Sample records for complicated 3d structures

  1. Novel lead(II) carboxylate-arsonate hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Feiyan; Song Junling; Zhao Na

    2008-06-15

    Hydrothermal reactions of lead(II) acetate with phenylarsonic acid (H{sub 2}L{sup 1}) (or 4-hydroxy-3-nitrophenylarsonic acid, H{sub 3}L{sup 2}) and 5-sulfoisophthalic acid monosodium salt (NaH{sub 2}SIP) (or 1,3,5-benzenetricarboxylic acid (H{sub 3}BTC)) as the second metal linkers afforded three novel mixed-ligand lead(II) carboxylate-arsonates, namely, Pb{sub 5}(SIP){sub 2}(L{sup 1}){sub 2}(H{sub 2}O) 1, Pb{sub 3}(SIP)(L{sup 2})(H{sub 2}O) 2 and Pb(H{sub 2}L{sup 2})(H{sub 2}BTC) 3. The structure of 1 features a complicated 3D network composed of 2D double layers of lead(II) sulfoisophthalate bridged by 1D chains of lead(II) arsonates along b-axis, forming large tunnels along b-axis which are occupied by phenyl rings of the arsonate ligands.more » In 2, the Pb(II) ions are bridged by {l_brace}L{sup 2}{r_brace}{sup 3-} anions into a 2D double layer whereas the interconnection of the Pb(II) ions via bridging and chelating SIP anions gave a 2D double layer. The cross-linkage of the above two building units leads to a complicated 3D network. In 3, the interconnection of the Pb(II) ions via bridging {l_brace}H{sub 2}L{sup 2}{r_brace}{sup -} and {l_brace}H{sub 2}BTC{r_brace}{sup -} anions leads to a 1D double chain down a-axis. These 1D chains are further interconnected via hydrogen bonds among non-coordination carboxylate groups and arsonate oxygens into a 3D supramolecular architecture. - Graphical abstract: Three novel mixed-ligand lead(II) carboxylate-arsonates, namely, Pb{sub 5}(SIP){sub 2}(L{sup 1}){sub 2}(H{sub 2}O) 1, Pb{sub 3}(SIP)(L{sup 2})(H{sub 2}O) 2 and Pb(H{sub 2}L{sup 2})(H{sub 2}BTC) 3 have been synthesized and structurally characterized. Compounds 1 and 2 feature complicated 3D network structures whereas compound 3 features 1D lead(II) carboxylate-arsonate chains that are further interlinked by strong hydrogen bonds into a 3D supramolecular assembly.« less

  2. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients.

    PubMed

    Ling, Ted C; Slater, Jerry M; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M; Patyal, Baldev; Slater, Jerry D; Yang, Gary Y

    2014-12-05

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.

  3. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    PubMed Central

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y.

    2014-01-01

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients. PMID:25489937

  4. Transition zone structure beneath Ethiopia from 3-D fast marching pseudo-migration stacking

    NASA Astrophysics Data System (ADS)

    Benoit, M. H.; Lopez, A.; Levin, V.

    2008-12-01

    Several models for the origin of the Afar hotspot have been put forth over the last decade, but much ambiguity remains as to whether the hotspot tectonism found there is due to a shallow or deeply seated feature. Additionally, there has been much debate as to whether the hotspot owes its existence to a 'classic' mantle plume feature or if it is part of the African Superplume complex. To further understand the origin of the hotspot, we employ a new receiver function stacking method that incorporates a fast-marching three- dimensional ray tracing algorithm to improve upon existing studies of the mantle transition zone structure. Using teleseismic data from the Ethiopia Broadband Seismic Experiment and the EAGLE (Ethiopia Afar Grand Lithospheric Experiment) experiment, we stack receiver functions using a three-dimensional pseudo- migration technique to examine topography on the 410 and 660 km discontinuities. Previous methods of receiver function pseudo-migration incorporated ray tracing methods that were not able to ray trace through highly complicated 3-D structure, or the ray tracing techniques only produced 3-D time perturbations associated 1-D rays in a 3-D velocity medium. These previous techniques yielded confusing and incomplete results for when applied to the exceedingly complicated mantle structure beneath Ethiopia. Indeed, comparisons of the 1-D versus 3-D ray tracing techniques show that the 1-D technique mislocated structure laterally in the mantle by over 100 km. Preliminary results using our new technique show a shallower then average 410 km discontinuity and a deeper than average 660 km discontinuity over much of the region, suggested that the hotspot has a deep seated origin.

  5. Syntheses, structures and photoluminescence properties of three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) based on a pyridine N-oxide bridging ligand

    NASA Astrophysics Data System (ADS)

    Ren, Xiu-Hui; Wang, Peng; Cheng, Jun-Yan; Dong, Yu-Bin

    2018-06-01

    Three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) were synthesized based on a pyridine N-oxide bridging ligand 3,5-bis(4-carboxylphenyl)-pyridine N-oxide (L1). Compounds 1-3 all have novel complicated structures. Compound 1 (Zn(L1)2(H2O)2) and 2 (Zn2(L1)2(H2O)2) are two single crystals obtained in "one pot" and 1 features 1D double chains motif and 2 features 3D network structure. Compound 3 shows 3D network structure with triangular tunnels. The thermogravimetric analyses and photoluminescence properties were also used to investigate the title compounds.

  6. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  7. The Visible Human Project: From Body to Bits.

    PubMed

    Ackerman, Michael J

    2017-01-01

    Atlases of anatomy have long been a mainstay for visualizing and identifying features of the human body [1]. Many are constructed of idealized illustrations rendered so that structures are presented as three-dimensional (3-D) pictures. Others have employed photographs of actual dissections. Still others are composed of collections of artist renderings of organs or areas of interest. All rely on a basically two-dimensional (2-D) graphic display to depict and allow for a better understanding of a complicated 3-D structure.

  8. Developing a method of fabricating microchannels using plant root structure

    NASA Astrophysics Data System (ADS)

    Nakashima, Shota; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Complicated three-dimensional (3D) microchannels are expected to be applied to a lab-on-a-chip, especially an organ-on-a-chip. There are fine microchannel networks such as blood vessels in a living organ. However, it is difficult to recreate the complicated 3D microchannels of real living structures. Plant roots have a similar structure to blood vessels. They spread radially and three-dimensionally, and become thinner as they branch. In this research, we propose a method of fabricating microchannels using a live plant root as a template to mimic a blood vessel structure. We grew a plant in ceramic slurry instead of soil. The slurry consists of ceramic powder, binder and water, so it plays a similar role to soil consisting of fine particles in water. After growing the plant, the roots inside the slurry were burned and a sintered ceramic body with channel structures was obtained by heating. We used two types of slurry with different composition ratios, and compared the internal channel structures before and after sintering.

  9. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.

    PubMed

    Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho

    2017-01-15

    Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liverspecific markers was quantified on days 1, 7, 14, and 21. The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver.

  10. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  11. Programmable growth of branched silicon nanowires using a focused ion beam.

    PubMed

    Jun, Kimin; Jacobson, Joseph M

    2010-08-11

    Although significant progress has been made in being able to spatially define the position of material layers in vapor-liquid-solid (VLS) grown nanowires, less work has been carried out in deterministically defining the positions of nanowire branching points to facilitate more complicated structures beyond simple 1D wires. Work to date has focused on the growth of randomly branched nanowire structures. Here we develop a means for programmably designating nanowire branching points by means of focused ion beam-defined VLS catalytic points. This technique is repeatable without losing fidelity allowing multiple rounds of branching point definition followed by branch growth resulting in complex structures. The single crystal nature of this approach allows us to describe resulting structures with linear combinations of base vectors in three-dimensional (3D) space. Finally, by etching the resulting 3D defined wire structures branched nanotubes were fabricated with interconnected nanochannels inside. We believe that the techniques developed here should comprise a useful tool for extending linear VLS nanowire growth to generalized 3D wire structures.

  12. Detailed Anatomy of the Nasolabial Muscle in Human Fetuses as Determined by Micro-CT Combined With Iodine Staining.

    PubMed

    Wu, Jiajun; Yin, Ningbei

    2016-01-01

    This study aims to investigate the 3-dimensional (3D) anatomical structure of the orbicularis oris and nasalis, which are closely associated with the appearance of the upper lip and lower part of the nose. The relationship of the complicated 3D anatomical structure with the outline shape was also determined. Microcomputed tomography combined with iodine staining was used to scan the nasolabial tissues of 3 aborted fetuses. The strictly aligned, corrected, full-capacity, 2-dimensional (2D) grayscale images obtained were then used to reconstruct 3D structures using a 3D reconstruction software. 2D grayscale slices and a 3D anatomical model of the orbicularis oris and nasalis of the specimens were obtained. The 2D images and the 3D model confirmed the orbicularis oris anatomical structure reported in previous studies and also provided new insights (such as the close association of the formation of the philtral dimple, lip peak, philtral ridge, and nasal sill with the orbicularis oris). In addition, the results show that the nasolabial muscle consists of muscle fibers from different sources and is divided into four distinct parts: pars marginalis, pars peripheralis, muscle fibers of the levator labii superioris, and nasalis muscle fibers. The 3D anatomical structures indicate that the orbicularis oris and nasalis are closely associated with the appearances of the upper lip and lower part of the nose. The results may aid plastic surgeons in performing cleft-lip correction surgery.

  13. Augmented reality navigation in open surgery for hilar cholangiocarcinoma resection with hemihepatectomy using video-based in situ three-dimensional anatomical modeling: A case report.

    PubMed

    Tang, Rui; Ma, Longfei; Xiang, Canhong; Wang, Xuedong; Li, Ang; Liao, Hongen; Dong, Jiahong

    2017-09-01

    Patients who undergo hilar cholangiocarcinoma (HCAC) resection with concomitant hepatectomy have a high risk of postoperative morbidity and mortality due to surgical trauma to the hepatic and biliary vasculature. A 58-year-old Chinese man with yellowing skin and sclera, abdominal distension, pruritus, and anorexia for approximately 3 weeks. Magnetic resonance cholangiopancreatography and enhanced computed tomography (CT) scanning revealed a mass over the biliary tree at the porta hepatis, which diagnosed to be s a hilar cholangiocarcinoma. Three-dimensional (3D) images of the patient's hepatic and biliary structures were reconstructed preoperatively from CT data, and the 3D images were used for preoperative planning and augmented reality (AR)-assisted intraoperative navigation during open HCAC resection with hemihepatectomy. A 3D-printed model of the patient's biliary structures was also used intraoperatively as a visual reference. No serious postoperative complications occurred, and the patient was tumor-free at the 9-month follow-up examination based on CT results. AR-assisted preoperative planning and intraoperative navigation might be beneficial in other patients with HCAC patients to reduce postoperative complications and ensure disease-free survival. In our postoperative analysis, we also found that, when the3D images were superimposed 3D-printed model using a see-through integral video graphy display device, our senses of depth perception and motion parallax were improved, compared with that which we had experienced intraoperatively using the videobased AR display system.

