminarily revealed that complex 1 had potential telomerase inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complex 1 against telomerase showed complex 1 (IC50=8.17±0.91μM) had better inhibitory activities, while complexes 2, 3 and 4 showed no inhibitory activities. Antiproliferative activity in human cancer cell line HepG2 was further determined by MTT assays. The IC50 value (6.5±0.2μM) for the complex 1 having good inhibitory activity against HepG2 was at the same micromolar concentrations with cis-platinum (2.2±1.2μM). While the IC50 value for the metal-free ligand, complex 2, 3 and 4 was more than 100μM. These results indicated that telomerase was potentially an anticancer drug target and showed that complex 1 was a potent inhibitor of human telomerase as well as an antiproliferative compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Molecular characterisation of a mosaicism with a complex chromosome rearrangement: evidence for coincident chromosome healing by telomere capture and neo‐telomere formation

    PubMed Central

    Chabchoub, Elyes; Rodríguez, Laura; Galán, Enrique; Mansilla, Elena; Martínez‐Fernandez, Maria Luisa; Martínez‐Frías, Maria Luisa; Fryns, Jean‐Pierre; Vermeesch, Joris Robert

    2007-01-01

    Background Broken chromosomes must acquire new telomeric “caps” to be structurally stable. Chromosome healing can be mediated either by telomerase through neo‐telomere synthesis or by telomere capture. Aim To unravel the mechanism(s) generating complex chromosomal mosaicisms and healing broken chromosomes. Methods G banding, array comparative genomic hybridization (aCGH), fluorescence in‐situ hybridisation (FISH) and short tandem repeat analysis (STR) was performed on a girl presenting with mental retardation, facial dysmorphism, urogenital malformations and limb anomalies carrying a complex chromosomal mosaicism. Results & discussion The karyotype showed a de novo chromosome rearrangement with two cell lines: one cell line with a deletion 9pter and one cell line carrying an inverted duplication 9p and a non‐reciprocal translocation 5pter fragment. aCGH, FISH and STR analysis enabled the deduction of the most likely sequence of events generating this complex mosaic. During embryogenesis, a double‐strand break occurred on the paternal chromosome 9. Following mitotic separation of both broken sister chromatids, one acquired a telomere vianeo‐telomere formation, while the other generated a dicentric chromosome which underwent breakage during anaphase, giving rise to the del inv dup(9) that was subsequently healed by chromosome 5 telomere capture. Conclusion Broken chromosomes can coincidently be rescued by both telomere capture and neo‐telomere synthesis. PMID:17172463

  20. Lipoic acid metabolism and mitochondrial redox regulation.

    PubMed

    Solmonson, Ashley D; DeBerardinis, Ralph J

    2017-11-30

    Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multi-enzyme complexes.  Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety.  Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity and coordination of fuel metabolism. Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multi-enzyme complexes.  Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety.  Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity and coordination of fuel metabolism. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  1. Reprogramming of leukemic cell metabolism through the naphthoquinonic compound Quambalarine B

    PubMed Central

    Vališ, Karel; Grobárová, Valéria; Hernychová, Lucie; Bugáňová, Martina; Kavan, Daniel; Kalous, Martin; Černý, Jiří; Stodůlková, Eva; Kuzma, Marek; Flieger, Miroslav; Černý, Jan; Novák, Petr

    2017-01-01

    Abnormalities in cancer metabolism represent potential targets for cancer therapy. We have recently identified a natural compound Quambalarine B (QB), which inhibits proliferation of several leukemic cell lines followed by cell death. We have predicted ubiquinone binding sites of mitochondrial respiratory complexes as potential molecular targets of QB in leukemia cells. Hence, we tracked the effect of QB on leukemia metabolism by applying several omics and biochemical techniques. We have confirmed the inhibition of respiratory complexes by QB and found an increase in the intracellular AMP levels together with respiratory substrates. Inhibition of mitochondrial respiration by QB triggered reprogramming of leukemic cell metabolism involving disproportions in glycolytic flux, inhibition of proteins O-glycosylation, stimulation of glycine synthesis pathway, and pyruvate kinase activity, followed by an increase in pyruvate and a decrease in lactate levels. Inhibition of mitochondrial complex I by QB suppressed folate metabolism as determined by a decrease in formate production. We have also observed an increase in cellular levels of several amino acids except for aspartate, indicating the dependence of Jurkat (T-ALL) cells on aspartate synthesis. These results indicate blockade of mitochondrial complex I and II activity by QB and reduction in aspartate and folate metabolism as therapeutic targets in T-ALL cells. Anti-cancer activity of QB was also confirmed during in vivo studies, suggesting the therapeutic potential of this natural compound. PMID:29262552

  2. Water oxidation catalysed by manganese compounds: from complexes to 'biomimetic rocks'.

    PubMed

    Wiechen, Mathias; Berends, Hans-Martin; Kurz, Philipp

    2012-01-07

    One of the most fundamental processes of the natural photosynthetic reaction sequence is the light-driven oxidation of water to molecular oxygen. In vivo, this reaction takes place in the large protein ensemble Photosystem II, where a μ-oxido-Mn(4)Ca- cluster, the oxygen-evolving-complex (OEC), has been identified as the catalytic site for the four-electron/four-proton redox reaction of water oxidation. This Perspective presents recent progress for three strategies which have been followed to prepare functional synthetic analogues of the OEC: (1) the synthesis of dinuclear manganese complexes designed to act as water-oxidation catalysts in homogeneous solution, (2) heterogeneous catalysts in the form of clay hybrids of such Mn(2)-complexes and (3) the preparation of manganese oxide particles of different compositions and morphologies. We discuss the key observations from the studies of such synthetic manganese systems in order to shed light upon the catalytic mechanism of natural water oxidation. Additionally, it is shown how research in this field has recently been motivated more and more by the prospect of finding efficient, robust and affordable catalysts for light-driven water oxidation, a key reaction of artificial photosynthesis. As manganese is an abundant and non-toxic element, manganese compounds are very promising candidates for the extraction of reduction equivalents from water. These electrons could consecutively be fed into the synthesis of "solar fuels" such as hydrogen or methanol.

  3. Molecular Cloning and Functional Analysis of Gene Clusters for the Biosynthesis of Indole-Diterpenes in Penicillium crustosum and P. janthinellum

    PubMed Central

    Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry

    2015-01-01

    The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965

  4. Synthesis, characterization, DFT calculations and molecular docking studies of metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Ekennia, Anthony C.; Osowole, Aderoju A.; Olasunkanmi, Lukman O.; Onwudiwe, Damian C.; Olubiyi, Olujide O.; Ebenso, Eno E.

    2017-12-01

    Two novel ligands, 2-methyl-6-[(5-methyl benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL1) and 2-methyl-6-[(5-floro-benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL2) were synthesized from the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde with 2-amino-6-methylbenzothiazole and 2-amino-6-florobenzothiazole respectively. Mononuclear Cu(II), Ni(II) and Co(II) complexes of the ligands were synthesized and characterized using elemental analysis, magnetic susceptibility, thermogravimetric, conductance, infrared and UV-visible spectroscopic measurements. The 1H NMR, 13C NMR, Dept-90 NMR spectroscopy of the ligands was also recorded to establish the formation of the Schiff bases. The analytical data of the complexes showed that the metal to ligand ratio was 1:1 for Cu(II), Ni(II) and Co(II) complexes of HL1 and Cu(II) complexes of HL2, while Ni(II) and Co(II) complexes of HL2 was 1:2. The infrared spectral data showed that the chelation behaviour of the ligands towards transition metal ions was through phenolic oxygen and azomethine nitrogen atoms. Molar conductivity revealed the non-electrolytic nature of all chelates in DMSO solution. The geometry of the complexes was deduced from thermal, magnetic susceptibility and UV-visible spectroscopic results and was further confirmed with DFT calculations. The compounds were subjected to in-vitro antibacterial screening using agar well diffusion method on some clinically isolated Gram positive and Gram negative bacteria strains. The compounds showed varied antibacterial activities. Molecular docking studies were carried out to study the molecular interaction between the compounds and different enzymes of the bacterial strains. The antioxidant potentials of the compounds were studied using ferrous ion chelating assay and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. However, the complexes had better antioxidant potentials compared to the ligands.

  5. A minimalist approach to the design of complexity-enriched bioactive small molecules: discovery of phenanthrenoid mimics as antiproliferative agents.

    PubMed

    Alonso, Fernando; Quezada, María Josefina; Gola, Gabriel; Richmond, Victoria; Cabrera, Gabriela; Barquero, Andrea; Ramírez, Javier Alberto

    2018-06-21

    Over the last decades, much effort has been devoted to the design of the "ideal" library for screening, the most promising strategies being those which draw inspiration from biogenic compounds, as they seek to add biological relevance to such libraries. On the other hand, there is a growing understanding of the role that molecular complexity plays in the discovery of new bioactive small molecules. Nevertheless, the introduction of molecular complexity must be balanced with synthetic accessibility. In this work, we show that both concepts can be efficiently merged -in a minimalist way- by using very simple guidelines during the design process along with the application of multicomponent reactions as key steps in the synthetic process. Natural phenanthrenoids, a class of plant aromatic metabolites, served as inspiration for the synthesis of a library where complexity-enhancing features were introduced in few steps using multicomponent reactions. These resulting chemical entities were not only more complex than the parent natural products, but also interrogated an alternative region of the chemical space, which led to an outstanding hit rate in an antiproliferative assay: four out of twenty-six compounds showed in vitro activity, one of them being more potent than the clinically useful drug 5-fluorouracil. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG

    PubMed Central

    Leibfarth, Frank A.; Johnson, Jeremiah A.; Jamison, Timothy F.

    2015-01-01

    We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure–property studies, and advanced applications in biotechnology and materials science. PMID:26269573

  7. Biomimetic synthesis of noble metal nanocrystals

    NASA Astrophysics Data System (ADS)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic synthesis of nanocrystals with shape control and nanostructures with control over the anisotropy are unprecedented, representing a step forward in achieving the goal of producing complex nanostructures with required properties. The fundamental studies on the biomolecule-inorganic interfaces have contributed to advancing the synthesis tool of colloidal nanomaterials and enriching understating of organic-inorganic interface, impacting many applications.

  8. Divergent Coordination Chemistry: Parallel Synthesis of [2×2] Iron(II) Grid-Complex Tauto-Conformers.

    PubMed

    Schäfer, Bernhard; Greisch, Jean-François; Faus, Isabelle; Bodenstein, Tilmann; Šalitroš, Ivan; Fuhr, Olaf; Fink, Karin; Schünemann, Volker; Kappes, Manfred M; Ruben, Mario

    2016-08-26

    The coordination of iron(II) ions by a homoditopic ligand L with two tridentate chelates leads to the tautomerism-driven emergence of complexity, with isomeric tetramers and trimers as the coordination products. The structures of the two dominant [Fe(II) 4 L4 ](8+) complexes were determined by X-ray diffraction, and the distinctness of the products was confirmed by ion-mobility mass spectrometry. Moreover, these two isomers display contrasting magnetic properties (Fe(II) spin crossover vs. a blocked Fe(II) high-spin state). These results demonstrate how the coordination of a metal ion to a ligand that can undergo tautomerization can increase, at a higher hierarchical level, complexity, here expressed by the formation of isomeric molecular assemblies with distinct physical properties. Such results are of importance for improving our understanding of the emergence of complexity in chemistry and biology. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts.

    PubMed

    Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan

    2013-01-15

    New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts

    NASA Astrophysics Data System (ADS)

    Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan

    2013-01-01

    New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals.

  11. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation ofmore » the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  12. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones.

    PubMed

    Lace, Beatrice; Prandi, Cristina

    2016-08-01

    Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. Synthesis, characterization, molecular docking and biological studies of self assembled transition metal dithiocarbamates of substituted pyrrole-2-carboxaldehyde.

    PubMed

    Nami, Shahab A A; Ullah, Irfan; Alam, Mahboob; Lee, Dong-Ung; Sarikavakli, Nursabah

    2016-07-01

    A series of self assembled 3d transition metal dithiocarbamate, M(pdtc) [where M=Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)] have been synthesized and spectroscopically characterized. The bidentate dithiocarbamate ligand Na2pdtc (Disodium-1,4-phenyldiaminobis (pyrrole-1-sulfino)dithioate) was prepared by insertion reaction of carbondisulfide with Schiff base, N,N'-bis-(1H-pyrrol-2-ylmethylene)-benzene-1,4-diamine (L1) in basic medium. The simple substitution reaction between the metal halide and Na2pdtc yielded the title complexes in moderate yields. However, the in situ procedure gives high yield with the formation of single product as evident by TLC. Elemental analysis, IR, (1)H and (13)C NMR spectra, UV-vis., magnetic susceptibility and conductance measurements were done to characterize the complexes, M(pdtc). All the evidences suggest that the complexes have tetrahedral geometry excepting Cu(II) which is found to be square planar. A symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the complexes. The conductivity data show that the complexes are non-electrolyte in nature. The anti-oxidant activity of the ligand, Na2pdtc and its transition metal complexes, M(pdtc) have been carried out using DPPH and Cu(pdtc) was found to be most effective. The anti-microbial activity of the Na2pdtc and M(pdtc) complexes have been carried out and on this basis the molecular docking study of the most effective complex, Cu(pdtc) has also been reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-09-16

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  15. Gold nanocrystals with DNA-directed morphologies

    NASA Astrophysics Data System (ADS)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  16. Synthesis, Delivery and Regulation of Eukaryotic Heme and Fe-S Cluster Cofactors

    PubMed Central

    Barupala, Dulmini P.; Dzul, Stephen P.; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L.

    2016-01-01

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. PMID:26785297

  17. Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione and its Mn(II), Co(II), Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.

    2018-07-01

    A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.

  18. Synthesis and characterization of pure and Li⁺ activated Alq₃ complexes for green and blue organic light emitting diodes and display devices.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2014-08-01

    Pure and Li(+)-doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X-ray diffraction, ultraviolet-visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X-ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet-visible and PL spectra revealed that Li(+) activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li(+) enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383-456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green- and blue-emitting organic light emitting diode, PL liquid-crystal display and solid-state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.

  19. New modulated design, docking and synthesis of carbohydrate-conjugate heterobimetallic CuII-SnIV complex as potential topoisomerase II inhibitor: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines.

    PubMed

    Tabassum, Sartaj; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New carbohydrate-conjugate heterobimetallic complexes [C₂₂H₅₀N₆O₁₃CuSnCl₂] (3) and [C₂₂H₅₈N₆O₁₇NiSnCl₂] (4) were synthesized from their monometallic analogs [C₂₂H₅₂N₆O₁₃Cu] (1) and [C₂₂H₆₀N₆O₁₇Ni] (2) containing N-glycoside ligand (L). In vitro DNA binding studies of L and complexes (1-4) with CT DNA were carried out by employing various biophysical and molecular docking techniques which revealed that heterobimetallic complex 3 strongly binds to DNA in comparison to 4, monometallic complexes (1 and 2) and the free ligand. Complex 3 cleaves pBR322 DNA via hydrolytic pathway (confirmed by T4 DNA ligase assay) and inhibited Topo-II activity in a dose-dependent manner. Furthermore, complex 3 was docked into the ATPase domain of human-Topo-II in order to probe the possible mechanism of inhibition. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Synthesizing evidence on complex interventions: how meta-analytical, qualitative, and mixed-method approaches can contribute.

    PubMed

    Petticrew, Mark; Rehfuess, Eva; Noyes, Jane; Higgins, Julian P T; Mayhew, Alain; Pantoja, Tomas; Shemilt, Ian; Sowden, Amanda

    2013-11-01

    Although there is increasing interest in the evaluation of complex interventions, there is little guidance on how evidence from complex interventions may be reviewed and synthesized, and the relevance of the plethora of evidence synthesis methods to complexity is unclear. This article aims to explore how different meta-analytical approaches can be used to examine aspects of complexity; describe the contribution of various narrative, tabular, and graphical approaches to synthesis; and give an overview of the potential choice of selected qualitative and mixed-method evidence synthesis approaches. The methodological discussions presented here build on a 2-day workshop held in Montebello, Canada, in January 2012, involving methodological experts from the Campbell and Cochrane Collaborations and from other international review centers (Anderson L, Petticrew M, Chandler J, et al. systematic reviews of complex interventions. In press). These systematic review methodologists discussed the broad range of existing methods and considered the relevance of these methods to reviews of complex interventions. The evidence from primary studies of complex interventions may be qualitative or quantitative. There is a wide range of methodological options for reviewing and presenting this evidence. Specific contributions of statistical approaches include the use of meta-analysis, meta-regression, and Bayesian methods, whereas narrative summary approaches provide valuable precursors or alternatives to these. Qualitative and mixed-method approaches include thematic synthesis, framework synthesis, and realist synthesis. A suitable combination of these approaches allows synthesis of evidence for understanding complex interventions. Reviewers need to consider which aspects of complex interventions should be a focus of their review and what types of quantitative and/or qualitative studies they will be including, and this will inform their choice of review methods. These may range from standard meta-analysis through to more complex mixed-method synthesis and synthesis approaches that incorporate theory and/or user's perspectives. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A Splash to Nano-Sized Inorganic Energy-Materials by the Low-Temperature Molecular Precursor Approach.

    PubMed

    Driess, Matthias; Panda, Chakadola; Menezes, Prashanth Wilfried

    2018-05-07

    The low-temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy-saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule-to-nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water-splitting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Small-angle X-ray Solution Scattering Study of the Multi-aminoacyl-tRNA Synthetase Complex Reveals an Elongated and Multi-armed particle*

    PubMed Central

    Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc

    2013-01-01

    In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex. PMID:23836901

  3. Catalytic copolymerization of CO and ethylene with a charge neutral palladium(II) zwitterion.

    PubMed

    Lu, Connie C; Peters, Jonas C

    2002-05-15

    The synthesis of a zwitterionic Pd(II) complex supported by an anionic bis(phosphino)borate ligand, Ph(2)B(CH(2)PPh(2))(2) (abbreviated as [Ph(2)BP(2)]), is reported. The new complex, [Ph(2)BP(2)]PdMe(THF), is active for CO and ethylene copolymerization. The copolymerization activity and polyketone molecular weight for the neutral, zwitterionic system are compared with those for the cationic systems [R(2)E(CH(2)PPh(2))(2)PdMe(THF)][B(C(6)F(5))(4)] where ER(2) = SiPh(2) and CH(2). Surprisingly, the more electron rich zwitterionic system is a catalyst of activity comparable to that of the more conventional cationic systems.

  4. Synthesis, characterization and relativistic DFT studies of fac-Re(CO)3(isonicotinic acid)2Cl complex

    NASA Astrophysics Data System (ADS)

    Zúñiga, César; Oyarzún, Diego P.; Martin-Transaco, Rudy; Yáñez-S, Mauricio; Tello, Alejandra; Fuentealba, Mauricio; Cantero-López, Plinio; Arratia-Pérez, Ramiro

    2017-11-01

    In this work, new fac-Re(CO)3(PyCOOH)2Cl from isonicotinic acid ligand has been prepared. The complex was characterized by structural (single-crystal X-ray diffraction), elemental analysis and spectroscopic (FTIR, NMR, UV-vis spectroscopy) methods. DFT and TDDFT calculations were performed to obtain the electronic transitions involved in their UV-Vis spectrum. The excitation energies agree with the experimental results. The TDDFT calculations suggest that experimental mixed absorption bands at 270 and 314 nm could be assigned to (MLCT-LLCT)/MLCT transitions. Natural Bond Orbitals (NBO) approach has enabled studying the effects of bonding interactions. E(2) energies confirm the occurrence of ICT (Intra-molecular Charge Transfer) within the molecule.

