1991-01-01
Revolution’s Impact on Postwar Diplomacy ............................................................ 251 Jo hn L. Gaddis USAF Intelligence in the Korean...295 Walter Laqueur Session V The Impact of the Intelligence Revolution on Current Military Posture Chair: Ray S. Cline Remarks by a Select...between the impact of intelligence on the course of operations and, on the other hand, its strategic value. As every commander and any intelligence
The Intelligence Revolution: A Historical Perspective
1988-10-01
Reconnaissance ......................................................... 233 William E. Burrows The Intelligence Revolution’s Impact on Postw ar D iplom...Session V The Impact of the Intelligence Revolution on Current Military Posture Chair: Ray S. Cline Rem arks by a Select Panel...its influence have been decisive, as is so widely believed? In addressing this question it is important to distinguish between the impact of
Human Skill in a Computerized Society: Complex Skills and Their Acquisition.
ERIC Educational Resources Information Center
Lesgold, Alan M.
1986-01-01
This paper discusses some of the issues raised for cognitive psychologists by the computer revolution together with the role that psychologists with computer training ought to play, especially in the study of how people acquire complex skills. The issues addressed include: (1) the competition between humans and intelligent machines; (2) the…
HyperForest: A high performance multi-processor architecture for real-time intelligent systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, P. Jr.; Rebeil, J.P.; Pollard, H.
1997-04-01
Intelligent Systems are characterized by the intensive use of computer power. The computer revolution of the last few years is what has made possible the development of the first generation of Intelligent Systems. Software for second generation Intelligent Systems will be more complex and will require more powerful computing engines in order to meet real-time constraints imposed by new robots, sensors, and applications. A multiprocessor architecture was developed that merges the advantages of message-passing and shared-memory structures: expendability and real-time compliance. The HyperForest architecture will provide an expandable real-time computing platform for computationally intensive Intelligent Systems and open the doorsmore » for the application of these systems to more complex tasks in environmental restoration and cleanup projects, flexible manufacturing systems, and DOE`s own production and disassembly activities.« less
Universality of accelerating change
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Shlesinger, Michael F.
2018-03-01
On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.
Water Intelligence and the Cyber-Infrastructure Revolution
NASA Astrophysics Data System (ADS)
Cline, D. W.
2015-12-01
As an intrinsic factor in national security, the global economy, food and energy production, and human and ecological health, fresh water resources are increasingly being considered by an ever-widening array of stakeholders. The U.S. intelligence community has identified water as a key factor in the Nation's security risk profile. Water industries are growing rapidly, and seek to revolutionize the role of water in the global economy, making water an economic value rather than a limitation on operations. Recent increased focus on the complex interrelationships and interdependencies between water, food, and energy signal a renewed effort to move towards integrated water resource management. Throughout all of this, hydrologic extremes continue to wreak havoc on communities and regions around the world, in some cases threatening long-term economic stability. This increased attention on water coincides with the "second IT revolution" of cyber-infrastructure (CI). The CI concept is a convergence of technology, data, applications and human resources, all coalescing into a tightly integrated global grid of computing, information, networking and sensor resources, and ultimately serving as an engine of change for collaboration, education and scientific discovery and innovation. In the water arena, we have unprecedented opportunities to apply the CI concept to help address complex water challenges and shape the future world of water resources - on both science and socio-economic application fronts. Providing actionable local "water intelligence" nationally or globally is now becoming feasible through high-performance computing, data technologies, and advanced hydrologic modeling. Further development on all of these fronts appears likely and will help advance this much-needed capability. Lagging behind are water observation systems, especially in situ networks, which need significant innovation to keep pace with and help fuel rapid advancements in water intelligence.
Intelligent hearing aids: the next revolution.
Tao Zhang; Mustiere, Fred; Micheyl, Christophe
2016-08-01
The first revolution in hearing aids came from nonlinear amplification, which allows better compensation for both soft and loud sounds. The second revolution stemmed from the introduction of digital signal processing, which allows better programmability and more sophisticated algorithms. The third revolution in hearing aids is wireless, which allows seamless connectivity between a pair of hearing aids and with more and more external devices. Each revolution has fundamentally transformed hearing aids and pushed the entire industry forward significantly. Machine learning has received significant attention in recent years and has been applied in many other industries, e.g., robotics, speech recognition, genetics, and crowdsourcing. We argue that the next revolution in hearing aids is machine intelligence. In fact, this revolution is already quietly happening. We will review the development in at least three major areas: applications of machine learning in speech enhancement; applications of machine learning in individualization and customization of signal processing algorithms; applications of machine learning in improving the efficiency and effectiveness of clinical tests. With the advent of the internet of things, the above developments will accelerate. This revolution will bring patient satisfactions to a new level that has never been seen before.
Thinking chickens: a review of cognition, emotion, and behavior in the domestic chicken.
Marino, Lori
2017-03-01
Domestic chickens are members of an order, Aves, which has been the focus of a revolution in our understanding of neuroanatomical, cognitive, and social complexity. At least some birds are now known to be on par with many mammals in terms of their level of intelligence, emotional sophistication, and social interaction. Yet, views of chickens have largely remained unrevised by this new evidence. In this paper, I examine the peer-reviewed scientific data on the leading edge of cognition, emotions, personality, and sociality in chickens, exploring such areas as self-awareness, cognitive bias, social learning and self-control, and comparing their abilities in these areas with other birds and other vertebrates, particularly mammals. My overall conclusion is that chickens are just as cognitively, emotionally and socially complex as most other birds and mammals in many areas, and that there is a need for further noninvasive comparative behavioral research with chickens as well as a re-framing of current views about their intelligence.
Intelligent Systems and Its Applications in Robotics
NASA Astrophysics Data System (ADS)
Kaynak, Okyay
The last decade of the last millennium is characterized by what might be called the intelligent systems revolution, as a result of which, it is now possible to have man made systems that exhibit ability to reason, learn from experience and make rational decisions without human intervention. Prof. Zadeh has coined the word MIQ (machine intelligence quotient) to describe a measure of intelligence of man-made systems. In this perspective, an intelligent system can be defined as a system that has a high MIQ.
The Learning Revolution: Education Innovations for Global Citizens.
ERIC Educational Resources Information Center
Gilman, Robert, Ed.
1991-01-01
This theme journal issue is devoted to the learning revolution in educational innovations aimed at global citizens. The article titles and authors are as follows: (1) "A Personal Introduction" by Alan AtKisson; (2) "Onward and Upward!" by Dee Dickinson; (3) "Multiple Intelligences in the Classroom" by Bruce Campbell; (4) "Learning As…
Essays on Learning through Practice
ERIC Educational Resources Information Center
Feng, Junchen
2017-01-01
The future of education is human expertise and artificial intelligence working in conjunction, a revolution that will change the education as we know it. The Intelligent Tutoring System is a key component of this future. A quantitative measurement of efficacies of practice to heterogeneous learners is the cornerstone of building an effective…
Evolution and Revolution in Artificial Intelligence in Education
ERIC Educational Resources Information Center
Roll, Ido; Wylie, Ruth
2016-01-01
The field of Artificial Intelligence in Education (AIED) has undergone significant developments over the last twenty-five years. As we reflect on our past and shape our future, we ask two main questions: What are our major strengths? And, what new opportunities lay on the horizon? We analyse 47 papers from three years in the history of the…
ERIC Educational Resources Information Center
Brown, John Seely; Goldstein, Ira
A revolution that will transform learning in our society, altering both the methods and the content of education, has been made possible by harnessing tomorrow's powerful computer technology to serve as intelligent instructional systems. The unique quality of the computer that makes a revolution possible is that it can serve not only as a…
Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?
Thompson, Reid F; Valdes, Gilmer; Fuller, Clifton D; Carpenter, Colin M; Morin, Olivier; Aneja, Sanjay; Lindsay, William D; Aerts, Hugo J W L; Agrimson, Barbara; Deville, Curtiland; Rosenthal, Seth A; Yu, James B; Thomas, Charles R
2018-06-12
Artificial intelligence (AI) is emerging as a technology with the power to transform established industries, and with applications from automated manufacturing to advertising and facial recognition to fully autonomous transportation. Advances in each of these domains have led some to call AI the "fourth" industrial revolution [1]. In healthcare, AI is emerging as both a productive and disruptive force across many disciplines. This is perhaps most evident in Diagnostic Radiology and Pathology, specialties largely built around the processing and complex interpretation of medical images, where the role of AI is increasingly seen as both a boon and a threat. In Radiation Oncology as well, AI seems poised to reshape the specialty in significant ways, though the impact of AI has been relatively limited at present, and may rightly seem more distant to many, given the predominantly interpersonal and complex interventional nature of the specialty. In this overview, we will explore the current state and anticipated future impact of AI on Radiation Oncology, in detail, focusing on key topics from multiple stakeholder perspectives, as well as the role our specialty may play in helping to shape the future of AI within the larger spectrum of medicine. Published by Elsevier B.V.
Smart factory in the context of 4th industrial revolution: challenges and opportunities for Romania
NASA Astrophysics Data System (ADS)
Pîrvu, B. C.; Zamfirescu, C. B.
2017-08-01
Manufacturing companies, independent of operation sector and size, must be able to produce lot size one products, just-in-time at a competitive cost. Coping with this high adaptability and short reaction times proves to be very challenging. New approaches must be taken into consideration for designing modular, intelligent and cooperative production systems which are easy to integrate with the entire factory. The coined term for this network of intelligent interacting artefacts system is cyber-physical systems (CPS). CPS is often used in the context of Industry 4.0 - or what many consider the forth industrial revolution. The paper presents an overview of key technological and social requirements to map the Smart Factory vision into reality. Finally, global and Romanian specific challenges hindering the vision of a true Smart Factory to become reality are presented.
Bellwether Social Studies Programs.
ERIC Educational Resources Information Center
Daetz, Denney
1985-01-01
Describes and reviews commercially-available computer software for social studies (SS). They are: "Jury Trial II" (utilizes artificial intelligence); "Africa" (utilizes creative graphics to teaching SS facts; "Revolutions: Past, Present and Future"; "The Other Side" (examines world peace using values…
An Intelligent Virtual Human System For Providing Healthcare Information And Support
2011-01-01
for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality ...College; dMadigan Army Medical Center Army Abstract. Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality ... Virtual Reality with the “birth” of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive
Information specialist for a coming age (11)
NASA Astrophysics Data System (ADS)
Kamio, Tatsuo
In the business world 'CNN REVOLUTION' is prevailing. 'CNN REVOLUTION' means the information system organized mostly by the Computer and the Communication Network through which they can make a vital business judgment. They try to give customers better service, enjoy a higher share and be more competitive through the information system, which enables them to control various information inside their firm completely and use it most usefully. They are also trying to hard to make the information system effective enough to gather information outside their firm. In making use of information for business, it is vital to get 'intelligence' which analized and processed information and to expand information distribution inside their company freely. As a new field of activity information specialist are expected to take a more important role in developing how to get 'good intelligence' and making useful information accessible through the information system.
Toward a Revolution in Intelligence Affairs
2005-01-01
hard because people overestimate the value of what they have⎯and underestimate the value of what they may gain by giving that up." James Belasco and...Best Truths : Intelligence in the Information Age, New Haven: Yale University Press, 2000, p. 44. 19 collection operations, and analytical methodologies...to CIA DDO James Pavitt, “We have more reporting on the really hard targets than I can remember at any time in my nearly 30 years of agency service.”7
The Intelligence Revolution: A Historical Perspective
1988-10-01
Smith, Myron J., Jr. The secret wars: a guide to sources in English. Santa Barbara, CA: ABC-Clio, 1980. (Z 6724 .17 363) PERIODICAL ARTICLES Hunter...McGraw-Hill, 1982. (Ref UB 250 .B87) Kennedy, William V., et al. The intelligence war:$ penetrating the secret world of today’s advanced technology...and military branches of the secret services of the USA in 120 countries. Berlin: Julius Mader, 1968. (JK 468 .16 M18) Orlov, Alexander. Handbook of
The next public health revolution: public health information fusion and social networks.
Khan, Ali S; Fleischauer, Aaron; Casani, Julie; Groseclose, Samuel L
2010-07-01
Social, political, and economic disruptions caused by natural and human-caused public health emergencies have catalyzed public health efforts to expand the scope of biosurveillance and increase the timeliness, quality, and comprehensiveness of disease detection, alerting, response, and prediction. Unfortunately, efforts to acquire, render, and visualize the diversity of health intelligence information are hindered by its wide distribution across disparate fields, multiple levels of government, and the complex interagency environment. Achieving this new level of situation awareness within public health will require a fundamental cultural shift in methods of acquiring, analyzing, and disseminating information. The notion of information "fusion" may provide opportunities to expand data access, analysis, and information exchange to better inform public health action.
The Next Public Health Revolution: Public Health Information Fusion and Social Networks
Fleischauer, Aaron; Casani, Julie; Groseclose, Samuel L.
2010-01-01
Social, political, and economic disruptions caused by natural and human-caused public health emergencies have catalyzed public health efforts to expand the scope of biosurveillance and increase the timeliness, quality, and comprehensiveness of disease detection, alerting, response, and prediction. Unfortunately, efforts to acquire, render, and visualize the diversity of health intelligence information are hindered by its wide distribution across disparate fields, multiple levels of government, and the complex interagency environment. Achieving this new level of situation awareness within public health will require a fundamental cultural shift in methods of acquiring, analyzing, and disseminating information. The notion of information “fusion” may provide opportunities to expand data access, analysis, and information exchange to better inform public health action. PMID:20530760
The Impact of the Information Revolution on Policymakers’ Use of Intelligence Analysis
2005-01-01
Site Support Area Figure 1-12 2 Image of site named Yurya taken from the Smithsonian National Air & Space Museum archives, and can also be found at...from the intelligence community, this image was taken by a commercial imaging satellite IKONOS, owned and operated by the firm Space Imaging , and paid...for and published by Aviation Week and Space Technology magazine. The image was posted on the WWW, as was the accompanying drawing, shown in figure 1-3
NASA Astrophysics Data System (ADS)
Walker, Theodore, Jr.
2012-06-01
In contrast to the Copernican revolution in astro-geometry, the Hoyle-Wickramasinghe contribution to the recent and continuing revolution in astrobiology - "cometary panspermia" - features astronomy and biology converging toward theology. They employed astro-biotic reasoning (often labeled "anthropic" reasoning) to demonstrate that life is made possible by the deliberate controlling influence of the living all-embracing "intelligent universe." This is consistent with panentheism [pan-en-theos-ism, not pantheism]. As advanced by Hoyle and Wickramasinghe, cometary panspermia is panentheistic. Also, neoclassical panentheism requires generic panspermia, and favors cometary panspermia.
The evolving identity, capacity, and capability of the future surgeon.
Himidan, Sharifa; Kim, Peter
2015-06-01
Technology has transformed surgery more within the last 30 years than the previous 2000 years of human history combined. These innovations have changed not only how the surgeon practices but have also altered the very essence of what it is to be a surgeon in the modern era. Beyond the industrial revolution, today's information revolution allows patients access to an abundance of easily accessible, unfiltered information which they can use to evaluate their surgical treatment, and truly participate in their personal care. We are entering yet another revolution specifically affecting surgeons, where the traditional surgical tools of our craft are becoming "smart." Intelligence in surgical tools and connectivity based on sensory data, processing, and analysis are enabling and enhancing a surgeon's capacity and capability. Given the tempo of change, within one generation the traditional role and identity of a surgeon will be fully transformed. In this article, the impact of the information revolution, technological advances combined with smart connectivity on the changing role of surgery will be considered. Copyright © 2015 Elsevier Inc. All rights reserved.
No genes for intelligence in the fluid genome.
Ho, Mae-Wan
2013-01-01
Revolution is brewing belatedly within the heartlands of the genetic determinist establishment still in denial about the fluid genome that makes identifying genes even for common disease well-nigh impossible. The fruitless hunt for intelligence genes serves to expose the poverty of an obsolete paradigm that is obstructing knowledge and preventing fruitful policies from being widely implemented. Genome-wide scans using state-of-the art technologies on extensive databases have failed to find a single gene for intelligence; instead, environment and maternal effects may account for most, if not all correlation among relatives, while identical twins diverge genetically and epigenetically throughout life. Abundant evidence points to the enormous potential for improving intellectual abilities (and health) through simple environmental and social interventions.
The Genie Is Out of the Bottle
ERIC Educational Resources Information Center
Katz, Richard N.
2004-01-01
Starting in the late 1960s, data networks were created to connect supercomputers and, later, other intelligent devices. A revolution in communications was in the making. By the late 1970s, computing and communications technologies were leading us from a world of local markets trading in capital goods to one of global markets trading in capital…
Complexity and the Limits of Revolution: What Will Happen to the Arab Spring?
NASA Astrophysics Data System (ADS)
Gard-Murray, Alexander S.; Bar-Yam, Yaneer
The recent social unrest across the Middle East and North Africa has deposed dictators who had ruled for decades. While the events have been hailed as an "Arab Spring" by those who hope that repressive autocracies will be replaced by democracies, what sort of regimes will eventually emerge from the crisis remains far from certain. Here we provide a complex systems framework, validated by historical precedent, to help answer this question. We describe the dynamics of governmental change as an evolutionary process similar to biological evolution, in which complex organizations gradually arise by replication, variation, and competitive selection. Different kinds of governments, however, have differing levels of complexity. Democracies must be more systemically complex than autocracies because of their need to incorporate large numbers of people in decision-making. This difference has important implications for the relative robustness of democratic and autocratic governments after revolutions. Revolutions may disrupt existing evolved complexity, limiting the potential for building more complex structures quickly. Insofar as systemic complexity is reduced by revolution, democracy is harder to create in the wake of unrest than autocracy. Applying this analysis to the Middle East and North Africa, we infer that in the absence of stable institutions or external assistance, new governments are in danger of facing increasingly insurmountable challenges and reverting to autocracy.
[Current considerations around the search for extraterrestrial life].
González de Posada, F
2000-01-01
In this paper, the current cosmological topics are considered: a) The fourth centenary celebration of Giordano Bruno's death at the Roman's inquisition stake. This eminent philosopher, based on the Coppernican Revolution, concibed the Cosmos as a infinite universe with innumerable inhabited worlds. He acted on reason to believe not only in extraterrestrial life but in extraterrestrial intelligent life. Here we write a few words in his memory and honour. b) The active project SETI@home in the framework of today's classic program "Search for Extra-Terrestrial Intelligence", by means of the reception of radioelectrical signals. c) Search for extrasolar planets.
Progress in post-quantum mechanics
NASA Astrophysics Data System (ADS)
Sarfatti, Jack
2017-05-01
Newton's mechanics in the 17th century increased the lethality of artillery. Thermodynamics in the 19th led to the steam-powered industrial revolution. Maxwell's unification of electricity, magnetism and light gave us electrical power, the telegraph, radio and television. The discovery of quantum mechanics in the 20th century by Planck, Bohr, Einstein, Schrodinger, Heisenberg led to the creation of the atomic and hydrogen bombs as well as computer chips, the world-wide-web and Silicon Valley's multibillion dollar corporations. The lesson is that breakthroughs in fundamental physics, both theoretical and experimental, have always led to profound technological wealth-creating industries and will continue to do so. There is now a new revolution brewing in quantum mechanics that can be divided into three periods. The first quantum revolution was from 1900 to about 1975. The second quantum information/computer revolution was from about 1975 to 2015. (The early part of this story is told by Kaiser in his book, How the Hippies Saved Physics, how a small group of Berkeley/San Francisco physicists triggered that second revolution.) The third quantum revolution is how an extension of quantum mechanics may lead to the understanding of consciousness as a natural physical phenomenon that can emerge in many material substrates, not only in our carbon-based biochemistry. In particular, this new post-quantum mechanics may lead to naturally conscious artificial intelligence in nano-electronic machines, as well as perhaps extending human life spans to hundreds of years and more.
Beyond Artificial Intelligence toward Engineered Psychology
NASA Astrophysics Data System (ADS)
Bozinovski, Stevo; Bozinovska, Liljana
This paper addresses the field of Artificial Intelligence, road it went so far and possible road it should go. The paper was invited by the Conference of IT Revolutions 2008, and discusses some issues not emphasized in AI trajectory so far. The recommendations are that the main focus should be personalities rather than programs or agents, that genetic environment should be introduced in reasoning about personalities, and that limbic system should be studied and modeled. Engineered Psychology is proposed as a road to go. Need for basic principles in psychology are discussed and a mathematical equation is proposed as fundamental law of engineered and human psychology.
1993-12-01
72 D. MINES AND THE MILITARY-TECHNOLOGICAL REVOLUTION ...................................... 74 E. CUSTOMIZING THE TDD PROLIFERATION MARKET M...Data Storage & Peripherals - Systems Managmnt Technologies 4. Passive Sensors - Sensors and Signal Processing 5. Photonics - Electronic and...a reproducible procedure to allow customization of the model, provides the "guts" of the method. 18 Third, because they are not optimized for
2015 Marine Corps Security Environment Forecast: Futures 2030-2045
2015-01-01
The technologies that make the iPhone “smart” were publically funded—the Internet, wireless networks, the global positioning system, microelectronics...Energy Revolution (63 percent); Internet of Things (ubiquitous sensors embedded in interconnected computing devices) (50 percent); “Sci-Fi...Neuroscience & artificial intelligence - Sensors /control systems -Power & energy -Human-robot interaction Robots/autonomous systems will become part of the
Sensemaking: A Structure for an Intelligence Revolution
2011-03-01
level of distraction among drivers who are using cell phones reveal an associated , diminished driver capacity.32 Non...relationships among sparse and ambiguous data .”87 Th is book accepts that perspective and develops the psychological, behavioral , and social levels of...correlations revealed . Benjamin Kleinmuntz obtained a similar result using the “Twenty Questions” game and a set of test cases to add structure
A Decision Support System for Optimum Use of Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith
1999-07-01
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less
A Decision Support System for Optimum Use of Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Hoskinson; J. R. Hess; R. K. Fink
1999-07-01
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems' infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less
Was there a Darwinian Revolution? Yes, no, and maybe!
Ruse, Michael
2014-01-01
Was there a Darwinian Revolution and was it but part of the Scientific Revolution? Before Thomas Kuhn's Structure of Scientific Revolutions in 1962, most people thought that there was a Darwinian Revolution, that it was in some sense connected to the Scientific Revolution, but that neither question nor answer was terribly interesting. Then revolutions in science became a matter of intense debate, not so much about their very existence but about their nature. Was there a switch in world-views? Did the facts change? What was the importance of social groups? And so forth. Recently however some students of the history of science have started to argue that the very questions are misconceived and that there cannot have been a Darwinian Revolution and its relationship to the Scientific Revolution is imaginary because there are no such revolutions in science! This paper takes a sympathetic look at these issues, concluding that there is still life in the revolution-in-science issue, that Kuhn's book was seminal and still has things of importance to say, but that matters are more complex and more interesting than we thought back then. Copyright © 2014 Elsevier Ltd. All rights reserved.
2011-05-19
Amanda Currier, “the intelligence directorate (A2) is more 42 Douglas Clark & Capt James Newsom...47 SSgt Amanda Currier, e-mail message to author, November 12, 2010. 48 COL Gerald O’Hara...Clark, e-mail message to author, November 15, 2010. 60 Capt James Newsom, e-mail message to author, November 15, 2010. 61 SSgt Amanda Currier, e
Expeditionary Operations in the Fourth Industrial Revolution
2017-06-21
may radically change it. AM is inherently flexible, since the product produced depends only on the materials the printer can use, the design of...strengths: adaptability, flexibility, and responsiveness to the demands of war. Keywords: artificial intelligence, 3D manufacturing , robotics, drones...grow and process their products .13 Thus, criminal organizations can have an impact on the security of the United States, and our response may well
Impact of Prior Flight Experience on Learning Predator UAV Operator Skills
2002-02-01
UAVs are becoming a mainstay of intelligence , surveillance, and reconnaissance (ISR) information gathering, with the capability of supplying, in...indicators of UAV pilot skill, namely frequency and type of videogame playing, and experience with remote-controlled hobby aircraft. Experience with...indicator, artificial horizon, heading rate indicator, and engine revolutions per minute. The right monitor displays other useful information, such as a
Primary prevention: educational approaches to enhance social and emotional learning.
Elias, M J; Weissberg, R P
2000-05-01
The 1995 publication of Goleman's Emotional Intelligence triggered a revolution in mental health promotion. Goleman's examination of Gardner's work on multiple intelligences and current brain research, and review of successful programs that promoted emotional health, revealed a common objective among those working to prevent specific problem behaviors: producing knowledgeable, responsible, nonviolent, and caring individuals. Advances in research and field experiences confirm that school-based programs that promote social and emotional learning (SEL) in children can be powerful in accomplishing these goals. This article reviews the work of the Collaborative to Advance Social and Emotional Learning (CASEL), its guidelines for promoting mental health in children and youth based on SEL, key principles, and examples of exemplary programs.
Artificial Intelligence: A Revolution Waiting to Happen
2017-06-09
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 9-06-2017 2. REPORT TYPE...important RMAs, limited by innovative concepts and organizational desire to change. General AI, on the other hand, looms in theoretical form as a
2006-07-01
Risbrudt Theodore Wegner Intelligence Technology Innovation Center (ITIC) Susan Durham International Trade Commission (ITC) Elizabeth Nesbitt National...Hays, Deputy Associate Director for Technology, OSTP Congressional Perspective Elizabeth Grossman and James Wilson, House Committee on Science...Scientific Impact of NNI Speakers: Sam Stupp, Northwestern University Moungi Bawendi, MIT Ellen Williams, University of Maryland Lou Brus , Columbia
Cyberinfrastructure: The Second Revolution
ERIC Educational Resources Information Center
Bement, Arden L.
2007-01-01
The engine of change for the next revolution is cyberinfrastructure, a comprehensive phenomenon that involves the creation, dissemination, preservation, and application of knowledge. It adds new dimensions that greatly increase transformational potential. Cyberinfrastructure combines complex elements to create a dynamic system. It eclipses its…
The New High Ground: An Analysis of Space-Based Systems in the Information Revolution'
NASA Astrophysics Data System (ADS)
Mitchell, Olivia S.
2002-09-01
The Revolution in Military Affairs (RMA) was developed in 1989 by Andrew Marshall of the Office of Net Assessment in Washington. Based on Marshal Nikolai Ogarkov's doctrine of the Military-Technical Revolution, the RMA is defined as: A major change in the nature of warfare brought about by the innovative application of new technologies which, combined with dramatic changes in military doctrine, operations, and organizational concepts, fundamentally alters the character and conduct of military operations. Though no official definition exists, these requirements of technological innovation, new doctrine and operations concepts, and organizational change were used in the analysis of the 1991 Gulf War, resulting in the conclusion of the existence of a new RMA. Known as the Information Revolution, this RMA is centered on stealth technology, precision munitions, advanced sensors and increased communications, command, control, computer and intelligence (C4I). From these advancements, doctrinal development has taken place in both joint and service centered documents. These new doctrines have introduced the operational concepts of dominant maneuver, precision engagement, focused logistics and full-dimensional protection, culminating in the new core competency of full-spectrum dominance. Organizational changes to allow for the achievement of these new concepts consists of an increased focus on inter-service connectivity for joint operations and the mutation of the traditional military hierarchy into smaller, more mobile forces deployable for rapid reactions and tailored to the specific threat.
NASA Astrophysics Data System (ADS)
Popolo, Damian
The paper will seek to present a genesis of complexity in European philosophical thought. Following the works of Gleick and Hobsbawn it is possible to discern the emergence of complexity's ethos in the `age of revolutions'. Gleick, for example, has noted the influence of natural philosophy on the first precursors of chaos theory. Natural philosophy itself was deeply anchored in German romanticism. The paper will thus seek to present, following Foucault, an `Archaeology of Complexity' which considers Foucault's definition of epistemes as evolving modes of thought. In particular, the paper will seek to use Foucault's description of the modern episteme in order to detect the novelty inherent within the ethos of Complexity.
The Pedagogy of Controversy in the Field of China Studies: Teaching the Cultural Revolution
ERIC Educational Resources Information Center
Carrico, Kevin
2014-01-01
How can we as educators address complex and controversial topics in the social sciences without encouraging simplistic responses and self-reproducing binary oppositions? Drawing upon an ethnographic analysis of a first-year writing seminar on the history of the Chinese Cultural Revolution, this article proposes novel approaches to overcome…
Tschentscher, Nadja; Mitchell, Daniel; Duncan, John
2017-05-03
Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.
The Darwinian revolution: Rethinking its meaning and significance
Ruse, Michael
2009-01-01
The Darwinian revolution is generally taken to be one of the key events in the history of Western science. In recent years, however, the very notion of a scientific revolution has come under attack, and in the specific case of Charles Darwin and his Origin of Species there are serious questions about the nature of the change (if there was such) and the specifically Darwinian input. This article considers these issues by addressing these questions: Was there a Darwinian revolution? That is, was there a revolution at all? Was there a Darwinian revolution? That is, what was the specific contribution of Charles Darwin? Was there a Darwinian revolution? That is, what was the conceptual nature of what occurred on and around the publication of the Origin? I argue that there was a major change, both scientifically and in a broader metaphysical sense; that Charles Darwin was the major player in the change, although one must qualify the nature and the extent of the change, looking particularly at things in a broader historical context than just as an immediate event; and that the revolution was complex and we need the insights of rather different philosophies of scientific change to capture the whole phenomenon. In some respects, indeed, the process of analysis is still ongoing and unresolved. PMID:19528652
2001-01-01
The Use of Military Force in Combating Urban Crime Using British Royal Marines in Northern Ireland as a Model .” MMS Thesis. Quantico, VA: USMC...to capture armaments and to destabilize command and control functions. Solid intelligence networks were required to operate efficiently in the urban ...Force in Combating Urban Crime Using British Royal Marines in Northern Ireland as a Model .” MMS Thesis. Quantico, VA: USMC Command and Staff College
NASA Technical Reports Server (NTRS)
Sehra, Arun K.
2003-01-01
Twenty-first-century aeropropulsion and power research will enable new transport engine and aircraft systems including: 1) Emerging ultralow noise and emissions with the use of intelligent turbofans; 2) Future distributed vectored propulsion with 24-hour operations and greater community mobility; 3) Research in hybrid combustion and electric propulsion systems leading to silent aircraft with near-zero emissions; and 4) The culmination of these revolutions will deliver an all-electric- powered propulsion system with zero-impact emissions and noise and high-capacity, on-demand operation
The International Social Revolution: Its Impact on Canadian Family Life.
ERIC Educational Resources Information Center
Couchman, Robert
1986-01-01
The causes for the sudden onset of social revolution are extremely complex and consist of major shifts in the social, economic, and cultural scene. For the field of family studies it is important to understand both the macro scope of these disturbances to the lives of families and the influences that contribute stability. (Author/CT)
The Coming Revolution in Public Services, and What It Means for Cities and Universities
ERIC Educational Resources Information Center
Konvitz, Josef
2016-01-01
Long-term demographic trends, combined with low productivity and pressure on public finances have set in place the preconditions for a major revolution in public services. Governments face new demands including for security which will lead to more centralization, but social and environmental services for a more complex society call for greater…
A psychology for pedagogy: intelligence testing in USSR in the 1920s.
Leopoldoff, Irina
2014-08-01
This article examines a case of intelligence testing conducted in the mid-1920s, while considering the broader political and scientific context of Soviet life. Guided by questions about the status and influence of mental measurement in Russian society, previously and after the revolution, as well as asking about the main actors in the fields linked to testing, such as psychology, pedagogy, and pedology, during this tumultuous period. To answer these questions, journals and difficult-to-access archival sources were used, which provided evidence regarding the enthusiasm psychological testing had on scholars in the 1920s and the institutional support they received for their surveys. The article offers some hints concerning why this was so and why this situation changed completely a decade later. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Statistical Literacy in Data Revolution Era: Building Blocks and Instructional Dilemmas
ERIC Educational Resources Information Center
Prodromou, Theodosia; Dunne, Tim
2017-01-01
The data revolution has given citizens access to enormous large-scale open databases. In order to take into account the full complexity of data, we have to change the way we think in terms of the nature of data and its availability, the ways in which it is displayed and used, and the skills that are required for its interpretation. Substantial…
Home range overlap as a driver of intelligence in primates.
Grueter, Cyril C
2015-04-01
Various socioecological factors have been suggested to influence cognitive capacity in primates, including challenges associated with foraging and dealing with the complexities of social life. Alexander [Alexander, 1989]. Evolution of the human psyche. In: Mellars P, Stringer C, editors. The human revolution: Behavioural and biological perspectives on the origins of modern humans. Princeton: Princeton University Press. p 455-513] proposed an integrative model for the evolution of human cognitive abilities and complex sociality that incorporates competition among coalitions of conspecifics (inter-group conflict) as a major selective pressure. However, one of the premises of this model, i.e., that when confronted with inter-group conflict selection should favor enhanced cognition, has remained empirically untested. Using a comparative approach on species data, I aimed to test the prediction that primate species (n = 104) that face greater inter-group conflict have higher cognitive abilities (indexed by endocranial volume). The degree of inter-group conflict/complexity was approximated via the variable home range overlap among groups. I found a significant relationship between home range overlap and endocranial volume, even after controlling for other predictor variables and covariates such as group size and body mass. I conclude that brain size evolution cannot be attributed exclusively to social factors such as group size, but likely reflects a variety of social and ecological determinants including inter-group conflict which poses cognitive demands on monitoring both the wider social milieu as well as spatial attributes of the habitat. © 2014 Wiley Periodicals, Inc.
Virtual reality and telepresence for military medicine.
Satava, R M
1995-03-01
The profound changes brought about by technology in the past few decades are leading to a total revolution in medicine. The advanced technologies of telepresence and virtual reality are but two of the manifestations emerging from our new information age; now all of medicine can be empowered because of this digital technology. The leading edge is on the digital battlefield, where an entire new concept in military medicine is evolving. Using remote sensors, intelligent systems, telepresence surgery and virtual reality surgical simulations, combat casualty care is prepared for the 21st century.