  14. Multimodal and synthetic aperture approach to full-field 3D shape and displacement measurements

    NASA Astrophysics Data System (ADS)

    Kujawińska, M.; Sitnik, R.

    2017-08-01

    Recently most of the measurement tasks in industry, civil engineering and culture heritage applications require archiving, characterization and monitoring of 3D objects and structures and their performance under changing conditions. These requirements can be met if multimodal measurement (MM) strategy is applied. It rely on effective combining structured light method and 3D digital image correlation with laser scanning/ToF, thermal imaging, multispectral imaging and BDRF measurements. In the case of big size and/or complicated objects MM have to be combined with hierarchical or synthetic aperture (SA) measurements. The new solutions in MM and SA strategies are presented and their applicability is shown at interesting cultural heritage and civil engineering applications.

  15. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  16. Interactive graphic editing tools in bioluminescent imaging simulation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Tian, Jie; Luo, Jie; Wang, Ge; Cong, Wenxiang

    2005-04-01

    It is a challenging task to accurately describe complicated biological tissues and bioluminescent sources in bioluminescent imaging simulation. Several graphic editing tools have been developed to efficiently model each part of the bioluminescent simulation environment and to interactively correct or improve the initial models of anatomical structures or bioluminescent sources. There are two major types of graphic editing tools: non-interactive tools and interactive tools. Geometric building blocks (i.e. regular geometric graphics and superquadrics) are applied as non-interactive tools. To a certain extent, complicated anatomical structures and bioluminescent sources can be approximately modeled by combining a sufficient large number of geometric building blocks with Boolean operators. However, those models are too simple to describe the local features and fine changes in 2D/3D irregular contours. Therefore, interactive graphic editing tools have been developed to facilitate the local modifications of any initial surface model. With initial models composed of geometric building blocks, interactive spline mode is applied to conveniently perform dragging and compressing operations on 2D/3D local surface of biological tissues and bioluminescent sources inside the region/volume of interest. Several applications of the interactive graphic editing tools will be presented in this article.

  17. Observation of three-dimensional internal structure of steel materials by means of serial sectioning with ultrasonic elliptical vibration cutting.

    PubMed

    Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A

    2010-01-01

    A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.

  18. Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-database search followed by design and synthesis.

    PubMed

    Iwata, Y; Arisawa, M; Hamada, R; Kita, Y; Mizutani, M Y; Tomioka, N; Itai, A; Miyamoto, S

    2001-05-24

    Aldose reductase (AR) has been implicated in the etiology of diabetic complications. Due to the limited number of currently available drugs for the treatment of diabetic complications, we have carried out structure-based drug design and synthesis in an attempt to find new types of AR inhibitors. With the ADAM&EVE program, a three-dimensional database (ACD3D) was searched using the ligand binding site of the AR crystal structure. Out of 179 compounds selected through this search followed by visual inspection, 36 compounds were purchased and subjected to a biological assay. Ten compounds showed more than 40% inhibition of AR at a 15 microg/mL concentration. In a subsequent lead optimization, a series of analogues of the most active compound were synthesized based on the docking mode derived by ADAM&EVE. Many of these congeners exhibited higher activities compared to the mother compound. Indeed, the most potent, synthesized compound showed an approximately 20-fold increase in inhibitory activity (IC(50) = 0.21 vs 4.3 microM). Furthermore, a hydrophobic subsite was newly inferred, which would be useful for the design of inhibitors with improved affinity for AR.

  19. Augmented reality navigation in open surgery for hilar cholangiocarcinoma resection with hemihepatectomy using video-based in situ three-dimensional anatomical modeling

    PubMed Central

    Tang, Rui; Ma, Longfei; Xiang, Canhong; Wang, Xuedong; Li, Ang; Liao, Hongen; Dong, Jiahong

    2017-01-01

    Abstract Rationale: Patients who undergo hilar cholangiocarcinoma (HCAC) resection with concomitant hepatectomy have a high risk of postoperative morbidity and mortality due to surgical trauma to the hepatic and biliary vasculature. Patient concerns: A 58-year-old Chinese man with yellowing skin and sclera, abdominal distension, pruritus, and anorexia for approximately 3 weeks. Diagnoses: Magnetic resonance cholangiopancreatography and enhanced computed tomography (CT) scanning revealed a mass over the biliary tree at the porta hepatis, which diagnosed to be s a hilar cholangiocarcinoma. Intervention: Three-dimensional (3D) images of the patient's hepatic and biliary structures were reconstructed preoperatively from CT data, and the 3D images were used for preoperative planning and augmented reality (AR)-assisted intraoperative navigation during open HCAC resection with hemihepatectomy. A 3D-printed model of the patient's biliary structures was also used intraoperatively as a visual reference. Outcomes: No serious postoperative complications occurred, and the patient was tumor-free at the 9-month follow-up examination based on CT results. Lessons: AR-assisted preoperative planning and intraoperative navigation might be beneficial in other patients with HCAC patients to reduce postoperative complications and ensure disease-free survival. In our postoperative analysis, we also found that, when the3D images were superimposed 3D-printed model using a see-through integral video graphy display device, our senses of depth perception and motion parallax were improved, compared with that which we had experienced intraoperatively using the videobased AR display system. PMID:28906410

  20. Segmentation of 3d Models for Cultural Heritage Structural Analysis - Some Critical Issues

    NASA Astrophysics Data System (ADS)

    Gonizzi Barsanti, S.; Guidi, G.; De Luca, L.

    2017-08-01

    Cultural Heritage documentation and preservation has become a fundamental concern in this historical period. 3D modelling offers a perfect aid to record ancient buildings and artefacts and can be used as a valid starting point for restoration, conservation and structural analysis, which can be performed by using Finite Element Methods (FEA). The models derived from reality-based techniques, made up of the exterior surfaces of the objects captured at high resolution, are - for this reason - made of millions of polygons. Such meshes are not directly usable in structural analysis packages and need to be properly pre-processed in order to be transformed in volumetric meshes suitable for FEA. In addition, dealing with ancient objects, a proper segmentation of 3D volumetric models is needed to analyse the behaviour of the structure with the most suitable level of detail for the different sections of the structure under analysis. Segmentation of 3D models is still an open issue, especially when dealing with ancient, complicated and geometrically complex objects that imply the presence of anomalies and gaps, due to environmental agents such as earthquakes, pollution, wind and rain, or human factors. The aims of this paper is to critically analyse some of the different methodologies and algorithms available to segment a 3D point cloud or a mesh, identifying difficulties and problems by showing examples on different structures.

  1. Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures.

    PubMed

    Yang, Yang; Song, Xuan; Li, Xiangjia; Chen, Zeyu; Zhou, Chi; Zhou, Qifa; Chen, Yong

    2018-06-19

    Nature has developed high-performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next-generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three-dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D-printing technologies are discussed. Future opportunities for the development of biomimetic 3D-printing technology to fabricate next-generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A 3D velocimetry study of the flow through prosthetic heart valves

    NASA Astrophysics Data System (ADS)

    Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.

    2006-11-01

    Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.

  3. Arteriovenous fistula complicating iliac artery pseudo aneurysm: diagnosis by CT angiography.

    PubMed

    Huawei, L; Bei, D; Huan, Z; Zilai, P; Aorong, T; Kemin, C

    2002-01-01

    Fistula formation to the inferior vena cava is a rare complication of aortic aneurysm which is often misdiagnosed clinically. In one hundred of reported arteriocaval fistulae, none was originating from the right common iliac artery. We report a case of ileo-caval fistula due to a iatrogenic pseudoaneurysm. High resolution 3D imaging using breath-hold CT angiography is highly specific in identifying the location, extent of the aortocaval fistula as well as the neighbouring anatomic structures.

  4. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  5. Esophageal Dose Tolerance in Patients Treated With Stereotactic Body Radiation Therapy.

    PubMed

    Nuyttens, Joost J; Moiseenko, Vitali; McLaughlin, Mark; Jain, Sheena; Herbert, Scott; Grimm, Jimm

    2016-04-01

    Mediastinal critical structures such as trachea, bronchus, esophagus, and heart are among the dose-limiting factors for stereotactic body radiation therapy (SBRT) to central lung lesions. The purpose of this study was to characterize the risk of esophagitis for patients treated with SBRT and to develop a statistical dose-response model to assess the equivalent uniform dose, D10%, D5cc, D1cc, and Dmax, to the esophagus and the risk of toxicity. Toxicity outcomes of a dose-escalation study of 56 patients who had taken CyberKnife treatment from 45-60Gy in 3-7 fractions at the Erasmus MC-Daniel den Hoed Cancer Center were utilized to create the dose-response model for esophagus. A total of 5 grade 2 esophageal complications were reported (Common Terminology Criteria for Adverse Events version 3.0); 4 complications were early effects and 1 complication was a late effect. All analyses were performed in terms of 5-fraction equivalent dosing. According to our study, D1cc at a dose of 32.9Gy and Dmax dose of 43.4Gy corresponded to a complication probability of 50% for grade 2 toxicity. In this series of 58 CyberKnife mediastinal lung cases, no grade 3 or higher esophageal toxicity occurred. Our estimates of esophageal toxicity are compared with the data in the literature. Further research needs to be performed to establish more reliable dose limits as longer follow-up and toxicity outcomes are reported in patients treated with SBRT for central lung lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Segmentation of bone structures in 3D CT images based on continuous max-flow optimization

    NASA Astrophysics Data System (ADS)

    Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.

    2015-03-01

    In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.

  7. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  8. Internal geometry effect of structured PLA materials manufactured by dropplet-based 3D printer on its mechanical properties

    NASA Astrophysics Data System (ADS)

    Wicaksono, Sigit T.; Ardhyananta, Hosta; Rasyida, Amaliya; Hidayat, Mas Irfan P.