  5. Synthesis, characterization, and anticancer activity of a series of ketone-N(4)-substituted thiosemicarbazones and their ruthenium(II) arene complexes.

    PubMed

    Su, Wei; Qian, Quanquan; Li, Peiyuan; Lei, Xiaolin; Xiao, Qi; Huang, Shan; Huang, Chusheng; Cui, Jianguo

    2013-11-04

    A series of ketone-N(4)-substituted thiosemicarbazone (TSC) compounds (L1-L9) and their corresponding [(η(6)-p-cymene)Ru(II)(TSC)Cl](+/0) complexes (1-9) were synthesized and characterized by NMR, IR, elemental analysis, and HR-ESI-mass spectrometry. The molecular structures of L4, L9, 1-6, and 9 were determined by single-crystal X-ray diffraction analysis. The compounds were further evaluated for their in vitro antiproliferative activities against the SGC-7901 human gastric cancer, BEL-7404 human liver cancer, and HEK-293T noncancerous cell lines. Furthermore, the interactions of the compounds with DNA were followed by electrophoretic mobility spectrometry studies.

  6. Inorganic nanoparticles as nucleic acid transporters into eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Amirkhanov, R. N.; Zarytova, V. F.; Zenkova, M. A.

    2017-02-01

    The review is concerned with inorganic nanoparticles (gold, titanium dioxide, silica, iron oxides, calcium phosphate) used as nucleic acid transporters into mammalian cells. Methods for the synthesis of nanoparticles and approaches to surface modification through covalent or noncovalent attachment of low- or high-molecular-weight compounds are considered. The data available from the literature on biological action of nucleic acids delivered into the cells by nanoparticles and on the effect of nanoparticles and their conjugates and complexes on the cell survival are summarized. Pathways of cellular internalization of nanoparticles and the mechanism of their excretion, as well as the ways of release of nucleic acids from their complexes with nanoparticles after the cellular uptake are described. The bibliography includes 161 references.

  7. Preparation of actinide boride materials via solid-state metathesis reactions and actinide dicarbollide precursors

    NASA Astrophysics Data System (ADS)

    Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.

    2000-07-01

    Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.

  8. Classics in Chemical Neuroscience: Haloperidol.

    PubMed

    Tyler, Marshall W; Zaldivar-Diez, Josefa; Haggarty, Stephen J

    2017-03-15

    The discovery of haloperidol catalyzed a breakthrough in our understanding of the biochemical basis of schizophrenia, improved the treatment of psychosis, and facilitated deinstitutionalization. In doing so, it solidified the role for chemical neuroscience as a means to elucidate the molecular underpinnings of complex neuropsychiatric disorders. In this Review, we will cover aspects of haloperidol's synthesis, manufacturing, metabolism, pharmacology, approved and off-label indications, and adverse effects. We will also convey the fascinating history of this classic molecule and the influence that it has had on the evolution of neuropsychopharmacology and neuroscience.

  9. Synthesis of Sulfonated burdock fructooligosaccharide (BFO)

    NASA Astrophysics Data System (ADS)

    Zhang, Haiguang; Chen, Kaoshan; Zhang, Pengying; Zhang, Xian; Wang, Zhe; Xue, Jingwen

    2017-12-01

    Burdock Fructooligosaccharide (BFO) were sulfated using SO3-Py complex. The maximal degree of sulfonation (DSsulf) was 1.56, which were obtained by varying reaction factor such molar ratio of SO3-Py to fructofuranans unit (FU). The FT-IR, 1H NMR and 13C NMR spectra showed the introduction of sulfate group, and the reaction occurred at C-6, C-4 and C-3 in the fructofuranans unit of BFO. The molecular weight estimated by HPGPC were 6104.7-11003.3 g/mol for S-BFO (DS sulf=1.2).

  10. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a "molecular welding" effect.

    PubMed

    Taniguchi, Shohei; Green, Mark; Lim, Teck

    2011-03-16

    The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.

  11. Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets.

    PubMed

    Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop

    2017-05-01

    Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

  12. Interaction-based evolution: how natural selection and nonrandom mutation work together.

    PubMed

    Livnat, Adi

    2013-10-18

    The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation-while not Lamarckian, or "directed" to increase fitness-is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination's fitness. This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive potential than previously considered. Empirical evidence for the proposed mechanism from both molecular evolution and evolution at the organismal level is discussed, and multiple predictions are offered by which it may be tested. This article was reviewed by Nigel Goldenfeld (nominated by Eugene V. Koonin), Jürgen Brosius and W. Ford Doolittle.

  13. Complementary transcriptome and proteome profiling in cabbage buds of a recessive male sterile mutant provides new insights into male reproductive development.

    PubMed

    Ji, Jialei; Yang, Limei; Fang, Zhiyuan; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Liu, Yumei; Li, Zhansheng

    2018-05-15

    Plant male reproductive development is a very complex biological process that involves multiple metabolic pathways. To reveal novel insights into male reproductive development, we conducted an integrated profiling of gene activity in the developing buds of a cabbage recessive genetic male sterile mutant. Using RNA-Seq and label-free quantitative proteomics, 2881 transcripts and 1245 protein species were identified with significant differential abundance between the male sterile line 83121A and its isogenic maintainer line 83121B. Analyses of function annotations and correlations between transcriptome and proteome and protein interaction networks were also conducted, which suggested that the male sterility involves a complex regulatory pattern. Moreover, several key biological processes, such as fatty acid metabolism, tapetosome biosynthesis, amino acid metabolism and protein synthesis and degradation were identified as being of relevance to male reproductive development. A large number of protein species involved in sporopollenin synthesis, amino acid synthesis, ribosome assembly, protein processing in endoplasmic reticulum and lipid transfer were observed to be significantly down-accumulated in 83121A buds, indicating their potential roles in the regulation of cabbage microspore abortion. In summary, the conjoint analysis of the transcriptome and proteome provided a global picture regarding the molecular dynamics in male sterile buds of 83121A. Male sterile mutants are excellent materials for the study of plant male reproductive development. This study revealed the molecular dynamics of recessive male sterility in cabbage at the transcriptome and proteome levels, which deepens our understanding of the metabolic pathways involved in male development. Moreover, the male sterility-related genes identified in this study could provide a reference for the artificial regulation of cabbage fertility by using genetic engineering technology, which may result in potential applications in agriculture such as production of hybrid seeds using male sterility. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Alcohols inhibit translation to regulate morphogenesis in C. albicans

    PubMed Central

    Egbe, Nkechi E.; Paget, Caroline M.; Wang, Hui; Ashe, Mark P.

    2015-01-01

    Many molecules are secreted into the growth media by microorganisms to modulate the metabolic and physiological processes of the organism. For instance, alcohols like butanol, ethanol and isoamyl alcohol are produced by the human pathogenic fungus, Candida albicans and induce morphological differentiation. Here we show that these same alcohols cause a rapid inhibition of protein synthesis. More specifically, the alcohols target translation initiation, a complex stage of the gene expression process. Using molecular techniques, we have identified the likely translational target of these alcohols in C. albicans as the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, which supports the exchange reaction where eIF2.GDP is converted to eIF2.GTP. Even minimal regulation at this step will lead to alterations in the levels of specific proteins that may allow the exigencies of the fungus to be realised. Indeed, similar to the effects of alcohols, a minimal inhibition of protein synthesis with cycloheximide also causes an induction of filamentous growth. These results suggest a molecular basis for the effect of various alcohols on morphological differentiation in C. albicans. PMID:25843913

  15. Plugging a Bipyridinium Axle into Multichromophoric Calix[6]arene Wheels Bearing Naphthyl Units at Different Rims

    PubMed Central

    Orlandini, Guido; Ragazzon, Giulio; Zanichelli, Valeria; Degli Esposti, Lorenzo; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Arduini, Arturo

    2017-01-01

    Abstract Tris‐(N‐phenylureido)‐calix[6]arene derivatives are heteroditopic non‐symmetric molecular hosts that can form pseudorotaxane complexes with 4,4′‐bipyridinium‐type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and machines. We envisaged that the incorporation of photoactive units in the calixarene skeleton could lead to the development of systems the working modes of which can be governed and monitored by means of light‐activated processes. Here, we report on the synthesis, structural characterization, and spectroscopic, photophysical, and electrochemical investigation of two calix[6]arene wheels decorated with three naphthyl groups anchored to either the upper or lower rim of the phenylureido calixarene platform. We found that the naphthyl units interact mutually and with the calixarene skeleton in a different fashion in the two compounds, which thus exhibit a markedly distinct photophysical behavior. For both hosts, the inclusion of a 4,4′‐bipyridinium guest activates energy‐ and/or electron‐transfer processes that lead to non‐trivial luminescence changes. PMID:28168152

  16. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants.

    PubMed

    He, Cuiwen H; Xie, Letian X; Allan, Christopher M; Tran, Uyenphuong C; Clarke, Catherine F

    2014-04-04

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants*

    PubMed Central

    He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.

    2014-01-01

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904

  18. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.

    PubMed

    Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D

    1995-11-10

    One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were aligned with bacterial and eukaryotic chaperonins to generate a phylogenetic tree. The tree reveals the close relationship between the archaeal rosettasomes and the eukaryotic TCP1 protein family and the distant relationship to the bacterial GroEL/HSP60 proteins.

  19. Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors

    DOEpatents

    Dai, Sheng; Burleigh, Mark C.; Shin, Yongsoon

    2001-01-01

    The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.

  20. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    NASA Astrophysics Data System (ADS)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  1. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    PubMed Central

    Mutlu, Hatice; Montero de Espinosa, Lucas; Türünç, Oĝuz

    2010-01-01

    Summary We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET) polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS. PMID:21160555

  2. Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth

    PubMed Central

    Ehrenfreund, Pascale; Cami, Jan

    2010-01-01

    Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702

  3. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures.

    PubMed

    Percec, Virgil; Wilson, Daniela A; Leowanawat, Pawaret; Wilson, Christopher J; Hughes, Andrew D; Kaucher, Mark S; Hammer, Daniel A; Levine, Dalia H; Kim, Anthony J; Bates, Frank S; Davis, Kevin P; Lodge, Timothy P; Klein, Michael L; DeVane, Russell H; Aqad, Emad; Rosen, Brad M; Argintaru, Andreea O; Sienkowska, Monika J; Rissanen, Kari; Nummelin, Sami; Ropponen, Jarmo

    2010-05-21

    Self-assembled nanostructures obtained from natural and synthetic amphiphiles serve as mimics of biological membranes and enable the delivery of drugs, proteins, genes, and imaging agents. Yet the precise molecular arrangements demanded by these functions are difficult to achieve. Libraries of amphiphilic Janus dendrimers, prepared by facile coupling of tailored hydrophilic and hydrophobic branched segments, have been screened by cryogenic transmission electron microscopy, revealing a rich palette of morphologies in water, including vesicles, denoted dendrimersomes, cubosomes, disks, tubular vesicles, and helical ribbons. Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes with the biological function of stabilized phospholipid liposomes, plus superior uniformity of size, ease of formation, and chemical functionalization. This modular synthesis strategy provides access to systematic tuning of molecular structure and of self-assembled architecture.

  4. Synthesis of mononuclear copper(II) complexes of N3O2 and N4O2 donors containing Schiff base ligands: Theoretical and biological observations

    NASA Astrophysics Data System (ADS)

    Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.

    2017-09-01

    A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.

  5. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II)

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Jetley, Umesh K.; Sharma, Rakesh K.; Garg, Bhagwan S.

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML 2 composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  6. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II).

    PubMed

    Singh, Bibhesh K; Jetley, Umesh K; Sharma, Rakesh K; Garg, Bhagwan S

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML(2) composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  7. Development of new inorganic luminescent materials by organic-metal complex route

    NASA Astrophysics Data System (ADS)

    Manavbasi, Alp

    The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the Fluorescence Spectrometer, and Diffuse Reflectance Spectroscopy, the Time Resolved Spectroscopy technique was also used to study the photoluminescence characteristics of the synthesized phosphors. Using these characterization techniques, and through careful comparisons with related studies in the literature, the mechanisms of luminescence for each of the new phosphor materials synthesized here was discussed in a detail.

  8. Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms

    PubMed Central

    Gérard, Claude; Goldbeter, Albert

    2012-01-01

    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values. PMID:22693436

  9. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Rezwan Habib, Mohammad; Liang, Tao; Yu, Xuegong; Pi, Xiaodong; Liu, Yingchun; Xu, Mingsheng

    2018-03-01

    Graphene has attracted intense research interest due to its extraordinary properties and great application potential. Various methods have been proposed for the synthesis of graphene, among which chemical vapor deposition has drawn a great deal of attention for synthesizing large-area and high-quality graphene. Theoretical understanding of the synthesis mechanism is crucial for optimizing the experimental design for desired graphene production. In this review, we discuss the three fundamental steps of graphene synthesis in details, i.e. (1) decomposition of carbon feedstocks and formation of various active carbon species, (2) nucleation, and (3) attachment and extension. We provide a complete scenario of graphene synthesis on metal surfaces at atomistic level by means of density functional theory, molecular dynamics (MD), Monte Carlo (MC) and their combination and interface with other simulation methods such as quantum mechanical molecular dynamics, density functional tight binding molecular dynamics, and combination of MD and MC. We also address the latest investigation of the influences of the hydrogen and oxygen on the synthesis and the quality of the synthesized graphene.

  10. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    PubMed

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-05

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.

  11. Developmental co-expression of small molecular weight apolipoprotein B synthesis and triacylglycerol secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, R.A.; Haynes, E.B.; Sand, T.M.

    1987-05-01

    The development of the liver's ability to coordinately express the synthesis and secretion of the two major components of very low density lipoproteins (VLDL): triacylglycerol (TG) and apolipoprotein B (apo B) was examined in cultured hepatocytes obtained from fetal, suckling and adult rats. Hepatocytes from fetal and suckling rats synthesized and secreted TG at rates lower than that displayed by adult cells. When TG synthesis was equalized by adding oleic acid to the culture medium, fetal cells still secreted only 39% as much TG as did adult cells. To determine the basis for the apparent defect in VLDL assembly/secretion displayedmore » by fetal cells, the synthesis and secretion of (TVS)methionine-labeled apo B was quantified by immunoprecipitation. Although adult and fetal cells synthesized and secreted large molecular weight apo B at similar rates, the synthesis and secretion of small molecular weight apo B was 2-fold greater in adult cells. These data suggest that the ability to assemble/secrete VLDL triacylglycerol varies in parallel with the developmental expression of small molecular weight apo B. Furthermore, these studies show the usefulness of the cultured rat hepatocyte model for examining the ontogeny and regulation of VLDL assembly/secretion.« less

  12. POROUS ALUMINOPHOSPHATES :From Molecular Sieves to Designed Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Pastore, H. O.; Coluccia, S.; Marchese, L.

    2005-08-01

    This review covers the synthesis, characterization, and physico-chemical properties of microporous and mesoporous aluminophosphates and silicoaluminophosphates molecular sieves. Particular emphasis is given to the materials that have found applications as acid catalysts. We consider the evolution of the synthesis procedures from the first discoveries to the current methodologies and give perspectives for new possible synthesis strategies. Emphasis is given to the use of specially prepared precursors/reactants designed for the use as molecular sieves. Experimental (especially MAS-NMR and FTIR spectroscopy) and theoretical approaches to the description of the Si insertion into the ALPO framework and to the acidic properties of SAPOs and MeAPSOs materials are discussed.

  13. Reverse Micelle Based Synthesis of Microporous Materials in Microgravity

    NASA Technical Reports Server (NTRS)

    Dutta, Prabir K.

    2001-01-01

    Microporous materials include a large group of solids of varying chemical composition as well as porosity. These materials are characterized by channels and cavities of molecular dimensions. The framework structure is made up of interconnecting T-O-T' bonds, where T and T' can be Si, Al, P, Ga, Fe, Co, Zn, B and a host of other elements. Materials with Si-O-Al bonding in the framework are called zeolites and are extensively used in many applications. Ion-exchange properties of these materials are exploited in the consumer and environmental industries. Chemical and petroleum industries use zeolites as catalysts in hydrocarbon transform ations. Synthesis of new microporous frameworks has led to the development of new technologies, and thus considerable effort worldwide is expended in their discovery. Microporous materials are typically made under hydrothermal conditions. Influence of nature of starting reactants, structure directing agents, pH, temperature, and aging all have profound influence on the synthesis process. This is primarily because the most interesting open frameworks are not necessarily the stable structures in the reaction medium. Thus, the discovery of new frameworks is often tied to finding the right composition and synthesis conditions that allow for kinetic stabilization of the structure. This complexity of the synthesis process and limited understanding of it has made it difficult to develop directed is of microporous materials and most advances in this field have been made by trial and error. The basic issues in crystal growth of these materials include: (1) Nature of the nucleation process; (2) Molecular structure and assembly of nuclei; (3) Growth of nuclei into crystals; (4) Morphology control; and (5) Transformation of frameworks into other structures. The NASA-funded research described in this paper focuses on all the above issues and has been described in several publications. We present the highlights of our program, especially with the focus on possible experiments in microgravity.

  14. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.

    PubMed

    Xu, Kaibiao; Yang, Lele; Zhao, Danyun; Wu, Yaoyao; Qi, Huayu

    2014-06-01

    Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells, underscoring molecular mechanisms that regulate protein synthesis during mouse spermiogenesis. © 2014 by the Society for the Study of Reproduction, Inc.

  15. Structural variety of mono- and binuclear transition metal complexes of 3-[(2-hydroxy-benzylidene)-hydrazono]-1-(2-hydroxyphenyl)-butan-1-one: Synthesis, spectral, thermal, molecular modeling, antimicrobial and antitumor studies

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Adly, Omima M. I.; El-Shafiy, Hoda F.; Khalil, Saied M. E.; Taha, A.; Mahdi, Mohammed A. N.

    2017-04-01

    A new polydentate Schiff base ligand and its metal complexes were synthesized and characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The free ligand was synthesized by condensation of o-acetoacetylphenol with salicylaldehyde hydrazone. The analytical and spectroscopic tools showed that the obtained complexes are mono- and binuclear complexes, which can be generally formulated as: [(L)M2X2(H2O)m]·nZ; M = Cr, Fe, Ni or Cu, X = OAc or NO3, m = 5 or nil and n = 3, 1.5 or 0.5 and Z = EtOH or H2O, [(H2L)2M(X)m].nH2O; M = Mn, Zn, or Cd, X = EtOH, H2O or nil, m = 2 or nil and n = 3.5 or 0, [(HL)2Co2]·0.5H2O and [(H2L)2UO2(H2O)]. The metal complexes displayed octahedral, tetrahedral and square-planar geometrical arrangements, while uranium complex displayed seven-coordinate. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The molecular structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data such as IR. The antimicrobial activity of the ligand and its complexes was screened against some kinds of bacteria and fungi. The antitumor activity of the ligand and its Ni(II) and Cu(II) complexes was investigated against HepG2 cell line.

  16. Are biochips the new wave

    NASA Astrophysics Data System (ADS)

    Bussert, J.