Roskams, Jane; Popović, Zoran
2016-11-02
Global neuroscience projects are producing big data at an unprecedented rate that informatic and artificial intelligence (AI) analytics simply cannot handle. Online games, like Foldit, Eterna, and Eyewire-and now a new neuroscience game, Mozak-are fueling a people-powered research science (PPRS) revolution, creating a global community of "new experts" that over time synergize with computational efforts to accelerate scientific progress, empowering us to use our collective cerebral talents to drive our understanding of our brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Problem Reframing: Intelligence Professionals’ Role in Design
2010-04-01
The idea of differences exists in intelligence analyst’s Don McDowell’s book Strategic Intelligence, when he explains that covering all events...Complexity, (New York, Basic Books , 2000), 7. 57 Gharajedaghi, 107. 20 intelligence community with an end result of increasing the potential for greater...Avoiding Error in Complex Situations, (New York: Basic Books , 1996), 164. 79 Ibid. 26 understanding the operational environment to planning the
Complexity and compositionality in fluid intelligence.
Duncan, John; Chylinski, Daphne; Mitchell, Daniel J; Bhandari, Apoorva
2017-05-16
Compositionality, or the ability to build complex cognitive structures from simple parts, is fundamental to the power of the human mind. Here we relate this principle to the psychometric concept of fluid intelligence, traditionally measured with tests of complex reasoning. Following the principle of compositionality, we propose that the critical function in fluid intelligence is splitting a complex whole into simple, separately attended parts. To test this proposal, we modify traditional matrix reasoning problems to minimize requirements on information integration, working memory, and processing speed, creating problems that are trivial once effectively divided into parts. Performance remains poor in participants with low fluid intelligence, but is radically improved by problem layout that aids cognitive segmentation. In line with the principle of compositionality, we suggest that effective cognitive segmentation is important in all organized behavior, explaining the broad role of fluid intelligence in successful cognition.
Humanlike robots: the upcoming revolution in robotics
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2009-08-01
Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.
Humanlike Robots - The Upcoming Revolution in Robotics
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2009-01-01
Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.
Intelligent mobility research for robotic locomotion in complex terrain
NASA Astrophysics Data System (ADS)
Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit
2006-05-01
The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.
Expertise, Task Complexity, and Artificial Intelligence: A Conceptual Framework.
ERIC Educational Resources Information Center
Buckland, Michael K.; Florian, Doris
1991-01-01
Examines the relationship between users' expertise, task complexity of information system use, and artificial intelligence to provide the basis for a conceptual framework for considering the role that artificial intelligence might play in information systems. Cognitive and conceptual models are discussed, and cost effectiveness is considered. (27…
NASA Technical Reports Server (NTRS)
Chu, R. W.; Mitchell, C. M.; Govindaraj, T.
1989-01-01
This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.
Complexity and compositionality in fluid intelligence
Duncan, John; Chylinski, Daphne
2017-01-01
Compositionality, or the ability to build complex cognitive structures from simple parts, is fundamental to the power of the human mind. Here we relate this principle to the psychometric concept of fluid intelligence, traditionally measured with tests of complex reasoning. Following the principle of compositionality, we propose that the critical function in fluid intelligence is splitting a complex whole into simple, separately attended parts. To test this proposal, we modify traditional matrix reasoning problems to minimize requirements on information integration, working memory, and processing speed, creating problems that are trivial once effectively divided into parts. Performance remains poor in participants with low fluid intelligence, but is radically improved by problem layout that aids cognitive segmentation. In line with the principle of compositionality, we suggest that effective cognitive segmentation is important in all organized behavior, explaining the broad role of fluid intelligence in successful cognition. PMID:28461462
Note on transmitted complexity for quantum dynamical systems
NASA Astrophysics Data System (ADS)
Watanabe, Noboru; Muto, Masahiro
2017-10-01
Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Overview of Intelligent Systems and Operations Development
NASA Technical Reports Server (NTRS)
Pallix, Joan; Dorais, Greg; Penix, John
2004-01-01
To achieve NASA's ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take the correct action in a variety of circumstances. Vehicle intelligence can be defined as the ability to "do the right thing" when faced with a complex decision-making situation. It will be necessary to implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. This paper will describe the array of technologies required to meet these complex objectives. This includes the integration of high-level reasoning and autonomous capabilities with multiple subsystem controllers for robust performance. Future intelligent systems will use models of the system, its environment, and other intelligent agents with which it interacts. They will also require planners, reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently. The presentation will also address the development of highly dependable software, which is a key component to ensure the reliability of intelligent systems.
From remote-controlled to self-controlled citizens
NASA Astrophysics Data System (ADS)
Helbing, D.
2017-01-01
The digital revolution will make data abundant and cheap. Moving from a time of darkness into a digital age with information overload, we will need suitable filters. However, those who build these filters will determine what we see. This creates possibilities to influence people's decisions such that they become remotely controlled rather than make their decisions on their own. Since omnibenevolent rule cannot be supposed and top-down control is flawed for several reasons, another approach is needed. It can be found with distributed control, collective intelligence and participation. "Nervousnet" will be presented as a feasible specimen of a Citizen Web.
Information theory, animal communication, and the search for extraterrestrial intelligence
NASA Astrophysics Data System (ADS)
Doyle, Laurance R.; McCowan, Brenda; Johnston, Simon; Hanser, Sean F.
2011-02-01
We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an "intelligent message" content within these animals' signals, perhaps not surprising given these species' social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most "organized" of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The User's manual for the shell theory automated for rotational structures (STARS) 2B and 2V (buckling, vibrations) is presented. Several features of the program are: (1) arbitrary branching of the shell meridians, (2) arbitrary boundary conditions, (3) minimum input requirements to describe a complex, practical shell of revolution structure, and (4) accurate analysis capability using a minimum number of degrees of freedom.
The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading.
Hainc, Nicolin; Federau, Christian; Stieltjes, Bram; Blatow, Maria; Bink, Andrea; Stippich, Christoph
2017-01-01
Radiologists are among the first physicians to be directly affected by advances in computer technology. Computers are already capable of analyzing medical imaging data, and with decades worth of digital information available for training, will an artificial intelligence (AI) one day signal the end of the human radiologist? With the ever increasing work load combined with the looming doctor shortage, radiologists will be pushed far beyond their current estimated 3 s allotted time-of-analysis per image; an AI with super-human capabilities might seem like a logical replacement. We feel, however, that AI will lead to an augmentation rather than a replacement of the radiologist. The AI will be relied upon to handle the tedious, time-consuming tasks of detecting and segmenting outliers while possibly generating new, unanticipated results that can then be used as sources of medical discovery. This will affect not only radiologists but all physicians and also researchers dealing with medical imaging. Therefore, we must embrace future technology and collaborate interdisciplinary to spearhead the next revolution in medicine.
On the use of multi-agent systems for the monitoring of industrial systems
NASA Astrophysics Data System (ADS)
Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil
2016-03-01
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.
Artificial Intelligence Applications to High-Technology Training.
ERIC Educational Resources Information Center
Dede, Christopher
1987-01-01
Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…
Reconceptualizing the Nature of Goals and Outcomes in Language/s Education
ERIC Educational Resources Information Center
Leung, Constant; Scarino, Angela
2016-01-01
Transformations associated with the increasing speed, scale, and complexity of mobilities, together with the information technology revolution, have changed the demography of most countries of the world and brought about accompanying social, cultural, and economic shifts (Heugh, 2013). This complex diversity has changed the very nature of…
Intelligent building system for airport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ancevic, M.
1997-11-01
The Munich airport uses a state-of-the-art intelligent building management system to control systems such as HVAC, runway lights, baggage handling, etc. Planning the new Munich II international airport provided a unique opportunity to use the latest state-of-the-art technical systems, while integrating their control through a single intelligent building management system. Opened in 1992, the airport is Germany`s second-largest airport after Frankfurt. The airport is staffed by 16,000 employees and can handle 17 million passengers a year. The sprawling site encompasses more than 120 buildings. The airport`s distributed control system is specifically designed to optimize the complex`s unique range of functions,more » while providing a high degree of comfort, convenience and safety for airport visitors. With the capacity to control 200,000 points, this system controls more than 112,000 points and integrates 13 major subsystems from nine different vendors. It provides convenient, accessible control of everything including the complex`s power plant, HVAC Control, the terminal`s people-moving functions, interior lighting controls, runway lights, baggage forwarding systems, elevators, and boarding bridges. The airport was named 1993 intelligent building of the year by the Intelligent Buildings Institute Foundation. Its building management system is a striking example of the degree to which a building complex`s functions can be integrated for greater operational control and efficiency.« less
ERIC Educational Resources Information Center
Day, Eric Anthony; Arthur, Winfred Jr.; Bell, Suzanne T.; Edwards, Bryan D.; Bennett, Winston Jr.; Mendoza, Jorge L.; Tubre, Travis C.
2005-01-01
Intelligence researchers traditionally focus their attention on the individual level and overlook the role of intelligence at the interindividual level. This research investigated the interplay of the effects of intelligence at the individual and interindividual levels by manipulating the intelligence-based composition of dyadic training teams.…
Countermeasure Analysis on Internet Logistics
NASA Astrophysics Data System (ADS)
Teng, Shao Ying; Li, Xiao Jun; Zhao, Zhi; Qin, Peng Lei; Lu, Ya Ya
2018-06-01
The rapid development of Internet technology has caused a series of industrial revolution, which has provided strong impetus for economic development. The Internet + concept puts forward the deep integration between the Internet and traditional industries, which points out the direction for the development of various industries. For the logistics industry, "Internet +" provides a new way of transformation, and intelligent logistics, smart logistics and green logistics bring new business value to the logistics industry. This paper analyzes the current situation of the logistics industry in the context of Internet +, finds out the existing problems, and proposes corresponding solutions to provide the impetus for further development of the logistics industry.
The Matter Simulation (R)evolution
2018-01-01
To date, the program for the development of methods and models for atomistic and continuum simulation directed toward chemicals and materials has reached an incredible degree of sophistication and maturity. Currently, one can witness an increasingly rapid emergence of advances in computing, artificial intelligence, and robotics. This drives us to consider the future of computer simulation of matter from the molecular to the human length and time scales in a radical way that deliberately dares to go beyond the foreseeable next steps in any given discipline. This perspective article presents a view on this future development that we believe is likely to become a reality during our lifetime. PMID:29532014
Intelligent Agent Architectures: Reactive Planning Testbed
NASA Technical Reports Server (NTRS)
Rosenschein, Stanley J.; Kahn, Philip
1993-01-01
An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected.
Oji, Tatsuo; Dornbos, Stephen Q; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the 'agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum . These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
NASA Astrophysics Data System (ADS)
Oji, Tatsuo; Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the `agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
The highly intelligent virtual agents for modeling financial markets
NASA Astrophysics Data System (ADS)
Yang, G.; Chen, Y.; Huang, J. P.
2016-02-01
Researchers have borrowed many theories from statistical physics, like ensemble, Ising model, etc., to study complex adaptive systems through agent-based modeling. However, one fundamental difference between entities (such as spins) in physics and micro-units in complex adaptive systems is that the latter are usually with high intelligence, such as investors in financial markets. Although highly intelligent virtual agents are essential for agent-based modeling to play a full role in the study of complex adaptive systems, how to create such agents is still an open question. Hence, we propose three principles for designing high artificial intelligence in financial markets and then build a specific class of agents called iAgents based on these three principles. Finally, we evaluate the intelligence of iAgents through virtual index trading in two different stock markets. For comparison, we also include three other types of agents in this contest, namely, random traders, agents from the wealth game (modified on the famous minority game), and agents from an upgraded wealth game. As a result, iAgents perform the best, which gives a well support for the three principles. This work offers a general framework for the further development of agent-based modeling for various kinds of complex adaptive systems.
Artificial intelligence (AI) systems for interpreting complex medical datasets.
Altman, R B
2017-05-01
Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability. © 2017 ASCPT.
Improved Intelligence Warning in an Age of Complexity
2015-05-21
at, and applying complexity science to this problem, which is represented by a multidiscipline study of large networks comprised of interdependent...For analysts and policy makers, complexity science offers methods to improve this understanding. As said by Ms. Irene Sanders, director of the... science to improve intelligence warning. The initial section describes how policy makers and national security leaders understand the current
NASA Technical Reports Server (NTRS)
Heneghan, C.
1999-01-01
The traditional centralized planning and scheduling of complex fast moving projects are value-added activites. However, centralized scheduling has some severe deficiencies that have plagued managers since the Polaris project when PERT analysis was invented.
Big cats as a model system for the study of the evolution of intelligence.
Borrego, Natalia
2017-08-01
Currently, carnivores, and felids in particular, are vastly underrepresented in cognitive literature, despite being an ideal model system for tests of social and ecological intelligence hypotheses. Within Felidae, big cats (Panthera) are uniquely suited to studies investigating the evolutionary links between social, ecological, and cognitive complexity. Intelligence likely did not evolve in a unitary way but instead evolved as the result of mutually reinforcing feedback loops within the physical and social environments. The domain-specific social intelligence hypothesis proposes that social complexity drives only the evolution of cognitive abilities adapted only to social domains. The domain-general hypothesis proposes that the unique demands of social life serve as a bootstrap for the evolution of superior general cognition. Big cats are one of the few systems in which we can directly address conflicting predictions of the domain-general and domain-specific hypothesis by comparing cognition among closely related species that face roughly equivalent ecological complexity but vary considerably in social complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
OFMTutor: An operator function model intelligent tutoring system
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
1989-01-01
The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described.
Picture archiving and communication systems (PACS).
Gamsu, Gordon; Perez, Enrico
2003-07-01
Over the past 2 decades, groups of computer scientists, electronic design engineers, and physicians, in universities and industry, have worked to achieve an electronic environment for the practice of medicine and radiology. The radiology component of this revolution is often called PACS (picture archiving and communication systems). More recently it has become evident that the efficiencies and cost savings of PACS are realized when they are part of an enterprise-wide electronic medical record. The installation of PACS requires careful planning by all the various stakeholds over many months prior to installation. All of the users must be aware of the initial disruption that will occur as they become familiar with the systems. Modern fourth generation PACS is linked to radiology and hospital information systems. The PACS consist of electronic acquisition sites-a robust network intelligently managed by a server, multiple viewing sites, and an archive. The details of how these are linked and their workflow analysis determines the success of PACS. PACS evolves over time, components are frequently replaced, and so the users must expect continuous learning about new updates and improved functionality. The digital medical revolution is rapidly being adopted in many medical centers, improving patient care and the success of the institution.
ERIC Educational Resources Information Center
Waalkens, Maaike; Aleven, Vincent; Taatgen, Niels
2013-01-01
Intelligent tutoring systems (ITS) support students in learning a complex problem-solving skill. One feature that makes an ITS architecturally complex, and hard to build, is support for strategy freedom, that is, the ability to let students pursue multiple solution strategies within a given problem. But does greater freedom mean that students…
Goal neglect and knowledge chunking in the construction of novel behaviour☆
Bhandari, Apoorva; Duncan, John
2014-01-01
Task complexity is critical in cognitive efficiency and fluid intelligence. To examine functional limits in task complexity, we examine the phenomenon of goal neglect, where participants with low fluid intelligence fail to follow task rules that they otherwise understand. Though neglect is known to increase with task complexity, here we show that – in contrast to previous accounts – the critical factor is not the total complexity of all task rules. Instead, when the space of task requirements can be divided into separate sub-parts, neglect is controlled by the complexity of each component part. The data also show that neglect develops and stabilizes over the first few performance trials, i.e. as instructions are first used to generate behaviour. In all complex behaviour, a critical process is combination of task events with retrieved task requirements to create focused attentional episodes dealing with each decision in turn. In large part, we suggest, fluid intelligence may reflect this process of converting complex requirements into effective attentional episodes. PMID:24141034
Vassanelli, Stefano; Mahmud, Mufti
2016-01-01
Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term "neurobiohybrids" indicating all those systems where such interaction is established. We argue that achieving a "high-level" communication and functional synergy between natural and artificial neuronal networks in vivo , will allow the development of a heterogeneous world of neurobiohybrids, which will include "living robots" but will also embrace "intelligent" neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted "intelligent" artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a "community building" perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes.
Bioresorbable scaffolds: talking about a new interventional revolution [corrected].
Hassell, M E C J; Grundeken, M J D; Delewi, R; Wykrzykowska, J J; Piek, J J
2013-04-01
After the introduction of coronary balloon angioplasty, bare-metal, and drug-eluting stents, fully bioresorbable scaffolds (BRS) could be the fourth revolution in interventional cardiology. The BRS technology shares the advantages of metallic stents regarding acute gain and prevention of acute vessel occlusion by providing transient scaffolding, while potentially overcoming many of the safety concerns of drug-eluting stents. Furthermore, without a permanent metallic cage, the vessel could remodel favourably and atherosclerotic plaques could regress in the long-term. This attracted increased interest and several BRS have been developed. In this review we will describe all BRS which are thus far clinically evaluated and provide an overview of ongoing clinical studies. Although the technology seems to be very promising, more studies including patients with more complex lesions are needed to evaluate whether the BRS can be used in daily clinical practice and if it is indeed becoming a new interventional revolution.
Intelligence and cortical thickness in children with complex partial seizures.
Tosun, Duygu; Caplan, Rochelle; Siddarth, Prabha; Seidenberg, Michael; Gurbani, Suresh; Toga, Arthur W; Hermann, Bruce
2011-07-15
Prior studies on healthy children have demonstrated regional variations and a complex and dynamic relationship between intelligence and cerebral tissue. Yet, there is little information regarding the neuroanatomical correlates of general intelligence in children with epilepsy compared to healthy controls. In vivo imaging techniques, combined with methods for advanced image processing and analysis, offer the potential to examine quantitative mapping of brain development and its abnormalities in childhood epilepsy. A surface-based, computational high resolution 3-D magnetic resonance image analytic technique was used to compare the relationship of cortical thickness with age and intelligence quotient (IQ) in 65 children and adolescents with complex partial seizures (CPS) and 58 healthy controls, aged 6-18 years. Children were grouped according to health status (epilepsy; controls) and IQ level (average and above; below average) and compared on age-related patterns of cortical thickness. Our cross-sectional findings suggest that disruption in normal age-related cortical thickness expression is associated with intelligence in pediatric CPS patients both with average and below average IQ scores. Copyright © 2011 Elsevier Inc. All rights reserved.
Fostering Emotional Intelligence in Online Higher Education Courses
ERIC Educational Resources Information Center
Majeski, Robin A.; Stover, Merrily; Valais, Teresa; Ronch, Judah
2017-01-01
Given the complex challenges organizations face and the importance of emotional intelligence to effective leadership, management education has begun to help adult learners develop emotional intelligence competencies. These include emotional self-control, conflict management, teamwork, cultural awareness, and inspirational leadership, among other…
The Machine Intelligence Hex Project
ERIC Educational Resources Information Center
Chalup, Stephan K.; Mellor, Drew; Rosamond, Fran
2005-01-01
Hex is a challenging strategy board game for two players. To enhance students' progress in acquiring understanding and practical experience with complex machine intelligence and programming concepts we developed the Machine Intelligence Hex (MIHex) project. The associated undergraduate student assignment is about designing and implementing Hex…
Quantum mechanics: why complex Hilbert space?
NASA Astrophysics Data System (ADS)
Cassinelli, G.; Lahti, P.
2017-10-01
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Present situation and trend of precision guidance technology and its intelligence
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Liu, Tiandong
2017-11-01
This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.
The BioIntelligence Framework: a new computational platform for biomedical knowledge computing.
Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles; Mousses, Spyro
2013-01-01
Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information.
The foundations of plant intelligence.
Trewavas, Anthony
2017-06-06
Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.
The foundations of plant intelligence
2017-01-01
Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses. PMID:28479977
The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading
Hainc, Nicolin; Federau, Christian; Stieltjes, Bram; Blatow, Maria; Bink, Andrea; Stippich, Christoph
2017-01-01
Radiologists are among the first physicians to be directly affected by advances in computer technology. Computers are already capable of analyzing medical imaging data, and with decades worth of digital information available for training, will an artificial intelligence (AI) one day signal the end of the human radiologist? With the ever increasing work load combined with the looming doctor shortage, radiologists will be pushed far beyond their current estimated 3 s allotted time-of-analysis per image; an AI with super-human capabilities might seem like a logical replacement. We feel, however, that AI will lead to an augmentation rather than a replacement of the radiologist. The AI will be relied upon to handle the tedious, time-consuming tasks of detecting and segmenting outliers while possibly generating new, unanticipated results that can then be used as sources of medical discovery. This will affect not only radiologists but all physicians and also researchers dealing with medical imaging. Therefore, we must embrace future technology and collaborate interdisciplinary to spearhead the next revolution in medicine. PMID:28983278
[Artificial intelligence in medicine: limits and obstacles.
Santoro, Eugenio
2017-12-01
Data scientists and physicians are starting to use artificial intelligence (AI) even in the medical field in order to better understand the relationships among the huge amount of data coming from the great number of sources today available. Through the data interpretation methods made available by the recent AI tools, researchers and AI companies have focused on the development of models allowing to predict the risk of suffering from a specific disease, to make a diagnosis, and to recommend a treatment that is based on the best and most updated scientific evidence. Even if AI is used to perform unimaginable tasks until a few years ago, the awareness about the ongoing revolution has not yet spread through the medical community for several reasons including the lack of evidence about safety, reliability and effectiveness of these tools, the lack of regulation accompanying hospitals in the use of AI by health care providers, the difficult attribution of liability in case of errors and malfunctions of these systems, and the ethical and privacy questions that they raise and that, as of today, are still unanswered.
ERIC Educational Resources Information Center
Primi, Ricardo
2002-01-01
Created two geometric inductive reasoning matrix tests by manipulating four sources of complexity orthogonally. Results for 313 undergraduates show that fluid intelligence is most strongly associated with the part of the central executive component of working memory that is related to controlled attention processing and selective encoding. (SLD)
Contributions of Associative Learning to Age and Individual Differences in Fluid Intelligence
ERIC Educational Resources Information Center
Tamez, Elaine; Myerson, Joel; Hale, Sandra
2012-01-01
According to the cognitive cascade hypothesis, age-related slowing results in decreased working memory, which in turn affects higher-order cognition. Because recent studies show complex associative learning correlates highly with fluid intelligence, the present study examined the role of complex associative learning in cognitive cascade models of…
Designing Crowdcritique Systems for Formative Feedback
ERIC Educational Resources Information Center
Easterday, Matthew W.; Rees Lewis, Daniel; Gerber, Elizabeth M.
2017-01-01
Intelligent tutors based on expert systems often struggle to provide formative feedback on complex, ill-defined problems where answers are unknown. Hybrid crowdsourcing systems that combine the intelligence of multiple novices in face-to-face settings might provide an alternate approach for providing intelligent formative feedback. The purpose of…
Intelligence and Creativity: A Complex but Important Relationship
ERIC Educational Resources Information Center
Plucker, Jonathan A.; Esping, Amber
2015-01-01
The relationship between intelligence and creativity is often discussed and debated, and it has significant implications for education, student development, and the workplace. We use Sternberg's framework for understanding intelligence-creativity work to examine research on this important topic, with an emphasis on several recent studies that…
Bridging the Gap: Enhancing SNA Within the Marine Corps Intelligence Community
2015-06-01
ENHANCING SNA WITHIN THE MARINE CORPS INTELLIGENCE COMMUNITY by Robert C. Schotter June 2015 Thesis Advisor: Raymond Buettner Co-Advisor...INTELLIGENCE COMMUNITY 5. FUNDING NUMBERS 6. AUTHOR(S) Robert C. Schotter 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate...United States Marine Corps and the Marine Corps’ intelligence community recognize that future adversaries are likely to be adaptive and complex. Both
Long-term micro-Deval durability of andesite aggregate
NASA Astrophysics Data System (ADS)
Czinder, Balázs; Török, Ákos
2017-04-01
Micro-Deval tests have been intensively used for analysing aggregate durability. The tests procedure described in details in the European Norm (EN 1097-1:2011). The current research intends to evaluate the long term durability of andesite aggregate by using extended micro-Deval tests. Andesite aggregate from Recsk (Hungary) was used for the tests. The tested andesite is a massive porphyritic biotite amphibol andesite that was formed during Eocene volcanism and forms a part of Mátra Mountains volcanic complex in NE Hungary. The aggregates were crushed and screened. Size fractions of 10.0/14.0 mm representing minimum and maximum grain sizes were used in the tests. 500 g of aggregate specimens were loaded in the steel drum and 2500 ml of water was added besides the 5000 g of steel balls into the device. The steel balls have a diameter of 10 mm according to EN. The test material - in the first stage - was subjected to 12,000 revolutions in the drum. This number is suggested by the EN. The micro-Deval coefficient was calculated after this first stage. Further wear of the andesitic material was tested by using additional revolutions. The increase in revolutions of the drum was in 12,000 rotation steps, reached 48,000 revolutions as a maximum. The tests were aimed to model the wear of aggregate on a longer term. It was also used to assess the durability of the aggregate when it is applied in engineering structures. The micro-Deval test results suggest that additional revolutions caused additional loss in material, i.e. increase in micro-Deval coefficient. A correlation is suggested between the revolution and andesite wear.
Quantum mechanics: why complex Hilbert space?
Cassinelli, G; Lahti, P
2017-11-13
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Glycans – the third revolution in evolution
Lauc, Gordan; Krištić, Jasminka; Zoldoš, Vlatka
2014-01-01
The development and maintenance of a complex organism composed of trillions of cells is an extremely complex task. At the molecular level every process requires a specific molecular structures to perform it, thus it is difficult to imagine how less than tenfold increase in the number of genes between simple bacteria and higher eukaryotes enabled this quantum leap in complexity. In this perspective article we present the hypothesis that the invention of glycans was the third revolution in evolution (the appearance of nucleic acids and proteins being the first two), which enabled the creation of novel molecular entities that do not require a direct genetic template. Contrary to proteins and nucleic acids, which are made from a direct DNA template, glycans are product of a complex biosynthetic pathway affected by hundreds of genetic and environmental factors. Therefore glycans enable adaptive response to environmental changes and, unlike other epiproteomic modifications, which act as off/on switches, glycosylation significantly contributes to protein structure and enables novel functions. The importance of glycosylation is evident from the fact that nearly all proteins invented after the appearance of multicellular life are composed of both polypeptide and glycan parts. PMID:24904645
Goal neglect and knowledge chunking in the construction of novel behaviour.
Bhandari, Apoorva; Duncan, John
2014-01-01
Task complexity is critical in cognitive efficiency and fluid intelligence. To examine functional limits in task complexity, we examine the phenomenon of goal neglect, where participants with low fluid intelligence fail to follow task rules that they otherwise understand. Though neglect is known to increase with task complexity, here we show that - in contrast to previous accounts - the critical factor is not the total complexity of all task rules. Instead, when the space of task requirements can be divided into separate sub-parts, neglect is controlled by the complexity of each component part. The data also show that neglect develops and stabilizes over the first few performance trials, i.e. as instructions are first used to generate behaviour. In all complex behaviour, a critical process is combination of task events with retrieved task requirements to create focused attentional episodes dealing with each decision in turn. In large part, we suggest, fluid intelligence may reflect this process of converting complex requirements into effective attentional episodes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Intelligence and Complexity of the Averaged Evoked Potential: An Attentional Theory.
ERIC Educational Resources Information Center
Bates, Tim; And Others
1995-01-01
A study measuring average evoked potentials in 21 college students finds that intelligence test scores correlate significantly with the difference between string length in attended and nonattended conditions, a finding that suggests that previous inconsistencies in reporting string length-intelligence correlations may have resulted from confound…
Working Memory, Visual-Spatial-Intelligence and Their Relationship to Problem-Solving
ERIC Educational Resources Information Center
Buhner, Markus; Kroner, Stephan; Ziegler, Matthias
2008-01-01
The relationship between working memory, intelligence and problem-solving is explored. Wittmann and Suss [Wittmann, W.W., & Suss, H.M. (1999). Investigating the paths between working memory, intelligence, knowledge, and complex problem-solving performances via Brunswik symmetry. In P.L. Ackerman, R.D. Roberts (Ed.), "Learning and individual…
Stupid Tutoring Systems, Intelligent Humans
ERIC Educational Resources Information Center
Baker, Ryan S.
2016-01-01
The initial vision for intelligent tutoring systems involved powerful, multi-faceted systems that would leverage rich models of students and pedagogies to create complex learning interactions. But the intelligent tutoring systems used at scale today are much simpler. In this article, I present hypotheses on the factors underlying this development,…
On Family Size and Intelligence.
ERIC Educational Resources Information Center
Armor, David J.
2001-01-01
Critiques research by Rodgers, et al. (June 2000) on the impact of family size on intelligence, explaining that it applied very simple analytic techniques to a very complex question, leading to unwarranted conclusions about family size and intelligence. Loss of cases, omission of an important ability test, and failure to apply multivariate…
Developing Realistic Behaviors in Adversarial Agents for Air Combat Simulation
1993-12-01
34Building Symbolic Primitives with Continuous Control Rou- tines." Proceedings of the 1st International Conference on Aritificial Intelligence Planning...shortcoming is the minimal Air Force participation in this field. 1-1 Some of the artificial intelligence (AI) personnel at the Air Force Institute of... intelligent system that operates in a moderately complex or unpredictable environment must be reactive. In being reactive the intelligent system must
Emotional Intelligence in Agenesis of the Corpus Callosum.
Anderson, Luke B; Paul, Lynn K; Brown, Warren S
2017-05-01
People with agenesis of the corpus callosum (AgCC) with normal general intelligence have deficits in complex cognitive processing, as well as in social cognition. It is uncertain the extent to which impoverished processing of emotions may contribute to social processing deficiencies. We used the Mayer-Salovey-Caruso Emotional Intelligence Test to clarify the nature of emotional intelligence in 16 adults with AgCC. As hypothesized, persons with AgCC exhibited greater disparities from norms on tests involving more socially complex aspects of emotions. The AgCC group did not differ from norms on the Experiential subscale, but they were significantly below norms on the Strategic subscale. These findings suggest that the corpus callosum is not essential for experiencing and thinking about basic emotions in a "normal" way, but is necessary for more complex processes involving emotions in the context of social interactions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Intelligent classifier for dynamic fault patterns based on hidden Markov model
NASA Astrophysics Data System (ADS)
Xu, Bo; Feng, Yuguang; Yu, Jinsong
2006-11-01
It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.
Brains, brawn and sociality: a hyaena’s tale
Holekamp, Kay E.; Dantzer, Ben; Stricker, Gregory; Shaw Yoshida, Kathryn C.; Benson-Amram, Sarah
2015-01-01
Theoretically intelligence should evolve to help animals solve specific types of problems posed by the environment, but it remains unclear how environmental complexity or novelty facilitates the evolutionary enhancement of cognitive abilities, or whether domain-general intelligence can evolve in response to domain-specific selection pressures. The social complexity hypothesis, which posits that intelligence evolved to cope with the labile behaviour of conspecific group-mates, has been strongly supported by work on the sociocognitive abilities of primates and other animals. Here we review the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas, and describe our tests of predictions of the social complexity hypothesis in regard to both cognition and brain size in hyaenas. Behavioural data indicate that there has been remarkable convergence between primates and hyaenas with respect to their abilities in the domain of social cognition. Furthermore, within the family Hyaenidae, our data suggest that social complexity might have contributed to enlargement of the frontal cortex. However, social complexity failed to predict either brain volume or frontal cortex volume in a larger array of mammalian carnivores. To address the question of whether or not social complexity might be able to explain the evolution of domain-general intelligence as well as social cognition in particular, we presented simple puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species housed in zoos and found that species with larger brains relative to their body mass were more innovative and more successful at opening the boxes. However, social complexity failed to predict success in solving this problem. Overall our work suggests that, although social complexity enhances social cognition, there are no unambiguous causal links between social complexity and either brain size or performance in problem-solving tasks outside the social domain in mammalian carnivores. PMID:26160980
Working memory training may increase working memory capacity but not fluid intelligence.
Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W
2013-12-01
Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.
Coordinating complex problem-solving among distributed intelligent agents
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1992-01-01
A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet.
Intelligence, personality, and interests: evidence for overlapping traits.
Ackerman, P L; Heggestad, E D
1997-03-01
The authors review the development of the modern paradigm for intelligence assessment and application and consider the differentiation between intelligence-as-maximal performance and intelligence-as-typical performance. They review theories of intelligence, personality, and interest as a means to establish potential overlap. Consideration of intelligence-as-typical performance provides a basis for evaluation of intelligence-personality and intelligence-interest relations. Evaluation of relations among personality constructs, vocational interests, and intellectual abilities provides evidence for communality across the domains of personality of J. L. Holland's (1959) model of vocational interests. The authors provide an extensive meta-analysis of personality-intellectual ability correlations, and a review of interest-intellectual ability associations. They identify 4 trait complexes: social, clerical/conventional, science/math, and intellectual/cultural.
The BioIntelligence Framework: a new computational platform for biomedical knowledge computing
Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles
2013-01-01
Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information. PMID:22859646
Systems Intelligence Inventory
ERIC Educational Resources Information Center
Törmänen, Juha; Hämäläinen, Raimo P.; Saarinen, Esa
2016-01-01
Purpose: Systems intelligence (SI) (Saarinen and Hämäläinen, 2004) is a construct defined as a person's ability to act intelligently within complex systems involving interaction and feedback. SI relates to our ability to act in systems and reason about systems to adaptively carry out productive actions within and with respect to systems such as…
Present Status and Challenges of Intellectual Assessment in India
ERIC Educational Resources Information Center
Basu, Jayanti
2016-01-01
Intelligence testing was one of the earliest interests of psychologists in India. Adaptation of Western intelligence tests has been a focus of psychologists in the first half of the last century. Indigenous development of intelligence tests has been attempted, but diversity of language and culture, complexity of school systems, and infrastructural…
Training Engineers for the Ambient Intelligence Challenge
ERIC Educational Resources Information Center
Corno, Fulvio; De Russis, Luigi
2017-01-01
The increasing complexity of the new breed of distributed intelligent systems, such as the Internet of Things, which require a diversity of languages and protocols, can only be tamed with design and programming best practices. Interest is also growing for including the human factor, as advocated by the "ambient intelligence" (AmI)…
Synthetic collective intelligence.
