TEM-nanoindentation studies of semiconducting structures.
Le Bourhis, E; Patriarche, G
2007-01-01
This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.
Digital Photograph Security: What Plastic Surgeons Need to Know.
Thomas, Virginia A; Rugeley, Patricia B; Lau, Frank H
2015-11-01
Sharing and storing digital patient photographs occur daily in plastic surgery. Two major risks associated with the practice, data theft and Health Insurance Portability and Accountability Act (HIPAA) violations, have been dramatically amplified by high-speed data connections and digital camera ubiquity. The authors review what plastic surgeons need to know to mitigate those risks and provide recommendations for implementing an ideal, HIPAA-compliant solution for plastic surgeons' digital photography needs: smartphones and cloud storage. Through informal discussions with plastic surgeons, the authors identified the most common photograph sharing and storage methods. For each method, a literature search was performed to identify the risks of data theft and HIPAA violations. HIPAA violation risks were confirmed by the second author (P.B.R.), a compliance liaison and privacy officer. A comprehensive review of HIPAA-compliant cloud storage services was performed. When possible, informal interviews with cloud storage services representatives were conducted. The most common sharing and storage methods are not HIPAA compliant, and several are prone to data theft. The authors' review of cloud storage services identified six HIPAA-compliant vendors that have strong to excellent security protocols and policies. These options are reasonably priced. Digital photography and technological advances offer major benefits to plastic surgeons but are not without risks. A proper understanding of data security and HIPAA regulations needs to be applied to these technologies to safely capture their benefits. Cloud storage services offer efficient photograph sharing and storage with layers of security to ensure HIPAA compliance and mitigate data theft risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.
Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less
Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.
2017-04-06
Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less
Experience of plastic surgery registrars in a European Working Time Directive compliant rota.
de Blacam, Catherine; Tierney, Sean; Shelley, Odhran
2017-08-01
Surgical training requires exposure to clinical decision-making and operative experience in a supervised environment. It is recognised that learning ability is compromised when fatigued. The European Working Time Directive requires a decrease in working hours, but compliance reduces trainees' clinical exposure, which has profound implications for plastic surgery training. The aim of this study was to evaluate plastic surgery registrars' experience of an EWTD-compliant rota, and to examine its impact on patient care, education, and logbook activity. An electronic survey was distributed to plastic surgery registrars in a university teaching hospital. Registrars were asked to rate 31 items on a five-point Likert scale, including statements on patient care, clinical and operative duties, training, and quality-of-life. Interquartile deviations explored consensus among responses. Operative caseload was objectively evaluated using eLogbook data to compare activity at equal time points before and after implementation of the EWTD rota. Highest levels of consensus among respondents were found in positive statements addressing alertness and preparation for theatre, as well as time to read and study for exams. Registrars agreed that EWTD compliance improved their quality-of-life. However, it was felt that continuity of patient care was compromised by work hours restriction. Registrars were concerned about their operative experience. eLogbook data confirmed a fall-off in mean caseload of 31.8% compared to activity prior to EWTD rota implementation. While EWTD compliant rotas promote trainee quality-of-life and satisfaction with training, attention needs to be paid to optimising operative opportunities.
Development of an Actively Compliant Underwater Manipulator
1988-12-01
23 3.3.1 Metals .......................................... 23 3.3.2 Plastics...bladder connected to all the individual housing on JASON by plastic hoses . The JASON compensator uses Carnation Lite Mineral Oil, which also serves as a...manipulator design had been completed. 21 Spring - Elastomer BellowsHousing / Spacer Ceramic Mating Ring Shaft ,/ Carbon Wiper Scale: 2:1 Figure 3.1: John
Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure
Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL
2011-12-20
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.
Elastic energy distribution in bi-material lithosphere: implications for shear zone formation
NASA Astrophysics Data System (ADS)
So, B.; Yuen, D. A.
2013-12-01
Shear instability in the lithosphere can cause mechanical rupturing such as slab detachment and deep focus earthquake. Recent studies reported that bi-material interface, which refers to sharp elastic modulus contrast, plays an important role in triggering the instability [So and Yuen et al., 2012, GJI]. In present study, we performed two-dimensional numerical simulations to investigate the distribution of thermal-mechanical energy within the bi-material lithosphere. Under the far-field constant compression exerted on the domain, a larger elastic energy is accumulated into the compliant part than stiff medium. For instance, the compliant part has two times greater elastic energy density than surrounding stiff part, when the elastic modulus contrast between two different parts is five. Although these elastic energies in both parts are conversed into thermal energies after plastic yielding, denser elastic energy in the compliant is released more efficiently. This leads to efficient strength weakening and the subsequent ductile shear zone in the compliant part. We propose that strong shear heating occurs in lithosphere with the bi-material interface due to locally non-uniform distribution of the energy around the interface.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Arya, Vinod K.; Melis, Matthew E.
1990-01-01
High residual stresses within intermetallic and metal matrix composite systems can develop upon cooling from the processing temperature to room temperature due to the coefficient of thermal expansion (CTE) mismatch between the fiber and matrix. As a result, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber-matrix interface. The compliant layer concept (insertion of a compensating interface material between the fiber and matrix) was proposed to reduce or eliminate the residual stress buildup during cooling and thus minimize cracking. The viability of the proposed compliant layer concept is investigated both elastically and elastoplastically. A detailed parametric study was conducted using a unit cell model consisting of three concentric cylinders to determine the required character (i.e., thickness and material properties) of the compliant layer as well as its applicability. The unknown compliant layer mechanical properties were expressed as ratios of the corresponding temperature dependent Ti-24Al-11Nb (a/o) matrix properties. The fiber properties taken were those corresponding to SCS-6 (SiC). Results indicate that the compliant layer can be used to reduce, if not eliminate, radial and circumferential residual stresses within the fiber and matrix and therefore also reduce or eliminate the radial cracking. However, with this decrease in in-plane stresses, one obtains an increase in longitudinal stress, thus potentially initiating longitudinal cracking. Guidelines are given for the selection of a specific compliant material, given a perfectly bonded system.
Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.
NASA Astrophysics Data System (ADS)
Nevitt, J.; Brooks, B. A.; Catchings, R.; Goldman, M.; Criley, C.; Chan, J. H.; Glennie, C. L.; Ericksen, T. L.; Madugo, C. M.
2017-12-01
The physics governing near-surface fault slip and deformation are largely unknown, introducing significant uncertainty into seismic hazard models. Here we combine near-field measurements of surface deformation from the 2014 M6.0 South Napa earthquake with high-resolution seismic imaging and finite element models to investigate the effects of rupture speed, elastic heterogeneities, and plasticity on shallow faulting. We focus on two sites that experienced either predominantly co-seismic or post-seismic slip. We measured surface deformation with mobile laser scanning of deformed vine rows within 300 m of the fault at 1 week and 1 month after the event. Shear strain profiles for the co- and post-seismic sites are similar, with maxima of 0.012 and 0.013 and values exceeding 0.002 occurring within 26 m- and 18 m-wide zones, respectively. That the rupture remained buried at the two sites and produced similar deformation fields suggests that permanent deformation due to dynamic stresses did not differ significantly from the quasi-static case, which might be expected if the rupture decelerated as it approached the surface. Active-source seismic surveys, 120 m in length with 1 m geophone/shot spacing, reveal shallow compliant zones of reduced shear modulus. For the co- and post-seismic sites, the tomographic anomaly (Vp/Vs > 5) at 20 m depth has a width of 80 m and 50 m, respectively, much wider than the observed surface displacement fields. We investigate this discrepancy with a suite of finite element models in which a planar fault is buried 5 m below the surface. The model continuum is defined by either homogeneous or heterogeneous elastic properties, with or without Drucker-Prager plastic yielding, with properties derived from lab testing of similar near-surface materials. We find that plastic yielding can greatly narrow the surface displacement zone, but that the width of this zone is largely insensitive to changes in the elastic structure (i.e., the presence of a compliant zone).
Compliant displacement-multiplying apparatus for microelectromechanical systems
Kota, Sridhar; Rodgers, M. Steven; Hetrick, Joel A.
2001-01-01
A pivotless compliant structure is disclosed that can be used to increase the geometric advantage or mechanical advantage of a microelectromechanical (MEM) actuator such as an electrostatic comb actuator, a capacitive-plate electrostatic actuator, or a thermal actuator. The compliant structure, based on a combination of interconnected flexible beams and cross-beams formed of one or more layers of polysilicon or silicon nitride, can provide a geometric advantage of from about 5:1 to about 60:1 to multiply a 0.25-3 .mu.m displacement provided by a short-stroke actuator so that such an actuator can be used to generate a displacement stroke of about 10-34 .mu.m to operate a ratchet-driven MEM device or a microengine. The compliant structure has less play than conventional displacement-multiplying devices based on lever arms and pivoting joints, and is expected to be more reliable than such devices. The compliant structure and an associated electrostatic or thermal actuator can be formed on a common substrate (e.g. silicon) using surface micromachining.
Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the NASA Gulfstream GIII test bed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight.
VisIVO: A Tool for the Virtual Observatory and Grid Environment
NASA Astrophysics Data System (ADS)
Becciani, U.; Comparato, M.; Costa, A.; Larsson, B.; Gheller, C.; Pasian, F.; Smareglia, R.
2007-10-01
We present the new features of VisIVO, software for the visualization and analysis of astrophysical data which can be retrieved from the Virtual Observatory framework and used for cosmological simulations running both on Windows and GNU/Linux platforms. VisIVO is VO standards compliant and supports the most important astronomical data formats such as FITS, HDF5 and VOTables. It is free software and can be downloaded from the web site http://visivo.cineca.it. VisIVO can interoperate with other astronomical VO compliant tools through PLASTIC (PLatform for AStronomical Tool InterConnection). This feature allows VisIVO to share data with many other astronomical packages to further analyze the loaded data.
Design and Analysis of a Stiffened Composite Structure Repair Concept
NASA Technical Reports Server (NTRS)
Przekop, Adam
2011-01-01
A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.
75 FR 30784 - Schylling Associates, Inc., Provisional Acceptance of a Settlement Agreement and Order
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
...-containing paint problem before any non-compliant Tops were imported into the United States. In order to avoid any lead-in-paint problems in the future, Schylling then instructed its manufacturer, Sanda Kan, that henceforth all spinning top toys had to be made with unpainted plastic rather than wooden handles...
Compliant Turbomachine Sealing
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Deng, D.; Hendricks, J. A.
2011-01-01
Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.
Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics
Burms, Jeroen; Caluwaerts, Ken; Dambre, Joni
2015-01-01
In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics. PMID:26347645
Handedness in shearing auxetics creates rigid and compliant structures
NASA Astrophysics Data System (ADS)
Lipton, Jeffrey Ian; MacCurdy, Robert; Manchester, Zachary; Chin, Lillian; Cellucci, Daniel; Rus, Daniela
2018-05-01
In nature, repeated base units produce handed structures that selectively bond to make rigid or compliant materials. Auxetic tilings are scale-independent frameworks made from repeated unit cells that expand under tension. We discovered how to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries and alignments of auxetic tilings. Using the symmetry and alignment rules that we developed, we made handed shearing auxetics that tile planes, cylinders, and spheres. By compositing the handed shearing auxetics in a manner inspired by keratin and collagen, we produce both compliant structures that expand while twisting and deployable structures that can rigidly lock. This work opens up new possibilities in designing chemical frameworks, medical devices like stents, robotic systems, and deployable engineering structures.
Can compliant fault zones be used to measure absolute stresses in the upper crust?
NASA Astrophysics Data System (ADS)
Hearn, E. H.; Fialko, Y.
2009-04-01
Geodetic and seismic observations reveal long-lived zones with reduced elastic moduli along active crustal faults. These fault zones localize strain from nearby earthquakes, consistent with the response of a compliant, elastic layer. Fault zone trapped wave studies documented a small reduction in P and S wave velocities along the Johnson Valley Fault caused by the 1999 Hector Mine earthquake. This reduction presumably perturbed a permanent compliant structure associated with the fault. The inferred changes in the fault zone compliance may produce a measurable deformation in response to background (tectonic) stresses. This deformation should have the same sense as the background stress, rather than the coseismic stress change. Here we investigate how the observed deformation of compliant zones in the Mojave Desert can be used to constrain the fault zone structure and stresses in the upper crust. We find that gravitational contraction of the coseismically softened zones should cause centimeters of coseismic subsidence of both the compliant zones and the surrounding region, unless the compliant fault zones are shallow and narrow, or essentially incompressible. We prefer the latter interpretation because profiles of line of sight displacements across compliant zones cannot be fit by a narrow, shallow compliant zone. Strain of the Camp Rock and Pinto Mountain fault zones during the Hector Mine and Landers earthquakes suggests that background deviatoric stresses are broadly consistent with Mohr-Coulomb theory in the Mojave upper crust (with μ ≥ 0.7). Large uncertainties in Mojave compliant zone properties and geometry preclude more precise estimates of crustal stresses in this region. With improved imaging of the geometry and elastic properties of compliant zones, and with precise measurements of their strain in response to future earthquakes, the modeling approach we describe here may eventually provide robust estimates of absolute crustal stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deserts, L. des
To develop hydrocarbon fields located in deep waters, several alternatives can be contemplated. Among these alternatives, some of them use surface wellheads while others use subsea wells; some alternatives are using bottom founded structures, while others use floating structures or a combination of both. The purpose of this paper is to try to assess when a compliant tower will be the most appropriate solution to consider. To make this assessment, the different types of compliant towers are recalled, as well as the different types of floating structures. Then some criteria are introduced to compare the different alternatives and to determinemore » when a compliant tower is the most appropriate solution.« less
Goto, Takaaki; Dobashi, Hiroki; Yoshikawa, Tsuneo; Loureiro, Rui C V; Harwin, William S; Miyamura, Yuga; Nagai, Kiyoshi
2017-07-01
This paper addresses the mechanical structure and control method of a redundant drive robot (RDR) to produce compliant motions, and show how the design parameters of the RDR can effect the produced motions and the mechanical and performance limitations of the actuators of the RDR. The structure and control method of the RDR can have been proper to produce compliant motions, but the effect of the design parameters of the RDR to the mechanical and performance limitations have not been clear. Therefore, the feasibility of producing compliant motions in the case of the prototype of the RDR is confirmed by conducting simulations and experiments, and then the design parameters of the RDR to the mechanical and performance limitations are verified by conducting simulations.
Particle-based solid for nonsmooth multidomain dynamics
NASA Astrophysics Data System (ADS)
Nordberg, John; Servin, Martin
2018-04-01
A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.
Kayen, Robert E.
2017-01-01
Gentle sediment-laden slopes are typical of the onshore coastal zone and offshore continental shelf and slope. Coastal sediment are commonly young weakly consolidated materials that are well stratified, have low strength, and can mobilize shear displacements at low levels of stress. Seismically-driven plastic displacements of these sediment pose a hazard to coastal cities, buried onshore utilities, and offshore infrastructure like harbor protection and outfalls. One-dimensional rigid downslope-directed Newmark sliding block analyses have been used to predict earthquake deformations generally on steeper slopes that are modeled as frictional materials. This study probes the effect of multidirectional earthquake motions on inertial displacements of gently sloping ground of the coastal and offshore condition where soft-compliant soil is expected. Toward that objective, this investigation seeks to understand the effect on Newmark-type displacements of [1] multidirectional earthquake shaking and [2] soil compliance. In order to model multidirectional effects, the earthquake motions are rotated into the local slope strike- and dip-components. On gently sloping ground, including the strike component of motion always results in a larger and more accurate shear stress vector. Strike motions are found to contribute to downslope deformations on any declivity. Compliant response of the soil mass also influences the plastic displacements. The magnitude of seismic displacements can be estimated with a simplified model using only the estimated soil yield-acceleration (ky) and the peak ground velocity (Vmax) of the earthquake motions. Compliance effects can be effectively mapped using the concept of Plastic Displacement Response Spectra (PDRS).
Method and apparatus for producing composites of materials exhibiting thermoplastic properties
Garvey, Raymond E.; Grostick, Edmund T.
1992-01-01
A mobile device for the complete consolidation of layers of material which exhibit thermoplastic properties for the formation of a composite of the layers upon a complex contoured substrate. The principal of the device is to provide heating into the molten temperature range of the thermoplastic material, applying sufficient pressure to the layers to cause flow of the plastic for a time sufficient to achieve full consolidation of the layers, and quickly cooling the structure to prevent delamination or other non-consolidation action. In the preferred form, there is an element to deposit a layer of the mateiral against another layer in close proximity. The two layers are pre-heated to near the melting temperature, and then further heated into the melting temperature range as they are brought into intimate contact with sufficient pressure to cause flow of the plastic for a time sufficient to achieve the full consolidation. The structure is then cooled. The mechanism for the application of pressure is selected such that the layers can be deformed to conform to a complex contour. In the preferred form, this pressurization is produced using a compliant hood that supplies both the pressure and at least a portion of the melting temperature, as well as the cooling. The apparatus, and method of operation, are described relative to the use of fiber-reinforced PEEK in the making of fully-consolidated composites. Other applications are discussed.
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Tosunoglu, Sabri; Lin, Shyng-Her
1990-01-01
Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied.
Flectofold—a biomimetic compliant shading device for complex free form facades
NASA Astrophysics Data System (ADS)
Körner, A.; Born, L.; Mader, A.; Sachse, R.; Saffarian, S.; Westermeier, A. S.; Poppinga, S.; Bischoff, M.; Gresser, G. T.; Milwich, M.; Speck, T.; Knippers, J.
2018-01-01
Smart and adaptive outer façade shading systems are of high interest in modern architecture. For long lasting and reliable systems, the abandonment of hinges which often fail due to mechanical wear during repetitive use is of particular importance. Drawing inspiration from the hinge-less motion of the underwater snap-trap of the carnivorous waterwheel plant (Aldrovanda vesiculosa), the compliant façade shading device Flectofold was developed. Based on computational simulations of the biological role-model’s elastic and reversible motion, the actuation principle of the plant can be identified. The enclosed geometric motion principle is abstracted into a simplified curved-line folding geometry with distinct flexible hinge-zones. The kinematic behaviour is translated into a quantitative kinetic model, using finite element simulation which allows the detailed analyses of the influence of geometric parameters such as curved-fold line radius and various pneumatically driven actuation principles on the motion behaviour, stress concentrations within the hinge-zones, and actuation forces. The information regarding geometric relations and material gradients gained from those computational models are then used to develop novel material combinations for glass fibre reinforced plastics which enabled the fabrication of physical prototypes of the compliant façade shading device Flectofold.
An experimental and theoretical study of structural damping in compliant foil bearings
NASA Technical Reports Server (NTRS)
Ku, C.-P. Roger
1994-01-01
This paper describes an experimental investigation into the dynamic characteristics of corrugated foil (bump foil) strips used in compliant surface foil bearings. This study provided and opportunity to quantify the structural damping of bump foil strips. The experimental data were compared to results obtained by a theoretical model developed earlier. The effects of bearing design parameters, such as static loads, dynamic displacement amplitudes, bump configurations, pivot locations, surface coatings, and lubricant were also evaluated. An understanding of the dynamic characteristics of bump foil strips resulting from this work offers designers a means for enhancing the design of high-performance compliant foil bearings.
Krishna, Gamidi Rama; Devarapalli, Ramesh; Prusty, Rajesh; Liu, Tiandong; Fraser, Cassandra L; Ramamurty, Upadrasta; Reddy, Chilla Malla
2015-11-01
The structure and mechanical properties of crystalline materials of three boron difluoride dibenzoylmethane (BF2dbm) derivatives were investigated to examine the correlation, if any, among mechanochromic luminescence (ML) behaviour, solid-state structure, and the mechanical behaviour of single crystals. Qualitative mechanical deformation tests show that the crystals of BF2dbm( (t) Bu)2 can be bent permanently, whereas those of BF2dbm(OMe)2 exhibit an inhomogeneous shearing mode of deformation, and finally BF2dbmOMe crystals are brittle. Quantitative mechanical analysis by nano-indentation on the major facets of the crystals shows that BF2dbm( (t) Bu)2 is soft and compliant with low values of elastic modulus, E, and hardness, H, confirming its superior suceptibility for plastic deformation, which is attributed to the presence of a multitude of slip systems in the crystal structure. In contrast, both BF2dbm(OMe)2 and BF2dbmOMe are considerably stiffer and harder with comparable E and H, which are rationalized through analysis of the structural attributes such as the intermolecular interactions, slip systems and their relative orientation with respect to the indentation direction. As expected from the qualitative mechanical behaviour, prominent ML was observed in BF2dbm( (t) Bu)2, whereas BF2dbm(OMe)2 exhibits only a moderate ML and BF2dbmOMe shows no detectable ML, all examined under identical conditions. These results confirm that the extent of ML in crystalline organic solid-state fluorophore materials can be correlated positively with the extent of plasticity (low recovery). In turn, they offer opportunities to design new and improved efficient ML materials using crystal engineering principles.
Development of an IHE MRRT-compliant open-source web-based reporting platform.
Pinto Dos Santos, Daniel; Klos, G; Kloeckner, R; Oberle, R; Dueber, C; Mildenberger, P
2017-01-01
To develop a platform that uses structured reporting templates according to the IHE Management of Radiology Report Templates (MRRT) profile, and to implement this platform into clinical routine. The reporting platform uses standard web technologies (HTML / JavaScript and PHP / MySQL) only. Several freely available external libraries were used to simplify the programming. The platform runs on a standard web server, connects with the radiology information system (RIS) and PACS, and is easily accessible via a standard web browser. A prototype platform that allows structured reporting to be easily incorporated into the clinical routine was developed and successfully tested. To date, 797 reports were generated using IHE MRRT-compliant templates (many of them downloaded from the RSNA's radreport.org website). Reports are stored in a MySQL database and are easily accessible for further analyses. Development of an IHE MRRT-compliant platform for structured reporting is feasible using only standard web technologies. All source code will be made available upon request under a free license, and the participation of other institutions in further development is welcome. • A platform for structured reporting using IHE MRRT-compliant templates is presented. • Incorporating structured reporting into clinical routine is feasible. • Full source code will be provided upon request under a free license.
Performance of a non-tapered 3D morphing wing with integrated compliant ribs
NASA Astrophysics Data System (ADS)
Previtali, F.; Ermanni, P.
2012-05-01
Morphing wings have a high potential for improving the performance and reducing the fuel consumption of modern aircraft. Thanks to its simplicity, the compliant belt-rib concept is regarded by the authors as a promising solution. Using the compliant rib designed by Hasse and Campanile as a starting point, a compliant morphing wing made of composite materials is designed. Innovative methods for optimal placing of the actuation and for the quantification of the morphing are used. The performance of the compliant morphing wing in terms of three-dimensional (3D) structural behaviour and aerodynamic properties, both two- and three-dimensional, is presented and discussed. The fundamental importance of considering 3D coupling effects in the determination of the performance of morphing aerofoils is shown.
Cosmetic surgery in the NHS: Applying local and national guidelines.
Breuning, Eleonore E; Oikonomou, Dimitris; Singh, Pritam; Rai, Jagdeep K; Mendonca, Derick Amith
2010-09-01
There is no worldwide consensus, as to how healthcare should be funded, in a modern society. Limited resources in the UK, have led to restrictions on cosmetic surgery in the NHS. Guidelines governing access to cosmetic surgery have been formulated. A retrospective audit has been undertaken, to assess adherence to local and national guidelines, in an NHS trust. Ninety-nine casenotes were reviewed over 1 year. Data on complications were collected. Compliance to local guidelines was 44% and to national guidelines was 22%. Complication rate was 23% in guideline compliant patients and 55% in non-compliant patients (P<0.005). Guidelines are difficult to follow in practice. Total adherence to guidelines would reduce waiting lists and complications, but some needy patients could be denied treatment. In practice, rigid adherence to guidelines is not possible. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Demonstrations of bio-inspired perching landing gear for UAVs
NASA Astrophysics Data System (ADS)
Tieu, Mindy; Michael, Duncan M.; Pflueger, Jeffery B.; Sethi, Manik S.; Shimazu, Kelli N.; Anthony, Tatiana M.; Lee, Christopher L.
2016-04-01
Results are presented which demonstrate the feasibility and performance of two concepts of biologically-inspired landing-gear systems that enable bird-sized, unmanned aerial vehicles (UAV's) to land, perch, and take-off from branchlike structures and/or ledges. The first concept follows the anatomy of birds that can grasp ahold of a branch and perch as tendons in their legs are tensioned. This design involves a gravity-activated, cable-driven, underactuated, graspingfoot mechanism. As the UAV lands, its weight collapses a four-bar linkage pulling a cable which curls two opposing, multi-segmented feet to grasp the landing target. Each foot is a single, compliant mechanism fabricated by simultaneouly 3D-printing a flexible thermo-plastic and a stiffer ABS plastic. The design is optimized to grasp structures over a range of shapes and sizes. Quasi-static and flight tests of this landing gear affixed to RC rotorcraft (24 cm to 550 cm in diameter) demonstrate that the aircraft can land, perch, and take-off from a tree branch, rectangular wood board, PVC pipe, metal hand rail, chair armrest, and in addition, a stone wall ledge. Stability tests show that perching is maintained under base and wind disturbances. The second design concept, inspired by roosting bats, is a two-material, 3D-printed hooking mechanism that enables the UAV to stably suspend itself from a wire or small-diameter branch. The design balances structural stiffness for support and flexibility for the perching process. A flight-test demonstrates the attaching and dis-engaging of a small, RC quadcopter from a suspended line.
Gorman, Mark; Coelho, James; Gujral, Sameer; McKay, Alastair
2015-01-01
Introduction. "See and treat" one-stop clinics (OSCs) are an advocated NHS initiative to modernise care, reducing cancer treatment waiting times. Little studied in plastic surgery, the existing evidence suggests that though they improve care, they are rarely implemented. We present our experience setting up a plastic surgery OSC for minor skin surgery and survey their use across the UK. Methods. The OSC was evaluated by 18-week wait target compliance, measures of departmental capacity, and patient satisfaction. Data was obtained from 32 of the 47 UK plastic surgery departments to investigate the prevalence of OSCs for minor skin cancer surgery. Results. The OSC improved 18-week waiting times, from a noncompliant mean of 80% to a compliant 95% average. Department capacity increased 15%. 95% of patients were highly satisfied with and preferred the OSC to a conventional service. Only 25% of UK plastic surgery units run OSCs, offering varying reasons for not doing so, 42% having not considered their use. Conclusions. OSCs are underutilised within UK plastic surgery, where a significant proportion of units have not even considered their benefit. This is despite associated improvements in waiting times, department capacity, and levels of high patient satisfaction. We offer our considerations and local experience instituting an OSC service.
Gorman, Mark; Coelho, James; Gujral, Sameer; McKay, Alastair
2015-01-01
Introduction. “See and treat” one-stop clinics (OSCs) are an advocated NHS initiative to modernise care, reducing cancer treatment waiting times. Little studied in plastic surgery, the existing evidence suggests that though they improve care, they are rarely implemented. We present our experience setting up a plastic surgery OSC for minor skin surgery and survey their use across the UK. Methods. The OSC was evaluated by 18-week wait target compliance, measures of departmental capacity, and patient satisfaction. Data was obtained from 32 of the 47 UK plastic surgery departments to investigate the prevalence of OSCs for minor skin cancer surgery. Results. The OSC improved 18-week waiting times, from a noncompliant mean of 80% to a compliant 95% average. Department capacity increased 15%. 95% of patients were highly satisfied with and preferred the OSC to a conventional service. Only 25% of UK plastic surgery units run OSCs, offering varying reasons for not doing so, 42% having not considered their use. Conclusions. OSCs are underutilised within UK plastic surgery, where a significant proportion of units have not even considered their benefit. This is despite associated improvements in waiting times, department capacity, and levels of high patient satisfaction. We offer our considerations and local experience instituting an OSC service. PMID:26236502
Barbaglio, Alice; Tricarico, Serena; Ribeiro, Ana R; Di Benedetto, Cristiano; Barbato, Marta; Dessì, Desirèe; Fugnanesi, Valeria; Magni, Stefano; Mosca, Fabio; Sugni, Michela; Bonasoro, Francesco; Barbosa, Mario A; Wilkie, Iain C; Candia Carnevali, M Daniela
2015-06-01
The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes. Elucidation of the molecular mechanism underlying such mutability has implications for the zoological, ecological and evolutionary field. Important information could also arise for veterinary and biomedical sciences, particularly regarding the pathological plasticization or stiffening of connective tissue structures. In the present investigation we analyzed aspects of the ultrastructure and biochemistry in two representative models, the compass depressor ligament and the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three different mechanical states. The results provide further evidence that the mechanical adaptability of echinoderm connective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher glycosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compass depressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues. The possible involvement of GAG in the mutability phenomenon will need further clarification. During the shift from a compliant to a standard condition, significant changes in GAG content were detected only in the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling) and biochemistry (two alpha chains) were found between the two models and mammalian collagen. Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLAST alignment highlighted the uniqueness of sea urchin collagen with respect to mammalian collagen. Copyright © 2015 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Kerley, James J. (Inventor); Eklund, Wayne D. (Inventor); Crane, J. Allen (Inventor)
1992-01-01
A compliant walker is provided for humans having limited use of their legs and lower back. It includes an upright wheel frame which at least partially surrounds an upright user wearing a partial body harness. It is attached to the frame by means of cable compliant apparatus consisting of sets of cable segments and angle bracket members connected between opposite side members of the frame and adjacent side portions of the harness. Novelty is believed to exist in the combination of a wheeled frame including a side support structure, a body harness, and compliance means connecting the body harness to the side support structure for flexibility holding and supporting a person in a substantially upright position when the user sags in the frame when taking weight off the lower extremities.
Compliant Robotic Structures. Part 2
1986-07-01
Nonaxially Homogeneous Stresses and Strains 44 Parametric Studies 52 % References 65 III. LARGE DEFLECTIONS OF CONTINUOUS ELASTIC ’- STRUCTURES 66...APPENDIX C: Computer Program for the Element String 133 -° SUMMARY This is the second year report which is a part of a three- year study on compliant...ratios as high as 10/1 for laboratory-scale models and up to 3/1 for full-scale prototype arms. The first two years of this study have involved the
Turbine airfoil with a compliant outer wall
Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL
2012-04-03
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.
Compliant Electrode and Composite Material for Piezoelectric Wind and Mechanical Energy Conversions
NASA Technical Reports Server (NTRS)
Chen, Bin (Inventor)
2015-01-01
A thin film device for harvesting energy from wind. The thin film device includes one or more layers of a compliant piezoelectric material formed from a composite of a polymer and an inorganic material, such as a ceramic. Electrodes are disposed on a first side and a second side of the piezoelectric material. The electrodes are formed from a compliant material, such as carbon nanotubes or graphene. The thin film device exhibits improved resistance to structural fatigue upon application of large strains and repeated cyclic loadings.
NASA Technical Reports Server (NTRS)
Kerley, James J.; Eklund, Wayne; Crane, Alan
1992-01-01
Walker supports person with limited use of legs and back. Enables person to stand upright, move with minimum load, and rest at will taking weight off legs. Consists of wheeled frame with body harness connected compliantly to side structures. Harness supports wearer upright when wearer relaxes and takes weight off lower extremities. Assumes partial to full body weight at user's discretion.
Structurally compliant rocket engine combustion chamber: Experimental and analytical validation
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.
1994-01-01
A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.
Yu, You; Yan, Casey; Zheng, Zijian
2014-08-20
Metal interconnects, contacts, and electrodes are indispensable elements for most applications of flexible, stretchable, and wearable electronics. Current fabrication methods for these metal conductors are mainly based on conventional microfabrication procedures that have been migrated from Si semiconductor industries, which face significant challenges for organic-based compliant substrates. This Research News highlights a recently developed full-solution processing strategy, polymer-assisted metal deposition (PAMD), which is particularly suitable for the roll-to-roll, low-cost fabrication of high-performance compliant metal conductors (Cu, Ni, Ag, and Au) on a wide variety of organic substrates including plastics, elastomers, papers, and textiles. This paper presents i) the principles of PAMD, and how to use it for making ii) flexible, stretchable, and wearable conductive metal electrodes, iii) patterned metal interconnects, and d) 3D stretchable and compressible metal sponges. A critical perspective on this emerging strategy is also provided. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jiang, Yao; Li, Tie-Min; Wang, Li-Ping
2015-09-01
This paper investigates the stiffness modeling of compliant parallel mechanism (CPM) based on the matrix method. First, the general compliance matrix of a serial flexure chain is derived. The stiffness modeling of CPMs is next discussed in detail, considering the relative positions of the applied load and the selected displacement output point. The derived stiffness models have simple and explicit forms, and the input, output, and coupling stiffness matrices of the CPM can easily be obtained. The proposed analytical model is applied to the stiffness modeling and performance analysis of an XY parallel compliant stage with input and output decoupling characteristics. Then, the key geometrical parameters of the stage are optimized to obtain the minimum input decoupling degree. Finally, a prototype of the compliant stage is developed and its input axial stiffness, coupling characteristics, positioning resolution, and circular contouring performance are tested. The results demonstrate the excellent performance of the compliant stage and verify the effectiveness of the proposed theoretical model. The general stiffness models provided in this paper will be helpful for performance analysis, especially in determining coupling characteristics, and the structure optimization of the CPM.
Quantification of regenerative potential in primary human mammary epithelial cells
Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.
2015-01-01
We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498
DNA origami compliant nanostructures with tunable mechanical properties.
Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E
2014-01-28
DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.
The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
Ene, Florentina; Delassus, Patrick; Morris, Liam
2014-08-01
The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.
analysis Life cycle assessment Fluid-structure interaction Bio-inspired materials and design Education and . Daniel. "Fluid-structure interaction in compliant insect wings." Bioinspiration and Biomimetics
Dynamic monitoring of compliant bodies impacting the water surface through local strain measurements
NASA Astrophysics Data System (ADS)
Panciroli, Riccardo; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2016-04-01
The understanding and the experimental characterization of the evolution of impulsive loading is crucial in several fields in structural, mechanical and ocean engineering, naval architecture and aerospace. In this regards, we developed an experimental methodology to reconstruct the deformed shape of compliant bodies subjected to impulsive loadings, as those encountered in water entry events, starting from a finite number of local strain measurements performed through Fiber Bragg Gratings. The paper discusses the potential applications of the proposed methodology for: i) real-time damage detection and structural health monitoring, ii) fatigue assessment and iii) impulsive load estimation.
Robotic Joints Support Horses and Humans
NASA Technical Reports Server (NTRS)
2008-01-01
A rehabilitative device first featured in Spinoff 2003 is not only helping human patients regain the ability to walk, but is now helping our four-legged friends as well. The late James Kerley, a prominent Goddard Space Flight Center researcher, developed cable-compliant mechanisms in the 1980s to enable sounding rocket assemblies and robots to grip or join objects. In cable-compliant joints (CCJs), short segments of cable connect structural elements, allowing for six directions of movement, twisting, alignment, and energy damping. Kerley later worked with Goddard s Wayne Eklund and Allen Crane to incorporate the cable-compliant mechanisms into a walker for human patients to support the pelvis and imitate hip joint movement.
NASA Astrophysics Data System (ADS)
Zhu, Wu-Le; Zhu, Zhiwei; To, Suet; Liu, Qiang; Ju, Bing-Feng; Zhou, Xiaoqin
2016-12-01
This paper presents a novel redundantly piezo-actuated three-degree-of-freedom XYθ z compliant mechanism for nano-positioning, driven by four mirror-symmetrically configured piezoelectric actuators (PEAs). By means of differential motion principle, linearized kinematics and physically bi-directional motions in all the three directions are achieved. Meanwhile, the decoupled delivering of three-directional independent motions at the output end is accessible, and the essential parallel and mirror symmetric configuration guarantees large output stiffness, high natural frequencies, high accuracy as well as high structural compactness of the mechanism. Accurate kinematics analysis with consideration of input coupling indicates that the proposed redundantly actuated compliant mechanism can generate three-dimensional (3D) symmetric polyhedral workspace envelope with enlarged reachable workspace, as compared with the most common parallel XYθ z mechanism driven by three PEAs. Keeping a high consistence with both analytical and numerical models, the experimental results show the working ranges of ±6.21 μm and ±12.41 μm in X- and Y-directions, and that of ±873.2 μrad in θ z-direction with nano-positioning capability can be realized. The superior performances and easily achievable structure well facilitate practical applications of the proposed XYθ z compliant mechanism in nano-positioning systems.
Klebanoff (K-) modes in boundary layers (BLs) over compliant surfaces
NASA Astrophysics Data System (ADS)
Ali, Reza; Carpenter, Peter
2002-11-01
We investigate the effect of wall compliance on K-modes. These are associated with streaks observed in the transitional BL, generated by spanwise modulation of the streamwise velocity, and are thought to be the mechanism for bypass transition. They have been widely studied over flat-plate, rigid surfaces but not compliant surfaces. A novel velocity-vorticity formulation is adopted for the numerical simulations, and a freestream spanwise body force is used to generate the streaks. We find compliant walls are less receptive than rigid walls, i.e. freestream turbulence generates weaker disturbances over compliant walls. This effect intensifies with increasing compliance. Where a compliant panel is embedded into a rigid surface, the leading and trailing edges of the panel can introduce a stabilising or destabilising disturbance on the streaks depending on the Reynolds number. It is therefore possible to optimise the wall to suppress streaks and hence bypass. K-modes can also act as a theoretical model for the near-wall structures that generate the high skin-friction drag in turbulent BLs. In this scenario, increasing compliance increases the spanwise spacing and weakens the streak. This explains experimental observations that wall compliance reduces skin-friction drag and turbulence levels in turbulent BLs.
Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo
2013-06-01
A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.
Quantification of regenerative potential in primary human mammary epithelial cells.
Linnemann, Jelena R; Miura, Haruko; Meixner, Lisa K; Irmler, Martin; Kloos, Uwe J; Hirschi, Benjamin; Bartsch, Harald S; Sass, Steffen; Beckers, Johannes; Theis, Fabian J; Gabka, Christian; Sotlar, Karl; Scheel, Christina H
2015-09-15
We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49f(hi)/EpCAM(-) population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. © 2015. Published by The Company of Biologists Ltd.
Structurally compliant microbearing devices and methods thereof
NASA Technical Reports Server (NTRS)
Boedo, Stephen (Inventor); Grande, William (Inventor)
2011-01-01
A microbearing device includes at least one inner bearing structure, at least one outer bearing structure, and one or more fasteners. Each of the one or more fasteners is connected between the inner bearing structure and the outer bearing structure and the inner bearing structure is substantially elastic.
Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy
Prime, Michael B.
2017-07-01
Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less
Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prime, Michael B.
Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less
Hot fire fatigue testing results for the compliant combustion chamber
NASA Technical Reports Server (NTRS)
Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.
1992-01-01
A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.
A Rapid Computational Model for Estimating the Performance of Compliant Airfoils in Cascades
1992-07-01
A.R., "Fluid Dynanics of Axial Compressors ", Proc. Instn. Mech. Engrs., No. 153, p. 445, 1945 7 APPENDIX A CASCADE AERODYNAMICS Initially we wish to...GROUP Turbomachinery Aeroelasticity 19 ABSTRACT (Continue on reverse if necessary and identify by block number) We consider the problem of designing ...Avila SUMMARY By designing the blades in a turbomachine to have a specific schedule of structural stiffness (typically more compliant than normal) it is
Repair Concepts as Design Constraints of a Stiffened Composite PRSEUS Panel
NASA Technical Reports Server (NTRS)
Przekop, Adam
2012-01-01
A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. The concept is a bolted repair using metal components, so that it can easily be applied in the operational environment. The damage scenario considered is a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. In a previous study several repair configurations were explored and their feasibility confirmed but refinement was needed. The present study revisits the problem under recently revised design requirements and broadens the suite of loading conditions considered. The repair assembly design is based on the critical tension loading condition and subsequently its robustness is verified for a pressure loading case. High fidelity modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear solutions are utilized in the finite element analysis. The best repair design is introduced, its analysis results are presented and factors influencing the design are assessed and discussed.