    1982-06-01

    The possibility of microchip synthesis from molecular configurations is considered. A bistable memory element concept is described which can be independently written on and read, and which consists of a chain of transition metal atoms, a bulging ligand connecting the transition metal atoms, and two types of ligand attached to the transition metal atoms. The molecular emulation of switches, memory and interfaces is presently being investigated independently, although simultaneous synthesis of entire architectures is the ultimate goal of research. Molecular circuitry, which could incorporate 10,000 more gates into an IC chip than chemical techniques, would be of greatest immediate importance in avionics and other portable military electronics devices for which minimum size and weight are valuable. Attention is given to a computer-controlled method for the synthesis of molecular computers.

  17. Dynamic torsional motion of a diruthenium complex with four homo-catecholates and first synthesis of a diruthenium complex with mixed-catecholates

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2008-11-01

    Dynamic properties of a diruthenium complex with ligand-unsupported Ru-Ru triple bonds, Na 2[Ru 2(3,6-DTBCat) 4] ( 1), were studied using variable-temperature 1H NMR. Structural freedom derived from the ligand-unsupported structure leads to torsional motion about the Ru-Ru bonds in THF and in DMF. The observed solvent dependency corresponds to the electrostatic interactions between the diruthenium complex and Na + counter cations, which are sensitive to the polarity of solvents. In addition, a new diruthenium complex, [{Na(THF) 2(H 2O)}{Na(THF) 0.5(H 2O)}{Ru 2(3,6-DTBCat) 2(H 4Cat) 2}] ( 2·2.5THF·2H 2O), with a ligand-unsupported Ru-Ru bond surrounded by two different kinds of catecholate derivatives, has been synthesized and crystallographically characterized. The complex, which was characterized by single-crystal structural analysis, will provide an opportunity to investigate not only static molecular structures but also dynamic physicochemical properties in comparison with analogues containing four identical catecholate derivatives.

  18. Mono- and dinuclear bioxazoline-palladium complexes for the stereocontrolled synthesis of CO/styrene polyketones.

    PubMed

    Scarel, Alessandro; Durand, Jérôme; Franchi, Davide; Zangrando, Ennio; Mestroni, Giovanni; Carfagna, Carla; Mosca, Luca; Seraglia, Roberta; Consiglio, Giambattista; Milani, Barbara

    2005-10-07

    The coordination chemistry of the chiral bioxazoline ligand (4S,4'S)-2,2'-bis(4-isopropyl-4,5-dihydrooxazole) to Pd(II) provides evidence that the ligand bonding can occur either through chelation of one Pd(II) ion leading to a mononuclear species with the expected cis geometry, or by double bridging of two Pd(II) ions giving a dinuclear complex with trans geometry. The species in solution are identified by 1H NMR spectroscopy. Both the mononuclear and the dinuclear complexes promote the CO/styrene copolymerization, yielding the corresponding polyketone with a fully or a predominantly isotactic microstructure, depending on the reaction medium. The nature of the anion present in the palladium precatalysts affects the polyketone stereochemistry. MALDI-TOF analysis of the copolymers synthesized reveals the presence of p-hydroxyphenolic end-groups, thus confirming and explaining the role of 1,4-hydroquinone as a molecular weight regulator.

  19. The sensitivity of gas-phase models of dense interstellar clouds to changes in dissociative recombination branching ratios

    NASA Technical Reports Server (NTRS)

    Millar, T. J.; Defrees, D. J.; Mclean, A. D.; Herbst, E.

    1988-01-01

    The approach of Bates to the determination of neutral product branching ratios in ion-electron dissociative recombination reactions has been utilized in conjunction with quantum chemical techniques to redetermine branching ratios for a wide variety of important reactions of this class in dense interstellar clouds. The branching ratios have then been used in a pseudo time-dependent model calculation of the gas phase chemistry of a dark cloud resembling TMC-1 and the results compared with an analogous model containing previously used branching ratios. In general, the changes in branching ratios lead to stronger effects on calculated molecular abundances at steady state than at earlier times and often lead to reductions in the calculated abundances of complex molecules. However, at the so-called 'early time' when complex molecule synthesis is most efficient, the abundances of complex molecules are hardly affected by the newly used branching ratios.

  20. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals

    NASA Astrophysics Data System (ADS)

    Kern, Nicolas; Plesniak, Mateusz P.; McDouall, Joseph J. W.; Procter, David J.

    2017-12-01

    The rapid generation of molecular complexity from simple starting materials is a key challenge in synthesis. Enantioselective radical cyclization cascades have the potential to deliver complex, densely packed, polycyclic architectures, with control of three-dimensional shape, in one step. Unfortunately, carrying out reactions with radicals in an enantiocontrolled fashion remains challenging due to their high reactivity. This is particularly the case for reactions of radicals generated using the classical reagent, SmI2. Here, we demonstrate that enantioselective SmI2-mediated radical cyclizations and cascades that exploit a simple, recyclable chiral ligand can convert symmetrical ketoesters to complex carbocyclic products bearing multiple stereocentres with high enantio- and diastereocontrol. A computational study has been used to probe the origin of the enantioselectivity. Our studies suggest that many processes that rely on SmI2 can be rendered enantioselective by the design of suitable ligands.

  1. Exploring the Photovoltaic Properties of Metal Bipyridine Complexes (Metal = Fe, Zn, Cr, and Ru) by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Irfan, Ahmad; Abbas, Ghulam

    2018-03-01

    The synthesis and characterisation of mononuclear Fe complexes were carried out by using bipyridine (Compound 1) at ambient conditions. Additionally, three more derivatives were designed by substituting the central Fe metal with Zn, Cr, and Ru (Compound 2, Compound 3, and Compound 4), respectively. The ground state geometry calculations were carried out by using density functional theory (DFT) at B3LYP/6-31G** (LANL2DZ) level of theory. We shed light on the frontier molecular orbitals, electronic properties, photovoltaic parameters, and structure-property relationship. The open-circuit voltage is a promising parameter that considerably affects the photovoltaic performance; thus, we have estimated its value by considering the complexes as donors whereas TiO2 and/or Si were used as acceptors. The solar cell performance behaviour was also studied by shedding light on the band alignment and energy level offset.

  2. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    NASA Astrophysics Data System (ADS)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.

  3. Polynuclear Aromatic Hydrocarbons with Curved Surfaces: Buckyballs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sygula, Andrzej

    The discovery of a new allotropic form of elemental carbon – the fullerenes – and subsequently other novel forms of elemental carbon with pyramidalized surfaces, most notably single-walled and multi-walled carbon nanotubes, introduced a novel structural motif to the polycyclic aromatic hydrocarbons (PAHs) with nonplanar surfaces. Our research program supported by BES DOE grant DE-FG02-04ER15514 has dealt with the synthesis, structural studies, and chemistry of the novel curved-surface PAHs with carbon frameworks structurally related to fullerenes. They are referred to as “buckybowls”. We prepared several new buckybowls and, even more importantly, developed the efficient, gram-scale synthetic methodologies for the preparationmore » of small buckybowls, most notably corannulene (C20H10) and its derivatives. In addition, the employment of the corannulene-based synthons previously developed in our laboratory led to a number of highly nonplanar molecular architectures with two or more corannulene subunits with a potential for the applications as novel materials in separation sciences, nanoelectronics, photovoltaics and catalysis. In collaboration with Professor Angelici (Iowa State) we prepared and characterized several transition metal complexes of corannulene, providing the first structural characterization of η6 metal complexes of buckybowls by a single crystal X-ray diffraction. In addition to the definitive structural characterization of the complexes we demonstrated that the (η6-C6Me6)Ru2+ unit in some relatively stable complexes activate the corannulene ligand to react with proper nucleophiles suggesting that such complexex may be used in catalysis. (Section C). We have explored the efficiency of the dispersion-based interactions of curved-surface conjugated carbon networks by high-level computational models. We showed that the curvature of such networks does not reduce the van der Waals attractions as compared to the planar systems of similar size. We than concentrated on the design, synthesis and testing of the previously unknown molecular receptors with corannulene pincers which are capable of forming the strong ball-and-socket inclusion complexes with fullerenes in solution and in the solid state. Buckycatcher I (a molecular receptor with two corannulene pincers preorganized on a tetrabensocyclooctatetraene tether) inclusion complexes with fullerenes provided the first experimental evidence for the importance of concave-convex π – π interactions in the supramolecular chemistry of fullerene carbon cages with buckybowls. C60@Buckycatcher I has become the prototypical supramolecular system formed by the relatively weak (on the atom-to-atom bases) and has been extensively used by the computational community to test the quality of the theoretical models. In addition, Buckycatcher I shows an exceptional ability to adopt other guest molecules and several its inclusion complexes and/or solvates have been structurally characterized. These unusual structures show the potential of the buckycatchers to be tested as novel organic materials. “Intelligent design” of molecular receptors with corannulene receptors using computational approach allowing for a priori prediction of their binding potentials led to the preparation of other buckycatchers. Both bi- and tridentate corannulene pincers were tested and two of the bidentate receptors (Buckycatchers II and III) exhibited the outstanding affinity toward fullerenes, significantly exciding Buckycatcher I performance. Careful tailoring of the tethers resulted in the optimization of binding energies of the receptors with guest carbon cages and in the reduction of the entropy/solvation penalties. Practical preparation of dicorannulenopentacene opens a new avenue for the synthesis of a pool of bis-corannulene receptors possessing polar groups on their dibenzobarrelene tether. The polar “anchors” can be used to attach these efficient fullerene receptors to solid supports in order to modify their surfaces with the potential applications in separation sciences, catalysis and photovoltaic materials. additionally, the presence of such groups will improve the solubility of the receptors in polar solvents, expanding the scope of their supramolecular chemistry in solutions. Rigorous studies of thermodynamics of host-guest association of molecular clips and tweezers in organic solvents with C60/C70 inclusion complexes with Buckycatcher I as a model system have provided a full set of thermodynamical data including ΔG, ΔH, and –TΔS, for the formation of the inclusion complexes over a range of temperatures and in several solvents. Both 1H NMR and Isothermal Calorimetry (ITC) titrations provide virtually identical association constants, confirming the reliability of the results. WE have shown that thermodynamics of the host-guest complex formation is more complicated than anticipated and proposed by the existing computational models. These data are of premium importance for the testing of the computational solvation models and for a deeper understanding of the supramolecular interactions in organic solvents.« less

  4. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly

    PubMed Central

    Cook, Jeremy D.; Kondapalli, Kalyan C.; Rawat, Swati; Childs, William C.; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L.

    2010-01-01

    Frataxin, a conserved nuclear encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich’s ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two: Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone n the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to better understand the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry (ITC). Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into a Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly. PMID:20815377

  5. Molecular Details of the Yeast Frataxin-Isu1 Interaction during Mitochondrial Fe-S Cluster Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.; Kondapalli, K; Rawat, S

    2010-01-01

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural modulemore » to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.« less

  6. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly.

    PubMed

    Cook, Jeremy D; Kondapalli, Kalyan C; Rawat, Swati; Childs, William C; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L

    2010-10-12

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.

  7. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  8. Magnetic Behavior of a Dy8 Molecular Nanomagnet

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Stamatatos, Theocharis

    2015-03-01

    As part of a study of quantum tunneling in a newly synthesized family of dysprosium-based molecular magnets that exhibit a chiral spin structure, we report initial investigations of the magnetic response of a Dy8 cluster with the formula (Et4N)4[Dy8O(nd)8(NO3)10(H2O)2] .2MeCN. The molecular complex contains triangular arrangements of exchange coupled Dy(III) ions. The compound forms an approximate snub-square Archimedean lattice unit. The measured magnetization of this network of four triangles suggests the presence of multiple spin chiral vortexes. Single crystal susceptibility and magnetization measurements indicate the presence of a hard-axis direction and an easy plane. These principal orientations have been investigated in magnetic fields up to 5 Tesla for temperatures between 1.8 and 100 K using a SQUID-based Quantum Design MPMS magnetometer. Complex easy plane magnetic hysteresis loops emerge at lower temperatures measured using Hall probe magnetometry at sub 1 K temperatures. The analysis of these measurements will be discussed and compared with results of theoretical calculations. Work supported by ARO W911NF-13-1-1025 (CCNY), NSF-DMR-1309202 (NYU); the synthesis of the Dy8 cluster was supported by NSERC (Discovery grant to Th.C.S.).

  9. Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Kiyofumi; Kuwano, Jun

    2017-06-01

    This paper describes a unique and innovative synthesis technique for carbon nanotubes (CNTs) by a one-step liquid-phase process under ambient pressure. Vertically aligned multi-walled CNT arrays with a maximum height of 100 µm are prepared on stainless steel substrates, which are submerged and electrically heated in straight-chain primary alcohols with n C = 1-4 (n C: number of C atoms in the molecule) containing an appropriate amount of cobalt-based organometallic complex as a catalyst precursor. Structural isomers of butanol were also used for the synthesis to examine the effects of structural factors on the morphology of the deposited products. Notably, 2-methyl-2-propanol, which is a tertiary alcohol, produced only a small amount of low-crystallinity carbonaceous deposits, whereas vertically aligned CNTs were grown from the other isomers of butanol. These results suggest that the presence or absence of β-hydrogen in the molecular structure is a key factor for understanding the dissociation behavior of the carbon source molecules on the catalyst.

  10. Structural anatomy of telomere OB proteins.

    PubMed

    Horvath, Martin P

    2011-10-01

    Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.

  11. Structural anatomy of telomere OB proteins

    PubMed Central

    Horvath, Martin P.

    2015-01-01

    Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA. PMID:21950380

  12. Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall.

    PubMed

    Brett, C T

    2000-01-01

    Cellulose occurs in all higher plants and some algae, fungi, bacteria, and animals. It forms microfibrils containing the crystalline allomorphs, cellulose I alpha and I beta. Cellulose molecules are 500-15,000 glucose units long. What controls molecular size is unknown. Microfibrils are elongated by particle rosettes in the plasma membrane (cellulose synthase complexes). The precursor, UDP-glucose, may be generated from sucrose at the site of synthesis. The biosynthetic mechanism may involve lipid-linked intermediates. Cellulose synthase has been purified from bacteria, but not from plants. In plants, disrupted cellulose synthase may form callose. Cellulose synthase genes have been isolated from bacteria and plants. Cellulose-deficient mutants have been characterised. The deduced amino acid sequence suggests possible catalytic mechanisms. It is not known whether synthesis occurs at the reducing or nonreducing end. Endoglucanase may play a role in synthesis. Nascent cellulose molecules associate by Van der Waals and hydrogen bonds to form microfibrils. Cortical microtubules control microfibril orientation, thus determining the direction of cell growth. Self-assembly mechanisms may operate. Microfibril integration into the wall occurs by interactions with matrix polymers during microfibril formation.

  13. Initiation of viral RNA-dependent RNA polymerization.

    PubMed

    van Dijk, Alberdina A; Makeyev, Eugene V; Bamford, Dennis H

    2004-05-01

    This review summarizes the combined insights from recent structural and functional studies of viral RNA-dependent RNA polymerases (RdRPs) with the primary focus on the mechanisms of initiation of RNA synthesis. Replication of RNA viruses has traditionally been approached using a combination of biochemical and genetic methods. Recently, high-resolution structures of six viral RdRPs have been determined. For three RdRPs, enzyme complexes with metal ions, single-stranded RNA and/or nucleoside triphosphates have also been solved. These advances have expanded our understanding of the molecular mechanisms of viral RNA synthesis and facilitated further RdRP studies by informed site-directed mutagenesis. What transpires is that the basic polymerase right hand shape provides the correct geometrical arrangement of substrate molecules and metal ions at the active site for the nucleotidyl transfer catalysis, while distinct structural elements have evolved in the different systems to ensure efficient initiation of RNA synthesis. These elements feed the template, NTPs and ions into the catalytic cavity, correctly position the template 3' terminus, transfer the products out of the catalytic site and orchestrate the transition from initiation to elongation.

  14. One-pot synthesis via 1, 3-dipolar cycloaddition reaction to piperazinyl-quinolinyl dispiro heterocyclic derivatives and spectrofluorometric and molecular docking studies on their binding with human serum albumin

    NASA Astrophysics Data System (ADS)

    Murugesan, Arul; Gengan, Robert Moonsamy; Rajamanikandan, Ramar; Ilanchelian, Malaichamy

    2017-12-01

    A series of novel dispiro piperazinyl-quinolinyl-thioxothiazolidin-2, 4-dione derivatives were synthesised and characterised by FT-IR 1H, 13C, 2D NMR and HRMS spectroscopic techniques. A representative compound 1'-(2-(4-methylpiperazin-1-yl)quinolin-3-yl)-2″-thioxo-5‧,6‧,7‧,7a'-tetrahydro-1‧H,2H-dispiro[acenaphthylene-1,3‧-pyrrolizine-2‧,5″-thiazolidine]-2,4″-dione was studied for its binding ability with human serum albumin (HSA) using the fluorescence quench titration method. Addition of the compound to HSA produced slight fluorescence quenching and red shift. The free energy change for the complexation process was evaluated as -29.98 kJ mol-1 thereby indicating a spontaneous and highly favourable reaction. Molecular docking analyses revealed the binding as -20.79 kJ mol-1 which was analogous with the experimental value obtained from emission data. It was concluded that TYR-263 is the moiety responsible for the binding in the complex.

  15. Design, Synthesis of Novel Platinum(II) Glycoconjugates, and Evaluation of Their Antitumor Effects.

    PubMed

    Han, Jianbin; Gao, Xiangqian; Liu, Ran; Yang, Jinna; Zhang, Menghua; Mi, Yi; Shi, Ying; Gao, Qingzhi

    2016-06-01

    A new series of sugar-conjugated (trans-R, R-cyclohexane-1, 2-diamine)-2-halo-malonato-platinum(II) complexes were designed and synthesized to target tumor-specific glucose transporters (GLUTs). The water solubility of the sugar-conjugated platinum (II) complexes was greatly improved by average of 570-fold, 33-fold, and 94-fold, respectively, compared to cisplatin (1.0 mg/mL), carboplatin (17.1 mg/mL), and the newest generation of clinical drug oxaliplatin (6.0 mg/mL). Despite the high water solubility, the platinum(II) glycoconjugates exhibited a notable increase in cytotoxicity by a margin of 1.5- to 6.0-fold in six different human cancer cell lines with respect to oxaliplatin. The potential GLUT1 transportability of the complexes was investigated through a molecular docking study and was confirmed with GLUT1 inhibitor-mediated cytotoxicity dependency evaluation. The results showed that the sugar-conjugated platinum(II) complexes can be recognized by the glucose recognition binding site of GLUT1 and their cell killing effect depends highly on the GLUT1 inhibitor, quercetin. The research presenting a prospective concept for targeted therapy anticancer drug design, and with the analysis of the synthesis, water solubility, antitumor activity, and the transportability of the platinum(II) glycoconjugates, this study provides fundamental data supporting the inherent potential of these designed conjugates as lead compounds for GLUT-mediated tumor targeting. © 2016 John Wiley & Sons A/S.

  16. Students' conceptual performance on synthesis physics problems with varying mathematical complexity

    NASA Astrophysics Data System (ADS)

    Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan

    2017-06-01

    A body of research on physics problem solving has focused on single-concept problems. In this study we use "synthesis problems" that involve multiple concepts typically taught in different chapters. We use two types of synthesis problems, sequential and simultaneous synthesis tasks. Sequential problems require a consecutive application of fundamental principles, and simultaneous problems require a concurrent application of pertinent concepts. We explore students' conceptual performance when they solve quantitative synthesis problems with varying mathematical complexity. Conceptual performance refers to the identification, follow-up, and correct application of the pertinent concepts. Mathematical complexity is determined by the type and the number of equations to be manipulated concurrently due to the number of unknowns in each equation. Data were collected from written tasks and individual interviews administered to physics major students (N =179 ) enrolled in a second year mechanics course. The results indicate that mathematical complexity does not impact students' conceptual performance on the sequential tasks. In contrast, for the simultaneous problems, mathematical complexity negatively influences the students' conceptual performance. This difference may be explained by the students' familiarity with and confidence in particular concepts coupled with cognitive load associated with manipulating complex quantitative equations. Another explanation pertains to the type of synthesis problems, either sequential or simultaneous task. The students split the situation presented in the sequential synthesis tasks into segments but treated the situation in the simultaneous synthesis tasks as a single event.