Solé, Ricard; Amor, Daniel R; Duran-Nebreda, Salva; Conde-Pueyo, Núria; Carbonell-Ballestero, Max; Montañez, Raúl
2016-10-01
Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of complexity. The requirement of communication in a social context has been in all cases a determinant. The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly, social insects complex collective decisions emerge from information exchanges between many agents. The difference is that such processing is obtained out of a limited individual cognitive power. Computational models and embodied versions using non-living systems, particularly involving robot swarms, have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to the problem grounded in the genetic engineering of unicellular systems, which can be modified in order to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence and allows to explore potential embodied scenarios for decision making at the microscale. Here, we consider several relevant examples of collective intelligence and their synthetic organism counterparts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Mitchell, Christine M.; Govindaraj, T.
1990-01-01
Discusses the use of intelligent tutoring systems as opposed to traditional on-the-job training for training operators of complex dynamic systems and describes the computer architecture for a system for operators of a NASA (National Aeronautics and Space Administration) satellite control system. An experimental evaluation with college students is…
Complex Intelligent Systems: Juxtaposition of Foundational Notions and a Research Agenda
NASA Astrophysics Data System (ADS)
Gelepithis, Petros A.
2001-11-01
The cardinality of the class, C , of complex intelligent systems, i.e., systems of intelligent systems and their resources, is steadily increasing. Such an increase, whether designed, sometimes changes significantly and fundamentally, the structure of C . Recently,the study of members of C and its structure comes under a variety of multidisciplinary headings the most prominent of which include General Systems Theory, Complexity Science, Artificial Life, and Cybernetics. Their common characteristic is the quest for a unified theory of a certain class of systems like a living system or an organisation. So far, the only candidate for a general theory of intelligent systems is Newell's Soar. To my knowledge there is presently no candidate theory of C except Newell's claimed extensibility of Soar. This paper juxtaposes the elements of Newell's conceptual basis with those of an alternative conceptual framework based on the thesis that communication and understanding are the primary processes shaping the structure of C and its members. It is patently obvious that a research agenda for the study of C can be extremely varied and long. The third section of this paper presents a highly selective research agenda that aims to provoke discussion among complexity theory scientists.
[Big Data Revolution or Data Hubris? : On the Data Positivism of Molecular Biology].
Gramelsberger, Gabriele
2017-12-01
Genome data, the core of the 2008 proclaimed big data revolution in biology, are automatically generated and analyzed. The transition from the manual laboratory practice of electrophoresis sequencing to automated DNA-sequencing machines and software-based analysis programs was completed between 1982 and 1992. This transition facilitated the first data deluge, which was considerably increased by the second and third generation of DNA-sequencers during the 2000s. However, the strategies for evaluating sequence data were also transformed along with this transition. The paper explores both the computational strategies of automation, as well as the data evaluation culture connected with it, in order to provide a complete picture of the complexity of today's data generation and its intrinsic data positivism. This paper is thereby guided by the question, whether this data positivism is the basis of the big data revolution of molecular biology announced today, or it marks the beginning of its data hubris.
Smarter–lighter–greener: research innovations for the automotive sector
Bhattacharyya, S. K.
2015-01-01
This paper reviews the changing nature of research underpinning the revolution in the automotive sector. Legislation controlling vehicle emissions has brought urgency to research, so we are now noticing a more rapid development of new technologies than at any time in the past century. The light-weighting of structures, the refinement of advanced propulsion systems, the advent of new smart materials, and greater in-vehicle intelligence and connectivity with transport infrastructure all require a fundamental rethink of established technologies used for many decades—defining a range of new multi-disciplinary research challenges. While meeting escalating emission penalties, cars must also fulfil the human desire for speed, reliability, beauty, refinement and elegance, qualities that mark out the truly great automobile. PMID:26345309
Intelligence as the efficiency of cue-driven retrieval from secondary memory.
Liesefeld, Heinrich René; Hoffmann, Eugenia; Wentura, Dirk
2016-01-01
Complex-span (working-memory-capacity) tasks are among the most successful predictors of intelligence. One important contributor to this relationship is the ability to efficiently employ cues for the retrieval from secondary memory. Presumably, intelligent individuals can considerably restrict their memory search sets by using such cues and can thereby improve recall performance. We here test this assumption by experimentally manipulating the validity of retrieval cues. When memoranda are drawn from the same semantic category on two successive trials of a verbal complex-span task, the category is a very strong retrieval cue on its first occurrence (strong-cue trial) but loses some of its validity on its second occurrence (weak-cue trial). If intelligent individuals make better use of semantic categories as retrieval cues, their recall accuracy suffers more from this loss of cue validity. Accordingly, our results show that less variance in intelligence is explained by recall accuracy on weak-cue compared with strong-cue trials.
Hill, W D; Davies, G; van de Lagemaat, L N; Christoforou, A; Marioni, R E; Fernandes, C P D; Liewald, D C; Croning, M D R; Payton, A; Craig, L C A; Whalley, L J; Horan, M; Ollier, W; Hansell, N K; Wright, M J; Martin, N G; Montgomery, G W; Steen, V M; Le Hellard, S; Espeseth, T; Lundervold, A J; Reinvang, I; Starr, J M; Pendleton, N; Grant, S G N; Bates, T C; Deary, I J
2014-01-01
Differences in general cognitive ability (intelligence) account for approximately half of the variation in any large battery of cognitive tests and are predictive of important life events including health. Genome-wide analyses of common single-nucleotide polymorphisms indicate that they jointly tag between a quarter and a half of the variance in intelligence. However, no single polymorphism has been reliably associated with variation in intelligence. It remains possible that these many small effects might be aggregated in networks of functionally linked genes. Here, we tested a network of 1461 genes in the postsynaptic density and associated complexes for an enriched association with intelligence. These were ascertained in 3511 individuals (the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium) phenotyped for general cognitive ability, fluid cognitive ability, crystallised cognitive ability, memory and speed of processing. By analysing the results of a genome wide association study (GWAS) using Gene Set Enrichment Analysis, a significant enrichment was found for fluid cognitive ability for the proteins found in the complexes of N-methyl-D-aspartate receptor complex; P=0.002. Replication was sought in two additional cohorts (N=670 and 2062). A meta-analytic P-value of 0.003 was found when these were combined with the CAGES consortium. The results suggest that genetic variation in the macromolecular machines formed by membrane-associated guanylate kinase (MAGUK) scaffold proteins and their interaction partners contributes to variation in intelligence. PMID:24399044
ERIC Educational Resources Information Center
Skinner, Anna; Diller, David; Kumar, Rohit; Cannon-Bowers, Jan; Smith, Roger; Tanaka, Alyssa; Julian, Danielle; Perez, Ray
2018-01-01
Background: Contemporary work in the design and development of intelligent training systems employs task analysis (TA) methods for gathering knowledge that is subsequently encoded into task models. These task models form the basis of intelligent interpretation of student performance within education and training systems. Also referred to as expert…
1989-10-01
of.ezpertiae Seymour. Wright (or artificisi. intelligence distributed. ai planning robo tics computer.vsion))." Implementation: (replace-values-in-constraint...by mechanical partners or advisors that customize the system’s response to the idiosyncrasies of the student. This paper describes the initial
2016-11-01
Report to Congressional Requesters November 2016 GAO-17-29 United States Government Accountability Office United States Government... Accountability Office Highlights of GAO-17-29, a report to congressional requesters November 2016 JOINT INTELLIGENCE ANALYSIS COMPLEX DOD...of scope, according to DOD and Air Force officials. However, without fully accounting for life- cycle costs, management may have difficulty
An intelligent virtual human system for providing healthcare information and support.
Rizzo, Albert A; Lange, Belinda; Buckwalter, John G; Forbell, Eric; Kim, Julia; Sagae, Kenji; Williams, Josh; Rothbaum, Barbara O; Difede, JoAnn; Reger, Greg; Parsons, Thomas; Kenny, Patrick
2011-01-01
Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality simulation technology for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality with the "birth" of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive, artificially intelligent and natural language capable virtual human agents that can engage real human users in a credible fashion. No longer at the level of a prop to add context or minimal faux interaction in a virtual world, virtual humans can be designed to perceive and act in a 3D virtual world, engage in spoken dialogues with real users and can be capable of exhibiting human-like emotional reactions. This paper will present an overview of the SimCoach project that aims to develop virtual human support agents to serve as online guides for promoting access to psychological healthcare information and for assisting military personnel and family members in breaking down barriers to initiating care. The SimCoach experience is being designed to attract and engage military Service Members, Veterans and their significant others who might not otherwise seek help with a live healthcare provider. It is expected that this experience will motivate users to take the first step--to empower themselves to seek advice and information regarding their healthcare and general personal welfare and encourage them to take the next step towards seeking more formal resources if needed.
Artificial intelligence for analyzing orthopedic trauma radiographs
Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof
2017-01-01
Background and purpose — Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods — We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd’s Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network’s performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results — All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen’s kappa under these conditions was 0.76. Interpretation — This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics. PMID:28681679
Artificial intelligence for analyzing orthopedic trauma radiographs.
Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof; Gordon, Max
2017-12-01
Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.
Convergent evolution of complex brains and high intelligence
Roth, Gerhard
2015-01-01
Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042
Editorial: Cognitive Architectures, Model Comparison and AGI
NASA Astrophysics Data System (ADS)
Lebiere, Christian; Gonzalez, Cleotilde; Warwick, Walter
2010-12-01
Cognitive Science and Artificial Intelligence share compatible goals of understanding and possibly generating broadly intelligent behavior. In order to determine if progress is made, it is essential to be able to evaluate the behavior of complex computational models, especially those built on general cognitive architectures, and compare it to benchmarks of intelligent behavior such as human performance. Significant methodological challenges arise, however, when trying to extend approaches used to compare model and human performance from tightly controlled laboratory tasks to complex tasks involving more open-ended behavior. This paper describes a model comparison challenge built around a dynamic control task, the Dynamic Stocks and Flows. We present and discuss distinct approaches to evaluating performance and comparing models. Lessons drawn from this challenge are discussed in light of the challenge of using cognitive architectures to achieve Artificial General Intelligence.
Reach, Gérard
2016-01-01
According to the concept developed by Thomas Kuhn, a scientific revolution occurs when scientists encounter a crisis due to the observation of anomalies that cannot be explained by the generally accepted paradigm within which scientific progress has thereto been made: a scientific revolution can therefore be described as a change in paradigm aimed at solving a crisis. Described herein is an application of this concept to the medical realm, starting from the reflection that during the past decades, the medical community has encountered two anomalies that, by their frequency and consequences, represent a crisis in the system, as they deeply jeopardize the efficiency of care: nonadherence of patients who do not follow the prescriptions of their doctors, and clinical inertia of doctors who do not comply with good practice guidelines. It is proposed that these phenomena are caused by a contrast between, on the one hand, the complex thought of patients and doctors that sometimes escapes rationalization, and on the other hand, the simplification imposed by the current paradigm of medicine dominated by the technical rationality of evidence-based medicine. It is suggested therefore that this crisis must provoke a change in paradigm, inventing a new model of care defined by an ability to take again into account, on an individual basis, the complex thought of patients and doctors. If this overall analysis is correct, such a person-centered care model should represent a solution to the two problems of patients’ nonadherence and doctors’ clinical inertia, as it tackles their cause. These considerations may have important implications for the teaching and the practice of medicine. PMID:27103790
Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management
NASA Astrophysics Data System (ADS)
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María
2017-10-01
The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir. Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue `Second quantum revolution: foundational questions'.
NASA Technical Reports Server (NTRS)
Norton, Jeffrey E.; Wiederholt, Bradley J.; Johnson, William B.
1990-01-01
Microcomputer Intelligence for Technical Training (MITT) uses Intelligent Tutoring System (OTS) technology to deliver diagnostic training in a variety of complex technical domains. Over the past six years, MITT technology has been used to develop training systems for nuclear power plant diesel generator diagnosis, Space Shuttle fuel cell diagnosis, and message processing diagnosis for the Minuteman missile. Presented here is an overview of the MITT system, describing the evolution of the MITT software and the benefits of using the MITT system.
2010-01-01
Discussion..................................... 14 5 Dinner Lecture: What Can Jazz Contribute to Intelligence Analysis...trade-offs. The implications of low integrative complexity include a limited information search, rigid following of established plans, black -white...also scientists can be of help. DRDC Toronto CR 2010-012 17 5 Dinner Lecture: What Can Jazz Contribute to Intelligence Analysis
A Cyber Situational Awareness Model for Network Administrators
2017-03-01
environments, the Internet of Things, artificial intelligence , and so on. As users’ data requirements grow more complex, they demand information...security of systems of interest. Further, artificial intelligence is a powerful concept in information technology. Therefore, new research should...look into how to use artificial intelligence to develop CSA. Human interaction with cyber systems is not making networks and their components safer
Metagram Software - A New Perspective on the Art of Computation.
1981-10-01
numober) Computer Programming Information and Analysis Metagramming Philosophy Intelligence Information Systefs Abstraction & Metasystems Metagranmming...control would also serve well in the analysis of military and political intelligence, and in other areas where highly abstract methods of thought serve...needed in intelligence because several levels of abstraction are involved in a political or military system, because analysis entails a complex interplay
Theoretical Foundations of Software Technology.
1983-02-14
major research interests are software testing, aritificial intelligence , pattern recogu- tion, and computer graphics. Dr. Chandranekaran is currently...produce PASCAL language code for the problems. Because of its relationship to many issues in Artificial Intelligence , we also investigated problems of...analysis to concurmt-prmcess software re- are not " intelligent " enough to discover these by themselves, ouirl more complex control flow models. The PAF
Intelligibility in microbial complex systems: Wittgenstein and the score of life.
Baquero, Fernando; Moya, Andrés
2012-01-01
Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the "score of life" metaphor is more accurate to express the complexity of living systems than the classic "book of life." Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life.
Intelligibility in microbial complex systems: Wittgenstein and the score of life
Baquero, Fernando; Moya, Andrés
2012-01-01
Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the “score of life” metaphor is more accurate to express the complexity of living systems than the classic “book of life.” Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life. PMID:22919679
NASA Technical Reports Server (NTRS)
Chu, Rose W.; Mitchell, Christine M.
1993-01-01
In supervisory control systems such as satellite ground control, there is a need for human-centered automation where the focus is to understand and enhance the human-system interaction experience in the complex task environment. Operator support in the form of off-line intelligent tutoring and on-line intelligent aiding is one approach towards this effort. The tutor/aid paradigm is proposed here as a design approach that integrates the two aspects of operator support in one system for technically oriented adults in complex domains. This paper also presents GT-VITA, a proof-of-concept graphical, interactive, intelligent tutoring system that is a first attempt to illustrate the tutoring aspect of the tutor/aid paradigm in the domain of satellite ground control. Evaluation on GT-VITA is conducted with NASA personnel with very positive results. GT-VITA is presented being fielded as it is at Goddard Space Flight Center.
Convergent evolution of complex brains and high intelligence.
Roth, Gerhard
2015-12-19
Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).
The Unfinished Revolution: Einstein's revenge
NASA Astrophysics Data System (ADS)
Beichler, James
2007-04-01
Thomas Kuhn defined the characteristics of scientific revolutions based upon his knowledge of the first and second Scientific Revolutions. He concluded that such revolutions are the result of crises in science. However, he missed some important clues of how revolutions develop. Instead of looking at crises, we should look at the major trends in scientific and human thought prior to the revolutions and then we could gain a better understanding of how scientific revolutions emerge from the normal course of scientific evolution. Instead of defining revolutions by the crises that precede them, revolutions actually emerge from the successes of previous science while each revolution contains the seeds for the next revolution that follows. These seeds eventually grow into the crises that trigger revolutions. Under these circumstances, it can be shown that the space-time revolution of relativity theory was never completed, thus laying the foundations for the next revolution in science. Knowing this, we can determine if we have we already entered the pre-revolutionary period of the Third Scientific Revolution.
Complexity, Heuristic, and Search Analysis for the Games of Crossings and Epaminondas
2014-03-27
research in Artifical Intelligence (Section 2.1) and why games are studied (Section 2.2). Section 2.3 discusses how games are played and solved. An...5 2.1 Games in Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Game Study...Artificial Intelligence UCT Upper Confidence Bounds applied to Trees HUCT Heuristic Guided UCT LOA Lines of Action UCB Upper Confidence Bound RAVE Rapid
The Structure of Cognition: Attentional Episodes in Mind and Brain
Duncan, John
2013-01-01
Cognition is organized in a structured series of attentional episodes, allowing complex problems to be addressed through solution of simpler subproblems. A “multiple-demand” (MD) system of frontal and parietal cortex is active in many different kinds of tasks, and using data from neuroimaging, electrophysiology, neuropsychology, and cognitive studies of intelligence, I propose a core role for MD regions in assembly of the attentional episode. Monkey and human data show dynamic neural coding of attended information across multiple MD regions, with rapid communication within and between regions. Neuropsychological and imaging data link MD function to fluid intelligence, explaining some but not all “executive” deficits after frontal lobe lesions. Cognitive studies link fluid intelligence to goal neglect, and the problem of dividing complex task requirements into focused parts. Like the innate releasing mechanism of ethology, I suggest that construction of the attentional episode provides a core organizational principle for complex, adaptive cognition. PMID:24094101
Compression in Working Memory and Its Relationship With Fluid Intelligence.
Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien
2018-06-01
Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.
A Measure of Real-Time Intelligence
NASA Astrophysics Data System (ADS)
Gavane, Vaibhav
2013-03-01
We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent's environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent's computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.
Plucker, Jonathan A; Shelton, Amy L
2015-01-01
Current technology has dramatically increased the prevalence of studies to establish the genetic correlates of a wide variety of human characteristics, including not only the physical attributes that determine what we look like and the risk of physiological disease but also the psychological and cognitive characteristics that often define who we are as individuals. Perhaps one of the most deeply personal and often controversial characteristics is the concept of general intelligence, known in the psychological literature as "g." As with the genetic study of any complex trait, the first step in studying the genetics of g is to carefully define the characteristic of interest. For g, this entails establishing what intelligence means and providing a clear operational definition for how it will be measured. In this paper, we provide a brief historical and theoretical overview of the construct of general intelligence, describe its relationship to the contemporary measurement of intelligence, and discuss these concepts in light of the challenges associated with defining g as a characteristic in the study of genetics. © 2015 The Hastings Center.
NASA Astrophysics Data System (ADS)
Herzing, Denise L.
2014-02-01
Intelligence has historically been studied by comparing nonhuman cognitive and language abilities with human abilities. Primate-like species, which show human-like anatomy and share evolutionary lineage, have been the most studied. However, when comparing animals of non-primate origins our abilities to profile the potential for intelligence remains inadequate. Historically our measures for nonhuman intelligence have included a variety of tools: (1) physical measurements - brain to body ratio, brain structure/convolution/neural density, presence of artifacts and physical tools, (2) observational and sensory measurements - sensory signals, complexity of signals, cross-modal abilities, social complexity, (3) data mining - information theory, signal/noise, pattern recognition, (4) experimentation - memory, cognition, language comprehension/use, theory of mind, (5) direct interfaces - one way and two way interfaces with primates, dolphins, birds and (6) accidental interactions - human/animal symbiosis, cross-species enculturation. Because humans tend to focus on "human-like" attributes and measures and scientists are often unwilling to consider other "types" of intelligence that may not be human equated, our abilities to profile "types" of intelligence that differ on a variety of scales is weak. Just as biologists stretch their definitions of life to look at extremophiles in unusual conditions, so must we stretch our descriptions of types of minds and begin profiling, rather than equating, other life forms we may encounter.
Ontology for the Intelligence Analyst
2012-12-01
Intelligence and Information Warfare Directorate Shouvik Bardhan , High Performance Technologies, Incorporated Jamie Johnson, EOIR Technologies...to soldiers. E-mail: kesny.parent@us.army.mil Shouvik Bardhan has more than 25 years of experience in the field of complex software design and
Artificial Intelligence and the Teaching of Reading and Writing by Computers.
ERIC Educational Resources Information Center
Balajthy, Ernest
1985-01-01
Discusses how computers can "converse" with students for teaching purposes, demonstrates how these interactions are becoming more complex, and explains how the computer's role is becoming more "human" in giving intelligent responses to students. (HOD)
Intelligence-Augmented Rat Cyborgs in Maze Solving.
Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui
2016-01-01
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.
Intelligence-Augmented Rat Cyborgs in Maze Solving
Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui
2016-01-01
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains. PMID:26859299
Study of Intelligent Secure Chemical Inventory Management System
NASA Astrophysics Data System (ADS)
Shukran, Mohd Afizi Mohd; Naim Abdullah, Muhammad; Nazri Ismail, Mohd; Maskat, Kamaruzaman; Isa, Mohd Rizal Mohd; Shahfee Ishak, Muhammad; Adib Khairuddin, Muhamad
2017-08-01
Chemical inventory management system has been experiencing a new revolution from traditional inventory system which is manual to an automated inventory management system. In this paper, some review of the classic and modern approaches to chemical inventory management system has been discussed. This paper also describe about both type of inventory management. After a comparative analysis of the traditional method and automated method, it can be said that both methods have some distinctive characteristics. Moreover, the automated inventory management method has higher accuracy of calculation because the calculations are handled by software, eliminating possible errors and saving time. The automated inventory system also allows users and administrators to track the availability, location and consumption of chemicals. The study of this paper can provide forceful review analysis support for the chemical inventory management related research.
The big data processing platform for intelligent agriculture
NASA Astrophysics Data System (ADS)
Huang, Jintao; Zhang, Lichen
2017-08-01
Big data technology is another popular technology after the Internet of Things and cloud computing. Big data is widely used in many fields such as social platform, e-commerce, and financial analysis and so on. Intelligent agriculture in the course of the operation will produce large amounts of data of complex structure, fully mining the value of these data for the development of agriculture will be very meaningful. This paper proposes an intelligent data processing platform based on Storm and Cassandra to realize the storage and management of big data of intelligent agriculture.
An intelligent training system for payload-assist module deploys
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Wang, Lui; Baffes, Paul; Rua, Monica
1987-01-01
An autonomous intelligent training system which integrates expert system technology with training/teaching methodologies is described. The Payload-Assist Module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system has, so far, proven to be a potentially valuable addition to the training tools available for training Flight Dynamics Officers in shuttle ground control. The authors are convinced that the basic structure of PD/ICAT can be extended to form a general architecture for intelligent training systems for training flight controllers and crew members in the performance of complex, mission-critical tasks.
Toward a Rethinking of the Relativity Revolution
NASA Astrophysics Data System (ADS)
Siegel, Daniel
2014-03-01
This journey in the history of physics is offered in celebration of David Cassidy's Pais Prize. The journey, undertaken in part with the community of historians of physics and in part not, starts from a conventional characterization of the relativity revolution as an abrupt transition, in 1905, from pre-Einsteinian darkness to Einsteinian light, and ends with an alternative perspective on the relativity revolution, seeing it as a process extending over 50 years, in two phases: first, the protorelativity phase, lasting from the early 1880s to 1905, and involving initial treatments of the length contraction, the mass increase, and invariance properties; second, the Einsteinian phase, beginning with his recasting of the basic theoretical framework--with the inclusion now of the time dilation and the E = mc2 relationship--and continuing with the ensuing competition between the protorelativistic and Einsteinian approaches, issuing in the final triumph of the Einsteinian approach only in the early 1930s. A proper appreciation of the character and importance of the protorelativity phase of the relativity revolution is relevant to a variety of contexts: for the teaching of relativity theory, it makes available a more concrete and pictorial approach to the relativistic effects--retaining greater (length contraction) or somewhat lesser (mass increase) validity to the present day; for the ongoing discourse on the nature of scientific revolutions, it provides a perspective on the intricacies and complexities of those occurrences, and on the elements of continuity and gradualism in even the most radical changes; and for our general understanding of historical process in the history of the sciences, it shows the importance of the broader scientific research community for even the most individual accomplishments.
Prions: Introducing a Complex Scientific Controversy to a Biology Classroom
ERIC Educational Resources Information Center
Zaitsev, Igor V.
2009-01-01
Thomas Kuhn, in "The Structure of Scientific Revolutions," posited that science does not progress by the steady accumulation of knowledge, but rather by a system of competition among paradigms. They vie for supremacy through greater parsimony, explanatory power, and popularity among the community of scientists (Kuhn, 1962). The current…
NASA Technical Reports Server (NTRS)
Bushnell, D.
1974-01-01
Code is easy to use yet is general with respect to: (a) type of analysis to be performed; (b) geometry of shell meridian; (c) type of wall construction; (d) type of boundary conditions, ring supports, and branching configuration; and (e) type of loading.
Intelligent systems engineering methodology
NASA Technical Reports Server (NTRS)
Fouse, Scott
1990-01-01
An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.
2012-04-25
Adult Intelligence Scale-III (WAIS-III; ( Wechsler , 1997a)) Symbol Search subtest. Executive function. Executive functions encompass a complex... Wechsler adult intelligence scale-Third edition. San Antonio, TX: Psychological Corporation. Wechsler , D. (1997b). Wechsler Adult Intelligence Scale...DEPARTMENT OF MEDICAL & CLINICAL PSYCHOLOGY ’f-)f-f2- David Krantz, h. - . DEPARTMENT OF MEDICAL & CLINICAL PSYCHOLOGY Committee Member Eleanor S
Kilic, Teoman; Yilmaz, Irem
2017-01-01
Transcatheter aortic valve implantation (TAVI) represents a real revolution in the field of interventional cardiology for the treatment of elderly or high-risk surgical patients with severe symptomatic aortic valve stenosis. Today, TAVI seems to play a key and a reliable role in the treatment of intermediate and maybe low-risk patients with severe aortic stenosis. TAVI has also evolved from a complex and hazardous procedure into an effective and safe therapy by the development of new generation devices. This article aims to review the background and future of TAVI, clinical trials and registries with old and new generation TAVI devices and to focus on some open issues related to post-procedural outcomes. PMID:28408919
Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision (in Chinese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Zhang, Jun; Gao, Wenzhong
Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logicmore » and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.« less
Virtual Reality for Artificial Intelligence: human-centered simulation for social science.
Cipresso, Pietro; Riva, Giuseppe
2015-01-01
There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.
Successful Insurgent Revolutions in Latin America: Analysis of the Cuban and Nicaraguan Revolutions
2014-03-01
Thomas H. Greene, Comparative Revolutionary Movements: Search for Theory and Justice, 3rd ed. (Englewood Cliffs, NJ: Prentice- Hall Contemporary...Revolution, Insurgency, Leadership, Popular Support, External Influence, Military, Insurgent Life Cycle, Theories of Revolution, Cuban Revolution, M-26-7...REVOLUTIONS .............................................. 17 A. THEORIES OF REVOLUTION
Kampe, Christopher; Reid, Gwendolynne; Jones, Paul; S, Colleen; S, Sean; Vogel, Kathleen M
2018-01-09
Academia-intelligence agency collaborations are on the rise for a variety of reasons. These can take many forms, one of which is in the classroom, using students to stand in for intelligence analysts. Classrooms, however, are ethically complex spaces, with students considered vulnerable populations, and become even more complex when layering multiple goals, activities, tools, and stakeholders over those traditionally present. This does not necessarily mean one must shy away from academia-intelligence agency partnerships in classrooms, but that these must be conducted carefully and reflexively. This paper hopes to contribute to this conversation by describing one purposeful classroom encounter that occurred between a professor, students, and intelligence practitioners in the fall of 2015 at North Carolina State University: an experiment conducted as part of a graduate-level political science class that involved students working with a prototype analytic technology, a type of participatory sensing/self-tracking device, developed by the National Security Agency. This experiment opened up the following questions that this paper will explore: What social, ethical, and pedagogical considerations arise with the deployment of a prototype intelligence technology in the college classroom, and how can they be addressed? How can academia-intelligence agency collaboration in the classroom be conducted in ways that provide benefits to all parties, while minimizing disruptions and negative consequences? This paper will discuss the experimental findings in the context of ethical perspectives involved in values in design and participatory/self-tracking data practices, and discuss lessons learned for the ethics of future academia-intelligence agency partnerships in the classroom.
TREWAVAS, ANTHONY
2003-01-01
Intelligence is not a term commonly used when plants are discussed. However, I believe that this is an omission based not on a true assessment of the ability of plants to compute complex aspects of their environment, but solely a reflection of a sessile lifestyle. This article, which is admittedly controversial, attempts to raise many issues that surround this area. To commence use of the term intelligence with regard to plant behaviour will lead to a better understanding of the complexity of plant signal transduction and the discrimination and sensitivity with which plants construct images of their environment, and raises critical questions concerning how plants compute responses at the whole‐plant level. Approaches to investigating learning and memory in plants will also be considered. PMID:12740212
Quantum Speedup for Active Learning Agents
NASA Astrophysics Data System (ADS)
Paparo, Giuseppe Davide; Dunjko, Vedran; Makmal, Adi; Martin-Delgado, Miguel Angel; Briegel, Hans J.
2014-07-01
Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.
Artificial intelligence support for scientific model-building
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1992-01-01
Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.
Vocal repertoire of the social giant otter.
Leuchtenberger, Caroline; Sousa-Lima, Renata; Duplaix, Nicole; Magnusson, William E; Mourão, Guilherme
2014-11-01
According to the "social intelligence hypothesis," species with complex social interactions have more sophisticated communication systems. Giant otters (Pteronura brasiliensis) live in groups with complex social interactions. It is likely that the vocal communication of giant otters is more sophisticated than previous studies suggest. The objectives of the current study were to describe the airborne vocal repertoire of giant otters in the Pantanal area of Brazil, to analyze call types within different behavioral contexts, and to correlate vocal complexity with level of sociability of mustelids to verify whether or not the result supports the social intelligence hypothesis. The behavior of nine giant otters groups was observed. Vocalizations recorded were acoustically and statistically analyzed to describe the species' repertoire. The repertoire was comprised by 15 sound types emitted in different behavioral contexts. The main behavioral contexts of each sound type were significantly associated with the acoustic variable ordination of different sound types. A strong correlation between vocal complexity and sociability was found for different species, suggesting that the communication systems observed in the family mustelidae support the social intelligence hypothesis.
Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.
ERIC Educational Resources Information Center
Haier, Richard J.; And Others
1992-01-01
A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)
Socioscape: Real-Time Analysis of Dynamic Heterogeneous Networks In Complex Socio-Cultural Systems
2015-10-22
Cluster Mixed-Membership Blockmodel for Time-Evolving Networks, Proceedings of the 14th International Conference on Artifical Intelligence and...Learning With Simultaneous Orthogonal Matching Pursuit, Proceedings of the 13th International Conference on Artifical Intelligence and Statistics
Modeling of biological intelligence for SCM system optimization.
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.
1991-01-01
Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.
Modeling of Biological Intelligence for SCM System Optimization
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724
On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process
NASA Astrophysics Data System (ADS)
Hongzhi, Zhao; Jian, Zhang
2018-03-01
The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.
Trewavas, Anthony
2005-09-01
Intelligent behavior is a complex adaptive phenomenon that has evolved to enable organisms to deal with variable environmental circumstances. Maximizing fitness requires skill in foraging for necessary resources (food) in competitive circumstances and is probably the activity in which intelligent behavior is most easily seen. Biologists suggest that intelligence encompasses the characteristics of detailed sensory perception, information processing, learning, memory, choice, optimisation of resource sequestration with minimal outlay, self-recognition, and foresight by predictive modeling. All these properties are concerned with a capacity for problem solving in recurrent and novel situations. Here I review the evidence that individual plant species exhibit all of these intelligent behavioral capabilities but do so through phenotypic plasticity, not movement. Furthermore it is in the competitive foraging for resources that most of these intelligent attributes have been detected. Plants should therefore be regarded as prototypical intelligent organisms, a concept that has considerable consequences for investigations of whole plant communication, computation and signal transduction.
Artificial intelligence approaches to astronomical observation scheduling
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Miller, Glenn
1988-01-01
Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.
2012-09-01
intelligence continues to evolve as attention to cognitive processes and mechanisms, a deeper understanding of related issues, and new theories ...hierarchical models that describe specific abilities arranged according to increasing specificity and developmental complexity [6-8]. Theories have also...persistence) not tapped directly by existing measures of intellectual ability. Wechsler’s theory of intelligence is central to the development of the mostly
Kyong, Jeong S.; Scott, Sophie K.; Rosen, Stuart; Howe, Timothy B.; Agnew, Zarinah K.; McGettigan, Carolyn
2014-01-01
The melodic contour of speech forms an important perceptual aspect of tonal and nontonal languages and an important limiting factor on the intelligibility of speech heard through a cochlear implant. Previous work exploring the neural correlates of speech comprehension identified a left-dominant pathway in the temporal lobes supporting the extraction of an intelligible linguistic message, whereas the right anterior temporal lobe showed an overall preference for signals clearly conveying dynamic pitch information. The current study combined modulations of overall intelligibility (through vocoding and spectral inversion) with a manipulation of pitch contour (normal vs. falling) to investigate the processing of spoken sentences in functional MRI. Our overall findings replicate and extend those of Scott et al., whereas greater sentence intelligibility was predominately associated with increased activity in the left STS, the greatest response to normal sentence melody was found right superior temporal gyrus. These data suggest a spatial distinction between brain areas associated with intelligibility and those involved in the processing of dynamic pitch information in speech. By including a set of complexity-matched unintelligible conditions created by spectral inversion, this is additionally the first study reporting a fully factorial exploration of spectrotemporal complexity and spectral inversion as they relate to the neural processing of speech intelligibility. Perhaps surprisingly, there was no evidence for an interaction between the two factors—we discuss the implications for the processing of sound and speech in the dorsolateral temporal lobes. PMID:24568205
Zhao, Liyun; Yu, Wentao; Jia, Fengmei; Liu, Aidong; Vi, Guoqin; Song, Yi; Gong, Chenrui; Hua, Liming; Zhang, Jiguo; Zhai, Fengying
2009-11-01
To analyze the effect of complex nutrients on growth and development, intelligence and nutrition state of 6-12 years old children in two continuous years. According to the rural school's similar condition, such as social economical statement, education condition and proportion of students entering schools, 6 rural schools were respectively selected in Xishui County of Hubei Province as the experimental group and control group. In the former, middle and later periods (2004, 2005, 2006 ), growth and development, nutrition state and intelligence were analyzed and compared. The increase of height and weight in experimental group were higher than those of the control group. In 2 years, height in experimental group increased 12.9 cm, while the control group increased 11.5 cm. Weights increased in experimental group were 6.6 kg, while the control group increased 5.2 kg. Girl's bone density in experimental group increased from 0.236 g/cm in 2004 to 0.280 g/cm in 2006. The hemoglobin contents of 4 age group's children in experimental group increased significantly (P < 0.05) . While the anemia prevalence decreased 25 .8% in 2 years, the control group decreased 7.2%. Moreover, other results showed that the complex nutrients also have some effect on the intelligence in experiment group. The complex nutrients supplement could improve the rural school children's growth and development, bone and intelligence.