Dependence of residual displacements on the width and depth of compliant fault zones: a 3D study
NASA Astrophysics Data System (ADS)
Kang, J.; Duan, B.
2011-12-01
Compliant fault zones have been detected along active faults by seismic investigations (trapped waves and travel time analysis) and InSAR observations. However, the width and depth extent of compliant fault zones are still under debate in the community. Numerical models of dynamic rupture build a bridge between theories and the geological and geophysical observations. Theoretical 2D plane-strain studies of elastic and inelastic response of compliant fault zones to nearby earthquake have been conducted by Duan [2010] and Duan et al [2010]. In this study, we further extend the experiments to 3D with a focus on elastic response. We are specifically interested in how residual displacements depend on the structure and properties of complaint fault zones, in particular on the width and depth extent. We conduct numerical experiments on various types of fault-zone models, including fault zones with a constant width along depth, with decreasing widths along depth, and with Hanning taper profiles of velocity reduction. . Our preliminary results suggest 1) the width of anomalous horizontal residual displacement is only indicative of the width of a fault zone near the surface, and 2) the vertical residual displacement contains information of the depth extent of compliant fault zones.
New integrated silicon-PDMS process for compliant micro-mechanisms
NASA Astrophysics Data System (ADS)
Haouas, Wissem; Dahmouche, Redwan; Agnus, Joël; Le Fort-Piat, Nadine; Laurent, Guillaume J.
2017-12-01
Polydimethylsiloxane (PDMS) elastomers are used for many applications, such as microfluidics and micro-engineering. This paper presents a new process of integrating soft elastomers into a silicon structure without any assembly steps. The novelty of this process is the use of only one deep reactive ion etch (DRIE) instead of two or more as developed in previous works. Thus, this fabrication process allows the use of elastomers that are usually not compatible with some fabrication processes. Compliant flexures with different interference shapes have been designed, simulated, fabricated, and characterized for generic use and notably for micro-robot joints and compliant micro-systems. The experimental results show that the 400 μm × 400 μm cross-sectional area samples can be bended more than 60\\circ without delamination.
Analytical modeling and experimental evaluation of a passively morphing ornithopter wing
NASA Astrophysics Data System (ADS)
Wissa, Aimy A.
Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in both civil and military sectors. Amongst all categories of UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work was to improve the steady level flight wing performance of an ornithopter by implementing the Continuous Vortex Gait (CVG) using a novel passive compliant spine. The CVG is a set of bio-inspired kinematics that natural flyers use to produce lift and thrust during steady level flight. A significant contribution of this work was the recognition that the CVG is an avian gait that could be achieved using a passive morphing mechanism. In contrast to rigid-link mechanisms and active approaches, reported by other researchers in the open literature, passive morphing mechanisms require no additional energy expenditure, while introducing minimal weight addition and complexity. During the execution of the CVG, the avian wing wrist is the primary joint responsible for the wing shape changes. Thus a compliant mechanism, called a compliant spine, was fabricated, and integrated in the ornithopter's wing leading edge spar where an avian wrist would normally exist, namely at 37% of the wing half span. Each compliant spine was designed to be flexible in bending during the wing upstroke and stiff in bending during the wing downstroke. Inserting a variable stiffness compliant mechanism in the leading edge (LE) spar of the ornithopter could affect its structural stability. An analytical model was developed to determine the structural stability of the ornithopter LE spar. The model was validated using experimental measurements. The LE spar equations of motion were then reformulated into Mathieu's equation and the LE spar was proven to be structurally stable with a compliant spine design insert. A research ornithopter platform was tested in air and in vacuum as well as in free and constrained flight with various compliant spine designs inserted in its wings. Results from the constrained flight tests indicated that the ornithopter with a compliant spine inserted in its wings consumed 45% less electrical power and produced 16% of its weight in additional lift, without incurring any thrust penalties. Results from, the vacuum constrained tests attributed these benefits to aerodynamic effects rather than inertial effects. Free flight tests were performed at Wright Patterson Air Force Base, which houses the largest indoor flight laboratory in the country. The wing kinematics along with the vehicle dynamics were captured during this testing using ViconRTM motion tracking cameras. These flight tests proved to be successful in producing consistent and repeatable flight data over more than eight free flight flapping cycles of free flight and validated a new and novel testing technique. The ornithopter body dynamics were shown to be significant, i.e. +/-4gs. Inserting the compliant spine into the leading edge spar of the ornithopter during free flight reduced the baseline configuration body vertical center of mass positive acceleration by 69%, which translates into overall lift gains. It also increased the horizontal propulsive force by 300%, which translates into thrust gains.
Demand management in plastic surgery for low priority procedures: the Welsh experience.
Hunter, J E; Laing, J H E; Carroll, G
2010-11-01
Health Commission Wales (Specialist Services) [HCW] are responsible for resource allocation and demand management in plastic surgery for the population of Wales (2.9 M). Since 2004, all low priority plastic surgery referrals have been screened by a single HCW Case Officer against clinical inclusion criteria before the referral is passed to the provider. Only patients fulfilling these criteria proceed to an outpatient appointment, although there is an appeals procedure. Revised guidelines were introduced in 2006. Our aim was to investigate the effectiveness of the process and the impact of the revised criteria. The Case Officer's database was used to determine numbers of index procedures referred and those disallowed before and after the policy change. Since 2004 9,654 referrals have been screened. In 2005-6, 32.5% failed to meet the inclusion criteria and were disallowed. In the year after the policy revision fewer low priority patients were referred (1720 vs. 2013) and more (46.6%) were declined. Body contouring / abdominoplasty were particularly affected with 73.2% not compliant with funding criteria. The Welsh model is an efficient, effective and equitable system for demand management, which amounts to thousands of requests per year. After 2006, tighter guidelines have resulted in a higher proportion of patients not meeting the criteria for funding, particularly for body contouring / abdominoplasty procedures. Difficulties remain however in determining reproducible and clinically appropriate criteria for patients seeking plastic surgery following massive weight-loss. Whilst this process streamlines the provision of NHS plastic surgery for the people of Wales, there is a potential impact on specialist training. Copyright © 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Wilkerson, Ryan P; Gludovatz, Bernd; Watts, Jeremy; Tomsia, Antoni P; Hilmas, Gregory E; Ritchie, Robert O
2016-12-01
Bioinspired "brick-and-mortar" alumina ceramics containing a nickel compliant phase are synthesized by coextrusion of alumina and nickel oxide. Results show that these structures are coarser yet exhibit exceptional resistance-curve behavior with a fracture toughness three or more times higher than that of alumina, consistent with significant extrinsic toughening, from crack bridging and "brick" pull-out, in the image of natural nacre. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manufacture and Experimental Analysis of a Concentrated Strain Based Deployable Truss Structure
2006-05-01
high- modulus pull-truded carbon fiber rods (CFRs) for the majority of the length. The other components were compliant flexure joints made of Nitinol ...truded carbon fiber rods (CFRs) for the majority of the length. The other components were compliant flexure joints made of Nitinol NiTi, a shape memory...allows it to recover its original shape. The most common SMA is an alloy of nickel and titanium called Nitinol .6 This particular alloy has very good
Liquid cooled brassiere and method of diagnosing malignant tumors therewith
NASA Technical Reports Server (NTRS)
Elkins, W.; Williams, B. A.; Tickner, E. G. (Inventor)
1976-01-01
A device for enhancing the detection of malignant tissue in the breasts of a woman was described. A brassiere-like garment which is fitted with a pair of liquid-perfused cooling panels which completely and compliantly cover the breasts and upper torso was studied. The garment is connected by plastic tubing to a liquid cooling system comprising a fluid pump, a solenoid control valve for controlling the flow of fluid to either the cooling unit or the heating unit, a fluid reservoir, a temperature sensor in the reservoir, and a restrictor valve to control the pressure in the garment inlet cooling line.
NASA Astrophysics Data System (ADS)
Ku, C.-P. Roger; Heshmat, Hooshang
1994-07-01
Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.
Creep analysis of solid oxide fuel cell with bonded compliant seal design
NASA Astrophysics Data System (ADS)
Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.
2013-12-01
Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.
Modeling Anisotropic Elastic Wave Propagation in Jointed Rock Masses
NASA Astrophysics Data System (ADS)
Hurley, R.; Vorobiev, O.; Ezzedine, S. M.; Antoun, T.
2016-12-01
We present a numerical approach for determining the anisotropic stiffness of materials with nonlinearly-compliant joints capable of sliding. The proposed method extends existing ones for upscaling the behavior of a medium with open cracks and inclusions to cases relevant to natural fractured and jointed rocks, where nonlinearly-compliant joints can undergo plastic slip. The method deviates from existing techniques by incorporating the friction and closure states of the joints, and recovers an anisotropic elastic form in the small-strain limit when joints are not sliding. We present the mathematical formulation of our method and use Representative Volume Element (RVE) simulations to evaluate its accuracy for joint sets with varying complexity. We then apply the formulation to determine anisotropic elastic constants of jointed granite found at the Nevada Nuclear Security Site (NNSS) where the Source Physics Experiments (SPE), a campaign of underground chemical explosions, are performed. Finally, we discuss the implementation of our numerical approach in a massively parallel Lagrangian code Geodyn-L and its use for studying wave propagation from underground explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Kaupisch, A; Kennedy, L; Stelmanis, V; Tye, B; Kane, N M; Mountford, J C; Courtney, A; Baker, A H
2012-10-01
Revascularisation of ischaemic tissue remains an area of substantial unmet clinical need in cardiovascular disease. Strategies to induce therapeutic angiogenesis are therefore attractive. Our recent focus has been on human embryonic stem cell (hESC) strategies since hESC can be maintained in a pluripotent state or differentiated into any desired cell type, including endothelial cells (EC), under defined differentiation culture conditions. We recently published a protocol for non-good manufacturing practice (GMP) feeder- and serum-free hESC-EC-directed monolayer differentiation to vascular EC demonstrating the potential to generate hESC-derived EC in a GMP-compliant manner suitable for use in clinical trials. In this study we modified that laboratory protocol to GMP compliance. EC production was confirmed by flow cytometry, qRT-PCR and production of vascular structures in Matrigel®, yielding approximately 30 % mature VE-cadherin(+)/PECAM-1(+) cells using the GMP-compliant hESC line RC13. In conclusion, we have successfully demonstrated the production of vascular EC under GMP-compliant conditions suitable for clinical evaluation.
Shi, Ze; Castro, Carlos E; Arya, Gaurav
2017-05-23
Structural DNA nanotechnology, the assembly of rigid 3D structures of complex yet precise geometries, has recently been used to design dynamic, mechanically compliant nanostructures with tunable equilibrium conformations and conformational distributions. Here we use coarse-grained molecular dynamics simulations to provide insights into the conformational dynamics of a set of mechanically compliant DNA nanostructures-DNA hinges that use single-stranded DNA "springs" to tune the equilibrium conformation of a layered double-stranded DNA "joint" connecting two stiff "arms" constructed from DNA helix bundles. The simulations reproduce the experimentally measured equilibrium angles between hinge arms for a range of hinge designs. The hinges are found to be structurally stable, except for some fraying of the open ends of the DNA helices comprising the hinge arms and some loss of base-pairing interactions in the joint regions coinciding with the crossover junctions, especially in hinges designed to exhibit a small bending angle that exhibit large local stresses resulting in strong kinks in their joints. Principal component analysis reveals that while the hinge dynamics are dominated by bending motion, some twisting and sliding of hinge arms relative to each other also exists. Forced deformation of the hinges reveals distinct bending mechanisms for hinges with short, inextensible springs versus those with longer, more extensible springs. Lastly, we introduce an approach for rapidly predicting equilibrium hinge angles from individual force-deformation behaviors of its single- and double-stranded DNA components. Taken together, these results demonstrate that coarse-grained modeling is a promising approach for designing, predicting, and studying the dynamics of compliant DNA nanostructures, where conformational fluctuations become important, multiple deformation mechanisms exist, and continuum approaches may not yield accurate properties.
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat
2016-01-01
The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.
Dynamic response of some tentative compliant wall structures to convected turbulence fields
NASA Technical Reports Server (NTRS)
Nijim, H. H.; Lin, Y. K.
1977-01-01
Some tentative compliant wall structures designed for possible skin friction drag reduction are investigated. Among the structural models considered is a ribbed membrane backed by polyurethane or PVS plastisol. This model is simplified as a beam placed on a viscoelastic foundation as well as on a set of evenly spaced supports. The total length of the beam may be either finite or infinite, and the supports may be either rigid or elastic. Another structural model considered is a membrane mounted over a series of pretensioned wires, also evenly spaced, and the entire membrane is backed by an air cavity. The forcing pressure field is idealized as a frozen random pattern convected downstream at a characteristic velocity. The results are given in terms of the frequency response functions of the system, the spectral density of the structural motion, and the spectral density of the boundary layer pressure including the effect of structural motion. These results are used in a parametric study of structural configurations capable of generating favorable wave lengths, wave amplitudes, and wave speeds in the structural motion for potential drag reduction.
French, Julian M
2014-07-01
Variation in the interpretation of the regulatory guidelines has resulted in a diversity of techniques employed to examine the internal structures of the foetal rabbit head. Examination of the foetal rabbit brain, using a single transverse section as the sole technique, is considered not to be sufficiently thorough to be regarded as an adequate examination method. It is not compliant with published EPA and OECD guidelines covering required examination of the internal head structures, nor is it considered to conform to the spirit of the safety assessment required by the ICH guideline. Fixation of approximately half of the heads in each litter to allow the examination of multiple transverse sections enables the major structures within the head to be assessed effectively. This method is compliant with current guidelines, represents "good practice" and should be consistently adopted for the examination of the internal head structures of the term rabbit foetus. Copyright © 2014 Elsevier Inc. All rights reserved.
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C
2017-03-01
We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean
2017-01-01
Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574
Turner, Andrew
2018-05-01
Samples of plastic collected from two beaches in southwest England (n = 185) have been analysed by XRF spectrometry for elements that are hazardous or restricted in synthetic polymers (namely, As, Ba, Br, Cd, Cr, Hg, Pb, Sb and Se). Overall, one or more restricted element was detected in 151 samples, with 15 cases exhibiting non-compliance with respect to the Restriction of Hazardous Substances (RoHS) Directive. Twelve plastics that were RoHS-non-compliant were subsequently processed into microplastic-sized fragments and subjected to an avian physiologically-based extraction test (PBET) that simulates the chemical conditions in the gizzard-proventriculus of the northern fulmar. Kinetic profiles of metal and metalloid mobilisation in the PBET were fitted using a pseudo-first-order diffusion model with rate constants ranging from ∼0.02 to 0.5 h -1 , while profiles for Br were better fitted with a parabolic diffusion model and rate constants of 7.4-9.5 (μg L -1 ) -1 h -1/2 . Bioaccessibilities, based on maximum or equilibrium concentrations mobilised relative to total (XRF) concentrations, ranged from <1% for Cd and Se in polyethylene and polypropylene to over 10% for Br in a sample of expanded polystyrene and Pb in a sample of PVC. Calculations suggest that ingested plastic could contribute about 6% and 30% of a seabird's exposure to and accumulation of Pb and brominated compounds, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mojave Compliant Zone Structure and Properties: Constraints from InSAR and Mechanical Models
NASA Astrophysics Data System (ADS)
Hearn, E. H.; Fialko, Y.; Finzi, Y.
2007-12-01
Long-lived zones with significantly lower elastic strength than their surroundings are associated with active Mojave faults (e.g., Li et al., 1999; Fialko et al., 2002, 2004). In an earthquake these weak features concentrate strain, causing them to show up as anomalous, short length-scale features in SAR interferograms (Fialko et al., 2002). Fault-zone trapped wave studies indicate that the 1999 Hector Mine earthquake caused a small reduction in P- and S-wave velocities in a compliant zone along the Landers earthquake rupture (Vidale and Li, 2003). This suggests that coseismic strain concentration, and the resulting damage, in the compliant zone caused a further reduction in its elastic strength. Even a small coseismic strength drop should make a compliant zone (CZ) deform, in response to the total (not just the coseismic) stress. The strain should be in the sense which is compatible with the orientations and values of the region's principal stresses. However, as indicated by Fialko and co-workers (2002, 2004), the sense of coseismic strain of Mojave compliant zones was consistent with coseismic stress change, not the regional (background) stress. Here we use finite-element models to investigate how InSAR measurements of Mojave compliant zone coseismic strain places limits on their dimensions and on upper crustal stresses. We find that unless the CZ is shallow, narrow, and has a high Poisson's ratio (e.g., 0.4), CZ contraction under lithostatic stress overshadows deformation due to deviatoric background stress or coseismic stress change. We present ranges of CZ dimensions which are compatible with the observed surface deformation and address how these dimensions compare with new results from damage-controlled fault evolution models.
The effect of compliant prisms on subduction zone earthquakes and tsunamis
NASA Astrophysics Data System (ADS)
Lotto, Gabriel C.; Dunham, Eric M.; Jeppson, Tamara N.; Tobin, Harold J.
2017-01-01
Earthquakes generate tsunamis by coseismically deforming the seafloor, and that deformation is largely controlled by the shallow rupture process. Therefore, in order to better understand how earthquakes generate tsunamis, one must consider the material structure and frictional properties of the shallowest part of the subduction zone, where ruptures often encounter compliant sedimentary prisms. Compliant prisms have been associated with enhanced shallow slip, seafloor deformation, and tsunami heights, particularly in the context of tsunami earthquakes. To rigorously quantify the role compliant prisms play in generating tsunamis, we perform a series of numerical simulations that directly couple dynamic rupture on a dipping thrust fault to the elastodynamic response of the Earth and the acoustic response of the ocean. Gravity is included in our simulations in the context of a linearized Eulerian description of the ocean, which allows us to model tsunami generation and propagation, including dispersion and related nonhydrostatic effects. Our simulations span a three-dimensional parameter space of prism size, prism compliance, and sub-prism friction - specifically, the rate-and-state parameter b - a that determines velocity-weakening or velocity-strengthening behavior. We find that compliant prisms generally slow rupture velocity and, for larger prisms, generate tsunamis more efficiently than subduction zones without prisms. In most but not all cases, larger, more compliant prisms cause greater amounts of shallow slip and larger tsunamis. Furthermore, shallow friction is also quite important in determining overall slip; increasing sub-prism b - a enhances slip everywhere along the fault. Counterintuitively, we find that in simulations with large prisms and velocity-strengthening friction at the base of the prism, increasing prism compliance reduces rather than enhances shallow slip and tsunami wave height.
Compliant cantilevered micromold
Morales, Alfredo Martin [Pleasanton, CA; Domeier, Linda A [Danville, CA; Gonzales, Marcela G [Seattle, WA; Keifer, Patrick N [Livermore, CA; Garino, Terry Joseph [Albuquerque, NM
2006-08-15
A compliant cantilevered three-dimensional micromold is provided. The compliant cantilevered micromold is suitable for use in the replication of cantilevered microparts and greatly simplifies the replication of such cantilevered parts. The compliant cantilevered micromold may be used to fabricate microparts using casting or electroforming techniques. When the compliant micromold is used to fabricate electroformed cantilevered parts, the micromold will also comprise an electrically conducting base formed by a porous metal substrate that is embedded within the compliant cantilevered micromold. Methods for fabricating the compliant cantilevered micromold as well as methods of replicating cantilevered microparts using the compliant cantilevered micromold are also provided.
Method for providing a compliant cantilevered micromold
Morales, Alfredo M.; Domeier, Linda A.; Gonzales, Marcela G.; Keifer, Patrick N.; Garino, Terry J.
2008-12-16
A compliant cantilevered three-dimensional micromold is provided. The compliant cantilevered micromold is suitable for use in the replication of cantilevered microparts and greatly simplifies the replication of such cantilevered parts. The compliant cantilevered micromold may be used to fabricate microparts using casting or electroforming techniques. When the compliant micromold is used to fabricate electroformed cantilevered parts, the micromold will also comprise an electrically conducting base formed by a porous metal substrate that is embedded within the compliant cantilevered micromold. Methods for fabricating the compliant cantilevered micromold as well as methods of replicating cantilevered microparts using the compliant cantilevered micromold are also provided.
Hydrostatic and Flow Measurements on Wrinkled Membrane Walls
NASA Astrophysics Data System (ADS)
Ozsun, Ozgur; Ekinci, Kamil
2013-03-01
In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.
Hygroscopic motions of fossil conifer cones
NASA Astrophysics Data System (ADS)
Poppinga, Simon; Nestle, Nikolaus; Šandor, Andrea; Reible, Bruno; Masselter, Tom; Bruchmann, Bernd; Speck, Thomas
2017-01-01
Conifer cones represent natural, woody compliant structures which move their scales as passive responses to changes in environmental humidity. Here we report on water-driven opening and closing motions in coalified conifer cones from the Eemian Interglacial (approx. 126,000-113,000 years BP) and from the Middle Miocene (approx. 16.5 to 11.5 million years BP). These cones represent by far the oldest documented evidence of plant parts showing full functionality of such passive hydraulically actuated motion. The functional resilience of these structures is far beyond the biological purpose of seed dispersal and protection and is because of a low level of mineralization of the fossils. Our analysis emphasizes the functional-morphological integrity of these biological compliant mechanisms which, in addition to their biological fascination, are potentially also role models for resilient and maintenance-free biomimetic applications (e.g., adaptive and autonomously moving structures including passive hydraulic actuators).
The evolution of slip pulses within bimaterial interfaces with rupture velocity
NASA Astrophysics Data System (ADS)
Shlomai, H.; Fineberg, J.
2017-12-01
The most general frictional motion in nature involves bimaterial interfaces, when contacting bodies possess different elastic properties. Frictional motion occurs when the contacts composing the interface separating these bodies detach via propagating rupture fronts. Coupling between slip and normal stress variations is unique to bimaterial interfaces. Here we use high speed simultaneous measurements of slip velocities, real contact area and stresses to explicitly reveal this bimaterial coupling and its role in determining different classes of rupture modes and their structures. Our experiments study the rupture of a spatially extended interface formed by brittle plastics whose shear wave speeds differ by 30%. Any slip within a bimaterial interface will break the stress symmetry across the interface. One important result of this is that local values of normal stress variations at the interface couple to interface slip, `bimaterial coupling'. The sign of the coupling depends on the front propagation direction. When we consider ruptures propagating in the direction of motion of the more compliant material, the `positive' direction, slip reduces the normal stress. We focus on this direction. We show that, in this direction, interface ruptures develop from crack-like behavior at low rupture velocities, whose structure corresponds to theoretical predictions: As the ruptures accelerate towards their asymptotic speed, the structures of the strain and stress fields near the rupture tip deviate significantly from this crack-like form, and systematically sharpen to a pulse-like rupture mode called slip-pulses. We conclude with a description of slip-pulse properties.
Psychological and Psychiatric Traits in Post-bariatric Patients Asking for Body-Contouring Surgery.
Pavan, Chiara; Marini, Massimo; De Antoni, Eleonora; Scarpa, Carlotta; Brambullo, Tito; Bassetto, Franco; Mazzotta, Annapina; Vindigni, Vincenzo
2017-02-01
Obese patients, mainly females, feel uncomfortable and unsatisfied with their physical appearance; they have a wrong perception of their image and consequently diminish their self-esteem, sometimes showing difficulties in functional areas such as work, relationship, social activity. Beside health concerns, improving their appearance and body image are often common motives for weight loss in obese individuals and after weight loss about 30% of bariatric surgery patients undergo plastic surgical correction of excessive skin. The authors investigated psychological and psychiatric traits in post-bariatric patients undergoing body-contouring surgery to underline the strong correlation between psychiatry and obesity and avoid unsatisfactory results in post-bariatric patients. The Mini International Neuropsychiatric Interview, Beck Depression Inventory II, Yale-Brown Obsessive Compulsive Scale modified for Body Dysmorphic Disorder Tridimensional Personality Questionnaire, Body Uneasiness Test, Barratt Impulsiveness Scale 11, and Binge Eating Scale were performed in 36 post-bariatric patients looking for plastic surgery and 21 controls, similar for clinical features, not seeking shape remodelling. Much different psychiatric pathology characterizes cases, including current body dysmorphic disorder and previous major depression and anxiety disorders, impulsivity, binging and body uneasiness are other common traits. In post-obesity rehabilitation, a strong collaboration between the plastic surgeon and psychiatrist is recommended to reduce the number of non-compliant patients. Preoperative psychological assessment of the body-contouring patient should be a central part of the initial plastic surgery consultation, as it should be for all plastic surgery patients. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .
Metallized compliant 3D microstructures for dry contact thermal conductance enhancement
NASA Astrophysics Data System (ADS)
Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.
2018-05-01
Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.
Testing and Analysis Validation of a Metallic Repair Applied to a PRSEUS Tension Panel
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.
2013-01-01
A design and analysis of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. Advanced modeling techniques such as mesh-independent definition of compliant fasteners and elastic-plastic material properties for metal parts were utilized in the finite element analysis supporting the design effort. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from a tension panel test conducted to validate both the repair concept and finite element analysis techniques used in the design effort. The test proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. This conclusion enables upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. Correlation of test data with finite element analysis results is also presented and assessed.
Umeh, Gregory C; Nomhwange, Terna Ignatius; Shamang, Anthony F; Zakari, Furera; Musa, Audu I; Dogo, Paul M; Gugong, Victor; Iliyasu, Neyu
2018-02-08
Attitude and subjective well-being are important factors in mothers accepting or rejecting Oral Polio Vaccine (OPV) supplemental immunization. The purpose of the study was to determine the role of mothers' attitude and subjective wellbeing on non-compliance to OPV supplemental immunization in Northern Nigeria. The study utilized a cross-sectional design to assess attitude and subjective well-being of mothers using previously validated VACSATC (Vaccine Safety, Attitudes, Training and Communication-10 items) & SUBI (Subjective Well-being Inventory-40 items) measures. A total of 396 participants (equal number of non-compliant and compliant mothers) from 94 non-compliant settlements were interviewed, after informed consent. T-test was run to assess difference in mean scores between the non-compliant and compliant mothers on VACSATC and SUBI measures. The research showed a significant difference in mean scores between the non-compliant and compliant groups on VACSATC measure of mothers' attitude (M = 18.9 non-compliant, compared to 26.5 compliant; p < 0.05). On subjective well-being, the study showed there was no significant difference in the mean scores of the SUBI measure (M = 77.4 non-compliant, compared to 78.0 compliant; p > 0.05). The research has shown that negative attitude is more commonly present in non-compliant mothers and may be a factor in vaccine refusal in Northern Nigeria.
Compliance control with embedded neural elements
NASA Technical Reports Server (NTRS)
Venkataraman, S. T.; Gulati, S.
1992-01-01
The authors discuss a control approach that embeds the neural elements within a model-based compliant control architecture for robotic tasks that involve contact with unstructured environments. Compliance control experiments have been performed on actual robotics hardware to demonstrate the performance of contact control schemes with neural elements. System parameters were identified under the assumption that environment dynamics have a fixed nonlinear structure. A robotics research arm, placed in contact with a single degree-of-freedom electromechanical environment dynamics emulator, was commanded to move through a desired trajectory. The command was implemented by using a compliant control strategy.
Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight-testing performed on the unconventional ACTE flaps.
Smart structure with elastomeric contact surface for prosthetic fingertip sensitivity development
NASA Astrophysics Data System (ADS)
Gu, Chunxin; Liu, Weiting; Yu, Ping; Cheng, Xiaoying; Fu, Xin
2017-09-01
Current flexible/compliant tactile sensors suffer from low sensitivity and high hysteresis introduced by the essential viscosity characteristic of soft material, either used as compliant sensing element or as flexible coverage. To overcome these disadvantages, this paper focuses on developing a tactile sensor with a smart hybrid structure to obtain comprehensive properties in terms of size, compliance, robustness and pressure sensing ability so as to meet the requirements of limited space applications such as prosthetic fingertips. Employing micro-fabricated tiny silicon-based pressure die as the sensing element, it is easy to have both small size and good mechanical performance. To protect it from potential damage and maintain the compliant surface, a rigid base and a soft layer form a sealed chamber and encapsulate the fixed die together with fluid. The fluid serves as highly efficient pressure propagation media of mechanical stimulus from the compliant skin to the pressure die without any hazard impacting the vulnerable connecting wires. To understand the pressure transmission mechanism, a simplified and concise analytic model of a spring system is proposed. Using easy fabrication technologies, a prototype of a 3 × 3 sensor array with total dimensions of 14 mm × 14 mm × 6.5 mm was developed. Based on the quasi-linear relationship between fluid volume and pressure, finite element modeling was developed to analyze the chamber deformation and pressure output of the sensor cell. Experimental tests of the sensor prototype were implemented. The results showed that the sensor cell had good sensing performance with sensitivity of 19.9 mV N-1, linearity of 0.998, repeatability error of 3.41%, and hysteresis error of 3.34%. The force sensing range was from 5 mN to 1.6 N.
NASA Technical Reports Server (NTRS)
Yang, H.; Prewitt, C. T.; Liu, Z.
2002-01-01
The synthesis and characterization of Fe-bearing phase E and phase E' demonstrate that the phase E-type structures can be rather compliant and complex, and that as we further explore the temperature-pressure-composition space, other types of structures that are similar to or related to the structure of phase E may be discovered.
Dynamics and control of twisting bi-stable structures
NASA Astrophysics Data System (ADS)
Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.
2018-02-01
Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states of the bi-stable twisting I-beam structures. The obtained optimal piezoelectric actuator positioning is not necessarily intuitive and when used with the proposed dynamic actuation strategy serve as a blueprint for the actuation of such multi-stable compliant structures to produce fast and large deflections with highly embeddable actuators. This class of structures has potential applications in aerospace systems and soft/compliant robotics.
Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel
2015-09-18
High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Direct design of an energy landscape with bistable DNA origami mechanisms.
Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E
2015-03-11
Structural DNA nanotechnology provides a feasible technique for the design and fabrication of complex geometries even exhibiting controllable dynamic behavior. Recently we have demonstrated the possibility of implementing macroscopic engineering design approaches to construct DNA origami mechanisms (DOM) with programmable motion and tunable flexibility. Here, we implement the design of compliant DNA origami mechanisms to extend from prescribing motion to prescribing an energy landscape. Compliant mechanisms facilitate motion via deformation of components with tunable stiffness resulting in well-defined mechanical energy stored in the structure. We design, fabricate, and characterize a DNA origami nanostructure with an energy landscape defined by two stable states (local energy minima) separated by a designed energy barrier. This nanostructure is a four-bar bistable mechanism with two undeformed states. Traversing between those states requires deformation, and hence mechanical energy storage, in a compliant arm of the linkage. The energy barrier for switching between two states was obtained from the conformational distribution based on a Boltzmann probability function and closely follows a predictive mechanical model. Furthermore, we demonstrated the ability to actuate the mechanism into one stable state via additional DNA inputs and then release the actuation via DNA strand displacement. This controllable multistate system establishes a foundation for direct design of energy landscapes that regulate conformational dynamics similar to biomolecular complexes.
NASA Astrophysics Data System (ADS)
Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin
2017-06-01
The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.
X-ray probe of GaN thin films grown on InGaN compliant substrates
NASA Astrophysics Data System (ADS)
Xu, Xiaoqing; Li, Yang; Liu, Jianming; Wei, Hongyuan; Liu, Xianglin; Yang, Shaoyan; Wang, Zhanguo; Wang, Huanhua
2013-04-01
GaN thin films grown on InGaN compliant substrates were characterized by several X-ray technologies: X-ray reciprocal space mapping (RSM), grazing incidence X-ray diffraction (GIXRD), and X-ray photoemission spectrum (XPS). Narrow Lorentz broadening and stress free state were observed for GaN grown on InGaN compliant substrate, while mosaic structure and large tensile stress were observed at the presence of residual indium atoms. RSM disclosed the mosaicity, and the GIXRD was conducted to investigate the depth dependences of crystal quality and strain states. XPS depth profile of indium contents indicated that residual indium atoms deteriorated the crystal quality of GaN not only by producing lattice mismatch at the interface of InGaN and GaN but also by diffusing into GaN overlayers. Accordingly, two solutions were proposed to improve the efficiency of self-patterned lateral epitaxial overgrowth method. This research goes a further step in resolving the urgent substrate problem in GaN fabrication.
Design and development of automatic sharia compliant wheelchair wheels cleaner
NASA Astrophysics Data System (ADS)
Shaari, Muhammad Farid; Rasli, Ibrahim Ismail Mohammad; Jamaludin, M. Z. Z. Wan; Isa, W. A. Mohamad; M., H.; Rashid, A. H. Abdul
2017-04-01
Sharia compliant wheelchair wheel cleaner was developed in order to assist the muslim Person with Disabilities (PWD) to pray in the mosque without leaving their wheelchair because of the filthy wheels. Though there are many wheelchair wheel cleaning system in the market, it is very rare to find sharia compliant cleaning system that applies sertu concept which is one of the cleaning and purification technique in Islamic practice. The sertu concept is based on 6:1 ratio that refers to the six times pipe water cleaning and one time soiled water cleaning. The development process consists of design stage, fabrication and system installation stage and followed by testing stage. During the design stage, the proposed prototype underwent design brainstorming, operation programming and structural simulation analysis. Once fabricated, the cleaner prototype underwent was tested. The results showed that the prototype can cater load up to 100kg with 1.31×10-6 mm shaft bending displacement. The water ejection timing varied approximately 3% compared to the program.
NASA Astrophysics Data System (ADS)
Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola
The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.
Knoblauch, Andreas; Körner, Edgar; Körner, Ursula; Sommer, Friedrich T.
2014-01-01
Although already William James and, more explicitly, Donald Hebb's theory of cell assemblies have suggested that activity-dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The basic modeling units are “potential synapses” defined as locations in the network where synapses can potentially grow to connect two neurons. This model generalizes well-known previous models for associative learning based on weight plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely connected networks is quite intuitive: Structural plasticity increases the “effectual network connectivity”, that is, the network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect. PMID:24858841
Cunningham, C E; Barkley, R A
1979-03-01
Groups of 20 normal and 20 hyperactive boys ranging in age from 6 to 12 years were observed interacting with their mothers in 15-min free-play and 15-min structured-task situations. Using a 15-sec interval coding procedure, 1 observer recorded the mother's response to specific antecedent behaviors of the child while a second observer recorded the child's response to specific behaviors of the mother. Hyperactive boys proved more active, less compliant, and less likely to remain on task than nonhyperactive peers. Mothers of hyperactive boys were less likely to respond positively to the child's social interactions, solitary play activities, or compliant on-task behavior. In addition, mothers of hyperactive boys imposed more structure and control on the child's play, social interactions, and task-oriented activities. It is suggested that the controlling intrusive style observed among the mothers of hyperactive boys, while initially a response to the child's overactive, impulsive, inattentive style, may further contribute to the child's behavioral difficulties.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... Plastics Including On-Site Leased Workers From Kelly Services and Time Staffing; North Baltimore, OH... Adjustment Assistance on December 31, 2008, applicable to workers of Continental Structural Plastics, North... Baltimore, Ohio location of Continental Structural Plastics. The Department has determined that these...
Knowledge Base for Automatic Generation of Online IMS LD Compliant Course Structures
ERIC Educational Resources Information Center
Pacurar, Ecaterina Giacomini; Trigano, Philippe; Alupoaie, Sorin
2006-01-01
Our article presents a pedagogical scenarios-based web application that allows the automatic generation and development of pedagogical websites. These pedagogical scenarios are represented in the IMS Learning Design standard. Our application is a web portal helping teachers to dynamically generate web course structures, to edit pedagogical content…
A comparative analysis of marine mammal tracheas.
Moore, Colby; Moore, Michael; Trumble, Stephen; Niemeyer, Misty; Lentell, Betty; McLellan, William; Costidis, Alexander; Fahlman, Andreas
2014-04-01
In 1940, Scholander suggested that stiffened upper airways remained open and received air from highly compressible alveoli during marine mammal diving. There are few data available on the structural and functional adaptations of the marine mammal respiratory system. The aim of this research was to investigate the anatomical (gross) and structural (compliance) characteristics of excised marine mammal tracheas. Here, we defined different types of tracheal structures, categorizing pinniped tracheas by varying degrees of continuity of cartilage (categories 1-4) and cetacean tracheas by varying compliance values (categories 5A and 5B). Some tracheas fell into more than one category along their length; for example, the harbor seal (Phoca vitulina) demonstrated complete rings cranially, and as the trachea progressed caudally, tracheal rings changed morphology. Dolphins and porpoises had less stiff, more compliant spiraling rings while beaked whales had very stiff, less compliant spiraling rings. The pressure-volume (P-V) relationships of isolated tracheas from different species were measured to assess structural differences between species. These findings lend evidence for pressure-induced collapse and re-inflation of lungs, perhaps influencing variability in dive depth or ventilation rates of the species investigated.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... Plastics, Including On-Site Leased Workers From Kelly Services and Doepker Group, Inc., Formerly Known As... Continental Structural Plastics, North Baltimore, Ohio. The workers produce exterior body panels and under... to TA-W-64,458 is hereby issued as follows: All workers of Continental Structural Plastics, including...
NASA Astrophysics Data System (ADS)
Dhote, Sharvari; Zu, Jean; Zhu, Yang
2015-04-01
In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.
Helical Root Buckling: A Transient Mechanism for Stiff Interface Penetration
NASA Astrophysics Data System (ADS)
Silverberg, Jesse; Noar, Roslyn; Packer, Michael; Harrison, Maria; Cohen, Itai; Henley, Chris; Gerbode, Sharon
2011-03-01
Tilling in agriculture is commonly used to loosen the topmost layer of soil and promote healthy plant growth. As roots navigate this mechanically heterogeneous environment, they encounter interfaces between the compliant soil and the underlying compacted soil. Inspired by this problem, we used 3D time-lapse imaging of Medicago Truncatula plants to study root growth in two-layered transparent hydrogels. The layers are mechanically distinct; the top layer is more compliant than the bottom. We observe that the roots form a transient helical structure as they attempt to penetrate the bi-layer interface. Interpreting this phenotype as a form of buckling due to root elongation, we measured the helix size as a function of the surrounding gel modulus. Our measurements show that by twisting the root tip during growth, the helical structure recruits the surrounding medium for an enhanced penetration force allowing the plants access to the lower layer of gel.
Gregory, Shaun D; Schummy, Emma; Pearcy, Mark; Pauls, Jo P; Tansley, Geoff; Fraser, John F; Timms, Daniel
2015-02-01
Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm(5) until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm(5) ) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm(5) . Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Rosenfeld, Lindsay E; Cohen, Juliana Fw; Gorski, Mary T; Lessing, Andrés J; Smith, Lauren; Rimm, Eric B; Hoffman, Jessica A
2017-02-01
In autumn 2012, Massachusetts schools implemented comprehensive competitive food and beverage standards similar to the US Department of Agriculture's Smart Snacks in School standards. We explored major themes raised by food-service directors (FSD) regarding their school-district-wide implementation of the standards. For this qualitative study, part of a larger mixed-methods study, compliance was measured via direct observation of foods and beverages during school site visits in spring 2013 and 2014, calculated to ascertain the percentage of compliant products available to students. Semi-structured interviews with school FSD conducted in each year were analysed for major implementation themes; those raised by more than two-thirds of participating school districts were explored in relationship to compliance. Massachusetts school districts (2013: n 26; 2014: n 21). Data collected from FSD. Seven major themes were raised by more than two-thirds of participating school districts (range 69-100 %): taking measures for successful transition; communicating with vendors/manufacturers; using tools to identify compliant foods and beverages; receiving support from leadership; grappling with issues not covered by the law; anticipating changes in sales of competitive foods and beverages; and anticipating changes in sales of school meals. Each theme was mentioned by the majority of more-compliant school districts (65-81 %), with themes being raised more frequently after the second year of implementation (range increase 4-14 %). FSD in more-compliant districts were more likely to talk about themes than those in less-compliant districts. Identified themes suggest best-practice recommendations likely useful for school districts implementing the final Smart Snacks in School standards, effective July 2016.