  17. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties

    DOE PAGES

    Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...

    2015-07-13

    The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less

  18. Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability

    PubMed Central

    Jicsinszky, László; Sohajda, Tamás; Puskás, István; Fenyvesi, Éva

    2014-01-01

    Summary We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD) with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS) and capillary electrophoresis (CE) using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins) show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions. PMID:25550750

  19. Reactivity of uranium(iii) with H2E (E = S, Se, Te): synthesis of a series of mononuclear and dinuclear uranium(iv) hydrochalcogenido complexes.

    PubMed

    Franke, Sebastian M; Rosenzweig, Michael W; Heinemann, Frank W; Meyer, Karsten

    2015-01-01

    We report the syntheses, electronic properties, and molecular structures of a series of mono- and dinuclear uranium(iv) hydrochalcogenido complexes supported by the sterically demanding but very flexible, single N-anchored tris(aryloxide) ligand ( Ad ArO) 3 N) 3- . The mononuclear complexes [(( Ad ArO) 3 N)U(DME)(EH)] (E = S, Se, Te) can be obtained from the reaction of the uranium(iii) starting material [(( Ad ArO) 3 N)U III (DME)] in DME via reduction of H 2 E and the elimination of 0.5 equivalents of H 2 . The dinuclear complexes [{(( Ad ArO) 3 N)U} 2 (μ-EH) 2 ] can be obtained by dissolving their mononuclear counterparts in non-coordinating solvents such as benzene. In order to facilitate the work with the highly toxic gases, we created concentrated THF solutions that can be handled using simple glovebox techniques and can be stored at -35 °C for several weeks.

  20. C^C* cyclometalated platinum(II) N-heterocyclic carbene complexes with a sterically demanding β-diketonato ligand – synthesis, characterization and photophysical properties.

    PubMed

    Tenne, M; Metz, S; Wagenblast, G; Münster, Ingo; Strassner, T

    2015-05-14

    Neutral cyclometalated platinum(ii) N-heterocyclic carbene complexes [Pt(C^C*)(O^O)] with C^C* ligands based on 1-phenyl-1,2,4-triazol-5-ylidene and 4-phenyl-1,2,4-triazol-5-ylidene, as well as acetylacetonato (O^O = acac) and 1,3-bis(2,4,6-trimethylphenyl)propan-1,3-dionato (O^O = mesacac) ancillary ligands were synthesized and characterized. All complexes are emissive at room temperature in a poly(methyl methacrylate) (PMMA) matrix with emission maxima in the blue region of the spectrum. High quantum efficiencies and short decay times were observed for all complexes with mesacac ancillary ligands. The sterically demanding mesityl groups of the mesacac ligand effectively prevent molecular stacking. The emission behavior of these emitters is in general independent of the position of the nitrogen in the backbone of the N-heterocyclic carbene (NHC) unit and a variety of substituents in 4-position of the phenyl unit, meta to the cyclometalating bond.

  1. Long synthetic nanotubes from calix[4]arenes.

    PubMed

    Organo, Voltaire G; Sgarlata, Valentina; Firouzbakht, Farhood; Rudkevich, Dmitry M

    2007-01-01

    We report the synthesis and encapsulation properties of long (up to 5 nm) molecular nanotubes 1-4, which are based on calix[4]arenes and can be filled with multiple nitrosonium (NO(+)) ions upon reaction with NO(2)/N(2)O(4) gases. These are among the largest nanoscale molecular containers prepared to date and can entrap up to five guests. The structure and properties of tubular complexes 1(NO(+))(2)-4(NO(+))(5) were studied by UV/Vis, FTIR, and (1)H NMR spectroscopy in solution, and also by molecular modeling. Entrapment of NO(+) in 1(NO(+))(2)-4(NO(+))(5) is reversible, and addition of [18]crown-6 quickly recovers starting tubes 1-4. The FTIR and titration data revealed enhanced binding of NO(+) in longer tubes, which may be due to cooperativity. The described nanotubes may serve as materials for storing and converting NO(x) and also offer a promise to further develop supramolecular chemistry of molecular containers. These findings also open wider perspectives towards applications of synthetic nanotubes as alternatives to carbon nanotubes.

  2. Control of metallic corrosion through microbiological route.

    PubMed

    Maruthamuthu, S; Ponmariappan, S; Mohanan, S; Palaniswamy, N; Palaniappan, R; Rengaswamy, N S

    2003-09-01

    Involvement of biofilm or microorganisms in corrosion processes is widely acknowledged. Although majority of the studies on microbiologically induced corrosion (MIC) have concentrated on aerobic/anaerobic bacteria. There are numerous aerobic bacteria, which could hinder the corrosion process. The microbiologically produced exopolymers provide the structural frame work for the biofilm. These polymers combine with dissolved metal ions and form organometallic complexes. Generally heterotrophic bacteria contribute to three major processes: (i) synthesis of polymers (ii) accumulation of reserve materials like poly-beta-hydroxy butrate (iii) production of high molecular weight extracellular polysaccharides. Poly-beta-hydroxy butyrate is a polymer of D(-)beta-hydroxy butrate and has a molecular weight between 60,000 and 2,50,000. Some extracellular polymers also have higher molecular weights. It seems that higher molecular weight polymer acts as biocoating. In the present review, role of biochemistry on corrosion inhibition and possibilities of corrosion inhibition by various microbes are discussed. The role of bacteria on current demand during cathodic protection is also debated. In addition, some of the significant contributions made by CECRI in this promising area are highlighted.

  3. Exploring the Molecular Growth of Two Gigantic Half‐Closed Polyoxometalate Clusters {Mo180} and {Mo130Ce6}

    PubMed Central

    Xuan, Weimin; Pow, Robert; Long, De‐Liang

    2017-01-01

    Abstract Understanding the process of the self‐assembly of gigantic polyoxometalates and their subsequent molecular growth, by the addition of capping moieties onto the oxo‐frameworks, is critical for the development of the designed assembly of complex high‐nuclearity cluster species, yet such processes remain far from being understood. Herein we describe the molecular growth from {Mo150} and {Mo120Ce6} to afford two half‐closed gigantic molybdenum blue clusters {Mo180} (1) and {Mo130Ce6} (2), respectively. Compound 1 features a hat‐shaped structure with the parent wheel‐shaped {Mo150} being capped by a {Mo30} unit on one side. Similarly, 2 exhibits an elliptical lanthanide‐doped wheel {Mo120Ce6} that is sealed by a {Mo10} unit on one side. Moreover, the observation of the parent uncapped {Mo150} and {Mo120Ce6} clusters as minor products during the synthesis of 1 and 2 strongly suggests that the molecular growth process can be initialized from {Mo150} and {Mo120Ce6} in solution, respectively. PMID:28508585

  4. Origin and Evolution of the Sodium -Pumping NADH: Ubiquinone Oxidoreductase

    PubMed Central

    Reyes-Prieto, Adrian; Barquera, Blanca; Juárez, Oscar

    2014-01-01

    The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase. PMID:24809444

  5. Synthesis and characterization of highly conductive charge-transfer complexes using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Sharshar, T.; Heiba, Z. K.

    Molecular charge-transfer complexes of the tetramethylethylenediamine (TMEDA) with picric acid (Pi-OH), benzene-1,4-diol (QL), tin(IV) tetrachloride (SnCl4), iodine, bromine, and zinc chloride (ZnCl2) have been synthesized and investigated by elemental and thermal analysis, electronic, infrared, Raman and proton-NMR, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and positron annihilation lifetime spectroscopy, and scanning electron microscopy. In this work, three types of acceptors π-acceptors (Pi-OH and QL), σ-acceptors (iodine and bromine), and vacant orbital acceptors (SnCl4 and ZnCl2) were covered. The results of elemental analysis indicated that the CT complexes were formed with ratios 1:1 and 1:2 for QL, SnCl4, and ZnCl2 acceptors and iodine, Pi-OH, and Br2 acceptors, respectively. The type of chelating between the TMEDA donor and the mentioned acceptors depends upon the behavior of both items. The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, and the power of acceptors. The correlation between these parameters and the molecular weight and biological activities of studied complexes was also observed. Regarding the electrical properties, the AC conductivity and the dielectric coefficients were measured as a function of frequency at room temperature. The TMEDA charge-transfer complexes were screened against antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and antifungal (Aspergillus flavus and Candida albicans) activities.

  6. Synthesis, characterization, molecular modeling and biological activity of metal complexes derived from (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Emam, Sanaa M.; Emara, Esam M.

    2017-10-01

    A new series of some biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized from the novel thiosemicarbazone ligand; (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide (HL). Elemental, spectral, thermal analyses, magnetic susceptibility and molar conductivity measurements were used to elucidate the structure of separated compounds. The data prove that the ligand reacts with all metal ions in a neutral thione form. The electrolytic tetra-coordinate Cu(II); Zn(II) complexes (5, 6; 10) bind through the thione sulfur, furfural oxygen and azomethine nitrogen atoms of the ligand (NSO type) to construct fused five membered rings. However, the rest non-electrolyte octahedral complexes chelate via the furfural oxygen and azomethine nitrogen atoms of the ligand (NO type). Molecular modeling was conducted for the ligand and two representative complexes (1, 5) in order to substantiate their chemical structures. Thermal analyses are compatible with molecular modeling studies to support the proposed thermal decomposition pathways of metal complexes which start with the rupture of the long and weak N-NH bond. The thermal stability of metal complexes varies according to the number of solvents of crystallization, ionic radii and steric effect of anions. The ESR spectra of Cu(II) complexes are compatible with a primarily (dx2-y2)1 ground state with axial symmetry. The ligand and its Co(II); Cu(II); Cd(II) complexes (1; 5, 8; 11) along with their mixtures with metaldehyde were screened in vitro for their molluscicidal activity against Eobania vermiculata. Combination with metaldehyde enhances the toxicity effect of the tested compounds through reducing the period required for mortality and increasing the percentage of mortality after 24 h of treatments. The tested compounds gathered with metaldehyde are strongly affecting on the activity of ACP and ALP enzymes and TP content which are very important factors in the mucous secretion of Eobania vermiculata. These effects lead to excess mucous secretion, causing dryness and death for the snails.

  7. Synthesis, spectroscopic investigations (X-ray, NMR and TD-DFT), antimicrobial activity and molecular docking of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone.

    PubMed

    Barakat, Assem; Ghabbour, Hazem A; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Ali, M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Fun, Hoong-Kun

    2015-07-21

    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.

  8. Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation

    NASA Astrophysics Data System (ADS)

    Lichtor, Phillip A.; Miller, Scott J.

    2012-12-01

    Selectivity in the catalytic functionalization of complex molecules is a major challenge in chemical synthesis. The problem is magnified when there are several possible stereochemical outcomes and when similar functional groups occur repeatedly within the same molecule. Selective polyene oxidation provides an archetypical example of this challenge. Historically, enzymatic catalysis has provided the only precedents. Although non-enzymatic catalysts that meet some of these challenges became known, a comprehensive solution has remained elusive. Here, we describe low molecular weight peptide-based catalysts, discovered through a combinatorial synthesis and screening protocol, that exhibit site- and enantioselective oxidation of certain positions of various isoprenols. This diversity-based approach, which exhibits features reminiscent of the directed evolution of enzymes, delivers catalysts that compare favourably to the state-of-the-art for the asymmetric oxidation of these compounds. Moreover, the approach culminated in catalysts that exhibit alternative-site selectivity in comparison to oxidation catalysts previously described.

  9. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis

    PubMed Central

    Crane, Erika A.

    2016-01-01

    Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  10. Synthesis of an A'B' Precursor to Angelmicin B: Product Diversification in the Suárez Lactol Fragmentation.

    PubMed

    Li, Jialiang; Todaro, Louis; Mootoo, David R

    2011-11-01

    We describe a synthetic strategy for the angelimicin family of anthraquinoid natural products that involves converting a central highly oxygenated decalin intermediate to the AB and A'B' subunits. Herein, we report the synthesis of the bicyclic A'B' subunit that complements our earlier route to the tricyclic AB framework. The differentiating tact in the two syntheses focused on controlling the Suárez radical fragmentation of lactol precursors by modulating the substrate's structural rigidity. A more flexible lactol gave the tricyclic AB framework, whereas a more rigid substrate led to the bicyclic A'B' precursor, presumably through divergent pathways from the radical produced in the initial fragmentation step. These results establish a versatile advanced synthetic precursor for the angelimicins, and on a more general note, illustrate strategies for applying the Suárez fragmentation to diverse and complex molecular frameworks.

  11. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability.

    PubMed

    Mayer, Christine; Zhao, Jian; Yuan, Xuejun; Grummt, Ingrid

    2004-02-15

    In cycling cells, transcription of ribosomal RNA genes by RNA polymerase I (Pol I) is tightly coordinated with cell growth. Here, we show that the mammalian target of rapamycin (mTOR) regulates Pol I transcription by modulating the activity of TIF-IA, a regulatory factor that senses nutrient and growth-factor availability. Inhibition of mTOR signaling by rapamycin inactivates TIF-IA and impairs transcription-initiation complex formation. Moreover, rapamycin treatment leads to translocation of TIF-IA into the cytoplasm. Rapamycin-mediated inactivation of TIF-IA is caused by hypophosphorylation of Se 44 (S44) and hyperphosphorylation of Se 199 (S199). Phosphorylation at these sites affects TIF-IA activity in opposite ways, for example, phosphorylation of S44 activates and S199 inactivates TIF-IA. The results identify a new target formTOR-signaling pathways and elucidate the molecular mechanism underlying mTOR-dependent regulation of RNA synthesis.

  12. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N -Heterocyclic Carbene Synthons

    DOE PAGES

    Lu, Haipeng; Brutchey, Richard L.

    2017-01-23

    Here we present a new toolset of precursors for semiconductor nanocrystal synthesis, N-heterocyclic carbene (NHC)-metal halide complexes, which enables a tunable molecular platform for the preparation of coinage metal chalcogenide quantum dots (QDs). Phase-pure and highly monodisperse coinage metal chalcogenide (Ag 2E, Cu 2-xE; E = S, Se) QDs are readily synthesized from the direct reaction of an NHC-MBr synthon (where M = Ag, Cu) with alkylsilyl chalcogenide reagents at room temperature. We demonstrate that the size of the resulting QDs is well tailored by the electron-donating ability of the L-type NHC ligands, which are further confirmed to be themore » only organic capping ligands on the QD surface, imparting excellent colloidal stability. Local superstructures of the NHC-capped Ag 2S QDs are observed by TEM, further demonstrating their potential for synthesizing monodisperse ensembles and mediating self-assembly.« less

  13. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N -Heterocyclic Carbene Synthons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Haipeng; Brutchey, Richard L.

    Here we present a new toolset of precursors for semiconductor nanocrystal synthesis, N-heterocyclic carbene (NHC)-metal halide complexes, which enables a tunable molecular platform for the preparation of coinage metal chalcogenide quantum dots (QDs). Phase-pure and highly monodisperse coinage metal chalcogenide (Ag 2E, Cu 2-xE; E = S, Se) QDs are readily synthesized from the direct reaction of an NHC-MBr synthon (where M = Ag, Cu) with alkylsilyl chalcogenide reagents at room temperature. We demonstrate that the size of the resulting QDs is well tailored by the electron-donating ability of the L-type NHC ligands, which are further confirmed to be themore » only organic capping ligands on the QD surface, imparting excellent colloidal stability. Local superstructures of the NHC-capped Ag 2S QDs are observed by TEM, further demonstrating their potential for synthesizing monodisperse ensembles and mediating self-assembly.« less

  14. Terpenoid-Alkaloids: Their Biosynthetic Twist of Fate and Total Synthesis.

    PubMed

    Cherney, Emily C; Baran, Phil S

    2011-04-01

    Terpenes and alkaloids are ever-growing classes of natural products that provide new molecular structures which inspire chemists and possess a broad range of biological activity. Terpenoid-alkaloids originate from the same prenyl units that construct terpene skeletons. However, during biosynthesis, a nitrogen atom (or atoms) is introduced in the form of β-aminoethanol, ethylamine, or methylamine. Nitrogen incorporation can occur either before, during, or after the cyclase phase. The outcome of this unique biosynthesis is the formation of natural products containing unprecedented structures. These complex structural motifs expose current limitations in organic chemistry, thus providing opportunities for invention. This review focuses on total syntheses of terpenoid-alkaloids and unique issues presented by this class of natural products. More specifically, it examines how these syntheses relate to the way terpenoid-alkaloids are made in Nature. Developments in chemistry that have facilitated these syntheses are emphasized, as well as chemical technology needed to conquer those that evade synthesis.

  15. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    PubMed

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Higher coordinate gold(I) complexes with the weak Lewis base tri(4-fluorophenyl) phosphine. Synthesis, structural, luminescence, and DFT studies

    NASA Astrophysics Data System (ADS)

    Agbeworvi, George; Assefa, Zerihun; Sykora, Richard E.; Taylor, Jared; Crawford, Carlos

    2016-03-01

    The structures and spectroscopic properties of two high coordinate gold(I) phosphine complexes with the TFFPP=tri(4-fluorophenyl)phosphine ligand are reported. Synthesis in a 1:3 metal to ligand ratio provided the compound [AuCl(TFFPP)3] (2) that crystallize in the P 1 bar space group, where the asymmetric unit consists of three independent molecules. In all three sites, two sets of bond angles display distinctly different ranges. The three P-Au-P angles have average values of 117.92°, 117.57°, and 114.78° for sites A, B, and C, with the corresponding P-Au-Cl angles of 98.31°, 99.05°, and 103.38°, respectively. The chloride ion coordinates as the fourth ligand, at the corresponding Au-Cl distance of 2.7337, 2.6825, and 2.6951 Å for the three sites. This distance is longer by 0.40-0.45 Å than the Au-Cl distance found in the mono TFFPP complex 1 (2.285 Å) indicating a weakening of the Au-Cl interaction as the coordination number increases. In compound 3, [Au(TFFPP)3]Cl·½CH2Cl2·H2O, the structure consists of three phosphine ligands bound to the gold(I) atom, but the Cl- exists as uncoordinated counter anion. The structural differences observed in the two complexes are attributable to crystal-packing effects caused by the introduction of H-bonding as well as enhanced intra and inter-molecular π-interaction in 3. The photoluminescence of the complexes compared with that of the ligand show ligand centered emission perturbed by the metal coordination. Theoretical DFT studies conducted on these complexes supports assignments of the electronic transitions observed in these systems.

  17. Anti-inflammatory drugs interacting with Zn (II) metal ion based on thiocyanate and azide ligands: synthesis, spectroscopic studies, DFT calculations and antibacterial assays.