DOT National Transportation Integrated Search
2000-11-01
In many intelligent transportation systems (ITS) implementations, the telecommunications solution was arrived at without the kind of rigorous examination that would have accompanied similarly significant and complex technical/business choices. The pu...
Complexity, Competitive Intelligence and the "First Mover" Advantage
NASA Astrophysics Data System (ADS)
Fellman, Philip Vos; Post, Jonathan Vos
In the following paper we explore some of the ways in which competitive intelligence and game theory can be employed to assist firms in deciding whether or not to undertake international market diversification and whether or not there is an advantage to being a market leader or a market follower overseas. In attempting to answer these questions, we take a somewhat unconventional approach. We first examine how some of the most recent advances in the physical and biological sciences can contribute to the ways in which we understand how firms behave. Subsequently, we propose a formal methodology for competitive intelligence. While space considerations here do not allow for a complete game-theoretic treatment of competitive intelligence and its use with respect to understanding first and second mover advantage in firm internationalization, that treatment can be found in its entirety in the on-line proceedings of the 6th International Conference on Complex Systems at http://knowledgetoday.org/wiki/indec.php/ICCS06/89
Complexity, Competitive Intelligence and the "First Mover" Advantage
NASA Astrophysics Data System (ADS)
Fellman, Philip Vos; Post, Jonathan Vos
In the following paper we explore some of the ways in which competitive intelligence and game theory can be employed to assist firms in deciding whether or not to undertake international market diversification and whether or not there is an advantage to being a market leader or a market follower overseas. In attempting to answer these questions, we take a somewhat unconventional approach. We first examine how some of the most recent advances in the physical and biological sciences can contribute to the ways in which we understand how firms behave. Subsequently, we propose a formal methodology for competitive intelligence. While space considerations here do not allow for a complete game-theoretic treatment of competitive intelligence and its use with respect to understanding first and second mover advantage in firm internationalization, that treatment can be found in its entirety in the on-line proceedings of the 6th International Conference on Complex Systems at e">http://knowledgetoday.org/wiki/indec.php/ICCS06/89.
Further Structural Intelligence for Sensors Cluster Technology in Manufacturing
Mekid, Samir
2006-01-01
With the ever increasing complex sensing and actuating tasks in manufacturing plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area. They play a dominant role in many fields from macro and micro scale. Global object control and the ability to self organize into fault-tolerant and scalable systems are expected for high level applications. In this paper, new structural concepts of intelligent sensors and networks with new intelligent agents are presented. Embedding new functionalities to dynamically manage cooperative agents for autonomous machines are interesting key enabling technologies most required in manufacturing for zero defects production.
Intelligent Energy Systems As a Modern Basis For Improving Energy Efficiency
NASA Astrophysics Data System (ADS)
Vidyaev, Igor G.; Ivashutenko, Alexandr S.; Samburskaya, Maria A.
2017-01-01
This work presents data on the share of energy costs in the cost structure for different countries. The information is provided on reducing the use of energy resources by means of introducing the intelligent control systems in the industrial enterprises. The structure and the use of such intelligent systems in the energy industry are under our consideration. It is shown that the constructing an intelligent system should be the strategic direction for the development of the distribution grid complex implying the four main areas for improvement: intellectualization of the equipment, management, communication and automation.
Artificial intelligence in medicine.
Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.
2004-01-01
INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167
Artificial intelligence in medicine.
Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J
2004-09-01
Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.
Cognitive ornithology: the evolution of avian intelligence
Emery, Nathan J
2005-01-01
Comparative psychologists interested in the evolution of intelligence have focused their attention on social primates, whereas birds tend to be used as models of associative learning. However, corvids and parrots, which have forebrains relatively the same size as apes, live in complex social groups and have a long developmental period before becoming independent, have demonstrated ape-like intelligence. Although, ornithologists have documented thousands of hours observing birds in their natural habitat, they have focused their attention on avian behaviour and ecology, rather than intelligence. This review discusses recent studies of avian cognition contrasting two different approaches; the anthropocentric approach and the adaptive specialization approach. It is argued that the most productive method is to combine the two approaches. This is discussed with respects to recent investigations of two supposedly unique aspects of human cognition; episodic memory and theory of mind. In reviewing the evidence for avian intelligence, corvids and parrots appear to be cognitively superior to other birds and in many cases even apes. This suggests that complex cognition has evolved in species with very different brains through a process of convergent evolution rather than shared ancestry, although the notion that birds and mammals may share common neural connectivity patterns is discussed. PMID:16553307
Values, Music and Education in China
ERIC Educational Resources Information Center
Ho, Wai-Chung; Law, Wing-Wah
2004-01-01
This article examines the complexity of the education of values in the People's Republic of China (PRC) since the beginning of the Cultural Revolution (1966-1976). It attempts to provide an insight into how the central state has managed the values of music education with respect to the dynamic changes to its political ideology across these four…
The Quiet Revolution in Land Use Control.
ERIC Educational Resources Information Center
Bosselman, Fred; Callies, David
The Council on Environmental Quality commissioned this report on the innovative land use laws of several states to learn how some of the most complex land use issues and problems of re-allocating responsibilities between state and local governments are being addressed. Many of the laws analyzed are designed to deal with problems that are treated…
The Effects on Education of Scientific Revolutions (In the Sense of T. S. Kuhn).
ERIC Educational Resources Information Center
Martin, Peter G.
1981-01-01
Examined are social factors that influence biological science knowledge content in terms of these paradigm shifts: the DNA revolution, the Continental Drift revolution, the Darwinian revolution, and the sociobiology revolution, with the term "revolution" being used in the sense of Thomas S. Kuhn's writings. (PB)
de Brevern, Alexandre G; Meyniel, Jean-Philippe; Fairhead, Cécile; Neuvéglise, Cécile; Malpertuy, Alain
2015-01-01
Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries.
de Brevern, Alexandre G.; Meyniel, Jean-Philippe; Fairhead, Cécile; Neuvéglise, Cécile; Malpertuy, Alain
2015-01-01
Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries. PMID:26125026
Propulsion and power for 21st century aviation
NASA Astrophysics Data System (ADS)
Sehra, Arun K.; Whitlow, Woodrow
2004-05-01
Air transportation in the new millennium will require revolutionary solutions to meet public demand for improving safety, reliability, environmental compatibility, and affordability. NASA's vision for 21st century aircraft is to develop propulsion systems that are intelligent, highly efficient, virtually inaudible (outside airport boundaries), and have near zero harmful emissions (CO 2 and NO x). This vision includes intelligent engines capable of adapting to changing internal and external conditions to optimally accomplish missions with either minimal or no human intervention. Distributed vectored propulsion will replace current two to four wing mounted and fuselage mounted engine configurations with a large number of small, mini, or micro engines. Other innovative concepts, such as the pulse detonation engine (PDE), which potentially can replace conventional gas turbine engines, also are reviewed. It is envisioned that a hydrogen economy will drive the propulsion system revolution towards the ultimate goal of silent aircrafts with zero harmful emissions. Finally, it is envisioned that electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. This paper reviews future propulsion and power concepts that are under development at the National Aeronautics and Space Administration's (NASA) John H. Glenn Research Center at Lewis Field, Cleveland, Ohio, USA.
Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management.
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María
2017-11-13
The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
[Engineered spider silk: the intelligent biomaterial of the future. Part I].
Florczak, Anna; Piekoś, Konrad; Kaźmierska, Katarzyna; Mackiewicz, Andrzej; Dams-Kozłowska, Hanna
2011-06-17
The unique properties of spider silk such as strength, extensibility, toughness, biocompatibility and biodegradability are the reasons for the recent development in silk biomaterial technology. For a long time scientific progress was impeded by limited access to spider silk. However, the development of the molecular biology strategy was a breaking point in synthetic spider silk protein design. The sequences of engineered spider silk are based on the consensus motives of the corresponding natural equivalents. Moreover, the engineered silk proteins may be modified in order to gain a new function. The strategy of the hybrid proteins constructed on the DNA level combines the sequence of engineered silk, which is responsible for the biomaterial structure, with the sequence of polypeptide which allows functionalization of the silk biomaterial. The functional domains may comprise receptor binding sites, enzymes, metal or sugar binding sites and others. Currently, advanced research is being conducted, which on the one hand focuses on establishing the particular silk structure and understanding the process of silk thread formation in nature. On the other hand, there are attempts to improve methods of engineered spider silk protein production. Due to acquired knowledge and recent progress in synthetic protein technology, the engineered silk will turn into intelligent biomaterial of the future, while its industrial production scale will trigger a biotechnological revolution.
Functional brain networks related to individual differences in human intelligence at rest.
Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca
2016-08-26
Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.
A New Theoretical Perspective of Cognitive Abilities
ERIC Educational Resources Information Center
Lynch, Sharon A.; Warner, Laverne
2012-01-01
Defining intelligence is a puzzle that has challenged educators and researchers for years. More recently, professionals are acknowledging that individuals possess many facets of intelligence and that learning is a complex combination of genetic factors, environmental influences, and life experiences that affect learning in unique ways (Salvia,…
"Group Intelligence": An Active Learning Exploration of Diversity in Evolution
ERIC Educational Resources Information Center
Parsons, Christopher J.; Salaita, Meisa K.; Hughes, Catherine H.; Lynn, David G.; Fristoe, Adam; Fristoe, Ariel; Grover, Martha A.
2017-01-01
"Group Intelligence" is an active learning, inquiry-based activity that introduces prebiotic chemistry, emergent complexity, and diversity's importance to adaptability across scales. Students explore the molecular emergence of order and function through theatrical exercises and games. Through 20 min of audio instruction and a discussion…
A Blackboard-Based Dynamic Instructional Planner. ONR Final Report.
ERIC Educational Resources Information Center
Murray, William R.
Dynamic instructional planning was explored as a control mechanism for intelligent tutoring systems through the development of the Blackboard Instructional Planner--a blackboard software-based dynamic planner for computerized intelligent tutoring systems. The planner, designed to be generic to tutors teaching troubleshooting for complex physical…
Japanese vs. Caucasian Intelligence and Social Attainment.
ERIC Educational Resources Information Center
Nagoshi, Craig T.
1998-01-01
Summarizes a series of studies from the Hawaii Family Study of Cognition on possible genetic and social environmental determinants of individual differences in and racial/ethnic differences between groups on intelligence and attainment. These studies, which focused on Japanese and Caucasian Americans, illustrate the complex, interactive, and…
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1992-01-01
The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.
Public and Private Responsibility for Mental Health: Mental Health's Fourth Revolution.
ERIC Educational Resources Information Center
Dokecki, Paul R.
Three revolutions in the history of mental health were identified by Nicholas Hobbs: the humane revolution, the scientific and therapeutic revolution, and the public health revolution. The shift of responsibilities for mental health and substance abuse services from the public to the private sector may constitute a fourth mental health revolution.…
Emotional intelligence, risk perception in abstinent cocaine dependent individuals.
Romero-Ayuso, Dulce; Mayoral-Gontán, Yolanda; Triviño-Juárez, José-Matías
2016-01-01
Cocaine is now responsible for the second-highest number of cessation intervention requests. In this study we analyze the different skills of emotional intelligence in cocaine- dependent patients maintaining abstinence. The Mayer- Salovey-Caruso Emotional Intelligence Test (MSCEIT) and the Balloon Analogue Risk Task (BART) were administered to 50 subjects (25 individuals with no history of drug use and 25 individuals in treatment at the Addictive Behaviors Unit in a state of withdrawal at the time of evaluation). The results showed differences between these groups in overall emotional intelligence quotient, strategic emotional intelligence, understanding emotions and emotional management. Cocaine-addicted participants showed difficulties in analyzing complex emotions and regulating their emotional response, aspects that can interfere with interactions in daily life.
Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.
Morrison, Ian S; Gowanlock, Michael G
2015-08-01
Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.
Guzzi-Heeb, Sandro
2011-01-01
The eighteenth-century "sexual revolution" cannot simply be explained as a consequence of economic or institutional factors -- industrialization, agricultural revolution, secularization, or legal hindrances to marriages. The example of western Valais (Switzerland) shows that we have to deal with a complex configuration of factors. The micro-historical approach reveals that in the eighteenth- and nineteenth-century sexuality -- and above all illicit sexuality -- was a highly subversive force that was considerably linked to political innovation and probably more generally to historical change. Nonmarital sexuality was clearly tied to political dissent and to innovative ways of behavior, both among the social elites and the common people. This behavior patterns influenced crucial evolutions in the social, cultural, and economic history of the region.
From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions
NASA Astrophysics Data System (ADS)
Viollet, Pierre-Louis
2017-08-01
Since its appearance in the first century BC, the water wheel has developed with increasing pre-industrial activities, and has been at the origin of the industrial revolution for metallurgy, textile mills, and paper mills. Since the nineteenth century, the water wheel has become highly efficient. The reaction turbine appeared by 1825, and continued to undergo technological development. The impulsion turbine appeared for high chutes, by 1880. Other turbines for low-head chutes were further designed. Turbine development was associated, after 1890, with the use of hydropower to generate electricity, both for industrial activities, and for the benefits of cities. A model ;one city + one plant; was followed in the twentieth century by more complex and efficient schemes when electrical interconnection developed, together with pumped plants for energy storage.
The evolution of intelligence in mammalian carnivores.
Holekamp, Kay E; Benson-Amram, Sarah
2017-06-06
Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands.
The evolution of intelligence in mammalian carnivores
Benson-Amram, Sarah
2017-01-01
Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands. PMID:28479979
The Problem of Evaluative Categorization of Human Intelligence in Linguistic World Images
ERIC Educational Resources Information Center
Abisheva, Klara M.; Dossanova, Altynay Zh.; Ismakova, Bibissara S.; Aupova, Gulbagira K.; Ayapbergenov, Bulat K.; Tlegenova, Kulyan A.
2016-01-01
The aim of the research is to determine the peculiarities of the evaluative categorization of human intelligence in linguistic world images. The study describes the interdisciplinary approach to studying evaluative categorization, which assumes the use of complex methodology including the anthropocentric, the interdisciplinary, and the cognitive…
DOT National Transportation Integrated Search
2000-03-01
This case study is one of a series of case studies that examine procurement approaches used to deliver Intelligent Transportation System (ITS) projects. ITS projects are often complex and leverage the latest technology in telecommunications, computer...
Towards an Intelligent Planning Knowledge Base Development Environment
NASA Technical Reports Server (NTRS)
Chien, S.
1994-01-01
ract describes work in developing knowledge base editing and debugging tools for the Multimission VICAR Planner (MVP) system. MVP uses artificial intelligence planning techniques to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing requests made to the JPL Multimission Image Processing Laboratory.
The Role of Probability-Based Inference in an Intelligent Tutoring System.
ERIC Educational Resources Information Center
Mislevy, Robert J.; Gitomer, Drew H.
Probability-based inference in complex networks of interdependent variables is an active topic in statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, and medical diagnosis. This paper concerns the role of Bayesian inference networks for updating student models in intelligent tutoring…
Successful Graduate Students: The Roles of Personality Traits and Emotional Intelligence
ERIC Educational Resources Information Center
Grehan, Patrick M.; Flanagan, Rosemary; Malgady, Robert G.
2011-01-01
Given the complex role of school psychologists, it is in the interest of stakeholders to identify characteristics related to student success in graduate training, which is suggestive of their effectiveness as practitioners. This study explores the relationship of personality traits and Emotional Intelligence (EI) to graduate students' performance…
Intelligence, Education, and Facets of Job Satisfaction.
ERIC Educational Resources Information Center
Ganzach, Yoav
2003-01-01
Analysis of two sets of National Longitudinal Survey data found that intelligence had a strong negative effect on intrinsic satisfaction, little effect on pay satisfaction, and positive association with desired job complexity, not expected pay. Education had a strong negative effect on pay satisfaction, little effect on intrinsic satisfaction, and…
IQ Tests Are Not for Machines, Yet
ERIC Educational Resources Information Center
Dowe, David L.; Hernandez-Orallo, Jose
2012-01-01
Complex, but specific, tasks--such as chess or "Jeopardy!"--are popularly seen as milestones for artificial intelligence (AI). However, they are not appropriate for evaluating the intelligence of machines or measuring the progress in AI. Aware of this delusion, Detterman has recently raised a challenge prompting AI researchers to evaluate their…
The LED outdoor lighting revolution : Opportunities, threats and mitigation
NASA Astrophysics Data System (ADS)
Aube, Martin
2017-01-01
The presence of artificial light at night (ALAN) in environment is now known to have non negligible consequences on the night sky, the fauna, the flora and the human health. A real revolution is undergoing in the outdoor lighting industry threatens the night integrity. This revolution is driven by the advent of the cost-effective Light-Emitting Diode (LED) technology into the outdoor lighting industry. The LEDs provides many opportunities: they are long lasting, easily controlled, and generally allow a more efficient photometric design which, in term, may result in energy savings.After explaining the complex and non-linear behaviour of the propagation of the ALAN into the nocturnal environment, we will outline the potential impact of the ALAN on the human health and on the night sky, and we will introduce some dedicated indicators for its evaluation. We will focus on the role of the blue content of the ALAN in the evaluation of its impact. More specifically we will show how white LED technology, that often shows increased blue light content, compares to the traditional High Pressure Sodium technology. Finally, we will identify the possible mitigations to restrict the adverse impacts of the white LEDs in the urban and rural environment.
Intelligent systems for human resources.
Kline, K B
1988-11-01
An intelligent system contains knowledge about some domain; it has sophisticated decision-making processes and the ability to explain its actions. The most important aspect of an intelligent system is its ability to effectively interact with humans to teach or assist complex information processing. Two intelligent systems are Intelligent Tutoring Systems (ITs) and Expert Systems. The ITSs provide instruction to a student similar to a human tutor. The ITSs capture individual performance and tutor deficiencies. These systems consist of an expert module, which contains the knowledge or material to be taught; the student module, which contains a representation of the knowledge the student knows and does not know about the domain; and the instructional or teaching module, which selects specific knowledge to teach, the instructional strategy, and provides assistance to the student to tutor deficiencies. Expert systems contain an expert's knowledge about some domain and perform specialized tasks or aid a novice in the performance of certain tasks. The most important part of an expert system is the knowledge base. This knowledge base contains all the specialized and technical knowledge an expert possesses. For an expert system to interact effectively with humans, it must have the ability to explain its actions. Use of intelligent systems can have a profound effect on human resources. The ITSs can provide better training by tutoring on an individual basis, and the expert systems can make better use of human resources through job aiding and performing complex tasks. With increasing training requirements and "doing more with less," intelligent systems can have a positive effect on human resources.
Intelligent video storage of visual evidences on site in fast deployment
NASA Astrophysics Data System (ADS)
Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois
2004-07-01
In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.
Evolution of an Intelligent Information Fusion System
NASA Technical Reports Server (NTRS)
Campbell, William J.; Cromp, Robert F.
1990-01-01
Consideration is given to the hardware and software needed to manage the enormous amount and complexity of data that the next generation of space-borne sensors will provide. An anthology is presented illustrating the evolution of artificial intelligence, science data processing, and management from the 1960s to the near future. Problems and limitations of technologies, data structures, data standards, and conceptual thinking are addressed. The development of an end-to-end Intelligent Information Fusion System that embodies knowledge of the user's domain-specific goals is proposed.
On the improbability of intelligent extraterrestrials
NASA Astrophysics Data System (ADS)
Bond, A.
1982-05-01
Discussions relating to the prevalence of extraterrestrial life generally remain ambiguous due to the lack of a suitable model for the development of biology. In this paper a simple model is proposed based on neutral evolution theory which leads to quantitative values for the genome growth rate within a biosphere. It is hypothesised that the genome size is a measure of organism complexity and hence an indicator of the likelihood of intelligence. The calculations suggest that organisms with the complexity of human beings may be rare and only occur with a probability below once per galaxy.
Epigenetic Memory as a Basis for Intelligent Behavior in Clonal Plants.
Latzel, Vít; Rendina González, Alejandra P; Rosenthal, Jonathan
2016-01-01
Environmentally induced epigenetic change enables plants to remember past environmental interactions. If this memory capability is exploited to prepare plants for future challenges, it can provide a basis for highly sophisticated behavior, considered intelligent by some. Against the backdrop of an overview of plant intelligence, we hypothesize: (1) that the capability of plants to engage in such intelligent behavior increases with the additional level of complexity afforded by clonality, and; (2) that more faithful inheritance of epigenetic information in clonal plants, in conjunction with information exchange and coordination between connected ramets, is likely to enable especially advanced intelligent behavior in this group. We therefore further hypothesize that this behavior provides ecological and evolutionary advantages to clonal plants, possibly explaining, at least in part, their widespread success. Finally, we suggest avenues of inquiry to enable assessing intelligent behavior and the role of epigenetic memory in clonal species.
Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel
2016-02-06
The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.
Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel
2016-01-01
The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well. PMID:26861345
Kyong, Jeong S; Scott, Sophie K; Rosen, Stuart; Howe, Timothy B; Agnew, Zarinah K; McGettigan, Carolyn
2014-08-01
The melodic contour of speech forms an important perceptual aspect of tonal and nontonal languages and an important limiting factor on the intelligibility of speech heard through a cochlear implant. Previous work exploring the neural correlates of speech comprehension identified a left-dominant pathway in the temporal lobes supporting the extraction of an intelligible linguistic message, whereas the right anterior temporal lobe showed an overall preference for signals clearly conveying dynamic pitch information [Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123, 155-163, 2000; Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000]. The current study combined modulations of overall intelligibility (through vocoding and spectral inversion) with a manipulation of pitch contour (normal vs. falling) to investigate the processing of spoken sentences in functional MRI. Our overall findings replicate and extend those of Scott et al. [Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000], where greater sentence intelligibility was predominately associated with increased activity in the left STS, and the greatest response to normal sentence melody was found in right superior temporal gyrus. These data suggest a spatial distinction between brain areas associated with intelligibility and those involved in the processing of dynamic pitch information in speech. By including a set of complexity-matched unintelligible conditions created by spectral inversion, this is additionally the first study reporting a fully factorial exploration of spectrotemporal complexity and spectral inversion as they relate to the neural processing of speech intelligibility. Perhaps surprisingly, there was little evidence for an interaction between the two factors-we discuss the implications for the processing of sound and speech in the dorsolateral temporal lobes.
Drake Equation for the Multiverse:. from the String Landscape to Complex Life
NASA Astrophysics Data System (ADS)
Gleiser, M.
It is argued that the selection criteria usually referred to as "anthropic conditions" for the existence of intelligent (typical) observers widely adopted in cosmology amount only to preconditions for primitive life. The existence of life does not imply in the existence of intelligent life. On the contrary, the transition from single-celled to complex, multicellular organisms is far from trivial, requiring stringent additional conditions on planetary platforms. An attempt is made to disentangle the necessary steps leading from a selection of universes out of a hypothetical multiverse to the existence of life and of complex life. It is suggested that what is currently called the "anthropic principle" should instead be named the "prebiotic principle."
Theory for Explaining and Comparing the Dynamics of Education in Transitional Processes
ERIC Educational Resources Information Center
van der Walt, Johannes L.
2016-01-01
Countries all over the world find themselves in the throes of revolution, change, transition or transformation. Because of the complexities of these momentous events, it is no simple matter to describe and evaluate them. This paper suggests that comparative educationists apply a combination of three theories as a lens through which such national…
ERIC Educational Resources Information Center
Pyatt, Robert E.; Rosser, Tracie; Powell, Kelly
2009-01-01
From June 2004 through January of 2005, the Fernbank Museum of Natural History in Atlanta hosted the traveling exhibit, "The Genomic Revolution," described as the most comprehensive presentation on the complex subject of genomics. Originally created by the American Museum of Natural History, this exhibit presented cutting edge…
Taking Interpersonal Communication out of the Classroom into the World of Computer Technology.
ERIC Educational Resources Information Center
Gantt, Vernon W.
The emergence of the information society introduces the academic community to the most significant revolution since the invention of the printing press. The growing use of computers can lead to a depreciation of self-worth. Since the machine can handle complex logical applications with considerably more speed and accuracy than most people, many…
Citizenship, Secularity and the Ethics and Religious Culture Program of Quebec
ERIC Educational Resources Information Center
Zaver, Arzina; DeMartini, Ashley
2016-01-01
This article focuses on some of the broader complexities of citizenship in Quebec, paying particular attention to the Quiet Revolution and Bill 60 (Charter of Values) in order to understand how these historical events shape contemporary politics. Using a case study of the Ethics and Religious Culture Program (ERC) in Quebec, we seek to highlight…
ERIC Educational Resources Information Center
Steiner, Dasi; Mendelovitch, Miriam
2017-01-01
The communications revolution reaches all sectors of the population and makes information accessible to all. This development presents complex challenges which require changes in the education system, teaching methods and learning environment. The integration of ICT (Information and Communications Technology) and science teaching requires…
Teachers' Critical Reflective Practice in the Context of Twenty-First Century Learning
ERIC Educational Resources Information Center
Benade, Leon
2015-01-01
In the twenty-first century, learning and teaching at school must prepare young people for engaging in a complex and dynamic world deeply influenced by globalisation and the revolution in digital technology. In addition to the use of digital technologies, is the development of flexible learning spaces. It is claimed that these developments demand,…
An Evidence Centered Design for Learning and Assessment in the Digital World. CRESST Report 778
ERIC Educational Resources Information Center
Behrens, John T.; Mislevy, Robert J.; DiCerbo, Kristen E.; Levy, Roy
2010-01-01
The world in which learning and assessment must take place is rapidly changing. The digital revolution has created a vast space of interconnected information, communication, and interaction. Functioning effectively in this environment requires so-called 21st century skills such as technological fluency, complex problem solving, and the ability to…
Procreative Beneficence, Intelligence, and the Optimization Problem.
Saunders, Ben
2015-12-01
According to the Principle of Procreative Beneficence, reproducers should choose the child, of those available to them, expected to have the best life. Savulescu argues reproducers are therefore morally obligated to select for nondisease traits, such as intelligence. Carter and Gordon recently challenged this implication, arguing that Savulescu fails to establish that intelligence promotes well-being. This paper develops two responses. First, I argue that higher intelligence is likely to contribute to well-being on most plausible accounts. Second, I argue that, even if it does not, one can only resist the conclusion that reproducers should select on the basis of intelligence if its expected net effect is neutral. If intelligence reduces expected well-being, then reproducers should select offspring of low intelligence. More likely, the effect of increased intelligence on expected well-being varies at different levels, which makes identifying an optimum for well-being more complex than hitherto appreciated. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Parallel dispatch: a new paradigm of electrical power system dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun Jason; Wang, Fei-Yue; Wang, Qiang
Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus, the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm, namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complexmore » power grids, extend system operators U+02BC capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.« less
Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.
Emerging interdisciplinary fields in the coming intelligence/convergence era
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2012-09-01
Dramatic advances are in the horizon resulting from rapid pace of development of several technologies, including, computing, communication, mobile, robotic, and interactive technologies. These advances, along with the trend towards convergence of traditional engineering disciplines with physical, life and other science disciplines will result in the development of new interdisciplinary fields, as well as in new paradigms for engineering practice in the coming intelligence/convergence era (post-information age). The interdisciplinary fields include Cyber Engineering, Living Systems Engineering, Biomechatronics/Robotics Engineering, Knowledge Engineering, Emergent/Complexity Engineering, and Multiscale Systems engineering. The paper identifies some of the characteristics of the intelligence/convergence era, gives broad definition of convergence, describes some of the emerging interdisciplinary fields, and lists some of the academic and other organizations working in these disciplines. The need is described for establishing a Hierarchical Cyber-Physical Ecosystem for facilitating interdisciplinary collaborations, and accelerating development of skilled workforce in the new fields. The major components of the ecosystem are listed. The new interdisciplinary fields will yield critical advances in engineering practice, and help in addressing future challenges in broad array of sectors, from manufacturing to energy, transportation, climate, and healthcare. They will also enable building large future complex adaptive systems-of-systems, such as intelligent multimodal transportation systems, optimized multi-energy systems, intelligent disaster prevention systems, and smart cities.
Functional brain networks related to individual differences in human intelligence at rest
Hearne, Luke J.; Mattingley, Jason B.; Cocchi, Luca
2016-01-01
Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics. PMID:27561736
The Relationship between Confidence and Self-Concept--Towards a Model of Response Confidence
ERIC Educational Resources Information Center
Kroner, Stephan; Biermann, Antje
2007-01-01
According to Stankov [Stankov, L. (2000). Complexity, metacognition and fluid intelligence. Intelligence, 28, 121-143.] response confidence in cognitive tests reflects a trait on the boundary of personality and abilities. However, several studies failed in relating confidence scores to other known traits, including self-concept. A model of…
Contribution of Emotional Intelligence towards Graduate Students' Critical Thinking Disposition
ERIC Educational Resources Information Center
Kang, Fong-Luan
2015-01-01
Good critical thinkers possess a core set of cognitive thinking skills, and a disposition towards critical thinking. They are able to think critically to solve complex, real-world problems effectively. Although personal emotion is important in critical thinking, it is often a neglected issue. The emotional intelligence in this study concerns our…
ERIC Educational Resources Information Center
Ruiz, Maria Jose; Bermejo, Rosario; Ferrando, Mercedes; Prieto, Maria Dolores; Sainz, Marta
2014-01-01
Introduction: Academic performance is usually generally explained by student's intelligence, although other factors such as personality and motivation also account for it. Factors associated with a more complex thought process in adolescence are also beginning to gain importance in the prediction of academic performance. Among these forms of…
Intelligent control of a planning system for astronaut training.
Ortiz, J; Chen, G
1999-07-01
This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.
The French Revolution after 200 Years: Is It Finally Over?
ERIC Educational Resources Information Center
Shorrock, William I.
1990-01-01
Maintains that the effects of the French Revolution continue today. Presents scholarly views on the significance of the revolution. Challenges the view that the French Revolution led to the violent totalitarian regimes of the twentieth century. Traces the history of the revolution and outlines its legacy. (RW)
On the state of crystallography at the dawn of the electron microscopy revolution.
Higgins, Matthew K; Lea, Susan M
2017-10-01
While protein crystallography has, for many years, been the most used method for structural analysis of macromolecular complexes, remarkable recent advances in high-resolution electron cryo-microscopy led to suggestions that 'the revolution will not be crystallised'. Here we highlight the current success rate, speed and ease of modern crystallographic structure determination and some recent triumphs of both 'classical' crystallography and the use of X-ray free electron lasers. We also outline fundamental differences between structure determination using X-ray crystallography and electron microscopy. We suggest that crystallography will continue to co-exist with electron microscopy as part of an integrated array of methods, allowing structural biologists to focus on fundamental biological questions rather than being constrained by the methods available. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Molecular Revolution in Cutaneous Biology: Era of Next-Generation Sequencing.
Sarig, Ofer; Sprecher, Eli
2017-05-01
Like any true conceptual revolution, next-generation sequencing (NGS) has not only radically changed research and clinical practice, it has also modified scientific culture. With the possibility to investigate DNA contents of any organism and in any context, including in somatic disorders or in tissues carrying complex microbial populations, it initially seemed as if the genetic underpinning of any biological phenomenon could now be deciphered in an almost streamlined fashion. However, over the past recent years, we have once again come to understand that there is no such a thing as great opportunities without great challenges. The steadily expanding use of NGS and related applications is now facing biologists and physicians with novel technological obstacles, analytical hurdles and increasingly pressing ethical questions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Challenges in building intelligent systems for space mission operations
NASA Technical Reports Server (NTRS)
Hartman, Wayne
1991-01-01
The purpose here is to provide a top-level look at the stewardship functions performed in space operations, and to identify the major issues and challenges that must be addressed to build intelligent systems that can realistically support operations functions. The focus is on decision support activities involving monitoring, state assessment, goal generation, plan generation, and plan execution. The bottom line is that problem solving in the space operations domain is a very complex process. A variety of knowledge constructs, representations, and reasoning processes are necessary to support effective human problem solving. Emulating these kinds of capabilities in intelligent systems offers major technical challenges that the artificial intelligence community is only beginning to address.
Human-computer interaction in distributed supervisory control tasks
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1989-01-01
An overview of activities concerned with the development and applications of the Operator Function Model (OFM) is presented. The OFM is a mathematical tool to represent operator interaction with predominantly automated space ground control systems. The design and assessment of an intelligent operator aid (OFMspert and Ally) is particularly discussed. The application of OFM to represent the task knowledge in the design of intelligent tutoring systems, designated OFMTutor and ITSSO (Intelligent Tutoring System for Satellite Operators), is also described. Viewgraphs from symposia presentations are compiled along with papers addressing the intent inferencing capabilities of OFMspert, the OFMTutor system, and an overview of intelligent tutoring systems and the implications for complex dynamic systems.
Genetic discoveries and nursing implications for complex disease prevention and management.