Dielectric elastomer bending tube actuators with rigid electrode structures
NASA Astrophysics Data System (ADS)
Wehrheim, F.; Schlaak, H. F.; Meyer, J.-U.
2010-04-01
The common approach for dielectric elastomer actuators (DEA) is based on the assumption that compliant electrodes are a fundamental design requirement. For tube-like applications compliant electrodes cause a change of the actuator diameter during actuation and would require additional support-structures. Focused on thinwalled actuator-tube geometries room consumption and radial stabilityr epresent crucial criteria. Following the ambition of maximum functional integration, the concept of using a rigid electrode structure arises. This structure realizes both, actuation and support characteristics. The intended rigid electrode structure is based on a stacked DEA with a non-compressible dielectric. Byactu ation, the displaced dielectric causes an overlap. This overlap serves as an indicator for geometrical limitations and has been used to extract design rules regarding the electrode size, electrode distance and maximum electrode travel. Bycons idering the strain in anydir ection, the mechanical efficiencyhas been used to define further design aspects. To verifyt he theoretic analysis, a test for determination of the compressive stress-strain-characteristics has been applied for different electrode setups. As result the geometrydep ending elastic pressure module has been formulated by implementation of a shape factor. The presented investigations consider exclusive the static behavior of a DEA-setup with rigid electrodes.
Design and control of compliant tensegrity robots through simulation and hardware validation
Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas
2014-01-01
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity (‘tensile–integrity’) structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. PMID:24990292
Integrated dynamic and static tactile sensor: focus on static force sensing
NASA Astrophysics Data System (ADS)
Wettels, Nicholas; Pletner, Baruch
2012-04-01
Object grasping by robotic hands in unstructured environments demands a sensor that is durable, compliant, and responsive to static and dynamic force conditions. In order for a tactile sensor to be useful for grasp control in these, it should have the following properties: tri-axial force sensing (two shear plus normal component), dynamic event sensing across slip frequencies, compliant surface for grip, wide dynamic range (depending on application), insensitivity to environmental conditions, ability to withstand abuse and good sensing behavior (e.g. low hysteresis, high repeatability). These features can be combined in a novel multimodal tactile sensor. This sensor combines commercial-off-the-shelf MEMS technology with two proprietary force sensors: a high bandwidth device based on PZT technology and low bandwidth device based on elastomers and optics. In this study, we focus on the latter transduction mechanism and the proposed architecture of the completed device. In this study, an embedded LED was utilized to produce a constant light source throughout a layer of silicon rubber which covered a plastic mandrel containing a set of sensitive phototransistors. Features about the contacted object such as center of pressure and force vectors can be extracted from the information in the changing patterns of light. The voltage versus force relationship obtained with this molded humanlike finger had a wide dynamic range that coincided with forces relevant for most human grip tasks.
Hierarchical structure and physicochemical properties of plasticized chitosan.
Meng, Qingkai; Heuzey, Marie-Claude; Carreau, Pierre J
2014-04-14
Plasticized chitosan with hierarchical structure, including multiple length scale structural units, was prepared by a "melt"-based method, that is, thermomechanical mixing, as opposed to the usual casting-evaporation procedure. Chitosan was successfully plasticized by thermomechanical mixing in the presence of concentrated lactic acid and glycerol using a batch mixer. Different plasticization formulations were compared in this study, in which concentrated lactic acid was used as protonation agent as well as plasticizer. The microstructure of thermomechanically plasticized chitosan was investigated by X-ray diffraction, scanning electron microscopy, and optical microscopy. With increasing amount of additional plasticizers (glycerol or water), the crystallinity of the plasticized chitosan decreased from 63.7% for the original chitosan powder to almost zero for the sample plasticized with additional water. Salt linkage between lactic acid molecules and amino side chains of chitosan was confirmed by FTIR spectroscopy: the lactic acid molecules expanded the space between the chitosan molecules of the crystalline phase. In the presence of other plasticizers (glycerol and water), various levels of structural units including an amorphous phase, nanofibrils, nanofibril clusters, and microfibers were produced under mechanical shear and thermal energy and identified for the first time. The thermal and thermomechanical properties of the plasticized chitosan were measured by thermogravimetric analysis, differential scanning calorimetric, and DMA. These properties were correlated with the different levels of microstructure, including multiple structural units.
Peroxy-Titanium Complex-based inks for low temperature compliant anatase thin films.
Shabanov, N S; Asvarov, A Sh; Chiolerio, A; Rabadanov, K Sh; Isaev, A B; Orudzhev, F F; Makhmudov, S Sh
2017-07-15
Stable highly crystalline titanium dioxide colloids are of paramount importance for the establishment of a solution-processable library of materials that could help in bringing the advantages of digital printing to the world of photocatalysis and solar energy conversion. Nano-sized titanium dioxide in the anatase phase was synthesized by means of hydrothermal methods and treated with hydrogen peroxide to form Peroxy-Titanium Complexes (PTCs). The influence of hydrogen peroxide on the structural, optical and rheological properties of titanium dioxide and its colloidal solutions were assessed and a practical demonstration of a low temperature compliant digitally printed anatase thin film given. Copyright © 2017 Elsevier Inc. All rights reserved.
Corporate-physician relationships: a need for education.
Shah, Udayan K; Smith, Gina M; Devaiah, Anand; Setzen, Gavin; Roth, Maurice; Reilly, James S
2009-03-01
Knowledge is lacking among Otolaryngologist-Head and Neck Surgeons (ORL-HNS) regarding basic ethical situations in corporate-provider relationships. A pilot educational program demonstrates the need and potential for improvement by structured intervention. "At risk" areas specifically identified regard acceptable gifts, and payments for meetings and travel. Recommendations are made to educate otolaryngologists in standards for compliant behavior in corporate-physician relationships. Further work to formalize and tailor education to the needs of ORL-HNS is warranted, including continued education through the American Academy of Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF). A checklist is provided here as a first step in enabling more compliant behavior as surgeons engage in corporate relationships.
Instant tough bonding of hydrogels for soft machines and electronics
Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M.; Schausberger, Stefan E.; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin
2017-01-01
Introducing methods for instant tough bonding between hydrogels and antagonistic materials—from soft to hard—allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m2. Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking. PMID:28691092
Instant tough bonding of hydrogels for soft machines and electronics.
Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M; Schausberger, Stefan E; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin
2017-06-01
Introducing methods for instant tough bonding between hydrogels and antagonistic materials-from soft to hard-allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m 2 . Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking.
Lê, Laetitia Minh Mai; Eveleigh, Luc; Hasnaoui, Ikram; Prognon, Patrice; Baillet-Guffroy, Arlette; Caudron, Eric
2017-05-10
The aim of this study was to investigate near infrared spectroscopy (NIRS) combined to chemometric analysis to discriminate and quantify three antibiotics by direct measurement in plastic syringes.Solutions of benzylpenicillin (PENI), amoxicillin (AMOX) and amoxicillin/clavulanic acid (AMOX/CLAV) were analyzed at therapeutic concentrations in glass vials and plastic syringes with NIR spectrometer by direct measurement. Chemometric analysis using partial least squares regression and discriminative analysis was conducted to develop qualitative and quantitative calibration models. Discrimination of the three antibiotics was optimal for concentrated solutions with 100% of accuracy. For quantitative analysis, the three antibiotics furnished a linear response (R²>0.9994) for concentrations ranging from 0.05 to 0.2 g/mL for AMOX, 0.1 to 1.0 MUI/mL for PENI and 0.005 to 0.05 g/mL for AMOX/CLAV with excellent repeatability (maximum 1.3%) and intermediate precision (maximum of 3.2%). Based on proposed models, 94.4% of analyzed AMOX syringes, 80.0% of AMOX/CLAV syringes and 85.7% of PENI syringes were compliant with a relative error including the limit of ± 15%.NIRS as rapid, non-invasive and non-destructive analytical method represents a potentially powerful tool to further develop for securing the drug administration circuit of healthcare institutions to ensure that patients receive the correct product at the right dose. Copyright © 2017 Elsevier B.V. All rights reserved.
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Valco, Mark J.
2000-01-01
This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.
Compliant deformable mirror approach for wavefront improvement
NASA Astrophysics Data System (ADS)
Clark, James H.; Penado, F. Ernesto
2016-04-01
We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.
Plastic and Large-Deflection Analysis of Nonlinear Structures
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.
1982-01-01
Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.
Design of 3D-Printed Titanium Compliant Mechanisms
NASA Technical Reports Server (NTRS)
Merriam, Ezekiel G.; Jones, Jonathan E.; Howell, Larry L.
2014-01-01
This paper describes 3D-printed titanium compliant mechanisms for aerospace applications. It is meant as a primer to help engineers design compliant, multi-axis, printed parts that exhibit high performance. Topics covered include brief introductions to both compliant mechanism design and 3D printing in titanium, material and geometry considerations for 3D printing, modeling techniques, and case studies of both successful and unsuccessful part geometries. Key findings include recommended flexure geometries, minimum thicknesses, and general design guidelines for compliant printed parts that may not be obvious to the first time designer.
High temperature braided rope seals for static sealing applications
NASA Technical Reports Server (NTRS)
Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.
1996-01-01
Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.
Hiratani, Naoki; Fukai, Tomoki
2016-01-01
In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271
Structural Crashworthiness and Failure
1993-04-16
body motion occurs. This rigid -plastic idealization for dynamically loaded structures is based upon the fact that the plastic deformation of a...in general, for any tensor variable x, i represents the convective derivative. It should be noted that the rigid body rotation is included in the...clamped, impulsively loaded, rigid - plastic beam.’ (a) First phase of motion with stationary transverse plastic hinges at A and E and stationary plastic
NASA Astrophysics Data System (ADS)
Lu, Y. M.; Zeng, J. F.; Huang, J. C.; Kuan, S. Y.; Nieh, T. G.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.
2017-03-01
It has been decade-long and enduring efforts to decipher the structural mechanism of plasticity in metallic glasses; however, it still remains a challenge to directly reveal the structural change, if any, that precedes; and dominant plastics flow in them. Here, by using the dynamic atomic force microscope as an "imaging" as well as a "forcing" tool, we unfold a real-time sequence of structural evolution occurring on the surface of an Au-Si thin film metallic glass. In sharp contrast to the common notion that plasticity comes along with mechanical softening in bulk metallic glasses, our experimental results directly reveal three types of nano-sized surface regions, which undergo plasticity but exhibit different characters of structural evolution following the local plasticity events, including stochastic structural rearrangement, unusual local relaxation and rejuvenation. As such, yielding on the metallic-glass surface manifests as a dynamic equilibrium between local relaxation and rejuvenation as opposed to shear instability in bulk metallic-glasses. Our finding demonstrates that plasticity on the metallic glass surface of Au-Si metallic glass bears much resemblance to that of the colloidal gels, of which nonlinear rheology rather than shear instability governs the constitutive behavior of plasticity.
77 FR 8326 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... 2010, FRA formed an Engineering Task Force (ETF) to develop crashworthiness criteria for an... system with other compliant Tier 1 equipments. The waiver petition includes documentation on the... Integrity Colliding Equipment Override Fluid Entry Inhibition End Structure Integrity of Cab End End...
Using Changes in Binding Globulins to Assess Oral Contraceptive Compliance
Westhoff, Carolyn; Petrie, K.A.; Cremers, S.
2012-01-01
Background Validity of oral contraceptive pill (OCP) clinical trial results depends on participant compliance. Ethinyl estradiol (EE2) induces increases in hepatic binding globulin (BG) levels. Measuring these BG increases may provide an effective and convenient approach to distinguishing non-compliant from compliant OCP users in research settings. This analysis evaluated the usefulness of measuring increases in corticosteroid, sex hormone and thyroxine binding globulins (CBG, SHBG, TBG) as measures of OCP compliance. Methods We used frozen serum from a trial that compared ovarian suppression between normal weight and obese women randomized to one of two OCPs containing EE2 and levonorgestrel (LNG). Based on serial LNG measurements during the trial, 17% of participants were non-compliant. We matched non-compliant participants with compliant participants by age, BMI, ethnicity and OCP formulation. We measured CBG, SHBG and TBG levels, and compared change from baseline to 3-month follow-up between the non-compliant and compliant participants. Construction of receiver operator characteristic (ROC) curves allowed comparison of various BG measures. Results Changes in CBG and TBG distinguished OCP non-compliant users from compliant users (area under the ROC curve (AUROC), 0.86 and 0.89, p < 0.01). Changes in SHBG were less discriminating (AUROC 0.69) Conclusions EE2 induced increases in CBG and TBG provide a sensitive integrated marker of compliance with an LNG-containing OCP. PMID:22795088
2012-06-01
MISP) COMPLIANT ARCHITECTURE WHITE SANDS MISSILE RANGE REAGAN TEST SITE YUMA PROVING GROUND DUGWAY PROVING GROUND ABERDEEN TEST CENTER...DIGITAL MOTION IMAGERY COMPRESSION BEST PRACTICES GUIDE – A MOTION IMAGERY STANDARDS PROFILE (MISP) COMPLIANT ARCHITECTURE ...delivery, and archival purposes. These practices are based on a Motion Imagery Standards Profile (MISP) compliant architecture , which has been defined
Design and control of compliant tensegrity robots through simulation and hardware validation.
Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas
2014-09-06
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ('tensile-integrity') structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Design, analysis, and applications of cellular contact-aided compliant mechanisms
NASA Astrophysics Data System (ADS)
Mehta, Vipul
A new class of compliant mechanisms utilizing the benefits of cellular geometry and contact are addressed in this work. The design, analysis, fabrication and testing of such structures for high-strain and high-strength applications is the focus of the present research. Cellular structures have relatively good strength-to-weight ratios. They also have a higher strain capability than solid structures. Contact during deformation reduces failure-causing bending stresses through stress relief, thereby enabling such cellular structures to be stretched more than the corresponding structures without contact. Both analytical and numerical models are developed to represent one specific mechanism. Several candidate materials are investigated for such mechanisms. Although the allowable strain of all these materials is small, the overall strain of the contact-aided cellular mechanisms is at least an order of magnitude greater than that of the constitutive material. Application of contact to different materials yields an improvement in the global strain capacity by more than 100% relative to cellular structures without contact. Experiments are conducted to validate the models, and good agreement is found. Size optimization is carried out to maximize the stress relief and the overall strain. Two main applications are considered in the present work. One application consists of a morphing aircraft skin for adaptive structures. Different material models such as linearly elastic and multi-linear elastic are examined. For linearly elastic materials, contact-induced stress-relief is advantageous and for nonlinear elastic materials, reduction of transverse deflection due to contact is useful. The proposed contact-aided skin structure is compared with a cellular skin without contact. The contact mechanism helps to increase the morphing capacity while decreasing the structural mass. Using contact-aided cellular mechanisms, the global strain capability is increased by as much as 37%. For a fixed global strain, the optimum contact-aided structure is 15% lighter than an optimum non-contact structure. Another application involves investigation of meso-scaled cellular structures. Two different materials are considered---nanoparticulate zirconia and particulate stainless steel. The lost mold rapid infiltration forming process is utilized to fabricate free standing cellular mechanisms. The analytical model is employed to address the tradeoffs between the manufacturing constraints and to design suitable contact-aided cellular mechanisms. A custom rig is developed to test these meso-scaled parts. Force displacement characteristics are experimentally obtained and compared against those found using the analytical model. Topology optimization tools are applied to the design of compliant cellular mechanisms with and without a contact mechanism. A two-step procedure is developed. For cellular structures without contact, an inverse homogenization method is employed. The compliant mechanism is optimized to yield prescribed elasticity coefficients and achieve a large effective elastic strain. To implement a contact mechanism in the second step, the continuum model of a non-contact structure is converted into a frame model. Only the non-overlapping designs are investigated exhaustively for stress relief. A differential evolution optimizer is used to maximize the stress relief. Four cell topologies are found for different effective properties corresponding to different structural requirements. For each such topology, a contact mechanism is devised that demonstrates stress relief. One such topology resulted a stress relief as high as 36%.
Castable plastic mold with electroplatable base
Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.
2004-01-20
A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.
2014-01-01
Background There is controversy as to whether conservative management that includes wearing a brace and exercises is effective in stabilising idiopathic scoliosis curves. A brace only prevents progression of the curve and has been shown to have favourable outcomes when patients are compliant. So the aim of this study was to: determine the effect of compliance to the Rigo System Cheneau (RSC) brace and a specific exercise programme on Idiopathic Scoliosis curvature; and to compare the Quality of Life (QoL) and psychological traits of compliant and non compliant subjects. Methods A pre/post test study design was used with a post study comparison between subjects who complied with the management and those who did not. Fifty one subjects, girls aged 12-16 years, Cobb angles 20-50 degrees participated in the study. Subjects were divided into two groups, according to their compliance, at the end of the study. The compliant group wore the brace 20 or more hours a day and exercised three or more times per week. The non-compliant group wore the brace less than 20 hours a day and exercised less than three times per week. Cobb angles, vertebral rotation, scoliometer readings, peak flow, quality of life and personality traits were compared between groups, using the student’s two sample t-test and an analysis of covariance. Results The compliant group, wore the brace 21.5 hours per day and exercised four times a week, and significantly improved in all measures compared to non compliant subjects, who wore the brace 12 hours per day, exercised 1.7 times a week and significantly deteriorated (p < 0.0001). The major Cobb angles in the compliant group improved 10.19°(±5.5) and deteriorated 5.52°(±4.3) in the non compliant group (p < 0.0001). Compliant subjects had a significantly better QoL than the non compliant subjects (p = 0.001). The compliant group were significantly more emotionally mature, stable and realistic than the non compliant group (p = 0.03). Conclusions Good compliance of the RSC brace and a specific exercise regime resulted in a significant improvement in curvatures, poor compliance resulted in progression/deterioration. A poorer QoL in the non compliant group possibly was caused by personality traits of the group, being more emotionally immature and unstable. PMID:24926318
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.
2014-01-01
This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.
Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls
NASA Astrophysics Data System (ADS)
Dettenrieder, Fabian; Bodony, Daniel
2017-11-01
Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.
Compliant walking appears metabolically advantageous at extreme step lengths.
Kim, Jaehoon; Bertram, John E A
2018-05-19
Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. To map and compare the metabolic cost of normal and compliant walking as step length increases. 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r 2 = 0.92 for normal walking; r 2 = 0.65 for compliant walking). Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps. Copyright © 2018 Elsevier B.V. All rights reserved.
The effects of hormones and physical exercise on hippocampal structural plasticity.
Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R
2016-04-01
The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
Krisciunas, Gintas P; Castellano, Kerlly; McCulloch, Timothy M; Lazarus, Cathy L; Pauloski, Barbara R; Meyer, Tanya K; Graner, Darlene; Van Daele, Douglas J; Silbergleit, Alice K; Crujido, Lisa R; Rybin, Denis; Doros, Gheorghe; Kotz, Tamar; Langmore, Susan E
2017-04-01
A 5-year, 16-site, randomized controlled trial enrolled 170 HNC survivors into active (estim + swallow exercise) or control (sham estim + swallowing exercise) arms. Primary analyses showed that estim did not enhance swallowing exercises. This secondary analysis determined if/how patient compliance impacted outcomes. A home program, performed 2 times/day, 6 days/week, for 12 weeks included stretches and 60 swallows paired with real or sham estim. Regular clinic visits ensured proper exercise execution, and detailed therapy checklists tracked patient compliance which was defined by mean number of sessions performed per week (0-12 times) over the 12-week intervention period. "Compliant" was defined as performing 10-12 sessions/week. Outcomes were changes in PAS, HNCI, PSS, OPSE, and hyoid excursion. ANCOVA analyses determined if outcomes differed between real/sham and compliant/noncompliant groups after 12 weeks of therapy. Of the 170 patients enrolled, 153 patients had compliance data. The mean number of sessions performed was 8.57/week (median = 10.25). Fifty-four percent of patients (n = 83) were considered "compliant." After 12 weeks of therapy, compliant patients in the sham estim group realized significantly better PAS scores than compliant patients in the active estim group (p = 0.0074). When pooling all patients together, there were no significant differences in outcomes between compliant and non-compliant patients. The addition of estim to swallowing exercises resulted in worse swallowing outcomes than exercises alone, which was more pronounced in compliant patients. Since neither compliant nor non-compliant patients benefitted from swallowing exercises, the proper dose and/or efficacy of swallowing exercises must also be questioned in this patient population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang
2015-04-20
In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first threemore » vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.« less
Bourgeois, Richard Scott [Albany, NY; Gudlavalleti, Sauri [Albany, NY
2009-12-15
A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.
NASA Astrophysics Data System (ADS)
Ellis, Keith
The aim of the project was to improve the transverse mechanical properties of unidirectional glass fibre reinforced plastics (G.R.P.)* In addition it was intended that the longitudinal mechanical properties should not be Significantly a result of the transverse improvement The scientific and commercial literature were consulted to determine the most feasible means of improving the transverse properties. Four possible methods were identified, the most promising of which was interfacial modification. Interfacial modification involves the introduction of a third material ("the interphase" ) at the interface between the fibre and the matrix. For this project the interphase material was selected to be compliant or rubbery in nature. The Kies model for predicting the magnification of strain in the resin between fibres was extended to include an interphase. The model was developed for two modes of applied stress. The first was pure tension acting transverse to the fibre axis. The second was shear in the plane transverse to the fibre axis. A novel apparatus was constructed to manufacture composites with a compliant interphase. The apparatus combined a self-regulating coating technique with filament winding to give a continuous production facility. A range of mechanical tests were performed on composites both with and without an interphase. Presence of an interphase improved the following properties: transverse flexural strength, interlaminar and intralaminar shear strength , and transverse fiexural fracture energy. No improvement was noted for pure transverse tension. These results indicated that the interphase acted beneficially only when the composite was stressed in a predominantly shear mode. Conclusions from mechanical test results were supported by S.E.M. fractography. Considerable deformation of the interphase was found in composite tested in shear. This deformation was absent in composite tested in tension. It was postulated that these differences between behaviour in tension and shear were the result of constraint of Poisson's ratio contraction in the compliant interphase. To confirm this, dynamic mechanical testing was used to measure tensile and shear moduli of the interphase material as a function of thickness. Constraint and support were provided by a thin steel substrate. The tensile modulus increased by orders of magnitude the thinner, and hence more constrained , the material became. Near to the interphase thickness used in practice the tensile modulus of the interphase was shown to approach that of the matrix. In summary, the use of a compliant interphase resulted in significant improvements in mechanical properties of the composite in shear.
A Generalized-Compliant-Motion Primitive
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1993-01-01
Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.
Drag reduction through self-texturing compliant bionic materials
Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji
2017-01-01
Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction. PMID:28053309
Drag reduction through self-texturing compliant bionic materials.
Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji
2017-01-05
Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.
Drag reduction through self-texturing compliant bionic materials
NASA Astrophysics Data System (ADS)
Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji
2017-01-01
Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.
Wong, Kaitlyn E; Gorton, George E; Tashjian, David B; Tirabassi, Michael V; Moriarty, Kevin P
2014-06-01
The purpose of this study is to measure the effectiveness of compressive orthotic brace therapy for the treatment of pectus carinatum using an adjusted Haller Index (HI) measurement calculated from 3D body scan (BS) images. Pediatric patients with pectus carinatum were treated with either compressive orthotic bracing or observation. An adjusted BS Haller index (HI) was calculated from serial 3D BS images obtained on all patients. Medical records were evaluated to determine treatment with bracing and brace compliance more than 12hours daily. Compliant patient measurements were compared to non-compliant and non-brace groups. Forty patients underwent compressive orthotic bracing, while ten were observed. Twenty-three patients were compliant with bracing, and seventeen patients were non-compliant. Compliant patients exhibited an 8.2% increase, non-compliant patients had a 1.5% increase, and non-brace patients exhibited a 2.5% increase in BS HI. The change in BS HI of compliant patients was significantly different compared to non-brace patients (p=0.004) and non-compliant patients (p<0.001). Three dimensional BS is an effective, radiation free, and objective means to evaluate patients treated with compressive orthotic bracing. Copyright © 2014 Elsevier Inc. All rights reserved.
Sacrificial plastic mold with electroplatable base
Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.
2002-01-01
A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.
Sacrificial Plastic Mold With Electroplatable Base
Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.
2005-08-16
A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.
Gustavsson, Johanna; Jernbro, Carolina; Nilson, Finn
2018-12-01
Falls are the most common cause of injury in all ages and are especially difficult to prevent among residential care residents. Compliant flooring that absorbs energy generated within the fall, has been proposed as a measure to prevent fall-injury, however little is known regarding the implementation aspects in clinical settings. The aim of this study is to explore the experiences of falls, the risk of fall-injury, prevention in general and specifically compliant flooring as an injury preventative measure amongst frail elderly people living in a residential care facility with compliant flooring. Through this, generate a theory that further explains the underlying barriers of active prevention amongst elderly people. We used the grounded theory method and conducted semi-structured in-depth interviews with eight elderly people in residential care (data collected between February and December 2017). The identified categories were Falling as a part of life, Fearing the consequences and A wish to prevent falls and injuries. Through the results it was clear that There is more to life than risk avoidance, permeated the interviews, therefore forming the grounded theory. The interviewees viewed falls as something common and normal, and were uninterested in focusing on the risk of falls. Although they wanted to prevent falls, it was often difficult to integrate preventative measures into their everyday life. They embraced the idea of an injury-reducing compliant flooring, however their main interests lay elsewhere, preferring to focus on social interaction and issues concerning daily activities. The theory generated in this paper proposes explanations on the obstacles of implementing fall prevention measures in an elderly frail population. The findings give insights as to why interest and compliance for active fall prevention measures are low. We conclude that complaint flooring, from the perspective of the residents, can work well in residential care.
Pulsatile flow in a compliant stenosed asymmetric model
NASA Astrophysics Data System (ADS)
Usmani, Abdullah Y.; Muralidhar, K.
2016-12-01
Time-varying velocity field in an asymmetric constricted tube is experimentally studied using a two-dimensional particle image velocimetry system. The geometry resembles a vascular disease which is characterized by arterial narrowing due to plaque deposition. The present study compares the nature of flow patterns in rigid and compliant asymmetric constricted tubes for a range of dimensionless parameters appearing in a human artery. A blood analogue fluid is employed along with a pump that mimics cardioflow conditions. The peak Reynolds number range is Re 300-800, while the Womersley number range considered in experiments is Wo 6-8. These values are based on the peak velocity in a straight rigid tube connected to the model, over a pulsation frequency range of 1.2-2.4 Hz. The medial-plane velocity distribution is used to investigate the nature of flow patterns. Temporal distribution of stream traces and hemodynamic factors including WSS, TAWSS and OSI at important phases of the pulsation cycle are discussed. The flow patterns obtained from PIV are compared to a limited extent against numerical simulation. Results show that the region downstream of the constriction is characterized by a high-velocity jet at the throat, while a recirculation zone, attached to the wall, evolves in time. Compliant models reveal large flow disturbances upstream during the retrograde flow. Wall shear stress values are lower in a compliant model as compared to the rigid. Cross-plane flow structures normal to the main flow direction are visible at select phases of the cycle. Positive values of largest Lyapunov exponent are realized for wall movement and are indicative of chaotic motion transferred from the flow to the wall. These exponents increase with Reynolds number as well as compliance. Period doubling is observed in wall displacement of highly compliant models, indicating possible triggering of hemodynamic events in a real artery that may cause fissure in the plaque deposits.
A Compliant Casing for Transonic Axial Compressors
NASA Technical Reports Server (NTRS)
Bloch, Gregory S.; Hah, Chunill
2003-01-01
A viewgraph presentation on the concept of compliant casing for transonic axial compressors is shown. The topics include: 1) Concept for compliant casing; 2) Rig and facility details; 3) Experimental results; and 4) Numerical results.
Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C
2018-09-01
Purpose-designed compliant flooring and carpeting have been promoted as a means for reducing fall-related injuries in high-risk environments, such as long-term care. However, it is not known whether these surfaces influence the forces that long-term care staff exert when pushing residents in wheelchairs. We studied 14 direct-care staff who pushed a loaded wheelchair instrumented with a triaxial load cell to test the effects on hand force of flooring overlay (vinyl versus carpet) and flooring subfloor (concrete versus compliant rubber [brand: SmartCells]). During straight-line pushing, carpet overlay increased initial and sustained hand forces compared to vinyl overlay by 22-49% over a concrete subfloor and by 8-20% over a compliant subfloor. Compliant subflooring increased initial and sustained hand forces compared to concrete subflooring by 18-31% when under a vinyl overlay. In contrast, compliant flooring caused no change in initial or sustained hand forces compared to concrete subflooring when under a carpet overlay. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluation of engineering plastic for rollover protective structure (ROPS) mounting.
Comer, R S; Ayers, P D; Liu, J
2007-04-01
Agriculture has one of the highest fatality rates of any industry in America. Tractor rollovers are a significant contributor to the high death rate. Rollover protective structures (ROPS) have helped lower these high fatality rates on full-size tractors. However, a large number of older tractors still do not use ROPS due to the difficulty of designing and creating a mounting structure. To help reduce this difficulty, engineering plastics were evaluated for use in a ROPS mounting structure on older tractors. The use of engineering plastics around axle housings could provide a uniform mounting configuration as well as lower costs for aftermarket ROPS. Various plastics were examined through shear testing, scale model testing, and compressive strength testing. Once a material was chosen based upon strength and cost, full-scale testing of the plastic's strength on axle housings was conducted. Finally, a mounting structure was tested in static ROPS tests, and field upset tests were performed in accordance with SAE Standard J2194. Initial tests revealed that the ROPS mounting structure and axle housing combination had higher torsional strength with less twisting than the axle housing alone. An engineering plastic ROPS mounting structure was easily successful in withstanding the forces applied during the static longitudinal and lateral ROPS tests. Field upset testing revealed that the mounting structure could withstand the impact loads seen during actual upsets without a failure. During both static testing and field upset testing, no permanent twisting of the mounting structure was found. Engineering plastic could therefore be a viable option for a universal ROPS mounting structure for older tractors.
Compliant threads maximize spider silk connection strength and toughness
Meyer, Avery; Pugno, Nicola M.; Cranford, Steven W.
2014-01-01
Millions of years of evolution have adapted spider webs to achieve a range of functionalities, including the well-known capture of prey, with efficient use of material. One feature that has escaped extensive investigation is the silk-on-silk connection joints within spider webs, particularly from a structural mechanics perspective. We report a joint theoretical and computational analysis of an idealized silk-on-silk fibre junction. By modifying the theory of multiple peeling, we quantitatively compare the performance of the system while systematically increasing the rigidity of the anchor thread, by both scaling the stress–strain response and the introduction of an applied pre-strain. The results of our study indicate that compliance is a virtue—the more extensible the anchorage, the tougher and stronger the connection becomes. In consideration of the theoretical model, in comparison with rigid substrates, a compliant anchorage enormously increases the effective adhesion strength (work required to detach), independent of the adhered thread itself, attributed to a nonlinear alignment between thread and anchor (contact peeling angle). The results can direct novel engineering design principles to achieve possible load transfer from compliant fibre-to-fibre anchorages, be they silk-on-silk or another, as-yet undeveloped, system. PMID:25008083
EPA Administrative Order on Consent (AOC) with ERP Compliant Coke, LLC
This Administrative Order on Consent with ERP Compliant Coke was effective August 2016. The Walter Coke facility located in North Birmingham was purchased by ERP Compliant Coke, LLC in February 2016 out of bankruptcy proceedings.
Kouchri, Farrokh Mohammadzadeh
2012-11-06
A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.
Mechanics of fluid flow over compliant wrinkled polymeric surfaces
NASA Astrophysics Data System (ADS)
Raayai, Shabnam; McKinley, Gareth; Boyce, Mary
2014-03-01
Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.
Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks
Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul
2013-01-01
Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928
2014-04-01
important data structures of RTEMS are introduced. Section 3.2.2 discusses the problems we found in RTEMS that may cause security vulnerabilities...the important data structures in RTEMS: Object, which is a critical data structure in the SCORE, tasks threads. Approved for Public Release...these important system codes. The example code shows a possibility that a user can delete a system thread. Therefore, in order to protect system
Lachance, Chantelle C; Jurkowski, Michal P; Dymarz, Ania C; Robinovitch, Stephen N; Feldman, Fabio; Laing, Andrew C; Mackey, Dawn C
2017-01-01
Compliant flooring, broadly defined as flooring systems or floor coverings with some level of shock absorbency, may reduce the incidence and severity of fall-related injuries in older adults; however, a lack of synthesized evidence may be limiting widespread uptake. Informed by the Arksey and O'Malley framework and guided by a Research Advisory Panel of knowledge users, we conducted a scoping review to answer: what is presented about the biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety associated with compliant flooring systems that aim to prevent fall-related injuries in healthcare settings? We searched academic and grey literature databases. Any record that discussed a compliant flooring system and at least one of biomechanical efficacy, clinical effectiveness, cost-effectiveness, or workplace safety was eligible for inclusion. Two independent reviewers screened and abstracted records, charted data, and summarized results. After screening 3611 titles and abstracts and 166 full-text articles, we included 84 records plus 56 companion (supplementary) reports. Biomechanical efficacy records (n = 50) demonstrate compliant flooring can reduce fall-related impact forces with minimal effects on standing and walking balance. Clinical effectiveness records (n = 20) suggest that compliant flooring may reduce injuries, but may increase risk for falls. Preliminary evidence suggests that compliant flooring may be a cost-effective strategy (n = 12), but may also result in increased physical demands for healthcare workers (n = 17). In summary, compliant flooring is a promising strategy for preventing fall-related injuries from a biomechanical perspective. Additional research is warranted to confirm whether compliant flooring (i) prevents fall-related injuries in real-world settings, (ii) is a cost-effective intervention strategy, and (iii) can be installed without negatively impacting workplace safety. Avenues for future research are provided, which will help to determine whether compliant flooring is recommended in healthcare environments.
Jurkowski, Michal P.; Dymarz, Ania C.; Robinovitch, Stephen N.; Feldman, Fabio; Laing, Andrew C.; Mackey, Dawn C.
2017-01-01
Background Compliant flooring, broadly defined as flooring systems or floor coverings with some level of shock absorbency, may reduce the incidence and severity of fall-related injuries in older adults; however, a lack of synthesized evidence may be limiting widespread uptake. Methods Informed by the Arksey and O’Malley framework and guided by a Research Advisory Panel of knowledge users, we conducted a scoping review to answer: what is presented about the biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety associated with compliant flooring systems that aim to prevent fall-related injuries in healthcare settings? We searched academic and grey literature databases. Any record that discussed a compliant flooring system and at least one of biomechanical efficacy, clinical effectiveness, cost-effectiveness, or workplace safety was eligible for inclusion. Two independent reviewers screened and abstracted records, charted data, and summarized results. Results After screening 3611 titles and abstracts and 166 full-text articles, we included 84 records plus 56 companion (supplementary) reports. Biomechanical efficacy records (n = 50) demonstrate compliant flooring can reduce fall-related impact forces with minimal effects on standing and walking balance. Clinical effectiveness records (n = 20) suggest that compliant flooring may reduce injuries, but may increase risk for falls. Preliminary evidence suggests that compliant flooring may be a cost-effective strategy (n = 12), but may also result in increased physical demands for healthcare workers (n = 17). Conclusions In summary, compliant flooring is a promising strategy for preventing fall-related injuries from a biomechanical perspective. Additional research is warranted to confirm whether compliant flooring (i) prevents fall-related injuries in real-world settings, (ii) is a cost-effective intervention strategy, and (iii) can be installed without negatively impacting workplace safety. Avenues for future research are provided, which will help to determine whether compliant flooring is recommended in healthcare environments. PMID:28166265
On the theory of compliant wall drag reduction in turbulent boundary layers
NASA Technical Reports Server (NTRS)
Ash, R. L.
1974-01-01
A theoretical model has been developed which can explain how the motion of a compliant wall reduces turbulent skin friction drag. Available experimental evidence at low speeds has been used to infer that a compliant surface selectively removes energy from the upper frequency range of the energy containing eddies and through resulting surface motions can produce locally negative Reynolds stresses at the wall. The theory establishes a preliminary amplitude and frequency criterion as the basis for designing effective drag reducing compliant surfaces.
Compliant Interfacial Layers in Thermoelectric Devices
NASA Technical Reports Server (NTRS)
Firdosy, Samad A. (Inventor); Li, Billy Chun-Yip (Inventor); Ravi, Vilupanur A. (Inventor); Fleurial, Jean-Pierre (Inventor); Caillat, Thierry (Inventor); Anjunyan, Harut (Inventor)
2017-01-01
A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.
Koh, Hong; Kim, Seung; Kim, Myung-Joon; Kim, Hyun Gi; Shin, Hyun Joo; Lee, Mi-Jung
2015-09-07
To evaluate the possibility of treatment effect monitoring using hepatic fat quantification magnetic resonance (MR) in pediatric nonalcoholic steatohepatitis (NASH). We retrospectively reviewed the medical records of patients who received educational recommendations and vitamin E for NASH and underwent hepatic fat quantification MR from 2011 to 2013. Hepatic fat fraction (%) was measured using dual- and triple-echo gradient-recalled-echo sequences at 3T. The compliant and non-compliant groups were compared clinically, biochemically, and radiologically. Twenty seven patients (M:F = 24:3; mean age: 12 ± 2.3 years) were included (compliant group = 22, non-compliant = 5). None of the baseline findings differed between the 2 groups, except for triglyceride level (compliant vs non-compliant, 167.7 mg/dL vs 74.2 mg/dL, P = 0.001). In the compliant group, high-density lipoprotein increased and all other parameters decreased after 1-year follow-up. However, there were various changes in the non-compliant group. Dual-echo fat fraction (-19.2% vs 4.6, P < 0.001), triple-echo fat fraction (-13.4% vs 3.5, P < 0.001), alanine aminotransferase (-110.7 IU/L vs -10.6 IU/L, P = 0.047), total cholesterol (-18.1 mg/dL vs 3.8 mg/dL, P = 0.016), and triglyceride levels (-61.3 mg/dL vs 11.2 mg/dL, P = 0.013) were significantly decreased only in the compliant group. The change in body mass index and dual-echo fat fraction showed a positive correlation (ρ = 0.418, P = 0.030). Hepatic fat quantification MR can be a non-invasive, quantitative and useful tool for monitoring treatment effects in pediatric NASH.
A computer program for cyclic plasticity and structural fatigue analysis
NASA Technical Reports Server (NTRS)
Kalev, I.
1980-01-01
A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.
Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective
Rosa, Andreia Martins; Silva, Maria Fátima; Murta, Joaquim
2013-01-01
Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes. PMID:24205505
75 FR 7931 - Airworthiness Directives; Airbus Model A380-841, -842, and -861 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... addition, delamination has been observed within the monolithic Carbon Fibre Reinforced Plastic (CFRP... observed within the monolithic Carbon Fibre Reinforced Plastic (CFRP) structure around the pivot support... monolithic Carbon Fibre Reinforced Plastic (CFRP) structure around the pivot support-ring. This condition, if...
An elastic-plastic contact model for line contact structures
NASA Astrophysics Data System (ADS)
Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng
2018-06-01
Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.
A Reusable, Compliant, Small Volume Blood Reservoir for In Vitro Hemolysis Testing.