    PubMed

    Chiniforoshan, Hossein; Tabrizi, Leila; Hadizade, Morteza; Sabzalian, Mohammad R; Chermahini, Alireza Najafi; Rezapour, Mehdi

    2014-07-15

    Zinc (II) complexes with non-steroidal anti-inflammatory drugs (NSAIDs) naproxen (nap) and ibuprofen (ibu) were synthesized in the presence of nitrogen donor ligands (thiocyanate or azide). The complexes were characterized by elemental analysis, FT-IR, (1)H NMR and UV-Vis spectroscopes. The binding modes of the ligands in complexes were established by means of molecular modeling of the complexes, and calculation of their IR, NMR and absorption spectra at DFT (TDDFT)/B3LYP level were studied. The experimental and calculated data verified monodentate binding through the carboxylic oxygen atoms of anti-inflammatory drugs in the zinc complexes. The calculated (1)H, FT-IR and UV-Vis data are in better agreement with the experimental results, and confirm the predicted tetrahedral structures for the Zn (II) complexes. In addition to DFT calculations of complexes, natural bond orbital (NBO) was performed at B3LYP/6-31+G(d,p) level of theory. Biological studies showed the antibacterial activity of zinc complexes against Gram-positive and Gram-negative bacterial strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.

    PubMed

    Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu

    2016-01-15

    A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]·NO3 (1), [CoL(2)(bipy)(N3)]·CH3OH (2), [CoL(3)(HL(3))(N3)]·NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cyclopalladation of dimesityl selenide: synthesis, reactivity, structural characterization, isolation of an intermediate complex with C-H···Pd intra-molecular interaction and computational studies.

    PubMed

    Kolay, Siddhartha; Wadawale, Amey; Das, Dasarathi; Kisan, Hemanta K; Sunoj, Raghavan B; Jain, Vimal K

    2013-08-14

    The reaction of dimesityl selenide (Mes2Se) with either PdCl2(PhCN)2 in toluene or PdCl2 in toluene-acetonitrile yields a chloro-bridged binuclear palladium complex, [Pd2Cl2(μ-Cl)2(Mes2Se)2] (1), whereas with Na2PdCl4 in refluxing ethanol, a cyclometallated palladium complex, [Pd2(μ-Cl)2{MesSeC6H2(Me2)CH2}2] (2) is afforded. 2 can also be obtained when 1 is refluxed in ethanol. On treatment with Pb(Epy)2 in dichloromethane, 2 afforded the Epy-bridged binuclear complexes, [Pd2(μ-Epy)2{MesSeC6H2(Me2)CH2}2] (3; E = S (3a) or Se (3b)). Treatment of 2 with PPh3 yields a bridge-cleaved monomeric complex, [PdCl{MesSeC6H2(Me2)CH2}(PPh3)]. The molecular structures of 1-3 were established by X-ray diffraction analyses. All the complexes are dimeric, with the palladium atoms acquiring a distorted square planar configuration. There are intra-molecular C-H···Pd interactions (d(M-H): 2.75 Å and

  20. Influence of the Ligand Field on the Slow Relaxation of Magnetization of Unsymmetrical Monomeric Lanthanide Complexes: Synthesis and Theoretical Studies.

    PubMed

    Upadhyay, Apoorva; Vignesh, Kuduva R; Das, Chinmoy; Singh, Saurabh Kumar; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2017-11-20

    A series of monomeric lanthanide Schiff base complexes with the molecular formulas [Ce(HL) 3 (NO 3 ) 3 ] (1) and [Ln(HL) 2 (NO 3 ) 3 ], where Ln III = Tb (2), Ho (3), Er (4), and Lu (5), were isolated and characterized by single-crystal X-ray diffraction (XRD). Single-crystal XRD reveals that, except for 1, all complexes possess two crystallographically distinct molecules within the unit cell. Both of these crystallographically distinct molecules possess the same molecular formula, but the orientation of the coordinating ligand distinctly differs from those in complexes 2-5. Alternating-current magnetic susceptibility measurement reveals that complexes 1-3 exhibit slow relaxation of magnetization in the presence of an optimum external magnetic field. In contrast to 1-3, complex 4 shows a blockade of magnetization in the absence of an external magnetic field, a signature characteristic of a single-ion magnet (SIM). The distinct magnetic behavior observed in 4 compared to other complexes is correlated to the suitable ligand field around a prolate Er III ion. Although the ligand field stabilizes an easy axis of anisotropy, quantum tunnelling of magnetization (QTM) is still predominant in 4 because of the low symmetry of the complex. The combination of low symmetry and an unsuitable ligand-field environment in complexes 1-3 triggers faster magnetization relaxation; hence, these complexes exhibit field-induced SIM behavior. In order to understand the electronic structures of complexes 1-4 and the distinct magnetic behavior observed, ab initio calculations were performed. Using the crystal structure of the complexes, magnetic susceptibility data were computed for all of the complexes. The computed susceptibility and magnetization are in good agreement with the experimental magnetic data [χ M T(T) and M(H)] and this offers confidence on the reliability of the extracted parameters. A tentative mechanism of magnetization relaxation observed in these complexes is also discussed in detail.

  1. HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains.

    PubMed

    Shibata, Yuri; Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Gohda, Jin; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro; Inoue, Jun-Ichiro

    2017-01-01

    The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.

  2. HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains

    PubMed Central

    Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro

    2017-01-01

    The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation. PMID:28103322

  3. Molecular beacon sequence design algorithm.

    PubMed

    Monroe, W Todd; Haselton, Frederick R

    2003-01-01

    A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.

  4. Three millimeter molecular line observations in Sagittarius B2. 1: Full synthesis mapping study of HNO, CCS, and HC(13)CCN

    NASA Technical Reports Server (NTRS)

    Kuan, Yi-Jehng; Snyder, Lewis E.

    1994-01-01

    We present the first full synthesis maps of the small molecules HNO, CCS, and HC(13)CCN in Sgr B2. We have observed the 3.8 mm continuum, the HNO J(sub K(sub -1)K(sub 1)) = 1(sub O1)-0(sub OO), the CCS J(sub N) = 7(sub 6)-6(sub 5), and the HC(13)CCN J = 9-8 transitions in the core of the Sgr B2 molecular cloud, using the Berkeley Illinois Maryland Association (BIMA) millimeter array and the NRAO 12 m telescope. We have found that HNO exists in five major gas clumps in the Sgr B2 region, which we have labeled HNO(N), HNO(NW), HNO(E), HNO(M), and HNO(S). Of particular interest is HNO(M), a major molecular gas concentration approximately 15 sec west of Sgr B2(M) in a region of young star formation. HNO is found to be closely associated with the ionized gas and might be depleted around bright H II complexes. In general, the peak intensity of the HNO emission is found to be offset from the peak of the continuum emission. We found evidence for some chemical differentiation among the three species, HNO, CCS, and HC(13)CCN, but the abundance ratios are in fair agreement with theoretical models. Two unidentified lines, U81420 and U81518, were observed, and a previously unknown compact dust source was detected. Our HNO data indicate the presence of a rotating approximately (2.2-4.4) x 10(exp 3)solar mass gas envelope surrounding Sgr B2(N), a possible bipolar gas outflow in HNO(M), and possibly a large (approximately 4.2 x 10(exp 4)solar mass) extended rotating disk associated with HNO(S). In addition, the CCS and HC(13)CCN data approximately outline the extended component of Sgr B2 and clearly show that the southern continuum source Sgr B2(S) is actually a major molecular source as well. Consequently, the kinematics of the Sgr B2 molecular cloud is quite complex, but in moving from the northwest to south, the LSR velocity generally changes from 79 to 46 km/s.

  5. Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices

    PubMed Central

    Dworkin, Jason P.; Deamer, David W.; Sandford, Scott A.; Allamandola, Louis J.

    2001-01-01

    Interstellar gas and dust constitute the primary material from which the solar system formed. Near the end of the hot early phase of star and planet formation, volatile, less refractory materials were transported into the inner solar system as comets and interplanetary dust particles. Once the inner planets had sufficiently cooled, late accretionary infall seeded them with complex organic compounds [Oró, J. (1961) Nature (London) 190, 389–390; Delsemme, A. H. (1984) Origins Life 14, 51–60; Anders, E. (1989) Nature (London) 342, 255–257; Chyba, C. F. & Sagan, C. (1992) Nature (London) 355, 125–131]. Delivery of such extraterrestrial compounds may have contributed to the organic inventory necessary for the origin of life. Interstellar ices, the building blocks of comets, tie up a large fraction of the biogenic elements available in molecular clouds. In our efforts to understand their synthesis, chemical composition, and physical properties, we report here that a complex mixture of molecules is produced by UV photolysis of realistic, interstellar ice analogs, and that some of the components have properties relevant to the origin of life, including the ability to self-assemble into vesicular structures. PMID:11158552

  6. Hydrogen bonded binary molecular adducts derived from exobidentate N-donor ligand with dicarboxylic acids: Acid⋯imidazole hydrogen-bonding interactions in neutral and ionic heterosynthons

    NASA Astrophysics Data System (ADS)

    Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi

    2011-01-01

    Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.

  7. Processing of oil palm empty fruit bunch as filler material of polymer recycles

    NASA Astrophysics Data System (ADS)

    Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.

  8. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    NASA Astrophysics Data System (ADS)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  9. Synthesis of a Neutral Mixed-Valence Diferrocenyl Carborane for Molecular Quantum-Dot Cellular Automata Applications.

    PubMed

    Christie, John A; Forrest, Ryan P; Corcelli, Steven A; Wasio, Natalie A; Quardokus, Rebecca C; Brown, Ryan; Kandel, S Alex; Lu, Yuhui; Lent, Craig S; Henderson, Kenneth W

    2015-12-14

    The preparation of 7-Fc(+) -8-Fc-7,8-nido-[C2 B9 H10 ](-) (Fc(+) FcC2 B9 (-) ) demonstrates the successful incorporation of a carborane cage as an internal counteranion bridging between ferrocene and ferrocenium units. This neutral mixed-valence Fe(II) /Fe(III) complex overcomes the proximal electronic bias imposed by external counterions, a practical limitation in the use of molecular switches. A combination of UV/Vis-NIR spectroscopic and TD-DFT computational studies indicate that electron transfer within Fc(+) FcC2 B9 (-) is achieved through a bridge-mediated mechanism. This electronic framework therefore provides the possibility of an all-neutral null state, a key requirement for the implementation of quantum-dot cellular automata (QCA) molecular computing. The adhesion, ordering, and characterization of Fc(+) FcC2 B9 (-) on Au(111) has been observed by scanning tunneling microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The chloroplast ATP synthase features the characteristic redox regulation machinery.

    PubMed

    Hisabori, Toru; Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-11-20

    Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.

  11. Biferrocene-Based Diphosphine Ligands: Synthesis and Application of Walphos Analogues in Asymmetric Hydrogenations

    PubMed Central

    2013-01-01

    A total of four biferrocene-based Walphos-type ligands have been synthesized, structurally characterized, and tested in the rhodium-, ruthenium- and iridium-catalyzed hydrogenation of alkenes and ketones. Negishi coupling conditions allowed the biferrocene backbone of these diphosphine ligands to be built up diastereoselectively from the two nonidentical and nonracemic ferrocene fragments (R)-1-(N,N-dimethylamino)ethylferrocene and (SFc)-2-bromoiodoferrocene. The molecular structures of (SFc)-2-bromoiodoferrocene, the coupling product, two ligands, and the two complexes ([PdCl2(L)] and [RuCl(p-cymene)(L)]PF6) were determined by X-ray diffraction. The structural features of complexes and the catalysis results obtained with the newly synthesized biferrocene-based ligands were compared with those of the corresponding Walphos ligands. PMID:23457421

  12. Supramolecular effects as driving force of dipyrrin based functional materials engineering

    NASA Astrophysics Data System (ADS)

    Banakova, E.; Bobrov, A.; Kazak, A.; Marfin, Yu; Merkushev, D.; Molchanov, E.; Rumyantsev, E.; Shipalova, M.; Usoltsev, S.; Vodyanova, O.

    2018-01-01

    Dipyrrin based luminophores are of major interest in different areas of chemistry, material science and molecular biology. Vast variety of the structures with dipyrrin motif were synthesized and investigated up to date. Modern trend in the dipyrrin chemistry is the aimed functionalization of the ligand or complex structure allowing to gain the mechanism based on supramolecular interactions for controlling spectral and photophysical characteristics of compounds for tuning practically valuable properties for specific tasks. Presented paper summarize the results of our research group, working in the field of dipyrrin complexes with p-elements: synthesis, spectral characteristics evaluation and possibilities of practical application investigation. Discussion is focused on the opportunities of molecules preorganization for achieving the supramolecular interactions causing the tuning of fluorescence of the compounds in solutions, polymeric matrices and thin films.

  13. Molecular structure, vibrational spectra and quantum chemical MP2/DFT studies toward the rational design of hydroxyurea imprinted polymer

    NASA Astrophysics Data System (ADS)

    Prasad, Bhim Bali; Rai, Garima

    2013-03-01

    In this study, both experimental and theoretical vibrational spectra of template (hydroxyurea, HU), monomer (N-(4,6-bisacryloyl amino-[1,3,5] triazine-2-yl-)-acryl amide, TAT), and HU-TAT complexes were compared and these were respectively found to be in good agreement. Binding energies of HU, when complexed with different monomers, were computed using second order Moller Plesset theory (MP2) at 6-311++G(d,p) level both in the gas as well as solution phases. HU is an antineoplastic agent extensively being used in the treatment of polycythaemia Vera and thrombocythemia. It is also used to reduce the frequency of painful attacks in sickle cell anemia. It has antiretroviral property in disease like AIDS. All spectral characterizations were made using Density Functional Theory (DFT) at B3LYP employing 6-31+g(2d, 2p) basis set. The theoretical values for 13C and 1H NMR chemical shifts were found to be in accordance with the corresponding experimental values. Of all different monomers studied for the synthesis of molecularly imprinted polymer (MIP) systems, the monomer TAT (2 mol) was typically found to have a best binding score requisite for complexation with HU (1 mol) at the ground state.

  14. Molecular coordination of Staphylococcus aureus cell division

    PubMed Central

    Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon

    2018-01-01

    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397

  15. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    NASA Astrophysics Data System (ADS)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  16. Synthesis, structures, nuclease activity, cytotoxicity, DFT and molecular docking studies of two nitrato bridged homodinuclear (Cu-Cu, Zn-Zn) complexes containing 2,2'-bipyridine and a chalcone derivative.

    PubMed

    Gaur, Ruchi; Choubey, Diksha Kumari; Usman, Mohammad; Ward, Benzamin D; Roy, Jagat Kumar; Mishra, Lallan

    2017-08-01

    Nitrato briged dinuclear complexes of type [Cu 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 1 and [Zn 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 2 (L=deprotonated form of free ligand LH, [1-(2-hydroxyphenyl)-3-(9-anthracenyl) propenone; bpy=2,2'bipyridine] are synthesized and characterized using a battery of physicochemical techniques and X-ray crystallography. A distorted square pyramidal geometry is assigned to them with N 2 O 3 coordination core around the metal ion. The co-ligand L binds the metal ions through its O,O' atoms in anti-syn mode. The metal centers in complexes 1 and 2 are separated via bridging nitrato group at a distance of 6.073Å and 5.635Å respectively. Their structures and absorption spectra are supported by the computational studies using density functional theory (DFT) and TD-DFT. Both complexes exhibit nuclease activity and cleave supercoiled (form I) DNA. The complex 1 preferentially binds major groove of DNA and follows an oxidative pathway whereas complex 2 binds with minor groove of DNA via hydrolytic pathway. Both complexes inhibit topoisomerase I relaxation activity with IC 50 values of 7 and 35μM. Molecular docking studies support the groove binding and topoisomerase I binding of the complexes. The complex 1 showed a significant cytotoxicity against HeLa cell lines (a cervical cancer cell lines) in vitro with IC 50 value calculated as 2.9±0.021μM as compared to 28.2±0. 044μΜ for complex 2. Complex 2 induces the cell apoptosis at a later-stage as compared to complex 1. The cell apoptosis and topoisomerase inhibition by complexes enable them to be potential candidates as future anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Before the Ring: synthesis of linear organic molecules in astrophysical ices by low energy electron impact

    NASA Astrophysics Data System (ADS)

    Huels, Michael A.; Bass Andrew, D.; Mirsaleh-Kohan, Nasrin; Sanche, Leon

    The question of the origin for the building blocks of life, either synthesized here on earth, or in space [1], has been the subject of much debate, experimental investigation, or astronomical observation, much of it stimulated by the early experiments of Miller [2], and subsequent space radiation related variations thereof [3-5]. And while the precise details of the formation of even the simplest biomolecules that make up life on earth still remain shrouded inmystery, one of the notions that persist throughout the debate is that the building blocks of life, such as amino-acids, or even the cyclic components of RNA and DNA, or other cyclic hydrocarbons (e.g. PHAs), where synthesized via radiolysis [6] either in the earths proto-atmosphere, its early oceans, or in the near interstellar space surrounding the early earth. Here we provide experimental evidence for the hypothesis that interactions of low energy secondary electrons and ions, formed during the radiolysis of matter, with atoms and molecules in the medium, may have played, and may still play an important role in the chemical transformation of astrophysical or planetary surface ices [7], where they lead to the synthesis of more complex chemical species from less complex, naturally occurring components. We report the synthesis and desorption of new chemical species from simple molecular surface ices, containing CH4 / CD4 , C2 D2 , O2 , CO, CO2 , or N2 in various combination mixtures, irradiated by low energy (<60 eV) electrons. For example, for CD4 ices we observe the formation and desorption of energetic ions such as D3 + , CD5 + , and C2 Dn + (n = 2-5), as well as three carbon containing chains, that are also observed to desorb from C2 D2 films; for oxygen rich methane ices we observe the synthesis and desorption of H2 O+ , H3 O+ , as well as formaldehyde type cations, viz., Hn CO+ (n = 1-3), among others. The formation of all these linear, pre-biotic molecular species, produced here by electron initiated cation-reactions in simple molecular films, suggests that similar mechanisms likely precede the synthesis of life's most basic cyclic molecular components in planetary, or astrophysical surface ices that are continuously subjected to the types of space radiations (UV, X-or -ray, or heavy ions) that can generate such low energy secondary electrons. [Funded by NSERC and Canadian Space Agency] [1] P. Ehrenfreund, S. Rasmussen, J. Cleaves, L. Chen, Astrobiology 6 (2006) 490. [2] (a) S.L. Miller, Science 117 (1953) 528; (b) S.L. Miller, J. Am. Chem. Soc. 77 (1955) 2351. [3] (a) M.H. Morre, R.L. Hudson, Icarus 140 (1999) 451; (b) M.H. Morre, R.L. Hudson, Icarus 145 (2000) 282. [4] M.H. Moore, R.L. Hudson, P.A. Gerakines, Spectrochim. Acta A 57 (2001) 843. [5] M.P. Bernstein, S.A. Sandford, L.J. Allamandola, Sci. Am. (July) (1999) (and references cited therein). [6] J. Vergne, L. Dumas, J.-L. Decout, M.-C. Maurel, Planet. Space Sci. 48 (2000) 1139. [7] T.E. Madey, R.E. Johnson, T.M. Orlando, Surf. Sci. 500 (2002) 838.

  18. Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures.