    2018-04-01

    Rapid Prototyping (RP) technologies, the manufacturing technology with less time consuming including high precission and complicated structure of products, are now become high demanding technologies. Those technologies can be base on top-down or bottom-up approaches. One of the bottom-up approach of RP technology is 3D printing machine. In this research, we have succeed to apply the droplet-based 3D printer to make the structured PLA (Polylactic Acid) materials with different internal geometry structures. The internal geometry used are triangle and honeycomb structure with different size of each symmetry axis of 4.5 mm and 9 mm and the thickness varied of 1 mm and 2 mm as well. The mechanical properties of those structures including tensile and bending stregth are evaluated by using tensile and flexural test respectively. Test results show that the best performance obtained by measuring its tensile and flexural strength is the sampel with triangle geometry of 9 mm geometrical size and 2 mm of thickness. The tensile strength and flexural strength values of the specimens are 59.2996 MPa and 123 MPa respectively.

  9. A Kosloff/Basal method, 3D migration program implemented on the CYBER 205 supercomputer

    NASA Technical Reports Server (NTRS)

    Pyle, L. D.; Wheat, S. R.

    1984-01-01

    Conventional finite difference migration has relied on approximations to the acoustic wave equation which allow energy to propagate only downwards. Although generally reliable, such approaches usually do not yield an accurate migration for geological structures with strong lateral velocity variations or with steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal (Migration with the Full Acoustic Wave Equation) examined an alternative approach based on the full acoustic wave equation. The 2D, Fourier type algorithm which was developed was tested by Kosloff and Baysal against synthetic data and against physical model data. The results indicated that such a scheme gives accurate migration for complicated structures. This paper describes the development and testing of a vectorized, 3D migration program for the CYBER 205 using the Kosloff/Baysal method. The program can accept as many as 65,536 zero offset (stacked) traces.

  10. Practical computational toolkits for dendrimers and dendrons structure design.

    PubMed

    Martinho, Nuno; Silva, Liana C; Florindo, Helena F; Brocchini, Steve; Barata, Teresa; Zloh, Mire

    2017-09-01

    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.

  11. Practical computational toolkits for dendrimers and dendrons structure design

    NASA Astrophysics Data System (ADS)

    Martinho, Nuno; Silva, Liana C.; Florindo, Helena F.; Brocchini, Steve; Barata, Teresa; Zloh, Mire

    2017-09-01

    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.

  12. 3D printing of nano- and micro-structures

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Additive manufacturing or 3D printing techniques are being vigorously investigated as a replacement to the traditional and conventional methods in fabrication to bring forth cost and time effective approaches. Introduction of 3D printing has led to printing micro and nanoscale structures including tissues and organelles, bioelectric sensors and devices, artificial bones and transplants, microfluidic devices, batteries and various other biomaterials. Various microfabrication processes have been developed to fabricate micro components and assemblies at lab scale. 3D Fabrication processes that can accommodate the functional and geometrical requirements to realize complicated structures are becoming feasible through advances in additive manufacturing. This advancement could lead to simpler development mechanisms of novel components and devices exhibiting complex features. For instance, development of microstructure electrodes that can penetrate the epidermis of the skin to collect the bio potential signal may prove very effective than the electrodes that measure signal from the skin's surface. The micro and nanostructures will have to possess extraordinary material and mechanical properties for its dexterity in the applications. A substantial amount of research being pursued on stretchable and flexible devices based on PDMA, textiles, and organic electronics. Despite the numerous advantages these substrates and techniques could solely offer, 3D printing enables a multi-dimensional approach towards finer and complex applications. This review emphasizes the use of 3D printing to fabricate micro and nanostructures for that can be applied for human healthcare.

  13. The Crustal and Mantle Velocity Structure in Central Asia from 3D Travel Time Tomography

    DTIC Science & Technology

    2010-09-01

    the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the...Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically

  14. Optofluidic fabrication for 3D-shaped particles

    NASA Astrophysics Data System (ADS)

    Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.

    2015-04-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.

  15. SubductionGenerator: A program to build three-dimensional plate configurations

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.

    2016-12-01

    Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.

  16. Infectious and non-infectious neurologic complications in heart transplant recipients.

    PubMed

    Muñoz, Patricia; Valerio, Maricela; Palomo, Jesús; Fernández-Yáñez, Juan; Fernández-Cruz, Ana; Guinea, Jesús; Bouza, Emilio

    2010-05-01

    Neurologic complications are important causes of morbidity and mortality in heart transplant (HT) recipients. New immunomodulating agents have improved survival rates, although some have been associated with a high rate of neurologic complications (infectious and non-infectious). We conducted this study to analyze the frequency of these complications, before and after the use of daclizumab induction therapy. We reviewed all neurologic complications in our HT cohort, comparing infectious with non-infectious complications over 2 periods of time in which different induction therapies were used (316 patients with OKT3 or antithymocyte globulin from 1988 to 2002, and 68 patients with daclizumab from 2003 to 2006). Neurologic complications were found in 75/384 patients (19.5%) with a total of 78 episodes. Non-infectious complications accounted for 68% of the 78 episodes of neurologic complications. A total of 51 patients and 53 episodes were detailed as follows: 25 episodes of stroke (25 of 78 total episodes, 32%; 19 ischemic, 6 hemorrhagic); 7 neuropathies; 6 seizures; 4 episodes of transient ischemic attack (TIA); 3 anoxic encephalopathy; 2 each brachial plexus palsy and metabolic encephalopathy; and 1 each myoclonia, central nervous system (CNS) lymphoma, subdural hematoma, and Cotard syndrome. Mean time to presentation of stroke, TIA, and encephalopathy was 1 day (range, 1-19 d) posttransplant. Mortality rate among non-infectious complications was 12/53 (22.6%). Infectious complications accounted for 32% of the 78 total episodes. We found 25 episodes in 24 patients: 17 herpes zoster (median, 268 d after HT), 3 CNS aspergillosis (median, 90 d after HT), 1 CNS toxoplasmosis and tuberculosis (51 d after HT), 1 pneumococcal meningitis (402 d after HT), and 2 Listeria meningitis (median, 108 d after HT). The 3 patients with CNS aspergillosis died. The mortality rate among patients with infectious neurologic complications was 12% (42.8% if the CNS was involved). When we compared the OKT3-ATG and daclizumab groups, we found that the incidence of non-infectious complications was 15.1% vs. 7.3%, respectively, and the incidence of infectious complications was 7.5% vs. 1.4%, respectively. All but 1 opportunistic infection occurred in the OKT3-ATG time period. In conclusion, a wide variety of neurologic complications affected 19.5% of HT recipients. Non-infectious causes clearly predominated, but infections still accounted for 32% of the episodes. New monoclonal induction therapies have contributed to diminished CNS opportunistic infections in our program.

  17. A three-dimensional visualization preoperative treatment planning system for microwave ablation in liver cancer: a simulated experimental study.

    PubMed

    Liu, Fangyi; Cheng, Zhigang; Han, Zhiyu; Yu, Xiaoling; Yu, Mingan; Liang, Ping

    2017-06-01

    To evaluate the application value of three-dimensional (3D) visualization preoperative treatment planning system (VPTPS) for microwave ablation (MWA) in liver cancer. The study was a simulated experimental study using the CT imaging data of patients in DICOM format in a model. Three students (who learn to interventional ultrasound for less than 1 year) and three experts (who have more than 5 years of experience in ablation techniques) in MWA performed the preoperative planning for 39 lesions (mean diameter 3.75 ± 1.73 cm) of 32 patients using two-dimensional (2D) image planning method and 3D VPTPS, respectively. The number of planning insertions, planning ablation rate, and damage rate to surrounding structures were compared between2D image planning group and 3D VPTPS group. There were fewer planning insertions, lower ablation rate and higher damage rate to surrounding structures in 2D image planning group than 3D VPTPS group for both students and experts. When using the 2D ultrasound planning method, students could carry out fewer planning insertions and had a lower ablation rate than the experts (p < 0.001). However, there was no significant difference in planning insertions, the ablation rate, and the incidence of damage to the surrounding structures between students and experts using 3D VPTPS. 3DVPTPS enables inexperienced physicians to have similar preoperative planning results to experts, and enhances students' preoperative planning capacity, which may improve the therapeutic efficacy and reduce the complication of MWA.

  18. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause

    DOE PAGES

    Hasegawa, H.; Sonnerup, B. U. Ö.; Eriksson, S.; ...

    2015-02-03

    We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that amore » magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km) better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E). Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.« less

  19. 3-D seismology in the Arabian Gulf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Husseini, M.; Chimblo, R.

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. Inmore » field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.« less

  20. 3-Dimesional Structure of Factor D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The trauma caused by the open heart surgery often triggers massive inflammation because the immune system overreacts. Factor D, the protein which plays a key role in the biological steps that activate this immune response prevents the imune system from inappropriately rurning out of control, allowing the patient to recover more rapidly. Factor D blockers, with their great potential to alleviate the complication of inflammation associated with heart surgery, are now being developed for clinical trials. These new drugs, developed from space research, should be commercially available as soon as year 2001.

  1. Treatment planning for image-guided neuro-vascular interventions using patient-specific 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Russ, M.; O'Hara, R.; Setlur Nagesh, S. V.; Mokin, M.; Jimenez, C.; Siddiqui, A.; Bednarek, D.; Rudin, S.; Ionita, C.

    2015-03-01

    Minimally invasive endovascular image-guided interventions (EIGIs) are the preferred procedures for treatment of a wide range of vascular disorders. Despite benefits including reduced trauma and recovery time, EIGIs have their own challenges. Remote catheter actuation and challenging anatomical morphology may lead to erroneous endovascular device selections, delays or even complications such as vessel injury. EIGI planning using 3D phantoms would allow interventionists to become familiarized with the patient vessel anatomy by first performing the planned treatment on a phantom under standard operating protocols. In this study the optimal workflow to obtain such phantoms from 3D data for interventionist to practice on prior to an actual procedure was investigated. Patientspecific phantoms and phantoms presenting a wide range of challenging geometries were created. Computed Tomographic Angiography (CTA) data was uploaded into a Vitrea 3D station which allows segmentation and resulting stereo-lithographic files to be exported. The files were uploaded using processing software where preloaded vessel structures were included to create a closed-flow vasculature having structural support. The final file was printed, cleaned, connected to a flow loop and placed in an angiographic room for EIGI practice. Various Circle of Willis and cardiac arterial geometries were used. The phantoms were tested for ischemic stroke treatment, distal catheter navigation, aneurysm stenting and cardiac imaging under angiographic guidance. This method should allow for adjustments to treatment plans to be made before the patient is actually in the procedure room and enabling reduced risk of peri-operative complications or delays.