Olia, Salim E; Herbertson, Luke H; Malinauskas, Richard A; Kameneva, Marina V
2017-02-01
Bench-top in vitro hemolysis testing is a fundamental tool during the design and regulatory safety evaluation of blood-contacting medical devices. While multiple published experimental protocols exist, descriptions of the test loop reservoir remain ambiguous. A critical fixture within the circuit, there is no readily available blood reservoir that ensures thorough mixing and complete air evacuation: two major factors which can affect results. As part of the Food and Drug Administration (FDA) Critical Path Initiative, we developed a three-piece reservoir consisting of a 3D-printed base, a plastic clamp set, and a medical-grade blood bag. This simple, reusable, and cost-effective design was used successfully in the hemolysis assessment of FDA benchmark nozzles and prototype rotary blood pumps, and may be useful as an integral component to any in vitro blood circulation loop. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
North, L.; Labonte, D.; Oyen, M. L.; Coleman, M. P.; Caliskan, H. B.; Johnston, R. E.
2017-11-01
"Cuttlebone," the internalized shell found in all members of the cephalopod family Sepiidae, is a sophisticated buoyancy device combining high porosity with considerable strength. Using a complementary suite of characterization tools, we identified significant structural, chemical, and mechanical variations across the different structural units of the cuttlebone: the dorsal shield consists of two stiff and hard layers with prismatic mineral organization which encapsulate a more ductile and compliant layer with a lamellar structure, enriched with organic matter. A similar organization is found in the chambers, which are separated by septa, and supported by meandering plates ("pillars"). Like the dorsal shield, septa contain two layers with lamellar and prismatic organization, respectively, which differ significantly in their mechanical properties: layers with prismatic organization are a factor of three stiffer and up to a factor of ten harder than those with lamellar organization. The combination of stiff and hard, and compliant and ductile components may serve to reduce the risk of catastrophic failure, and reflect the role of organic matter for the growth process of the cuttlebone. Mechanically "weaker" units may function as sacrificial structures, ensuring a stepwise failure of the individual chambers in cases of overloading, allowing the animals to retain near-neutral buoyancy even with partially damaged cuttlebones. Our findings have implications for our understanding of the structure-property-function relationship of cuttlebone, and may help to identify novel bioinspired design strategies for light-weight yet high-strength foams.
Solar photovoltaic reflective trough collection structure
Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.
2015-11-19
A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.
. REAL ID LANL Impacts and Solutions The federal government has determined New Mexico is non-compliant Identification Cards whom will also become Non-Compliant. Access through LANL Vehicle Access Portals unaffected alternate ID if they are coming from "non-compliant" REAL-ID states LANS and the Field Office have
Code of Federal Regulations, 2012 CFR
2012-10-01
... Compliant Microcomputers, Including Personal Computers, Monitors and Printers. 1552.239-103 Section 1552.239... Star Compliant Microcomputers, Including Personal Computers, Monitors and Printers. As prescribed in... Personal Computers, Monitors, and Printers (APR 1996) (a) The Contractor shall provide computer products...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Compliant Microcomputers, Including Personal Computers, Monitors and Printers. 1552.239-103 Section 1552.239... Star Compliant Microcomputers, Including Personal Computers, Monitors and Printers. As prescribed in... Personal Computers, Monitors, and Printers (APR 1996) (a) The Contractor shall provide computer products...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Compliant Microcomputers, Including Personal Computers, Monitors and Printers. 1552.239-103 Section 1552.239... Star Compliant Microcomputers, Including Personal Computers, Monitors and Printers. As prescribed in... Personal Computers, Monitors, and Printers (APR 1996) (a) The Contractor shall provide computer products...
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-08-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-01-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697
Developing a Markup Language for Encoding Graphic Content in Plan Documents
ERIC Educational Resources Information Center
Li, Jinghuan
2009-01-01
While deliberating and making decisions, participants in urban development processes need easy access to the pertinent content scattered among different plans. A Planning Markup Language (PML) has been proposed to represent the underlying structure of plans in an XML-compliant way. However, PML currently covers only textual information and lacks…
Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.
2016-01-01
The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.
Optimal Synthesis of Compliant Mechanisms using Subdivision and Commercial FEA (DETC2004-57497)
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Canfield, Stephen
2004-01-01
The field of distributed-compliance mechanisms has seen significant work in developing suitable topology optimization tools for their design. These optimal design tools have grown out of the techniques of structural optimization. This paper will build on the previous work in topology optimization and compliant mechanism design by proposing an alternative design space parameterization through control points and adding another step to the process, that of subdivision. The control points allow a specific design to be represented as a solid model during the optimization process. The process of subdivision creates an additional number of control points that help smooth the surface (for example a C(sup 2) continuous surface depending on the method of subdivision chosen) creating a manufacturable design free of some traditional numerical instabilities. Note that these additional control points do not add to the number of design parameters. This alternative parameterization and description as a solid model effectively and completely separates the design variables from the analysis variables during the optimization procedure. The motivation behind this work is to create an automated design tool from task definition to functional prototype created on a CNC or rapid-prototype machine. This paper will describe the proposed compliant mechanism design process and will demonstrate the procedure on several examples common in the literature.
Using Taxonomic Indexing Trees to Efficiently Retrieve SCORM-Compliant Documents in e-Learning Grids
ERIC Educational Resources Information Center
Shih, Wen-Chung; Tseng, Shian-Shyong; Yang, Chao-Tung
2008-01-01
With the flourishing development of e-Learning, more and more SCORM-compliant teaching materials are developed by institutes and individuals in different sites. In addition, the e-Learning grid is emerging as an infrastructure to enhance traditional e-Learning systems. Therefore, information retrieval schemes supporting SCORM-compliant documents…
Training Children with Autism Spectrum Disorders to Be Compliant with an Oral Assessment
ERIC Educational Resources Information Center
Cuvo, Anthony J.; Godard, Anna; Huckfeldt, Rachel; DeMattei, Ronda
2010-01-01
Little research has been conducted on teaching children with autism spectrum disorders to be compliant with dental procedures. This study evaluated a behavioral package to train children with autism spectrum disorders to be compliant with an 8 component oral assessment. After a dental hygienist performed an assessment pretest, noncompliance on…
Power bases and attribution in three cultures.
Alanazi, Falah M; Rodrigues, Aroldo
2003-06-01
The authors used a Saudi context to verify the cross-cultural generality of findings (A. Rodrigues & K. L. Lloyd, 1998) reported for U.S. and Brazilian samples in which compliant behavior caused by reward, informational, and referent influences was perceived as more controllable and more internal than compliant behavior resulting from legitimate, expert, and coercive influences. This differential attribution led, in turn, to different affective and behavioral responses. In the present study, cognitive and affective reactions of Saudi students were measured with regard to compliant behavior (leading to a good outcome or a bad outcome) caused by each of the 6 bases of power described by B. H. Raven (1965). As expected, power bases had significant effects. However, when the outcome of the compliant behavior was bad, compliant behavior caused by a coercive influence led to the perception of more internality and controllability. Also--and not found in previous studies--the perception of less internality and controllability of compliant behavior was caused by an informational influence. Findings are discussed in the light of related research and Saudi cultural characteristics.
Herd protection effect of N95 respirators in healthcare workers.
Chen, Xin; Chughtai, Abrar Ahmad; MacIntyre, Chandini Raina
2017-12-01
Objective To determine if there was herd protection conferred to unprotected healthcare workers (HCWs) by N95 respirators worn by colleagues. Methods Data were analysed from a prospective cluster randomized clinical trial conducted in Beijing, China between 1 December 2008 and 15 January 2009. A minimum compliance level (MCL) of N95 respirators for prevention of clinical respiratory illness (CRI) was set based on various compliance cut-offs. The CRI rates were compared between compliant (≥MCL) and non-compliant (
Structural and Functional Plasticity in the Maternal Brain Circuitry
ERIC Educational Resources Information Center
Pereira, Mariana
2016-01-01
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…
Systems and Methods for Implementing Bulk Metallic Glass-Based Macroscale Compliant Mechanisms
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Agnes, Gregory (Inventor)
2017-01-01
Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based macroscale compliant mechanisms. In one embodiment, a bulk metallic glass-based macroscale compliant mechanism includes: a flexible member that is strained during the normal operation of the compliant mechanism; where the flexible member has a thickness of 0.5 mm; where the flexible member comprises a bulk metallic glass-based material; and where the bulk metallic glass-based material can survive a fatigue test that includes 1000 cycles under a bending loading mode at an applied stress to ultimate strength ratio of 0.25.
Compliant hydrodynamic fluid journal bearing
NASA Technical Reports Server (NTRS)
Warren, E. L. (Inventor)
1985-01-01
An air bearing structure is described that prevents destructive bending moments within the top foil. Welds are eliminated by mounting the top bearing foil in the bearing cartridge sleeve without using a space block. Tabs or pins at the end of the top bearing foil are restrained by slots or stops formed in the cartridge sleeve. These structural members are free to move in a direction normal to the shaft while being restrained from movement in the direction of shaft rotation.
An experiment on the use of disposable plastics as a reinforcement in concrete beams
NASA Technical Reports Server (NTRS)
Chowdhury, Mostafiz R.
1992-01-01
Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.
Environmentally Compliant Coating Remover Evaluation
2012-08-30
22 9 Total of 491 products evaluated 7 Background • Many DoD depainting operations currently use environmentally compliant peroxide -assisted... benzyl alcohol strippers • These strippers have acceptable coating removal rates with minimal physical damage to metallic substrates • However, several...Coatings • Environmentally compliant benzyl alcohol product • Passed corrosion testing conducted by SMI in 2011 11 Laboratory Testing Scope
Characterization of assembled MEMS
NASA Astrophysics Data System (ADS)
Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George
2004-12-01
Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.
Characterization of assembled MEMS
NASA Astrophysics Data System (ADS)
Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George
2005-01-01
Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.
Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C
2016-09-01
The aim of this study was to investigate the effects of flooring type and resident weight on external hand forces required to push floor-based lifts in long-term care (LTC). Novel compliant flooring is designed to reduce fall-related injuries among LTC residents but may increase forces required for staff to perform pushing tasks. A motorized lift may offset the effect of flooring on push forces. Fourteen female LTC staff performed straight-line pushes with two floor-based lifts (conventional, motor driven) loaded with passengers of average and 90th-percentile resident weights over four flooring systems (concrete+vinyl, compliant+vinyl, concrete+carpet, compliant+carpet). Initial and sustained push forces were measured by a handlebar-mounted triaxial load cell and compared to participant-specific tolerance limits. Participants rated pushing difficulty. Novel compliant flooring increased initial and sustained push forces and subjective ratings compared to concrete flooring. Compared to the conventional lift, the motor-driven lift substantially reduced initial and sustained push forces and perceived difficulty of pushing for all four floors and both resident weights. Participants exerted forces above published tolerance limits only when using the conventional lift on the carpet conditions (concrete+carpet, compliant+carpet). With the motor-driven lift only, resident weight did not affect push forces. Novel compliant flooring increased linear push forces generated by LTC staff using floor-based lifts, but forces did not exceed tolerance limits when pushing over compliant+vinyl. The motor-driven lift substantially reduced push forces compared to the conventional lift. Results may help to address risk of work-related musculoskeletal injury, especially in locations with novel compliant flooring. © 2016, Human Factors and Ergonomics Society.
Krisciunas, Gintas P.; McCulloch, Timothy M.; Lazarus, Cathy L.; Pauloski, Barbara R.; Meyer, Tanya K.; Graner, Darlene; Van Daele, Douglas J.; Silbergleit, Alice K.; Crujido, Lisa R.; Rybin, Denis; Doros, Gheorghe; Kotz, Tamar; Langmore, Susan E.
2016-01-01
Purpose A 5yr, 16 site, randomized controlled trial enrolled 170 HNC survivors into active (estim + swallow exercise) or control (sham estim + swallowing exercise) arms. Primary analyses showed that estim did not enhance swallowing exercises. This secondary analysis determined if/how patient compliance impacted outcomes. Methods A home program, performed 2×/day, 6d/wk, for 12wks included stretches and 60 swallows paired with real or sham estim. Regular clinic visits ensured proper exercise execution and detailed therapy checklists tracked patient compliance which was defined by mean number of sessions performed per week (0-12 times) over the 12wk intervention period. “Compliant” was defined as performing 10-12 sessions/wk. Outcomes were change in PAS, HNCI, PSS, OPSE, and hyoid excursion. ANCOVA analyses determined if outcomes differed between real/sham and compliant/noncompliant groups after 12wks of therapy. Results Of the 170 patients enrolled, 153 patients had compliance data. The mean number of sessions performed was 8.57/wk (median=10.25). Fifty four percent of patients (n=83) were considered “compliant”. After 12wks of therapy, compliant patients in the sham estim group realized significantly better PAS scores than compliant patients in the active estim group (p=0.0074). When pooling all patients together, there were no significant differences in outcomes between compliant and non-compliant patients. Conclusions The addition of estim to swallowing exercises resulted in worse swallowing outcomes than exercises alone, which was more pronounced in compliant patients. Since neither compliant nor non-compliant patients benefitted from swallowing exercises, the proper dose and/or efficacy of swallowing exercises must also be questioned in this patient population. PMID:27848021
Compliance with gastric cancer guidelines is associated with improved outcomes.
Worhunsky, David J; Ma, Yifei; Zak, Yulia; Poultsides, George A; Norton, Jeffrey A; Rhoads, Kim F; Visser, Brendan C
2015-03-01
Limited data are available on the implementation and effectiveness of NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Gastric Cancer. We sought to assess rates of compliance with NCCN Guidelines, specifically stage-specific therapy during the initial episode of care, and to determine its impact on outcomes. The California Cancer Registry was used to identify cases of gastric cancer from 2001 to 2006. Logistic regression and Cox proportional hazard models were used to predict guideline compliance and the adjusted hazard ratio for mortality. Patients with TNM staging or summary stage (SS) were also analyzed separately. Compliance with NCCN Guidelines occurred in just 45.5% of patients overall. Patients older than 55 years were less likely to receive guideline-compliant care, and compliance was associated with a median survival of 20 versus 7 months for noncompliant care (P<.001). Compliant care was also associated with a 55% decreased hazard of mortality (P<.001). Further analysis revealed that 50% of patients had complete TNM staging versus an SS, and TNM-staged patients were more likely to receive compliant care (odds ratio, 1.59; P<.001). TNM-staged patients receiving compliant care had a median survival of 25.3 months compared with 15.1 months for compliant SS patients. Compliance with NCCN Guidelines and stage-specific therapy at presentation for the treatment of patients with gastric cancer was poor, which was a significant finding given that compliant care was associated with a 55% reduction in the hazard of death. Additionally, patients with TNM-staged cancer were more likely to receive compliant care, perhaps a result of having received more intensive therapy. Combined with the improved survival among compliant TNM-staged patients, these differences have meaningful implications for health services research. Copyright © 2015 by the National Comprehensive Cancer Network.
Generalized constitutive equations for piezo-actuated compliant mechanism
NASA Astrophysics Data System (ADS)
Cao, Junyi; Ling, Mingxiang; Inman, Daniel J.; Lin, Jin
2016-09-01
This paper formulates analytical models to describe the static displacement and force interactions between generic serial-parallel compliant mechanisms and their loads by employing the matrix method. In keeping with the familiar piezoelectric constitutive equations, the generalized constitutive equations of compliant mechanism represent the input-output displacement and force relations in the form of a generalized Hooke’s law and as analytical functions of physical parameters. Also significantly, a new model of output displacement for compliant mechanism interacting with piezo-stacks and elastic loads is deduced based on the generalized constitutive equations. Some original findings differing from the well-known constitutive performance of piezo-stacks are also given. The feasibility of the proposed models is confirmed by finite element analysis and by experiments under various elastic loads. The analytical models can be an insightful tool for predicting and optimizing the performance of a wide class of compliant mechanisms that simultaneously consider the influence of loads and piezo-stacks.
Analysis of reverse martensitic transformation of prehardened 16XCH steel
NASA Astrophysics Data System (ADS)
Muravyev, Vasily; Frolov, Alexey; Lonchakov, Sergey; Bakhmatov, Pavel
2015-10-01
In the paper the structural evolution of previously tempered 16XCH steel is investigated. The influence of temperature and time conditions of heating on temperature of austenization is revealed and the influence of structural changes on steel properties is defined. The analysis of the obtained results showed an increase of plasticity at the initial stage of reverse martensitic transformation and an increase of plasticity at increased durability. It is experimentally found that reverse transformation of packet and lath martensite into the initial phase (holding for a fraction of a second, temperature 400-450°C) leads to a sharp, more than 2-fold, reduction of strength and increase of plasticity. The effect of increased plasticity under reverse martensitic transformation conditions is observed. The structure of packet and lath martensite is more fine-grained in comparison with initial quenching; the durability and plasticity are much higher. Despite the derived results, the revealed effects of increased plasticity and strength require further exploration to increase the reliability of constructions made of low-alloyed steels.
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.
Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y
2010-11-01
The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.
Connections for solid oxide fuel cells
Collie, Jeffrey C.
1999-01-01
A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.
NASA Astrophysics Data System (ADS)
Boiko, Andrey V.; Kulik, Victor M.; Chun, Ho-Hwan; Lee, Inwon
2011-12-01
Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.
A new hybrid piezo-actuated compliant mechanism with self-tuned flexure arm
NASA Astrophysics Data System (ADS)
Ling, Mingxiang; Cao, Junyi
2017-04-01
Recent interests and demands for developing video-rate atomic force microscopes, high-throughput probe-based nanofabrication and high-frequency vibration generator for assisted-machining are increasingly posing new challenges for designing high-bandwidth and large-range piezo-actuated compliant mechanisms. The previous studies mainly focused on making the trade-off between natural frequency and motion range by designing a proper topology. Differing from the previous works, this paper attempts to break the deadlock by employing both piezo-stacks and piezoelectric patches to actuate compliant mechanisms. In this method, piezo-stacks provide an actuating force similar to the traditional way, while piezoelectric patches are bonded on the surface of the flexure arms in compliant mechanisms. These `active' laminaes are used to further actuate the hosting flexural beam by inducing strains on the interface and then give additional bending moments to the flexural arms, which enlarge the output displacement of the compliant mechanism while without the sacrifice of natural frequency. An analytical formulation is established to illustrate the new driving principle and the compound static behaviour of a specific hybrid piezo-actuated multistage compliant mechanism. Initial prototype is also manufactured and experimentally testing is conducted to verify the feasibility of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozar, O.; Filip, C.; Tripon, C.
The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.
Policy compliance of smokers on a tobacco-free university campus.
Russette, Helen C; Harris, Kari Jo; Schuldberg, David; Green, Linda
2014-01-01
To explore factors influencing compliance with campus tobacco policies and strategies to increase compliance. Sixty tobacco smokers (April 2012). A 22-item intercept-interview with closed- and open-ended questions was conducted with smokers in adjacent compliant and noncompliant areas at 1 university with a 100% tobacco ban. Data were analyzed using descriptive statistics and content analysis. Most reported that the smoking policy was not enforced. Noncompliant smokers had less knowledge of locations where tobacco use was permitted and were more likely to identify their smoking location as compliant and had knowingly violated the policy. Choice of location to smoke was related to convenience and a desire to follow the policy. Smokers recommended consequences for noncompliance and structures that accommodated smoking to increase adherence to the tobacco ban. Additional education, environmental, and contingency strategies are needed to increase compliance with the policy banning tobacco use on this campus.
Elasto-capillary torsion at a liquid interface
NASA Astrophysics Data System (ADS)
Oratis, Alexandros; Farmer, Timothy; Bird, James
2016-11-01
When a liquid drop wets a solid, the droplet typically spreads over the solid. By contrast, for sufficiently compliant solids, the solid can instead spread around the drop. This wrapping phenomenon has been exploited to assemble 3-dimensional structures from 2-dimensional sheets, a process often referred to as capillary origami. Although existing studies of this self-assembly have demonstrated bending and folding, methods of inducing spontaneous twisting by means of capillarity are less clear. Here we demonstrate that spontaneous twist can be initiated in a compliant solid through a combination of surface chemistry and capillarity. Experimentally, we measure the angle of twist on a surface with binary patterns of surface wettability as we vary the solid's geometric and material properties. We develop a scaling law to relate this angle of twist to the elastic and interfacial properties, which compares well with our experimental results.
Performance through Deformation and Instability
NASA Astrophysics Data System (ADS)
Bertoldi, Katia
2015-03-01
Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.
The effects of musical training on structural brain development: a longitudinal study.
Hyde, Krista L; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C; Schlaug, Gottfried
2009-07-01
Long-term instrumental music training is an intense, multisensory and motor experience that offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here, for the first time, we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity, and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2017-11-01
Severe plastic deformation by equal channel angular pressing has been performed to produce light aluminum and magnesium alloy billets with ultrafine-grained structure. The physical and mechanical properties of the processed alloys are examined by studying their microstructure, measuring microhardness, yield strength, and uniaxial tensile strength. A nondestructive testing technique using three-dimensional X-ray tomography is proposed for detecting internal structural defects and monitoring damage formation in the structure of alloys subjected to severe plastic deformation. The investigation results prove the efficiency of the chosen method and selected mode of producing ultrafine-grained light alloys.
Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khamlichi, A.; Jezequel, L.; Jacques, Y.
1995-11-01
Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less
Zhao, Yunan; Wang, Zhongli; Dai, Jianguo; Chen, Lin; Huang, Yufang; Zhan, Zhen
2012-03-17
Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress. Copyright © 2011 Elsevier B.V. All rights reserved.
Zagrebelsky, Marta; Lonnemann, Niklas; Fricke, Steffen; Kellner, Yves; Preuß, Eike; Michaelsen-Preusse, Kristin; Korte, Martin
2017-02-01
Behavioral learning has been shown to involve changes in the function and structure of synaptic connections of the central nervous system (CNS). On the other hand, the neuronal circuitry in the mature brain is characterized by a high degree of stability possibly providing a correlate for long-term storage of information. This observation indicates the requirement for a set of molecules inhibiting plasticity and promoting stability thereby providing temporal and spatial specificity to plastic processes. Indeed, signaling of Nogo-A via its receptors has been shown to play a crucial role in restricting activity-dependent functional and structural plasticity in the adult CNS. However, whether Nogo-A controls learning and memory formation and what are the cellular and molecular mechanisms underlying this function is still unclear. Here we show that Nogo-A signaling controls spatial learning and reference memory formation upon training in the Morris water maze and negatively modulates structural changes at spines in the mouse hippocampus. Learning processes and the correlated structural plasticity have been shown to involve changes in excitatory as well as in inhibitory neuronal connections. We show here that Nogo-A is highly expressed not only in excitatory, but also in inhibitory, Parvalbumin positive neurons in the adult hippocampus. By this means our current and previous data indicate that Nogo-A loss-of-function positively influences spatial learning by priming the neuronal structure to a higher plasticity level. Taken together our results link the role of Nogo-A in negatively regulating plastic processes to a physiological function in controlling learning and memory processes in the mature hippocampus and open the interesting possibility that it might mainly act by controlling the function of the hippocampal inhibitory circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.
Schmitt, H; Guidez, A; Prashantha, K; Soulestin, J; Lacrampe, M F; Krawczak, P
2015-01-22
Starch was combined with plasticizers such as glycerol, sorbitol, glycerol/sorbitol and urea/ethanolamine blends by means of high shear extrusion process to prepare thermoplastic starch (TPS). Effect of storage time and plasticizers on the structural stability of melt processed TPS was investigated. Morphological observation, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy reveal that melt extrusion process is efficient in transforming granular starch into a plasticized starch for all plasticizer compositions. XRD analysis highlights major changes in the microstructure of plasticized starch, and dependence of crystalline type and degree of crystallinity mainly on the plasticizer composition and storage time. Dynamical mechanical analysis (DMA) yields a decrease of the peak intensity of loss factor with aging time. The effect of ageing on tensile strength also appears to be highly dependent on the plasticizer composition. Thus, through different plasticizer combinations and ageing, starch-based materials with significant differences in tensile properties can be obtained, which may be tuned to meet the requirements of a wide range of applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Tengfei; Spinella, Laura; Im, Jay
2013-11-18
In this paper, we demonstrated the plasticity mechanism for copper (Cu) extrusion in through-silicon via structures under thermal cycling. The local plasticity was directly observed by synchrotron x-ray micro-diffraction near the top of the via with the amount increasing with the peak temperature. The Cu extrusion was confirmed by Atomic Force Microscopy (AFM) measurements and found to be consistent with the observed Cu plasticity behavior. A simple analytical model elucidated the role of plasticity during thermal cycling, and finite element analyses were carried out to confirm the plasticity mechanism as well as the effect of the via/Si interface. The modelmore » predictions were able to account for the via extrusions observed in two types of experiments, with one representing a nearly free sliding interface and the other a strongly bonded interface. Interestingly, the AFM extrusion profiles seemed to contour with the local grain structures near the top of the via, suggesting that the grain structure not only affects the yield strength of the Cu and thus its plasticity but could also be important in controlling the pop-up behavior and the statistics for a large ensemble of vias.« less
Grandfathered, Grandmothered, And ACA-Compliant Health Plans Have Equivalent Premiums.
Whitmore, Heidi; Gabel, Jon R; Satorius, Jennifer L; Green, Matthew
2017-02-01
Many small employers offer employees health plans that are not fully compliant with Affordable Care Act (ACA) provisions such as covering preventive services without cost sharing. These "grandfathered" and "grandmothered" plans accounted for about 65 percent of enrollment in the small-group market in 2014. Premium costs for these and ACA-compliant plans were equivalent. Project HOPE—The People-to-People Health Foundation, Inc.
The chemical structure of plastics greatly differs from natural marine particulate matter and therefore plastics likely are creating new and unique niches for microorganisms in the ocean. It is hypothesized that the microbes found on plastic particles will be taxonomically ...
Emergent spatial synaptic structure from diffusive plasticity.
Sweeney, Yann; Clopath, Claudia
2017-04-01
Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Chen, Feng; Zhang, Jinwen
2010-11-01
In this study, soy protein concentrate (SPC) was used as a plastic component to blend with poly(butylene adipate-co-terephthalate) (PBAT). Effects of SPC plasticization and blend composition on its deformation during mixing were studied in detail. Influence of using water as the major plasticizer and glycerol as the co-plasticizer on the deformation of the SPC phase during mixing was explored. The effect of shear stress, as affected by SPC loading level, on the phase structure of SPC in the blends was also investigated. Quantitative analysis of the aspect ratio of SPC particles was conducted by using ImageJ software, and an empirical model predicting the formation of percolated structure was applied. The experimental results and the model prediction showed a fairly good agreement. The experimental results and statistic analysis suggest that both SPC loading level and its water content prior to compounding had significant influences on development of the SPC phase structure and were correlated in determining the morphological structures of the resulting blends. Consequently, physical and mechanical properties of the blends greatly depended on the phase morphology and PBAT/SPC ratio of the blends.
Compliant mechanism road bicycle brake: a rigid-body replacement case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Brian M; Howell, Larry L; Magleby, Spencer P
2011-01-19
The design of high-performance bicycle brakes is complicated by the competing design objectives of increased performance and low weight. But this challenge also provides a good case study to demonstrate the design of compliant mechanisms to replace current rigid-link mechanisms. This paper briefly reviews current road brake designs, demonstrates the use of rigid-body replacement synthesis to design a compliant mechanism, and illustrates the combination of compliant mechanism design tools. The resulting concept was generated from the modified dual-pivot brake design and is a partially compliant mechanism where one pin has the dual role of a joint and a mounting pin.more » The pseudo-rigid-body model, finite element analysis, and optimization algorithms are used to generate design dimensions, and designs are considered for both titanium and E-glass flexures. The resulting design has the potential of reducing the part count and overall weight while maintaining a performance similar to the benchmark.« less
Quinby, Joseph D [Albuquerque, NM; Hall, Clarence S [Albuquerque, NM
2008-06-24
In a security apparatus for securing an electrical connector, a plug may be fitted for insertion into a connector receptacle compliant with a connector standard. The plug has at least one aperture adapted to engage at least one latch in the connector receptacle. An engagement member is adapted to partially extend through at least one aperture and lock to at least one structure within the connector receptacle.
NASA Operational Environment Team (NOET) - NASA's key to environmental technology
NASA Technical Reports Server (NTRS)
Cook, Beth
1993-01-01
NOET is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally compliant alternatives to current processes. NOET's structure, dissemination of materials, electronic information, EPA compliance, specifications and standards, and environmental research and development are discussed.
Application of an Elastic-Plastic Methodology to Structural Integrity Evaluation,
The elastic plastic fracture mechanics ( EPFM ) technology has advanced to the point where it can be used to make a realistic assessment of the...concepts of EPFM into a structural stability evaluation. The structure is modeled as a cracked test specimen either in series or parallel with a spring
Study of non-compliance among chronic hemodialysis patients and its impact on patients' outcomes.
Ibrahim, Salwa; Hossam, Mohammed; Belal, Dawlat
2015-03-01
Non-adherence to prescription is common among hemodialysis (HD) patients and has been associated with significant morbidity. At least 50% of HD patients are believed to be non-adherent to some part of their treatment. We aimed to assess the prevalence of non-adherence to dialysis prescription among 100 chronic HD patients. We explored the relationship between non-adherence on one hand and socioeconomic profile, depression scores and cognitive function on the other hand. The impact of patients' non-adherence on nutritional status, quality of life and dialysis adequacy was also assessed. The mean age of the study group was 50.51 ± 12.0 years. There were 62 females and 38 males in the study. Thirty-six patients (36%) were non-compliant to their dialysis prescription. No significant differences were detected between compliant and non-compliant patients in their education level and employment status. Inter-dialytic weight gain, serum phosphorus and depression scores were significantly higher in non-compliant patients compared with compliant patients, whereas body weight, serum albumin, serum calcium, quality of life scores and nutrition scores were significantly higher in compliant patients (P <0.05). In conclusion, non-adherence is highly prevalent among chronic HD patients and is associated with poor quality of life, depression and malnutrition.
PLANS: A finite element program for nonlinear analysis of structures. Volume 1: Theoretical manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Levine, H. S.; Armen, H., Jr.
1975-01-01
The PLANS system is described which is a finite element program for nonlinear analysis. The system represents a collection of special purpose computer programs each associated with a distinct physical problem class. Modules of PLANS specifically referenced and described in detail include: (1) REVBY, for the plastic analysis of bodies of revolution; (2) OUT-OF-PLANE, for the plastic analysis of 3-D built-up structures where membrane effects are predominant; (3) BEND, for the plastic analysis of built-up structures where bending and membrane effects are significant; (4) HEX, for the 3-D elastic-plastic analysis of general solids; and (5) OUT-OF-PLANE-MG, for material and geometrically nonlinear analysis of built-up structures. The SATELLITE program for data debugging and plotting of input geometries is also described. The theoretical foundations upon which the analysis is based are presented. Discussed are the form of the governing equations, the methods of solution, plasticity theories available, a general system description and flow of the programs, and the elements available for use.
Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle
2016-07-15
In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutta, Rishabh; Wang, Teng; Feng, Guangcai; Harrington, Jonathan; Vasyura-Bathke, Hannes; Jónsson, Sigurjón
2017-04-01
Strain localizations in compliant fault zones (with elastic moduli lower than the surrounding rocks) induced by nearby earthquakes have been detected using geodetic observations in a few cases in the past. Here we observe small-scale changes in interferometric Synthetic Aperture Radar (InSAR) measurements along multiple conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake. After removing the main coseismic deformation signal in the interferograms and correcting them for topography-related phase, we observe 2-3 cm signal along several conjugate faults that are 15-30 km from the mainshock fault rupture. These conjugate compliant faults have strikes of N30°E and N45°W. The sense of motion indicates left-lateral deformation across the N30°E faults and right-lateral deformation across the N45°W faults, which suggests the conjugate faults were subjected to extensional coseismic stresses along the WSW-ENE direction. The spacing between the different sets of faults is around 5 to 8 km. We explain the observed strain localizations as an elastic response of the compliant conjugate faults induced by the Baluchistan earthquake. Using 3D Finite Element models (FEM), we impose coseismic static displacements due to the earthquake along the boundaries of the FEM domain to reproduce the coseismic stress changes acting across the compliant faults. The InSAR measurements are used to constrain the geometry and rigidity variations of the compliant faults with respect to the surrounding rocks. The best fitting models show the compliant fault zones to have a width of 0.5 km to 2 km and a reduction of the shear modulus by a factor of 3 to 4. Our study yields similar values as were found for compliant fault zones near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localization is occurring on more complex conjugate sets of faults.
Evidence for structural plasticity in humans: comment on Thomas and Baker (2012).
Erickson, Kirk I
2013-06-01
Thomas and Baker (2012) have provided a balanced and critical review of the scientific evidence claiming that training interventions have the capacity to alter the structural morphology of the brain. Here I provide some additional considerations when reading and interpreting both the review and the original empirical articles. Research proposing to examine the capacity for structural brain plasticity needs to contemplate methodological issues and factors that could moderate or mask potentially interesting effects. Overall, although this area of research is in need of circumspection, it also could have transformative implications if structural brain plasticity in humans is possible. Copyright © 2012 Elsevier Inc. All rights reserved.
Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension
Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.
2016-01-01
Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221
Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.
Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle
2012-01-01
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.
Plastic-aluminum composites in transportation infrastructure.
DOT National Transportation Integrated Search
2017-03-01
This report presents an initial investigation of the mechanics of I-beams developed with plastic-aluminum composite technology. Plastic-aluminum composites in structural beam/frame/truss elements are a relatively new concept that has seen little, if ...
Study on Collision of Ship Side Structure by Simplified Plastic Analysis Method
NASA Astrophysics Data System (ADS)
Sun, C. J.; Zhou, J. H.; Wu, W.
2017-10-01
During its lifetime, a ship may encounter collision or grounding and sustain permanent damage after these types of accidents. Crashworthiness has been based on two kinds of main methods: simplified plastic analysis and numerical simulation. A simplified plastic analysis method is presented in this paper. Numerical methods using the non-linear finite-element software LS-DYNA are conducted to validate the method. The results show that, as for the accuracy of calculation results, the simplified plasticity analysis are in good agreement with the finite element simulation, which reveals that the simplified plasticity analysis method can quickly and accurately estimate the crashworthiness of the side structure during the collision process and can be used as a reliable risk assessment method.
Autovibration and chaotic motion of an unbalanced rotor in massive non-linear compliant supports
NASA Astrophysics Data System (ADS)
Pasynkova, I. A.; Stepanova, P. P.
2018-05-01
Stability loss scenarios of an unbalanced rotor with a flexible massless shaft mounted in massive non-linear compliant supports are studied on the example of cylindrical precession. Dyffing type of non-linearity in compliant supports is considered. The system "rotor - supports" has eight degrees of freedom. Internal and external friction are taken into account. Autovibrations and chaotic vibrations are obtained. The results are confirmed by numerical check.
Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease
Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.
2015-01-01
SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365
Wang, Z.; Ward, M. M.; Chan, L.
2014-01-01
Summary Previous studies have shown an association between duration of bisphosphonate use and atypical femur fractures. This cohort study showed an increasingly higher risk of subtrochanteric and femoral shaft fractures among those who were more adherent to oral bisphosphonates. Introduction Long-term use of oral bisphosphonates has been implicated in an increased risk of atypical femur fractures located in subtrochanteric and femoral shaft regions. Another measure of drug exposure, medication adherence, however, has not been investigated. Methods Among all Medicare fee-for-service female beneficiaries from 2006–2010, we followed 522,287 new bisphosphonate users from their index prescription until being censored or having a primary diagnosis of closed subtrochanteric/ femoral shaft or intertrochanteric/femoral neck fractures. Data about radiographs of fracture site and features were not available. Adherence was classified according to the medication possession ratio (MPR) as the following: MPR<1/3 as less compliant, MPR≥1/3–<2/3 as compliant, and MPR≥2/3 as highly compliant. Alternative cutoff points at 50 and 80 % were also used. Survival analysis was used to determine the cumulative incidence and hazard of subtrochanteric/femoral shaft or intertrochanteric/femoral neck fractures. Results There was a graded increase in incidence of subtrochanteric/femoral shaft fractures as the level of adherence increased (Gray’s test, P<0.001). The adjusted hazard ratio (HR) for the highly compliant vs. the less compliant was 1.23 (95 % Confidence Interval [CI] 1.06–1.43) overall, became significant after 2 years of follow-up (HR=1.51, 95 % CI 1.06–2.15) and reached the highest risk in the fifth year (HR=4.06, 95 % CI 1.47–11.19). However, age-adjusted incidence rates of intertrochanteric/femoral neck fractures were significantly lower among highly compliant beneficiaries, compared to less compliant users (HR=0.69, 95 % CI 0.66–0.73). Similar results were obtained when the cutoff points for being compliant and highly compliant were set at 50 and 80 %, respectively. Conclusions Subtrochanteric/femoral shaft fractures, unlike intertrochanteric/femoral neck fractures, are positively associated with higher adherence to long-term (≥3 years) oral bisphosphonates in the elderly female Medicare population. PMID:24846316
Halpern, David; Gaver, Donald P.
2012-01-01
We investigate the influence of a soluble surfactant on the steady-state motion of a finger of air through a compliant channel. This study provides a basic model from which to understand the fluid–structure interactions and physicochemical hydrodynamics of pulmonary airway reopening. Airway closure occurs in lung diseases such as respiratory distress syndrome and acute respiratory distress syndrome as a result of fluid accumulation and surfactant insufficiency. This results in ‘compliant collapse’ with the airway walls buckled and held in apposition by a liquid occlusion that blocks the passage of air. Airway reopening is essential to the recovery of adequate ventilation, but has been associated with ventilator-induced lung injury because of the exposure of airway epithelial cells to large interfacial flow-induced pressure gradients. Surfactant replacement is helpful in modulating this deleterious mechanical stimulus, but is limited in its effectiveness owing to slow surfactant adsorption. We investigate the effect of surfactant on micro-scale models of reopening by computationally modelling the steady two-dimensional motion of a semi-infinite bubble propagating through a liquid-filled compliant channel doped with soluble surfactant. Many dimensionless parameters affect reopening, but we primarily investigate how the reopening pressure pb depends upon the capillary number Ca (the ratio of viscous to surface tension forces), the adsorption depth parameter λ (a bulk concentration parameter) and the bulk Péclet number Peb (the ratio of bulk convection to diffusion). These studies demonstrate a dependence of pb on λ, and suggest that a critical bulk concentration must be exceeded to operate as a low-surface-tension system. Normal and tangential stress gradients remain largely unaffected by physicochemical interactions – for this reason, further biological studies are suggested that will clarify the role of wall flexibility and surfactant on the protection of the lung from atelectrauma. PMID:22997476
Raven, Frank; Van der Zee, Eddy A; Meerlo, Peter; Havekes, Robbert
2018-06-01
Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Joslin, R. D.
1991-04-01
The use of passive devices to obtain drag and noise reduction or transition delays in boundary layers is highly desirable. One such device that shows promise for hydrodynamic applications is the compliant coating. The present study extends the mechanical model to allow for three-dimensional waves. This study also looks at the effect of compliant walls on three-dimensional secondary instabilities. For the primary and secondary instability analysis, spectral and shooting approximations are used to obtain solutions of the governing equations and boundary conditions. The spectral approximation consists of local and global methods of solution while the shooting approach is local. The global method is used to determine the discrete spectrum of eigenvalue without any initial guess. The local method requires a sufficiently accurate initial guess to converge to the eigenvalue. Eigenvectors may be obtained with either local approach. For the initial stage of this analysis, two and three dimensional primary instabilities propagate over compliant coatings. Results over the compliant walls are compared with the rigid wall case. Three-dimensional instabilities are found to dominate transition over the compliant walls considered. However, transition delays are still obtained and compared with transition delay predictions for rigid walls. The angles of wave propagation are plotted with Reynolds number and frequency. Low frequency waves are found to be highly three-dimensional.
Preliminary Assessment of a Compliant Gait Exoskeleton.