    PubMed

    Thompson, Damien; Hermes, Jens P; Quinn, Aidan J; Mayor, Marcel

    2012-04-24

    The formation of true single-molecule complexes between organic ligands and nanoparticles is challenging and requires careful design of molecules with size, shape, and chemical properties tailored for the specific nanoparticle. Here we use computer simulations to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide insight into how multidentate thioether dendrimers can be employed for synthesis of true single-ligand-nanoparticle complexes and also nanoparticle-molecule-nanoparticle "dumbbell" nanostructures. Electronic structure calculations reveal the individually weak thioether-gold bonds (325 ± 36 meV), which act collectively through the multivalent (multisite) anchoring to stabilize the ligand-nanoparticle complex (∼7 eV total binding energy) and offset the conformational and solvation penalties involved in this "wrapping" process. Molecular dynamics simulations show that the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring and noncovalent wrapping in the assembly of ligand-nanoparticle complexes. The computed preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer desolvation barrier (1.5 ± 0.5 eV) to form the alternative double-dendrimer structure. Finally, the models show formation of an additional electron transfer channel between nitrogen and gold for ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently measured larger interparticle distances for particles synthesized and interlinked using linear ligands with a central pyridine rather than a benzene moiety. The findings stress the importance of organic-inorganic interactions, the control of which is central to the rational engineering and eventual large-scale production of functional building blocks for nano(bio)electronics.

  19. Synthesis, characterization and serum albumin binding studies of vitamin K3 derivatives.

    PubMed

    Suganthi, Murugesan; Elango, Kuppanagounder P

    2017-01-01

    Synthesis, characterization and bovine serum albumin (BSA) binding properties of three derivatives of vitamin K3 have been described. Results of UV-Vis and fluorescence spectra indicate complexation between BSA and the ligands with conformational changes in protein, which is strongly supported by synchronous and three dimensional fluorescence studies. Addition of the ligands quenches the fluorescence of BSA which is accompanied by reduction in quantum yield (Ф) from 0.1010 to 0.0775-0.0986 range. Thermodynamic investigations reveal that hydrophobic interaction is the major binding force in the spontaneous binding of these ligands with BSA. The binding constants obtained depend on the substituent present in the quinone ring, which correlates linearly with the Taft's field substituent constant (σ F ). The results show that compound with strong electron withdrawing nitro-group forms relatively stronger complex with BSA than amino and thioglycolate substituted ones. Circular dichroism studies show that the α-helical content of the protein, upon complexation with the ligands, decreases in the case of amino and nitro substituted vitamin K3 while increases in thioglycolate substituted compound. Molecular docking studies indicated that the vitamin K3 derivatives are surrounded by hydrophobic residues of the BSA molecule, which is in good agreement with the results of fluorescence spectral and thermodynamic studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis and Study of Metallonitride Complexes and Polymers

    DTIC Science & Technology

    1992-03-02

    heterobimetallic nitride-bridged complexes, examples of homobimetallic nitride-bridged complexes, and new linear chain metallonitride polymers. We...the Nitride Bridge. Synthesis and Reactivity of Early-Late Heterobimetallic Nitride-Bridged Complexes," C. M. Jones, D. M.-T. Chan, J. C. Calabrese

  1. Identification of polypeptides necessary for chemotaxis in Escherichia coli.

    PubMed Central

    Silverman, M; Simon, M

    1977-01-01

    Molecular cloning techniques were used to construct Escherichia coli-lambda hybrids that contained many of the genes necessary for flagellar rotation and chemotaxis. The properties of specific hybrids that carried the classical "cheA" and "cheB" loci were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the hybrids redefined the "cheA" and "cheB" regions. Six genes were resolved: cheA, cheW, cheX, cheB, cheY, and cheZ. They directed the synthesis of specific polypeptides with the following apparent molecular weights: cheA, 76,000 and 66,000; cheW, 12,000; cheX, 28,000; cheB, 38,000; cheY, 8,000; and cheZ, 24,000. The presence of another gene, cheM, was inferred from the protein synthesis experiments. The cheM gene directed the synthesis of polypeptides with apparent molecular weights of 63,000, 61,000, and 60,000. The synthesis of all of these polypeptides is regulated by the same mechanisms that regulate the synthesis of flagellar-related structural components. Images PMID:324984

  2. Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation

    DOE PAGES

    Yang, Liang; Wang, C. Z.; Lin, Shiwei; ...

    2018-01-01

    Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titaniummore » (0001) surface and further prevented oxidation in the deeper layers. As a result, the mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.« less

  3. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

    PubMed Central

    Baiutti, Federico; Christiani, Georg

    2014-01-01

    Summary In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2− xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control. PMID:24995148

  4. mTORC1 controls long-term memory retrieval.

    PubMed

    Pereyra, Magdalena; Katche, Cynthia; de Landeta, Ana Belén; Medina, Jorge H

    2018-06-08

    Understanding how stored information emerges is a main question in the neurobiology of memory that is now increasingly gaining attention. However, molecular events underlying this memory stage, including involvement of protein synthesis, are not well defined. Mammalian target of rapamycin complex 1 (mTORC1), a central regulator of protein synthesis, has been implicated in synaptic plasticity and is required for memory formation. Using inhibitory avoidance (IA), we evaluated the role of mTORC1 in memory retrieval. Infusion of a selective mTORC1 inhibitor, rapamycin, into the dorsal hippocampus 15 or 40 min but not 3 h before testing at 24 h reversibly disrupted memory expression even in animals that had already expressed IA memory. Emetine, a general protein synthesis inhibitor, provoked a similar impairment. mTORC1 inhibition did not interfere with short-term memory retrieval. When infused before test at 7 or 14 but not at 28 days after training, rapamycin impaired memory expression. mTORC1 blockade in retrosplenial cortex, another structure required for IA memory, also impaired memory retention. In addition, pretest intrahippocampal rapamycin infusion impaired object location memory retrieval. Our results support the idea that ongoing protein synthesis mediated by activation of mTORC1 pathway is necessary for long but not for short term memory.

  5. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion.

    PubMed

    Massone, Sara; Ciarlo, Eleonora; Vella, Serena; Nizzari, Mario; Florio, Tullio; Russo, Claudio; Cancedda, Ranieri; Pagano, Aldo

    2012-07-01

    Neuroblastoma Differentiation Marker 29 (NDM29) is a RNA polymerase (pol) III-transcribed non-coding (nc) RNA whose synthesis drives neuroblastoma (NB) cell differentiation to a nonmalignant neuron-like phenotype. Since in this process a complex pattern of molecular changes is associated to plasma membrane protein repertoire we hypothesized that the expression of NDM29 might influence also key players of neurodegenerative pathways. In this work we show that the NDM29-dependent cell maturation induces amyloid precursor protein (APP) synthesis, leading to the increase of amyloid β peptide (Aβ) secretion and the concomitant increment of Aβ x-42/Aβ x-40 ratio. We also demonstrate that the expression of NDM29 RNA, and the consequent increase of Aβ formation, can be promoted by inflammatory stimuli (and repressed by anti-inflammatory drugs). Moreover, NDM29 expression was detected in normal human brains although an abnormal increased synthesis of this ncRNA is induced in patients affected by neurodegenerative diseases. Therefore, the complex of events triggered by NDM29 expression induces a condition that favors the formation of Aβ peptides in the extracellular space, as it may occur in Alzheimer's Disease (AD). In addition, these data unexpectedly show that a pol III-dependent small RNA can act as key regulator of brain physiology and/or pathology suggesting that a better knowledge of this portion of the human transcriptome might provide hints for neurodegeneration studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.

    PubMed

    Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J

    2017-01-01

    Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.

  7. SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability.

    PubMed

    Dufay, J Noelia; Fernández-Murray, J Pedro; McMaster, Christopher R

    2017-06-07

    The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25 Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1 Δ hem25 Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components. Copyright © 2017 Dufay et al.

  8. Structural analysis of hierarchically organized zeolites

    PubMed Central

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  9. Engineering the oxygen coordination in digital superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong

    The oxygen sublattice in the complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, demonstrating a new strategy for achieving unique electronic properties in the transition metal oxides.

  10. Synthesis of Organotitanium(IV) Fluoride Phosphates and the Crystal Structure of [(C5Me4Et)TiF(µ-F){µ-O2P(OSiMe3)2}]2.

    PubMed

    Pevec, Andrej; Demšar, Alojz; Pinkas, Jiri; Necas, Marek

    2012-03-01

    The complexes [(C5Me4R)TiF(µ-F)µ-O2P(OSiMe3)2]2 [R = Me (1), Et (2)] were prepared from [(C5Me4R)TiF3]2, (R = Me, Et) and OP(OSiMe3)3. The molecular structure of 2 has been determined by single-crystal X-ray diffraction analysis. An eight-membered Ti2O4P2 metallacycle bridged by two fluorine ligands between two titanium centers is observed.

  11. 1-Methyl-5-Nitrotetrazole and 2-Methyl-5-Nitrotetrazole. Part 1. Synthesis, Characterisation and Detection, and Molecular Complex

    DTIC Science & Technology

    1980-06-01

    sulfate pentahydrate (0.5 g) in water (120 cm3) was added dropwise, over a period of 90 minutes, to a stirred solution of sodium nitrite (42.4 g) in...nltrotetrazole (2) via Diazotlsation of 6 A solution of 6 (2.00 g), 98% sulfuric acid (4.0 cm3) and cupric sulfat . pentahydrate (0.4 g) in water (60...from 5 was much cleaner. A further intriguing observation is that the conversion of 5 to 1 is catalysed by copper ions whereas that of 6 to 2 is not

  12. Solid-binding peptides: smart tools for nanobiotechnology.

    PubMed

    Care, Andrew; Bergquist, Peter L; Sunna, Anwar

    2015-05-01

    Over the past decade, solid-binding peptides (SBPs) have been used increasingly as molecular building blocks in nanobiotechnology. These peptides show selectivity and bind with high affinity to the surfaces of a diverse range of solid materials including metals, metal oxides, metal compounds, magnetic materials, semiconductors, carbon materials, polymers, and minerals. They can direct the assembly and functionalisation of materials, and have the ability to mediate the synthesis and construction of nanoparticles and complex nanostructures. As the availability of newly synthesised nanomaterials expands rapidly, so too do the potential applications for SBPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reticular synthesis of porous molecular 1D nanotubes and 3D networks.

    PubMed

    Slater, A G; Little, M A; Pulido, A; Chong, S Y; Holden, D; Chen, L; Morgan, C; Wu, X; Cheng, G; Clowes, R; Briggs, M E; Hasell, T; Jelfs, K E; Day, G M; Cooper, A I

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  14. Reticular synthesis of porous molecular 1D nanotubes and 3D networks

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  15. 1-Pentamethylbenzyl-3-(n)buthylbenzimidazolesilver(I)bromide complex: synthesis, characterization and DFT calculations.

    PubMed

    Kunduracıoğlu, Ahmet; Tamer, Ömer; Avcı, Davut; Kani, Ibrahim; Atalay, Yusuf; Cetinkaya, Bekir

    2014-01-01

    A novel NHC complex of silver(I) ion, 1-pentamethylbenzyl-3-(n)buthylbenzimidazolesilver(I)bromide, was prepared and fully characterized by single crystal X-ray structure determination. FT-IR, NMR and UV-vis spectroscopies were employed to investigate the electronic transition behaviors of the complex. Additionally, the molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) (1)H and (13)C chemical shift and electronic transition values of silver(I) complex were calculated by using density functional theory levels (B3LYP and PBE1PBE) with LANL2DZ basis set. Also, the vibrational frequencies were supported on the basis of the potential energy distribution (PED) analysis calculated for PBE1PBE level. We were also investigated total static dipole moment (μ), the mean polarizability (〈α〉), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (〈β〉) of the title complex. Natural bond orbital (NBO) analysis was performed to determine the presence of hyperconjugative interactions, and charge distributions. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Macromolecular organization of ATP synthase and complex I in whole mitochondria

    PubMed Central

    Davies, Karen M.; Strauss, Mike; Daum, Bertram; Kief, Jan H.; Osiewacz, Heinz D.; Rycovska, Adriana; Zickermann, Volker; Kühlbrandt, Werner

    2011-01-01

    We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly curved cristae edges. The distance between dimers along the rows varied, but within the dimer the distance between F1 heads was constant. The angle between monomers in the dimer was 70° or above. Complex I appeared as L-shaped densities in tomograms of reconstituted proteoliposomes. Similar densities were observed in flat membrane regions of mitochondrial membranes from all species except Saccharomyces cerevisiae and identified as complex I by quantum-dot labeling. The arrangement of respiratory chain proton pumps on flat cristae membranes and ATP synthase dimer rows along cristae edges was conserved in all species investigated. We propose that the supramolecular organization of respiratory chain complexes as proton sources and ATP synthase rows as proton sinks in the mitochondrial cristae ensures optimal conditions for efficient ATP synthesis. PMID:21836051

  17. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2014-11-01

    Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.

  18. Synthesis, Spectral Characterization, Thermal and Optical Studies of Novel Complexes: 4-(Dimethylamino)benzylidene-4-acetamideaniline and 4-(Dimethylamino)benzylidene-4-nitroaniline.

    PubMed

    Neupane, Umesh; Rai, R N

    2017-11-01

    The phase diagram representing solid-liquid equilibrium of entire range of composition and thermodynamic studies of two binary organic systems of 4-dimethylaminobenzaldehyde (DMAB) with two NLO active compounds, p-aminoacetanilide (PAA) and p-nitroaniline (PNA), have been studied by solid state synthetic route. Both systems are independently forming a new entity called intermolecular complex (IMC) and two eutectics on either side of intermolecular complexes. The various thermodynamic parameters such as heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions of IMCs and eutectics were calculated using the heat of fusion values. The TGA and DTA studies were performed to understand the physico-chemical, thermal behavior and unique identity of newly synthesized organic complexes, 4-(dimethylamino)benzylidene-4-acetamideaniline (DMABPAA) and 4-(dimethylamino)benzylidene-4-nitroaniline (DMABPNA), and their respective enthalpy of fusion values were found to be 30.01 and 37.26 kJ mol - 1 . The higher melting point of both the novel complexes than their parent's compounds reveal the strong molecular interaction between parent components to yield the complex. The FTIR spectral analysis predicts the disappearance of aldehyde peaks of DMAB and NH 2 peaks of PAA and PNA while the appearance of entirely new peaks than that of parent's compounds are the supportive for the formation of new molecular entities. These findings are further supported by FTNMR spectrum studies by observation of disappearance of proton peak of aldehyde of DMAB and amine peaks of PAA and PNA rather formation of new imine proton peak or peaks were observed. The appearance of new peaks in Powder XRD of complexes than those of parent components is further indicative for the formation of complexes. The absorption spectrum of DMABPAA and DMABPNA showed intra-molecular charge-transfer (ICT) excited state absorption at 258 and 241 nm, respectively. Both the IMCs, DMABPAA and DMABPNA, show strong fluorescence with quantum yield 0.66 and 0.93, respectively, in methanol solution.

  19. Tuning the Direction of Intramolecular Charge Transfer and the Nature of the Fluorescent State in a T-Shaped Molecular Dyad.

    PubMed

    Felouat, Abdellah; D'Aléo, Anthony; Charaf-Eddin, Azzam; Jacquemin, Denis; Le Guennic, Boris; Kim, Eunsun; Lee, Kwang Jin; Woo, Jae Heun; Ribierre, Jean-Charles; Wu, Jeong Weon; Fages, Frédéric

    2015-06-18

    Controlling photoinduced intramolecular charge transfer at the molecular scale is key to the development of molecular devices for nanooptoelectronics. Here, we describe the design, synthesis, electronic characterization, and photophysical properties of two electron donor-acceptor molecular systems that consist of tolane and BF2-containing curcuminoid chromophoric subunits connected in a T-shaped arrangement. The two π-conjugated segments intersect at the electron acceptor dioxaborine core. From steady-state electronic absorption and fluorescence emission, we find that the photophysics of the dialkylamino-substituted analogue is governed by the occurrence of two closely lying excited states. From DFT calculations, we show that excitation in either of these two states results in a distinct shift of the electron density, whether it occurs along the curcuminoid or tolane moiety. Femtosecond transient absorption spectroscopy confirmed these findings. As a consequence, the nature of the emitting state and the photophysical properties are strongly dependent on solvent polarity. Moreover, these characteristics can also be switched by protonation or complexation at the nitrogen atom of the amino group. These features set new approaches toward the construction of a three-terminal molecular system in which the lateral branch would transduce a change of electronic state and ultimately control charge transport in a molecular-scale device.

  20. Synthesis, structure, DNA/protein binding, and cytotoxic activity of a rhodium(III) complex with 2,6-bis(2-benzimidazolyl)pyridine.

    PubMed

    Esteghamat-Panah, Roya; Hadadzadeh, Hassan; Farrokhpour, Hossein; Simpson, Jim; Abdolmaleki, Amir; Abyar, Fatemeh

    2017-02-15

    A new mononuclear rhodium(III) complex, [Rh(bzimpy)Cl 3 ] (bzimpy = 2,6-bis(2-benzimidazolyl)pyridine), was synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with fish sperm DNA (FS-DNA) was investigated by UV spectroscopy, emission titration, and viscosity measurement in order to evaluate the possible DNA-binding mode and to calculate the corresponding DNA-binding constant. The results reveal that the Rh(III) complex interacts with DNA through groove binding mode with a binding affinity on the order of 10 4 . In addition, the binding of the Rh(III) complex to bovine serum albumin (BSA) was monitored by UV-Vis and fluorescence emission spectroscopy at different temperatures. The mechanism of the complex interaction was found to be static quenching. The thermodynamic parameters (ΔH, ΔS, and ΔG) obtained from the fluorescence spectroscopy data show that van der Waals interactions and hydrogen bonds play a major role in the binding of the Rh(III) complex to BSA. For the comparison of the DNA- and BSA-binding affinities of the free bzimpy ligand with its Rh(III) complex, the absorbance titration and fluorescence quenching experiments of the free bzimpy ligand with DNA and BSA were carried out. Competitive experiments using eosin Y and ibuprofen as site markers indicated that the complex was mainly located in the hydrophobic cavity of site I of the protein. These experimental results were confirmed by the results of molecular docking. Finally, the in vitro cytotoxicity properties of the Rh(III) complex against the MCF-7, K562, and HT-29 cell lines were evaluated and compared with those of the free ligand (bzimpy). It was found that the complexation process improved the anticancer activity significantly. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. A Network of AOPs for reduced thyroid hormone synthesis derived from inhibition of Thyroperoxidase - A common Molecular Initiating Event Leading to Species-Specific Indices of Adversity.

    EPA Science Inventory

    This collection of 3 AOPs describe varying outcomes of adversity dependent upon species in response to inhibition of thyroperoxidase (TPO) during development. Chemical inhibition of TPO, the molecular-initiating event (MIE), results in decreased thyroid hormone (TH) synthesis, a...

  2. Solid-phase synthesis of molecularly imprinted nanoparticles.

    PubMed

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  3. [Synthesis and Properties of 1,11,15,25-Tetrahydroxy-4,8,18,22-Di (Bridged Dipropionate Carboxyl) Phthalocyanine Copper].

    PubMed

    Xia, Dao-cheng; Li, Wan-cheng; Li, Jie-jun; Wang, Gai-ping; Duan, Hong-wei; Ren, Xu-wen; Feng, Kai; Li, Pei-tao; Wang, Hui-fang; Pu, Gai-qin

    2015-08-01

    In this dissertation, we study the synthesis and character of new substituted Phthalocyanine. Due to the widely application of Pcs in the fields, such as the communication, medical treatment, chemical industry and so on, therefore, they have been a hot topic over several decades by scientists. Nowadays, scientists have prepared thousands of Pcs and their derivatives. However, along with the human society development and the progress in science and technology, the new phthalocyanine with novle characteristics are still the goal of the scientists. In this dissertion, the synthetic methods of the phthlocyanine is improved. The synthesis and characterization of 1,11,15,25-tetrahydroxy-4,8,18,22-di(bridged dipropionate carboxyl) phthalocyanines are reported in this paper. The mixtures of malonic acid and 3,6-dihydroxy-phthalonitrile was added to water under stiriing. Then, a catalyst amount of sulfuric acid was added. The first synthetic precursor, i. e., malonic acid 3,3'-bis(6-hydroxy phthalonitrile) butter, its molecular formula is C19H8N4O6. phthalocyanines was prepared by malonic acid 3,3'-bis(6-hydroxy phthalonitrile) butter and dihydrate zinc acetate, copper acetate monohydrate in n-amyl alcohol, using DBU as a catalyst under the 135 °C, molecular formula of phthalocyanine complexes is C38H16N8O12M. The product was characterized by Ultraviolet-visible (UV/Vis) Spectrum absorption and fluorescence, The results are agreement with the proposed structures. And electrochemical properties were studied.