  2. Severity of complicated versus uncomplicated subthreshold depression: New evidence on the "Monotonicity Thesis" from the national comorbidity survey.

    PubMed

    Wakefield, Jerome C; Schmitz, Mark F

    2017-04-01

    "Complicated" subthreshold depression (CsD) includes at least one of six pathosuggestive "complicated" symptoms: >6 months duration, marked role impairment, sense of worthlessness, suicidal ideation, psychotic ideation, and psychomotor retardation. "Uncomplicated" subthreshold depression (UsD) has no complicated features. Whereas studies show that complicated (CMDD) versus uncomplicated (UMDD) major depression differ substantially in severity and prognosis, UsD and CsD severity has not been previously compared. This study evaluates UsD and CsD pathology validator levels and examines whether the complicated/uncomplicated distinction offers incremental concurrent validity over the standard number-of-symptoms dimension as a depression severity measure. Using nationally representative community data from the National Comorbidity Survey, seven depression lifetime history subgroups were identified: one MDD screener symptom (n=1432); UsD (n=430); CsD (n=611); UMDD (n=182); and CMDD with 5-6 symptoms (n=518), 7 symptoms (n=217), and 8-9 symptoms (n=291). Severity was evaluated using five concurrent pathology validators: suicide attempt, interference with life, help seeking, hospitalization, and generalized anxiety disorder. CsD validator levels are substantially higher than both UsD and UMDD levels, and similar to mild CMDD, disconfirming the "monotonicity thesis" that severity increase with symptom number. Complicated/uncomplicated status predicts severity, and when complicatedness is controlled, number of symptoms no longer predicts validator levels. Diagnoses were based on respondents' fallible retrospective symptom reports during a lay-administered structured interview, which may not yield diagnoses comparable to clinicians' assessments. CsD is more severe than UsD and comparable to mild MDD. Complicated status more validly indicates depression severity than the standard number-of-symptoms measure. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment

    DOE PAGES

    Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...

    2017-04-18

    Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less

  4. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    NASA Astrophysics Data System (ADS)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  5. Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement.

    PubMed

    Wang, Xiaotong; Wei, Changzheng; Cao, Bin; Jiang, Lixia; Hou, Yongtai; Chang, Jiang

    2018-05-30

    A major challenge in three-dimensional (3D) printing of hydrogels is the fabrication of stable constructs with high precision and good mechanical properties and biocompatibility. Existing methods typically feature complicated reinforcement steps or use potentially toxic components, such as photocuring polymers and crosslinking reagents. In this study, we used a thermally sensitive hydrogel, hydroxybutyl chitosan (HBC), for 3D-printing applications. For the first time, we demonstrated that this modified polysaccharide is affected by the specific ion effect. As the salt concentration was increased and stronger kosmotropic anions were used, the lower critical solution temperature of the HBC decreased and the storage modulus was improved, indicating a more hydrophobic structure and stronger molecular chain interactions. On the basis of the thermosensitivity and the ion effects of HBC, a 25-layered hydrogel scaffold with strong mechanical properties and an elaborate structure was prepared via a 3D-printing method and one-step ionic post-treatment. In particular, the scaffold treated with 10% NaCl solution exhibited a tunable elastic modulus of 73.2 kPa to 40 MPa and excellent elastic recovery, as well as biodegradability and cytocompatibility, suggesting the potential for its applications to cartilage tissue repair. By simply controlling the temperature and salt concentrations, this novel approach provides a convenient and green route to improving the structural accuracy and regulating the properties of 3D-printed hydrogel constructs.

  6. Enhancing Close-Up Image Based 3d Digitisation with Focus Stacking

    NASA Astrophysics Data System (ADS)

    Kontogianni, G.; Chliverou, R.; Koutsoudis, A.; Pavlidis, G.; Georgopoulos, A.

    2017-08-01

    The 3D digitisation of small artefacts is a very complicated procedure because of their complex morphological feature structures, concavities, rich decorations, high frequency of colour changes in texture, increased accuracy requirements etc. Image-based methods present a low cost, fast and effective alternative because laser scanning does not meet the accuracy requirements in general. A shallow Depth of Field (DoF) affects the image-based 3D reconstruction and especially the point matching procedure. This is visible not only in the total number of corresponding points but also in the resolution of the produced 3D model. The extension of the DoF is a very important task that should be incorporated in the data collection to attain a better quality of the image set and a better 3D model. An extension of the DoF can be achieved with many methods and especially with the use of the focus stacking technique. In this paper, the focus stacking technique was tested in a real-world experiment to digitise a museum artefact in 3D. The experiment conditions include the use of a full frame camera equipped with a normal lens (50mm), with the camera being placed close to the object. The artefact has already been digitised with a structured light system and that model served as the reference model in which 3D models were compared and the results were presented.

  7. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  8. Computational Aerothermodynamic Simulation Issues on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; White, Jeffery A.

    2004-01-01

    The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.

  9. Knowledge of complications of diabetes mellitus among patients visiting the diabetes clinic at Sampa Government Hospital, Ghana: a descriptive study.

    PubMed

    Obirikorang, Yaa; Obirikorang, Christian; Anto, Enoch Odame; Acheampong, Emmanuel; Batu, Emmanuella Nsenbah; Stella, Agyemang Duah; Constance, Omerige; Brenya, Peter Kojo

    2016-07-26

    Diabetes mellitus (DM) appears to be a global epidemic and an increasingly major non-communicable disease threatening both affluent and non-affluent society. The study aimed to determine the knowledge of diabetic complications among diabetes mellitus clients visiting the Diabetic Clinical at Sampa Government Hospital, Ghana. This questionnaire-based descriptive study recruited a total 630 patients visiting the Diabetes Clinic at the Sampa Government Hospital. Structured questionnaire was used to obtain information such as socio-demographic and knowledge on complications of diabetes. Out of a total of 630 participants, 325 (51.5 %) knew diabetic foot as the most common complication followed by hypertension 223(35.4 %), neuropathy 184 (29.2 %), hypoactive sexual arousal 160(25.4 %), arousal disorder 135(21.5 %), eye diseases 112(17.7 %), heart disease 58(9.2 %), and renal disease 34(5.4 %). Comprehensive assessment of level of knowledge on the complications showed that majority 378(60.0 %) of T2D patients did not have knowledge on diabetes complications, 169(26.9 %) had inadequate knowledge on diabetics complication while 82(13.1 %) had adequate knowledge. The risk factors associated with the level of knowledge of diabetic complications were female gender adjusted odd ratio (AOR) =2.31 (1.56-3.41) married participants AOR = 3.37 (1.44-7.93), widowed AOR = 2.98 (1.10-8.08), basic level of education AOR =0.18 (0.082-0.50), Junior High School (JHS) and above of education level AOR = 0.035(0.017-0.75), 5-9 years of T2D duration AOR = 0.31(0.018-0.57), ≥10 years T2D duration AOR = 0.042 (0.02-0.10) and urban dwellers AOR = 0.36 (0.22-0.68) respectively. Participants knew the individual complication of diabetic mellitus but lack an in-depth knowledge on the complications. Further expansion of diabetic educative programs like using mass media and involving national curriculum of education can improve self-regulatory awareness of diabetic complications which may reduce the morbidity and mortality of diabetic patients.

  10. Laser direct-write for fabrication of three-dimensional paper-based devices.

    PubMed

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2016-08-16

    We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.

  11. Traversing and labeling interconnected vascular tree structures from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.; Govindarajan, Sindhuja Tirumalai; Salgia, Ankit; Hegde, Satyanarayan; Prabhakaran, Sreekala; Finol, Ender A.; White, R. James

    2014-03-01

    Purpose: Detailed characterization of pulmonary vascular anatomy has important applications for the diagnosis and management of a variety of vascular diseases. Prior efforts have emphasized using vessel segmentation to gather information on the number or branches, number of bifurcations, and branch length and volume, but accurate traversal of the vessel tree to identify and repair erroneous interconnections between adjacent branches and neighboring tree structures has not been carefully considered. In this study, we endeavor to develop and implement a successful approach to distinguishing and characterizing individual vascular trees from among a complex intermingling of trees. Methods: We developed strategies and parameters in which the algorithm identifies and repairs false branch inter-tree and intra-tree connections to traverse complicated vessel trees. A series of two-dimensional (2D) virtual datasets with a variety of interconnections were constructed for development, testing, and validation. To demonstrate the approach, a series of real 3D computed tomography (CT) lung datasets were obtained, including that of an anthropomorphic chest phantom; an adult human chest CT; a pediatric patient chest CT; and a micro-CT of an excised rat lung preparation. Results: Our method was correct in all 2D virtual test datasets. For each real 3D CT dataset, the resulting simulated vessel tree structures faithfully depicted the vessel tree structures that were originally extracted from the corresponding lung CT scans. Conclusion: We have developed a comprehensive strategy for traversing and labeling interconnected vascular trees and successfully implemented its application to pulmonary vessels observed using 3D CT images of the chest.

  12. [Non-biological 3D printed simulator for training in percutaneous nephro- lithotripsy].

    PubMed

    Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Ali, S Kh; Bukatov, M D; Letunovskiy, A V; Byadretdinov, I Sh

    2018-03-01

    To develop a non-biological 3D printed simulator for training and preoperative planning in percutaneous nephrolithotripsy (PCNL), which allows doctors to master and perform all stages of the operation under ultrasound and fluoroscopy guidance. The 3D model was constructed using multislice spiral computed tomography (MSCT) images of a patient with staghorn urolithiasis. The MSCT data were processed and used to print the model. The simulator consisted of two parts: a non-biological 3D printed soft model of a kidney with reproduced intra-renal vascular and collecting systems and a printed 3D model of a human body. Using this 3D printed simulator, PCNL was performed in the interventional radiology operating room under ultrasound and fluoroscopy guidance. The designed 3D printed model of the kidney completely reproduces the individual features of the intra-renal structures of the particular patient. During the training, all the main stages of PCNL were performed successfully: the puncture, dilation of the nephrostomy tract, endoscopic examination, intra-renal lithotripsy. Our proprietary 3D-printed simulator is a promising development in the field of endourologic training and preoperative planning in the treatment of complicated forms of urolithiasis.