Frazier, Lorraine; Meininger, Janet; Halsey Lea, Dale; Boerwinkle, Eric
2004-01-01
The purpose of this article is to examine the management of patients with complex diseases, in light of recent genetic discoveries, and to explore how these genetic discoveries will impact nursing practice and nursing research. The nursing science processes discussed are not comprehensive of all nursing practice but, instead, are concentrated in areas where genetics will have the greatest influence. Advances in genetic science will revolutionize our approach to patients and to health care in the prevention, diagnosis, and treatment of disease, raising many issues for nursing research and practice. As the scope of genetics expands to encompass multifactorial disease processes, a continuing reexamination of the knowledge base is required for nursing practice, with incorporation of genetic knowledge into the repertoire of every nurse, and with advanced knowledge for nurses who select specialty roles in the genetics area. This article explores the impact of this revolution on nursing science and practice as well as the opportunities for nursing science and practice to participate fully in this revolution. Because of the high proportion of the population at risk for complex diseases and because nurses are occupied every day in the prevention, assessment, treatment, and therapeutic intervention of patients with such diseases in practice and research, there is great opportunity for nurses to improve health care through the application (nursing practice) and discovery (nursing research) of genetic knowledge.
Research on intelligent machine self-perception method based on LSTM
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cheng, Tao
2018-05-01
In this paper, we use the advantages of LSTM in feature extraction and processing high-dimensional and complex nonlinear data, and apply it to the autonomous perception of intelligent machines. Compared with the traditional multi-layer neural network, this model has memory, can handle time series information of any length. Since the multi-physical domain signals of processing machines have a certain timing relationship, and there is a contextual relationship between states and states, using this deep learning method to realize the self-perception of intelligent processing machines has strong versatility and adaptability. The experiment results show that the method proposed in this paper can obviously improve the sensing accuracy under various working conditions of the intelligent machine, and also shows that the algorithm can well support the intelligent processing machine to realize self-perception.
Questioning the social intelligence hypothesis.
Holekamp, Kay E
2007-02-01
The social intelligence hypothesis posits that complex cognition and enlarged "executive brains" evolved in response to challenges that are associated with social complexity. This hypothesis has been well supported, but some recent data are inconsistent with its predictions. It is becoming increasingly clear that multiple selective agents, and non-selective constraints, must have acted to shape cognitive abilities in humans and other animals. The task now is to develop a larger theoretical framework that takes into account both inter-specific differences and similarities in cognition. This new framework should facilitate consideration of how selection pressures that are associated with sociality interact with those that are imposed by non-social forms of environmental complexity, and how both types of functional demands interact with phylogenetic and developmental constraints.
[The application and development of artificial intelligence in medical diagnosis systems].
Chen, Zhencheng; Jiang, Yong; Xu, Mingyu; Wang, Hongyan; Jiang, Dazong
2002-09-01
This paper has reviewed the development of artificial intelligence in medical practice and medical diagnostic expert systems, and has summarized the application of artificial neural network. It explains that a source of difficulty in medical diagnostic system is the co-existence of multiple diseases--the potentially inter-related diseases. However, the difficulty of image expert systems is inherent in high-level vision. And it increases the complexity of expert system in medical image. At last, the prospect for the development of artificial intelligence in medical image expert systems is made.
Artificial intelligence in cardiology.
Bonderman, Diana
2017-12-01
Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.
Etoile Project : Social Intelligent ICT-System for very large scale education in complex systems
NASA Astrophysics Data System (ADS)
Bourgine, P.; Johnson, J.
2009-04-01
The project will devise new theory and implement new ICT-based methods of delivering high-quality low-cost postgraduate education to many thousands of people in a scalable way, with the cost of each extra student being negligible (< a few Euros). The research will create an in vivo laboratory of one to ten thousand postgraduate students studying courses in complex systems. This community is chosen because it is large and interdisciplinary and there is a known requirement for courses for thousand of students across Europe. The project involves every aspect of course production and delivery. Within this the research focused on the creation of a Socially Intelligent Resource Mining system to gather large volumes of high quality educational resources from the internet; new methods to deconstruct these to produce a semantically tagged Learning Object Database; a Living Course Ecology to support the creation and maintenance of evolving course materials; systems to deliver courses; and a ‘socially intelligent assessment system'. The system will be tested on one to ten thousand postgraduate students in Europe working towards the Complex System Society's title of European PhD in Complex Systems. Étoile will have a very high impact both scientifically and socially by (i) the provision of new scalable ICT-based methods for providing very low cost scientific education, (ii) the creation of new mathematical and statistical theory for the multiscale dynamics of complex systems, (iii) the provision of a working example of adaptation and emergence in complex socio-technical systems, and (iv) making a major educational contribution to European complex systems science and its applications.
A Silent Revolution: From Sketching to Coding--A Case Study on Code-Based Design Tool Learning
ERIC Educational Resources Information Center
Xu, Song; Fan, Kuo-Kuang
2017-01-01
Along with the information technology rising, Computer Aided Design activities are becoming more modern and more complex. But learning how to operation these new design tools has become the main problem lying in front of each designer. This study was purpose on finding problems encountered during code-based design tools learning period of…
The Next Revolution Will Be In Education: A New Marketing Approach for Schools
ERIC Educational Resources Information Center
Suss, Gavin
2013-01-01
The past 15 years have been a dramatic and unique period for education systems all over the world. The challenges have become more complex and the need for schools to promote their agenda has become cardinal and, in some cases, even critical. Today, parents, children, pupils and teachers are motivated by their senses and the positioning of leading…
ERIC Educational Resources Information Center
Murray, Janice; Goldbart, Juliet
2009-01-01
Augmentative and alternative communication (AAC) is a discipline that has seen recent developments as a consequence of the worldwide technological revolution. Children with complex communication needs, who benefit from such systems, are now afforded an opportunity to develop independent communication skills. The aim of this paper is to review…
2016 New Horizons Lecture: Beyond Imaging-Radiology of Tomorrow.
Hricak, Hedvig
2018-03-01
This article is based on the New Horizons lecture delivered at the 2016 Radiological Society of North America Annual Meeting. It addresses looming changes for radiology, many of which stem from the disruptive effects of the Fourth Industrial Revolution. This is an emerging era of unprecedented rapid innovation marked by the integration of diverse disciplines and technologies, including data science, machine learning, and artificial intelligence-technologies that narrow the gap between man and machine. Technologic advances and the convergence of life sciences, physical sciences, and bioengineering are creating extraordinary opportunities in diagnostic radiology, image-guided therapy, targeted radionuclide therapy, and radiology informatics, including radiologic image analysis. This article uses the example of oncology to make the case that, if members in the field of radiology continue to be innovative and continuously reinvent themselves, radiology can play an ever-increasing role in both precision medicine and value-driven health care. © RSNA, 2018.
NASA Astrophysics Data System (ADS)
Ćirković, Milan M.
2013-08-01
Search for ExtraTerrestrial Intelligence (SETI) is now more than half a century old and has provoked enough discussion on technical, philosophical, and popular level, much of it critical. Historically, the criticism of SETI has been strong enough to heavily influence the course of research, so that there is a significant interest in discerning the nuances and fine points of critical argumentation. In this paper, I outline the two major forms of SETI scepticism, "fundamentalist" and "instrumentalist," which are often conflated in the published literature, both technical and popular. Precise delineation between these two types of scepticism is important for future research as a part of a wider taxonomic project, the build-up of SETI theory, as well as for smooth joining of SETI with the ongoing astrobiological revolution. Resolving the confusion in this respect is likely to lead to an improved atmosphere and heightened public image of future SETI searches and related activities.
Designing Intelligent Secure Android Application for Effective Chemical Inventory
NASA Astrophysics Data System (ADS)
Shukran, Mohd Afizi Mohd; Naim Abdullah, Muhammad; Nazri Ismail, Mohd; Maskat, Kamaruzaman; Isa, Mohd Rizal Mohd; Shahfee Ishak, Muhammad; Adib Khairuddin, Muhamad
2017-08-01
Mobile services support various situations in everyday life and with the increasing sophistication of phone functions, the daily life is much more easier and better especially in term of managing tools and apparatus. Since chemical inventory management system has been experiencing a new revolution from antiquated to an automated inventory management system, some additional features should be added in current chemical inventory system. Parallel with the modern technologies, chemical inventory application using smart phone has been developed. Several studies about current related chemical inventory management using smart phone application has been done in this paper in order to obtain an overview on recent studies in smartphone application for chemical inventory system which are needed in schools, universities or other education institutions. This paper also discuss about designing the proposed secure mobile chemical inventory system. The study of this paper can provide forceful review analysis support for the chemical inventory management system related research.
Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-01-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the ‘agronomic revolution’. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered. PMID:29515908
NASA Astrophysics Data System (ADS)
Tang, Gao; Jiang, FanHuag; Li, JunFeng
2015-11-01
Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.
Ludwig, T; Kern, P; Bongards, M; Wolf, C
2011-01-01
The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.
Boudry, Maarten; Blancke, Stefaan; Braeckman, Johan
2010-12-01
The concept of Irreducible Complexity (IC) has played a pivotal role in the resurgence of the creationist movement over the past two decades. Evolutionary biologists and philosophers have unambiguously rejected the purported demonstration of "intelligent design" in nature, but there have been several, apparently contradictory, lines of criticism. We argue that this is in fact due to Michael Behe's own incoherent definition and use of IC. This paper offers an analysis of several equivocations inherent in the concept of Irreducible Complexity and discusses the way in which advocates of the Intelligent Design Creationism (IDC) have conveniently turned IC into a moving target. An analysis of these rhetorical strategies helps us to understand why IC has gained such prominence in the IDC movement, and why, despite its complete lack of scientific merits, it has even convinced some knowledgeable persons of the impending demise of evolutionary theory.
A survey of fuzzy logic monitoring and control utilisation in medicine.
Mahfouf, M; Abbod, M F; Linkens, D A
2001-01-01
Intelligent systems have appeared in many technical areas, such as consumer electronics, robotics and industrial control systems. Many of these intelligent systems are based on fuzzy control strategies which describe complex systems mathematical models in terms of linguistic rules. Since the 1980s new techniques have appeared from which fuzzy logic has been applied extensively in medical systems. The justification for such intelligent systems driven solutions is that biological systems are so complex that the development of computerised systems within such environments is not always a straightforward exercise. In practice, a precise model may not exist for biological systems or it may be too difficult to model. In most cases fuzzy logic is considered to be an ideal tool as human minds work from approximate data, extract meaningful information and produce crisp solutions. This paper surveys the utilisation of fuzzy logic control and monitoring in medical sciences with an analysis of its possible future penetration.
A development framework for artificial intelligence based distributed operations support systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1990-01-01
Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.
ERIC Educational Resources Information Center
Rosman, Tom; Mayer, Anne-Kathrin; Krampen, Günter
2015-01-01
Introduction: The present paper argues that adequate self-perceptions of academic ability are essential for students' realization of their intellectual potential, thereby fostering learning of complex skills, e.g., information-seeking skills. Thus, academic self-concept should moderate the relationship between intelligence and information…
ERIC Educational Resources Information Center
Steif, Paul S.; Fu, Luoting; Kara, Levent Burak
2016-01-01
Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…
NASA Astrophysics Data System (ADS)
Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana
2013-10-01
Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.
A survey of intelligent tutoring systems: Implications for complex dynamic systems
NASA Technical Reports Server (NTRS)
Chu, Rose W.
1989-01-01
An overview of the research in the field of intelligent tutorial systems (ITS) is provided. The various approaches in the design and implementation of ITS are examined and discussed in the context of problem solving in an environment of a complex dynamic system (CDS). Issues pertaining to a CDS and the nature of human problem solving especially in light of a CDS are considered. An overview of the architecture of an ITS is provided as the basis for the in-depth examination of various systems. Finally, the implications for the design and evaluation of an ITS are discussed.
Scientific Revolutions to the nth power: n = 0, 1, 2, 3.
NASA Astrophysics Data System (ADS)
Beichler, James
2008-04-01
Thomas Kuhn's description and characterization of scientific revolutions set the standard for interpreting and understanding these events, but his characterization introduced an anomaly. Newtonian science was at the pinnacle of its success immediately prior to the Second Scientific Revolution. From an evolutionary point-of-view, there were no crises to be solved just problems within the Newtonian paradigm, whereas the specific crises that initiated the revolution are evident from everyone's point-of-view after the revolution. This paradox is well recognized, but it seems not to be a problem and is just ignored as if it were not important or significant. Yet this discrepancy strikes at the very heart of physics and the overall progress of science. Historical conditions currently parallel the period immediately prior to the Second Scientific Revolution indicating that a new scientific revolution is approaching. When a comparison of the two periods is made, new characteristics of scientific revolutions are identified, the paradox is solved and evidence of a Zeroth Scientific Revolution emerges from the historical record.
Nap sleep spindle correlates of intelligence.
Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin
2015-11-26
Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.
How Can Agricultural and Extension Educators Contribute to a Successful New Green Revolution?
ERIC Educational Resources Information Center
Navarro, Maria
2006-01-01
In the middle of the 20th century, many in the world were predicting catastrophic starvation that was halted by the Green Revolution. To address continued population growth and the unsolved problems of the Green Revolution, many hope for a new and different Green Revolution. Supporters of a biotechnology-based revolution claim that it could…
[Epidemiological intelligence as a model of organization in health].
Rodrigues-Júnior, Antonio Luiz
2012-03-01
The concept of epidemiological intelligence, as a construction of information societies, goes beyond monitoring a list of diseases and the ability to elicit rapid responses. The concept should consider the complexity of the definition of epidemiology in the identification of this object of study without being limited to a set of actions in a single government sector. The activities of epidemiological intelligence include risk assessment, strategies for prevention and protection, subsystems of information, crisis management rooms, geographical analysis, etc. This concept contributes to the understanding of policies in health, in multisectorial and geopolitical dimensions, as regards the organization of services around public health emergencies, primary healthcare, as well as disasters. The activities of epidemiological intelligence should not be restricted to scientific research, but the researchers must beware of threats to public health. Lalonde's model enabled consideration of epidemiological intelligence as a way to restructure policies and share resources by creating communities of intelligence, whose purpose is primarily to deal with public health emergencies and disasters.
The Coming Primary Care Revolution.
Ellner, Andrew L; Phillips, Russell S
2017-04-01
The United States has the most expensive, technologically advanced, and sub-specialized healthcare system in the world, yet it has worse population health status than any other high-income country. Rising healthcare costs, high rates of waste, the continued trend towards chronic non-communicable disease, and the growth of new market entrants that compete with primary care services have set the stage for fundamental change in all of healthcare, driven by a revolution in primary care. We believe that the coming primary care revolution ought to be guided by the following design principles: 1) Payment must adequately support primary care and reward value, including non-visit-based care. 2) Relationships will serve as the bedrock of value in primary care, and will increasingly be fostered by teams, improved clinical operations, and technology, with patients and non-physicians assuming an ever-increasing role in most aspects of healthcare. 3) Generalist physicians will increasingly focus on high-acuity and high-complexity presentations, and primary care teams will increasingly manage conditions that specialists managed in the past. 4) Primary care will refocus on whole-person care, and address health behaviors as well as vision, hearing, dental, and social services. Design based on these principles should lead to higher-value healthcare, but will require new approaches to workforce training.
Research on application of intelligent computation based LUCC model in urbanization process
NASA Astrophysics Data System (ADS)
Chen, Zemin
2007-06-01
Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.
Strong Genetic Overlap Between Executive Functions and Intelligence
Engelhardt, Laura E.; Mann, Frank D.; Briley, Daniel A.; Church, Jessica A.; Harden, K. Paige; Tucker-Drob, Elliot M.
2016-01-01
Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and decision-making, and individual differences in EFs have been consistently linked with individual differences in intelligence. By middle childhood, genetic factors account for a moderate proportion of the variance in intelligence, and these effects increase in magnitude through adolescence. Genetic influences on EFs are very high, even in middle childhood, but the extent to which these genetic influences overlap with those on intelligence is unclear. We examined genetic and environmental overlap between EFs and intelligence in a racially and socioeconomically diverse sample of 811 twins ages 7-15 years (M = 10.91, SD = 1.74) from the Texas Twin Project. A general EF factor representing variance common to inhibition, switching, working memory, and updating domains accounted for substantial proportions of variance in intelligence, primarily via a genetic pathway. General EF continued to have a strong, genetically-mediated association with intelligence even after controlling for processing speed. Residual variation in general intelligence was influenced only by shared and nonshared environmental factors, and there remained no genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF did remain, however, in a more specific perceptual reasoning ability. These results provide evidence that genetic influences on general intelligence are highly overlapping with those on EF. PMID:27359131
Virtual Neurorobotics (VNR) to Accelerate Development of Plausible Neuromorphic Brain Architectures.
Goodman, Philip H; Buntha, Sermsak; Zou, Quan; Dascalu, Sergiu-Mihai
2007-01-01
Traditional research in artificial intelligence and machine learning has viewed the brain as a specially adapted information-processing system. More recently the field of social robotics has been advanced to capture the important dynamics of human cognition and interaction. An overarching societal goal of this research is to incorporate the resultant knowledge about intelligence into technology for prosthetic, assistive, security, and decision support applications. However, despite many decades of investment in learning and classification systems, this paradigm has yet to yield truly "intelligent" systems. For this reason, many investigators are now attempting to incorporate more realistic neuromorphic properties into machine learning systems, encouraged by over two decades of neuroscience research that has provided parameters that characterize the brain's interdependent genomic, proteomic, metabolomic, anatomic, and electrophysiological networks. Given the complexity of neural systems, developing tenable models to capture the essence of natural intelligence for real-time application requires that we discriminate features underlying information processing and intrinsic motivation from those reflecting biological constraints (such as maintaining structural integrity and transporting metabolic products). We propose herein a conceptual framework and an iterative method of virtual neurorobotics (VNR) intended to rapidly forward-engineer and test progressively more complex putative neuromorphic brain prototypes for their ability to support intrinsically intelligent, intentional interaction with humans. The VNR system is based on the viewpoint that a truly intelligent system must be driven by emotion rather than programmed tasking, incorporating intrinsic motivation and intentionality. We report pilot results of a closed-loop, real-time interactive VNR system with a spiking neural brain, and provide a video demonstration as online supplemental material.
NASA Astrophysics Data System (ADS)
Grobman, Warren D.
2002-07-01
Dramatically increasing mask set costs, long-loop design-fabrication iterations, and lithography of unprecedented complexity and cost threaten to disrupt time-accepted IC industry progression as described by Moore"s Law. Practical and cost-effective IC manufacturing below the 100nm technology node presents significant and unique new challenges spanning multiple disciplines and overlapping traditionally separable components of the design-through-chip manufacturing flow. Lithographic and other process complexity is compounded by design, mask, and infrastructure technologies, which do not sufficiently account for increasingly stringent and complex manufacturing issues. Deep subwavelength and atomic-scale process and device physics effects increasingly invade and impact the design flow strongly at a time when the pressures for increased design productivity are escalating at a superlinear rate. Productivity gaps, both upstream in design and downstream in fabrication, are anticipated by many to increase due to dramatic increases in inherent complexity of the design-to-chip equation. Furthermore, the cost of lithographic equipment is increasing at an aggressive compound growth rate so large that we can no longer economically derive the benefit of the increased number of circuits per unit area unless we extend the life of lithographic equipment for more generations, and deeper into the subwavelength regime. Do these trends unambiguously lead to the conclusion that we need a revolution in design and design-process integration to enable the sub-100nm nodes? Or is such a premise similar to other well-known predictions of technology brick walls that never came true?
ERIC Educational Resources Information Center
Ludgate, Kathleen
This presentation features materials for teaching about the Mexican Revolution: 1910-1940. The presentation is divided into four broad sections. The first section, "Why Teach the Mexican Revolution?" furnishes a rationale for teaching a course about a revolution that took place much closer to home than the Russian or Chinese Revolutions.…
Autonomous intelligent military robots: Army ants, killer bees, and cybernetic soldiers
NASA Astrophysics Data System (ADS)
Finkelstein, Robert
The rationale for developing autonomous intelligent robots in the military is to render conventional warfare systems ineffective and indefensible. The Desert Storm operation demonstrated the effectiveness of such systems as unmanned air and ground vehicles and indicated the future possibilities of robotic technology. Robotic military vehicles would have the advantages of expendability, low cost, lower complexity compared to manned systems, survivability, maneuverability, and a capability to share in instantaneous communication and distributed processing of combat information. Basic characteristics of intelligent systems and hierarchical control systems with sensor inputs are described. Genetic algorithms are seen as a means of achieving appropriate levels of intelligence in a robotic system. Potential impacts of robotic technology in the military are outlined.
A situation-response model for intelligent pilot aiding
NASA Technical Reports Server (NTRS)
Schudy, Robert; Corker, Kevin
1987-01-01
An intelligent pilot aiding system needs models of the pilot information processing to provide the computational basis for successful cooperation between the pilot and the aiding system. By combining artificial intelligence concepts with the human information processing model of Rasmussen, an abstraction hierarchy of states of knowledge, processing functions, and shortcuts are developed, which is useful for characterizing the information processing both of the pilot and of the aiding system. This approach is used in the conceptual design of a real time intelligent aiding system for flight crews of transport aircraft. One promising result was the tentative identification of a particular class of information processing shortcuts, from situation characterizations to appropriate responses, as the most important reliable pathway for dealing with complex time critical situations.
An intelligent detecting system for permeability prediction of MBR.
Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang
2018-01-01
The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.
NASA Astrophysics Data System (ADS)
Phan, Sieu; Famili, Fazel; Liu, Ziying; Peña-Castillo, Lourdes
The advancement of omics technologies in concert with the enabling information technology development has accelerated biological research to a new realm in a blazing speed and sophistication. The limited single gene assay to the high throughput microarray assay and the laborious manual count of base-pairs to the robotic assisted machinery in genome sequencing are two examples to name. Yet even more sophisticated, the recent development in literature mining and artificial intelligence has allowed researchers to construct complex gene networks unraveling many formidable biological puzzles. To harness these emerging technologies to their full potential to medical applications, the Bio-intelligence program at the Institute for Information Technology, National Research Council Canada, aims to develop and exploit artificial intelligence and bioinformatics technologies to facilitate the development of intelligent decision support tools and systems to improve patient care - for early detection, accurate diagnosis/prognosis of disease, and better personalized therapeutic management.
Darwin's perplexing paradox: intelligent design in nature.
Thorvaldsen, Steinar; Øhrstrøm, Peter
2013-01-01
Today, many would assume that Charles Darwin absolutely rejected any claim of intelligent design in nature. However, review of his initial writings reveals that Darwin accepted some aspects of this view. His conceptualization of design was founded on both the cosmological and the teleological ideas from classical natural theology. When Darwin discovered the dynamic process of natural selection, he rejected the old teleological argument as formulated by William Paley. However, he was never able to ignore the powerful experience of the beauty and complexity of an intelligently designed universe, as a whole. He corresponded with Asa Gray on religious themes, particularly touching the problem of pain and intelligent design in nature. The term "intelligent design" was probably introduced by William Whewell. Principally for theological and philosophical reasons, Darwin could only accept the concept for the universe as a whole, not with respect to individual elements of the living world.
Intelligence: shared genetic basis between Mendelian disorders and a polygenic trait.
Franić, Sanja; Groen-Blokhuis, Maria M; Dolan, Conor V; Kattenberg, Mathijs V; Pool, René; Xiao, Xiangjun; Scheet, Paul A; Ehli, Erik A; Davies, Gareth E; van der Sluis, Sophie; Abdellaoui, Abdel; Hansell, Narelle K; Martin, Nicholas G; Hudziak, James J; van Beijsterveldt, Catherina E M; Swagerman, Suzanne C; Hulshoff Pol, Hilleke E; de Geus, Eco J C; Bartels, Meike; Ropers, H Hilger; Hottenga, Jouke-Jan; Boomsma, Dorret I
2015-10-01
Multiple inquiries into the genetic etiology of human traits indicated an overlap between genes underlying monogenic disorders (eg, skeletal growth defects) and those affecting continuous variability of related quantitative traits (eg, height). Extending the idea of a shared genetic basis between a Mendelian disorder and a classic polygenic trait, we performed an association study to examine the effect of 43 genes implicated in autosomal recessive cognitive disorders on intelligence in an unselected Dutch population (N=1316). Using both single-nucleotide polymorphism (SNP)- and gene-based association testing, we detected an association between intelligence and the genes of interest, with genes ELP2, TMEM135, PRMT10, and RGS7 showing the strongest associations. This is a demonstration of the relevance of genes implicated in monogenic disorders of intelligence to normal-range intelligence, and a corroboration of the utility of employing knowledge on monogenic disorders in identifying the genetic variability underlying complex traits.
Cultural Intelligence and Writing Ability: Delving into Fluency, Accuracy and Complexity
ERIC Educational Resources Information Center
Ghonsooly, Behzad; Shalchy, Somayye
2013-01-01
Over the recent decades, cultural intelligence, now referred to as CQ has become a burgeoning area of research in the domain of business and management. Given the paucity of research on the effects of CQ on second or foreign language learning especially writing, this study intends to examine the effects of CQ on L2 learners' written performance…
The Long-Term Effects of Childhood Music Instruction on Intelligence and General Cognitive Abilities
ERIC Educational Resources Information Center
Costa-Giomi, Eugenia
2015-01-01
This article reviews research on the effects of music instruction on general cognitive abilities. The review of more than 75 reports shows (1) the consistency in results pertaining to the short-term effects of music instruction on cognitive abilities and the lack of clear evidence on the long-term effects on intelligence; (2) the complex nature of…
ERIC Educational Resources Information Center
Hopwood, Christopher J.; Richard, David C. S.
2005-01-01
Research on the Wechsler Adult Intelligence Scale-Revised and Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) suggests that practicing clinical psychologists and graduate students make item-level scoring errors that affect IQ, index, and subtest scores. Studies have been limited in that Full-Scale IQ (FSIQ) and examiner administration,…
2017-06-09
structures constantly arise in firefights and skirmishes on the battlefield. Source: Andrew Ilachinski, Artificial War: Multiagent- Based Simulation of...Alternative Methods of Analysis and Innovative Organizational Structures .” Conference, Rome, Italy March 31-April 2. ...Intelligence Analysis, Joint Operational Planning, Cellular Automata, Agent- Based Modeling 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18
ERIC Educational Resources Information Center
Séguin, Daniel G.; Hipson, Will
2016-01-01
The primary goal of the study was to examine the relationships between emotional intelligence and personality type in later childhood. Eighty-one youth in grades seven and nine (M[subscript age]=12.49 years, SD[subscript age]=1.20 years) were asked to complete the "Bar-On Emotional Quotient Inventory: Youth Version" and the…
Trends in the evolution of life, brains and intelligence
NASA Astrophysics Data System (ADS)
Rospars, Jean-Pierre
2013-07-01
The f I term of Drake's equation - the fraction of life-bearing planets on which `intelligent' life evolved - has been the subject of much debate in the last few decades. Several leading evolutionary biologists have endorsed the thesis that the probability of intelligent life elsewhere in the universe is vanishingly small. A discussion of this thesis is proposed here that focuses on a key issue in the debate: the existence of evolutionary trends, often presented as trends towards higher complexity, and their possible significance. The present state of knowledge on trends is reviewed. Measurements of quantitative variables that describe important features of the evolution of living organisms - their hierarchical organization, size and biodiversity - and of brains - their overall size, the number and size of their components - in relation to their cognitive abilities, provide reliable evidence of the reality and generality of evolutionary trends. Properties of trends are inferred and frequent misinterpretations (including an excessive stress on mere `complexity') that prevent the objective assessment of trends are considered. Finally, several arguments against the repeatability of evolution to intelligence are discussed. It is concluded that no compelling argument exists for an exceedingly small probability f I. More research is needed before this wide-ranging negative conclusion is accepted.
Fernandez-Lozano, Carlos; Gestal, Marcos; Munteanu, Cristian R; Dorado, Julian; Pazos, Alejandro
2016-01-01
The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.
Gestal, Marcos; Munteanu, Cristian R.; Dorado, Julian; Pazos, Alejandro
2016-01-01
The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable. PMID:27920952
The Evolution of Operational Art: A Neverending Story
1993-05-04
The Impact of the Industrial Revolution .................. 24 The Industrial Revolution and the American Civil W ar...e advent of the industrial Revolution . U.S. Grant Somewhere after the industrial revolution and by the time General Grant’s campaign [1864-65...his enemy’s war making capabilities which included both armed forces and resources.71 23 The Impact of the Industrial Revolution . By the early 1800’s
Exponential evolution: implications for intelligent extraterrestrial life.
Russell, D A
1983-01-01
Some measures of biologic complexity, including maximal levels of brain development, are exponential functions of time through intervals of 10(6) to 10(9) yrs. Biological interactions apparently stimulate evolution but physical conditions determine the time required to achieve a given level of complexity. Trends in brain evolution suggest that other organisms could attain human levels within approximately 10(7) yrs. The number (N) and longevity (L) terms in appropriate modifications of the Drake Equation, together with trends in the evolution of biological complexity on Earth, could provide rough estimates of the prevalence of life forms at specified levels of complexity within the Galaxy. If life occurs throughout the cosmos, exponential evolutionary processes imply that higher intelligence will soon (10(9) yrs) become more prevalent than it now is. Changes in the physical universe become less rapid as time increases from the Big Bang. Changes in biological complexity may be most rapid at such later times. This lends a unique and symmetrical importance to early and late universal times.
Science of the science, drug discovery and artificial neural networks.
Patel, Jigneshkumar
2013-03-01
Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.
A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun
2014-11-01
In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.
ERIC Educational Resources Information Center
Saidi, Trust; Sigauke, Esther
2017-01-01
Nanotechnology is an emerging technology, and it is regarded as the basis for the next industrial revolution. In developing countries, nanotechnology promises to solve everyday challenges, such as the provision of potable water, reliable energy sources and effective medication. However, there are several challenges in the exploitation of…
The French Revolution: A Simulation Game
ERIC Educational Resources Information Center
Kiernan, James Patrick
1978-01-01
Describes a college-level simulation game about the French Revolution. Based on George Lefebvre's "The Coming of the French Revolution," the role-play focuses on social and economic causes of the revolution and allows students to understand citizens' grievances against the French government. (AV)
Use of artificial intelligence in supervisory control
NASA Technical Reports Server (NTRS)
Cohen, Aaron; Erickson, Jon D.
1989-01-01
Viewgraphs describing the design and testing of an intelligent decision support system called OFMspert are presented. In this expert system, knowledge about the human operator is represented through an operator/system model referred to as the OFM (Operator Function Model). OFMspert uses the blackboard model of problem solving to maintain a dynamic representation of operator goals, plans, tasks, and actions given previous operator actions and current system state. Results of an experiment to assess OFMspert's intent inferencing capability are outlined. Finally, the overall design philosophy for an intelligent tutoring system (OFMTutor) for operators of complex dynamic systems is summarized.
Intelligent methods for the process parameter determination of plastic injection molding
NASA Astrophysics Data System (ADS)
Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn
2018-03-01
Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.
NASA Astrophysics Data System (ADS)
Clay, London; Menger, Karl; Rota, Gian-Carlo; Euclid, Alexandria; Siegel, Edward
P ≠NP MP proof is by computer-''science''/SEANCE(!!!)(CS) computational-''intelligence'' lingo jargonial-obfuscation(JO) NATURAL-Intelligence(NI) DISambiguation! CS P =(?) =NP MEANS (Deterministic)(PC) = (?) =(Non-D)(PC) i.e. D(P) =(?) = N(P). For inclusion(equality) vs. exclusion (inequality) irrelevant (P) simply cancels!!! (Equally any/all other CCs IF both sides identical). Crucial question left: (D) =(?) =(ND), i.e. D =(?) = N. Algorithmics[Sipser[Intro. Thy.Comp.(`97)-p.49Fig.1.15!!!
Swarm Intelligence Optimization and Its Applications
NASA Astrophysics Data System (ADS)
Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu
Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.
Intelligence Constraints on Terrorist Network Plots
NASA Astrophysics Data System (ADS)
Woo, Gordon
Since 9/11, the western intelligence and law enforcement services have managed to interdict the great majority of planned attacks against their home countries. Network analysis shows that there are important intelligence constraints on the number and complexity of terrorist plots. If two many terrorists are involved in plots at a given time, a tipping point is reached whereby it becomes progressively easier for the dots to be joined and for the conspirators to be arrested, and for the aggregate evidence to secure convictions. Implications of this analysis are presented for the campaign to win hearts and minds.
Alamaniotis, Miltiadis; Agarwal, Vivek
2014-04-01
Anticipatory control systems are a class of systems whose decisions are based on predictions for the future state of the system under monitoring. Anticipation denotes intelligence and is an inherent property of humans that make decisions by projecting in future. Likewise, artificially intelligent systems equipped with predictive functions may be utilized for anticipating future states of complex systems, and therefore facilitate automated control decisions. Anticipatory control of complex energy systems is paramount to their normal and safe operation. In this paper a new intelligent methodology integrating fuzzy inference with support vector regression is introduced. Our proposed methodology implements an anticipatorymore » system aiming at controlling energy systems in a robust way. Initially a set of support vector regressors is adopted for making predictions over critical system parameters. Furthermore, the predicted values are fed into a two stage fuzzy inference system that makes decisions regarding the state of the energy system. The inference system integrates the individual predictions into a single one at its first stage, and outputs a decision together with a certainty factor computed at its second stage. The certainty factor is an index of the significance of the decision. The proposed anticipatory control system is tested on a real world set of data obtained from a complex energy system, describing the degradation of a turbine. Results exhibit the robustness of the proposed system in controlling complex energy systems.« less
Involvement of Spearman's g in conceptualisation versus execution of complex tasks.