  4. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    PubMed

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.

  5. Potential of silver against human colon cancer: (synthesis, characterization and crystal structures of xylyl (Ortho, meta, &Para) linked bis-benzimidazolium salts and Ag(I)-NHC complexes: In vitro anticancer studies)

    PubMed Central

    2013-01-01

    Background Since the first successful synthesis of Ag(I)-N-heterocyclic carbene complex in 1993, this class of compounds has been extensively used for transmetallation reactions where the direct synthesis using other metal ions was either difficult or impossible. Initially, silver(I)-NHC complexes were tested for their catalytic potential but could not get fame because of lower potential compare to other competent compounds in this field; however, these compounds proved to have vital antimicrobial activities. These encouraging biomedical applications further convinced researchers to test these compounds against cancer. The current work has been carried out with this aim. Results N-ipropylbenzimidazole was synthesized by reaction of benzimidazole with ipropyl bromide. The subsequent treatment of the resulting N-alkylbenzimidazole with ortho/meta/para-(bromomethylene) benzene afforded corresponding bis-benzimidazolium bromides (5-7). The counter anion (Br-) of each salt was replaced by hexaflourophosphate (PF6-) for the ease of handling and further purification (8-10). Each salt (Ligand), in halide form, was further allowed to react with Ag2O with stirring at room temperature for a period of two days to synthesize dinuclear Ag(I)-NHC complexes (11-13). All synthesized compounds were characterized by spectroscopic techniques and microanalysis. Molecular structures of compounds 5, 9 &10 were established through single crystal x-ray diffraction technique. All the compounds were assessed for their anti-proliferation test on human colorectal cancer cell line (HCT 116). Results showed that the ligands (5-10) showed mild to negligible cytotoxicity on HCT 116 cells whereas respective silver complexes (11-13) exhibited dose dependent cytotoxicity towards the colon cancer cells with IC50 ranges between 9.7 to 44.5 μM. Interestingly, the complex 13 having para-xylyl spacer was found the most active (IC50 9.7 μM) that verifies our previously reported results. Conclusions All the bis-benzimidazolium salts (8-10) were found inactive whereas after bonding with silver cations, the Ag(I)-NHC complexes (11-13) showed a dose dependent cytotoxic activity. This proved that silver practice an important role in death of cancer cells. Also, the N-alkyl/aryl substitutions and ortho/metal/para xylyl units regulate the cytotoxicity. PMID:23391345

  6. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies.

    PubMed

    Gálvez, Jaime; Polo, Stivens; Insuasty, Braulio; Gutiérrez, Margarita; Cáceres, Daniela; Alzate-Morales, Jans H; De-la-Torre, Pedro; Quiroga, Jairo

    2018-03-07

    Given the wide spectrum of biological uses of pyrazolo[1,5-c]quinazoline and spiro-quinazoline derivatives as anticancer, anti-inflammatory analgesic agents, and their therapeutic applications in neurodegenerative disorders, it is compulsory to find easy, efficient, and simple methods to obtain and chemically diversify these families of compounds, thereby improving their biological applications. In this paper, we report the design and eco-friendly two-step synthesis of novel, fused spiro-pyrazolo[1,5-c]quinazoline derivatives as cholinesterase inhibitors. In addition, we studied their protein-ligand interactions via molecular docking and MM/GBSA calculations for a further rational design of more potent inhibitors. In first step, 2-(1H-pyrazol-5-yl)anilines were obtained through microwave (MW) assisted solvent-free/catalyst-free conditions and the second step involved the synthesis of the spiro-pyrazolo[1,5-c]quinazolines by a cyclocondensation reaction between 2-(1H-pyrazol-5-yl)anilines and cyclic ketones, or acetophenones, using stirring at room temperature. The compounds were obtained in high purity, good yields (50-97%), and at varying reaction times. The spiro-compounds were evaluated as acetylcholinesterase and butyrylcholinesterase inhibitors (AChEIs/BuChEIs) respectively, and the most potent compound exhibited a moderate AChE inhibitory activity (5f: IC 50  = 84 μM). Molecular docking studies indicated that the binding mode of the compound 5f share common characteristics with the galantamine/donepezil-AChE complexes. Moreover, free binding energy (ΔG) calculations showed a good agreement with the experimental biological activity values. Our theoretical results indicated that halogen bond interactions could be involved with differential potency of these compounds and provide a new starting point to design novel pyrazolo[1,5-c]quinazolines as new anti-Alzheimer agents. Copyright © 2018. Published by Elsevier Ltd.

  7. New bioactive silver(I) complexes: Synthesis, characterization, anticancer, antibacterial and anticarbonic anhydrase II activities

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ummuhan O.; Ozbek, Neslihan; Genc, Zuhal Karagoz; İlbiz, Firdevs; Gündüzalp, Ayla Balaban

    2017-06-01

    Silver(I) complexes of alkyl sulfonic acide hydrazides were newly synthesized as homologous series. Methanesulfonic acide hydrazide (L1), ethanesulfonic acide hydrazide (L2), propanesulfonic acide hydrazide (L3) and butanesulfonic acide hydrazide (L4) were used for complexation with Ag(I) ions. The silver complexes obtained in the mol ratio of 1:2 have the structural formula as Ag(L1)2NO3 (I), Ag(L2)2NO3 (II), Ag(L3)2NO3(III), (Ag(L4)2NO3 (IV). The Ag(I) complexes exhibit distorted linear two-fold coordination in [AgL2]+ cations with uncoordinated nitrates. Ligands are chelated with silver(I) ions through unsubstituted primary nitrogen in hydrazide group. Ag(I) complexes were characterized by using elemental analysis, spectroscopic methods (FT-IR, LC-MS), magnetic susceptibility and conductivity measurements. Silver(I) complexes were optimized using PBEPBE/LanL2DZ/DEF2SV basic set performed by DFT method with the Gaussian 09 program package. The geometrical parameters, frontier molecular orbitals (HOMOs and LUMOs) and molecular electrostatic potential (MEP) mapped surfaces of the optimized geometries were also determined by this quantum set. The anticancer activities of silver(I) complexes on MCF-7 human breast cancer cell line were investigated by comparing IC50 values. The antibacterial activities of complexes were studied against Gram positive bacteria; S. aureus ATCC 6538, B. subtilis ATCC 6633, B. cereus NRRL-B-3711, E. faecalis ATCC 29212 and Gram negative bacteria; E. coli ATCC 11230, P. aeruginosa ATCC 15442, K. pneumonia ATCC 70063 by using disc diffusion method. The inhibition activities of Ag(I) complexes on carbonic anhydrase II enzyme (hCA II) were also investigated by comparing IC50 and Ki values. The biological activity screening shows that Ag(I) complex of butanesulfonicacidehydrazide (IV) has the highest activity against tested breast cancer cell lines MCF-7, Gram positive/Gram negative bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  8. Protein synthesis in the basolateral amygdala complex is required for consolidation of a first-order fear memory, but not for consolidation of a higher-order fear memory.

    PubMed

    Leidl, Dana M; Lay, Belinda P P; Chakouch, Cassandra; Westbrook, R Frederick; Holmes, Nathan M

    2018-04-12

    The present series of experiments pursued our recent findings that consolidation of a second-order fear memory requires neuronal activity, but not de novo protein synthesis, in the basolateral amygdala complex (BLA). It used a modified second-order conditioning protocol in which rats were exposed to S1-shock pairings in stage 1 and pairings of the serial S2-S1 compound and shock in stage 2. Experiment 1 showed that responding (freezing) to S2 in this protocol is conditional on its compounding with S1 in stage 2 (Experiment 1), and therefore, the result of associative formation. The remaining experiments then showed that the protein synthesis requirement for consolidation of new learning about S2 varied with the training afforded S1. When S1 was trained in stage 1 and present in stage 2, consolidation of the new S2 fear memory was unaffected by pre- or post-stage 2 infusions of the protein synthesis inhibitor, cycloheximide, into the BLA (Experiments 2 and 5). This result was observed independently of the number of S1-shock pairings in stage 1 (even a single pairing produced the result), and alongside demonstrations that cycloheximide infusions disrupt consolidation of a first-order fear memory (Experiments 2 and 5). However, when S1 was not conditioned in stage 1 (Experiment 3) or was omitted from conditioning in stage 2 (Experiment 4), consolidation of the new S2 fear memory was disrupted by post-stage 2 cycloheximide infusions into the BLA. These results were taken to imply that the consolidation of a higher-order fear memory exploits molecular events associated with consolidation of a reactivated first-order fear memory; hence it occurs independently of de novo protein synthesis in the BLA. Alternatively, the nature of the association formed in higher-order conditioning may be such as to not require de novo protein synthesis for its consolidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: Experimental, molecular docking and ONIOM computational study.

    PubMed

    Kazemi, Zahra; Rudbari, Hadi Amiri; Sahihi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Gharaghani, Sajjad

    2016-09-01

    Novel metal-based drug candidate including VOL2, NiL2, CuL2 and PdL2 have been synthesized from 2-hydroxy-1-allyliminomethyl-naphthalen ligand and have been characterized by means of elemental analysis (CHN), FT-IR and UV-vis spectroscopies. In addition, (1)H and (13)C NMR techniques were employed for characterization of the PdL2 complex. Single-crystal X-ray diffraction technique was utilized to characterise the structure of the complexes. The Cu(II), Ni(II) and Pd(II) complexes show a square planar trans-coordination geometry, while in the VOL2, the vanadium center has a distorted tetragonal pyramidal N2O3 coordination sphere. The HSA-binding was also determined, using fluorescence quenching, UV-vis spectroscopy, and circular dichroism (CD) titration method. The obtained results revealed that the HSA affinity for binding the synthesized compounds follows as PdL2>CuL2>VOL2>NiL2, indicating the effect of metal ion on binding constant. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational methods including molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) were carried out to investigate the HSA-binding of the compounds. Molecular docking calculation indicated the existence of hydrogen bond between amino acid residues of HSA and all synthesized compounds. The formation of the hydrogen bond in the HSA-compound systems leads to their stabilization. The ONIOM method was utilized in order to investigate HSA binding of compounds more precisely in which molecular mechanics method (UFF) and semi empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding to HSA, indicating the strong interaction between the compounds and HSA. The value of binding constant depends on the extent of the resultant changes. This should be mentioned that both theoretical methods calculated the Kb values in the same sequence and are in a good agreement with the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of heterobimetallic molybdenum and nickel complexes derived from polyfunctional disalicylaldehyde oxaloyldihydrazone

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Borthakur, Rosmita; Koch, Angira; Chanu, Oinam B.; Choudhury, Sanjesh; Lemtur, Aka; Lal, Ram A.

    2011-07-01

    Heterobimetallic nickel and molybdenum complexes of the composition [Ni(L)MoO 2(A) 4]· nH 2O (A = H 2O (1), py (2), 2-pic (3), 3-pic (4), and 4-pic (5); n = 0, 2) and [Ni(L)(MoO 2)(BB) 2](BB = bpy (6) and (phen (7)) have been synthesized from the multidentate ligand disalicylaldehyde oxaloyldihydrazone (H 4L) in methanol. The composition of the complexes has been established based on data obtained from elemental analyses, thermoanalytical, mass spectral and molecular weight studies. The probable structures of the complexes have been discussed in the light of molar conductance, magnetic moment data and electronic, EPR and infrared spectral studies. In all of the complexes, the dihydrazone is present in enol form and coordinates to the metal centre as a tetrabasic hexadentate ligand. All of the complexes are normal paramagnetic to the extent of two unpaired electrons per nickel atom. The μeff values for the complexes lying in the region 2.87-3.07 B.M. are consistent with the octahedral stereochemistry of nickel(II) in the heterobimetallic complexes. The EPR and electronic spectral data also support the distorted octahedral stereochemistry of the nickel(II) centre. Both nickel and molybdenum have octahedral geometry in the complexes.

  11. Part 1. Synthetic approaches to indole/imidazole marine alkaloids. Part 2. 1-cyanobenzotriazole as a cyanating agent. Part 3. Synthesis of potential molecular rectifiers

    NASA Astrophysics Data System (ADS)

    Hughes, Terry Vincent

    1999-12-01

    This dissertation consists of four chapters. The first chapter details the progress toward a total synthesis of securine A (1). Securine A is an indole/imidazole containing marine alkaloid which contains a 2,3-disubstituted indole ring and a 4,5- disubstituted imidazole ring with a 12-membered lactam connecting the two. The approach into the securine A ring system utilized the opening of a pyrano[3,4-b]indol-3-one ring system with a modified histamine derivative. Efforts in the synthesis of securine A were not successful, but the synthesis of a similar analogue, compound 53, which contained a 13-membered ring was achieved. Chapter two deals with the total synthesis of the indole/maleimide/imidazole containing marine alkaloids: the didemnimides A-D (84- 87). The total syntheses of didemnimide A-D were successful and utilized a base catalyzed condensation reaction of methyl indolyl-3-glyoxylate (102) and 1-trityl-4-imidazoleacetamide (104). Chapter three details a new and convenient synthesis of 1-cyanobenzotriazole (123) and efforts to use it as a source of +CN in carbon-carbon forming reactions. The synthesis is safer than previously reported methods and allows for 123 to be made in multi-gram scale rather inexpensively. It was demonstrated that 1-cyanobenzotriazole (123) is a good source of +CN in carbon-carbon forming reactions by reacting with a variety of sp3, Sp 2, and sp carbanions. Chapter four details a new synthesis of hexadecylquinolinium tricyanoquinodimethanide (171) which has been shown to be a molecular rectifier. In search of additional molecular rectifiers, this new methodology was applied to the synthesis of Z- β-(N-n -hexadecyl-2-benzothiazolium)-α-cyano-4-styryldicyanomethanide (181) as well as its selenium and tellurium analogues 190 and 200; respectively. Additionally, the synthesis of other T- D+-π-A- types of molecules was explored in search for other molecular rectifiers. However, of all the compounds synthesized herein, only 171 has been shown to rectify.

  12. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Edward

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C 5-symmetrical cyclopentadienyl rings.

  13. Synthesis of Well-Defined Copper "N"-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment that Emphasizes the Role of Catalysis in Green Chemistry

    ERIC Educational Resources Information Center

    Ison, Elon A.; Ison, Ana

    2012-01-01

    A multistep experiment for an advanced synthesis lab course that incorporates topics in organic-inorganic synthesis and catalysis and highlights green chemistry principles was developed. Students synthesized two "N"-heterocyclic carbene ligands, used them to prepare two well-defined copper(I) complexes and subsequently utilized the complexes as…

  14. Pretranslational regulation of the synthesis of the third component of complement in human mononuclear phagocytes by the lipid A portion of lipopolysaccharide.

    PubMed Central

    Strunk, R C; Whitehead, A S; Cole, F S

    1985-01-01

    The third component of complement (C3) is a plasma glycoprotein with a variety of biologic functions in the initiation and maintenance of host response to infectious agents. While the hepatocyte is the primary source of plasma C3, mononuclear phagocytes contribute to the regulation of tissue availability of C3. Lipopolysaccharide (LPS), a constituent of cell walls of gram-negative bacteria, consists of a polysaccharide moiety (core polysaccharide and O antigen) covalently linked to a lipid portion (lipid A). Using metabolic labeling with [35S]methionine, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis, we examined the effects of LPS on synthesis of C3 by human mononuclear phagocytes as well as synthesis of the second component of complement (C2), factor B, lysozyme, and total protein. LPS increased C3 synthesis 5-30-fold without affecting the kinetics of secretion of C3 or the synthesis of C2, lysozyme, or total protein. Factor B synthesis was consistently increased by LPS. Experiments with lipid A-inactivated LPS (alkaline treated), LPS from a polysaccharide mutant strain, and lipid X (a lipid A precursor) indicated that the lipid A portion is the structural element required for this effect. Northern blot analysis demonstrated at least a fivefold increase in C3 mRNA in LPS-treated monolayers, which suggests that the regulation of the increase in C3 synthesis is pretranslational. C2 mRNA and factor B mRNA were increased approximately twofold. The availability of specific gene products in human mononuclear phagocytes that respond to LPS should permit understanding of the molecular regulation of more complex functions of these cells elicited by LPS in which multiple gene products are coordinately expressed. Images PMID:3900137

  15. Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time

    PubMed Central

    Gandelman, Olga A.; Church, Vicki L.; Moore, Cathy A.; Kiddle, Guy; Carne, Christopher A.; Parmar, Surendra; Jalal, Hamid; Tisi, Laurence C.; Murray, James A. H.

    2010-01-01

    Background The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Principal Findings Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. Conclusions The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings. PMID:21152399

  16. How molecular motors work – insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016

    PubMed Central

    Astumian, R. D.

    2017-01-01

    The Nobel prize in Chemistry for 2016 was awarded to Jean Pierre Sauvage, Sir James Fraser Stoddart, and Bernard (Ben) Feringa for their contributions to the design and synthesis of molecular machines. While this field is still in its infancy, and at present there are no commercial applications, many observers have stressed the tremendous potential of molecular machines to revolutionize technology. However, perhaps the most important result so far accruing from the synthesis of molecular machines is the insight provided into the fundamental mechanisms by which molecular motors, including biological motors such as kinesin, myosin, FoF1 ATPase, and the flagellar motor, function. The ability to “tinker” with separate components of molecular motors allows asking, and answering, specific questions about mechanism, particularly with regard to light driven vs. chemistry driven molecular motors. PMID:28572896

  17. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    NASA Astrophysics Data System (ADS)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (<200°C) to provide homogeneous carbon-free materials via the elimination of isobutylene and water. A gel is formed when thermolyses are performed in non-polar solvents, and subsequent drying of the gel in a conventional manner yields high surface area xerogels. This thermolytic molecular precursor (TMP) approach has been utilized to provide a variety of oxide materials with tailored properties. In addition, the oxygen rich environment of the molecular precursors coupled with the presence of M-O-E heterolinkages permits use of them as models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures (≤180°C), to give isobutene as the major carbon-containing product. The material generated from the solid-state conversion of (tBuO) 3CrOSi(OtBu)3 (CrOS ss) has an unexpectedly high surface area of 315 m2 g-1 that is slightly reduced to 275 m2 g-1 after calcination at 500°C in O2. The xerogel obtained by the thermolysis of an n-octane solution of (tBuO)3CrOSi(O tBu)3 (CrOSixg) has a surface area of 315 m2 g-1 that is reduced to 205 m2 g-1 upon calcination at 500°C. Powder X-ray diffraction (PXRD) analysis revealed that Cr2O 3 is the only crystalline species present in CrOSiss and CrOSixg after calcination at temperatures up to 1200°C in O2. (Abstract shortened by UMI.)

  18. Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.