  13. Slicer Method Comparison Using Open-source 3D Printer

    NASA Astrophysics Data System (ADS)

    Ariffin, M. K. A. Mohd; Sukindar, N. A.; Baharudin, B. T. H. T.; Jaafar, C. N. A.; Ismail, M. I. S.

    2018-01-01

    Open-source 3D printer has been one of the popular choices in fabricating 3D models. This technology is easily accessible and low in cost. However, several studies have been made to improve the performance of this low-cost technology in term of the accuracy of the parts finish. This study is focusing on the selection of slicer mode between CuraEngine and Slic3r. The effect on this slicer has been observe in terms of accuracy and surface visualization. The result shows that if the accuracy is the top priority, CuraEngine is the better option to use as contribute more accuracy as well as less filament is needed compared to the Slice3r. Slice3r may be very useful for complicated parts such as hanging structure due to excessive material which act as support material. The study provides basic platform for the user to have an idea which option to be used in fabricating 3D model.

  14. 3D printed porous stainless steel for potential use in medicine

    NASA Astrophysics Data System (ADS)

    Fousová, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Čapek, J.

    2017-02-01

    3D printing technologies like Selective Laser Melting (SLM) or Electron Beam Melting (EBM) produce components of very complicated shapes from various kinds of materials. In this work a highly porous (porosity of almost 90 vol. %) stainless steel component was manufactured by SLM. The material was characterized in terms of structure, surface chemistry and mechanical properties. It was observed that mechanical properties of the material were similar to those of trabecular human bone. The tests realized in this work confirmed suitability of the porous material prepared by SLM for the use in medicine, for example, for scaffolds designed to repair bone defects.

  15. Estimating 3D topographic map of optic nerve head from a single fundus image

    NASA Astrophysics Data System (ADS)

    Wang, Peipei; Sun, Jiuai

    2018-04-01

    Optic nerve head also called optic disc is the distal portion of optic nerve locating and clinically visible on the retinal surface. It is a 3 dimensional elliptical shaped structure with a central depression called the optic cup. This shape of the ONH and the size of the depression can be varied due to different retinopathy or angiopathy, therefore the estimation of topography of optic nerve head is significant for assisting diagnosis of those retinal related complications. This work describes a computer vision based method, i.e. shape from shading (SFS) to recover and visualize 3D topographic map of optic nerve head from a normal fundus image. The work is expected helpful for assessing those complications associated the deformation of optic nerve head such as glaucoma and diabetes. The illumination is modelled as uniform over the area around optic nerve head and its direction estimated from the available image. The Tsai discrete method has been employed to recover the 3D topographic map of the optic nerve head. The initial experimental result demonstrates our approach works on most of fundus images and provides a cheap, but good alternation for rendering and visualizing the topographic information of the optic nerve head for potential clinical use.

  16. Rapid and annealing-free self-assembly of DNA building blocks for 3D hydrogel chaperoned by cationic comb-type copolymers.

    PubMed

    Zhang, Zheng; Wu, Yuyang; Yu, Feng; Niu, Chaoqun; Du, Zhi; Chen, Yong; Du, Jie

    2017-10-01

    The construction and self-assembly of DNA building blocks are the foundation of bottom-up development of three-dimensional DNA nanostructures or hydrogels. However, most self-assembly from DNA components is impeded by the mishybridized intermediates or the thermodynamic instability. To enable rapid production of complicated DNA objects with high yields no need for annealing process, herein different DNA building blocks (Y-shaped, L- and L'-shaped units) were assembled in presence of a cationic comb-type copolymer, poly (L-lysine)-graft-dextran (PLL-g-Dex), under physiological conditions. The results demonstrated that PLL-g-Dex not only significantly promoted the self-assembly of DNA blocks with high efficiency, but also stabilized the assembled multi-level structures especially for promoting the complicated 3D DNA hydrogel formation. This study develops a novel strategy for rapid and high-yield production of DNA hydrogel even derived from instable building blocks at relatively low DNA concentrations, which would endow DNA nanotechnology for more practical applications.

  17. Fixation free femoral hernia repair with a 3D dynamic responsive implant. A case series report.

    PubMed

    Amato, G; Romano, G; Agrusa, A; Gordini, L; Gulotta, E; Erdas, E; Calò, P G

    2018-04-23

    To date, no gold standard for the surgical treatment of femoral hernia exists. Pure tissue repair as well as mesh/plug implantation, open or laparoscopic, are the most performed methods. Nevertheless, all these techniques need sutures or mesh fixation. This implies the risk of damaging sensitive structures of the femoral area, along with complications related to tissue tear and postoperative discomfort consequent to poor quality mesh incorporation. The present retrospective multicenter case series highlights the results of femoral hernia repair procedures performed with a 3D dynamic responsive implant in a cohort of 32 patients during a mean follow up of 27 months. Aiming to simplify the surgical procedure and reduce complications, a 3D dynamic responsive implant was delivered for femoral hernia repair, in a patient cohort. After returning the hernia sack to the abdominal cavity, the implant was simply delivered into the hernia defect where it remained, thanks to its inherent centrifugal expansion, obliterating the hernia opening without need of fixation. Postoperative pain assessment was determined using the VAS score system. The use of the 3D prosthetic device allowed for easier and faster surgical repair in a fixation free fashion. None of the typical fixation related complications occurred in the examined patients. Postoperative pain assessment with VAS score showed a very low level of pain, allowing the return of patients to normal activities in extremely reduced times. In the late postoperative period, no discomfort or chronic pain was reported. Femoral hernia repair with the 3D dynamic revealed a quick and safe placement procedure. The reduced pain intensity, as well as the absence of adverse events consequent to sutures or mesh fixation, seems to be a significant benefit of the motile compliance of the device. Furthermore, this 3D prosthesis has already proven to induce an enhanced probiotic response showing ingrowth in the implant of the typical tissue components of the abdominal wall, instead of the low quality tissue ingrowth typical in conventional meshes and plugs. The highlighted features seem to represent a more physiologic and updated repair concept of femoral protrusions. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Computer-aided design of DNA origami structures.

    PubMed

    Selnihhin, Denis; Andersen, Ebbe Sloth

    2015-01-01

    The DNA origami method enables the creation of complex nanoscale objects that can be used to organize molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA origami structures is a complicated matter and is most efficiently done using dedicated software packages. This chapter describes a procedure for designing DNA origami structures using a combination of state-of-the-art software tools. First, we introduce the basic method for calculating crossover positions between DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices. Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling can facilitate later experimentation in the laboratory.

  19. Achievement of therapeutic targets in Mexican patients with diabetes mellitus.

    PubMed

    Lavalle-González, Fernando J; Chiquete, Erwin; de la Luz, Julieta; Ochoa-Guzmán, Ana; Sánchez-Orozco, Laura V; Godínez-Gutiérrez, Sergio A

    2012-12-01

    Complications of diabetes comprise the leading cause of death in Mexico. We aimed to describe the characteristics of management and achievement of therapeutic targets in Mexican patients with diabetes mellitus. We analyzed data from 2642 Mexican patients with type 1 (T1D, n=203, 7.7%) and type 2 diabetes (T2D, n=2439, 92.3%) included in the third wave of the International Diabetes Management Practices Study. Of T2D patients, 63% were on oral glucose-lowering drugs (OGLD) exclusively (mostly metformin), 11% on insulin, 22% on OGLD plus insulin, and 4% on diet and exercise exclusively. T2D patients on insulin were more likely to be trained on diabetes, but they were older, had worse control, longer disease duration and more chronic complications than patients on OGLD only. Glycated hemoglobin (HbA1c) <7% was achieved by 21% and 37% of T1D and T2D patients, respectively. Only 5% of T1D and 3% of T2D attained the composite target of HbA1c <7%, blood pressure <130/80 mmHg and low-density lipoprotein cholesterol <100 mg/dl. T1D patients had less macrovascular but more microvascular complications, compared with T2D patients. Late complications increased with disease duration, so that about 80% of patients after 20 years of diagnosis have at least one late complication. Reaching the target HbA1c <7% was associated with a reduced number of microvascular but not with less macrovascular complications. A great proportion of these Mexican patients with diabetes did not reach therapeutic targets. Insulin was used mostly in complicated cases with advanced disease. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  20. Manipulation of three-dimensional Richtmyer-Meshkov instability by initial interfacial principal curvatures

    NASA Astrophysics Data System (ADS)

    Guan, Ben; Zhai, Zhigang; Si, Ting; Lu, Xiyun; Luo, Xisheng

    2017-03-01

    The characteristics of three-dimensional (3D) Richtmyer-Meshkov instability (RMI) in the early stages are studied numerically. By designing 3D interfaces that initially possess various identical and opposite principal curvature combinations, the growth rate of perturbations can be effectively manipulated. The weighted essentially nonoscillatory scheme and the level set method combined with the real ghost fluid method are used to simulate the flow. The results indicate that the interface development and the shock propagation in 3D cases are much more complicated than those in 2D case, and the evolution of 3D interfaces is heavily dependent on the initial interfacial principal curvatures. The 3D structure of wave patterns induces high pressure zones in the flow field, and the pressure oscillations change the local instabilities of interfaces. In the linear stages, the perturbation growth rate follows regularity as the interfacial principal curvatures vary, which is further predicted by the stability theory of 2D and 3D interfaces. It is also found that hysteresis effects exist at the onset of the linear stages in the 3D case for the same initial perturbations as the 2D case, resulting in different evolutions of 3D RMI in the nonlinear stages.