Carroll, Ellen L; Bright, Peter
2016-10-01
Strong correlations between measures of fluid intelligence (or Spearman's g) and working memory are widely reported in the literature, but there is considerable controversy concerning the nature of underlying mechanisms driving this relationship. In the four experiments presented here we consider the role of response conflict and task complexity in the context of real-time task execution demands (Experiments 1-3) and also address recent evidence that g confers an advantage at the level of task conceptualisation rather than (or in addition to) task execution (Experiment 4). We observed increased sensitivity of measured fluid intelligence to task performance in the presence (vs. the absence) of response conflict, and this relationship remained when task complexity was reduced. Performance-g correlations were also observed in the absence of response conflict, but only in the context of high task complexity. Further, we present evidence that differences in conceptualisation or 'modelling' of task instructions prior to execution had an important mediating effect on observed correlations, but only when the task encompassed a strong element of response inhibition. Our results suggest that individual differences in ability reflect, in large part, variability in the efficiency with which the relational complexity of task constraints are held in mind. It follows that fluid intelligence may support successful task execution through the construction of effective action plans via optimal allocation of limited resources. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2013-01-01
The ability to model and understand the complex dynamics of intelligent agents as they interact within a transportation system could lead to revolutionary advances in transportation engineering and intermodal surface transportation in the United Stat...
Artificial intelligence applied to process signal analysis
NASA Technical Reports Server (NTRS)
Corsberg, Dan
1988-01-01
Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.
NASA Astrophysics Data System (ADS)
Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.
2013-09-01
One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.
Moon, Manyong
2012-01-01
In South Korea, the Green Revolution has been commonly understood as the development and dissemination of new rice varieties ('Tongil' rice) and the rapid increase of rice yield in the 1970s. However, revolutionary success in agriculture was not the only green revolution South Korea experienced; another green revolution lay in the success of reforestation projects. In the 1970s, South Korea's forest greening was closely related to its agricultural revolution in several ways. Therefore, South Korea's Green Revolution was an intrinsically linked double feature of agriculture and forestry. This two-pronged revolution was initiated by scientific research - yet accomplished by the strong administrative mobilization of President Park Chung Hee's regime. The process of setting goals and meeting them through a military-like strategy in a short time was made possible under the authoritarian regime, known as 'Yushin', though the administration failed to fully acknowledge scientific expertise in the process of pushing to achieve goals.
Intelligent services for discovery of complex geospatial features from remote sensing imagery
NASA Astrophysics Data System (ADS)
Yue, Peng; Di, Liping; Wei, Yaxing; Han, Weiguo
2013-09-01
Remote sensing imagery has been commonly used by intelligence analysts to discover geospatial features, including complex ones. The overwhelming volume of routine image acquisition requires automated methods or systems for feature discovery instead of manual image interpretation. The methods of extraction of elementary ground features such as buildings and roads from remote sensing imagery have been studied extensively. The discovery of complex geospatial features, however, is still rather understudied. A complex feature, such as a Weapon of Mass Destruction (WMD) proliferation facility, is spatially composed of elementary features (e.g., buildings for hosting fuel concentration machines, cooling towers, transportation roads, and fences). Such spatial semantics, together with thematic semantics of feature types, can be used to discover complex geospatial features. This paper proposes a workflow-based approach for discovery of complex geospatial features that uses geospatial semantics and services. The elementary features extracted from imagery are archived in distributed Web Feature Services (WFSs) and discoverable from a catalogue service. Using spatial semantics among elementary features and thematic semantics among feature types, workflow-based service chains can be constructed to locate semantically-related complex features in imagery. The workflows are reusable and can provide on-demand discovery of complex features in a distributed environment.
Water and the other three revolutions needed to end rural poverty.
Polak, P
2005-01-01
Eight hundred million of the current 1.1 billion people who earn less than a dollar-a-day live in rural areas in developing countries. Since more than 550 million of them earn their living from agriculture, poverty eradication depends on increasing their income from farming. The millennium goals for hunger and poverty in the semi-arid tropics will not be met without four simultaneous revolutions. A revolution in water is needed to develop and mass disseminate a whole range of new affordable small plot irrigation technology. A revolution in agriculture is required to enable smallholders to produce a variety of high value marketable labor intensive cash crops. A revolution in markets is needed to open access to inputs and to profitable markets for their high value crops, incorporating effective strategies for aggregation, quality control, and decentralized added value processing. Finally, a revolution in design based on the ruthless pursuit of affordability is needed to support the other three revolutions. This paper describes the rapidly growing micro-irrigation revolution exemplified by the 250 million dollars in new net annual income now being earned by Treadle Pump farmers, and outlines the key features of the other three revolutions required to meet millennium poverty goals.
Using the Microcomputer to Study the Anatomy of Revolution.
ERIC Educational Resources Information Center
Rothman, Mark
1982-01-01
Describes computer program designed to enable students to analyze process of political revolution by generating graphs for comparisons of such factors as violence, economic instability, and political instability. Student activities, abilities, and reactions, and teacher involvement are noted. Sources concerning revolution, the French Revolution,…
Information Technology and the Third Industrial Revolution.
ERIC Educational Resources Information Center
Fitzsimmons, Joe
1994-01-01
Discusses the so-called third industrial revolution, or the information revolution. Topics addressed include the progression of the revolution in the U.S. economy, in Europe, and in Third World countries; the empowering technologies, including digital switches, optical fiber, semiconductors, CD-ROM, networks, and combining technologies; and future…
The Industrial Revolution: An ERIC/ChESS Sample.
ERIC Educational Resources Information Center
Pinhey, Laura A.
2000-01-01
Provides a list, from the ERIC database, of teaching materials and background information on the Industrial Revolution. Specific topics include life in Lowell (Massachusetts), the global impact of the Industrial Revolution, and England's Industrial Revolution. Offers directions for obtaining the full text of these materials. (CMK)
Programming model for distributed intelligent systems
NASA Technical Reports Server (NTRS)
Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.
1988-01-01
A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.
Business Testing = BT. Test and Evaluation Methodology for Business Systems
2010-05-12
Not Intuitive Hard to Use Extensive Contractor Tail Stove Piped Systems Intelligence Transportation Logistics / Supply Finance Medical Human Resources...Capability 5 Politics Funding Requirements Busine s “IT” Acquisition Speed bumps Contracts Leadership Finance Testing Acquisition Engineering Security Legal... intelligent fool can make things bigger and more complex... It takes a touch of genius - and a lot of courage to move in the opposite direction
ERIC Educational Resources Information Center
Hendon, Donald W.; And Others
To learn if differences in age, intelligence, and sex account for differences in children's recall of TV commercials and in the degree of insistence with which they request that the advertised product be purchased, 54 gifted, 71 normal, and 53 educable mentally retarded children of both sexes were questioned after viewing commercials for breakfast…
Quality assurance paradigms for artificial intelligence in modelling and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oren, T.I.
1987-04-01
New classes of quality assurance concepts and techniques are required for the advanced knowledge-processing paradigms (such as artificial intelligence, expert systems, or knowledge-based systems) and the complex problems that only simulative systems can cope with. A systematization of quality assurance problems as well as examples are given to traditional and cognizant quality assurance techniques in traditional and cognizant modelling and simulation.
The Future of Computerized Decision Making
2014-12-01
complex, historically reserved for governing bodies or market places where the collective human experience and intelligence come to play. Other decision...access. In all cases, we should think about this carefully first: what data are really important for our goals and what data should be ignored or not even...stored? The answer to these questions involves human intelligence and understanding before the data-to-decision process begins.
ERIC Educational Resources Information Center
Rudolph, Michelle M.
2017-01-01
The education of student nurses is a complex endeavor involving the components of theory, skills, and clinical experiences during which the clinical instructor serves as a role model for socialization into the profession. Emotional intelligence, a skill that supports interpersonal relationships, enables the nursing clinical instructor to identify,…
Implementing dashboards as a business intelligence tool in the forest inventory and analysis program
Scott A. Pugh; Randall S. Morin; Barbara A. Johnson
2015-01-01
Today is the era of âbig dataâ where businesses have access to enormous amounts of often complex and sometimes unwieldy data. Businesses are using business intelligence (BI) systems to transform this data into useful information for management decisions. BI systems integrate applications, processes, data, and people to deliver prompt and robust analyses. A number of...
Ren, Xuezhu; Schweizer, Karl; Wang, Tengfei; Xu, Fen
2015-01-01
The present study provides a new account of how fluid intelligence influences academic performance. In this account a complex learning component of fluid intelligence tests is proposed to play a major role in predicting academic performance. A sample of 2, 277 secondary school students completed two reasoning tests that were assumed to represent fluid intelligence and standardized math and verbal tests assessing academic performance. The fluid intelligence data were decomposed into a learning component that was associated with the position effect of intelligence items and a constant component that was independent of the position effect. Results showed that the learning component contributed significantly more to the prediction of math and verbal performance than the constant component. The link from the learning component to math performance was especially strong. These results indicated that fluid intelligence, which has so far been considered as homogeneous, could be decomposed in such a way that the resulting components showed different properties and contributed differently to the prediction of academic performance. Furthermore, the results were in line with the expectation that learning was a predictor of performance in school.
Ren, Xuezhu; Schweizer, Karl; Wang, Tengfei; Xu, Fen
2015-01-01
The present study provides a new account of how fluid intelligence influences academic performance. In this account a complex learning component of fluid intelligence tests is proposed to play a major role in predicting academic performance. A sample of 2, 277 secondary school students completed two reasoning tests that were assumed to represent fluid intelligence and standardized math and verbal tests assessing academic performance. The fluid intelligence data were decomposed into a learning component that was associated with the position effect of intelligence items and a constant component that was independent of the position effect. Results showed that the learning component contributed significantly more to the prediction of math and verbal performance than the constant component. The link from the learning component to math performance was especially strong. These results indicated that fluid intelligence, which has so far been considered as homogeneous, could be decomposed in such a way that the resulting components showed different properties and contributed differently to the prediction of academic performance. Furthermore, the results were in line with the expectation that learning was a predictor of performance in school. PMID:26435760
Strong genetic overlap between executive functions and intelligence.
Engelhardt, Laura E; Mann, Frank D; Briley, Daniel A; Church, Jessica A; Harden, K Paige; Tucker-Drob, Elliot M
2016-09-01
Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and decision making, and individual differences in EFs have been consistently linked with individual differences in intelligence. By middle childhood, genetic factors account for a moderate proportion of the variance in intelligence, and these effects increase in magnitude through adolescence. Genetic influences on EFs are very high, even in middle childhood, but the extent to which these genetic influences overlap with those on intelligence is unclear. We examined genetic and environmental overlap between EFs and intelligence in a racially and socioeconomically diverse sample of 811 twins ages 7 to 15 years (M = 10.91, SD = 1.74) from the Texas Twin Project. A general EF factor representing variance common to inhibition, switching, working memory, and updating domains accounted for substantial proportions of variance in intelligence, primarily via a genetic pathway. General EF continued to have a strong, genetically mediated association with intelligence even after controlling for processing speed. Residual variation in general intelligence was influenced only by shared and nonshared environmental factors, and there remained no genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF did remain, however, in a more specific perceptual reasoning ability. These results provide evidence that genetic influences on general intelligence are highly overlapping with those on EF. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Common neural correlates of intertemporal choices and intelligence in adolescents.
Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Li, Shu-Chen; Smolka, Michael N
2015-02-01
Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7-15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.
DeMAID: A Design Manager's Aide for Intelligent Decomposition user's guide
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, the couplings among modules and the presence of iterative loops is determined. This is important because the design manager must know how to group the modules into subsystems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information become available or as the design specifications change. The purpose of this research is to develop a knowledge-based tool called the Design Manager's Aide for Intelligent Decomposition (DeMAID) to act as an intelligent advisor for the design manager. DeMaid identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. DeMAID also provides the design manager with the capability of examining the trade-offs between sequential and parallel processing. This type of approach could lead to a substantial savings or organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams. This report serves as a User's Guide for the program.
Assessing Relevance of External Cognitive Measures.
Cairó, Osvaldo
2017-01-01
The arrival of modern brain imaging technologies has provided new opportunities for examining the biological essence of human intelligence as well as the relationship between brain size and cognition. Thanks to these advances, we can now state that the relationship between brain size and intelligence has never been well understood. This view is supported by findings showing that cognition is correlated more with brain tissues than sheer brain size. The complexity of cellular and molecular organization of neural connections actually determines the computational capacity of the brain. In this review article, we determine that while genotypes are responsible for defining the theoretical limits of intelligence, what is primarily responsible for determining whether those limits are reached or exceeded is experience (environmental influence). Therefore, we contend that the gene-environment interplay defines the intelligent quotient of an individual.
Identification of a pathway for intelligible speech in the left temporal lobe
Scott, Sophie K.; Blank, C. Catrin; Rosen, Stuart; Wise, Richard J. S.
2017-01-01
Summary It has been proposed that the identification of sounds, including species-specific vocalizations, by primates depends on anterior projections from the primary auditory cortex, an auditory pathway analogous to the ventral route proposed for the visual identification of objects. We have identified a similar route in the human for understanding intelligible speech. Using PET imaging to identify separable neural subsystems within the human auditory cortex, we used a variety of speech and speech-like stimuli with equivalent acoustic complexity but varying intelligibility. We have demonstrated that the left superior temporal sulcus responds to the presence of phonetic information, but its anterior part only responds if the stimulus is also intelligible. This novel observation demonstrates a left anterior temporal pathway for speech comprehension. PMID:11099443
ERIC Educational Resources Information Center
Berkeley, Edmund C.
"The Computer Revolution", a part of the "Second Industrial Revolution", is examined with reference to the social consequences of computers. The subject is introduced in an opening section which discusses the revolution in the handling of information and the history, powers, uses, and working s of computers. A second section examines in detail the…
ERIC Educational Resources Information Center
Duncan, David F.
1983-01-01
Health educators are reacting today to what the author calls the third revolution in computers in education-- the use of microcomputers as teaching machines. He defines each revolution, as well as discussing how the fourth revolution, the portable microcomputer, is already underway. (JMK)
NASA Astrophysics Data System (ADS)
Odell, M.; Ellins, K. K.; Polito, E. J.; Castillo Comer, C. A.; Stocks, E.; Manganella, K.; Ledley, T. S.
2010-12-01
TERC’s EarthLabs project provides rigorous and engaging Earth and environmental science labs. Four existing modules illustrate sequences for learning science concepts through data analysis activities and hands-on experiments. A fifth module, developed with NSF, comprises a series of linked inquiry based activities focused on the cryosphere to help students understand concepts around change over time on multiple and embedded time scales. Teachers recruited from the NSF-OEDG-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program conducted a pedagogical review of the Cryosphere EarthLabs module and provided feedback on how well the materials matched high school needs in Texas and were aligned with state and national standards. Five TXESS Revolution teachers field tested the materials in their classrooms and then trained other TXESS Revolution teachers on their implementation during spring and summer 2010. Here we report on the results of PD delivery during the summer 2010 TXESS Revolution summer institute as determined by (1) a set of evaluation instruments that included a pre-post concept map activity to assess changes in workshop teachers’ understanding of the concepts presented, a pre-post test content knowledge test, and a pre-post survey of teachers’ comfort in teaching the Texas Earth and Space Science standards addressed by the module; (2) teacher reflections; and (3) focus group responses. The findings reveal that the teachers liked the module activities and felt they could use them to teach Environmental and Earth Science. They appreciated that the sequence of activities contributed to a deeper understanding and observed that the variety of methods used to present the information accommodates different learning styles. Information about the cryosphere was new to all the teachers. The content knowledge tests reveal that although teachers made appreciable gains, their understanding of cryosphere, how it changes over time, and it’s role in Earth’s climate system remains weak. Our results clearly reflect the challenges of addressing the complexity of climate science and critical need for climate literacy education.
Support for international agricultural research: current status and future challenges.
Zeigler, Robert S; Mohanty, Samarendu
2010-11-30
The success of the first Green Revolution in the form of abundant food supplies and low prices over the past two decades has diverted the world's attention from agriculture to other pressing issues. This has resulted in lower support for the agricultural research work primarily undertaken by the 15 research centers of the Consultative Group on International Agricultural Research (CGIAR). The total support in real dollars for most of the last three decades has been more or less flat although the number of centers increased from 4 to 15. However, since 2000, the funding situation has improved for the CGIAR centers, with almost all the increase coming from grants earmarked for specific research projects. Even for some centers such as the International Rice Research Institute (IRRI), the downward trend continued as late as 2006 with the budget in real dollars reaching the 1978 level of support. The recent food crisis has renewed the call for a second Green Revolution by revitalizing yield growth to feed the world in the face of growing population and a shrinking land base for agricultural use. The slowdown in yield growth because of decades of neglect in agricultural research and infrastructure development has been identified as the underlying reason for the recent food crisis. For the second Green Revolution to be successful, the CGIAR centers will have to play a complex role by expanding productivity in a sustainable manner with fewer resources. Thus, it is crucial to examine the current structure of support for the CGIAR centers and identify the challenges ahead in terms of source and end use of funds for the success of the second Green Revolution. The objective of this paper is to provide a historical perspective on the support to the CGIAR centers and to examine the current status of funding, in particular, the role of project-specific grants in rebuilding capacity of these centers. The paper will also discuss the nature of the support (unrestricted vs. project-specific grants) that will be needed for a much-desired second Green Revolution. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na
2016-05-01
Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.
Graumann, Johannes; Scheltema, Richard A; Zhang, Yong; Cox, Jürgen; Mann, Matthias
2012-03-01
In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides "on-the-fly" within 30 ms, well within the time constraints of a shotgun fragmentation "topN" method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available.
Graumann, Johannes; Scheltema, Richard A.; Zhang, Yong; Cox, Jürgen; Mann, Matthias
2012-01-01
In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides “on-the-fly” within 30 ms, well within the time constraints of a shotgun fragmentation “topN” method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available. PMID:22171319
Boosting medical diagnostics by pooling independent judgments
Kurvers, Ralf H. J. M.; Herzog, Stefan M.; Hertwig, Ralph; Krause, Jens; Carney, Patricia A.; Bogart, Andy; Argenziano, Giuseppe; Zalaudek, Iris; Wolf, Max
2016-01-01
Collective intelligence refers to the ability of groups to outperform individual decision makers when solving complex cognitive problems. Despite its potential to revolutionize decision making in a wide range of domains, including medical, economic, and political decision making, at present, little is known about the conditions underlying collective intelligence in real-world contexts. We here focus on two key areas of medical diagnostics, breast and skin cancer detection. Using a simulation study that draws on large real-world datasets, involving more than 140 doctors making more than 20,000 diagnoses, we investigate when combining the independent judgments of multiple doctors outperforms the best doctor in a group. We find that similarity in diagnostic accuracy is a key condition for collective intelligence: Aggregating the independent judgments of doctors outperforms the best doctor in a group whenever the diagnostic accuracy of doctors is relatively similar, but not when doctors’ diagnostic accuracy differs too much. This intriguingly simple result is highly robust and holds across different group sizes, performance levels of the best doctor, and collective intelligence rules. The enabling role of similarity, in turn, is explained by its systematic effects on the number of correct and incorrect decisions of the best doctor that are overruled by the collective. By identifying a key factor underlying collective intelligence in two important real-world contexts, our findings pave the way for innovative and more effective approaches to complex real-world decision making, and to the scientific analyses of those approaches. PMID:27432950
The relationship between intelligence and training gains is moderated by training strategy.
Lee, Hyunkyu; Boot, Walter R; Baniqued, Pauline L; Voss, Michelle W; Prakash, Ruchika Shaurya; Basak, Chandramallika; Kramer, Arthur F
2015-01-01
We examined the relationship between training regimen and fluid intelligence in the learning of a complex video game. Fifty non-game-playing young adults were trained on a game called Space Fortress for 30 hours with one of two training regimens: (1) Hybrid Variable-Priority Training (HVT), with part-task training and a focus on improving specific skills and managing task priorities, and (2) Full Emphasis Training (FET) in which participants practiced the whole game to obtain the highest overall score. Fluid intelligence was measured with the Raven's Progressive Matrix task before training. With FET, fluid intelligence was positively associated with learning, suggesting that intellectual ability played a substantial role in determining individual differences in training success. In contrast, with HVT, fluid intelligence was not associated with learning, suggesting that individual differences in fluid intelligence do not factor into training success in a regimen that emphasizes component tasks and flexible task coordination. By analyzing training effects in terms of individual differences and training regimens, the current study offers a training approach that minimizes the potentially limiting effect of individual differences.
Che, Dexin; Hu, Jianping; Zhen, Shuangju; Yu, Chengfu; Li, Bin; Chang, Xi; Zhang, Wei
2017-01-01
This study tested a parallel two-mediator model in which the relationship between dimensions of emotional intelligence and online gaming addiction are mediated by perceived helplessness and perceived self-efficacy, respectively. The sample included 931 male adolescents (mean age = 16.18 years, SD = 0.95) from southern China. Data on emotional intelligence (four dimensions, including self-management of emotion, social skills, empathy and utilization of emotions), perceived stress (two facets, including perceived self-efficacy and perceived helplessness) and online gaming addiction were collected, and bootstrap methods were used to test this parallel two-mediator model. Our findings revealed that perceived self-efficacy mediated the relationship between three dimensions of emotional intelligence (i.e., self-management, social skills, and empathy) and online gaming addiction, and perceived helplessness mediated the relationship between two dimensions of emotional intelligence (i.e., self-management and emotion utilization) and online gaming addiction. These findings underscore the importance of separating the four dimensions of emotional intelligence and two facets of perceived stress to understand the complex relationship between these factors and online gaming addiction.
Che, Dexin; Hu, Jianping; Zhen, Shuangju; Yu, Chengfu; Li, Bin; Chang, Xi; Zhang, Wei
2017-01-01
This study tested a parallel two-mediator model in which the relationship between dimensions of emotional intelligence and online gaming addiction are mediated by perceived helplessness and perceived self-efficacy, respectively. The sample included 931 male adolescents (mean age = 16.18 years, SD = 0.95) from southern China. Data on emotional intelligence (four dimensions, including self-management of emotion, social skills, empathy and utilization of emotions), perceived stress (two facets, including perceived self-efficacy and perceived helplessness) and online gaming addiction were collected, and bootstrap methods were used to test this parallel two-mediator model. Our findings revealed that perceived self-efficacy mediated the relationship between three dimensions of emotional intelligence (i.e., self-management, social skills, and empathy) and online gaming addiction, and perceived helplessness mediated the relationship between two dimensions of emotional intelligence (i.e., self-management and emotion utilization) and online gaming addiction. These findings underscore the importance of separating the four dimensions of emotional intelligence and two facets of perceived stress to understand the complex relationship between these factors and online gaming addiction. PMID:28751876
NASA Astrophysics Data System (ADS)
Zhu, Bing; Han, Jiayi; Zhao, Jian; Deng, Weiwen
2017-04-01
Intelligent tires are essentially a data acquisition system based on a number of complex intelligent sensors inside the tire. Intelligent tires which are capable of boosting the performance of the vehicle have the key problem of energy supply. A practical energy harvester was here designed to support the electric equipment in the intelligent tires and make it feasible for them to work steadily and constantly. This harvester takes the centrifugal force caused by the rotation of the wheel, which could affect the resonance frequency of the piezoelectric cantilever, into account. First, the vibration characteristics of the wheel were analyzed by road test, and the optimal arrangement for vibration energy usage was determined. Then, a piezoelectric vibration energy harvester was designed according to a series of formulas that took the effect of centrifugal force on resonance frequency into account. Finally, a road test was carried out to test the generated energy of the energy harvester excited by the vibration of the wheel. The results showed that the electric power meets the need of general low-power consumption triaxial accelerometers used in intelligent tires.
The structure of the cognitive revolution: An examination from the philosophy of science
O'Donohue, William; Ferguson, Kyle E.; Naugle, Amy E.
2003-01-01
The received view is that psychology has undergone several scientific revolutions similar to those that occurred in the physical sciences. Of these, this paper will consider the cognitive revolution. Because the arguments in favor of the existence of a cognitive revolution are cast using the concepts and terms of revolutionary science, we will examine the cognitive revolution using accounts of revolutionary science advanced by five influential philosophers of science. Specifically, we will draw from the philosophical positions of Popper, Kuhn, Lakatos, Laudan, and Gross for the purpose of discussion. We conclude that no substantive revolution took place according to these accounts. This conclusion is based on data gathered from some of the major participants in the “cognitive revolution” and on a general scholarly survey of the literature. We argue that the so-called cognitive revolution is best characterized as a socio-rhetorical phenomenon. PMID:22478396
Walking through the Revolution: A Spatial Reading of Literary Echoes
ERIC Educational Resources Information Center
Queiroz, Ana Isabel; Alves, Daniel
2015-01-01
This paper presents an embryo of a literary guide on the Carnation Revolution to be explored for educational historical excursions other than leisure and tourism. We propose a historical trail through the centre of Lisbon, city of the Carnation Revolution, called "Walk through the Revolution." The trail aims to reinforce collective…
The "Philosophes" and the French Revolution: Reflections on Some Recent Research.
ERIC Educational Resources Information Center
Stromberg, Roland N.
1988-01-01
Reexamines the role of ideas as a factor in the French Revolution. Discusses recent research concerning the influence of philosophy upon this Revolution. Looks at research dealing with the Enlightenment thinkers and the "Cercle Social" Girondists among other philosophies. Views the French Revolution as a means of understanding the modern…
ERIC Educational Resources Information Center
Baltimore City Public Schools, MD.
This outline on the French Revolution is designed to illustrate how this period of French history influenced various aspects of contemporary culture. Four main sections are treated: (1) ideas that led to the Revolution, (2) the reigns of the Bourbon kings, (3) the Revolution, and (4) the rise of Napoleon as a reaction to chaos. A list of 16mm…
A Reassessment of R. R. Palmer's "The Age of Democratic Revolution."
ERIC Educational Resources Information Center
Cox, Marvin
1991-01-01
Compares Robert Palmer's interpretation of the French Revolution with the Marxist and revisionist views. Stresses Palmer's theory that the French Revolution belongs to the same spiritual family as the American. Reports that Palmer saw the French Revolution as the climactic event in a series of similar upheavals that integrated liberal democracy…
Revolution and the Re-Birth of Inequality: The Bolivian National Revolution.
ERIC Educational Resources Information Center
Kelley, Jonathan; Klein, Herbert S.
This study of Bolivia's National Revolution of 1952 illustrates the effects of a peasant revolution on inequality and status inheritance. It was hypothesized that when an exploited peasantry revolts and overthrows the traditonal elite, peasants would be better off because inequality and status inheritance would decline as a result of the…
Rostami, Amir; Mondani, Hernan
2015-01-01
The field of social network analysis has received increasing attention during the past decades and has been used to tackle a variety of research questions, from prevention of sexually transmitted diseases to humanitarian relief operations. In particular, social network analyses are becoming an important component in studies of criminal networks and in criminal intelligence analysis. At the same time, intelligence analyses and assessments have become a vital component of modern approaches in policing, with policy implications for crime prevention, especially in the fight against organized crime. In this study, we have a unique opportunity to examine one specific Swedish street gang with three different datasets. These datasets are the most common information sources in studies of criminal networks: intelligence, surveillance and co-offending data. We use the data sources to build networks, and compare them by computing distance, centrality, and clustering measures. This study shows the complexity factor by which different data sources about the same object of study have a fundamental impact on the results. The same individuals have different importance ranking depending on the dataset and measure. Consequently, the data source plays a vital role in grasping the complexity of the phenomenon under study. Researchers, policy makers, and practitioners should therefore pay greater attention to the biases affecting the sources of the analysis, and be cautious when drawing conclusions based on intelligence assessments and limited network data. This study contributes to strengthening social network analysis as a reliable tool for understanding and analyzing criminality and criminal networks. PMID:25775130
Rostami, Amir; Mondani, Hernan
2015-01-01
The field of social network analysis has received increasing attention during the past decades and has been used to tackle a variety of research questions, from prevention of sexually transmitted diseases to humanitarian relief operations. In particular, social network analyses are becoming an important component in studies of criminal networks and in criminal intelligence analysis. At the same time, intelligence analyses and assessments have become a vital component of modern approaches in policing, with policy implications for crime prevention, especially in the fight against organized crime. In this study, we have a unique opportunity to examine one specific Swedish street gang with three different datasets. These datasets are the most common information sources in studies of criminal networks: intelligence, surveillance and co-offending data. We use the data sources to build networks, and compare them by computing distance, centrality, and clustering measures. This study shows the complexity factor by which different data sources about the same object of study have a fundamental impact on the results. The same individuals have different importance ranking depending on the dataset and measure. Consequently, the data source plays a vital role in grasping the complexity of the phenomenon under study. Researchers, policy makers, and practitioners should therefore pay greater attention to the biases affecting the sources of the analysis, and be cautious when drawing conclusions based on intelligence assessments and limited network data. This study contributes to strengthening social network analysis as a reliable tool for understanding and analyzing criminality and criminal networks.
ERIC Educational Resources Information Center
Cerruti, Carlo; Schlaug, Gottfried
2009-01-01
The remote associates test (RAT) is a complex verbal task with associations to both creative thought and general intelligence. RAT problems require not only lateral associations and the internal production of many words but a convergent focus on a single answer. Complex problem-solving of this sort may thus require both substantial verbal…
Survey of Intelligent Computer-Aided Training
NASA Technical Reports Server (NTRS)
Loftin, R. B.; Savely, Robert T.
1992-01-01
Intelligent Computer-Aided Training (ICAT) systems integrate artificial intelligence and simulation technologies to deliver training for complex, procedural tasks in a distributed, workstation-based environment. Such systems embody both the knowledge of how to perform a task and how to train someone to perform that task. This paper briefly reviews the antecedents of ICAT systems and describes the approach to their creation developed at the NASA Lyndon B. Johnson Space Center. In addition to the general ICAT architecture, specific ICAT applications that have been or are currently under development are discussed. ICAT systems can offer effective solutions to a number of training problems of interest to the aerospace community.
Pavlovian, Skinner, and Other Behaviourists' Contributions to AI. Chapter 9
NASA Technical Reports Server (NTRS)
Kosinski, Withold; Zaczek-Chrzanowska, Dominika
2007-01-01
A version of the definition of intelligent behaviour will be supplied in the context of real and artificial systems. Short presentation of principles of learning, starting with Pavlovian s classical conditioning through reinforced response and operant conditioning of Thorndike and Skinner and finishing with cognitive learning of Tolman and Bandura will be given. The most important figures within behaviourism, especially those with contribution to AI, will be described. Some tools of artificial intelligence that act according to those principles will be presented. An attempt will be made to show when some simple rules for behaviour modifications can lead to a complex intelligent behaviour.
Business intelligence tools for radiology: creating a prototype model using open-source tools.
Prevedello, Luciano M; Andriole, Katherine P; Hanson, Richard; Kelly, Pauline; Khorasani, Ramin
2010-04-01
Digital radiology departments could benefit from the ability to integrate and visualize data (e.g. information reflecting complex workflow states) from all of their imaging and information management systems in one composite presentation view. Leveraging data warehousing tools developed in the business world may be one way to achieve this capability. In total, the concept of managing the information available in this data repository is known as Business Intelligence or BI. This paper describes the concepts used in Business Intelligence, their importance to modern Radiology, and the steps used in the creation of a prototype model of a data warehouse for BI using open-source tools.
Swarm intelligence metaheuristics for enhanced data analysis and optimization.
Hanrahan, Grady
2011-09-21
The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.
Bibliography of Reports and Journal Articles Approved for Public Release: FY1990
1990-12-01
Holland G. D. Gottfredson This study found that classified vocational aspirations of H. G. Baker Navy recruits were superior to the Vocational...Testing Systems Journal Articles Intelligence , 14, 215-238 Novelty as "Representational Complexity": A Cognitive (1990). Interpretation of Sternberg and...Gastel. G. E. Larson Approved for public release; distribution is unlimited. A major principle of intelligence research is the ubiquitous relationship
Intelligence, Surveillance, and Reconnaissance (ISR) Acquisition: Issues for Congress
2013-04-16
scientists and engineers that launched the satellite program.7 5 Ibid., p. 21. 6 Ibid., p. 22. It is...major role in supporting combat operations in Iraq and Afghanistan, although the E-8s are scheduled to have new engines to extend their service life...that the Army is even considering the development of intelligence- gathering airships .43 In comparison to the complex acquisition history of UAS, the
A Dynamic Security Framework for Ambient Intelligent Systems: A Smart-Home Based eHealth Application
NASA Astrophysics Data System (ADS)
Compagna, Luca; El Khoury, Paul; Massacci, Fabio; Saidane, Ayda
Providing context-dependent security services is an important challenge for ambient intelligent systems. The complexity and the unbounded nature of such systems make it difficult even for the most experienced and knowledgeable security engineers, to foresee all possible situations and interactions when developing the system. In order to solve this problem context based self- diagnosis and reconfiguration at runtime should be provided.
Optimization Case Study: ISR Allocation in the Global Force Management Process
2016-09-01
Communications Intelligence (COMINT), and other intelligence collection capabilities. The complexity of FMV force allocation makes FMV the ideal...Joint Staff (2014). 5 This chapter will step through the GFM allocation process and develop an understanding of the GFM process depicted in Figure 1...contentious. The contentious issue will go through a resolution process consisting of action officer and General Officer/Flag Officer (GOFO) level forums
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.
2017-01-01
The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.
The Great Drama: Germany and the French Revolution.
ERIC Educational Resources Information Center
Kurz, Gerhard
Revolution did not spread to Germany from France at the end of the 18th century, yet the German and other European states were forced to come to terms with the principles of the French Revolution such as political and legal freedoms and national unity. Germany was affected by the French Revolution particularly by the reactions of German…
ERIC Educational Resources Information Center
Hardy, Samantha; Dhanissaro, Phra John Paramai; Thangsurbkul, Worakate
2011-01-01
This paper describes a project called Peace Revolution [http://peacerevolution.net], which provides an opportunity for young people from around the world to learn and share positive messages and activities relating to peace. The Peace Revolution project aims to empower young people via a unique process related to youth development, helping young…
Impact of non-integer planetary revolutions on the distribution of evaporated optical coatings
Oliver, J. B.