Cestari, Manuel; Sanz-Merodio, Daniel; Garcia, Elena
2017-06-01
Current commercial wearable gait exoskeletons contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume a significant amount of energy, and their stiffness may not be appropriate for safe human-machine interactions. Adjustable compliant actuators are being designed and implemented because of their ability to minimize large forces due to shocks, to safely interact with the user, and to store and release energy in passive elastic elements. Introduction of such compliant actuation in gait exoskeletons, however, has been limited by the larger power-to-weight and volume ratio requirement. This article presents a preliminary assessment of the first compliant exoskeleton for children. Compliant actuation systems developed by our research group were integrated into the ATLAS exoskeleton prototype. The resulting device is a compliant exoskeleton, the ATLAS-C prototype. The exoskeleton is coupled with a special standing frame to provide balance while allowing a semi-natural gait. Experiments show that when comparing the behavior of the joints under different stiffness conditions, the inherent compliance of the implemented actuators showed natural adaptability during the gait cycle and in regions of shock absorption. Torque tracking of the joint is achieved, identifying the areas of loading response. The implementation of a state machine in the control of knee motion allowed reutilization of the stored energy during deflection at the end of the support phase to partially propel the leg and achieve a more natural and free swing.
DYCAST: A finite element program for the crash analysis of structures
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Winter, R.; Ogilvie, P.
1987-01-01
DYCAST is a nonlinear structural dynamic finite element computer code developed for crash simulation. The element library contains stringers, beams, membrane skin triangles, plate bending triangles and spring elements. Changing stiffnesses in the structure are accounted for by plasticity and very large deflections. Material nonlinearities are accommodated by one of three options: elastic-perfectly plastic, elastic-linear hardening plastic, or elastic-nonlinear hardening plastic of the Ramberg-Osgood type. Geometric nonlinearities are handled in an updated Lagrangian formulation by reforming the structure into its deformed shape after small time increments while accumulating deformations, strains, and forces. The nonlinearities due to combined loadings are maintained, and stiffness variation due to structural failures are computed. Numerical time integrators available are fixed-step central difference, modified Adams, Newmark-beta, and Wilson-theta. The last three have a variable time step capability, which is controlled internally by a solution convergence error measure. Other features include: multiple time-load history tables to subject the structure to time dependent loading; gravity loading; initial pitch, roll, yaw, and translation of the structural model with respect to the global system; a bandwidth optimizer as a pre-processor; and deformed plots and graphics as post-processors.
Development of a multistage compliant mechanism with new boundary constraint
NASA Astrophysics Data System (ADS)
Ling, Mingxiang; Cao, Junyi; Jiang, Zhou; Li, Qisheng
2018-01-01
This paper presents a piezo-actuated compliant mechanism with a new boundary constraint to provide concurrent large workspace and high dynamic frequency for precision positioning or other flexible manipulation applications. A two-stage rhombus-type displacement amplifier with the "sliding-sliding" boundary constraint is presented to maximize the dynamic frequency while retaining a large output displacement. The vibration mode is also improved by the designed boundary constraint. A theoretical kinematic model of the compliant mechanism is established to optimize the geometric parameters, and a prototype is fabricated with a compact dimension of 60 mm × 60 mm × 12 mm. The experimental testing shows that the maximum stroke is approximately 0.6 mm and the output stiffness is 1.1 N/μm with the fundamental frequency of larger than 2.2 kHz. Lastly, the excellent performance of the presented compliant mechanism is compared with several mechanisms in the previous literature. As a conclusion, the presented boundary constraint strategy provides a new way to balance the trade-off between the frequency response and the stroke range widely existed in compliant mechanisms.
Kaliki, Swathi; Patel, Anamika; Iram, Sadiya; Palkonda, Vijay Anand Reddy
2017-05-01
To describe the clinical features and outcomes of patients with stage III or IV retinoblastoma. This was a retrospective study of 80 patients. Based on the International Retinoblastoma Staging System (IRSS), the tumors (n = 81) belonged to stage IIIa (n = 38, 47%), IIIb (n = 1, 1%), IVa2 (n = 10, 12%), IVb1 (n = 14, 17%), and IVb3 (n = 18, 22%). Of 80 patients, 42 (53%) were compliant to treatment and 38 (47%) were non-compliant. All 38 patients who were non-compliant to treatment died of the disease at a mean duration of 13 months from diagnosis. Of the 42 patients compliant to treatment, 22 (52%) died before completion of treatment. Twenty patients with stage III disease (25%) could complete the multimodal treatment and 17 (71%) were alive and well at a median follow-up duration of 77 months. Compliant multimodality treatment is beneficial in patients with IRSS stage III disease. IRSS stage IV retinoblastoma has poor prognosis despite treatment. [J Pediatr Ophthalmol Strabismus. 2017;54(3):177-184.]. Copyright 2017, SLACK Incorporated.
Dynamic characteristics of specialty composite structures with embedded damping layers
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.
1993-01-01
Damping mechanics for simulating the damped dynamic characteristics in specialty composite structures with compliant interlaminar damping layers are presented. Finite-element based mechanics incorporating a discrete layer (or layer-wise) laminate damping theory are utilized to represent general laminate configurations in terms of lay-up and fiber orientation angles, cross-sectional thickness, shape, and boundary conditions. Evaluations of the method with exact solutions and experimental data illustrate the accuracy of the method. Additional applications investigate the potential for significant damping enhancement in angle-ply composite laminates with cocured interlaminar damping layers.
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
NASA Astrophysics Data System (ADS)
Chuvil'deev, V. N.; Kopylov, V. I.; Nokhrin, A. V.; Bakhmet'ev, A. M.; Sandler, N. G.; Kozlova, N. A.; Tryaev, P. V.; Tabachkova, N. Yu.; Mikhailov, A. S.; Ershova, A. V.; Gryaznov, M. Yu.; Chegurov, M. K.; Sysoev, A. N.; Smirnova, E. S.
2017-05-01
The influence of severe plastic deformation on the structural-phase state of grain boundaries in a Ti-4Al-2V (commercial PT3V grade) pseudo-alpha-titanium alloy has been studied. It is established that increase in the strength, plasticity, and corrosion resistance of this alloy is related to the formation of an ultrafine- grained structure. In particular, it is shown that an increase in the resistance to hot-salt intergranular corrosion is due to diffusion-controlled redistribution of aluminum and vanadium atoms at the grain boundaries of titanium formed during thermal severe plastic deformation.
NASA Astrophysics Data System (ADS)
Liu, Shuyong; Jiang, J.; Parr, Nicola
2016-09-01
Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.
Effect of the conditions of prepreg preparation on the strength of structural plastics
NASA Astrophysics Data System (ADS)
Zaborskaya, L. V.; Yurkevich, O. R.
1995-05-01
A study is made of the effect of the temperature and duration of heat treatment of polymer composite prepregs on their strength. It is established that heat treatment under conditions ensuring close to maximal adhesive interaction between the components of the prepreg and subsequent shaping makes it possible to more than double the strength of the plastic (Table 1), A new approach is proposed to optimizing the conditions of formation of structural plastics.
NASA Astrophysics Data System (ADS)
Dabiri, Arman; Butcher, Eric A.; Nazari, Morad
2017-02-01
Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.
Elasto-limited plastic analysis of structures for probabilistic conditions
NASA Astrophysics Data System (ADS)
Movahedi Rad, M.
2018-06-01
With applying plastic analysis and design methods, significant saving in material can be obtained. However, as a result of this benefit excessive plastic deformations and large residual displacements might develop, which in turn might lead to unserviceability and collapse of the structure. In this study, for deterministic problem the residual deformation of structures is limited by considering a constraint on the complementary strain energy of the residual forces. For probabilistic problem the constraint for the complementary strain energy of the residual forces is given randomly and critical stresses updated during the iteration. Limit curves are presented for the plastic limit load factors. The results show that these constraints have significant effects on the load factors. The formulations of the deterministic and probabilistic problems lead to mathematical programming which are solved by the use of nonlinear algorithm.
NASA Astrophysics Data System (ADS)
Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.
2018-02-01
The structural and phase transformations in the Al-Li-Cu-Mg-Zr-Sc-Zn alloy have been studied by the electron microscopy after the aging for the maximum strength and in the nanostructured state after severe plastic deformation by high-pressure torsion. It has been shown that severe plastic deformation leads to the formation of a nanostructured state in the alloy, the nature of which is determined by the magnitude of deformation and the degree of completeness of the dynamic recrystallization. It has been established that deformation also causes a change in the phase composition of the alloy. The influence of the structural components of the severely deformed alloy on the level of mechanical properties, such as the hardness, plasticity, elastic modulus, and stiffness has been discussed.
Schubert, C D; Leitsch, S; Haertnagl, F; Haas, E M; Giunta, R E
2015-08-01
Despite its recognition as an independent specialty, at German university hospitals the field of plastic surgery is still underrepresented in terms of independent departments with a dedicated research focus. The aim of this study was to analyse the publication performance within the German academic plastic surgery environment and to compare independent departments and dependent, subordinate organisational structures regarding their publication performance. Organisational structures and number of attending doctors in German university hospitals were examined via a website analysis. A pubmed analysis was applied to assess the publication performance (number of publications, cumulative impact factor, impact factor/publication, number of publications/MD, number of publications/unit) between 2009 and 2013. In a journal analysis the distribution of the cumulative impact factor and number of publications in different journals as well as the development of the impact factor in the top journals were analysed. Out of all 35 university hospitals there exist 12 independent departments for plastic surgery and 8 subordinate organisational structures. In 15 university hospitals there were no designated plastic surgery units. The number of attending doctors differed considerably between independent departments (3.6 attending doctors/unit) and subordinate organisational structures (1.1 attending doctors/unit). The majority of publications (89.0%) and of the cumulative impact factor (91.2%) as well as most of the publications/MD (54 publications/year) and publications/unit (61 publications/year) were created within the independent departments. Only in departments top publications with an impact factor > 5 were published. In general a negative trend regarding the number of publications (- 13.4%) and cumulative impact factor (- 28.9%) was observed. 58.4% of all publications were distributed over the top 10 journals. Within the latter the majority of articles were published in English journals (60% of publications, 79.9% of the cumulative impact factor). The average impact factor of the top 10 journals increased by 13.5% from 2009 to 2013. In contrast to subordinate and dependent organisational structures, independent departments of plastic surgery are the key performers within German academic plastic surgery which, however, suffers from a general declining publication performance. Hence, the type of organisational structure has a crucial influence on the research performance. © Georg Thieme Verlag KG Stuttgart · New York.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics
Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle
2012-01-01
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Lagoudas, D. C.
2009-10-01
The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.
1983-10-01
by block number) Naval Ship Structures; Composites . Glass Reinforced Plastics, Filament Winding, Minesweepers. 20. ABSTRACT (Continue on reverse side...associated with this method of manufacturing a ship hull out of Glass Reinforced Plastic (GRP). Winding machine and man- drel concepts were reviewed... machine and mandrel concepts were reviewed, as well as the structural requirements and possible materials. A design of a 1/5th scale (30 ft) model
Low complexity 1D IDCT for 16-bit parallel architectures
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar
2007-09-01
This paper shows that using the Loeffler, Ligtenberg, and Moschytz factorization of 8-point IDCT [2] one-dimensional (1-D) algorithm as a fast approximation of the Discrete Cosine Transform (DCT) and using only 16 bit numbers, it is possible to create in an IEEE 1180-1990 compliant and multiplierless algorithm with low computational complexity. This algorithm as characterized by its structure is efficiently implemented on parallel high performance architectures as well as due to its low complexity is sufficient for wide range of other architectures. Additional constraint on this work was the requirement of compliance with the existing MPEG standards. The hardware implementation complexity and low resources where also part of the design criteria for this algorithm. This implementation is also compliant with the precision requirements described in MPEG IDCT precision specification ISO/IEC 23002-1. Complexity analysis is performed as an extension to the simple measure of shifts and adds for the multiplierless algorithm as additional operations are included in the complexity measure to better describe the actual transform implementation complexity.
The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels
NASA Astrophysics Data System (ADS)
Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.
2015-09-01
The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.
Process combinations for the manufacturing of metal-plastic hybrid parts
NASA Astrophysics Data System (ADS)
Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.
2016-03-01
The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.
Tyl, Rochelle W.
2009-01-01
Background Myers et al. [Environ Health Perspect 117:309–315 (2009)] argued that Good Laboratory Practices (GLPs) cannot be used as a criterion for selecting data for risk assessment, using bisphenol A (BPA) as a case study. They did not discuss the role(s) of guideline-compliant studies versus basic/exploratory research studies, and they criticized both GLPs and guideline-compliant studies and their roles in formal hazard evaluation and risk assessment. They also specifically criticized our published guideline-compliant dietary studies on BPA in rats and mice and 17β-estradiol (E2) in mice. Objectives As the study director/first author of the criticized E2 and BPA studies, I discuss the uses of basic research versus guideline-compliant studies, how testing guidelines are developed and revised, how new end points are validated, and the role of GLPs. I also provide an overview of the BPA guideline-compliant and exploratory research animal studies and describe BPA pharmacokinetics in rats and humans. I present responses to specific criticisms by Myers et al. Discussion and conclusions Weight-of-evidence evaluations have consistently concluded that low-level BPA oral exposures do not adversely affect human developmental or reproductive health, and I encourage increased validation efforts for “new” end points for inclusion in guideline studies, as well as performance of robust long-term studies to follow early effects (observed in small exploratory studies) to any adverse consequences. PMID:20049112
Parametric studies to determine the effect of compliant layers on metal matrix composite systems
NASA Technical Reports Server (NTRS)
Caruso, J. J.; Chamis, C. C.; Brown, H. C.
1990-01-01
Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a three-dimensional linear finite element analysis of a 9 fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al + Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) composite systems should have modulus 15 percent that of the matrix and a coefficient of thermal expansion of the compliant layer roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (loop) direction are tensile for the Ti3Al + Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.
Design, realization and structural testing of a compliant adaptable wing
NASA Astrophysics Data System (ADS)
Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.
2015-10-01
This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.
Christoph, J; Griebel, L; Leb, I; Engel, I; Köpcke, F; Toddenroth, D; Prokosch, H-U; Laufer, J; Marquardt, K; Sedlmayr, M
2015-01-01
The secondary use of clinical data provides large opportunities for clinical and translational research as well as quality assurance projects. For such purposes, it is necessary to provide a flexible and scalable infrastructure that is compliant with privacy requirements. The major goals of the cloud4health project are to define such an architecture, to implement a technical prototype that fulfills these requirements and to evaluate it with three use cases. The architecture provides components for multiple data provider sites such as hospitals to extract free text as well as structured data from local sources and de-identify such data for further anonymous or pseudonymous processing. Free text documentation is analyzed and transformed into structured information by text-mining services, which are provided within a cloud-computing environment. Thus, newly gained annotations can be integrated along with the already available structured data items and the resulting data sets can be uploaded to a central study portal for further analysis. Based on the architecture design, a prototype has been implemented and is under evaluation in three clinical use cases. Data from several hundred patients provided by a University Hospital and a private hospital chain have already been processed. Cloud4health has shown how existing components for secondary use of structured data can be complemented with text-mining in a privacy compliant manner. The cloud-computing paradigm allows a flexible and dynamically adaptable service provision that facilitates the adoption of services by data providers without own investments in respective hardware resources and software tools.
Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV
NASA Astrophysics Data System (ADS)
Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy
2011-04-01
In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.
Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.
2012-01-01
A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.
Modeling and simulation of thermally actuated bilayer plates
NASA Astrophysics Data System (ADS)
Bartels, Sören; Bonito, Andrea; Muliana, Anastasia H.; Nochetto, Ricardo H.
2018-02-01
We present a mathematical model of polymer bilayers that undergo large bending deformations when actuated by non-mechanical stimuli such as thermal effects. The simple model captures a large class of nonlinear bending effects and can be discretized with standard plate elements. We devise a fully practical iterative scheme and apply it to the simulation of folding of several practically useful compliant structures comprising of thin elastic layers.
Boarding Team Networking on the Move: Applying Unattended Relay Nodes
2014-09-01
below the main deck via a wireless ad-hoc network will enhance the situational awareness. Regarding the boarding of a non-compliant vessel, tracking...reaction time. 14. SUBJECT TERMS Maritime Interdiction Operations, Boarding Team Networking , Unattended Relay Nodes, Wireless Mesh Networks Onboard...the steel structures of naval vessels obstruct signals to propagate below the main deck. Extending the network below the main deck via a wireless ad
Materials for Adaptive Structural Acoustic Control. Volume 1
1993-04-06
FOLLOWING PAGE 14. SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20...375 Rubber is a highly nonlinear clastic medium. In the unstressed compliant state, the molecules ate coiled and tangled . but under stress the molecules...one-dimensional system, \\\\here tangle (solid dots) and the oblique (open circle) states are the shaded area represents the level of thermal energy
OTF CCSDS Mission Operations Prototype Parameter Service. Phase I: Exit Presentation
NASA Technical Reports Server (NTRS)
Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.
2009-01-01
This slide presentation reviews the prototype of phase 1 of the parameter service design of the CCSDS mission operations. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement the Parameter Service (2) Demonstrate interoperability between Houston MCC and a CCSDS Mission Operations compliant mission operations center (3) Utilize Mission Operations Common Architecture. THe parameter service design, interfaces, and structures are described.
Effect of Compliant Walls on Secondary Instabilities in Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Morris, Philip J.
1991-01-01
For aerodynamic and hydrodynamic vehicles, it is highly desirable to reduce drag and noise levels. A reduction in drag leads to fuel savings. In particular for submersible vehicles, a decrease in noise levels inhibits detection. A suggested means to obtain these reduction goals is by delaying the transition from laminar to turbulent flow in external boundary layers. For hydrodynamic applications, a passive device which shows promise for transition delays is the compliant coating. In previous studies with a simple mechanical model representing the compliant wall, coatings were found that provided transition delays as predicted from the semi-empirical e(sup n) method. Those studies were concerned with the linear stage of transition where the instability of concern is referred to as the primary instability. For the flat-plate boundary layer, the Tollmien-Schlichting (TS) wave is the primary instability. In one of those studies, it was shown that three-dimensional (3-D) primary instabilities, or oblique waves, could dominate transition over the coatings considered. From the primary instability, the stretching and tilting of vorticity in the shear flow leads to a secondary instability mechanism. This has been theoretical described by Herbert based on Floquet theory. In the present study, Herbert's theory is used to predict the development of secondary instabilities over isotropic and non-isotropic compliant walls. Since oblique waves may be dominant over compliant walls, a secondary theory extention is made to allow for these 3-D primary instabilities. The effect of variations in primary amplitude, spanwise wavenumber, and Reynolds number on the secondary instabilities are examined. As in the rigid wall case, over compliant walls the subharmonic mode of secondary instability dominates for low-amplitude primary disturbances. Both isotropic and non-isotropic compliant walls lead to reduced secondary growth rates compared to the rigid wall results. For high frequencies, the non-isotropic wall suppresses the amplification of the secondary instabilities, while instabilities over the isotropic wall may grow with an explosive rate similar to the rigid wall results. For the more important lower frequencies, both isotropic and non-isotropic compliant walls suppress the amplification of secondary instabilities compared to the rigid wall results. The twofold major discovery and demonstration of the present investigation are: (1) the use of passive devices, such as compliant walls, can lead to significant reductions in the secondary instability growth rates and amplification; (2) suppressing the primary growth rates and subsequent amplification enable delays in the growth of the explosive secondary instability mechanism.
2013-09-01
pattern of an alloy, such as steel , reveals, among other properties (ex., phase composition, crystal structure), information about the strain state...This, together with elastic strain / residual stress analysis, would enable better evaluation of the current state of health of steel structures and...plastic strain in a component/structure may better evaluate the current state of health of steel structures and components as they near predetermined
An investigation of ADA compliance of aquatic facilities in the North Texas area.
Pike, Hilary; Walker, Joseph; Collins, John; Hodges, Jan
2008-01-01
The study expands research on accessibility, comparing compliance scores of aquatic facilities in North Texas built before the 1991 Title III Americans with Disabilities Act Accessibility Guidelines (ADAAG) with facilities built after the 1991 ADAAG and the proposed 2002 supplement. A quasi-experimental design directed the selection of 52 facilities where measurements were taken to determine compliance with ADAAG and the supplement. A focus group provided insight into interpreting which features functioned as barriers or constraints to participation. Metropolitan statistical area in North Texas. A total of 52 aquatic facilities and 12 focus group participants (University of North Texas institutional review board 07-283). ADA aquatic facility compliance instrument. Frequency, ratios. No facilities were 100% ADA compliant overall, although some facilities were 100% compliant with specific structural domains. Women's restrooms rated lowest (average = 55%), and men's restrooms received the second lowest rating (average = 64%). Focus group results indicated that improperly designed restrooms and pool entries are primary barriers to participation. The findings support a need for stronger enforcement of policies that improve accessibility of facilities. Architectural reviews and construction practices need to be improved. The structural barriers and constraints identified can be limiting factors in efforts aimed at increasing physical activity among individuals with disabilities and individuals with physical limitations.
NASA Technical Reports Server (NTRS)
Bathe, M.; Kamm, R. D.
1999-01-01
A new model is used to analyze the fully coupled problem of pulsatile blood flow through a compliant, axisymmetric stenotic artery using the finite element method. The model uses large displacement and large strain theory for the solid, and the full Navier-Stokes equations for the fluid. The effect of increasing area reduction on fluid dynamic and structural stresses is presented. Results show that pressure drop, peak wall shear stress, and maximum principal stress in the lesion all increase dramatically as the area reduction in the stenosis is increased from 51 to 89 percent. Further reductions in stenosis cross-sectional area, however, produce relatively little additional change in these parameters due to a concomitant reduction in flow rate caused by the losses in the constriction. Inner wall hoop stretch amplitude just distal to the stenosis also increases with increasing stenosis severity, as downstream pressures are reduced to a physiological minimum. The contraction of the artery distal to the stenosis generates a significant compressive stress on the downstream shoulder of the lesion. Dynamic narrowing of the stenosis is also seen, further augmenting area constriction at times of peak flow. Pressure drop results are found to compare well to an experimentally based theoretical curve, despite the assumption of laminar flow.
Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.
2017-01-01
In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248
Ghasemlou, Mehran; Khodaiyan, Faramarz; Oromiehie, Abdulrasoul
2011-11-01
The rheological properties of kefiran film-forming solutions, as well as the structural characterisation of the resulting films, were investigated as a function of various plasticizer types. The behaviours of the storage (G') and loss (G″) moduli as a function of frequency were typical of gel-like material, with the G' higher than the G″. Kefiran-based films, which may find application as edible films, were prepared by a casting and solvent-evaporation method. Possible interaction between the adjacent chains in the kefiran polymer and various plasticizers was proven by Fourier-transform infrared spectroscopy (FT-IR). The crystallinity of plasticized kefiran film was also analysed using X-ray diffraction (XRD); this revealed an amorphous-crystalline structure. These results were explained by the film's microstructure, which was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The present study has helped determine possible interactions of kefiran, plasticizer and water molecules in determining film properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Description of plastic deformation of structural materials in triaxial loading
NASA Astrophysics Data System (ADS)
Lagzdins, A.; Zilaucs, A.
2008-03-01
A model of nonassociated plasticity is put forward for initially isotropic materials deforming with residual changes in volume under the action of triaxial normal stresses. The model is based on novel plastic loading and plastic potential functions, which define closed, convex, every where smooth surfaces in the 6D space of symmetric second-rank stress tensors. By way of example, the plastic deformation of a cylindrical concrete specimen wrapped with a CFRP tape and loaded in axial compression is described.
Mirror trends of plasticity and stability indicators in primate prefrontal cortex.
García-Cabezas, Miguel Á; Joyce, Mary Kate P; John, Yohan J; Zikopoulos, Basilis; Barbas, Helen
2017-10-01
Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Burmeister, Mareike; Eilks, Ingo
2014-01-01
People use many different products made from plastics every day. But conventional plastics such as polyvinyl chloride (PVC) do not always have a good reputation in society at large. Bioplastics such as thermoplastic starch (TPS) promise to be better alternatives but are they really better than conventional plastics? This article presents a new…
Dry compliant seal for phosphoric acid fuel cell
Granata, Jr., Samuel J.; Woodle, Boyd M.
1990-01-01
A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.
Electrophysiological assessment in patients with long term hypoxia.
Ilik, Faik; Pazarli, Ahmet C; Kayhan, Fatih; Karamanli, Harun; Ozlece, Hatice K
2016-01-01
To evaluate visual evoked potentials (VEP) patterns in chronic obstructive pulmonary disease (COPD) patients who were compliant with supplemental oxygen treatment relative to non-compliant COPD patients. This prospective study protocol was reviewed and approved by the local ethical committee of Selcuk University and the research was performed in the Department of Neurology, Elbistan State Hospital, Kahramanmaras, Turkey from May to October 2014. Blood gas measurements and pulmonary function tests were carried out in patients with advanced stage COPD. The VEP was assessed in both eyes in both compliant and non-compliant patients. The study included 43 patients; 24 (55.8%) of the patients were not in compliance with their supplemental oxygen treatment, while 19 patients (44.2%) received adequate oxygen treatment. There was no statistically significant difference between patients with regards to pulmonary function test results and blood gas measurements. The VEP latency was significantly greater in both eyes of the non-compliant patients. Previous studies have reported prolonged VEP latencies in inflammatory diseases of the central nervous system. Similar electrophysiological findings were observed in our study and we propose that this may be due to oxidative stress, and inflammation that occurs secondary to chronic ischemia.
NASA Astrophysics Data System (ADS)
Canfield, Shawn; Edinger, Ben; Frecker, Mary I.; Koopmann, Gary H.
1999-06-01
Recent advances in robotics, tele-robotics, smart material actuators, and mechatronics raise new possibilities for innovative developments in millimeter-scale robotics capable of manipulating objects only fractions of a millimeter in size. These advances can have a wide range of applications in the biomedical community. A potential application of this technology is in minimally invasive surgery (MIS). The focus of this paper is the development of a single degree of freedom prototype to demonstrate the viability of smart materials, force feedback and compliant mechanisms for minimally invasive surgery. The prototype is a compliant gripper that is 7-mm by 17-mm, made from a single piece of titanium that is designed to function as a needle driver for small scale suturing. A custom designed piezoelectric `inchworm' actuator drives the gripper. The integrated system is computer controlled providing a user interface device capable of force feedback. The design methodology described draws from recent advances in three emerging fields in engineering: design of innovative tools for MIS, design of compliant mechanisms, and design of smart materials and actuators. The focus of this paper is on the design of a millimeter-scale inchworm actuator for use with a compliant end effector in MIS.
Network, cellular, and molecular mechanisms underlying long-term memory formation.
Carasatorre, Mariana; Ramírez-Amaya, Víctor
2013-01-01
The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.
Plastic covering on airfoil structure provides smooth uninterrupted surface
NASA Technical Reports Server (NTRS)
Kinzler, J. A.; Fehrenkamp, L. G.; Heffernam, J. T.; Lee, W. S.
1975-01-01
Primed surface is covered with adhesive. Sheet of plastic film is stretched over adhesive and mechanical holder is used to apply tension to ends of sheet to make it conform to surface of airfoil. After adhesive cures, plastic can be trimmed with sharp cutting tool.
Compliant tactile sensor that delivers a force vector
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo (Inventor)
2010-01-01
Tactile Sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector. The applied force vector has three components to establish the direction and magnitude of an applied force. The compliant convex surface defines a dome with a hollow interior and has a linear relation between displacement and load including a magnet disposed substantially at the center of the dome above a sensor array that responds to magnetic field intensity.
Dual-Arm Generalized Compliant Motion With Shared Control
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1994-01-01
Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).
Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi
2009-08-26
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.
Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi
2009-01-01
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515
Amprazi, Maria; Kotsifaki, Dina; Providaki, Mary; Kapetaniou, Evangelia G.; Fellas, Georgios; Kyriazidis, Ioannis; Pérez, Javier; Kokkinidis, Michael
2014-01-01
The dimeric Repressor of Primer (Rop) protein, a widely used model system for the study of coiled-coil 4-α-helical bundles, is characterized by a remarkable structural plasticity. Loop region mutations lead to a wide range of topologies, folding states, and altered physicochemical properties. A protein-folding study of Rop and several loop variants has identified specific residues and sequences that are linked to the observed structural plasticity. Apart from the native state, native-like and molten-globule states have been identified; these states are sensitive to reducing agents due to the formation of nonnative disulfide bridges. Pro residues in the loop are critical for the establishment of new topologies and molten globule states; their effects, however, can be in part compensated by Gly residues. The extreme plasticity in the assembly of 4-α-helical bundles reflects the capacity of the Rop sequence to combine a specific set of hydrophobic residues into strikingly different hydrophobic cores. These cores include highly hydrated ones that are consistent with the formation of interchain, nonnative disulfide bridges and the establishment of molten globules. Potential applications of this structural plasticity are among others in the engineering of bio-inspired materials. PMID:25024213
Wu, Qian; Sun, Miao; Bernard, Laura P; Zhang, Huaye
2017-09-29
Postsynaptic density 95 (PSD-95) is a major synaptic scaffolding protein that plays a key role in bidirectional synaptic plasticity, which is a process important for learning and memory. It is known that PSD-95 shows increased dynamics upon induction of plasticity. However, the underlying structural and functional changes in PSD-95 that mediate its role in plasticity remain unclear. Here we show that phosphorylation of PSD-95 at Ser-561 in its guanylate kinase (GK) domain, which is mediated by the partitioning-defective 1 (Par1) kinases, regulates a conformational switch and is important for bidirectional plasticity. Using a fluorescence resonance energy transfer (FRET) biosensor, we show that a phosphomimetic mutation of Ser-561 promotes an intramolecular interaction between GK and the nearby Src homology 3 (SH3) domain, leading to a closed conformation, whereas a non-phosphorylatable S561A mutation or inhibition of Par1 kinase activity decreases SH3-GK interaction, causing PSD-95 to adopt an open conformation. In addition, S561A mutation facilitates the interaction between PSD-95 and its binding partners. Fluorescence recovery after photobleaching imaging reveals that the S561A mutant shows increased stability, whereas the phosphomimetic S561D mutation increases PSD-95 dynamics at the synapse. Moreover, molecular replacement of endogenous PSD-95 with the S561A mutant blocks dendritic spine structural plasticity during chemical long-term potentiation and long-term depression. Endogenous Ser-561 phosphorylation is induced by synaptic NMDA receptor activation, and the SH3-GK domains exhibit a Ser-561 phosphorylation-dependent switch to a closed conformation during synaptic plasticity. Our results provide novel mechanistic insight into the regulation of PSD-95 in dendritic spine structural plasticity through phosphorylation-mediated regulation of protein dynamics and conformation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
A new approach of active compliance control via fuzzy logic control for multifingered robot hand
NASA Astrophysics Data System (ADS)
Jamil, M. F. A.; Jalani, J.; Ahmad, A.
2016-07-01
Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.
Yao, Cheng-Hsiang; Lin, Kun-Ju; Weng, Chi-Chang; Hsiao, Ing-Tsung; Ting, Yi-Shu; Yen, Tzu-Chen; Jan, Tong-Rong; Skovronsky, Daniel; Kung, Mei-Ping; Wey, Shiaw-Pyng
2010-12-01
We report herein the Good Manufacturing Practice (GMP)-compliant automated synthesis of (18)F-labeled styrylpyridine, AV-45 (Florbetapir), a novel tracer for positron emission tomography (PET) imaging of beta-amyloid (Abeta) plaques in the brain of Alzheimer's disease patients. [(18)F]AV-45 was prepared in 105 min using a tosylate precursor with Sumitomo modules for radiosynthesis under GMP-compliant conditions. The overall yield was 25.4+/-7.7% with a final radiochemical purity of 95.3+/-2.2% (n=19). The specific activity of [(18)F]AV-45 reached as high as 470+/-135 TBq/mmol (n=19). The present studies show that [(18)F]AV-45 can be manufactured under GMP-compliant conditions and could be widely available for routine clinical use. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Budiman, A. S.; Nix, W. D.; Tamura, N.; Valek, B. C.; Gadre, K.; Maiz, J.; Spolenak, R.; Patel, J. R.
2006-06-01
Plastic deformation was observed in damascene Cu interconnect test structures during an in situ electromigration experiment and before the onset of visible microstructural damage (voiding, hillock formation). We show here, using a synchrotron technique of white beam x-ray microdiffraction, that the extent of this electromigration-induced plasticity is dependent on the linewidth. In wide lines, plastic deformation manifests itself as grain bending and the formation of subgrain structures, while only grain rotation is observed in the narrower lines. The deformation geometry leads us to conclude that dislocations introduced by plastic flow lie predominantly in the direction of electron flow and may provide additional easy paths for the transport of point defects. Since these findings occur long before any observable voids or hillocks are formed, they may have direct bearing on the final failure stages of electromigration.
Dislocation dynamics simulations of plasticity at small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Caizhi
2010-01-01
As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less
Research on Submarine Pipeline Steel with High Performance
NASA Astrophysics Data System (ADS)
Ren, Yi; Liu, Wenyue; Zhang, Shuai; Wang, Shuang; Gao, Hong
Submarine pipeline steel has largely uniform elongation, low yield ratio and good balance between high strength and high plasticity because of the microstructure with dual phase. In this work, the microstructure and properties of the submarine pipeline steel are studied. The results show that the matrix structure is consisted of ferrite, bainite and martensite -austenite islands. The structure has a tight relationship with the thermal-mechanical controlled process. Fine dual phase shows good plasticity and low yield ratio, which can support the good balance between high strength and high plasticity.
Intravital imaging of dendritic spine plasticity
Sau Wan Lai, Cora
2014-01-01
Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511
The influence of novel compliant floors on balance control in elderly women--A biomechanical study.
Wright, Alexander D; Laing, Andrew C
2011-07-01
Novel compliant floors aim to decrease the risk for fall-related injury by providing substantial force attenuation during the impact phase of falls. Certain models of compliant flooring have been shown to have limited influence on postural sway and successful completion of dynamic balance tasks. However, the effects of these products on balance recovery mechanisms following an externally induced perturbation have yet to be quantified. We used a floor translation paradigm to induce a balance perturbation to thirteen elderly community-dwelling women. Outcome measures included the displacement rates and margins of safety for both the underfoot centre-of-pressure and whole-body centre-of-mass across two novel compliant floors (SmartCell, SofTile), two basic foam surfaces (Firm-Foam, Soft-Foam) and a standard 'Rigid' floor as a control condition. The centre-of-mass and centre-of-pressure margins of safety, and all centre-of-mass displacement rates, were not significantly lower for the two novel compliant flooring systems compared to the control floor. The centre-of-pressure displacement rates were similar to the control floor for the SmartCell floor condition. The majority of the margin of safety and displacement rate variables for the foam floors were significantly lower than the control condition. This study illustrates that the SmartCell and SofTile novel compliant floors have minimal influences on balance and balance control responses following externally induced perturbations in older community-dwelling women, and supports pilot installations of these floors to inform decisions regarding the development of clinical trials. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
The influence of novel compliant floors on balance control in elderly women—A biomechanical study
Wright, Alexander D.; Laing, Andrew C.
2012-01-01
Novel compliant floors aim to decrease the risk for fall-related injury by providing substantial force attenuation during the impact phase of falls. Certain models of compliant flooring have been shown to have limited influence on postural sway and successful completion of dynamic balance tasks. However, the effects of these products on balance recovery mechanisms following an externally induced perturbation have yet to be quantified. We used a floor translation paradigm to induce a balance perturbation to thirteen elderly community-dwelling women. Outcome measures included the displacement rates and margins of safety for both the underfoot centre-of-pressure and whole-body centre-of-mass across two novel compliant floors (Smart-Cell, SofTile), two basic foam surfaces (Firm-Foam, Soft-Foam) and a standard ‘Rigid’ floor as a control condition. The centre-of-mass and centre-of-pressure margins of safety, and all centre-of-mass displacement rates, were not significantly lower for the two novel compliant flooring systems compared to the control floor. The centre-of-pressure displacement rates were similar to the control floor for the SmartCell floor condition. The majority of the margin of safety and displacement rate variables for the foam floors were significantly lower than the control condition. This study illustrates that the SmartCell and SofTile novel compliant floors have minimal influences on balance and balance control responses following externally induced perturbations in older community-dwelling women, and supports pilot installations of these floors to inform decisions regarding the development of clinical trials. PMID:21545881
Graduated driver license compliant teens involved in fatal motor vehicle crashes.
Pressley, Joyce C; Addison, Diane; Dawson, Patrick; Nelson, Sharifa S
2015-09-01
Significant reductions in motor vehicle injury mortality have been reported for teen drivers after passage of graduated driver licensing (GDL), seat belt, and no tolerance alcohol and drug laws. Despite this, teen drivers remain a vulnerable population with elevated fatal crash involvement. This study examines driver, vehicle, and crash characteristics of GDL-compliant, belted, and unimpaired teen drivers with the goal of identifying areas where further improvements might be realized. The Fatality Analysis Reporting System (FARS) for 2007 to 2009 was used to examine and classify driver violations/errors in compliant teen drivers (n = 1,571) of passenger vehicles involved in a fatal collision. Teens driving unbelted, non-GDL compliant, or impaired by alcohol or drugs were excluded. Statistical analysis used χ, Fisher's exact and multivariable logistic regression. Odds ratios are reported with 95% confidence intervals. Significance was defined as p < 0.05. Nearly one third (n = 1,571) of teen drivers involved in a fatal motor vehicle crash were GDL compliant, unimpaired, and belted. The majority held an intermediate GDL license (90.6%). Crash-related factors were identified for 63.1% of fatal crashes. Age- and sex-adjusted odds identified overcorrecting, speeding, lane errors, school morning crashes, distractions, and driving on slippery surfaces as having increased odds of fatality for the teen driver as well as newer vehicle models and heavier vehicle weight as protective. Among compliant drivers, weekday crashes before and after school and committing a driving violation at the time of crash were associated with increased risk of driver death and higher incidence of incapacitating injury in surviving drivers. Therapeutic study, level V.
NASA Astrophysics Data System (ADS)
Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.
2013-05-01
Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.
Visual Cortex Plasticity: A Complex Interplay of Genetic and Environmental Influences
Maya-Vetencourt, José Fernando; Origlia, Nicola
2012-01-01
The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-dependent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that underlie these plastic phenomena. Recent experimental evidence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be considered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans. PMID:22852098
ERIC Educational Resources Information Center
Giachero, Marcelo; Calfa, Gaston D.; Molina, Victor A.
2013-01-01
The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to…
A unified approach to the analysis and design of elasto-plastic structures with mechanical contact
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Olhoff, Niels; Taylor, John E.
1990-01-01
With structural design in mind, a new unified variational model has been developed which represents the mechanics of deformation elasto-plasticity with unilateral contact conditions. For a design problem formulated as maximization of the load carrying capacity of a structure under certain constraints, the unified model allows for a simultaneous analysis and design synthesis for a whole range of mechanical behavior.
Proposed Demolition of Hangars; Projects 11-0098-11-0102 Environmental Assessment
2012-03-22
decrease its space and energy use • Be compliant with current land use zoning ( Industrial ) • Not violate any provisions of the National Historic... industrial usage of the hangars, contamination of shallow soil is known to exist beneath or adjacent to the structures undergoing demolition and...buildings occur in an industrial part of the base which has already been heavily disturbed due to past construction activities. The buildings proposed for
Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors
NASA Astrophysics Data System (ADS)
Sheinin, Maxim Y.; Forth, Scott; Marko, John F.; Wang, Michelle D.
2011-09-01
DNA melting under torsion plays an important role in a wide variety of cellular processes. In the present Letter, we have investigated DNA melting at the single-molecule level using an angular optical trap. By directly measuring force, extension, torque, and angle of DNA, we determined the structural and elastic parameters of torsionally melted DNA. Our data reveal that under moderate forces, the melted DNA assumes a left-handed structure as opposed to an open bubble conformation and is highly torsionally compliant. We have also discovered that at low forces melted DNA properties are highly dependent on DNA sequence. These results provide a more comprehensive picture of the global DNA force-torque phase diagram.