  1. Interpreting three-dimensional structures from two-dimensional images: a web-based interactive 3D teaching model of surgical liver anatomy

    PubMed Central

    Crossingham, Jodi L; Jenkinson, Jodie; Woolridge, Nick; Gallinger, Steven; Tait, Gordon A; Moulton, Carol-Anne E

    2009-01-01

    Background: Given the increasing number of indications for liver surgery and the growing complexity of operations, many trainees in surgical, imaging and related subspecialties require a good working knowledge of the complex intrahepatic anatomy. Computed tomography (CT), the most commonly used liver imaging modality, enhances our understanding of liver anatomy, but comprises a two-dimensional (2D) representation of a complex 3D organ. It is challenging for trainees to acquire the necessary skills for converting these 2D images into 3D mental reconstructions because learning opportunities are limited and internal hepatic anatomy is complicated, asymmetrical and variable. We have created a website that uses interactive 3D models of the liver to assist trainees in understanding the complex spatial anatomy of the liver and to help them create a 3D mental interpretation of this anatomy when viewing CT scans. Methods: Computed tomography scans were imported into DICOM imaging software (OsiriX™) to obtain 3D surface renderings of the liver and its internal structures. Using these 3D renderings as a reference, 3D models of the liver surface and the intrahepatic structures, portal veins, hepatic veins, hepatic arteries and the biliary system were created using 3D modelling software (Cinema 4D™). Results: Using current best practices for creating multimedia tools, a unique, freely available, online learning resource has been developed, entitled Visual Interactive Resource for Teaching, Understanding And Learning Liver Anatomy (VIRTUAL Liver) (http://pie.med.utoronto.ca/VLiver). This website uses interactive 3D models to provide trainees with a constructive resource for learning common liver anatomy and liver segmentation, and facilitates the development of the skills required to mentally reconstruct a 3D version of this anatomy from 2D CT scans. Discussion: Although the intended audience for VIRTUAL Liver consists of residents in various medical and surgical specialties, the website will also be useful for other health care professionals (i.e. radiologists, nurses, hepatologists, radiation oncologists, family doctors) and educators because it provides a comprehensive resource for teaching liver anatomy. PMID:19816618

  2. The Value of 3D Printing Models of Left Atrial Appendage Using Real-Time 3D Transesophageal Echocardiographic Data in Left Atrial Appendage Occlusion: Applications toward an Era of Truly Personalized Medicine.

    PubMed

    Liu, Peng; Liu, Rijing; Zhang, Yan; Liu, Yingfeng; Tang, Xiaoming; Cheng, Yanzhen

    The objective of this study was to assess the clinical feasibility of generating 3D printing models of left atrial appendage (LAA) using real-time 3D transesophageal echocardiogram (TEE) data for preoperative reference of LAA occlusion. Percutaneous LAA occlusion can effectively prevent patients with atrial fibrillation from stroke. However, the anatomical structure of LAA is so complicated that adequate information of its structure is essential for successful LAA occlusion. Emerging 3D printing technology has the demonstrated potential to structure more accurately than conventional imaging modalities by creating tangible patient-specific models. Typically, 3D printing data sets are acquired from CT and MRI, which may involve intravenous contrast, sedation, and ionizing radiation. It has been reported that 3D models of LAA were successfully created by the data acquired from CT. However, 3D printing of the LAA using real-time 3D TEE data has not yet been explored. Acquisition of 3D transesophageal echocardiographic data from 8 patients with atrial fibrillation was performed using the Philips EPIQ7 ultrasound system. Raw echocardiographic image data were opened in Philips QLAB and converted to 'Cartesian DICOM' format and imported into Mimics® software to create 3D models of LAA, which were printed using a rubber-like material. The printed 3D models were then used for preoperative reference and procedural simulation in LAA occlusion. We successfully printed LAAs of 8 patients. Each LAA costs approximately CNY 800-1,000 and the total process takes 16-17 h. Seven of the 8 Watchman devices predicted by preprocedural 2D TEE images were of the same sizes as those placed in the real operation. Interestingly, 3D printing models were highly reflective of the shape and size of LAAs, and all device sizes predicted by the 3D printing model were fully consistent with those placed in the real operation. Also, the 3D printed model could predict operating difficulty and the presence of a peridevice leak. 3D printing of the LAA using real-time 3D transesophageal echocardiographic data has a perfect and rapid application in LAA occlusion to assist with physician planning and decision making. © 2016 S. Karger AG, Basel.

  3. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  4. Soft tissue models: easy and inexpensive flexible 3D printing as a help in surgical planning of cardiovascular disorders

    NASA Astrophysics Data System (ADS)

    Starosolski, Zbigniew; Ezon, David S.; Krishnamurthy, Rajesh; Dodd, Nicholas; Heinle, Jeffrey; Mckenzie, Dean E.; Annapragada, Ananth

    2017-03-01

    We developed a technology that allows a simple desktop 3D printer with dual extruder to fabricate 3D flexible models of Major AortoPulmonary Collateral Arteries. The study was designed to assess whether the flexible 3D printed models could help during surgical planning phase. Simple FDM 3D printers are inexpensive, versatile in use and easy to maintain, but complications arise when the designed model is complex and has tubular structures with small diameter less than 2mm. The advantages of FDM printers are cost and simplicity of use. We use precisely selected materials to overcome the obstacles listed above. Dual extruder allows to use two different materials while printing, which is especially important in the case of fragile structures like pulmonary vessels and its supporting structures. The latter should not be removed by hand to avoid a truncation of the model. We utilize the water soluble PVA as a supporting structure and Poro-Lay filament for flexible model of AortoPulmonary collateral arteries. Poro-Lay filament is different as compared to all the other flexible ones like polymer-based. Poro-Lay is rigid while printing and this allows printing of structures small in diameter. It achieves flexibility after washing out of printed model with water. It becomes soft in touch and gelatinous. Using both PVA and Poro-Lay gives a huge advantage allowing to wash out the supporting structures and achieve flexibility in one washing operation, saving time and avoiding human error with cleaning the model. We evaluated 6 models for MAPCAS surgical planning study. This approach is also cost-effective - an average cost of materials for print is less than $15; models are printed in facility without any delays. Flexibility of 3D printed models approximate soft tissues properly, mimicking Aortopulmonary collateral arteries. Second utilization models has educational value for both residents and patients' family. Simplification of 3D flexible process could help in other models of soft tissue pathologies like aneurysms, ventricular septal defects and other vascular anomalies.

  5. Characterizing Woody Vegetation Spectral and Structural Parameters with a 3-D Scene Model

    NASA Astrophysics Data System (ADS)

    Qin, W.; Yang, L.

    2004-05-01

    Quantification of structural and biophysical parameters of woody vegetation is of great significance in understanding vegetation condition, dynamics and functionality. Such information over a landscape scale is crucial for global and regional land cover characterization, global carbon-cycle research, forest resource inventories, and fire fuel estimation. While great efforts and progress have been made in mapping general land cover types over large area, at present, the ability to quantify regional woody vegetation structural and biophysical parameters is limited. One approach to address this research issue is through an integration of physically based 3-D scene model with multiangle and multispectral remote sensing data and in-situ measurements. The first step of this work is to model woody vegetation structure and its radiation regime using a physically based 3-D scene model and field data, before a robust operational algorithm can be developed for retrieval of important woody vegetation structural/biophysical parameters. In this study, we use an advanced 3-D scene model recently developed by Qin and Gerstl (2000), based on L-systems and radiosity theories. This 3-D scene model has been successfully applied to semi-arid shrubland to study structure and radiation regime at a regional scale. We apply this 3-D scene model to a more complicated and heterogeneous forest environment dominated by deciduous and coniferous trees. The data used in this study are from a field campaign conducted by NASA in a portion of the Superior National Forest (SNF) near Ely, Minnesota during the summers of 1983 and 1984, and supplement data collected during our revisit to the same area of SNF in summer of 2003. The model is first validated with reflectance measurements at different scales (ground observations, helicopter, aircraft, and satellite). Then its ability to characterize the structural and spectral parameters of the forest scene is evaluated. Based on the results from this study and the current multi-spectral and multi-angular satellite data (MODIS, MISR), a robust retrieval system to estimate woody vegetation structural/biophysical parameters is proposed.

  6. Use of Hilbert Curves in Parallelized CUDA code: Interaction of Interstellar Atoms with the Heliosphere

    NASA Astrophysics Data System (ADS)

    Destefano, Anthony; Heerikhuisen, Jacob

    2015-04-01

    Fully 3D particle simulations can be a computationally and memory expensive task, especially when high resolution grid cells are required. The problem becomes further complicated when parallelization is needed. In this work we focus on computational methods to solve these difficulties. Hilbert curves are used to map the 3D particle space to the 1D contiguous memory space. This method of organization allows for minimized cache misses on the GPU as well as a sorted structure that is equivalent to an octal tree data structure. This type of sorted structure is attractive for uses in adaptive mesh implementations due to the logarithm search time. Implementations using the Message Passing Interface (MPI) library and NVIDIA's parallel computing platform CUDA will be compared, as MPI is commonly used on server nodes with many CPU's. We will also compare static grid structures with those of adaptive mesh structures. The physical test bed will be simulating heavy interstellar atoms interacting with a background plasma, the heliosphere, simulated from fully consistent coupled MHD/kinetic particle code. It is known that charge exchange is an important factor in space plasmas, specifically it modifies the structure of the heliosphere itself. We would like to thank the Alabama Supercomputer Authority for the use of their computational resources.

  7. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  8. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    NASA Astrophysics Data System (ADS)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  9. Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure.

    PubMed

    Lim, Jun Young; Kim, Namhyun; Park, Jong-Chul; Yoo, Sun K; Shin, Dong Ah; Shim, Kyu-Won

    2017-09-01

    Cranioplasty for recovering skull defects carries the risk for a number of complications. Various materials are used, including autologous bone graft, metallic materials, and non-metallic materials, each of which has advantages and disadvantages. If the use of autologous bone is not feasible, those artificial materials also have constraints in the case of complex anatomy and/or irregular defects. This study used metal 3D-printing technology to overcome these existing drawbacks and analyze the clinical and mechanical performance requirements. To find an optimal structure that satisfied the structural and mechanical stability requirements, we evaluated biomechanical stability using finite element analysis (FEA) and mechanical testing. To ensure clinical applicability, the model was subjected to histological evaluation. Each specimen was implanted in the femur of a rabbit and was evaluated using histological measurements and push-out test. We believe that our data will provide the basis for future applications of a variety of unit structures and further clinical trials and research, as well as the direction for the study of other patient-specific implants.

  10. Fine structure of the K X-ray absorption spectra of titanium in some hydrides, borides, and silicides (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainshtein, �. E.; Zhurakovskii, E. A.