2017-02-08
Planetary substrate rotation for optical-coating deposition is evaluated based on initial and final positions for a given layer with different numbers of revolutions and various deposition-source locations. The influence of partial revolutions of the rotation system is analyzed relative to the total number of planetary revolutions in that layer to determine the relative impact on film thickness and uniformity. Furthermore, guidance is provided on the necessary planetary revolutions that should take place in each layer versus the expected error level in the layer thickness for the modeled system.
Enhancements to the Design Manager's Aide for Intelligent Decomposition (DeMAID)
NASA Technical Reports Server (NTRS)
Rogers, James L.; Barthelemy, Jean-Francois M.
1992-01-01
This paper discusses the addition of two new enhancements to the program Design Manager's Aide for Intelligent Decomposition (DeMAID). DeMAID is a knowledge-based tool used to aid a design manager in understanding the interactions among the tasks of a complex design problem. This is done by ordering the tasks to minimize feedback, determining the participating subsystems, and displaying them in an easily understood format. The two new enhancements include (1) rules for ordering a complex assembly process and (2) rules for determining which analysis tasks must be re-executed to compute the output of one task based on a change in input to that or another task.
Enhancements to the Design Manager's Aide for Intelligent Decomposition (DeMaid)
NASA Technical Reports Server (NTRS)
Rogers, James L.; Barthelemy, Jean-Francois M.
1992-01-01
This paper discusses the addition of two new enhancements to the program Design Manager's Aide for Intelligent Decomposition (DeMAID). DeMAID is a knowledge-based tool used to aid a design manager in understanding the interactions among the tasks of a complex design problem. This is done by ordering the tasks to minimize feedback, determining the participating subsystems, and displaying them in an easily understood format. The two new enhancements include (1) rules for ordering a complex assembly process and (2) rules for determining which analysis tasks must be re-executed to compute the output of one task based on a change in input to that or another task.
Gao, Michael C.; Bellugi, Ursula; Dai, Li; Mills, Debra L.; Sobel, Eric M.; Lange, Kenneth; Korenberg, Julie R.
2010-01-01
Although genetics is the most significant known determinant of human intelligence, specific gene contributions remain largely unknown. To accelerate understanding in this area, we have taken a new approach by studying the relationship between quantitative gene expression and intelligence in a cohort of 65 patients with Williams Syndrome (WS), a neurodevelopmental disorder caused by a 1.5 Mb deletion on chromosome 7q11.23. We find that variation in the transcript levels of the brain gene STX1A correlates significantly with intelligence in WS patients measured by principal component analysis (PCA) of standardized WAIS-R subtests, r = 0.40 (Pearson correlation, Bonferroni corrected p-value = 0.007), accounting for 15.6% of the cognitive variation. These results suggest that syntaxin 1A, a neuronal regulator of presynaptic vesicle release, may play a role in WS and be a component of the cellular pathway determining human intelligence. PMID:20422020
Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan
2017-01-01
Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.
Infrastructural intelligence: Contemporary entanglements between neuroscience and AI.
Bruder, Johannes
2017-01-01
In this chapter, I reflect on contemporary entanglements between artificial intelligence and the neurosciences by tracing the development of Google's recent DeepMind algorithms back to their roots in neuroscientific studies of episodic memory and imagination. Google promotes a new form of "infrastructural intelligence," which excels by constantly reassessing its cognitive architecture in exchange with a cloud of data that surrounds it, and exhibits putatively human capacities such as intuition. I argue that such (re)alignments of biological and artificial intelligence have been enabled by a paradigmatic infrastructuralization of the brain in contemporary neuroscience. This infrastructuralization is based in methodologies that epistemically liken the brain to complex systems of an entirely different scale (i.e., global logistics) and has given rise to diverse research efforts that target the neuronal infrastructures of higher cognitive functions such as empathy and creativity. What is at stake in this process is no less than the shape of brains to come and a revised understanding of the intelligent and creative social subject. © 2017 Elsevier B.V. All rights reserved.
Smart Aerospace eCommerce: Using Intelligent Agents in a NASA Mission Services Ordering Application
NASA Technical Reports Server (NTRS)
Moleski, Walt; Luczak, Ed; Morris, Kim; Clayton, Bill; Scherf, Patricia; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
This paper describes how intelligent agent technology was successfully prototyped and then deployed in a smart eCommerce application for NASA. An intelligent software agent called the Intelligent Service Validation Agent (ISVA) was added to an existing web-based ordering application to validate complex orders for spacecraft mission services. This integration of intelligent agent technology with conventional web technology satisfies an immediate NASA need to reduce manual order processing costs. The ISVA agent checks orders for completeness, consistency, and correctness, and notifies users of detected problems. ISVA uses NASA business rules and a knowledge base of NASA services, and is implemented using the Java Expert System Shell (Jess), a fast rule-based inference engine. The paper discusses the design of the agent and knowledge base, and the prototyping and deployment approach. It also discusses future directions and other applications, and discusses lessons-learned that may help other projects make their aerospace eCommerce applications smarter.
Accomplishment Summary 1968-1969. Biological Computer Laboratory.
ERIC Educational Resources Information Center
Von Foerster, Heinz; And Others
This report summarizes theoretical, applied, and experimental studies in the areas of computational principles in complex intelligent systems, cybernetics, multivalued logic, and the mechanization of cognitive processes. This work is summarized under the following topic headings: properties of complex dynamic systems; computers and the language…
ERIC Educational Resources Information Center
Truxal, John G.
Technological advances during the past few decades have revolutionized many complex systems that influence human activity. As the rate of technological progress accelerates, these systems will become more complex, and new ones will evolve. Citizens in a technological society need to be able to make intelligent choices about how technology will…
Spatial Collective Intelligence? credibility, accuracy, and Volunteered Geographic Information
Spielman, Seth E.
2014-01-01
Collective intelligence is the idea that under the right circumstances collections of individuals are smarter than even the smartest individuals in the group (Suroweiki 2004), that is a group has an “intelligence” that is independent of the intelligence of its members. The ideology of collective intelligence undergirds much of the enthusiasm about the use of “volunteered” or crowdsourced geographic information. Literature from a variety of fields makes clear that not all groups possess collective intelligence, this paper identifies four pre-conditions for the emergence of collective intelligence and then examine the extent to which collectively generated mapping systems satisfy these conditions. However, the “intelligence” collectively generated maps is hard to assess because there are two difficult to reconcile perspectives on map quality- the credibility perspective and the accuracy perspective. Much of the current literature on user generated maps focuses on assessing the quality of individual contributions. However, because user generated maps are complex social systems and because the quality of a contribution is difficult to assess this strategy may not yield an “intelligent” end product. The existing literature on collective intelligence suggests that the structure of groups more important that the intelligence of group members. Applying this idea to user generated suggests that systems should be designed to foster conditions known to produce collective intelligence rather than privileging particular contributions/contributors. The paper concludes with some design recommendations and by considering the implications of collectively generated maps for both expert knowledge and traditional state sponsored mapping programs. PMID:25419184
Brain entropy and human intelligence: A resting-state fMRI study
Calderone, Daniel; Morales, Leah J.
2018-01-01
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427
Brain entropy and human intelligence: A resting-state fMRI study.
Saxe, Glenn N; Calderone, Daniel; Morales, Leah J
2018-01-01
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.
Lesion mapping of social problem solving
Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.
2014-01-01
Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511
Artificial intelligence in a mission operations and satellite test environment
NASA Technical Reports Server (NTRS)
Busse, Carl
1988-01-01
A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.
Assessing Relevance of External Cognitive Measures
Cairó, Osvaldo
2017-01-01
The arrival of modern brain imaging technologies has provided new opportunities for examining the biological essence of human intelligence as well as the relationship between brain size and cognition. Thanks to these advances, we can now state that the relationship between brain size and intelligence has never been well understood. This view is supported by findings showing that cognition is correlated more with brain tissues than sheer brain size. The complexity of cellular and molecular organization of neural connections actually determines the computational capacity of the brain. In this review article, we determine that while genotypes are responsible for defining the theoretical limits of intelligence, what is primarily responsible for determining whether those limits are reached or exceeded is experience (environmental influence). Therefore, we contend that the gene-environment interplay defines the intelligent quotient of an individual. PMID:28270753
Health-Enabled Smart Sensor Fusion Technology
NASA Technical Reports Server (NTRS)
Wang, Ray
2012-01-01
A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-01-01
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-12-04
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.
Macromolecular networks and intelligence in microorganisms
Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey
2014-01-01
Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076
Intelligent Sensors: An Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Mahajan, Ajay; Chitikeshi, Sanjeevi; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
The need for intelligent sensors as a critical component for Integrated System Health Management (ISHM) is fairly well recognized by now. Even the definition of what constitutes an intelligent sensor (or smart sensor) is well documented and stems from an intuitive desire to get the best quality measurement data that forms the basis of any complex health monitoring and/or management system. If the sensors, i.e. the elements closest to the measurand, are unreliable then the whole system works with a tremendous handicap. Hence, there has always been a desire to distribute intelligence down to the sensor level, and give it the ability to assess its own health thereby improving the confidence in the quality of the data at all times. This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines some fundamental issues in the development of intelligent sensors under the following two categories: Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A
2016-01-01
Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case–control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence. PMID:26239293
Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A
2016-08-01
Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.
Genetics and intelligence differences: five special findings.
Plomin, R; Deary, I J
2015-02-01
Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for 'positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century-Genome-wide Complex Trait Analysis (GCTA)-which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture of intelligence that are relevant to attempts to narrow the 'missing heritability' gap.
Genetics and intelligence differences: five special findings
Plomin, R; Deary, I J
2015-01-01
Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for ‘positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century—Genome-wide Complex Trait Analysis (GCTA)—which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture of intelligence that are relevant to attempts to narrow the ‘missing heritability' gap. PMID:25224258
Association of Structural Global Brain Network Properties with Intelligence in Normal Aging
Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas
2014-01-01
Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994
Frankena, T K; Naaldenberg, J; Cardol, M; Meijering, J V; Leusink, G; van Schrojenstein Lantman-de Valk, H M J
2016-01-01
Background The British Medical Journal's (BMJ's) patient revolution strives for collaboration with patients in healthcare and health research. This paper studies collaboration with people with intellectual disabilities (ID) in health research, also known as inclusive health research. Currently, transparency and agreement among academics is lacking regarding its main aspects, preventing upscaling of the patient revolution. Objective This study aims to gain agreement among academics on 3 aspects of inclusive health research for people with ID: (1) designs and methods, (2) most important characteristics and (3) outcomes. Design A Delphi study was conducted with academics with experience in inclusive (health) research and on people with ID. The study consisted of 2 sequential questionnaire rounds (n=24; n=17), followed by in-depth interviews (n=10). Results Academics agreed on (1) a collaborative approach to be most suitable to inclusive health research, (2) characteristics regarding the accessibility and facilitation of inclusive health research, and (3) several outcomes of inclusive health research for people with ID and healthcare. Other characteristics agreed on included: atmosphere, relationship, engagement, partnership and power. It was stressed that these characteristics ensure meaningful inclusion. Interviewed academics voiced the need for a tool supporting the facilitation and evaluation of inclusive health research. There was ambiguity as to what this tool should comprise and the extent to which it was possible to capture the complex process of inclusive health research. Discussion and conclusions This study underlines the need for transparency, facilitation and evaluation of inclusive health research. The need for in-depth interviews after 2 Delphi rounds underlines its complexity and context dependence. To increase process transparency, future research should focus on gaining insight into inclusive health research in its context. A tool could be developed to facilitate and evaluate inclusive health research. This tool will be partially applicable to participatory research in general and thereby upscale the patient revolution. PMID:27540101
Identifying protein complexes based on brainstorming strategy.
Shen, Xianjun; Zhou, Jin; Yi, Li; Hu, Xiaohua; He, Tingting; Yang, Jincai
2016-11-01
Protein complexes comprising of interacting proteins in protein-protein interaction network (PPI network) play a central role in driving biological processes within cells. Recently, more and more swarm intelligence based algorithms to detect protein complexes have been emerging, which have become the research hotspot in proteomics field. In this paper, we propose a novel algorithm for identifying protein complexes based on brainstorming strategy (IPC-BSS), which is integrated into the main idea of swarm intelligence optimization and the improved K-means algorithm. Distance between the nodes in PPI network is defined by combining the network topology and gene ontology (GO) information. Inspired by human brainstorming process, IPC-BSS algorithm firstly selects the clustering center nodes, and then they are separately consolidated with the other nodes with short distance to form initial clusters. Finally, we put forward two ways of updating the initial clusters to search optimal results. Experimental results show that our IPC-BSS algorithm outperforms the other classic algorithms on yeast and human PPI networks, and it obtains many predicted protein complexes with biological significance. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Petitto, Laura-Ann
2012-01-01
Revolutions can happen in different ways. About six years ago, a very particular type of revolution began in a cluster of rooms on the main campus of Gallaudet University. There, a handful of individuals began a "quiet revolution" guided by an overarching passionate mission to conduct groundbreaking science that would have widespread…
Reading Open Education in the Age of Mankind: Reproduction of Meaning in the Derridean Sense
ERIC Educational Resources Information Center
Gurses, Gulfem; Kalkan, Basak
2017-01-01
The rapid change in the communication technologies plays a significant role in the transformation processes of societies. The studies studying the industrial revolution in two phases inform us that the first phase of the revolution involved a revolution in machinery while the second phase saw a revolution in technology. Fast forwarding to the…
Basic Literacy or New Literacies? Examining the Contradictions of Australia's Education Revolution
ERIC Educational Resources Information Center
Buchanan, Rachel; Holmes, Kathryn; Preston, Gregory; Shaw, Kylie
2012-01-01
In 2007 the Labor Government came to power with the promise to bring to Australia an "Education Revolution". More than four years later we are still waiting for the full impact of this series of policy initiatives. Among the various facets of the Education Revolution was the assurance that the Education Revolution would focus on the most…
Eucalyptus helped solve a timber problem: 1853-1880
Gayle M. Groenendaal
1983-01-01
California was settled in an era before the full impact of the industrial revolution that was taking place in Great Britain was fully realized, a revolution that was to change the course of western culture more drastically than any previous time in history. Friedrich Engels wrote in 1845 of the industrial revolution as "a revolution which at the same time changed...
Grossi, Enzo
2006-05-03
In recent years a number of algorithms for cardiovascular risk assessment has been proposed to the medical community. These algorithms consider a number of variables and express their results as the percentage risk of developing a major fatal or non-fatal cardiovascular event in the following 10 to 20 years The author has identified three major pitfalls of these algorithms, linked to the limitation of the classical statistical approach in dealing with this kind of non linear and complex information. The pitfalls are the inability to capture the disease complexity, the inability to capture process dynamics, and the wide confidence interval of individual risk assessment. Artificial Intelligence tools can provide potential advantage in trying to overcome these limitations. The theoretical background and some application examples related to artificial neural networks and fuzzy logic have been reviewed and discussed. The use of predictive algorithms to assess individual absolute risk of cardiovascular future events is currently hampered by methodological and mathematical flaws. The use of newer approaches, such as fuzzy logic and artificial neural networks, linked to artificial intelligence, seems to better address both the challenge of increasing complexity resulting from a correlation between predisposing factors, data on the occurrence of cardiovascular events, and the prediction of future events on an individual level.
Revolutions in the earth sciences
Allègre, C.
1999-01-01
The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.
Intelligent machines in the twenty-first century: foundations of inference and inquiry.
Knuth, Kevin H
2003-12-15
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
Cultural aspects of the search for extraterrestrial intelligence
NASA Astrophysics Data System (ADS)
Billingham, J.
SETI is an acronym which stands for the Search for Extraterrestrial Intelligence. The NASA SETI High Resolution Microwave Survey Project is a new and comprehensive search for evidence of microwave signals from extraterrestrial civilizations. It will formally begin on October 12, 1992, and last to the end of the century. The discovery of another form of intelligent life would be an important milestone for our civilization. In addition to the new scientific knowledge that we might acquire on the chemistry, physiology, behavior and evolutionary history of extraterrestrial life forms, we may also learn of the cultural achievements of another civilization, or indeed of many other civilizations. It is likely that the society that we detect will be much in advance of our own, so that they may long ago have passed through the evolutionary stage we are at now. The implications of such a discovery would have important consequences for our own future. This paper presents an analysis of some of the important areas which will require study as we approach the beginning of the NASA search. There are significant questions about the ease or difficulty of incorporating the new knowledge into the belief structures of different religions. Sociological and educational changes over time may equal or exceed those of the Copernican revolution. The status of the other civilization relative to ours is a challenging question for international space law. There are institutional and international questions on who will represent Earth in any future interstellar communication endeavors that we may attempt. There may be challenges in how we absorb the knowledge of an advanced technology. In political science we may have much to learn from their history, and what influence it may have on our own future. Last but not least, there is the effect of the discovery on individual and group psychology. These are the cultural aspects of SETI. Each area warrants further study, and recommendations are made as to the mechanisms which could be used to undertake such studies.
Intelligent machines in the twenty-first century: foundations of inference and inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
2011-04-14
characteristics in many locations and consequently most of the base has been mapped as disturbed urban land complexes. Major soil complexes represented...at WPAFB include: Warsaw-Fill land complex, Sloan-Fill land complex, Miamian- Urban land complex, Fox- Urban land complex, Linwood Muck, Westland- Urban ...land complex, and Warsaw- Urban land complex. 3.6.1 Proposed Action The project area for the alternative includes approximately 3.7 acres of property
Understanding Complex Natural Systems by Articulating Structure-Behavior-Function Models
ERIC Educational Resources Information Center
Vattam, Swaroop S.; Goel, Ashok K.; Rugaber, Spencer; Hmelo-Silver, Cindy E.; Jordan, Rebecca; Gray, Steven; Sinha, Suparna
2011-01-01
Artificial intelligence research on creative design has led to Structure-Behavior-Function (SBF) models that emphasize functions as abstractions for organizing understanding of physical systems. Empirical studies on understanding complex systems suggest that novice understanding is shallow, typically focusing on their visible structures and…
Knowledge Management for the Analysis of Complex Experimentation.
ERIC Educational Resources Information Center
Maule, R.; Schacher, G.; Gallup, S.
2002-01-01
Describes a knowledge management system that was developed to help provide structure for dynamic and static data and to aid in the analysis of complex experimentation. Topics include quantitative and qualitative data; mining operations using artificial intelligence techniques; information architecture of the system; and transforming data into…
ERIC Educational Resources Information Center
Visich, Marian, Jr.
Technological advances during the past few decades have revolutionized many complex systems that influence human activity. As the rate of technological progress accelerates, these systems will become more complex, and new ones will evolve. Citizens in a technological society need to be able to make intelligent choices about how technology will…
Markov logic network based complex event detection under uncertainty
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Jia, Bin; Chen, Genshe; Chen, Hua-mei; Sullivan, Nichole; Pham, Khanh; Blasch, Erik
2018-05-01
In a cognitive reasoning system, the four-stage Observe-Orient-Decision-Act (OODA) reasoning loop is of interest. The OODA loop is essential for the situational awareness especially in heterogeneous data fusion. Cognitive reasoning for making decisions can take advantage of different formats of information such as symbolic observations, various real-world sensor readings, or the relationship between intelligent modalities. Markov Logic Network (MLN) provides mathematically sound technique in presenting and fusing data at multiple levels of abstraction, and across multiple intelligent sensors to conduct complex decision-making tasks. In this paper, a scenario about vehicle interaction is investigated, in which uncertainty is taken into consideration as no systematic approaches can perfectly characterize the complex event scenario. MLNs are applied to the terrestrial domain where the dynamic features and relationships among vehicles are captured through multiple sensors and information sources regarding the data uncertainty.
Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan
2009-09-01
Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.
Bacterial flagella and Type III secretion: case studies in the evolution of complexity.
Pallen, M J; Gophna, U
2007-01-01
Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.
GT-CATS: Tracking Operator Activities in Complex Systems
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Mitchell, Christine M.; Palmer, Everett A.
1999-01-01
Human operators of complex dynamic systems can experience difficulties supervising advanced control automation. One remedy is to develop intelligent aiding systems that can provide operators with context-sensitive advice and reminders. The research reported herein proposes, implements, and evaluates a methodology for activity tracking, a form of intent inferencing that can supply the knowledge required for an intelligent aid by constructing and maintaining a representation of operator activities in real time. The methodology was implemented in the Georgia Tech Crew Activity Tracking System (GT-CATS), which predicts and interprets the actions performed by Boeing 757/767 pilots navigating using autopilot flight modes. This report first describes research on intent inferencing and complex modes of automation. It then provides a detailed description of the GT-CATS methodology, knowledge structures, and processing scheme. The results of an experimental evaluation using airline pilots are given. The results show that GT-CATS was effective in predicting and interpreting pilot actions in real time.
Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng
2017-07-12
As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.
Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux
NASA Astrophysics Data System (ADS)
Ben-Abdallah, Philippe; Biehs, Svend-Age
2017-02-01
The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.
Enhancing Perception in Ethical Decision Making: A Method to Address Ill-Defined Training Domains
2010-08-01
revolution in the ethics of warfare. Albany, NY: State University of New York Press. Craik , F.I., & Lockhart , R.S. (1972). Levels of processing ...trainees in meeting their shared training objectives. In this way, the Army can draw together the individual level interpretive processes with the...interpret their situation in a personally meaningful way (cf. Craik & Lockhart , 1972). There are many complexities present in a training situation
Selection of Naval Academy Graduates for Nuclear Training
2006-06-01
4), 1019-1027. Gottfredson , L. S. (1997). Why g Matters: The Complexity of Everyday Life. Intelligence , 24(1), 79-132. Henderson, W. D. (2004...COGNITIVE ABILITY (G) General Cognitive Ability (g) “can be said to be the most powerful single predictor of overall job performance ( Gottfredson , 1997, p...83). But what is g? Often equated with intelligence quotient (IQ), g is a construct which measures an individual’s general aptitude. Perhaps it
Military Intelligence Fusion for Complex Operations: A New Paradigm
2012-01-01
TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) RAND Corporation,National Defense Research Institute,1776 Main...Street, P.O. Box 2138,Santa Monica,CA,90407-2138 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...Community under Contract W74V8H-06-C-0002. iii Preface This occasional paper examines how military intelligence organizations and, more broadly, the
ERIC Educational Resources Information Center
Goode, Natassia; Beckmann, Jens F.
2010-01-01
This study investigates the relationships between structural knowledge, control performance and fluid intelligence in a complex problem solving (CPS) task. 75 participants received either complete, partial or no information regarding the underlying structure of a complex problem solving task, and controlled the task to reach specific goals.…
ERIC Educational Resources Information Center
Murray, Tom
2016-01-01
Intelligent Tutoring Systems authoring tools are highly complex educational software applications used to produce highly complex software applications (i.e. ITSs). How should our assumptions about the target users (authors) impact the design of authoring tools? In this article I first reflect on the factors leading to my original 1999 article on…
Toward Omniscient command: How to Lead in the Information Age
2005-05-26
7 Early Industrial Revolution – Napoleonic Warfare...9 Middle Industrial Revolution – The American Civil War......................................................... 12 Late... Industrial Revolution – World War II ............................................................................... 15 Early Information Age
Globalism--The New International System?
2001-04-01
and its associated problems. History is filled with similar conflicts surrounding periods of change. When the industrial revolution began in Europe...the pace of unprecedented transformation to the international system brought about by the forces of globalism. In contrast to the industrial revolution , “the...ago the agricultural revolution launched a slow wave of change. The industrial revolution triggered a second, faster wave of change. What we are
Representing revolution: icons of industrialization.
Fara, Patricia
2006-03-01
Appreciating pictures entails a consideration not only of the people, objects and landscape that their artists have chosen to portray, but also an imagining of what has been excluded. The term 'Industrial Revolution' has been given multiple meanings, and this article (part of the Science in the Industrial Revolution series) explores some of these by exposing the messages concealed inside some of the most enduring images of the Revolution.
The cognitive niche: Coevolution of intelligence, sociality, and language
Pinker, Steven
2010-01-01
Although Darwin insisted that human intelligence could be fully explained by the theory of evolution, the codiscoverer of natural selection, Alfred Russel Wallace, claimed that abstract intelligence was of no use to ancestral humans and could only be explained by intelligent design. Wallace's apparent paradox can be dissolved with two hypotheses about human cognition. One is that intelligence is an adaptation to a knowledge-using, socially interdependent lifestyle, the “cognitive niche.” This embraces the ability to overcome the evolutionary fixed defenses of plants and animals by applications of reasoning, including weapons, traps, coordinated driving of game, and detoxification of plants. Such reasoning exploits intuitive theories about different aspects of the world, such as objects, forces, paths, places, states, substances, and other people's beliefs and desires. The theory explains many zoologically unusual traits in Homo sapiens, including our complex toolkit, wide range of habitats and diets, extended childhoods and long lives, hypersociality, complex mating, division into cultures, and language (which multiplies the benefit of knowledge because know-how is useful not only for its practical benefits but as a trade good with others, enhancing the evolution of cooperation). The second hypothesis is that humans possess an ability of metaphorical abstraction, which allows them to coopt faculties that originally evolved for physical problem-solving and social coordination, apply them to abstract subject matter, and combine them productively. These abilities can help explain the emergence of abstract cognition without supernatural or exotic evolutionary forces and are in principle testable by analyses of statistical signs of selection in the human genome. PMID:20445094
Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language.
Pinker, Steven
2010-05-11
Although Darwin insisted that human intelligence could be fully explained by the theory of evolution, the codiscoverer of natural selection, Alfred Russel Wallace, claimed that abstract intelligence was of no use to ancestral humans and could only be explained by intelligent design. Wallace's apparent paradox can be dissolved with two hypotheses about human cognition. One is that intelligence is an adaptation to a knowledge-using, socially interdependent lifestyle, the "cognitive niche." This embraces the ability to overcome the evolutionary fixed defenses of plants and animals by applications of reasoning, including weapons, traps, coordinated driving of game, and detoxification of plants. Such reasoning exploits intuitive theories about different aspects of the world, such as objects, forces, paths, places, states, substances, and other people's beliefs and desires. The theory explains many zoologically unusual traits in Homo sapiens, including our complex toolkit, wide range of habitats and diets, extended childhoods and long lives, hypersociality, complex mating, division into cultures, and language (which multiplies the benefit of knowledge because know-how is useful not only for its practical benefits but as a trade good with others, enhancing the evolution of cooperation). The second hypothesis is that humans possess an ability of metaphorical abstraction, which allows them to coopt faculties that originally evolved for physical problem-solving and social coordination, apply them to abstract subject matter, and combine them productively. These abilities can help explain the emergence of abstract cognition without supernatural or exotic evolutionary forces and are in principle testable by analyses of statistical signs of selection in the human genome.
Architecture and the Information Revolution.
ERIC Educational Resources Information Center
Driscoll, Porter; And Others
1982-01-01
Traces how technological changes affect the architecture of the workplace. Traces these effects from the industrial revolution up through the computer revolution. Offers suggested designs for the computerized office of today and tomorrow. (JM)
Recent progress in structural biology: lessons from our research history.
Nitta, Ryo; Imasaki, Tsuyoshi; Nitta, Eriko
2018-05-16
The recent 'resolution revolution' in structural analyses of cryo-electron microscopy (cryo-EM) has drastically changed the research strategy for structural biology. In addition to X-ray crystallography and nuclear magnetic resonance spectroscopy, cryo-EM has achieved the structural analysis of biological molecules at near-atomic resolution, resulting in the Nobel Prize in Chemistry 2017. The effect of this revolution has spread within the biology and medical science fields affecting everything from basic research to pharmaceutical development by visualizing atomic structure. As we have used cryo-EM as well as X-ray crystallography since 2000 to elucidate the molecular mechanisms of the fundamental phenomena in the cell, here we review our research history and summarize our findings. In the first half of the review, we describe the structural mechanisms of microtubule-based motility of molecular motor kinesin by using a joint cryo-EM and X-ray crystallography method. In the latter half, we summarize our structural studies on transcriptional regulation by X-ray crystallography of in vitro reconstitution of a multi-protein complex.
Molecular genetic contributions to socioeconomic status and intelligence
Marioni, Riccardo E.; Davies, Gail; Hayward, Caroline; Liewald, Dave; Kerr, Shona M.; Campbell, Archie; Luciano, Michelle; Smith, Blair H.; Padmanabhan, Sandosh; Hocking, Lynne J.; Hastie, Nicholas D.; Wright, Alan F.; Porteous, David J.; Visscher, Peter M.; Deary, Ian J.
2014-01-01
Education, socioeconomic status, and intelligence are commonly used as predictors of health outcomes, social environment, and mortality. Education and socioeconomic status are typically viewed as environmental variables although both correlate with intelligence, which has a substantial genetic basis. Using data from 6815 unrelated subjects from the Generation Scotland study, we examined the genetic contributions to these variables and their genetic correlations. Subjects underwent genome-wide testing for common single nucleotide polymorphisms (SNPs). DNA-derived heritability estimates and genetic correlations were calculated using the ‘Genome-wide Complex Trait Analyses’ (GCTA) procedures. 21% of the variation in education, 18% of the variation in socioeconomic status, and 29% of the variation in general cognitive ability was explained by variation in common SNPs (SEs ~ 5%). The SNP-based genetic correlations of education and socioeconomic status with general intelligence were 0.95 (SE 0.13) and 0.26 (0.16), respectively. There are genetic contributions to intelligence and education with near-complete overlap between common additive SNP effects on these traits (genetic correlation ~ 1). Genetic influences on socioeconomic status are also associated with the genetic foundations of intelligence. The results are also compatible with substantial environmental contributions to socioeconomic status. PMID:24944428
Morris, J A
1999-08-01
A model is proposed in which information from the environment is analysed by complex biological decision-making systems which are highly redundant. A correct response is intelligent behaviour which preserves health; incorrect responses lead to disease. Mutations in genes which code for the redundant systems will accumulate in the genome and impair decision-making. The number of mutant genes will depend upon a balance between the new mutation rate per generation and systems of elimination based on synergistic interaction in redundant systems. This leads to a polygenic pattern of inheritance for intelligence and the common diseases. The model also gives a simple explanation for some of the hitherto puzzling aspects of work on the genetic basis of intelligence including the recorded rise in IQ this century. There is a prediction that health, intelligence and socio-economic position will be correlated generating a health differential in the social hierarchy. Furthermore, highly competitive societies will place those least able to cope in the harshest environment and this will impair health overall. The model points to a need for population monitoring of somatic mutation in order to preserve the health and intelligence of future generations.
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.
The dissociation of perception and cognition in children with early brain damage.
Stiers, Peter; Vandenbussche, Erik
2004-03-01
Reduced non-verbal compared to verbal intelligence is used in many outcome studies of perinatal complications as an indication of visual perceptual impairment. To investigate whether this is justified, we re-examined data sets from two previous studies, both of which used the visual perceptual battery L94. The first study comprised 47 children at risk for cerebral visual impairment due to prematurity or birth asphyxia, who had been administered the McCarthy Scales of Children's abilities. The second study evaluated visual perceptual abilities in 82 children with a physical disability. These children's intellectual ability had been assessed with the Wechsler Intelligence Scale for Children-Revised and/or Wechsler Pre-school and Primary Scale of Intelligence-Revised. No significant association was found between visual perceptual impairment and (1) reduced non-verbal to verbal intelligence; (2) increased non-verbal subtest scatter; or (3) non-verbal subtest profile deviation, for any of the intelligence scales. This result suggests that non-verbal intelligence subtests assess a complex of cognitive skills that are distinct from visual perceptual abilities, and that this assessment is not hampered by deficits in perceptual abilities as manifested in these children.
Molecular genetic contributions to socioeconomic status and intelligence.
Marioni, Riccardo E; Davies, Gail; Hayward, Caroline; Liewald, Dave; Kerr, Shona M; Campbell, Archie; Luciano, Michelle; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Hastie, Nicholas D; Wright, Alan F; Porteous, David J; Visscher, Peter M; Deary, Ian J
2014-05-01
Education, socioeconomic status, and intelligence are commonly used as predictors of health outcomes, social environment, and mortality. Education and socioeconomic status are typically viewed as environmental variables although both correlate with intelligence, which has a substantial genetic basis. Using data from 6815 unrelated subjects from the Generation Scotland study, we examined the genetic contributions to these variables and their genetic correlations. Subjects underwent genome-wide testing for common single nucleotide polymorphisms (SNPs). DNA-derived heritability estimates and genetic correlations were calculated using the 'Genome-wide Complex Trait Analyses' (GCTA) procedures. 21% of the variation in education, 18% of the variation in socioeconomic status, and 29% of the variation in general cognitive ability was explained by variation in common SNPs (SEs ~ 5%). The SNP-based genetic correlations of education and socioeconomic status with general intelligence were 0.95 (SE 0.13) and 0.26 (0.16), respectively. There are genetic contributions to intelligence and education with near-complete overlap between common additive SNP effects on these traits (genetic correlation ~ 1). Genetic influences on socioeconomic status are also associated with the genetic foundations of intelligence. The results are also compatible with substantial environmental contributions to socioeconomic status.
NASA Astrophysics Data System (ADS)
Szczepanik, M.; Poteralski, A.
2016-11-01
The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.
Aspects of Morality and Law Enforcement in Today's Science in Post-Soviet Countries.
Kliestikova, Jana; Kliestik, Tomas; Misankova, Maria; Corejova, Tatiana; Krizanova, Anna
2017-10-20
Many reports independently confirm that even more than a quarter of a century after the collapse of the Soviet Union, the results of research and development in those countries that were under its influence are insufficient in comparison to the rest of the world. Given that human intelligence is not distributed unevenly and that science is a powerful driving force for the future of an economy, there is a hidden problem, which, if it can be resolved, may release great economic potential. The first generation of researchers from Armenia, Czech Republic, Georgia, Slovakia and Ukraine, who successfully completed their education after the political revolution, were surveyed. The survey revealed many similarities with regards to ethics, but that there is mounting evidence that the main cause of the current situation is the state of the local legal systems. The conclusion was drawn that a conceptual change in staffing within the relevant legal systems is required to release potential and stimulate wealth creation.
The Fourth Revolution: Educating Engineers for Leadership.