Task Analysis - Aircraft Structural Maintenance AFSC 458X2
1989-08-01
GAGES OR METERS 13 10 23 SELECT WEIGHT MEASURING SCALES 15 6 21 RECALL TYPES, PROPERTIES, AND CHARACTERISTICS 8 11 19 OF PLASTICS SELECT COMMON...SURFACES (K0494) 121 00480 SHOT PEEN METAL SURFACES (K0498) 123 00490 BALANCE AIRCRAFT CONTROL SURFACES 125 00500 CLEAN PLASTICS (0275) 127 00510...STORE TRANSPARENT PLASTICS IN PROPER ENVIRONMENT (J0299) 128 00520 POLISH OUT SURFACE SCRATCHES 129 00530 CUT PLASTICS 131 00540 RESEARCH AIRCRAFT
Compliant tactile sensor for generating a signal related to an applied force
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo (Inventor)
2012-01-01
Tactile sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector.
76 FR 17429 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
... closets that comply with the Americans with Disabilities Act (ADA-compliant water closets) at the Orness... goods (ADA-compliant water closets) are not produced in the U.S. in sufficient and reasonably available...
Electromechanical acoustic liner
NASA Technical Reports Server (NTRS)
Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)
2007-01-01
A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.
Pirro, Valentina; Girolami, Flavia; Spalenza, Veronica; Gardini, Giulia; Badino, Paola; Nebbia, Carlo
2015-01-01
A chemometric class modelling strategy (unequal dispersed classes - UNEQ) was applied for the first time as a possible screening method to monitor the abuse of growth promoters in veal calves. Five serum biomarkers, known to reflect the exposure to classes of compounds illegally used as growth promoters, were determined from 50 untreated animals in order to design a model of controls, representing veal calves reared under good, safe and highly standardised breeding conditions. The class modelling was applied to 421 commercially bred veal calves to separate them into 'compliant' and 'non-compliant' with respect to the modelled controls. Part of the non-compliant animals underwent further histological and chemical examinations to confirm the presence of either alterations in target tissues or traces of illegal substances commonly administered for growth-promoting purposes. Overall, the congruence between the histological or chemical methods and the UNEQ non-compliant outcomes was approximately 58%, likely underestimated due to the blindness nature of this examination. Further research is needed to confirm the validity of the UNEQ model in terms of sensitivity in recognising untreated animals as compliant to the controls, and specificity in revealing deviations from ideal breeding conditions, for example due to the abuse of growth promoters.
Sripathi, Vangipuram Canchi; Kumar, Ramarathnam Krishna; Balakrishnan, Komarakshi R
2004-03-01
This study aims to find the fundamental differences in the mechanism of opening and closing of a normal aortic valve and a valve with a stiff root, using a dynamic finite element model. A dynamic, finite element model with time varying pressure was used in this study. Shell elements with linear elastic properties for the leaflet and root were used. Two different cases were analyzed: (1) normal leaflets inside a compliant root, and (2) normal leaflets inside a stiff root. A compliant aortic root contributes substantially to the smooth and symmetrical leaflet opening with minimal gradients. In contrast, the leaflet opening inside a stiff root is delayed, asymmetric, and wrinkled. However, this wrinkling is not associated with increased leaflet stresses. In compliant roots, the effective valve orifice area can substantially increase because of increased root pressure and transvalvular gradients. In stiff roots this effect is strikingly absent. A compliant aortic root contributes substantially to smooth and symmetrical leaflet opening with minimal gradients. The compliance also contributes much to the ability of the normal aortic valve to increase its effective valve orifice in response to physiologic demands of exercise. This effect is strikingly absent in stiff roots.
Fabrication Process of Silicone-based Dielectric Elastomer Actuators
Rosset, Samuel; Araromi, Oluwaseun A.; Schlatter, Samuel; Shea, Herbert R.
2016-01-01
This contribution demonstrates the fabrication process of dielectric elastomer transducers (DETs). DETs are stretchable capacitors consisting of an elastomeric dielectric membrane sandwiched between two compliant electrodes. The large actuation strains of these transducers when used as actuators (over 300% area strain) and their soft and compliant nature has been exploited for a wide range of applications, including electrically tunable optics, haptic feedback devices, wave-energy harvesting, deformable cell-culture devices, compliant grippers, and propulsion of a bio-inspired fish-like airship. In most cases, DETs are made with a commercial proprietary acrylic elastomer and with hand-applied electrodes of carbon powder or carbon grease. This combination leads to non-reproducible and slow actuators exhibiting viscoelastic creep and a short lifetime. We present here a complete process flow for the reproducible fabrication of DETs based on thin elastomeric silicone films, including casting of thin silicone membranes, membrane release and prestretching, patterning of robust compliant electrodes, assembly and testing. The membranes are cast on flexible polyethylene terephthalate (PET) substrates coated with a water-soluble sacrificial layer for ease of release. The electrodes consist of carbon black particles dispersed into a silicone matrix and patterned using a stamping technique, which leads to precisely-defined compliant electrodes that present a high adhesion to the dielectric membrane on which they are applied. PMID:26863283
Ali, Murtaza N; Rehman, Ihtesham Ur
2011-11-01
Oesophageal cancer is the ninth leading cause of malignant cancer death and its prognosis remains poor. Dysphagia which is an inability to swallow is a presenting symptom of oesophageal cancer and is indicative of incurability. The goal of this study was to design and manufacture an Auxetic structure film and to configure this film as an Auxetic stent for the palliative treatment of oesophageal cancer, and for the prevention of dysphagia. Polypropylene was used as a material for its flexibility and non-toxicity. The Auxetic (rotating-square geometry) structure was made by laser cutting the polypropylene film. This flat structure was welded together to form a tubular form (stent), by an adjustable temperature control soldering iron station: following this, an annealing process was also carried out to ease any material stresses. Poisson's ratio was estimated and elastic and plastic deformation of the Auxetic structure was evaluated. The elastic and plastic deformation behaviours of the Auxetic polypropylene film were evaluated by applying repetitive uniaxial tensile loads. Observation of the structure showed that it was initially elastically deformed, thereafter plastic deformation occurred. This research discusses a novel way of fabricating an Auxetic structure (rotating-squares connected together through hinges) on Polypropylene films, by estimating the Poisson's ratio and evaluating the plastic deformation relevant to the expansion behaviour of an Auxetic stent within the oesophageal lumen.
Taurino, Rosa; Pozzi, Paolo; Zanasi, Tania
2010-12-01
In view of the environmental problem involved in the management of WEEE, and then in the recycling of post-consumer plastic of WEEE there is a pressing need for rapid measurement technologies for simple identification of the various commercial plastic materials and of the several contaminants, to improve the recycling of such wastes. This research is focused on the characterization and recycling of two types of plastics, namely plastic from personal computer (grey plastic) and plastic from television (black plastic). Various analytical techniques were used to monitor the compositions of WEEE. Initially, the chemical structure of each plastic material was identified by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Polymeric contaminants of these plastics, in particular brominated flame retardants (BFRs) were detected in grey plastics only using different techniques. These techniques are useful for a rapid, correct and economics identification of a large volumes of WEEE plastics. Copyright © 2010 Elsevier Ltd. All rights reserved.
Are the Most Plastic Species the Most Abundant Ones? An Assessment Using a Fish Assemblage
Vidal, Nicolás; Zaldúa, Natalia; D'Anatro, Alejandro; Naya, Daniel E.
2014-01-01
Few studies have evaluated phenotypic plasticity at the community level, considering, for example, plastic responses in an entire species assemblage. In addition, none of these studies have addressed the relationship between phenotypic plasticity and community structure. Within this context, here we assessed the magnitude of seasonal changes in digestive traits (seasonal flexibility), and of changes during short-term fasting (flexibility during fasting), occurring in an entire fish assemblage, comprising ten species, four trophic levels, and a 37-fold range in body mass. In addition, we analyzed the relationship between estimates of digestive flexibility and three basic assemblage structure attributes, i.e., species trophic position, body size, and relative abundance. We found that: (1) Seasonal digestive flexibility was not related with species trophic position or with body size; (2) Digestive flexibility during fasting tended to be inversely correlated with body size, as expected from scaling relationships; (3) Digestive flexibility, both seasonal and during fasting, was positively correlated with species relative abundance. In conclusion, the present study identified two trends in digestive flexibility in relation to assemblage structure, which represents an encouraging departure point in the search of general patterns in phenotypic plasticity at the local community scale. PMID:24651865
ORNL Evaluation of Electrabel Safety Cases for Doel 3 / Tihange 2: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, Bennett Richard; Dickson, Terry L.; Gorti, Sarma B.
Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasilaminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop anmore » independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, Fracture Toughness Criteria for Protection Against Failure, New York (1992 and 2004). That screening assessment of all EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, Alternative Characterization Rules for QuasiLaminar Flaws . Results and conclusions from the ORNL flaw acceptance assessments of D3/T2 were compared with those from the 2015 EBL Safety Cases. Specific findings of the ORNL evaluation of that part of the EBL structural integrity assessment focusing on stability of the flaw population subjected to primary design transients include the following: ORNL s analysis results were similar to those of EBL in that very few characterized flaws were found not compliant with the ASME (1992) acceptance criterion. ORNL s application of the more recent ASME Section XI (2004) produced only four noncompliant flaws, all due to LOCAs. The finding of a greater number of non-compliant flaws in the EBL screening assessment is due principally to a significantly more restrictive (conservative) criterion for flaw size acceptance used by EBL. ORNL s screening assessment results (obtained using an analysis methodology different from that of EBL) are interpreted herein as confirming the EBL screening results for D3/T2. ORNL s independent refined analysis demonstrated the EBL-characterized flaw 1660, which is non-compliant in the ORNL and EBL screening assessment, is rendered compliant when modeled as a more realistic individual quasi-laminar flaw using a 3-D XFEM analysis approach. ORNL s and EBL s refined analyses are in good agreement for the flaw 1660 close to the clad/base metal interface; ORNL is not persuaded that repeating this exercise for more than one non-compliant flaw is necessary to accept the EBL conclusions derived from the aggregate of EBL refined analysis results. ORNL General Conclusions Regarding the Structural Integrity Assessment (SIA) Conducted by EBL for D3/T2 Based on comparative evaluations of ORNL and EBL SIA analyses and on consideration of other results, ORNL is in agreement with the general conclusions reported by Electrabel in their RPV D3/T2 Technical Summary Note of April 14, 2015: More than 99 percent of flaws in D3/T2 meet the defined screening criterion, rendering them benign with respect to initiation in the event of a design transient. Refined analyses of non-compliant flaws from the screening assessment indicate that only 11 of the 16196 detected flaws have a critical reference-temperature material index (designated RTNDT) that implies the possibility of the initiation of cleavage fracture at some future time. For those 11 2 flaws, the calculated margin in RTNDT (a measure of acceptable embrittlement relative to end-ofservice-life conditions) is significant, being greater than 80 C. Fatigue crack growth is not a concern in the flaw-acceptability analyses. Primary stress re-evaluation confirms that the collapse pressure is more than 1.5 times the design pressure in the presence of defects detected in D3/T2. Sufficient conservatisms are built into the input data and into the different steps of the SIA; in some cases, those conservatisms are quantified and imply that additional margins exist in the SIA. Taken as a whole, the foregoing results and conclusions confirm the structural integrity of Doel 3 and Tihange 2 under all design transients with ample margin in the presence of the 16196 detected flaws.« less
Synthesis and Evaluation of A High Precision 3D-Printed Ti6Al4V Compliant Parallel Manipulator
NASA Astrophysics Data System (ADS)
Pham, Minh Tuan; Teo, Tat Joo; Huat Yeo, Song; Wang, Pan; Nai, Mui Ling Sharon
2017-12-01
A novel 3D printed compliant parallel manipulator (CPM) with θX - θX - Z motions is presented in this paper. This CPM is synthesized using the beam-based method, a new structural optimization approach, to achieve optimized stiffness properties with targeted dynamic behavior. The CPM performs high non-actuating stiffness based on the predicted stiffness ratios of about 3600 for translations and 570 for rotations, while the dynamic response is fast with the targeted first resonant mode of 100Hz. A prototype of the synthesized CPM is fabricated using the electron beam melting (EBM) technology with Ti6Al4V material. Driven by three voice-coil (VC) motors, the CPM demonstrated a positioning resolution of 50nm along the Z axis and an angular resolution of ~0.3 “about the X and Y axes, the positioning accuracy is also good with the measured values of ±25.2nm and ±0.17” for the translation and rotations respectively. Experimental investigation also shows that this large workspace CPM has a first resonant mode of 98Hz and the stiffness behavior matches the prediction with the highest deviation of 11.2%. Most importantly, the full workspace of 10° × 10° × 7mm of the proposed CPM can be achieved, that demonstrates 3D printed compliant mechanisms can perform large elastic deformation. The obtained results show that CPMs printed by EBM technology have predictable mechanical characteristics and are applicable in precise positioning systems.
SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation
NASA Technical Reports Server (NTRS)
Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John
2006-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.
SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John
2007-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.
Ferreira, Francisco R M; Nogueira, Maria I; Defelipe, Javier
2014-01-01
In this article we discuss the influence of William James and Charles Darwin on the thoughts of Santiago Ramón y Cajal concerning the structure, plasticity, and evolution of the nervous system at the cellular level. Here we develop Cajal's notion that neuronal theory is a necessary condition to explain the plasticity of neural connections. Although the roots of the term "plasticity" in reference to neuroscience are not completely clear, Cajal was an important figure in the propagation and popularization of its use. It is true that he carried out a large number of studies throughout his career in favor of the neuronal theory, but perhaps one of the most interesting aspects of his studies was his innovative capacity to interpret structure as being the result of evolutionary mechanisms, i.e., natural selection. This capacity would ultimately lead Cajal to the conclusion that, in relation to the histology of the nervous system, such selection occurs in the establishment of connections between cells. The present article is divided into five sections: (1) Learning and general notions of organic plasticity in the 19th century; (2) The idea of "mental" plasticity proposed by James; (3) Neuronal theory and "structural" plasticity: general considerations; (4) Evolutionary factors of the nervous system in Cajal's work; and (5) Final considerations.
The Effect of Different Shape and Perforated rHDPE in Concrete Structures on Flexural Strength
NASA Astrophysics Data System (ADS)
Yuhazri, MY; Hafiz, KM; Myia, YZA; Jia, CP; Sihombing, H.; Sapuan, SM; Badarulzaman, NA
2017-10-01
This research was carried out to develop a reinforcing structure from recycled HDPE plastic lubricant containers to be embedded in concrete structure. Different forms and shapes of recycled HDPE plastic are designed as reinforcement incorporate with cement. In this study, the reinforcing structure was prepared by washing, cutting, dimensioning and joining of the waste HDPE containers (direct technique without treatment on plastic surface). Then, the rHDPE reinforced concrete was produced by casting based on standard of procedure in civil engineering technique. Eight different shapes of rHDPE in concrete structure were used to determine the concrete’s ability in terms of flexural strength. Embedded round shape in solid and perforated of rHDPE in concrete system drastically improved flexural strength at 17.78 % and 13.79 %. The result would seem that the concrete with reinforcing rHDPE structure exhibits a more gradual or flexible properties than concrete beams without reinforcement that has the properties of fragile.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation
Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L.; Moyer, James R.
2013-01-01
“Use it or lose it” is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability – this can prevent or provide treatment for cognitive decline not only in patients with clinical disorders but also in the aging population. PMID:23871744
Standard requirements for GCP-compliant data management in multinational clinical trials.
Ohmann, Christian; Kuchinke, Wolfgang; Canham, Steve; Lauritsen, Jens; Salas, Nader; Schade-Brittinger, Carmen; Wittenberg, Michael; McPherson, Gladys; McCourt, John; Gueyffier, Francois; Lorimer, Andrea; Torres, Ferràn
2011-03-22
A recent survey has shown that data management in clinical trials performed by academic trial units still faces many difficulties (e.g. heterogeneity of software products, deficits in quality management, limited human and financial resources and the complexity of running a local computer centre). Unfortunately, no specific, practical and open standard for both GCP-compliant data management and the underlying IT-infrastructure is available to improve the situation. For that reason the "Working Group on Data Centres" of the European Clinical Research Infrastructures Network (ECRIN) has developed a standard specifying the requirements for high quality GCP-compliant data management in multinational clinical trials. International, European and national regulations and guidelines relevant to GCP, data security and IT infrastructures, as well as ECRIN documents produced previously, were evaluated to provide a starting point for the development of standard requirements. The requirements were produced by expert consensus of the ECRIN Working group on Data Centres, using a structured and standardised process. The requirements were divided into two main parts: an IT part covering standards for the underlying IT infrastructure and computer systems in general, and a Data Management (DM) part covering requirements for data management applications in clinical trials. The standard developed includes 115 IT requirements, split into 15 separate sections, 107 DM requirements (in 12 sections) and 13 other requirements (2 sections). Sections IT01 to IT05 deal with the basic IT infrastructure while IT06 and IT07 cover validation and local software development. IT08 to IT015 concern the aspects of IT systems that directly support clinical trial management. Sections DM01 to DM03 cover the implementation of a specific clinical data management application, i.e. for a specific trial, whilst DM04 to DM12 address the data management of trials across the unit. Section IN01 is dedicated to international aspects and ST01 to the competence of a trials unit's staff. The standard is intended to provide an open and widely used set of requirements for GCP-compliant data management, particularly in academic trial units. It is the intention that ECRIN will use these requirements as the basis for the certification of ECRIN data centres.
NASA Astrophysics Data System (ADS)
Nadutov, V. M.; Vashchuk, D. L.; Karbivskii, V. L.; Volosevich, P. Yu.; Davydenko, O. A.
2018-04-01
The effect of cold plastic deformation by upsetting (e = 1.13) on structure and hybridised bonds of carbon in the fcc Invar Fe-30.9%Ni-1.23% C alloy was studied by means of X-ray phase analysis and X-ray photoelectron spectroscopy. Carbon precipitates along grain boundaries and inside of grains in the alloy after annealing and plastic deformation were revealed. The presence of mainly sp2- and sp3-hybridised C-C bonds attributing to graphite and amorphous carbon as well as the carbon bonds with impurity atoms and metallic Fe and Ni atoms in austenitic phase were revealed in the annealed and deformed alloy. It was shown for the first time that plastic deformation of the alloy results in partial destruction of the graphite crystal structure, increasing the relative part of amorphous carbon, and redistribution of carbon between structural elements as well as in a solid solution of austenitic phase.
NASA Astrophysics Data System (ADS)
Lock, S. S. M.; Lau, K. K.; Lock Sow Mei, Irene; Shariff, A. M.; Yeong, Y. F.; Bustam, A. M.
2017-08-01
A sequence of molecular modelling procedure has been proposed to simulate experimentally validated membrane structure characterizing the effect of CO2 plasticization, whereby it can be subsequently employed to elucidate the depression in glass transition temperature (Tg ). Based on the above motivation, unswollen and swollen Polysulfone membrane structures with different CO2 loadings have been constructed, whereby the accuracy has been validated through good compliance with experimentally measured physical properties. It is found that the presence of CO2 constitutes to enhancement in polymeric chain relaxation, which consequently promotes the enlargement of molecular spacing and causes dilation in the membrane matrix. A series of glass transition temperature treatment has been conducted on the verified molecular structure to elucidate the effect of CO2 loadings to the depression in Tg induced by plasticization. Subsequently, a modified Michealis-Menten (M-M) function has been implemented to quantify the effect of CO2 loading attributed to plasticization towards Tg .
Maya-Vetencourt, José Fernando; Pizzorusso, Tommaso
2013-01-01
Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex. PMID:25157210
Monitoring by Control Technique - Compliant (Low/No VOC/HAP) Inks and Coatings
Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Compliant (Low/No VOC/HAP) Inks and Coatings control techniques used to reduce pollutant emissions.
48 CFR 39.106 - Year 2000 compliance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY General 39.106 Year 2000 compliance. When acquiring information technology that will be required to perform date/time processing involving dates... information technology to be Year 2000 compliant; or (2) Require that non-compliant information technology be...
ERIC Educational Resources Information Center
Erk, Kendra A.; Rhein, Morgan; Krafcik, Matthew J.; Ydstie, Sophie
2015-01-01
An educational activity is described in which the structure and physical properties of disposable plastic cups were directly related to the method of processing. The mechanical properties of specimens cut from the walls of poly(ethylene terephthalate) (PETE) cups, oriented parallel and perpendicular to the thermoforming direction, were measured in…
Anisotropy of machine building materials
NASA Technical Reports Server (NTRS)
Ashkenazi, Y. K.
1981-01-01
The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.
ERIC Educational Resources Information Center
Kim, Nam-Gyoon; Park, Jong-Hee
2010-01-01
Recent research has demonstrated that Alzheimer's disease (AD) affects the visual sensory pathways, producing a variety of visual deficits, including the capacity to perceive structure-from-motion (SFM). Because the sensory areas of the adult brain are known to retain a large degree of plasticity, the present study was conducted to explore whether…
Wilkie, Iain C.
2016-01-01
The skeletal morphology of the arm spine joint of the brittlestar Ophiocomina nigra was examined by scanning electron microscopy and the associated epidermis, connective tissue structures, juxtaligamental system and muscle by optical and transmission electron microscopy. The behaviour of spines in living animals was observed and two experiments were conducted to establish if the spine ligament is mutable collagenous tissue: these determined (1) if animals could detach spines to which plastic tags had been attached and (2) if the extension under constant load of isolated joint preparations was affected by high potassium stimulation. The articulation normally operates as a flexible joint in which the articular surfaces are separated by compliant connective tissue. The articular surfaces comprise a reniform apposition and peg-in-socket mechanical stop, and function primarily to stabilise spines in the erect position. Erect spines can be completely immobilised, which depends on the ligament having mutable tensile properties, as was inferred from the ability of animals to detach tagged spines and the responsiveness of isolated joint preparations to high potassium. The epidermis surrounding the joint has circumferential constrictions that facilitate compression folding and unfolding when the spine is inclined. The interarticular connective tissue is an acellular meshwork of collagen fibril bundles and may serve to reduce frictional forces between the articular surfaces. The ligament consists of parallel bundles of collagen fibrils and 7–14 nm microfibrils. Its passive elastic recoil contributes to the re-erection of inclined spines. The ligament is permeated by cell processes containing large dense-core vesicles, which belong to two types of juxtaligamental cells, one of which is probably peptidergic. The spine muscle consists of obliquely striated myocytes that are linked to the skeleton by extensions of their basement membranes. Muscle contraction may serve mainly to complete the process of spine erection by ensuring close contact between the articular surfaces. PMID:27974856
NASA Astrophysics Data System (ADS)
Lipomi, Darren J.
2016-09-01
This presentation describes my group's efforts to understand the molecular and microstructural basis for the mechanical properties of organic semiconductors for organic photovoltaic (OPV) devices. Our work is motivated by two goals. The first goal is to mitigate mechanical forms of degradation of printed modules during roll-to-roll fabrication, installation, and environmental forces—i.e., wind, rain, snow, and thermal expansion and contraction. Mechanical stability is a prerequisite for inexpensive processing on flexible substrates: to encapsulate devices in glass is to surrender this advantage. The second goal is to enable the next generation of ultra-flexible and stretchable solar cells for collapsible, portable, and wearable applications, and as low-cost sources of energy—"solar tarps"—for disaster relief and for the developing world. It may seem that organic semiconductors, due to their carbon framework, are already sufficiently compliant for these applications. We have found, however, that the mechanical properties (stiffness and brittleness) occupy a wide range of values, and can be difficult to predict from molecular structure alone. We are developing an experimental and theoretical framework for how one can combine favorable charge-transport properties and mechanical compliance in organic semiconductor films. In particular, we have explored the roles of the backbone, alkyl side chain, microstructural order, the glass transition, molecular packing with fullerenes, plasticizing effects of additives, extent of separation of [60]PCBM and [70]PCBM, structural randomness in low-bandgap polymers, and reinforcement by encapsulation, on the mechanical compliance. We are exploring the applicability of semi-empirical "back-of-the-envelope" models, along with multi-scale molecular dynamics simulations, with the ultimate goal of designing electroactive organic materials whose mechanical properties can be dialed-in. We have used the insights we have developed to demonstrate several new applications for OPV that demand extreme compliance, including biaxial stretching and conformal bonding of whole devices to hemispheres, and devices with ultrathin encapsulation mounted on human skin that survive significant cyclic mechanical deformation in the outdoor environment.
NASA Astrophysics Data System (ADS)
Bozhko, S. A.; Betsofen, S. Ya.; Kolobov, Yu. R.; Vershinina, T. N.
2015-03-01
The laws of formation of an ultrafine structure in an Mg-Al-Zn-Mn alloy (MA5 alloy) under severe plastic deformation have been studied during lengthwise section rolling at a strain e = 1.59. The deformation behavior and the physical factors of anisotropy of yield strength during compression tests in various directions with respect to axis of rolling are analyzed. The role of crystallographic texture and twinning processes in the generation of strength processes and the development of plastic deformation of the alloy is analyzed.
Scoffoni, Christine; Kunkle, Justin; Pasquet-Kok, Jessica; Vuong, Christine; Patel, Amish J; Montgomery, Rebecca A; Givnish, Thomas J; Sack, Lawren
2015-07-01
Leaf hydraulic conductance (Kleaf ) quantifies the capacity of a leaf to transport liquid water and is a major constraint on light-saturated stomatal conductance (gs ) and photosynthetic rate (Amax ). Few studies have tested the plasticity of Kleaf and anatomy across growth light environments. These provided conflicting results. The Hawaiian lobeliads are an excellent system to examine plasticity, given the striking diversity in the light regimes they occupy, and their correspondingly wide range of Amax , allowing maximal carbon gain for success in given environments. We measured Kleaf , Amax , gs and leaf anatomical and structural traits, focusing on six species of lobeliads grown in a common garden under two irradiances (300/800 μmol photons m(-2) s(-1) ). We tested hypotheses for light-induced plasticity in each trait based on expectations from optimality. Kleaf , Amax , and gs differed strongly among species. Sun/shade plasticity was observed in Kleaf , Amax, and numerous traits relating to lamina and xylem anatomy, venation, and composition, but gs was not plastic with growth irradiance. Species native to higher irradiance showed greater hydraulic plasticity. Our results demonstrate that a wide set of leaf hydraulic, stomatal, photosynthetic, anatomical, and structural traits tend to shift together during plasticity and adaptation to diverse light regimes, optimizing performance from low to high irradiance. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.
Design of crashworthy structures with controlled behavior in HCA framework
NASA Astrophysics Data System (ADS)
Bandi, Punit
The field of crashworthiness design is gaining more interest and attention from automakers around the world due to increasing competition and tighter safety norms. In the last two decades, topology and topometry optimization methods from structural optimization have been widely explored to improve existing designs or conceive new designs with better crashworthiness. Although many gradient-based and heuristic methods for topology- and topometry-based crashworthiness design are available these days, most of them result in stiff structures that are suitable only for a set of vehicle components in which maximizing the energy absorption or minimizing the intrusion is the main concern. However, there are some other components in a vehicle structure that should have characteristics of both stiffness and flexibility. Moreover, the load paths within the structure and potential buckle modes also play an important role in efficient functioning of such components. For example, the front bumper, side frame rails, steering column, and occupant protection devices like the knee bolster should all exhibit controlled deformation and collapse behavior. The primary objective of this research is to develop new methodologies to design crashworthy structures with controlled behavior. The well established Hybrid Cellular Automaton (HCA) method is used as the basic framework for the new methodologies, and compliant mechanism-type (sub)structures are the highlight of this research. The ability of compliant mechanisms to efficiently transfer force and/or motion from points of application of input loads to desired points within the structure is used to design solid and tubular components that exhibit controlled deformation and collapse behavior under crash loads. In addition, a new methodology for controlling the behavior of a structure under multiple crash load scenarios by adaptively changing the contributions from individual load cases is developed. Applied to practical design problems, the results demonstrate that the methodologies provide a practical tool to aid the design engineer in generating design concepts for crashworthy structures with controlled behavior. Although developed in the HCA framework, the basic ideas behind these methods are generic and can be easily implemented with other available topology- and topometry-based optimization methods.
Micro-mechanical properties of the tendon-to-bone attachment.
Deymier, Alix C; An, Yiran; Boyle, John J; Schwartz, Andrea G; Birman, Victor; Genin, Guy M; Thomopoulos, Stavros; Barber, Asa H
2017-07-01
The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at a numerous scales that dissipate stress concentrations between compliant tendon and stiff bone. At the micrometer scale, the enthesis exhibits gradients in collagen and mineral composition and organization. However, the physiological mechanics of the enthesis at this scale remained unknown due to difficulty in preparing and testing micrometer scale samples. This study is the first to measure the tensile mechanical properties of the enthesis at the micrometer scale. Results demonstrated considerably enhanced mechanical performance at the micrometer length scale compared to the millimeter tissue length scale and identified a high-compliance zone near the mineralized gradient of the attachment. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. Copyright © 2017. Published by Elsevier Ltd.
PAVEMENTS, *REINFORCED PLASTICS), LANDING FIELDS, SPRAYS, GLASS TEXTILES, LAMINATED PLASTICS, TEST METHODS, FOUNDATIONS(STRUCTURES), SANDWICH CONSTRUCTION, SOILS, FEASIBILITY STUDIES, LOAD DISTRIBUTION
Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain
ERIC Educational Resources Information Center
Kolb, Bryan; Muhammad, Arif; Gibb, Robbin
2011-01-01
Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…
ERIC Educational Resources Information Center
Jin, Iksung; Kandel, Eric R.; Hawkins, Robert D.
2011-01-01
Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that…
JPL Space Telecommunications Radio System Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike
2013-01-01
A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).
Compliant leg behaviour explains basic dynamics of walking and running
Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard
2006-01-01
The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312
Graphene-Mesoporous Si Nanocomposite as a Compliant Substrate for Heteroepitaxy.
Boucherif, Abderrahim Rahim; Boucherif, Abderraouf; Kolhatkar, Gitanjali; Ruediger, Andreas; Arès, Richard
2017-05-01
The ultimate performance of a solid state device is limited by the restricted number of crystalline substrates that are available for epitaxial growth. As a result, only a small fraction of semiconductors are usable. This study describes a novel concept for a tunable compliant substrate for epitaxy, based on a graphene-porous silicon nanocomposite, which extends the range of available lattice constants for epitaxial semiconductor alloys. The presence of graphene and its effect on the strain of the porous layer lattice parameter are discussed in detail and new remarkable properties are demonstrated. These include thermal stability up to 900 °C, lattice tuning up to 0.9 % mismatch, and compliance under stress for virtual substrate thicknesses of several micrometers. A theoretical model is proposed to define the compliant substrate design rules. These advances lay the foundation for the fabrication of a compliant substrate that could unlock the lattice constant restrictions for defect-free new epitaxial semiconductor alloys and devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasticity and stability of visual field maps in adult primary visual cortex
Wandell, Brian A.; Smirnakis, Stelios M.
2010-01-01
Preface It is important to understand the balance between cortical plasticity and stability in various systems and spatial scales in the adult brain. We review measurements of adult plasticity in primary visual cortex (V1), a structure that has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but many inconsistencies in the data raise questions about the extent and nature of such plasticity. Understanding is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications. PMID:19904279
Studying plastic shear localization in aluminum alloys under dynamic loading
NASA Astrophysics Data System (ADS)
Bilalov, D. A.; Sokovikov, M. A.; Chudinov, V. V.; Oborin, V. A.; Bayandin, Yu. V.; Terekhina, A. I.; Naimark, O. B.
2016-12-01
An experimental and theoretical study of plastic shear localization mechanisms observed under dynamic deformation using the shear-compression scheme on a Hopkinson-Kolsky bar has been carried out using specimens of AMg6 alloy. The mechanisms of plastic shear instability are associated with collective effects in the microshear ensemble in spatially localized areas. The lateral surface of the specimens was photographed in the real-time mode using a CEDIP Silver 450M high-speed infrared camera. The temperature distribution obtained at different times allowed us to trace the evolution of the localization of the plastic strain. Based on the equations that describe the effect of nonequilibrium transitions on the mechanisms of structural relaxation and plastic flow, numerical simulation of plastic shear localization has been performed. A numerical experiment relevant to the specimen-loading scheme was carried out using a system of constitutive equations that reflect the part of the structural relaxation mechanisms caused by the collective behavior of microshears with the autowave modes of the evolution of the localized plastic flow. Upon completion of the experiment, the specimens were subjected to microstructure analysis using a New View-5010 optical microscope-interferometer. After the dynamic deformation, the constancy of the Hurst exponent, which reflects the relationship between the behavior of defects and roughness induced by the defects on the surfaces of the specimens is observed in a wider range of spatial scales. These investigations revealed the distinctive features in the localization of the deformation followed by destruction to the script of the adiabatic shear. These features may be caused by the collective multiscale behavior of defects, which leads to a sharp decrease in the stress-relaxation time and, consequently, a localized plastic flow and generation of fracture nuclei in the form of adiabatic shear. Infrared scanning of the localization zone of the plastic strain in situ and the subsequent study of the defect structure corroborated the hypothesis about the decisive role of non-equilibrium transitions in defect ensembles during the evolution of a localized plastic flow.
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Kaboli, S.
2016-12-01
The textbook stress strain curve has an elastic response followed by a yield point and then plastic flow. Typically in rock deformation experiments the observed `elastic' behavior deviates from the Young's modulus because the mechanical response of the loading frame and friction in the sample assembly and between moving parts of the loading frame cannot be easily corrected for. Stress strain curves generated in a D-DIA apparatus used in conjunction with synchrotron x-rays should not have these problems because the sample length is measured directly by radiography and the stress in the sample is measured from the sample itself by x-ray diffraction. However, the sample's `elastic behavior', in many instances, still deviates from what is expected. For example, in constant strain rate experiments on both polycrystalline San Carlos olivine and fayalite olivine conducted at a variety of temperatures (25 - 1200 C) and pressures (4 and 7 GPa) although we are able to use elastic plastic self-consistent (EPSC) models to describe the plastic behavior of the olivine we are not able to fit the initial elastic behavior for all but the lowest temperature experiments. To a first approximation it appears that samples are generally more compliant than their elastic properties would predict and that the degree of softening is temperature dependent. For D-DIA experiments which have been conducted at strain rates of 10-5 /sec, there are not enough data points to really clarify what is happening in the elastic portion of the experiment. Therefore, we conducted a suite of low strain experiments at 5 x 10-6/sec at temperatures ranging from 400 C to 1200 C. For each experiment we fit the diffraction data using EPSC models. We will present the results from our diffraction analysis as well as detailed microstructural analysis of the experimental samples using electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI). The relative degree of relaxation observed for each grain population in the diffraction data as well as to the predictions of the EPSC model combined with the microstructural data, will be used create a more comprehensive picture of how individual grains and various grain populations contribute to the low strain mechanical behavior of the polycrystal.
Bener, Abdulbari; Dafeeah, Elnour E; Salem, Mohamad O
2013-04-01
The aim of this study was to examine the extent of psychiatric patients' compliance and non-compliance with treatment and examine the factors that affect compliance. Patients were recruited who were between 16 and 60 years of age and who were hospitalized with a psychiatric disorder and treated in the outpatient clinics of the psychiatry department. A total of 689 patients were approached and 564 patients agreed to participate in the study, a response rate of 81.8%. Participants were asked to complete a questionnaire that asked about socio-demographic characteristics (e.g., age, gender, nationality, level of education, occupation, marital status, and life style habits); medication(s) prescribed and the participant's response; the degree of social supervision (rated subjectively by the patient as "poor," "good," or "very good"); data also were obtained from clinical records. Data analyses explored significant associations between compliance and non-compliance and a group of relevant variables. Of the 564 patients studied, 328 (58.2%) were compliant with treatment and 236 (41.8%) were non-compliant. There was no significant difference between compliance and non-compliance in terms of gender (p = 0.471). Patients between 21-30 years of age were significantly more compliant with drug treatment than not. Non-compliance was more common among patients diagnosed with schizophrenia (28.4%), followed by depression (14.4%), and bipolar affective disorder (12.7%) (p = 0.001). Only 25% of compliant patients and 26.3% of non-compliant patients used non-psychotropic medication. Social supervision (40%) was very poor in non-compliant patients whereas 49.4% of compliant patients had very good family support. Notable reasons for non-compliance were irregular attendance to clinic (55.5%), ignorance about side effects of medication (61%), free medicine (45.8%), and a lack of education about medication (58.1%). This study revealed that non-compliance rates among psychiatry patients were comparable to the rates reported in other studies. The findings suggest that there is a need to provide community-level mental health education and proper counseling to psychiatry patients.
Lee, Ming-Chung; Shen, Yu-Chih; Wang, Ji-Hung; Li, Yu-Ying; Li, Tzu-Hsien; Chang, En-Ting; Wang, Hsiu-Mei
2017-01-01
Obstructive sleep apnea (OSA) is associated with bad cardiovascular outcomes and a high prevalence of anxiety and depression. This study investigated the effects of continuous positive airway pressure (CPAP) on the severity of anxiety and depression in OSA patients with or without coronary artery disease (CAD) and on the rate of cardio- and cerebro-vascular events in those with OSA and CAD. This prospective study included patients with moderate-to-severe OSA, with or without a recent diagnosis of CAD; all were started on CPAP therapy. Patients completed the Chinese versions of the Beck Anxiety Inventory (BAI) and Beck Depression Inventory-II (BDI-II) at baseline and after 6-month follow-up. The occurrence of major adverse cardiac and cerebrovascular events (MACCE) was assessed every 3 months up to 1 year. BAI scores decreased from 8.5 ± 8.4 at baseline to 5.4 ± 6.9 at 6 months in CPAP-compliant OSA patients without CAD ( P < 0.05). BAI scores also decreased from 20.7 ± 14.9 to 16.1 ± 14.5 in CPAP-compliant OSA patients with CAD. BDI-II scores decreased in CPAP-compliant OSA patients without CAD (from 11.1 ± 10.7 at baseline to 6.6 ± 9.5 at 6 months) and in CPAP-compliant OSA patients with CAD (from 20.4 ± 14.3 to 15.9 ± 7.3). In addition, there was a large effect size (ES) of BAI and BDI in 6-month CPAP treatment of OSA patients with CAD and a large ES in those with OSA under CPAP treatment. In OSA patients with CAD, the occurrence of MACCE was significantly lower in CPAP-compliant patients than that in CPAP noncompliant patients (11% in CPAP compliant and 50% in noncompliant; P < 0.05). CPAP improved anxiety and depression in OSA patients regardless of CAD. In OSA patients with CAD, CPAP-compliant patients had a lower 1-year rate of MACCE than CPAP-noncompliant patients.
Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines
Stawarski, Michal; Stefaniuk, Marzena; Wlodarczyk, Jakub
2014-01-01
Dendritic spines are the locus for excitatory synaptic transmission in the brain and thus play a major role in neuronal plasticity. The ability to alter synaptic connections includes volumetric changes in dendritic spines that are driven by scaffolds created by the extracellular matrix (ECM). Here, we review the effects of the proteolytic activity of ECM proteases in physiological and pathological structural plasticity. We use matrix metalloproteinase-9 (MMP-9) as an example of an ECM modifier that has recently emerged as a key molecule in regulating the morphology and dysmorphology of dendritic spines that underlie synaptic plasticity and neurological disorders, respectively. We summarize the influence of MMP-9 on the dynamic remodeling of the ECM via the cleavage of extracellular substrates. We discuss its role in the formation, modification, and maintenance of dendritic spines in learning and memory. Finally, we review research that implicates MMP-9 in aberrant synaptic plasticity and spine dysmorphology in neurological disorders, with a focus on morphological abnormalities of dendritic protrusions that are associated with epilepsy. PMID:25071472
NASA Astrophysics Data System (ADS)
Kuhlmann-Wilsdorf, D.