    1959-08-01

    X-ray spectral analyses confirmed the hypothesis on the metal-like state of hydrogen in tithnium hydrides. Experiments with titunium borides and silicides indicate the special character and degree of the 3d--level participation in the metallic'' bond between the atoms of various complexes. The structure of metalloid elements becomes more complicated with an increase in the specific number of boron and silicon atoms and the bond between the atoms tends to become covalent. (R.V.J.)

  11. [Pharmacoeconomic assessment of daptomycin as first-line therapy for bacteraemia and complicated skin and skin structure infections caused by gram-positive pathogens in Spain].

    PubMed

    Grau, S; Rebollo, P; Cuervo, J; Gil-Parrado, S

    2011-09-01

    To assess the efficiency of daptomycin as firstline therapy (D) versus daptomycin as salvage therapy after vancomycin (V→D ) or linezolid (L→D) failure in gram-positive bacteraemia and complicated skin and skin-structure infections (cSSTIs). Cost-effectiveness analysis of 161 bacteraemia and 84 cSSTIs patients comparing the above mentioned therapeutic alternatives was performed using the data from 27 Spanish hospitals involved in the EUCORE study. Direct medical costs were considered. Patients were observed from the first antibiotic dose for infection until either the end of daptomycin therapy or exitus. A multivariate Monte Carlo probabilistic sensitivity analysis was applied for costs (lognormal distribution) and effectiveness (normal distribution). In terms of effectiveness there were no statistical differences between groups but referring total costs per patient, there were significant differences. Sensitivity analysis confirmed that D dominates over L→D between 44.2%-62.1% of simulations in bacteraemia and between 48.2%-67.5% in cSSTIs. In comparison to V→D, D dominance was detected in 29.2%-33.2% of simulations in bacteraemia and between 48.2%-59.3% in cSSTIs. Daptomycin as first-line therapy dominates over daptomycin as salvage therapy after linezolid failure both in bacteraemia and cSSTIs. Comparing daptomycin as first-line therapy with its use after vancomycin failure, in cSSTIs the former is dominant. In bacteremia daptomycin as first line therapy is as effective as daptomycin as salvage therapy after vancomycin failure and implies lower costs.

  12. Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging

    NASA Astrophysics Data System (ADS)

    Hong, Abigail L.; Newman, Benjamin T.; Khalid, Arbab; Teter, Olivia M.; Kobe, Elizabeth A.; Shukurova, Malika; Shinde, Rohit; Sipzner, Daniel; Pignolo, Robert J.; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2017-03-01

    Current methods of bone graft treatment for critical size bone defects can give way to several clinical complications such as limited available bone for autografts, non-matching bone structure, lack of strength which can compromise a patient's skeletal system, and sterilization processes that can prevent osteogenesis in the case of allografts. We intend to overcome these disadvantages by generating a patient-specific 3D printed bone graft guided by high-resolution medical imaging. Our synthetic model allows us to customize the graft for the patients' macro- and microstructure and correct any structural deficiencies in the re-meshing process. These 3D-printed models can presumptively serve as the scaffolding for human mesenchymal stem cell (hMSC) engraftment in order to facilitate bone growth. We performed highresolution CT imaging of a cadaveric human proximal femur at 0.030-mm isotropic voxels. We used these images to generate a 3D computer model that mimics bone geometry from micro to macro scale represented by STereoLithography (STL) format. These models were then reformatted to a format that can be interpreted by the 3D printer. To assess how much of the microstructure was replicated, 3D-printed models were re-imaged using micro-CT at 0.025-mm isotropic voxels and compared to original high-resolution CT images used to generate the 3D model in 32 sub-regions. We found a strong correlation between 3D-printed bone volume and volume of bone in the original images used for 3D printing (R2 = 0.97). We expect to further refine our approach with additional testing to create a viable synthetic bone graft with clinical functionality.

  13. Evaluation of emphysema using three-dimensional computed tomography: association with postoperative complications in lung cancer patients.

    PubMed

    Kawakami, Kenichi; Iwano, Shingo; Hashimoto, Naozumi; Hasegawa, Yoshinori; Naganawa, Shinji

    2015-02-01

    Three-dimensional computed tomography (3D-CT) enables in vivo volumetry of total lung volume (TLV) and emphysematous low-attenuation volume (LAV) in patients with chronic obstructive pulmonary disease (COPD). We retrospectively investigated the correlation between preoperative 3D-CT volumetry and postoperative complications in lung cancer patients. We searched our institution's surgical records from December 2006 to December 2009 and selected patients who had undergone pulmonary lobectomy for primary lung cancer. From 3D-CT data, TLV and LAV <-950 HU of thresholds were retrospectively measured. The LAV% was calculated as follows: LAV% = LAV/TLV*100. The associations between the seven independent variables (LAV%, age, gender, body mass index, smoking history, forced expiratory volume in 1 second as percent forced vital capacity [FEV1%], and resected lobe) and the two outcomes (postoperative complications and prolonged postoperative stay [PPS]) were compared using logistic regression analysis. A total of 309 patients (222 males, 87 females; mean age, 67 years; range, 40-87 years) were evaluated. On multivariate analysis, age and LAV% were significantly correlated with postoperative complications (p = 0.006 and p = 0.006, respectively), and LAV% was significantly correlated with PPS (p = 0.031). LAV% measured using 3D-CT is more sensitive for predicting complications after lobectomy for lung cancer than FEV1%.

  14. Vit D deficiency is a possible risk factor in ARS.

    PubMed

    Elbistanlı, Mustafa Suphi; Koçak, Hasan Emre; Güneş, Selçuk; Acıpayam, Harun; Şimşek, Baver Maşallah; Canpolat, Sinan; Kayhan, Fatma Tülin

    2017-09-01

    Vitamin D deficiency is effective in the development of acute rhinosinusitis and prolongation of inflammation by increasing inflammation in the sinonasal epithelium. Vitamin D deficiency is important in the development of bone barriers that prevent the complication of acute rhinosinusitis. Although Vitamin D levels may be a variable risk factor for various respiratory tract disorders, there are limited data on the role in sinonasal infections. Our aim was to investigate the association of 25-hydroxy-vitamin D (25OHD) levels with acute rhinosinusitis (ARS) and preseptal cellulitis complications. The type of the study is prospective case-control study. Fifteen patients in the pediatric age group with ARS-induced preseptal cellulitis complication were identified as Group 1, fifteen patients with ARS and without complication were identified as Group 2, and fifteen healthy volunteers were identified as Group 3. Serum 25OHD levels (nmol/l) were measured in addition to routine blood tests at the first admission of patients participating in the study. Statistical analysis was performed between groups. The ages of the cases ranged from 1 to 14 years with a mean of 5.62 ± 3.42 years. 55.6% of the cases (n = 25) were male; 44.4% (n = 20) were female children. As a result of classification in which vitamin D levels were compared with normal values, there was a statistically significant difference according to the presence of ARS (Group-1 and Group 2) and absence of ARS (Group-3) (p < 0.05). A statistically significant difference was also found between Group 1 and Group-3 (p < 0.05). Statistically significant difference between Group 1 and Group 3 suggests that lack of vitamin D predisposes to the complication of preseptal cellulitis. Comparison of Group 1 and 2 with Group 3 (normal subjects) suggests that Vit D has a protective effect against developing sinusitis.

  15. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone.

    PubMed

    Xue, Jixin; Feng, Bei; Zheng, Rui; Lu, Yang; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Yanzhong; Zhang, Wen Jie

    2013-04-01

    Tissue engineering approach continuously requires for emerging strategies to improve the efficacy in repairing and regeneration of tissue defects. Previously, we developed a sandwich model strategy for cartilage engineering, using the combination of acellular cartilage sheets (ACSs) and chondrocytes. However, the process for the preparation of ACSs is complicated, and it is also difficult to obtain large ACSs. The aim of this study was to engineer cartilage with precise three-dimensional (3-D) structures by applying electrospun fibrous membranes of gelatin/polycaprolactone (GT/PCL). We first prepared the electrospun GT/PCL membranes into rounded shape, and then seeded chondrocytes in the sandwich model. After in vitro and in vivo cultivation, the newly formed cartilage-like tissues were harvested. Macroscopic observations and histological analysis confirmed that the engineering of cartilage using the electrospun GT/PCL membranes was feasible. An ear-shaped cartilage was then constructed in the sandwich model, with the help of an ear-shaped titanium alloy mold. After 2 weeks of culture in vitro and 6 weeks of subcutaneous incubation in vivo, the ear-shaped cartilage largely maintained their original shape, with a shape similarity up to 91.41% of the titanium mold. In addition, the engineered cartilage showed good elasticity and impressive mechanical strength. These results demonstrated that the engineering of 3-D cartilage in a sandwich model using electrospun fibrous membranes was a facile and effective approach, which has the potential to be applied for the engineering of other tissues with complicated 3-D structures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Play dough as an educational tool for visualization of complicated cerebral aneurysm anatomy.

    PubMed

    Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Ghazvini, Arman Rakan

    2005-05-10

    Imagination of the three-dimensional (3D) structure of cerebral vascular lesions using two-dimensional (2D) angiograms is one of the skills that neurosurgical residents should achieve during their training. Although ongoing progress in computer software and digital imaging systems has facilitated viewing and interpretation of cerebral angiograms enormously, these facilities are not always available. We have presented the use of play dough as an adjunct to the teaching armamentarium for training in visualization of cerebral aneurysms in some cases. The advantages of play dough are low cost, availability and simplicity of use, being more efficient and realistic in training the less experienced resident in comparison with the simple drawings and even angiographic views from different angles without the need for computers and similar equipment. The disadvantages include the psychological resistance of residents to the use of something in surgical training that usually is considered to be a toy, and not being as clean as drawings or computerized images. Although technology and computerized software using the patients' own imaging data seems likely to become more advanced in the future, use of play dough in some complicated cerebral aneurysm cases may be helpful in 3D reconstruction of the real situation.

  17. Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations.

    PubMed

    Sora, Mircea-Constantin; Jilavu, Radu; Matusz, Petru

    2012-10-01

    The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction. A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created. Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space. The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.