ERIC Educational Resources Information Center
Mark, Hans; Carver, Larry
1988-01-01
Urges a change in engineering education for developing leaders. Describes three previous revolutions in American higher education which responded to the needs of the community. Suggests lifelong education as the fourth revolution. (YP)
The Mexican Revolution and health care or the health of the Mexican Revolution.
Horn, J J
1985-01-01
Despite a victorious social revolution, a self-proclaimed "revolutionary" government, and a significant post-war economic growth, Mexico has not achieved a just or equitable social system. The Mexican Revolution led to the emergence of a new bureaucratic class whose "trickle-down" development strategy sacrificed social welfare to capital accumulation. Mexican morbidity and mortality patterns resemble those of more impoverished developing nations without revolutionary experience. The patterns of health care in Mexico reflect inequities and contradictions in the society and economy at large and flow from the erosion of the egalitarian aims of the revolution concomitant with the expansion of capitalism and the concentration of the benefits of "modernization" in the hands of privileged elites. Mexico's health problems are symptomatic of a general socio-economic malaise which questions the legitimacy of the Revolution.
Utilization of artificial intelligence techniques for the Space Station power system
NASA Technical Reports Server (NTRS)
Evatt, Thomas C.; Gholdston, Edward W.
1988-01-01
Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.
NASA Astrophysics Data System (ADS)
Nishiyama, Katsuhiko
2018-05-01
Using artificial intelligence, the binding styles of 167 tetrapeptides were predicted in the active site of papain and cathepsin K. Five tetrapeptides (Asn-Leu-Lys-Trp, Asp-Gln-Trp-Gly, Cys-Gln-Leu-Arg, Gln-Leu-Trp-Thr and Arg-Ser-Glu-Arg) were found to bind sites near the active center of both papain and cathepsin K. These five tetrapeptides have the potential to also bind sites of other cysteine proteases, and structural characteristics of these tetrapeptides should aid the design of a common inhibitor of cysteine proteases. Smart application of artificial intelligence should accelerate data mining of important complex systems.
Strategic Factors Influencing the British and American Empires
2003-04-07
benefits of the Industrial Revolution ; and Britain was one of the major leaders in that revolution. Britain reaped the rewards of its pioneering role in the... Industrial Revolution was accompanied by a population explosion within the British Isles. Had Britain remained a largely agrarian country, it is believed...that there would have been widespread famine.37 Instead, the Industrial Revolution provided the factories that absorbed much of the excess population
The Jasmine Revolution: Applied Lessons for U.S. Grand Strategy
2017-04-06
AIR WAR COLLEGE AIR UNIVERSITY THE JASMINE REVOLUTION APPLIED LESSONS FOR U.S. GRAND STRATEGY by Brandon K. Beightol...period that has come to be known as the Arab Spring. It all began with the Jasmine revolution, named for the Tunisian official flower, in which...can be used to understand and possibly foresee future occurrences. Factors leading up to the Jasmine Revolution In 1956, Habib Bourguiba took
Why "g" Matters: The Complexity of Everyday Life.
ERIC Educational Resources Information Center
Gottfredson, Linda S.
1997-01-01
This article provides evidence that general intelligence ("g") has pervasive utility in work settings because it is essentially the ability to deal with cognitive complexity. Data from the National Adult Literacy Survey are used to show how higher levels of cognitive ability improve individuals' chances of dealing with the demands of…
Metrics of a Paradigm for Intelligent Control
NASA Technical Reports Server (NTRS)
Hexmoor, Henry
1999-01-01
We present metrics for quantifying organizational structures of complex control systems intended for controlling long-lived robotic or other autonomous applications commonly found in space applications. Such advanced control systems are often called integration platforms or agent architectures. Reported metrics span concerns about time, resources, software engineering, and complexities in the world.
The Process of Solving Complex Problems
ERIC Educational Resources Information Center
Fischer, Andreas; Greiff, Samuel; Funke, Joachim
2012-01-01
This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…
Complexity as a Reflection of the Dimensionality of a Task.
ERIC Educational Resources Information Center
Spilsbury, Georgina
1992-01-01
The hypothesis that a task that increases in complexity (increasing its correlation with a central measure of intelligence) does so by increasing its dimensionality by tapping individual differences or another variable was supported by findings from 46 adults aged 20-70 years performing a mental counting task. (SLD)
Acoustic richness modulates the neural networks supporting intelligible speech processing.
Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E
2016-03-01
The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier B.V. All rights reserved.
Distributed control systems with incomplete and uncertain information
NASA Astrophysics Data System (ADS)
Tang, Jingpeng
Scientific and engineering advances in wireless communication, sensors, propulsion, and other areas are rapidly making it possible to develop unmanned air vehicles (UAVs) with sophisticated capabilities. UAVs have come to the forefront as tools for airborne reconnaissance to search for, detect, and destroy enemy targets in relatively complex environments. They potentially reduce risk to human life, are cost effective, and are superior to manned aircraft for certain types of missions. It is desirable for UAVs to have a high level of intelligent autonomy to carry out mission tasks with little external supervision and control. This raises important issues involving tradeoffs between centralized control and the associated potential to optimize mission plans, and decentralized control with great robustness and the potential to adapt to changing conditions. UAV capabilities have been extended several ways through armament (e.g., Hellfire missiles on Predator UAVs), increased endurance and altitude (e.g., Global Hawk), and greater autonomy. Some known barriers to full-scale implementation of UAVs are increased communication and control requirements as well as increased platform and system complexity. One of the key problems is how UAV systems can handle incomplete and uncertain information in dynamic environments. Especially when the system is composed of heterogeneous and distributed UAVs, the overall system complexity is increased under such conditions. Presented through the use of published papers, this dissertation lays the groundwork for the study of methodologies for handling incomplete and uncertain information for distributed control systems. An agent-based simulation framework is built to investigate mathematical approaches (optimization) and emergent intelligence approaches. The first paper provides a mathematical approach for systems of UAVs to handle incomplete and uncertain information. The second paper describes an emergent intelligence approach for UAVs, again in handling incomplete and uncertain information. The third paper combines mathematical and emergent intelligence approaches.
Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.
Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla
2014-12-01
This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.
Machine Vision For Industrial Control:The Unsung Opportunity
NASA Astrophysics Data System (ADS)
Falkman, Gerald A.; Murray, Lawrence A.; Cooper, James E.
1984-05-01
Vision modules have primarily been developed to relieve those pressures newly brought into existence by Inspection (QUALITY) and Robotic (PRODUCTIVITY) mandates. Industrial Control pressure stems on the other hand from the older first industrial revolution mandate of throughput. Satisfying such pressure calls for speed in both imaging and decision making. Vision companies have, however, put speed on a backburner or ignore it entirely because most modules are computer/software based which limits their speed potential. Increasingly, the keynote being struck at machine vision seminars is that "Visual and Computational Speed Must Be Increased and Dramatically!" There are modular hardwired-logic systems that are fast but, all too often, they are not very bright. Such units: Measure the fill factor of bottles as they spin by, Read labels on cans, Count stacked plastic cups or Monitor the width of parts streaming past the camera. Many are only a bit more complex than a photodetector. Once in place, most of these units are incapable of simple upgrading to a new task and are Vision's analog to the robot industry's pick and place (RIA TYPE E) robot. Vision thus finds itself amidst the same quandries that once beset the Robot Industry of America when it tried to define a robot, excluded dumb ones, and was left with only slow machines whose unit volume potential is shatteringly low. This paper develops an approach to meeting the need of a vision system that cuts a swath into the terra incognita of intelligent, high-speed vision processing. Main attention is directed to vision for industrial control. Some presently untapped vision application areas that will be serviced include: Electronics, Food, Sports, Pharmaceuticals, Machine Tools and Arc Welding.
NASA Technical Reports Server (NTRS)
Wiederholt, Bradley J.; Browning, Elica J.; Norton, Jeffrey E.; Johnson, William B.
1991-01-01
MITT Writer is a software system for developing computer based training for complex technical domains. A training system produced by MITT Writer allows a student to learn and practice troubleshooting and diagnostic skills. The MITT (Microcomputer Intelligence for Technical Training) architecture is a reasonable approach to simulation based diagnostic training. MITT delivers training on available computing equipment, delivers challenging training and simulation scenarios, and has economical development and maintenance costs. A 15 month effort was undertaken in which the MITT Writer system was developed. A workshop was also conducted to train instructors in how to use MITT Writer. Earlier versions were used to develop an Intelligent Tutoring System for troubleshooting the Minuteman Missile Message Processing System.
Emergent sensing of complex environments by mobile animal groups.
Berdahl, Andrew; Torney, Colin J; Ioannou, Christos C; Faria, Jolyon J; Couzin, Iain D
2013-02-01
The capacity for groups to exhibit collective intelligence is an often-cited advantage of group living. Previous studies have shown that social organisms frequently benefit from pooling imperfect individual estimates. However, in principle, collective intelligence may also emerge from interactions between individuals, rather than from the enhancement of personal estimates. Here, we reveal that this emergent problem solving is the predominant mechanism by which a mobile animal group responds to complex environmental gradients. Robust collective sensing arises at the group level from individuals modulating their speed in response to local, scalar, measurements of light and through social interaction with others. This distributed sensing requires only rudimentary cognition and thus could be widespread across biological taxa, in addition to being appropriate and cost-effective for robotic agents.
Clarke, Michael; Newton, Caroline; Petrides, Konstantinos; Griffiths, Tom; Lysley, Andrew; Price, Katie
2012-03-01
The aim of this study was to examine variation in the frequency of children's participation in out-of-school activities as a function of speech intelligibility, perceived effectiveness of the child's communication aid, and age. Sixty-nine caregivers of children with complex communication needs provided with communication aids completed a questionnaire survey. Rate of participation was higher for younger than for older children, particularly in recreational activities. Younger children with partial intelligibility participated more frequently in recreational and social activities than both younger children without speech and older children. Results and limitations are discussed within the context of participation research in childhood disability, highlighting the impact of communicative resources and maturation on everyday participation.
Emmett, Susan D; Francis, Howard W
2014-09-01
To evaluate the association between hearing loss and nonverbal intelligence in US children. The Third National Health and Nutrition Examination Survey (NHANES III) is a cross-sectional survey (1988-1994) that used complex multistage sampling design to produce nationally representative demographic and examination data. A total of 4,823 children ages 6 to 16 years completed audiometric evaluation and cognitive testing during NHANES III. Hearing loss was defined as low-frequency pure-tone average (PTA) >25 dB (0.5, 1, 2 kHz) or high-frequency PTA >25 dB (3, 4, 6, 8 kHz) and was designated as unilateral or bilateral. Nonverbal intelligence was measured using the Wechsler Intelligence Scale for Children-Revised block design subtest. Low nonverbal intelligence was defined as a standardized score <4, two standard deviations below the standardized mean of 10. Mean nonverbal intelligence scores differed between children with normal hearing (9.59) and children with bilateral (6.87; P = .02) but not unilateral (9.12; P = .42) hearing loss. Non-Hispanic black race/ethnicity and family income <$20,000 were associated with 3.92 and 1.67 times higher odds of low nonverbal intelligence, respectively (odds ratio [OR]: 3.92; P < .001; OR: 1.67; P = .02). Bilateral hearing loss was independently associated with 5.77 times increased odds of low nonverbal intelligence compared to normal hearing children (OR: 5.77; P = .02). Unilateral hearing loss was not associated with higher odds of low nonverbal intelligence (OR: 0.73; P = .40). Bilateral but not unilateral hearing loss is associated with decreased nonverbal intelligence in US children. Longitudinal studies are urgently needed to better understand these associations and their potential impact on future opportunities. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Emmett, Susan D.; Francis, Howard W.
2017-01-01
Objectives To evaluate the association between hearing loss and nonverbal intelligence in US children. Study Design The Third National Health and Nutrition Examination Survey (NHANES III) is a cross-sectional survey (1988–1994) that used complex multistage sampling design to produce nationally representative demographic and examination data. Methods A total of 4823 children ages 6–16 years completed audiometric evaluation and cognitive testing during NHANES III. Hearing loss was defined as low frequency pure tone average (PTA)>25 decibels (dB) (0.5,1,2 kHz) or high frequency PTA>25dB (3,4,6,8 kHz) and was designated as unilateral or bilateral. Nonverbal intelligence was measured using the Wechsler Intelligence Scale for Children-Revised block design subtest. Low nonverbal intelligence was defined as a standardized score <4, two standard deviations below the standardized mean of 10. Results Mean nonverbal intelligence scores differed between children with normal hearing (9.59) and children with bilateral (6.87; p=0.02) but not unilateral (9.12; p=0.42) hearing loss. Non-Hispanic black race/ethnicity and family income<$20,000 were associated with 3.92 and 1.67 times higher odds of low nonverbal intelligence, respectively (OR 3.92; p<0.001; OR 1.67; p=0.02). Bilateral hearing loss was independently associated with 5.77 times increased odds of low nonverbal intelligence compared to normal hearing children (OR 5.77; p=0.02). Unilateral hearing loss was not associated with higher odds of low nonverbal intelligence (OR 0.73; p=0.40). Conclusion Bilateral but not unilateral hearing loss is associated with decreased nonverbal intelligence in US children. Longitudinal studies are urgently needed to better understand these associations and their potential impact on future opportunities. PMID:24913183
Pina, Violeta; Fuentes, Luis J.; Castillo, Alejandro; Diamantopoulou, Sofia
2014-01-01
It is assumed that children’s performance in mathematical abilities is influenced by several factors such as working memory (WM), verbal ability, intelligence, and socioeconomic status. The present study explored the contribution of those factors to mathematical performance taking a componential view of both WM and mathematics. We explored the existing relationship between different WM components (verbal and spatial) with tasks that make differential recruitment of the central executive, and simple and complex mathematical skills in a sample of 102 children in grades 4–6. The main findings point to a relationship between the verbal WM component and complex word arithmetic problems, whereas language and non-verbal intelligence were associated with knowledge of quantitative concepts and arithmetic ability. The spatial WM component was associated with the subtest Series, whereas the verbal component was with the subtest Concepts. The results also suggest a positive relationship between parental educational level and children’s performance on Quantitative Concepts. These findings suggest that specific cognitive skills might be trained in order to improve different aspects of mathematical ability. PMID:24847306
Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.
Wang, Zhijun; Mirdamadi, Reza; Wang, Qing
2016-01-01
Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.
Redick, Thomas S; Shipstead, Zach; Meier, Matthew E; Montroy, Janelle J; Hicks, Kenny L; Unsworth, Nash; Kane, Michael J; Hambrick, D Zachary; Engle, Randall W
2016-11-01
Previous research has identified several cognitive abilities that are important for multitasking, but few studies have attempted to measure a general multitasking ability using a diverse set of multitasks. In the final dataset, 534 young adult subjects completed measures of working memory (WM), attention control, fluid intelligence, and multitasking. Correlations, hierarchical regression analyses, confirmatory factor analyses, structural equation models, and relative weight analyses revealed several key findings. First, although the complex tasks used to assess multitasking differed greatly in their task characteristics and demands, a coherent construct specific to multitasking ability was identified. Second, the cognitive ability predictors accounted for substantial variance in the general multitasking construct, with WM and fluid intelligence accounting for the most multitasking variance compared to attention control. Third, the magnitude of the relationships among the cognitive abilities and multitasking varied as a function of the complexity and structure of the various multitasks assessed. Finally, structural equation models based on a multifaceted model of WM indicated that attention control and capacity fully mediated the WM and multitasking relationship. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks
Wang, Zhijun; Mirdamadi, Reza; Wang, Qing
2016-01-01
Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building. PMID:28540284
2010-06-01
common part of an aeromedical evaluation when there is concern regarding an 50’ s general cognitive ability or specific aptitudes related to medica l...specificity and developmental complexity (Guilford, 1988; Horn, 1985; Vernon, 1961). Theories have also evolved from strictly biological approaches (Ha...tapped directly by existing measures of intellectual ability. Wechsler’s theory of intelligence is central to the development of the mostly widely used
Anesthesiology, automation, and artificial intelligence.
Alexander, John C; Joshi, Girish P
2018-01-01
There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized.
Application of artificial intelligence to the management of urological cancer.
Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C
2007-10-01
Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.
Artificial intelligence in medicine.
Hamet, Pavel; Tremblay, Johanne
2017-04-01
Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application. Copyright © 2017. Published by Elsevier Inc.
Three Views of the Information Revolution.
ERIC Educational Resources Information Center
McHale, Magda Cordell; Harris, David A.
1983-01-01
Cultural institutions and attitudes are being reshaped and often disrupted without warning or intention by the information revolution. Different socio-cultural visions of the information revolution among scholars in France, Japan, and the third world are described. (Author/RM)
Women Warriors: Why the Robotics Revolution Changes the Combat Equation
2016-03-01
combat. U.S. Army RDECOM PRISM 6, no. 1 FEATURES | 91 Women Warriors Why the Robotics Revolution Changes the Combat Equation1 BY LINELL A. LETENDRE...underappreciated—fac- tor is poised to alter the women in combat debate: the revolution in robotics and autonomous systems. The technology leap afforded by...developing robotic and autonomous systems and their potential impact on the future of combat. Revolution in Robotics: A Changing Battlefield20 The
NASA Astrophysics Data System (ADS)
Lanzalaco, Felix; Pissanetzky, Sergio
2013-12-01
A recent theory of physical information based on the fundamental principles of causality and thermodynamics has proposed that a large number of observable life and intelligence signals can be described in terms of the Causal Mathematical Logic (CML), which is proposed to encode the natural principles of intelligence across any physical domain and substrate. We attempt to expound the current definition of CML, the "Action functional" as a theory in terms of its ability to possess a superior explanatory power for the current neuroscientific data we use to measure the mammalian brains "intelligence" processes at its most general biophysical level. Brain simulation projects define their success partly in terms of the emergence of "non-explicitly programmed" complex biophysical signals such as self-oscillation and spreading cortical waves. Here we propose to extend the causal theory to predict and guide the understanding of these more complex emergent "intelligence Signals". To achieve this we review whether causal logic is consistent with, can explain and predict the function of complete perceptual processes associated with intelligence. Primarily those are defined as the range of Event Related Potentials (ERP) which include their primary subcomponents; Event Related Desynchronization (ERD) and Event Related Synchronization (ERS). This approach is aiming for a universal and predictive logic for neurosimulation and AGi. The result of this investigation has produced a general "Information Engine" model from translation of the ERD and ERS. The CML algorithm run in terms of action cost predicts ERP signal contents and is consistent with the fundamental laws of thermodynamics. A working substrate independent natural information logic would be a major asset. An information theory consistent with fundamental physics can be an AGi. It can also operate within genetic information space and provides a roadmap to understand the live biophysical operation of the phenotype
Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation.
Santarnecchi, Emiliano; Rossi, Simone
2016-12-06
Our view is that intelligence, as expression of the complexity of the human brain and of its evolutionary path, represents an intriguing example of "system level brain plasticity": tangible proofs of this assertion lie in the strong links intelligence has with vital brain capacities as information processing (i.e., pure, rough capacity to transfer information in an efficient way), resilience (i.e., the ability to cope with loss of efficiency and/or loss of physical elements in a network) and adaptability (i.e., being able to efficiently rearrange its dynamics in response to environmental demands). Current evidence supporting this view move from theoretical models correlating intelligence and individual response to systematic "lesions" of brain connectivity, as well as from the field of Noninvasive Brain Stimulation (NiBS). Perturbation-based approaches based on techniques as transcranial magnetic stimulation (TMS) and transcranial alternating current stimulation (tACS), are opening new in vivo scenarios which could allow to disclose more causal relationship between intelligence and brain plasticity, overcoming the limitations of brain-behavior correlational evidence.
An intelligent agent for optimal river-reservoir system management
NASA Astrophysics Data System (ADS)
Rieker, Jeffrey D.; Labadie, John W.
2012-09-01
A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.
Science Fairs for Science Literacy
NASA Astrophysics Data System (ADS)
Mackey, Katherine; Culbertson, Timothy
2014-03-01
Scientific discovery, technological revolutions, and complex global challenges are commonplace in the modern era. People are bombarded with news about climate change, pandemics, and genetically modified organisms, and scientific literacy has never been more important than in the present day. Yet only 29% of American adults have sufficient understanding to be able to read science stories reported in the popular press [Miller, 2010], and American students consistently rank below other nations in math and science [National Center for Education Statistics, 2012].
The French Revolution and "Revisionism."
ERIC Educational Resources Information Center
Langlois, Claude
1990-01-01
Outlines revisionist interpretations of the French Revolution that challenged the dominant historiographical tradition during the 1950s and 1960s. Distinguishes four central characteristics of revisionist works. Identifies a key split in current French Revolution historiography between reflection on nineteenth-century…
ERIC Educational Resources Information Center
Gilder, George
1993-01-01
A technological revolution is erupting all about us. A millionfold rise in computation and communications cost effectiveness will transform all industries and bureaucracies. The information revolution is a decentralizing, microcosmic electronic force opposing the centralizing, controlling Industrial-Age mentality persisting in schools. Television…
NASA Astrophysics Data System (ADS)
Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.
2018-01-01
Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J 2 perturbation and lunar gravity included for a 500 revolution transfer.
How Personal Is the Political? Democratic Revolution and Fertility Decline
Bailey, Amy Kate
2010-01-01
Existing theory has identified the capacity of political revolutions to effect change in a variety of social institutions, although relationships between revolution and many institutions remain unexplored. Using historical data from 22 European and four diaspora countries, I examine the temporal relationship between timing of revolution and onset of fertility decline. I hypothesize that specific kinds of revolutionary events affect fertility by engendering ideological changes in popular understandings of the individual’s relationship to society, and ultimately the legitimacy of couples’ authority over their reproductive capacities. Results demonstrate that popular democratic revolution – but not institutionalized democratic structures – predict the timing of the onset of fertility decline. PMID:19999826
NASA Astrophysics Data System (ADS)
Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.
2018-06-01
Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J 2 perturbation and lunar gravity included for a 500 revolution transfer.
ERIC Educational Resources Information Center
Rezende de Rezende, Eleonora; And Others
1988-01-01
Four articles present practical classroom ideas related to language instruction, including (1) a children's circus production; (2) a language-learning game using the French Revolution as its theme; (3) a play using the French Revolution as its theme; and (4) definitions of terminology used in language teaching. (MSE)
ERIC Educational Resources Information Center
Berteloot, Jean; And Others
1989-01-01
Four articles present ideas for classroom French language teaching. Topics include the semantic distinctions between the French words for nation, state, and country; historical events in the 10 years following the French Revolution; class creation of a newspaper during the French Revolution; and exercises focusing on the Eiffel Tower. (MSE)
Leaving the Technocratic Tunnel
1996-01-01
sort of vision- ary optimism that accompanied the early part of the Industrial Revolution . ■ J F Q F O R U M 70 JFQ / Winter 1995–96 RMA adherents tend...dreamt magnitude. Military Implications Armies and navies adapted to the Industrial Revolution by mimicking or- ganizations that had proven successful in...revolution, roughly where the industrial revolution stood in 1840. What can we perceive at this point, and what can we do about it? First, we can appreciate
Einstein and Lorentz: The structure of a scientific revolution
NASA Astrophysics Data System (ADS)
Brouwer, W.
1980-06-01
In a course entitled ''Revolutions in Physics'' a number of episodes in the history of physics are examined, in order to test the theories of Kuhn, Popper, Lakatos, and others, with regard to any common structure exhibited by the various revolutions that physics has undergone. The conflict between Lorentz's Electron Theory and Einstein's Special Relativity becomes a major focal point in the second half of the course for the models of scientific revolutions that are studied.
The Two Nursing Disciplinary Scientific Revolutions: Florence Nightingale and Martha E. Rogers.
Koffi, Kan; Fawcett, Jacqueline
2016-07-01
The purpose of this essay is to share Kan Koffi's ideas about scientific revolutions in the discipline of nursing. Koffi has proposed that the works of Florence Nightingale and Martha E. Rogers represent two scientific revolutions in nursing as a learned discipline. The outcome of these two scientific revolutions is a catalyst for critical disciplinary and paradigmatic debate about the universal conceptualization of nursing's distinctive professional and scientific knowledge. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Peixuan, E-mail: peixuan.guo@uky.edu; Schwartz, Chad; Haak, Jeannie
Biomotors have been classified into linear and rotational motors. For 35 years, it has been popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel interact with the electronegative phosphate backbone to generate four steps in translocating one dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per cycle of revolution; and howmore » ATP regulates sequential action of motor ATPase. Since motors with all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and debates concerning the oligomeric nature of packaging motors in many phage systems. This revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in rotation. - Highlights: • New motion mechanism of revolution without rotation found for phi29 DNA packaging. • Revolution motor finding expands classical linear and rotation biomotor classes. • Revolution motors transport dsDNA unidirectionally without supercoiling. • New mechanism solves many puzzles, mysteries, and debates in biomotor studies. • Motors with all numbers of subunits can utilize the revolution mechanism.« less
NASA Astrophysics Data System (ADS)
Polak, Paul; Yoder, Robert
2006-03-01
More than 550 million of the current 1.1 billion people earning less than 1-a-day earn a living from agriculture in developing countries. A revolution in water control is needed to develop and mass-disseminate new, affordable, small-plot irrigation technologies. A revolution in agriculture is required to enable smallholders to produce high-value, marketable, labor-intensive cash crops. A revolution in markets is needed to open access to markets for the crops they produce and the inputs they need to produce them. Finally, a revolution in design, based on the ruthless pursuit of affordability, is needed to harness shallow groundwater. The experiences of suppliers of treadle pumps, low-cost drip irrigation and water storage systems were examined. The wealth these technologies generated, coupled with falling prices for small diesel pumps in countries like India and China, created a suitable environment for the rapid adoption of affordable diesel pump tubewells, which in turn created vigorous water markets and expanded access to affordable irrigation water for smallholders. The combination of smallholder-centered revolutions, along with the ‘silent revolution in groundwater’ described by Llamas and Martinez-Santos (Water Sci Technol 51(8):167-174, 2005) provide new practical options for meeting the UN Millennium Development Goals on poverty and hunger by 2015.
Grossi, Enzo
2006-01-01
Background In recent years a number of algorithms for cardiovascular risk assessment has been proposed to the medical community. These algorithms consider a number of variables and express their results as the percentage risk of developing a major fatal or non-fatal cardiovascular event in the following 10 to 20 years Discussion The author has identified three major pitfalls of these algorithms, linked to the limitation of the classical statistical approach in dealing with this kind of non linear and complex information. The pitfalls are the inability to capture the disease complexity, the inability to capture process dynamics, and the wide confidence interval of individual risk assessment. Artificial Intelligence tools can provide potential advantage in trying to overcome these limitations. The theoretical background and some application examples related to artificial neural networks and fuzzy logic have been reviewed and discussed. Summary The use of predictive algorithms to assess individual absolute risk of cardiovascular future events is currently hampered by methodological and mathematical flaws. The use of newer approaches, such as fuzzy logic and artificial neural networks, linked to artificial intelligence, seems to better address both the challenge of increasing complexity resulting from a correlation between predisposing factors, data on the occurrence of cardiovascular events, and the prediction of future events on an individual level. PMID:16672045
Architectures for Distributed and Complex M-Learning Systems: Applying Intelligent Technologies
ERIC Educational Resources Information Center
Caballe, Santi, Ed.; Xhafa, Fatos, Ed.; Daradoumis, Thanasis, Ed.; Juan, Angel A., Ed.
2009-01-01
Over the last decade, the needs of educational organizations have been changing in accordance with increasingly complex pedagogical models and with the technological evolution of e-learning environments with very dynamic teaching and learning requirements. This book explores state-of-the-art software architectures and platforms used to support…
NASA Astrophysics Data System (ADS)
Gromek, Katherine Emily
A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.
Intelligent Design and the Creationism/Evolution Controversy
NASA Astrophysics Data System (ADS)
Scott, E. C.
2004-12-01
"Intelligent Design" (ID) is a new form of creationism that emerged after legal decisions in the 1980s hampered the inclusion of "creation science" in the public school curriculum. To avoid legal challenge, proponents claim agnosticism regarding the identity of the intelligent agent, which could be material (such as highly intelligent terrestrials) or transcendental (God). ID consists of a scientific/scholarly effort, and a politico-religious movement of "cultural renewal." Intelligent design is supposedly detectable through the application of Michael Behe's "irreducible complexity" concept and/or William Dembski's concept of "complex specified information". ID's claims amount to, first, that "Darwinism" (vaguely defined) is incapable of providing an adequate mechanism for evolution, and second (subsequently), that evolution did not occur. Although scientific ideas not infrequently are slow to be accepted, in the 20 years since ID appeared, there is no evidence of it being used to solve problems in biology. Even if the scientific/scholarly part of ID has been a failure, the "cultural renewal" part of ID has been a success. This social and political aspect of ID seeks "restoration" of a theistic sensibility in American culture to replace what supporters consider an overemphasis on secularism. In the last few years, in several states, legislators have introduced legislation promoting ID (to date, unsuccessfully) and an addendum to the 2001 federal education bill conference committee report (the "Santorum amendment") is being used to promote the teaching of ID in public schools. Perhaps because ID has no actual content other than antievolutionism, ID proponents contend that pre-college teachers should teach wweaknesses of evolutionw or "evidence against evolutionw - largely warmed-over arguments from creation science - even though professional scientists do not recognize these as valid scientific claims.
Anesthesiology, automation, and artificial intelligence
Alexander, John C.; Joshi, Girish P.
2018-01-01
ABSTRACT There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized. PMID:29686578
1989-03-01
resolved through global or local (associated with specific nodes) conflict resolution strategies.$ One solution is to order the arcs in the set... according to their specificity and to execute the first triggered arc. In this way, the most specific subsuming situation will be preferred over other...priority; another says that random questions should be discouraged. In such a case a non-conventional resolution mechanism must be used to resolve the
Waking the Sleeping Giant at Pearl Harbor: A Case for Intelligence and Operations Fusion
2013-05-23
York: Random House Inc., 2002), 7. 9Allan R. Millet and Peter Maslowski, For the Common Defense A Military History of the United States of America...the complexity of a major war.”40 37Keegan, Intelligence in War, 188-89. 38Ball, Of Responsible Command, 189; Allan R. Millet & Peter Maslowski...65Gole, The Road to Rainbow, 114; Miller, War Plan Orange, 270; Millet and Maslowski, For the Common Defense, 418; Ross, U.S. War Plans 1938-1945, 55
Intelligence in the Now: Robust Intelligence in Complex Domains
2015-09-26
We have applied our model and the resulting search strategy for a mobile manipulator modeled on a Willow Garage PR2 robot. As shown in Figure 12...with them – the robot tries to move a handle to various target locations and observes the reached location. Figure 13 shows Willow Garage PR2 robot...Massachusetts Institute of Technology, Cambridge, MA 02139 USA barragan@mit.edu, tlp@mit.edu, lpk@mit.edu Fig. 1. Willow Garage PR2 robot manipulating
Artificial intelligence techniques for scheduling Space Shuttle missions
NASA Technical Reports Server (NTRS)
Henke, Andrea L.; Stottler, Richard H.
1994-01-01
Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.
Advanced Artificial Intelligence Technology Testbed
NASA Technical Reports Server (NTRS)
Anken, Craig S.
1993-01-01
The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.
Leader/Follower Behaviour Using the SIFT Algorithm for Object Recognition
2006-06-01
opérations de convoiement plus complexes qui utiliseraient une vision artificielle basée sur la détection d’un chef. Les travaux futurs : Étant donné la...Systems: A Virtual Trailer Link Model, In Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems. [4] Hong, P., Sahli, H., Colon, E., and... Intelligent Robots and Systems. [6] Nguyen, H., Kogut, G., Barua, R., and Burmeister, A. (2004), A Segway RMP-based Robotic Transport System, In In
USDA-ARS?s Scientific Manuscript database
Innovative plant breeding and technology transfer fostered the Green Revolution, which transformed agriculture worldwide by increasing grain yields in developing countries. The Green Revolution temporarily alleviated world hunger, but also reduced biodiversity, nutrient cycling, and carbon sequestr...
Past and Potential Theory for Special Warfare Operational Art: People’s War and Contentious Politics
2015-03-04
bourgeoisie revolution, revolution from above, and peasant revolution.123 These events produced three corresponding revolutionary outcomes...the key structural variables that determined these paths and outcomes within a country were the strength of the bourgeoisie
The Industrial Revolution: A Misnomer.
ERIC Educational Resources Information Center
Cameron, Rondo
1982-01-01
Argues that the British industrial revolution was in no sense inevitable and scarcely deserves the term "revolution." Examined are the characteristics which the British shared with other Europeans and ways in which they were distinctive that enabled them to become the first industrial nation. (RM)
Radical Constructivism and Mathematics Education.
ERIC Educational Resources Information Center
Steffe, Leslie P.; Kieren, Thomas
1994-01-01
Provides an interpretation of the influence of constructivist thought on mathematics educators starting around 1960 and proceeding up to the present time, including Piaget's cognitive-development psychology, a preconstructivist revolution in research, beginnings of the constructivist revolution, and how this revolution served as a period of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J. B.
Planetary substrate rotation for optical-coating deposition is evaluated based on initial and final positions for a given layer with different numbers of revolutions and various deposition-source locations. The influence of partial revolutions of the rotation system is analyzed relative to the total number of planetary revolutions in that layer to determine the relative impact on film thickness and uniformity. Furthermore, guidance is provided on the necessary planetary revolutions that should take place in each layer versus the expected error level in the layer thickness for the modeled system.
Green Revolution: Impacts, limits, and the path ahead
Pingali, Prabhu L.
2012-01-01
A detailed retrospective of the Green Revolution, its achievement and limits in terms of agricultural productivity improvement, and its broader impact at social, environmental, and economic levels is provided. Lessons learned and the strategic insights are reviewed as the world is preparing a “redux” version of the Green Revolution with more integrative environmental and social impact combined with agricultural and economic development. Core policy directions for Green Revolution 2.0 that enhance the spread and sustainable adoption of productivity enhancing technologies are specified. PMID:22826253