1999-09-01
The facts regarding “regular” deformation bands (DBs) outlined in Part I of this series of articles are related to the low-energy dislocation structure (LEDS) theory of dislocation-based plasticity. They prompt an expansion of the theory by including the stresses due to strain gradients on account of changing selections of slip systems to the previously known dislocation driving forces. This last and until now neglected driving force is much smaller than the components considered hitherto, principally due to the applied stress and to mutual stress-screening among neighbor dislocations. As a result, it permits a near-proof of the LEDS hypothesis, to wit that among all structures which, in principle, are accessible to the dislocations, that one is realized which has the lowest free energy. Specifically, the temperature rises that would result from annihilating the largest DBs amount to only several millidegrees Centigrade, meaning that they, and by implication the entire dislocation structures, are close to thermodynamical equilibrium. This is in stark contrast to the assumption of the presently widespread self-organizing dislocation structures (SODS) modeling that plastic deformation occurs far from equilibrium and is subject to Prigogine’s thermodynamics of energy-flow-through systems. It also holds out promise for future rapid advances in the construction of constitutive equations, since the LEDS hypothesis is the principal basis of the LEDS theory of plastic deformation and follows directly from the second law of thermodynamics in conjunction with Newton’s third law. By contrast, all other known models of metal plasticity are in conflict with the LEDS hypothesis. In regard to texture modeling, the present analysis shows that Taylor’s criterion of minimum plastic work is incorrect and should be replaced by the criterion of minimum free energy in the stressed state. Last, the LEDS hypothesis is but a special case of the more general low-energy structure (LES) hypothesis, applying to plastic deformation independent of the deformation mechanism. It is thus seen that plastic deformation is one of nature’s means to generate order, as a byproduct of the entropy generation when mechanical work is largely converted into heat.
Politis, Ioannis; Basbas, Socrates; Papaioannou, Panagiotis
2013-11-01
The objective of this paper is to examine a number of factors (observed and latent) that might have a causal effect on drinking and driving (D&D) behaviour. Face-to-face surveys were conducted among patrons at bars and cafeterias and 305 valid questionnaires were filled. A confirmatory factor analysis was performed so as to identify the latent constructs and a mixed structural equation model was developed. From the analysis it came up that non-compliant behaviour of D&D is limited at older ages, also associated with high levels of income and car availability. Though men are consuming more alcohol, women seem to be more prone in driving under the influence (DUI) of alcohol. Furthermore, it was found that people who strongly support the examined interventions in the study (e.g. better enforcement, more traffic safety campaigns, stricter penalties) are more unlikely to drive after drinking compare to those who have some objections. Finally, it was not found any statistically significant relation between individuals' level of awareness and D&D behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.
Glottal aerodynamics in compliant, life-sized vocal fold models
NASA Astrophysics Data System (ADS)
McPhail, Michael; Dowell, Grant; Krane, Michael
2013-11-01
This talk presents high-speed PIV measurements in compliant, life-sized models of the vocal folds. A clearer understanding of the fluid-structure interaction of voiced speech, how it produces sound, and how it varies with pathology is required to improve clinical diagnosis and treatment of vocal disorders. Physical models of the vocal folds can answer questions regarding the fundamental physics of speech, as well as the ability of clinical measures to detect the presence and extent of disorder. Flow fields were recorded in the supraglottal region of the models to estimate terms in the equations of fluid motion, and their relative importance. Experiments were conducted over a range of driving pressures with flow rates, given by a ball flowmeter, and subglottal pressures, given by a micro-manometer, reported for each case. Imaging of vocal fold motion, vector fields showing glottal jet behavior, and terms estimated by control volume analysis will be presented. The use of these results for a comparison with clinical measures, and for the estimation of aeroacoustic source strengths will be discussed. Acknowledge support from NIH R01 DC005642.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping
2018-03-01
Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.
Fahlman, Andreas; Loring, Stephen H.; Johnson, Shawn P.; Haulena, Martin; Trites, Andrew W.; Fravel, Vanessa A.; Van Bonn, William G.
2014-01-01
We examined structural properties of the marine mammal respiratory system, and tested Scholander's hypothesis that the chest is highly compliant by measuring the mechanical properties of the respiratory system in five species of pinniped under anesthesia (Pacific harbor seal, Phoca vitulina; northern elephant seal, Mirounga angustirostris; northern fur seal Callorhinus ursinus; California sea lion, Zalophus californianus; and Steller sea lion, Eumetopias jubatus). We found that the chest wall compliance (CCW) of all five species was greater than lung compliance (airways and alveoli, CL) as predicted by Scholander, which suggests that the chest provides little protection against alveolar collapse or lung squeeze. We also found that specific respiratory compliance was significantly greater in wild animals than in animals raised in an aquatic facility. While differences in ages between the two groups may affect this incidental finding, it is also possible that lung conditioning in free-living animals may increase pulmonary compliance and reduce the risk of lung squeeze during diving. Overall, our data indicate that compliance of excised pinniped lungs provide a good estimate of total respiratory compliance. PMID:25426080
Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen
2014-01-01
After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
Significance of Objective Structured Clinical Examinations to Plastic Surgery Residency Training.
Simmons, Brian J; Zoghbi, Yasmina; Askari, Morad; Birnbach, David J; Shekhter, Ilya; Thaller, Seth R
2017-09-01
Objective structured clinical examinations (OSCEs) have proven to be a powerful tool. They possess more than a 30-year track record in assessing the competency of medical students, residents, and fellows. Objective structured clinical examinations have been used successfully in a variety of medical specialties, including surgery. They have recently found their way into the subspecialty of plastic surgery. This article uses a systematic review of the available literature on OSCEs and their recent use in plastic surgery. It incorporates survey results assessing program directors' views on the use of OSCEs. Approximately 40% of programs surveyed use OSCEs to assess the Accreditation Council for Graduate Medical Education core competencies. We found that 40% use OSCEs to evaluate specific plastic surgery milestones. Objective structured clinical examinations are usually performed annually. They cost anywhere between $100 and more than $1000 per resident. Four milestones giving residents the most difficulties on OSCEs were congenital anomalies, noncancer breast surgery, breast reconstruction, and practice-based learning and improvement. It was determined that challenges with milestones were due to lack of adequate general knowledge and surgical ward patient care, as well as deficits in professionalism and system-based problems. Programs were able to remediate weakness found by OSCEs using a variety of methods. Objective structured clinical examinations offer a unique tool to objectively assess the proficiency of residents in key areas of the Accreditation Council for Graduate Medical Education core competencies. In addition, they can be used to assess the specific milestones that plastic surgery residents must meet. This allows programs to identify and improve identified areas of weakness.
NASA Astrophysics Data System (ADS)
Mohan, Nisha
Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes," J. Mech.Phys. Solids, 59, pp. 2227--2237, Erratum 60, 1753-1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like 1) The initial linear elastic response. 2) One or more nonlinear instabilities, yielding, and hardening. The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch.; Weber, M.; Schöngart, M.
Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), lasermore » structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.« less
NASA Technical Reports Server (NTRS)
Ruscitto, D.; Mccormick, J.; Gray, S.
1978-01-01
A 38.1 mm (1.5 inch) diameter Hydresil Compliant Surface Air Lubricated Journal Bearing was designed and tested to obtain bearing performance characteristics at both room temperature and 315 C (600 F). Testing was performed at various speeds up to 60,000 rpm with varying loads. Rotating sensors provided an opportunity to examine the film characteristics of the compliant surface bearing. In addition to providing minimum film thickness values and profiles, many other insights into bearing operation were gained such as the influence of bearing fabrication accuracy and the influence of smooth foil deflection between the bumps.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, P.A.
1984-08-21
The skylight may be of the domed-type or flat-type and of single or double glass (acrylic or other transparent or translucent plastic) construction. The skylight fits within an opening in a roof or the like and has a peripheral base that may be constructed of a metal material such as aluminum, and which is fixed to the roof about the opening. The base comprises inner and outer base frames separated by a thermal break, a peripheral curb frame disposed over the base, and a retainer for securing the skylight cover over the curb frame. The curb frame or support framemore » has inner and outer sections connected by a heat insulating thermal barrier. The curb frame is constructed by welding at the corners of the support frame but eliminating the welding in the area of the thermal barrier thus alleviating a caulking operation at the top and the bottom of the curb frame. The base frame and curb frame have therebetween a compliant sealing means extending contiguously about and overlying the base frame and for sealing between the base frame and support frame.« less
GOSSIP, a New VO Compliant Tool for SED Fitting
NASA Astrophysics Data System (ADS)
Franzetti, P.; Scodeggio, M.; Garilli, B.; Fumana, M.; Paioro, L.
2008-08-01
We present GOSSIP (Galaxy Observed-Simulated SED Interactive Program), a new tool developed to perform SED fitting in a simple, user friendly and efficient way. GOSSIP automatically builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a χ^2 minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions. User defined models can be used, but GOSSIP is also able to load models produced by the most commonly used synthesis population codes. GOSSIP can be used interactively with other visualization tools using the PLASTIC protocol for communications. Moreover, since it has been developed with large data sets applications in mind, it will be extended to operate within the Virtual Observatory framework. GOSSIP is distributed to the astronomical community from the PANDORA group web site (http://cosmos.iasf-milano.inaf.it/pandora/gossip.html).
Migration of formaldehyde from melamine-ware: UK 2008 survey results.
Potter, E L J; Bradley, E L; Davies, C R; Barnes, K A; Castle, L
2010-06-01
Fifty melamine-ware articles were tested for the migration of formaldehyde - with hexamethylenetetramine (HMTA) expressed as formaldehyde - to see whether the total specific migration limit (SML(T)) was being observed. The SML(T), given in European Commission Directive 2002/72/EC as amended, is 15 mg kg(-1). Fourier transform-infrared (FT-IR) spectroscopy was carried out on the articles to confirm the plastic type. Articles were exposed to the food simulant 3% (w/v) aqueous acetic acid under conditions representing their worst foreseeable use. Formaldehyde and HMTA in food simulants were determined by a spectrophotometric derivatization procedure. Positive samples were confirmed by a second spectrophotometric procedure using an alternative derivatization agent. As all products purchased were intended for repeat use, three sequential exposures to the simulant were carried out. Formaldehyde was detected in the simulant exposed to 43 samples. Most of the levels found were well below the limits set in law such that 84% of the samples tested were compliant. However, eight samples had formaldehyde levels that were clearly above the legal maximum at six to 65 times the SML(T).
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.
2015-05-01
Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.
[Structural plasticity associated with drugs addiction].
Zhu, Jie; Cao, Guo-fen; Dang, Yong-hui; Chen, Teng
2011-12-01
An essential feature of drug addiction is that an individual continues to use drug despite the threat of severely adverse physical or psychosocial consequences. Persistent changes in behavior and psychological function that occur as a function of drugs of abuse are thought to be due to the reorganization of synaptic connections (structural plasticity) in relevant brain circuits (especially the brains reward circuits). In this paper we summarized evidence that, indeed, exposure to amphetamine, cocaine, nicotine or morphine produced persistent changes in the structure of dendrites and dendritic spines on cells in relevant brain regions. We also approached the potential molecular mechanisms of these changes. It is suggested that structural plasticity associated with exposure to drugs of abuse reflects a reorganization of patterns of synaptic connectivity in these neural systems, a reorganization that alters their operation, thus contributing to some of the persistent sequela associated with drug use-including addiction.
Plastic material investment in load-bearing silk attachments in spiders.
Wolff, Jonas O; Jones, Braxton; Herberstein, Marie E
2018-05-17
The nature and size of attachments is a fundamental element of animal constructions. Presumably, these adhesive structures are plastically deployed to balance material investment and attachment strength. Here we studied plasticity in dragline anchorages of the golden orb web spider, Nephila plumipes. Specifically, we predict that spiders adjust the size and structure of dragline anchorages with load, i.e. spider mass. Mass was manipulated by attaching lead pieces to the spider's abdomen resulting in a 50 percent increase in mass. Loaded spiders spun larger but structurally similar thread anchorages than unloaded spiders. Thus, the spinning program that determines the overall anchor structure is highly stereotypic, and flexibility is introduced through varying the anchor size by increasing material investment. Our study showcases substrate attachments as suitable models to investigate the interplay between innate and changeable elements in the economy of building behaviours. Copyright © 2018 Elsevier GmbH. All rights reserved.
Plasticization effect of triacetin on structure and properties of starch ester film.
Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin
2013-05-15
The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability. Copyright © 2013 Elsevier Ltd. All rights reserved.
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
ERIC Educational Resources Information Center
Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert
2010-01-01
B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…
USDA-ARS?s Scientific Manuscript database
Three different commercially available structural plastic media were evaluated in triplicate in moving bed toriod filters under low salinity (11-12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double dra...
ERIC Educational Resources Information Center
Cipolla, Laura; Ferrari, Lia A.
2016-01-01
A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).
Plasticity in single neuron and circuit computations
NASA Astrophysics Data System (ADS)
Destexhe, Alain; Marder, Eve
2004-10-01
Plasticity in neural circuits can result from alterations in synaptic strength or connectivity, as well as from changes in the excitability of the neurons themselves. To better understand the role of plasticity in the brain, we need to establish how brain circuits work and the kinds of computations that different circuit structures achieve. By linking theoretical and experimental studies, we are beginning to reveal the consequences of plasticity mechanisms for network dynamics, in both simple invertebrate circuits and the complex circuits of mammalian cerebral cortex.
USDA-ARS?s Scientific Manuscript database
SNARC has been working with the folks at AADAP on two studies: 1) a “near” GLP compliant Target Animal Safety study to evaluate the safety of Aquaflor® administered in feed to sunshine bass and 2) a GLP compliant Target Animal Safety study to evaluate the safety of 17a-methyltestosterone administere...
Keyhan, Sanaz; Acharya, Kelly S; Acharya, Chaitanya R; Yeh, Jason S; Provost, Meredith P; Goldfarb, James M; Muasher, Suheil J
2016-09-01
To determine whether IVF clinics are compliant with American Society for Reproductive Medicine (ASRM) and Society for Assisted Reproductive Technology (SART) (ASRM/SART) guidelines and assess the multiple pregnancy outcomes according to the number of embryos transferred. Retrospective cohort study. Not applicable. Data from 59,689 fresh first autologous IVF cycles from the 2011-2012 SART registry. None. Percentage of compliant cycles, multiple pregnancy rate (PR). Between 2011 and 2012, a total of 59,689 fresh first autologous cycles were analyzed. Among cleavage-stage ET cycles, the noncompliance rate ranged from 10%-27.4% depending on the age group. The multiple PR was significantly increased in noncompliant cycles involving patients <35 years (38.1% vs. 28.7%) and 35-37 years (35.4% vs. 24.5%) compared with compliant cycles. Among blastocyst-stage ET cycles, the highest rate of noncompliance was seen in patients <35 years old (71%), which resulted in a statistically higher multiple PR (48.3% vs. 2.8%) compared with compliant cycles. Far fewer cycles were noncompliant in patients 35-40 years of age. In a subanalysis of compliant cycles, transferring two blastocyst embryos in patients 35-37 years and 38-40 years resulted in a higher live birth rate compared with the transfer of one embryo (50.4% vs. 40.9% and 42.1% vs. 30.0%, respectively) but the multiple PR was also significantly higher (40.5% vs. 1.7% and 34.0% vs. 2.0%, respectively). Most first fresh autologous IVF cycles performed from 2011-2012 were compliant with ASRM/SART guidelines, except those that involved a blastocyst ET in patients <35 years. Despite compliance, cycles that involved the transfer of >1 embryo resulted in a high multiple PR, whereas noncompliant cycles resulted in an even more remarkable multiple PR for both cleavage and blastocyst-stage embryos. Clinics need to be more compliant with ET limits and ASRM/SART need to consider revising their guidelines to limit the number of blastocyst transfer to one in patients ≤40 years of age undergoing their first IVF cycle. Furthermore, decreasing the number of cleavage-stage embryos transferred in patients ≤40 years of age should also be considered. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.
2005-01-01
A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.
Academic Status of Plastic Surgery in the United States and the Relevance of Independence.
Liu, P; Singh, M; Eriksson, E
2016-04-01
The basic administrative structures at most academic institutions were implemented more than 50 years ago and have remained largely unchanged. Since the surgical specialties were in nascent stages during that time, they were clubbed together within the department of surgery. There has been extensive growth in the breadth and depth of plastic surgery over the past few decades and current administrative structures might not truly reflect the current standing of plastic surgery. The goal of this article was to review the academic status of Plastic Surgery in the United States and assess the relevance of independence from the department of surgery. A national survey of 94 hospitals with plastic surgery residency training programs in the United States was conducted to investigate the academic status of plastic surgery. 25 out of those 94 programs had department status with their respective hospitals while another 9 programs were actively planning on transitioning to department status. Out of the 25 plastic surgery hospital departments, 17 programs were also University departments. The number of plastic surgery departments has more than doubled over the past 10 years and continues to rise as more plastic surgery divisions seek department status. There are multiple advantages to seeking department status such as financial and administrative autonomy, ability to participate in medical school curricula, easier access to interdepartmental institutes and faculties, parity with other specialties, and increased control of resident education. There has been concerted advocacy for separating from surgery departments and seeking independent departmental status for plastic surgery. However, the transition from a division to department is a slow and demanding process and requires a well-planned strategy. © Georg Thieme Verlag KG Stuttgart · New York.
‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China
NASA Astrophysics Data System (ADS)
Liu, E. K.; He, W. Q.; Yan, C. R.
2014-09-01
Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.
Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins
Wei, Yujie; Li, Yongqiang; Zhu, Lianchun; Liu, Yao; Lei, Xianqi; Wang, Gang; Wu, Yanxin; Mi, Zhenli; Liu, Jiabin; Wang, Hongtao; Gao, Huajian
2014-01-01
The strength–ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength–ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems. PMID:24686581
Software engineering capability for Ada (GRASP/Ada Tool)
NASA Technical Reports Server (NTRS)
Cross, James H., II
1995-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.
Computational modeling of neural plasticity for self-organization of neural networks.
Chrol-Cannon, Joseph; Jin, Yaochu
2014-11-01
Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
78 FR 42406 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... 3 of the Rotorcraft Flight Manual. Many of the non-compliant servo-controls were installed by the... Emergency AD, we have discovered that the servo-control's component history card or equivalent record may... servo-controls with a non-compliant input lever bearing be replaced and returned to the manufacturer. AD...
An MPI-1 Compliant Thread-Based Implementation
NASA Astrophysics Data System (ADS)
Díaz Martín, J. C.; Rico Gallego, J. A.; Álvarez Llorente, J. M.; Perogil Duque, J. F.
This work presents AzequiaMPI, the first full compliant implementation of the MPI-1 standard where the MPI node is a thread. Performance comparisons with MPICH2-Nemesis show that thread-based implementations exploit adequately the multicore architectures under oversubscription, what could make MPI competitive with OpenMP-like solutions.
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
Plastic waste associated with disease on coral reefs.
Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew
2018-01-26
Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Hiding the weakness: structural robustness using origami design
NASA Astrophysics Data System (ADS)
Liu, Bin; Santangelo, Christian; Cohen, Itai
2015-03-01
A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.
[The behavior of fiber-reinforced plastics during laser cutting].
Emmrich, M; Levsen, K; Trasser, F J
1992-06-01
The pattern of the organic emissions, which are produced by processing of fibre reinforced plastics (epoxy resins reinforced by aramid and glass fibres and phenol resins reinforced by aramid fibre) with laser beam was studied and the concentrations of the main components determined. Despite the application of plastic materials with different chemical structures, the observed patterns are very similar. Mainly aromatic hydrocarbons are emitted, especially benzene and toluene, as well as some heteroatom-containing aromatic hydrocarbons (e.g. phenol). By use of oxygen as process gas the emissions during cutting of glass fibre reinforced plastics can be reduced, while they will be constantly high with aramid fibre reinforced plastics.
NASA Astrophysics Data System (ADS)
Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.
2018-01-01
A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).
Physics in Plastics Technology.
ERIC Educational Resources Information Center
Thomas, Ken
1980-01-01
Discusses the increasing role of the physicist in plastics technology. Relationships of molecular structure to material behavior, design which is related to the material, and the practical problems of fabricating a material into an article are included. (HM)
[Osseontegration of trial implants of carbon fiber reinforced plastics].
Schreiner, U; Schwarz, M; Scheller, G; Schroeder-Boersch, H; Jani, L
2000-01-01
To what extent are carbon fibre-reinforced plastics (CFRP) suitable as an osseous integration surface for implants? CFRP test implants having a plexus-structured, rhombus-structured, and plexus-structured, hydroxyapatite surface were implanted in the femura of mini-plgs. Exposure time lasted 12 weeks. The implants were subjected to a macroradiological, a histological-histomorphometrical, and a fluorescence-microscopical evaluation. One half of the uncoated, plexus-structured implants were not osteointegrated, the other half displayed an osteointegration rate of 11.8% in the spongy area and 29.8% in the cortex layer. The HA-coated test implants showed an osteointegration of 29.5% in the spongiosa and 56.8% in the cortex layer. The rhombus-structured test implants had an osteointegration of 29.2% (spongiosa) and 46.2% (cortex layer). Compared to the osteointegration of metallic, especially titanium surfaces the CFRP surfaces tested by us fared worse, especially the uncoated, plexus-structured surfaces. For this reason we view very critically the use of carbon-fibre reinforced plastics together with the surfaces tested by us as osteointegrating surfaces.
Numerical and Experimental Studies on Impact Loaded Concrete Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saarenheimo, Arja; Hakola, Ilkka; Karna, Tuomo
2006-07-01
An experimental set-up has been constructed for medium scale impact tests. The main objective of this effort is to provide data for the calibration and verification of numerical models of a loading scenario where an aircraft impacts against a nuclear power plant. One goal is to develop and take in use numerical methods for predicting response of reinforced concrete structures to impacts of deformable projectiles that may contain combustible liquid ('fuel'). Loading, structural behaviour, like collapsing mechanism and the damage grade, will be predicted by simple analytical methods and using non-linear FE-method. In the so-called Riera method the behavior ofmore » the missile material is assumed to be rigid plastic or rigid visco-plastic. Using elastic plastic and elastic visco-plastic material models calculations are carried out by ABAQUS/Explicit finite element code, assuming axisymmetric deformation mode for the missile. With both methods, typically, the impact force time history, the velocity of the missile rear end and the missile shortening during the impact were recorded for comparisons. (authors)« less
Ankle rehabilitation device with two degrees of freedom and compliant joint
NASA Astrophysics Data System (ADS)
Racu (Cazacu, C.-M.; Doroftei, I.
2015-11-01
We propose a rehabilitation device that we intend to be low cost and easy to manufacture. The system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg. To avoid injure of the ankle joint, this device is equipped with a compliant joint between the motor and mechanical transmission. The torque of this joint is intended to be adjustable, according to the degree of ankle joint damage. To choose the material and the dimensions of this compliant joint, in this paper we perform the first stress simulation. The minimum torque is calculated, while the maximum torque is given by the preliminary chosen actuator.
Seth, Ashok; Gupta, Sajal; Pratap Singh, Vivudh; Kumar, Vijay
2017-09-01
Final stent dimensions remain an important predictor of restenosis, target vessel revascularisation (TVR) and subacute stent thrombosis (ST), even in the drug-eluting stent (DES) era. Stent balloons are usually semi-compliant and thus even high-pressure inflation may not achieve uniform or optimal stent expansion. Post-dilatation with non-compliant (NC) balloons after stent deployment has been shown to enhance stent expansion and could reduce TVR and ST. Based on supporting evidence and in the absence of large prospective randomised outcome-based trials, post-dilatation with an NC balloon to achieve optimal stent expansion and maximal luminal area is a logical technical recommendation, particularly in complex lesion subsets.
NASA Astrophysics Data System (ADS)
Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.
2015-07-01
This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.
Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.
Soto-Pérez, Linoshka; Hwang, Sangchul
2016-07-01
Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review
NASA Astrophysics Data System (ADS)
Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar
2017-05-01
The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.
Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.
Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong
2013-01-01
In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP) is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential application for examining STDP by measuring neural population activity in a cultured neural network.
PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES
NASA Technical Reports Server (NTRS)
Lawrence, C.
1994-01-01
PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.
ERIC Educational Resources Information Center
Spencer, R. Donald
1984-01-01
Describes an experiment (using plastic bags) designed to give students practical understanding on using statistics to evaluate data and how statistical treatment of experimental results can enhance their value in solving scientific problems. Students also gain insight into the orientation and structure of polymers by examining the plastic bags.…
2014-10-01
offer a practical solution to calculating the grain -scale hetero- geneity present in the deformation field. Consequently, crystal plasticity models...process/performance simulation codes (e.g., crystal plasticity finite element method). 15. SUBJECT TERMS ICME; microstructure informatics; higher...iii) protocols for direct and efficient linking of materials models/databases into process/performance simulation codes (e.g., crystal plasticity
Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.
De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter
2015-08-18
Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment.
40 CFR 63.4291 - What are my options for meeting the emission limits?
Code of Federal Regulations, 2011 CFR
2011-07-01
... option. (b) Slashing. You must use the compliant material option to demonstrate that the mass fraction of... dyeing/finishing affected source. (1) Compliant material option. Demonstrate that the mass fraction of... paragraphs (4)(i) through (iv) of this paragraph. (i) The fraction of organic HAP applied in your dyeing...
40 CFR 63.4291 - What are my options for meeting the emission limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... option. (b) Slashing. You must use the compliant material option to demonstrate that the mass fraction of... dyeing/finishing affected source. (1) Compliant material option. Demonstrate that the mass fraction of... paragraphs (4)(i) through (iv) of this paragraph. (i) The fraction of organic HAP applied in your dyeing...
40 CFR 63.4291 - What are my options for meeting the emission limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... option. (b) Slashing. You must use the compliant material option to demonstrate that the mass fraction of... dyeing/finishing affected source. (1) Compliant material option. Demonstrate that the mass fraction of... paragraphs (4)(i) through (iv) of this paragraph. (i) The fraction of organic HAP applied in your dyeing...
40 CFR 63.4291 - What are my options for meeting the emission limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... option. (b) Slashing. You must use the compliant material option to demonstrate that the mass fraction of... dyeing/finishing affected source. (1) Compliant material option. Demonstrate that the mass fraction of... paragraphs (4)(i) through (iv) of this paragraph. (i) The fraction of organic HAP applied in your dyeing...
VCM Process Design: An ABET 2000 Fully Compliant Project
ERIC Educational Resources Information Center
Benyahia, Farid
2005-01-01
A long experience in undergraduate vinyl chloride monomer (VCM) process design projects is shared in this paper. The VCM process design is shown to be fully compliant with ABET 2000 criteria by virtue of its abundance in chemical engineering principles, integration of interpersonal and interdisciplinary skills in design, safety, economics, and…
Inside the black box of food safety: a qualitative study of 'non-compliance' among food businesses.
Brough, Mark; Davies, Belinda; Johnstone, Eleesa
2016-04-01
Issue addressed This paper examines the meaning of food safety among food businesses deemed non-compliant and considers the need for an insider perspective to inform a more nuanced health promotion practice. Methods In-depth interviews were conducted with 29 food business operators who had recently been deemed 'non-compliant' through Council inspection. Results Paradoxically, these 'non-compliers' revealed a strong belief in the importance of food safety as well as a desire to comply with the regulations as communicated to them by Environmental Health Officers. Conclusions The evidence base of food safety is largely informed by the science of food hazards, yet there is a very important need to consider the practical daily application of food safety practices. This requires a more socially nuanced appreciation of food businesses beyond the simple dichotomy of compliant/ non-compliant. So what? Armed with a deeper understanding of the social context surrounding food safety practice, it is anticipated that a more balanced, collaborative mode of food safety health promotion could develop, which could add to the current model of regulation.
Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang
2015-09-02
High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.
Porous media heat transfer for injection molding
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
Structural Transformations in Metallic Materials During Plastic Deformation
NASA Astrophysics Data System (ADS)
Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.
2017-03-01
In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.
Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia.
Syakti, Agung Dhamar; Bouhroum, Rafika; Hidayati, Nuning Vita; Koenawan, Chandra Joei; Boulkamh, Abdelaziz; Sulistyo, Isdy; Lebarillier, Stephanie; Akhlus, Syafsir; Doumenq, Pierre; Wong-Wah-Chung, Pascal
2017-09-15
Qualitative analysis of the structures of the polymers composing floating plastic debris was performed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the aging of the debris was assessed by measuring carbonyl group formation on the particle surfaces. Plastic material made up >75% of the 2313 items collected during a three-year survey. The size, shape and color of the microplastic were correlated with the polymer structure. The most abundant plastic materials were polypropylene (68%) and low-density polyethylene (11%), and the predominant colors of the plastics were white, blue and green. Cilacap Bay, Indonesia, was contaminated with microplastic at a concentration of 2.5mg·m 3 . The carbonyl index demonstrated that most of the floating microplastic was only slightly degraded. This study highlights the need to raise environmental awareness through citizen science education and adopting good environmental practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity
Effenberger, Felix; Jost, Jürgen; Levina, Anna
2015-01-01
Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. PMID:26335425
Emergence of small-world structure in networks of spiking neurons through STDP plasticity.
Basalyga, Gleb; Gleiser, Pablo M; Wennekers, Thomas
2011-01-01
In this work, we use a complex network approach to investigate how a neural network structure changes under synaptic plasticity. In particular, we consider a network of conductance-based, single-compartment integrate-and-fire excitatory and inhibitory neurons. Initially the neurons are connected randomly with uniformly distributed synaptic weights. The weights of excitatory connections can be strengthened or weakened during spiking activity by the mechanism known as spike-timing-dependent plasticity (STDP). We extract a binary directed connection matrix by thresholding the weights of the excitatory connections at every simulation step and calculate its major topological characteristics such as the network clustering coefficient, characteristic path length and small-world index. We numerically demonstrate that, under certain conditions, a nontrivial small-world structure can emerge from a random initial network subject to STDP learning.
Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea
2017-10-23
Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.
A review of plastic waste biodegradation.
Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S
2005-01-01
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.
Wright, Alexander D; Laing, Andrew C
2012-10-01
Novel compliant flooring systems are a promising approach for reducing fall-related injuries in seniors, as they may provide up to 50% attenuation in peak force during simulated hip impacts while eliciting only minimal influences on balance. This study aimed to determine the protective capacity of novel compliant floors during simulated 'high severity' head impacts compared to common flooring systems. A headform was impacted onto a common Commercial-Carpet at 1.5, 2.5, and 3.5 m/s in front, back, and side orientations using a mechanical drop tower. Peak impact force applied to the headform (F(max)), peak linear acceleration of the headform (g(max)) and Head Injury Criterion (HIC) were determined. For the 3.5 m/s trials, backwards-oriented impacts were associated with the highest F(max) and HIC values (p<0.001); accordingly, this head orientation was used to complete additional trials on three common floors (Resilient Rubber, Residential-Loop Carpet, Berber Carpet) and six novel compliant floors at each impact velocity. ANOVAs indicated that flooring type was associated with all parameters at each impact velocity (p<0.001). Compared to impacts on the Commercial Carpet, Dunnett's post hoc indicated all variables were smaller (25-80%) for the novel compliant floors (p<0.001), but larger for Resilient Rubber (31-159%, p<0.01). This study demonstrates that during 'high severity' simulated impacts, novel compliant floors can substantially reduce the forces and accelerations applied to a headform compared to common floors including carpet and resilient rubber. In combination with reports of minimal balance impairments, these findings support the promise of novel compliant floors as a biomechanically effective strategy for reducing fall-related injuries including traumatic brain injuries and skull fractures. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel
2016-09-01
Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Mechanical and time-dependent behavior of wood-plastic composites subjected to bending
S. E. Hamel; John Hermanson; S. M. Cramer
2015-01-01
The most popular use of woodâplastic composite (WPC) members in the United States has been as outdoor decking material in residential construction. If the use of these products expands into more structural applications, such as beams and joists, it is imperative that the materialâs mechanical behavior be understood. Since most of the potential structural uses of this...
Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn
2018-05-23
Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee health needs to be determined. Copyright © 2018 Elsevier B.V. All rights reserved.
[Survey of plasticizers in polyvinyl chloride toys].
Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Hirahara, Yoshichika; Kawamura, Yoko
2012-01-01
Plasticizers in 101 samples of polyvinyl chloride (PVC) toys on the Japanese market were surveyed. No phthalates were detected in designated toys, though bis(2-ethylhexyl)phthalate, diisononyl phthalate, diisobutyl phthalate, dibutyl phthalate, diisodecyl phthalate and benzyl butyl phthalate were detected in more than half of other toys. 2,2,4-Tributyl-1,3-pentanediol diisobutylate, o-acetyl tributyl citrate, adipates and diacetyl lauroyl glycerol, which are alternative plasticizers to phthalates, were detected. The results of structural analysis confirmed the presence of di(2-ethylhexyl)terephthalate, tributyl citrate, diisononyl 1,2-cyclohexanedicarboxylate and neopentyl glycol esters; these have not previonsly been reported in Japan. There appears to be a shift in plasticizers used for designated toys from phthalates to new plasticizers, and the number of different plasticizers is increasing.
Filopodia: A Rapid Structural Plasticity Substrate for Fast Learning
Ozcan, Ahmet S.
2017-01-01
Formation of new synapses between neurons is an essential mechanism for learning and encoding memories. The vast majority of excitatory synapses occur on dendritic spines, therefore, the growth dynamics of spines is strongly related to the plasticity timescales. Especially in the early stages of the developing brain, there is an abundant number of long, thin and motile protrusions (i.e., filopodia), which develop in timescales of seconds and minutes. Because of their unique morphology and motility, it has been suggested that filopodia can have a dual role in both spinogenesis and environmental sampling of potential axonal partners. I propose that filopodia can lower the threshold and reduce the time to form new dendritic spines and synapses, providing a substrate for fast learning. Based on this proposition, the functional role of filopodia during brain development is discussed in relation to learning and memory. Specifically, it is hypothesized that the postnatal brain starts with a single-stage memory system with filopodia playing a significant role in rapid structural plasticity along with the stability provided by the mushroom-shaped spines. Following the maturation of the hippocampus, this highly-plastic unitary system transitions to a two-stage memory system, which consists of a plastic temporary store and a long-term stable store. In alignment with these architectural changes, it is posited that after brain maturation, filopodia-based structural plasticity will be preserved in specific areas, which are involved in fast learning (e.g., hippocampus in relation to episodic memory). These propositions aim to introduce a unifying framework for a diversity of phenomena in the brain such as synaptogenesis, pruning and memory consolidation. PMID:28676753
Nava, Nicoletta; Treccani, Giulia; Müller, Heidi Kaastrup; Popoli, Maurizio; Wegener, Gregers; Elfving, Betina
2017-01-01
It is well established that stress plays a major role in the pathogenesis of neuropsychiatric diseases. Stress-induced alteration of synaptic plasticity has been hypothesized to underlie the morphological changes observed by neuroimaging in psychiatric patients in key regions such as hippocampus and prefrontal cortex (PFC). We have recently shown that a single acute stress exposure produces significant short-term alterations of structural plasticity within medial PFC. These alterations were partially prevented by previous treatment with chronic desipramine (DMI). In the present study we evaluated the effects of acute Foot-shock (FS)-stress and pre-treatment with the traditional antidepressant DMI on the gene expression of key regulators of synaptic plasticity and structure. Expression of Homer, Shank, Spinophilin, Densin-180, and the small RhoGTPase related gene Rac1 and downstream target genes, Limk1, Cofilin1 and Rock1 were investigated 1 day (1d), 7 d and 14d after FS-stress exposure. We found that DMI specifically increases the short-term expression of Spinophilin, as well as Homer and Shank family genes, and that both acute stress and DMI exert significant long-term effects on mRNA levels of genes involved in spine plasticity. These findings support the knowledge that acute FS stress and antidepressant treatment induce both rapid and sustained time-dependent alterations in structural components of synaptic plasticity in rodent medial PFC. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Villarroya, Olga; Ballestín, Raúl; López-Hidalgo, Rosa; Mulet, Maria; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan; Gilabert-Juan, Javier; Varea, Emilio
2018-01-01
Down syndrome (DS) is the most common chromosomal aneuploidy. Although trisomy on chromosome 21 can display variable phenotypes, there is a common feature among all DS individuals: the presence of intellectual disability. This condition is partially attributed to abnormalities found in the hippocampus of individuals with DS and in the murine model for DS, Ts65Dn. To check if all hippocampal areas were equally affected in 4-5 month adult Ts65Dn mice, we analysed the morphology of dentate gyrus granule cells and cornu ammonis pyramidal neurons using Sholl method on Golgi-Cox impregnated neurons. Structural plasticity has been analysed using immunohistochemistry for plasticity molecules followed by densitometric analysis (Brain Derived Neurotrophic Factor (BDNF), Polysialylated form of the Neural Cell Adhesion Molecule (PSA-NCAM) and the Growth Associated Protein 43 (GAP43)). We observed an impairment in the dendritic arborisation of granule cells, but not in the pyramidal neurons in the Ts65Dn mice. When we analysed the expression of molecules related to structural plasticity in trisomic mouse hippocampus, we observed a reduction in the expression of BDNF and PSA-NCAM, and an increment in the expression of GAP43. These alterations were restricted to the regions related to dentate granule cells suggesting an interrelation. Therefore the impairment in dendritic arborisation and molecular plasticity is not a general feature of all Down syndrome principal neurons. Pharmacological manipulations of the levels of plasticity molecules could provide a way to restore granule cell morphology and function.
Probing Chemical Space with Alkaloid-Inspired Libraries
McLeod, Michael C.; Singh, Gurpreet; Plampin, James N.; Rane, Digamber; Wang, Jenna L.; Day, Victor W.; Aubé, Jeffrey
2014-01-01
Screening of small molecule libraries is an important aspect of probe and drug discovery science. Numerous authors have suggested that bioactive natural products are attractive starting points for such libraries, due to their structural complexity and sp3-rich character. Here, we describe the construction of a screening library based on representative members of four families of biologically active alkaloids (Stemonaceae, the structurally related cyclindricine and lepadiformine families, lupin, and Amaryllidaceae). In each case, scaffolds were based on structures of the naturally occurring compounds or a close derivative. Scaffold preparation was pursued following the development of appropriate enabling chemical methods. Diversification provided 686 new compounds suitable for screening. The libraries thus prepared had structural characteristics, including sp3 content, comparable to a basis set of representative natural products and were highly rule-of-five compliant. PMID:24451589
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam
2012-01-01
An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295
Embrittlement and Flow Localization in Reactor Structural Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xianglin Wu; Xiao Pan; James Stubbins
2006-10-06
Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less
1970-10-01
plastic or semi- plastic concrete and place no stress on the restraint provided. If, on the other hand, the ettringite continues to form rapidly for too...yield, I and wp.ter-cement ratio. Such a change in cement content may cause a greater change in expansion caracteristics than the change in...the tendency toward plastic shrinkage is increased. During the w’nter znths most structural concrete installations hare had adequate heating and no
Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.