  19. Synthesis, characterization and biological evaluation of ruthenium flavanol complexes against breast cancer

    NASA Astrophysics Data System (ADS)

    Singh, Ashok Kumar; Saxena, Gunjan; Sahabjada; Arshad, M.

    2017-06-01

    Four Ru(II) DMSO complexes (M1R-M4R) having substituted flavones viz. 3-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one (HL1), 3-Hydroxy-2-(4-nitrophenyl)-4H-chromen-4-one (HL2), 3-Hydroxy-2-(4-dimethylaminophenyl)-4H-chromen-4-one (HL3) and 3-Hydroxy-2-(4-chlorophenyl)-4H-chromen-4-one (HL4) were synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR spectroscopies and ESI-MS. The molecular structures of the complexes were investigated by integrated spectroscopic and computational techniques (DFT). Both ligands as well as their complexes were screened for anticancer activities against breast cancer cell lines MCF-7. Cytotoxicity was assayed by MTT [3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. All ligands and their complexes exhibited significant cytotoxic potential of 5-40 μM concentration at incubation period of 24 h. The cell cytotoxicity increased significantly in a concentration-dependent manner. In this series of compounds, HL2 (IC50 17.2 μM) and its complex M2R (IC50 16 μM) induced the highest cytotoxicity.

  20. Interaction-based evolution: how natural selection and nonrandom mutation work together

    PubMed Central

    2013-01-01

    Background The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. Presentation of the hypothesis Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation—while not Lamarckian, or “directed” to increase fitness—is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination’s fitness. Testing and implications of the hypothesis This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive potential than previously considered. Empirical evidence for the proposed mechanism from both molecular evolution and evolution at the organismal level is discussed, and multiple predictions are offered by which it may be tested. Reviewers This article was reviewed by Nigel Goldenfeld (nominated by Eugene V. Koonin), Jürgen Brosius and W. Ford Doolittle. PMID:24139515

  1. A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo.

    PubMed

    Ewe, Alexander; Przybylski, Susanne; Burkhardt, Jana; Janke, Andreas; Appelhans, Dietmar; Aigner, Achim

    2016-05-28

    The delivery of nucleic acids, particularly of small RNA molecules like siRNAs for the induction of RNA interference (RNAi), still represents a major hurdle with regard to their application in vivo. Possible therapeutic applications thus rely on the development of efficient non-viral gene delivery vectors. While low molecular weight polyethylenimines (PEIs) have been successfully explored, the introduction of chemical modifications offers an avenue towards the development of more efficient vectors. In this paper, we describe the synthesis of a novel tyrosine-modified low-molecular weight polyethylenimine (P10Y) for efficient siRNA complexation and delivery. The comparison with the respective parent PEI reveals that knockdown efficacies are considerably enhanced by the tyrosine modification, as determined in different reporter cell lines, without appreciable cytotoxicity. We furthermore identify optimal conditions for complex preparation as well as for storing or lyophilization of the complexes without loss of biological activity. Beyond reporter cell lines, P10Y/siRNA complexes mediate the efficient knockdown of endogenous target genes and, upon knockdown of the anti-apoptotic oncogene survivin, tumor cell inhibitory effects in different carcinoma cell lines. Pushing the system further towards its therapeutic in vivo application, we demonstrate in mice the delivery of intact siRNAs and distinct biodistribution profiles upon systemic (intravenous or intraperitoneal) injection. No adverse effects (hepatotoxicity, immunostimulation/alterations in immunophenotype, weight loss) are observed. More importantly, profound tumor-inhibitory effects in a melanoma xenograft mouse model are observed upon systemic application of P10Y/siRNA complexes for survivin knockdown, indicating the therapeutic efficacy of P10Y/siRNA complexes. Taken together, we (i) establish tyrosine-modified PEI (P10Y) as efficient platform for siRNA delivery in vitro and in vivo, (ii) identify optimal preparation and storage conditions as well as (iii) physicochemical and biological properties of P10Y complexes, and (iv) demonstrate their applicability as siRNA therapeutic in vivo (v) in the absence of adverse effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Hydrazonoyl Chlorides as Precursors for Synthesis of Novel Bis-Pyrrole Derivatives.

    PubMed

    Kheder, Nabila Abdelshafy

    2016-03-09

    A convenient synthesis of some novel bis-pyrrole derivatives via hydrazonoyl halides is described. Antimicrobial evaluation of some selected examples of the synthesized products was carried out. The bis-pyrrole derivative having chloro substituents showed good activity against all of the used microbes. The molecular docking of the bis-pyrrole derivatives was performed by the Molecular Operating Environment (MOE) program.

  3. New Synthesis Of Poly(1,3,4-Oxadiazoles)

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Wolf, Peter

    1992-01-01

    Synthesis via aromatic nucleophilic displacement yields new high-molecular-weight polymers. Polymers exhibited good mechanical and thermal properties. Synthetic route provided high-molecular-weight POX of new chemical structure, potentially more economical. Availability of large variety of activated aromatic dihalides, facilitates variation of chemical structures. Exhibit properties making them useful as films. Also useful in coatings, adhesives, moldings, and composites.

  4. Design, synthesis and molecular simulation studies of dihydrostilbene derivatives as potent tyrosinase inhibitors.

    PubMed

    Vontzalidou, Argyro; Zoidis, Grigoris; Chaita, Eliza; Makropoulou, Maria; Aligiannis, Nektarios; Lambrinidis, George; Mikros, Emmanuel; Skaltsounis, Alexios-Leandros

    2012-09-01

    The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further optimization were discovered. Dihydrostilbene 7 is a particularly potent inhibitor (IC(50)=8.44 μM, more potent than kojic acid). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans

    PubMed Central

    Yang, Huan; Vallandingham, Jim; Shiu, Philip; Li, Hua; Hunter, Craig P.; Mak, Ho Yi

    2014-01-01

    Summary RNA interference (RNAi) is a potent mechanism for down-regulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi and other eukaryotes [1–3]. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary siRNAs [4–6]. Exogenous double stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis [7, 8]. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear if the sub-cellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively [9–11]. We report that RDE-12, a conserved FG domain containing DEAD-box helicase, localizes in P-granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA targeted mRNA in distinct cytoplasmic compartments. PMID:24684930

  6. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans.

    PubMed

    Yang, Huan; Vallandingham, Jim; Shiu, Philip; Li, Hua; Hunter, Craig P; Mak, Ho Yi

    2014-04-14

    RNAi is a potent mechanism for downregulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi, and other eukaryotes. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary small interfering RNAs (siRNAs). Exogenous double-stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA-dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear whether the subcellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively. We report that RDE-12, a conserved phenylalanine-glycine (FG) domain-containing DEAD box helicase, localizes in P granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA-targeted mRNA in distinct cytoplasmic compartments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A Molecular Dynamics Study of Single-Walled Carbon Nanotubes (SWCNTs) Dispersed in Bile Salt Surfactants

    NASA Astrophysics Data System (ADS)

    Phelan, Frederick, Jr.; Sun, Huai

    2014-03-01

    Single-walled carbon nanotubes (SWNCTs) are materials with structural, electronic and optical properties that make them attractive for a myriad of advanced technology applications. A practical barrier to their use is that SWCNT synthesis techniques produce heterogeneous mixtures of varying lengths and chirality, whereas applications generally require tubes with narrow size distributions and individual type. Most separation techniques currently in use to obtain monodisperse tube fractions rely on dispersion of these materials in aqueous solution using surfactants. The dispersion process results in a mixture of colloidal structures in which individual tubes are dispersed and contained in a surfactant shell. Understanding the structure and properties of the SWCNT-surfactant complex at the molecular level, and how this is affected by chirality, is key to understanding and improving separations processes. In this study, we use molecular dynamics (MD) simulations to study the structure and properties of SWCNT-surfactant colloidal complexes. We tested a number of methods and protocols in order to build an accurate model for simulating SWCNT systems for a variety of bile salt surfactants as well as anionic co-surfactants, components that are widely used and important in experimental separation studies at NIST. The custom force field parameters used here will be stored in WebFF, a Web-hosted smart force-field repository for polymeric and organic materials being developed at NIST for the Materials Genome Initiative.

  8. A molecular model for the active site of S-adenosyl- l-homocysteine hydrolase

    NASA Astrophysics Data System (ADS)

    Yeh, Jerry C.; Borchardt, Ronald T.; Vedani, Angelo

    1991-06-01

    S-adenosyl- l-homocysteine hydrolase (AdoHcy hydrolase, EC 3.3.1.1.), a specific target for antiviral drug design, catalyzes the hydrolysis of AdoHcy to adenosine (Ado) and homocysteine (Hcy) as well as the synthesis of AdoHcy from Ado and Hcy. The enzyme isolated from different sources has been shown to contain tightly bound NAD+. Based on the 2.0 Å-resolution X-ray crystal structure of dogfish lactate dehydrogenase (LDH), which is functionally homologous to AdoHcy hydrolase, and the primary sequence of rat liver AdoHcy hydrolase, we have derived a molecular model of an extended active site for AdoHcy hydrolase. The computational mutation was performed using the software MUTAR (Yeh et al., University of Kansas, Lawrence), followed by molecular mechanics optimizations using the programs AMBER (Singh et al., University of California, San Francisco) and YETI (Vedani, University of Kansas). Solvation of the model structure was achieved by use of the program SOLVGEN (Jacober, University of Kansas); 56 water molecules were explicitly included in all refinements. Some of these may be involved in the catalytic reaction. We also studied a model of the complex of AdoHcy hydrolase with NAD+, as well as the ternary complexes of the redox reaction catalyzed by AdoHcy hydrolase and has been used to differentiate the relative binding strength of inhibitors.

  9. Synthesis and characterization of homo- and heterobimetallic niobium v and tantalum v peroxo-polyaminocarboxylato complexes and their use as single or multiple molecular precursors for Nb-Ta mixed oxides

    NASA Astrophysics Data System (ADS)

    Bayot, Daisy; Degand, Matthieu; Devillers, Michel

    2005-09-01

    New water-soluble bimetallic peroxo complexes of niobium V and/or tantalum V with high-denticity polyaminocarboxylate ligands have been prepared, characterized from the spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Four new homobimetallic complexes, (gu) 3[Nb 2(O 2) 4(dtpaO 3)]·3H 2O 1, (gu) 3[Ta 2(O 2) 4(dtpaO 3)]·5H 2O 2, (gu) 3[Nb 2(O 2) 4(HtthaO 4)]·2H 2O 4 and (gu) 3[Ta 2(O 2) 4(HtthaO 4)]·3H 2O 5 and the corresponding heterometallic complexes, (gu) 3[NbTa(O 2) 4(dtpaO 3)]·2.5H 2O 3 and (gu) 3[NbTa(O 2) 4(HtthaO 4)]·2H 2O 6 have been obtained. In these compounds, the in situ oxidation of the nitrogen atoms of the PAC ligands into N-oxide groups has been evidenced by IR spectroscopy and mass spectrometry. The thermal treatment of the homonuclear complexes in air at 700 or 800 °C, depending on the Ta content, provided Nb 2O 5 or Ta 2O 5 while the heteronuclear compounds led to the solid solution TaNbO 5. BET and SEM measurements have been carried out and comparison of the morphology of the samples prepared from homo- and heterometallic precursors is discussed.

  10. Synthesis, structure and catalytic activities of nickel(II) complexes bearing N4 tetradentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Nag, Sanat Kumar; Chattopadhyay, Asoke Prasun; Dey, Kamalendu; Islam, Sk. Manirul; Sarkar, Avijit; Sarkar, Sougata

    2018-05-01

    Two new nickel(II) complexes [Ni(L)Cl2] (1) and [Ni(L)(NCS)2] (2) of a neutral tetradentate mono-condensed Schiff base ligand, 3-(2-(2-aminoethylamino)ethylimino)butan-2-one oxime (L) have been synthesized and characterized using different physicochemical techniques e.g. elemental analyses, spectroscopic (IR, Electronic, NMR) methods, conductivity and molecular measurements. The crystal structure of complex (2) has been determined by using single crystal X-ray diffraction method and it suggests a distorted octahedral geometry around nickel(II) having a NiN6 coordinating atmosphere. The non-coordinated Osbnd H group on the ligand L remain engaged in H-bonding interactions with the S end of the coordinated thiocyanate moiety. These H-bonding interactions lead to Osbnd S separations of 3.132 Å and play prominent role in crystal packing. It is observed that the mononuclear units are glued together with such Osbnd H…S interactions and finally results in an 1D supramolecular sheet-like arrangement. DFT/TDDFT based theoretical calculations were also performed on the ligand and the complexes aiming at the accomplishment of idea regarding their optimized geometry, electronic transitions and the molecular energy levels. Finally the catalytic behavior of the complexes for oxidation of styrene has also been carried out. A variety of reaction conditions like the effect of solvent, effect of temperature and time as well as the effect of ratio of substrate to oxidant were thoroughly studied to judge the catalytic efficiency of the Ni(II) coordination entity.

  11. Synthesis, structural studies and reactivity of vanadium complexes with tridentate (OSO) ligand.

    PubMed

    Janas, Zofia; Wiśniewska, Dorota; Jerzykiewicz, Lucjan B; Sobota, Piotr; Drabent, Krzysztof; Szczegot, Krzysztof

    2007-05-28

    The direct reaction between [VCl(3)(thf)3] or [VO(OEt)3] and 2,2'-thiobis{4-(1,1,3,3-tetramethyl-butyl)phenol (tbopH(2)) leads to the formation of [V(2)(micro-tbop-kappa(3)O,S,O)2Cl(2)(CH(3)CN)(2)] (1).4CH(3)CN or [V(2)(micro-OEt)2(O)2(tbop-kappa(3)O,S,O)2] (2), respectively, in high yield. Compounds 1 and 2 were characterized by chemical and physical techniques including X-ray crystallography and variable temperature magnetic susceptibility studies (J = -29.1 cm(-1)) for 1. Complexes 1 and 2 were supported on MgCl2 and when activated with aluminium alkyls, were found to effectively polymerize ethene to produce polyethylene with a narrow molecular weight distribution M(w)/M(n) approximately 3.

  12. Chemical tailoring of teicoplanin with site-selective reactions.

    PubMed

    Pathak, Tejas P; Miller, Scott J

    2013-06-05

    Semisynthesis of natural product derivatives combines the power of fermentation with orthogonal chemical reactions. Yet, chemical modification of complex structures represents an unmet challenge, as poor selectivity often undermines efficiency. The complex antibiotic teicoplanin eradicates bacterial infections. However, as resistance emerges, the demand for improved analogues grows. We have discovered chemical reactions that achieve site-selective alteration of teicoplanin. Utilizing peptide-based additives that alter reaction selectivities, certain bromo-teicoplanins are accessible. These new compounds are also scaffolds for selective cross-coupling reactions, enabling further molecular diversification. These studies enable two-step access to glycopeptide analogues not available through either biosynthesis or rapid total chemical synthesis alone. The new compounds exhibit a spectrum of activities, revealing that selective chemical alteration of teicoplanin may lead to analogues with attenuated or enhanced antibacterial properties, in particular against vancomycin- and teicoplanin-resistant strains.

  13. How Students Process Equations in Solving Quantitative Synthesis Problems? Role of Mathematical Complexity in Students' Mathematical Performance

    ERIC Educational Resources Information Center

    Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan

    2017-01-01

    We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking,…

  14. Molecular and electronic structures of mononuclear iron complexes using strongly electron-donating ligands and their oxidized forms.

    PubMed

    Strautmann, Julia B H; George, Serena DeBeer; Bothe, Eberhard; Bill, Eckhard; Weyhermüller, Thomas; Stammler, Anja; Bögge, Hartmut; Glaser, Thorsten

    2008-08-04

    The ligand L (2-) (H 2L = N, N'-dimethyl- N, N'-bis(3,5-di- t-butyl-2-hydroxybenzyl)-1,2-diaminoethane) has been employed for the synthesis of two mononuclear Fe (III) complexes, namely, [LFe(eta (2)-NO 3)] and [LFeCl]. L (2-) is comprised of four strongly electron-donating groups (two tert-amines and two phenolates) that increase the electron density at the coordinated ferric ions. This property should facilitate oxidation of the complexes, that is, stabilization of the oxidized species. The molecular structures in the solid state have been established by X-ray diffraction studies. [LFeCl] is five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation, while [LFe(eta (2)-NO 3)] is six-coordinate in a distorted octahedral environment with the ligand in a beta-cis conformation. The electronic structures have been studied using magnetization, EPR, Mossbauer (with and without applied field), UV-vis-NIR, and X-ray absorption spectroscopies, which demonstrate highly anisotropic covalency from the strong sigma- and pi-donating phenolates. This analysis is supported by DFT calculations on [LFeCl]. The variations of the well-understood spectroscopic data in the solid state to the spectroscopic data in solution have been used to obtain insight in the molecular structure of the two complexes in solution. While the molecular structures of the solid states are retained in solutions of nonpolar aprotic solvents, there is, however, one common molecular structure in all protic polar solvents. The analysis of the LMCT transitions and the rhombicity E/ D clearly establish that both compounds exhibit a beta-cis conformation in these protic polar solvents. These two open coordination sites, cis to each other, allow access for two potential ligands in close proximity. Electrochemical analysis establishes two reversible oxidation waves for [LFeCl] at +0.55 V and +0.93 V vs Fc (+)/Fc and one reversible oxidation wave at +0.59 V with an irreversible oxidation at +1.07 V vs Fc (+)/Fc for [LFe(eta (2)-NO 3)]. The one- and the two-electron oxidations of [LFeCl] by chronoamperometry have been followed spectroscopically. The increase of a strong band centered at 420 nm indicates the formulation of [LFeCl] (+) as a Fe (III) monophenoxyl radical complex and of [LFeCl] (2+) as a Fe (III) bisphenoxyl radical complex. These studies imply that the ligand L (2-) is capable of providing a flexible coordination geometry with two binding sites for substrates and the allocation of two oxidation equivalents on the ligand.

  15. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation

    PubMed Central

    Bosch, Miquel; Castro, Jorge; Saneyoshi, Takeo; Matsuno, Hitomi; Sur, Mriganka; Hayashi, Yasunori

    2014-01-01

    SUMMARY Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during long-term potentiation (LTP) at individual dendritic spines. Proteins translocated to the spine in four distinct patterns through three sequential phases. In the initial phase, the actin cytoskeleton was rapidly remodeled while active cofilin was massively transported to the spine. In the stabilization phase, cofilin formed a stable complex with F-actin, was persistently retained at the spine, and consolidated spine expansion. In contrast, the postsynaptic density (PSD) was independently remodeled, as PSD scaffolding proteins did not change their amount and localization until a late protein synthesis-dependent third phase. Our findings show how and when spine substructures are remodeled during LTP and explain why synaptic plasticity rules change over time. PMID:24742465

  16. DNA nanotechnology from the test tube to the cell.

    PubMed

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology - applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems - lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  17. A multi target approach to control chemical reactions in their inhomogeneous solvent environment

    NASA Astrophysics Data System (ADS)

    Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P. P.; de Vivie-Riedle, Regina

    2015-12-01

    Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble.

  18. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    PubMed

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics.

    PubMed

    Wang, Xiaoli; Cai, Xiaofeng; Xu, Chenxi; Wang, Quanhua; Dai, Shaojun

    2016-10-18

    Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.

  20. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics

    PubMed Central

    Wang, Xiaoli; Cai, Xiaofeng; Xu, Chenxi; Wang, Quanhua; Dai, Shaojun

    2016-01-01

    Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance. PMID:27763546

Top