Wagner, Andreas
2014-02-18
Novel phenotypes can originate either through mutations in existing genotypes or through phenotypic plasticity, the ability of one genotype to form multiple phenotypes. From molecules to organisms, plasticity is a ubiquitous feature of life, and a potential source of exaptations, adaptive traits that originated for nonadaptive reasons. Another ubiquitous feature is robustness to mutations, although it is unknown whether such robustness helps or hinders the origin of new phenotypes through plasticity. RNA is ideal to address this question, because it shows extensive plasticity in its secondary structure phenotypes, a consequence of their continual folding and unfolding, and these phenotypes have important biological functions. Moreover, RNA is to some extent robust to mutations. This robustness structures RNA genotype space into myriad connected networks of genotypes with the same phenotype, and it influences the dynamics of evolving populations on a genotype network. In this study I show that both effects help accelerate the exploration of novel phenotypes through plasticity. My observations are based on many RNA molecules sampled at random from RNA sequence space, and on 30 biological RNA molecules. They are thus not only a generic feature of RNA sequence space but are relevant for the molecular evolution of biological RNA. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Rompothi, Onjira; Pradipasena, Pasawadee; Tananuwong, Kanitha; Somwangthanaroj, Anongnat; Janjarasskul, Theeranun
2017-02-10
This research determined the effects of starch concentration (3.5-5.0%w/w), and plasticizer [glycerol (0-30%w/w) or sorbitol (0-60%w/w)] on properties of mung bean starch (MBS) films. The result showed that increasing plasticizer concentration tended to decrease tensile strength (TS), elastic modulus (EM) and oxygen permeability (OP); but increase elongation (%E), solubility, water vapor permeability (WVP) and seal strength. The extent of those changes also depended on starch concentration. Glycerol provided better plasticizer efficiency than sorbitol. A bimodal melting endotherm of retrograded structure was evident in non-plasticized film. However, only a low temperature endotherm was observed in polyol-plasticized films, indicating a plasticizer-induced structural modification. The developed ductile MBS films, (TS of 7.14±0.95 to 46.30±3.09MPa, %E of 2.46±0.21 to 56.95±4.34% and EM of 16.29±3.40 to 1428.45±148.72MPa) with an OP of 0.2397±0.0365 to 1.1520±0.1782 ccmm/m 2 daykPa and seal strength up to 422.36±7.93N/m, demonstrated in this study indicate the potential for food packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark
2014-11-01
Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Psychedelics Promote Structural and Functional Neural Plasticity.
Ly, Calvin; Greb, Alexandra C; Cameron, Lindsay P; Wong, Jonathan M; Barragan, Eden V; Wilson, Paige C; Burbach, Kyle F; Soltanzadeh Zarandi, Sina; Sood, Alexander; Paddy, Michael R; Duim, Whitney C; Dennis, Megan Y; McAllister, A Kimberley; Ori-McKenney, Kassandra M; Gray, John A; Olson, David E
2018-06-12
Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Stochastic metallic-glass cellular structures exhibiting benchmark strength.
Demetriou, Marios D; Veazey, Chris; Harmon, John S; Schramm, Joseph P; Johnson, William L
2008-10-03
By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tingkun; Gao, Yanfei; Bei, Hongbin
Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.
Liu, Tingkun; Gao, Yanfei; Bei, Hongbin
2017-07-21
Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.
Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy
NASA Astrophysics Data System (ADS)
Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.
2009-06-01
Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned lamellae. Numerous data on models of deformation centers in natural diamonds, including the M2 and M3 centers, which were observed in the studied collection for the first time, are discussed.
40 CFR 80.1342 - What compliance options are available to small refiners under this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... which it will produce compliant gasoline. (2)(i) Defer meeting the standard specified in § 80.1230(b... produce compliant gasoline. (b) Any refiner that makes an election under paragraphs (a)(1) or (a)(2) of...
7 CFR 1753.6 - Standards, specifications, and general requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... compliant, as defined in 7 CFR 1735.22(e). (d) All materials and equipment financed with loan funds are subject to the “Buy American” provision (7 U.S.C. 901 et seq. as amended in 1938). (e) All software, software systems, and firmware financed with loan funds must be year 2000 compliant, as defined in 7 CFR...
7 CFR 1753.6 - Standards, specifications, and general requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... compliant, as defined in 7 CFR 1735.22(e). (d) All materials and equipment financed with loan funds are subject to the “Buy American” provision (7 U.S.C. 901 et seq. as amended in 1938). (e) All software, software systems, and firmware financed with loan funds must be year 2000 compliant, as defined in 7 CFR...
7 CFR 1753.6 - Standards, specifications, and general requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... compliant, as defined in 7 CFR 1735.22(e). (d) All materials and equipment financed with loan funds are subject to the “Buy American” provision (7 U.S.C. 901 et seq. as amended in 1938). (e) All software, software systems, and firmware financed with loan funds must be year 2000 compliant, as defined in 7 CFR...
7 CFR 1753.6 - Standards, specifications, and general requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... compliant, as defined in 7 CFR 1735.22(e). (d) All materials and equipment financed with loan funds are subject to the “Buy American” provision (7 U.S.C. 901 et seq. as amended in 1938). (e) All software, software systems, and firmware financed with loan funds must be year 2000 compliant, as defined in 7 CFR...
Barrett, Lee B; Hanks, Tom; Zubeldia, Kepa; Cramer, Richard
The deadlines are looming for compliance with the transaction and code set requirements set forth in the Health Insurance Portability and Accountability Act of 1996 (HIPAA). If your hospital filed for an extension in October 2002, you need to begin testing transactions by April 2003 and sending transactions by October 2003. But don't rely on your technology vendors to give you the ability to send compliant transactions. While vendors can provide the correct computer data format, they can't gather the correct information. If you can't send a compliant transaction, the Centers for Medicare and Medicaid Services could reject your claims, drying up a big percentage of your cash flow.
Myths and Truths of Nitinol Mechanics: Elasticity and Tension-Compression Asymmetry
NASA Astrophysics Data System (ADS)
Bucsek, Ashley N.; Paranjape, Harshad M.; Stebner, Aaron P.
2016-09-01
Two prevalent myths of Nitinol mechanics are examined: (1) Martensite is more compliant than austenite; (2) Texture-free Nitinol polycrystals do not exhibit tension-compression asymmetry. By reviewing existing literature, the following truths are revealed: (1) Martensite crystals may be more compliant, equally stiff, or stiffer than austenite crystals, depending on the orientation of the applied load. The Young's Modulus of polycrystalline Nitinol is not a fixed number—it changes with both processing and in operando deformations. Nitinol martensite prefers to behave stiffer under compressive loads and more compliant under tensile loads. (2) Inelastic Nitinol martensite deformation in and of itself is asymmetric, even for texture-free polycrystals. Texture-free Nitinol polycrystals also exhibit tension-compression transformation asymmetry.
Structural Components of Synaptic Plasticity and Memory Consolidation
Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.
2015-01-01
Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321
An ultra-lightweight design for imperceptible plastic electronics.
Kaltenbrunner, Martin; Sekitani, Tsuyoshi; Reeder, Jonathan; Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Drack, Michael; Schwödiauer, Reinhard; Graz, Ingrid; Bauer-Gogonea, Simona; Bauer, Siegfried; Someya, Takao
2013-07-25
Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.
Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin
2016-01-01
There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints.
Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin
2016-01-01
There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints. PMID:27014051
NASA Astrophysics Data System (ADS)
Liu, Hua; Xie, Xin; Tan, Ruoyu; Zhang, Lianchao; Fan, Dapeng
2017-06-01
Most of the XY positioning stages proposed in previous studies are mainly designed by considering only a single performance indicator of the stage. As a result, the other performance indicators are relatively weak. In this study, a 2-degree-of-freedom linear compliant positioning stage (LCPS) is developed by mechatronic design to balance the interacting performance indicators and realize the desired positioning stage. The key parameters and the coupling of the structure and actuators are completely considered in the design. The LCPS consists of four voice coil motors (VCMs), which are conformally designed for compactness, and six spatial leaf spring parallelograms. These parallelograms are serially connected for a large travel range and a high out-of-plane payload capacity. The mechatronic model is established by matrix structural analysis for structural modeling and by Kirchhoff's law for the VCMs. The sensitivities of the key parameters are analyzed, and the design parameters are subsequently determined. The analytical model of the stage is confirmed by experiments. The stage has a travel range of 4.4 mm × 7.0 mm and a 0.16% area ratio of workspace to the outer dimension of the stage. The values of these performance indicators are greater than those of any existing stage reported in the literature. The closed-loop bandwidth is 9.5 Hz in both working directions. The stage can track a circular trajectory with a radius of 1.5 mm, with 40 mm error and a resolution of lower than 3 mm. The results of payload tests indicate that the stage has at least 20 kg outof- plane payload capacity.
Shape sensing for torsionally compliant concentric-tube robots
NASA Astrophysics Data System (ADS)
Xu, Ran; Yurkewich, Aaron; Patel, Rajni V.
2016-03-01
Concentric-tube robots (CTR) consist of a series of pre-curved flexible tubes that make up the robot structure and provide the high dexterity required for performing surgical tasks in constrained environments. This special design introduces new challenges in shape sensing as large twisting is experienced by the torsionally compliant structure. In the literature, fiber Bragg grating (FBG) sensors are attached to needle-sized continuum robots for curvature sensing, but they are limited to obtaining bending curvatures since a straight sensor layout is utilized. For a CTR, in addition to bending curvatures, the torsion along the robots shaft should be determined to calculate the shape and pose of the robot accurately. To solve this problem, in our earlier work, we proposed embedding FBG sensors in a helical pattern into the tube wall. The strain readings are converted to bending curvatures and torsion by a strain-curvature model. In this paper, a modified strain-curvature model is proposed that can be used in conjunction with standard shape reconstruction algorithms for shape and pose calculation. This sensing technology is evaluated for its accuracy and resolution using three FBG sensors with 1 mm sensing segments that are bonded into the helical grooves of a pre-curved Nitinol tube. The results show that this sensorized robot can obtain accurate measurements: resolutions of 0.02 rad/m with a 100 Hz sampling rate. Further, the repeatability of the obtained measurements during loading and unloading conditions are presented and analyzed.
Kamau, Mary Wanjira; Mirie, Waithira; Kimani, Samuel
2018-05-02
Macro and micronutrients including iron and folic acid deficiencies are prevalent in Kenya, particularly during pregnancy resulting in anaemia. Despite efforts to control anaemia in pregnancy by adopting Iron and Folic Acid Supplementation (IFAS), this public health problem has persisted contributing to significant morbidity and mortality. The problem notwithstanding, there is poor IFAS compliance, whose reasons remain poorly understood, calling for their investigations. We sought to determine compliance status with IFAS and associated factors among pregnant women. This was a cross-sectional study involving 364 pregnant women aged 15-49 years. Using two stage cluster sampling, one Sub-County and five public health facilities in Kiambu County were selected. All pregnant women attending antenatal clinics who met inclusion criteria and consented to participate in the study were recruited. Compliance with IFAS was defined as taking supplements at least 5 out of 7 days per week. A structured interviewer-administered questionnaire consisting of sociodemographic data, IFAS maternal knowledge and compliance practices was pretested and administered. Descriptive and inferential statistics were computed using STATA. Of the 364 respondents interviewed, 32.7% were IFAS compliant and 40.9% scored high on its knowledge. Of those with high IFAS knowledge, 48.3% were compliant compared to those with low knowledge (21.4%, n = 46, PR = 2.25;95%CI = 1.59-3.17, p < 0.001). Women who were multigravid (30.4%) were less likely to comply compared to primigravid (37.2%, n = 45, PR = 0.68;95%CI = 0.47-0.99, p = 0.004). Multivariate analysis revealed that respondents counselled on management of IFAS side effects (100%, n = 4) were more compliant (76.2%, n = 112, aPR = 1.31;95%CI = 1.19-1.44, p < 0.001). Few pregnant women were compliant with IFAS regimen, associated with: knowledgeability on IFAS, primi-gravidity, and IFAS counselling especially on management of its side effects. These underscore the need for approaches to scale up health awareness on the benefits of IFAS, mitigation measures for the side effects, as well as targeted counselling.
NASA Astrophysics Data System (ADS)
Fialko, Yuri
2004-03-01
The coseismic deformation due to the 1992 Mw7.3 Landers earthquake, southern California, is investigated using synthetic aperture radar (SAR) and Global Positioning System (GPS) measurements. The ERS-1 satellite data from the ascending and descending orbits are used to generate contiguous maps of three orthogonal components (east, north, up) of the coseismic surface displacement field. The coseismic displacement field exhibits symmetries with respect to the rupture plane that are suggestive of a linear relationship between stress and strain in the crust. Interferometric synthetic aperture radar (InSAR) data show small-scale deformation on nearby faults of the Eastern California Shear Zone. Some of these faults (in particular, the Calico, Rodman, and Pinto Mountain faults) were also subsequently strained by the 1999 Mw7.1 Hector Mine earthquake. I test the hypothesis that the anomalous fault strain represents essentially an elastic response of kilometer-scale compliant fault zones to stressing by nearby earthquakes [, 2002]. The coseismic stress perturbations due to the Landers earthquake are computed using a slip model derived from inversions of the InSAR and GPS data. Calculations are performed for both homogeneous and transversely isotropic half-space models. The compliant zone model that best explains the deformation on the Calico and Pinto Mountain faults due to the Hector Mine earthquake successfully predicts the coseismic displacements on these faults induced by the Landers earthquake. Deformation on the Calico and Pinto Mountain faults implies about a factor of 2 reduction in the effective shear modulus within the ˜2 km wide fault zones. The depth extent of the low-rigidity zones is poorly constrained but is likely in excess of a few kilometers. The same type of structure is able to explain high gradients in the radar line of sight displacements observed on other faults adjacent to the Landers rupture. In particular, the Lenwood fault north of the Soggy Lake has likely experienced a few centimeters of left-lateral motion across <1-km-wide compliant fault zone having the rigidity reduction of more than a factor of 2. The inferred compliant fault zones are interpreted to be a result of extensive damage due to past earthquakes.
Standard requirements for GCP-compliant data management in multinational clinical trials
2011-01-01
Background A recent survey has shown that data management in clinical trials performed by academic trial units still faces many difficulties (e.g. heterogeneity of software products, deficits in quality management, limited human and financial resources and the complexity of running a local computer centre). Unfortunately, no specific, practical and open standard for both GCP-compliant data management and the underlying IT-infrastructure is available to improve the situation. For that reason the "Working Group on Data Centres" of the European Clinical Research Infrastructures Network (ECRIN) has developed a standard specifying the requirements for high quality GCP-compliant data management in multinational clinical trials. Methods International, European and national regulations and guidelines relevant to GCP, data security and IT infrastructures, as well as ECRIN documents produced previously, were evaluated to provide a starting point for the development of standard requirements. The requirements were produced by expert consensus of the ECRIN Working group on Data Centres, using a structured and standardised process. The requirements were divided into two main parts: an IT part covering standards for the underlying IT infrastructure and computer systems in general, and a Data Management (DM) part covering requirements for data management applications in clinical trials. Results The standard developed includes 115 IT requirements, split into 15 separate sections, 107 DM requirements (in 12 sections) and 13 other requirements (2 sections). Sections IT01 to IT05 deal with the basic IT infrastructure while IT06 and IT07 cover validation and local software development. IT08 to IT015 concern the aspects of IT systems that directly support clinical trial management. Sections DM01 to DM03 cover the implementation of a specific clinical data management application, i.e. for a specific trial, whilst DM04 to DM12 address the data management of trials across the unit. Section IN01 is dedicated to international aspects and ST01 to the competence of a trials unit's staff. Conclusions The standard is intended to provide an open and widely used set of requirements for GCP-compliant data management, particularly in academic trial units. It is the intention that ECRIN will use these requirements as the basis for the certification of ECRIN data centres. PMID:21426576
NASA Astrophysics Data System (ADS)
Raghavan, R.; Bechelany, M.; Parlinska, M.; Frey, D.; Mook, W. M.; Beyer, A.; Michler, J.; Utke, I.
2012-05-01
We report on a comprehensive structural and nanoindentation study of nanolaminates of Al2O3 and ZnO synthesized by atomic layer deposition (ALD). By reducing the bilayer thickness from 50 nm to below 1 nm, the nanocrystal size could be controlled in the nanolaminate structure. The softer and more compliant response of the multilayers as compared to the single layers of Al2O3 and ZnO is attributed to the structural change from nanocrystalline to amorphous at smaller bilayer thicknesses. It is also shown that ALD is a unique technique for studying the inverse Hall-Petch softening mechanism (E. Voce and D. Tabor, J. Inst. Metals 79(12), 465 (1951)) related to grain size effects in nanomaterials.
Plastics as structural materials for aircraft
NASA Technical Reports Server (NTRS)
Kline, G M
1937-01-01
The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.
Evolution of microstructure and mechanical properties of steel in the course of pressing-drawing
NASA Astrophysics Data System (ADS)
Lezhnev, S. N.; Volokitina, I. E.; Volokitin, A. V.
2017-11-01
The combined continuous pressing-drawing process is proposed after a comprehensive analysis of available plastic structure-forming techniques taking into account the promising trends in their development. This combination of severe plastic deformation in equal-channel step die and drawing allows one to obtain a wire of desired size and shape in the cross section with an ultrafine-grained structure after a few deformation cycles. It also enables initial workpieces of any length to be processed and, therefore, allows one to obtain finished products up to several tens of meters in length. The aim of this study is to investigate the effect of new combined pressing-drawing technique of plastic deformation on the structure and mechanical properties of the steel. These studies have shown that the proposed deformation technique has a significant advantage of the techniques currently used to manufacture a steel wire.
NASA Astrophysics Data System (ADS)
Yang, H.; Sinha, S. K.; Feng, Y.; Jeremic, B.
2016-12-01
The M5.8 earthquake occurred in Pawnee, Oklahoma on September 3rd 2016 is the strongest seismic event recorded in Oklahoma. Soil structure interaction (SSI) played an important role in this tragic event. As a major aspect of SSI analysis, the propagation and dissipation of seismic energy will be studied in depth, with particular focus on the ground motion recorded in this earthquake. Seismic energy propagates from seismic source to the SSI system and is dissipated within and around the SSI system. Energy dissipation with the SSI system is related to inelastic behavior of soil, rock, contact zone (foundation-soil/rock), structural components and energy dissipators. Accurate evaluation of seismic energy can be used to optimize SSI system for safety and economy. The SSI system can be designed so that majority of seismic energy is dissipated within soil and soil-foundation contact zone, away from the structure.Accurate and theoretically sound modeling of propagation and dissipation is essential to use of seismic energy for design and assessment. The rate of plastic work is defined as the product of stress and the rate of plastic strain. On the other hand, plastic dissipation is defined as a form of heat transfer. The difference between these two quantities, which has been neglected in many studies, is a plastic part of the free energy. By considering energy storage and dissipation at both micro (particle) scale and macro (continuum) scale, it can be shown that the plastic free energy is an intrinsic attribute at the continuum scale due to particle rearrangement. Proper application of thermodynamics to finite element simulations, plastic dissipation can be correctly modeled. Examples will be used to illustrate above point on both constitutive, single element and SSI model scales. In addition, propagation of seismic energy, its dissipation (timing and location) will be used to illustrate use in design and assessment.
REVERSING CYCLIC ELASTO-PLASTIC DEMANDS ON STRUCTURES DURING STRONG MOTION EARTHQUAKE EXCITATION.
Perez, V.; Brady, A.G.; Safak, E.
1986-01-01
Using the horizontal components from El Centro 1940, Taft 1952, and 4 accelerograms from the San Fernando earthquake of 2/9/71, the time history of the elasto-plastic displacement response was calculated for oscillators having periods within the range of 1 to 6 s and ductility factors within the range of 3 to 6. The Nth largest peak of the elasto-plastic response (N equals 2,4,8,16), when expressed as a percentage of maximum response (that is, N equals 1), is fairly independent of period within our period range. When considering only plastic peaks occurring, sometimes in a one-directional group of peaks, in the reverse direction from the preceding plastic peak, the amplitude of the Nth reversing plastic peak is similar to the Nth elastic peak, regardless of the ductility factor.
Composite Materials and Sandwich Structures - A Primer
2010-05-01
cooling through a temperature range characteristic of the plastic. In the softened stage the plastic can be formed in a desired shape by molding or...which components are placed in a mold , and the composite is built up and worked by hand. Hybrid- A composite laminate comprised of laminae of two or...ply orientation is symmetrical about the laminate mid- plane. Thermoplastic - A plastic that can be repeatedly softened by heating, and hardened by
Localized coating removal using plastic media blasting
NASA Technical Reports Server (NTRS)
Novak, Howard L.; Wyckoff, Michael G.; Zook, Lee M.
1988-01-01
Steps taken to qualify the use of plastic media blasting for safely and effectively removing paint and other coatings from solid rocket booster aluminum structures are described. As a result of the effort, an improvement was made in the design of surface finishing equipment for processing flight hardware, in addition to a potentially patentable idea on improved plastic media composition. The general arrangement of the blast equipment and the nozzle configuration are presented.
Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood
Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.
2014-01-01
Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556
The Feeding Biomechanics and Dietary Ecology of Paranthropus boisei
Smith, Amanda L.; Benazzi, Stefano; Ledogar, Justin A.; Tamvada, Kelli; Pryor Smith, Leslie C.; Weber, Gerhard W.; Spencer, Mark A.; Lucas, Peter W.; Michael, Shaji; Shekeban, Ali; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S.; Dechow, Paul C.; Grosse, Ian R.; Ross, Callum F.; Madden, Richard H.; Richmond, Brian G.; Wright, Barth W.; Wang, Qian; Byron, Craig; Slice, Dennis E.; Wood, Sarah; Dzialo, Christine; Berthaume, Michael A.; Casteren, Adam Van; Strait, David S.
2015-01-01
The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus. PMID:25529240
Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Liu, Quan; Xie, Sheng Q.; Yang, Ming
2017-01-01
A rehabilitation robot plays an important role in relieving the therapists’ burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles’ good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM’s nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions. PMID:29283406
Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Meng, Wei; Liu, Quan; Xie, Sheng Q; Yang, Ming
2017-12-28
A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions.
Adewoyin, Ademola Samson; Oghuvwu, Omokiniovo Sunday; Awodu, Omolade Augustina
2017-03-01
The clinical prospects of hydroxyurea therapy in the management of sickle cell disease (SCD) require evaluation in the Nigerian setting to develop indigenous guidelines. This survey examines the pattern of hydroxyurea therapy, its clinico-haematologic benefits and safety profile in Nigerian SCD subjects. A cross sectional pilot survey was carried out among 60 adult SCD subjects over 3 months. Data on clinical phenotypes, relevant haematological parameters and details of hydroxyurea therapy were obtained using a structured questionnaire through an interview process and case file review. The median age was 30 years. Thirty-four (56.7%) of the subjects are aware of hydroxyurea therapy in SCD. Twenty-four (40%) SCD patients had previously used hydroxyurea. Only 4 subjects were fully compliant. Reasons for non-compliance included poor knowledge and lack of funds. In particular, hydroxyurea reduced leucocyte count and increased mean red cell volume (MCV) in compliant subjects. Hydroxyurea use is low among Nigerian SCD subjects despite its proven efficacy/clinical prospects in the developed nations. Large scale multicenter studies and clinical trials are needed to form a basis for developing standard local treatment protocol for its use.
Forbes, Lindsey H.
2018-01-01
The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554
Hillyer, Margot M; Finch, Lauren E; Cerel, Alisha S; Dattelbaum, Jonathan D; Leopold, Michael C
2014-08-01
A wide spectrum and large number of children's toys and toy jewelry items were purchased from both bargain and retail vendors and analyzed for arsenic, cadmium, and lead metal content using multiple analytical techniques, including flame and furnace atomic absorption spectroscopy as well as X-ray fluorescence spectroscopy. Particularly dangerous for young children, metal concentrations in toys/toy jewelry were assessed for compliance with current Consumer Safety Product Commission (CPSC) regulations (F963-11). A conservative metric involving multiple analytical techniques was used to categorize compliance: one technique confirmation of metal in excess of CPSC limits indicated a "suspect" item while confirmation on two different techniques warranted a non-compliant designation. Sample matrix-based standard addition provided additional confirmation of non-compliant and suspect products. Results suggest that origin of purchase, rather than cost, is a significant factor in the risk assessment of these materials with 57% of toys/toy jewelry items from bargain stores non-compliant or suspect compared to only 15% from retail outlets and 13% if only low cost items from the retail stores are compared. While jewelry was found to be the most problematic product (73% of non-compliant/suspect samples), lead (45%) and arsenic (76%) were the most dominant toxins found in non-compliant/suspect samples. Using the greater Richmond area as a model, the discrepancy between bargain and retail children's products, along with growing numbers of bargain stores in low-income and urban areas, exemplifies an emerging socioeconomic public health issue. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rule modification in junior sport: Does it create differences in player movement?
Gastin, Paul B; Allan, Matthew D; Bellesini, Kylie; Spittle, Michael
2017-10-01
To determine the effects of rule modification on player movement during matchplay in junior Australian football (AF). Quasi-experimental study design. Time-motion analysis was used to record variables pertaining to player movement including total distance covered, high-speed running (HSR) distance (>14.4km/h) and HSR efforts. GPS data obtained from 145 players (7-12 years) were analysed across four junior AF leagues and three age group combinations (U8/U9, U9/U10 and U11/U12). The four leagues were collapsed into two separate conditions (compliant and non-compliant) based on their adherence to a modified junior sport policy. To control for the influence of age and physical maturity, a secondary analysis was performed on an adequately matched U8 subset of data (n=48). Significant differences (p<0.05) were found between compliant and non-compliant leagues for age and all player movement variables, with participants in the compliant leagues achieving less player movement. Significant differences were also evident between conditions in the U8 subset in total and relative distance and HSR efforts, with moderate to very large differences (29-60%) observed for all player movement variables. Rule modifications limits the extent and intensity of player movement in junior AF compared to standard playing conditions. The unintended effect of reduced physical activity with rule modifications should be compensated for with additional activities wherever possible. League administrators and policy makers should consider the objectives of rule modifications and weigh up both positive and negative outcomes. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Yu. V.; Lashkov, V. A.
2016-05-01
The influence of severe plastic deformation on the material surface is investigated under highspeed erosion conditions. The AD1 aluminum alloy was tested with the structure changed by severe plastic torsional deformation.
Superconducting coil and method of stress management in a superconducting coil
McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.
1999-01-01
A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).
Copper nanoparticles impinging on a curved channel with compliant walls and peristalsis
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Maraj, E. N.; Butt, Adil Wahid
2014-08-01
In the present article peristaltic transport of copper nanofluids in a curved channel with compliant walls is analytically studied. The mathematical analysis is carried out under the low Reynolds number and long wavelenght approximation. The exact solutions are computed for fluid velocity and temperature profile. The effect of meaningful parameters are shown graphically in the last section.
Training Children with Autism Spectrum Disorders to Be Compliant with a Physical Exam
ERIC Educational Resources Information Center
Cuvo, Anthony J.; Reagan, Amanda Law; Ackerlund, Julie; Huckfeldt, Rachel; Kelly, Cheri
2010-01-01
The purpose of this study was to train children with autism spectrum disorders to be compliant with a 10-component physical examination. After a physician assistant administered an exam pretest, noncompliance on steps of the exam were considered with respect to a skill deficit and escape from aversive stimuli. A package of training procedures was…
Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters
NASA Technical Reports Server (NTRS)
Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard
2013-01-01
Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.
Plastic masters-rigid templates for soft lithography.
Desai, Salil P; Freeman, Dennis M; Voldman, Joel
2009-06-07
We demonstrate a simple process for the fabrication of rigid plastic master molds for soft lithography directly from (poly)dimethysiloxane devices. Plastics masters (PMs) provide a cost-effective alternative to silicon-based masters and can be easily replicated without the need for cleanroom facilities. We have successfully demonstrated the use of plastics micromolding to generate both single and dual-layer plastic structures, and have characterized the fidelity of the molding process. Using the PM fabrication technique, world-to-chip connections can be integrated directly into the master enabling devices with robust, well-aligned fluidic ports directly after molding. PMs provide an easy technique for the fabrication of microfluidic devices and a simple route for the scaling-up of fabrication of robust masters for soft lithography.
Evaluation of biodegradable plastics for rubber seedling applications
NASA Astrophysics Data System (ADS)
Mansor, Mohd Khairulniza; Dayang Habibah A. I., H.; Kamal, Mazlina Mustafa
2015-08-01
The main negative consequence of conventional plastics in agriculture is related to handling the wastes plasticand the associated environmental impact. Hence, a study of different types of potentially biodegradable plastics used for nursery applications have been evaluated on its mechanical,water absorption propertiesand Fourier transform infra-red (FTIR) spectroscopy. Supplied samples from different companies were designated as SF, CF and CO. Most of the polybags exhibited mechanical properties quite similar to the conventional plastics (polybag LDPE). CO polybag which is based on PVA however had extensively higher tensile strength and water absorption properties. FTIR study revealed a characteristics absorbance of conventional plastic, SF, CF and CO biodegradable polybag are associated with polyethylene, poly(butylene adipate-co-terephthalate) (PBAT), polyethylene and polyvinyl alcohol (PVA) structures respectively.
Jones, Theresa A.; Liput, Daniel J.; Maresh, Erin L.; Donlan, Nicole; Parikh, Toral J.; Marlowe, Dana
2012-01-01
Abstract Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3–28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI. PMID:22352953
Jones, Theresa A; Liput, Daniel J; Maresh, Erin L; Donlan, Nicole; Parikh, Toral J; Marlowe, Dana; Kozlowski, Dorothy A
2012-05-01
Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.
Compliant high temperature seals for dissimilar materials
Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.
2001-01-01
A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.
Local yield stress statistics in model amorphous solids
NASA Astrophysics Data System (ADS)
Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain
2018-03-01
We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.
Influence of deformation on structural-phase state of weld material in St3 steel
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Kozlov, Eduard; Ababkov, Nicolay; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Yevgeniy; Zboykova, Nadezhda; Koneva, Nina
2016-01-01
The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn't lead to the internal stresses that can destroy the sample.
NASA Astrophysics Data System (ADS)
Wang, Lai-Guo; Zhang, Wei; Chen, Yan; Cao, Yan-Qiang; Li, Ai-Dong; Wu, Di
2017-01-01
In this work, a kind of new memristor with the simple structure of Pt/HfOx/ZnOx/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfOx/ZnOx/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 × 103 cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfOx/ZnOx device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation is confirmed in Pt/HfOx/ZnOx/TiN memristive device. Above all, simple structure of Pt/HfOx/ZnOx/TiN by ALD technique is a kind of promising memristor device for applications in artificial neural network.
NASA Astrophysics Data System (ADS)
Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard
2017-06-01
TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.
Creep prediction of a layered fiberglass plastic
NASA Astrophysics Data System (ADS)
Aniskevich, K.; Korsgaard, J.; Mālmeisters, A.; Jansons, J.
1998-05-01
The results of short-term creep tests of a layered glass fiber/polyester resin plastic in tension at angles of 90, 70, and 45° to the direction of the principal fiber orientation are presented. The applicability of the principle of time-temperature analogy for the prediction of long-term creep of the composite and its structural components is revealed. The possibility of evaluating the viscoelastic properties of the composite from the properties of structural components is shown.
NASA Astrophysics Data System (ADS)
Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong
2016-12-01
In this study, surface modification of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass (BMG) has been studied in an effort to improve the mechanical properties by laser shock peening (LSP) treatment. The phase structure, mechanical properties, and microstructural evolution of the as-cast and LSP treated specimens were systematically investigated. It was found that the vit1 BMG still consisted of fully amorphous structure after LSP treatment. Measurements of the heat relaxation indicate that a large amount of free volume is introduced into vit1 BMG during LSP process. LSP treatment causes a decrease of hardness attributable to generation of free volume. The plastic deformation ability of vit1 BMG was investigated under three-point bending conditions. The results demonstrate that the plastic strain of LSP treated specimen is 1.83 times as large as that of the as-cast specimen. The effect of LSP technology on the hardness and plastic deformation ability of vit1 BMG is discussed on the basis of free volume theory. The high dense shear bands on the side surface, the increase of striations and critical shear displacement on the tensile fracture region, and more uniform dimples structure on the compressive fracture region also demonstrate that the plasticity of vit1 BMG can be enhanced by LSP.
SKILLED BIMANUAL TRAINING DRIVES MOTOR CORTEX PLASTICITY IN CHILDREN WITH UNILATERAL CEREBRAL PALSY
Friel, Kathleen M.; Kuo, Hsing-Ching; Fuller, Jason; Ferre, Claudio L.; Brandão, Marina; Carmel, Jason B.; Bleyenheuft, Yannick; Gowatsky, Jaimie L.; Stanford, Arielle D.; Rowny, Stefan B.; Luber, Bruce; Bassi, Bruce; Murphy, David LK; Lisanby, Sarah H.; Gordon, Andrew M.
2015-01-01
Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training vs. unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9,5; 12 males) received therapy in a day-camp-setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n=10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n=10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor test of Hand Function (JTTHF) and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation (TMS) to map the representation of first dorsal interosseous (FDI) and flexor carpi radialis (FCR) muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; p<0.05) and hand dexterity (JTTHF; p<0.001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (p<0.01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP. PMID:26867559
Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss
Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde
2015-01-01
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788
46 CFR 160.035-1 - Applicable specifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Laminates, Fibrous Glass Reinforced, Marine Structural. MIL-P-19644—Plastic Foam, Molded Polystyrene..., Polyester, Low Pressure Laminating, Fire Retardant. MIL-P-21929—Plastic Material, Cellular Polyurethane, Rigid, Foam-In-Place, Low Density. (3) Federal specifications: TT-P-59—Paint, Ready-Mixed, International...
46 CFR 160.035-1 - Applicable specifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Laminates, Fibrous Glass Reinforced, Marine Structural. MIL-P-19644—Plastic Foam, Molded Polystyrene..., Polyester, Low Pressure Laminating, Fire Retardant. MIL-P-21929—Plastic Material, Cellular Polyurethane, Rigid, Foam-In-Place, Low Density. (3) Federal specifications: TT-P-59—Paint, Ready-Mixed, International...
Colour stability of aesthetic brackets: ceramic and plastic.
Filho, Hibernon Lopes; Maia, Lúcio Henrique; Araújo, Marcus V; Eliast, Carlos Nelson; Ruellas, Antônio Carlos O
2013-05-01
The colour stability of aesthetic brackets may differ according to their composition, morphology and surface property, which may consequently influence their aesthetic performance. To assess the colour stability of aesthetic brackets (ceramic and plastic) after simulating aging and staining. Twelve commercially manufactured ceramic brackets and four different plastic brackets were assessed. To determine possible colour change (change of E*(ab)) and the value of the NBS (National Bureau of Standards) unit system, spectrophotometric colour measurements for CIE L*, a* and b* were taken before and after the brackets were aged and stained. Statistical analysis was undertaken using a one-way ANOVA analysis of variance and a Tukey multiple comparison test (alpha = 0.05). The colour change between the various (ceramic and plastic) materials was not significant (p > 0.05), but still varied significantly (p < 0.001) between the brackets of the same composition or crystalline structure and among commercial brands. Colour stability cannot be confirmed simply by knowing the type of material and crystalline composition or structure.
NASA Astrophysics Data System (ADS)
Kuznetsov, G. V.; Rudzinskaya, N. V.
1997-05-01
The stressed state of multilayer low-temperature heat insulation for a cryogenic fuel tank is considered. Account is taken of heat and mass transfer in foam plastic (the main heat insulation material) occurring at cryogenic temperatures. A method is developed for solving a set of differential equations and boundary conditions. Numerical studies of the main features of these processes are performed. It is established that below 200 K the stresses which arise in foam plastic markedly exceed the ultimate strength for this material. Stresses develop as a result of both a reduction in temperature and a drop in pressure in the foam plastic pores connected with material cooling. On the basis of the results obtained it is established that the combination of thermophysical processes which occur in foam plastic during cooling to cryogenic temperatures leads to changes in the stress-strained state of structure, which should be considered in planning aerospace technology.
Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.
2014-01-01
Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306
Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation
NASA Astrophysics Data System (ADS)
Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev
2016-04-01
In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.
Structuring policy problems for plastics, the environment and human health: reflections from the UK
Shaxson, Louise
2009-01-01
How can we strengthen the science–policy interface for plastics, the environment and human health? In a complex policy area with multiple stakeholders, it is important to clarify the nature of the particular plastics-related issue before trying to understand how to reconcile the supply and demand for evidence in policy. This article proposes a simple problem typology to assess the fundamental characteristics of a policy issue and thus identify appropriate processes for science–policy interactions. This is illustrated with two case studies from one UK Government Department, showing how policy and science meet over the environmental problems of plastics waste in the marine environment and on land. A problem-structuring methodology helps us understand why some policy issues can be addressed through relatively linear flows of science from experts to policymakers but why others demand a more reflexive approach to brokering the knowledge between science and policy. Suggestions are given at the end of the article for practical actions that can be taken on both sides. PMID:19528061
Structuring policy problems for plastics, the environment and human health: reflections from the UK.
Shaxson, Louise
2009-07-27
How can we strengthen the science-policy interface for plastics, the environment and human health? In a complex policy area with multiple stakeholders, it is important to clarify the nature of the particular plastics-related issue before trying to understand how to reconcile the supply and demand for evidence in policy. This article proposes a simple problem typology to assess the fundamental characteristics of a policy issue and thus identify appropriate processes for science-policy interactions. This is illustrated with two case studies from one UK Government Department, showing how policy and science meet over the environmental problems of plastics waste in the marine environment and on land. A problem-structuring methodology helps us understand why some policy issues can be addressed through relatively linear flows of science from experts to policymakers but why others demand a more reflexive approach to brokering the knowledge between science and policy. Suggestions are given at the end of the article for practical actions that can be taken on both sides.
Taw, Matthew R.; Yeager, John D.; Hooks, Daniel E.; ...
2017-06-19
Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This paper measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistentlymore » at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. Finally, this provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.« less
Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass
Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua
2016-01-01
The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264
2017-01-01
The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9−/− mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex. PMID:28875930
Brain plasticity and motor practice in cognitive aging.
Cai, Liuyang; Chan, John S Y; Yan, Jin H; Peng, Kaiping
2014-01-01
For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.
Role of the visual experience-dependent nascent proteome in neuronal plasticity
Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R
2018-01-01
Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139
Mecozzi, Mauro; Pietroletti, Marco; Monakhova, Yulia B
2016-05-15
We inserted 190 FTIR spectra of plastic samples in a digital database and submitted it to Independent Component Analysis (ICA) to extract the "pure" plastic polymers present. These identified plastics were polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE), high density polyethylene terephthalate (HDPET), low density polyethylene terephthalate (LDPET), polystyrene (PS), Nylon (NL), polyethylene oxide (OPE), and Teflon (TEF) and they were used to establish the similarity with unknown plastics using the correlation coefficient (r), and the crosscorrelation function (CC). For samples with r<0.8 we determined the Mahalanobis Distance (MD) as additional tool of identification. For instance, for the four plastic fragments found in the Carretta carretta, one plastic sample was assigned to OPE due to its r=0.87; for all the other three plastic samples, due to the r values ranging between 0.83 and0.70, the support of MD suggested LDPET and OPE as co-polymer constituents. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.
2015-06-01
Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2) energy harvesting to extend operational time and autonomy, and (3) sensing of an aerodynamic force associated with wing deformation.
Social networks uncovered: 10 tips every plastic surgeon should know.
Dauwe, Phillip; Heller, Justin B; Unger, Jacob G; Graham, Darrell; Rohrich, Rod J
2012-11-01
Understanding online social networks is of critical importance to the plastic surgeon. With knowledge, it becomes apparent that the numerous networks available are similar in their structure, usage, and function. The key is communication between Internet media such that one maximizes exposure to patients. This article focuses on 2 social networking platforms that we feel provide the most utility to plastic surgeons. Ten tips are provided for incorporation of Facebook and Twitter into your practice.
NASA Astrophysics Data System (ADS)
Wallner, Oswald; Ergenzinger, Klaus; Tuttle, Sean; Vaillon, L.; Johann, Ulrich
2017-11-01
EUCLID, a medium-class mission candidate of ESA's Cosmic Vision 2015-2025 Program, currently in Definition Phase (Phase A/B1), shall map the geometry of the Dark Universe by investigating dark matter distributions, the distance-redshift relationship, and the evolution of cosmic structures. EUCLID consists of a 1.2 m telescope and two scientific instruments for ellipticity and redshift measurements in the visible and nearinfrared wavelength regime. We present a design concept of the EUCLID mission which is fully compliant with the mission requirements. Preliminary concepts of the spacecraft and of the payload including the scientific instruments are discussed.
Heterogeneously integrated microsystem-on-a-chip
Chanchani, Rajen [Albuquerque, NM
2008-02-26
A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.