  18. A 3D-Printed Sensor for Monitoring Biosignals in Small Animals

    PubMed Central

    Byun, Donghak; Choi, Seok-Yong; Lee, Byung-Geun; Kim, Myeong-Kyu

    2017-01-01

    Although additive manufacturing technologies, also known as 3D printing, were first introduced in the 1980s, they have recently gained remarkable popularity owing to decreased costs. 3D printing has already emerged as a viable technology in many industries; in particular, it is a good replacement for microfabrication technology. Microfabrication technology usually requires expensive clean room equipment and skilled engineers; however, 3D printing can reduce both cost and time dramatically. Although 3D printing technology has started to emerge into microfabrication manufacturing and medical applications, it is typically limited to creating mechanical structures such as hip prosthesis or dental implants. There have been increased interests in wearable devices and the critical part of such wearable devices is the sensing part to detect biosignals noninvasively. In this paper, we have built a 3D-printed sensor that can measure electroencephalogram and electrocardiogram from zebrafish. Despite measuring biosignals noninvasively from zebrafish has been known to be difficult due to that it is an underwater creature, we were able to successfully obtain electrophysiological information using the 3D-printed sensor. This 3D printing technique can accelerate the development of simple noninvasive sensors using affordable equipment and provide an economical solution to physiologists who are unfamiliar with complicated microfabrication techniques. PMID:29209491

  19. Genetic and Environmental Pathways in Type 1 Diabetes Complications

    DTIC Science & Technology

    2008-09-01

    the “Limit By Function Type” heading opens a new browser window to the online user guide describing the use of this filter when selecting SNPs for...T1D. The juxtaglomerular apparatus comprises different structures in functional and structural link: cells of the extraglomerular mesangium, which fill...27 Aug 2007-26 Aug 2008 4. TITLE AND SUBTITLE Genetic and Environmental Pathways in Type 1 Diabetes Complications New Advanced Technology to

  20. Large-scale 3D inversion of marine controlled source electromagnetic data using the integral equation method

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.

    2009-12-01

    The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.

  1. Fabrication of low cost soft tissue prostheses with the desktop 3D printer

    NASA Astrophysics Data System (ADS)

    He, Yong; Xue, Guang-Huai; Fu, Jian-Zhong

    2014-11-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods.

  2. Fabrication of low cost soft tissue prostheses with the desktop 3D printer

    PubMed Central

    He, Yong; Xue, Guang-huai; Fu, Jian-zhong

    2014-01-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods. PMID:25427880

  3. Fabrication of low cost soft tissue prostheses with the desktop 3D printer.

    PubMed

    He, Yong; Xue, Guang-huai; Fu, Jian-zhong

    2014-11-27

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods.

  4. Influence of cross section variations on the structural behaviour of composite rotor blades

    NASA Astrophysics Data System (ADS)

    Rapp, Helmut; Woerndle, Rudolf

    1991-09-01

    A highly sophisticated structural analysis is required for helicopter rotor blades with nonhomogeneous cross sections made from nonisotropic material. Combinations of suitable analytical techniques with FEM-based techniques permit a cost effective and sufficiently accurate analysis of these complicated structures. It is determined that in general the 1D engineering theory of bending combined with 2D theories for determining the cross section properties is sufficient to describe the structural blade behavior.

  5. Topological semimetal in honeycomb lattice LnSI

    NASA Astrophysics Data System (ADS)

    Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng

    2017-10-01

    Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.

  6. Topological semimetal in honeycomb lattice LnSI.

    PubMed

    Nie, Simin; Xu, Gang; Prinz, Fritz B; Zhang, Shou-Cheng

    2017-10-03

    Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.

  7. Topological semimetal in honeycomb lattice LnSI

    PubMed Central

    Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng

    2017-01-01

    Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs. PMID:28928149

  8. Seamless lamination of a concave-convex architecture with single-layer graphene.

    PubMed

    Park, Ji-Hoon; Lim, Taekyung; Baik, Jaeyoon; Seo, Keumyoung; Moon, Youngkwon; Park, Noejung; Shin, Hyun-Joon; Kwak, Sang Kyu; Ju, Sanghyun; Ahn, Joung Real

    2015-11-21

    Graphene has been used as an electrode and channel material in electronic devices because of its superior physical properties. Recently, electronic devices have changed from a planar to a complicated three-dimensional (3D) geometry to overcome the limitations of planar devices. The evolution of electronic devices requires that graphene be adaptable to a 3D substrate. Here, we demonstrate that chemical-vapor-deposited single-layer graphene can be transferred onto a silicon dioxide substrate with a 3D geometry, such as a concave-convex architecture. A variety of silicon dioxide concave-convex architectures were uniformly and seamlessly laminated with graphene using a thermal treatment. The planar graphene was stretched to cover the concave-convex architecture, and the resulting strain on the curved graphene was spatially resolved by confocal Raman spectroscopy; molecular dynamic simulations were also conducted and supported the observations. Changes in electrical resistivity caused by the spatially varying strain induced as the graphene-silicon dioxide laminate varies dimensionally from 2D to 3D were measured by using a four-point probe. The resistivity measurements suggest that the electrical resistivity can be systematically controlled by the 3D geometry of the graphene-silicon dioxide laminate. This 3D graphene-insulator laminate will broaden the range of graphene applications beyond planar structures to 3D materials.

  9. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody

    PubMed Central

    Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-01-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection. PMID:26938634

  10. Synthesis, crystal structure, and protonation behaviour in solution of the recently-discovered drug metabolite, N1,N10-diacetyltriethylenetetramine

    NASA Astrophysics Data System (ADS)

    Wichmann, Kathrin A.; Söhnel, Tilo; Cooper, Garth J. S.

    2012-03-01

    N1,N10-diacetyltriethylenetetramine (DAT) is a recently-discovered major in vivo metabolite of triethylenetetramine (TETA), a highly-selective CuII chelator currently under clinical development as a novel first-in-class therapeutic for the cardiovascular, renal and retinal complications of diabetes mellitus. Characterisation of DAT is an integral aspect of the pharmacological work-up required to support this clinical development programme and, to our knowledge, no previous synthesis for it has been published. Here we report the synthesis of DAT dihydrochloride (DAT·2 HCl); its crystal structure as determined by X-ray single-crystal (XRD) and powder diffraction (XRPD); and protonation constants and species distribution in aqueous solution, which represents the different protonation states of DAT at different pH values. The crystal structure of DAT·2 HCl reveals 3D-assemblies of alternating 2D-layers comprising di-protonated DAT strands and anionic species, which form an extensive hydrogen-bond network between amine groups, acetyl groups, and chloride anions. Potentiometric titrations show that HDAT+ is the physiologically relevant state of DAT in solution. These findings contribute to the understanding of TETA's pharmacology and to its development for the experimental therapeutics of the diabetic complications.

  11. Three-dimensional Optical Coherence Tomography Imaging and Treatment of Glaucomatous Optic Nerve Head Defects Associated with Schisis-like Maculopathy

    PubMed Central

    Öztaş, Zafer; Menteş, Jale; Ateş, Halil; Nalçacı, Serhad

    2017-01-01

    We present the three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) findings of schisis-like maculopathy associated with structural changes of the optic nerve (ON) head as well as the treatment outcomes of a case of advanced glaucoma. In addition to ophthalmological examination, B-scan and 3D-SD-OCT images of the ON head, peripapillary retina, and the macula were obtained. The B-scan images only detected typical retinoschisis findings. However, the 3D-SD-OCT images of the ON head revealed defects of various sizes, shapes, and depths at the outer wall of the prelaminar and laminar regions of the ON canal. The 3D images were able to establish that these defects were both adjacent to and interconnected with the retinal layers. The patient successfully received 3D-SD-OCT-guided thermal laser treatment that is used in congenital optic disc pits complicated with macular schisis. In brief, 3D-SD-OCT is very useful for demonstrating the ON head defects that can lead to schisis-like maculopathy in cases of advanced glaucoma. PMID:28405489

  12. An image-guided planning system for endosseous oral implants.

    PubMed

    Verstreken, K; Van Cleynenbreugel, J; Martens, K; Marchal, G; van Steenberghe, D; Suetens, P

    1998-10-01

    A preoperative planning system for oral implant surgery was developed which takes as input computed tomographies (CT's) of the jaws. Two-dimensional (2-D) reslices of these axial CT slices orthogonal to a curve following the jaw arch are computed and shown together with three-dimensional (3-D) surface rendered models of the bone and computer-aided design (CAD)-like implant models. A technique is developed for scanning and visualizing an eventual existing removable prosthesis together with the bone structures. Evaluation of the planning done with the system shows a difference between 2-D and 3-D planning methods. Validation studies measure the benefits of the 3-D approach by comparing plans made in 2-D mode only with those further adjusted using the full 3-D visualization capabilities of the system. The benefits of a 3-D approach are then evident where a prosthesis is involved in the planning. For the majority of the patients, clinically important adjustments and optimizations to the 2-D plans are made once the 3-D visualization is enabled, effectively resulting in a better plan. The alterations are related to bone quality and quantity (p < 0.05), biomechanics (p < 0.005), and esthetics (p < 0.005), and are so obvious that the 3-D plan stands out clearly (p < 0.005). The improvements often avoid complications such as mandibular nerve damage, sinus perforations, fenestrations, or dehiscences.

  13. A simple method of fabricating mask-free microfluidic devices for biological analysis

    PubMed Central

    Yi, Xin; Kodzius, Rimantas; Gong, Xiuqing; Xiao, Kang; Wen, Weijia

    2010-01-01

    We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper to form intricate patterns and differently configured channels for specific purposes. Bonded with cyanoacrylate-based resin, the prepared paper sheet is sandwiched between glass slides (hydrophilic) or polymer-based plates (hydrophobic) to obtain a multilayer structure. In order to examine the chip’s biocompatibility and applicability, protein concentration was measured while DNA capillary electrophoresis was carried out, and both of them show positive results. With the utilization of direct laser cutting and one-step gas-sacrificing techniques, the whole fabrication processes for complicated 2D and 3D microfluidic devices are shorten into several minutes which make it a good alternative of poly(dimethylsiloxane) microfluidic chips used in biological analysis researches. PMID:20890452

  14. Pentraxin 3 predicts complicated course of febrile neutropenia in haematological patients, but the decision level depends on the underlying malignancy.

    PubMed

    Juutilainen, Auni; Vänskä, Matti; Pulkki, Kari; Hämäläinen, Sari; Nousiainen, Tapio; Jantunen, Esa; Koivula, Irma

    2011-11-01

    This study aimed at assessing the cut-off levels for pentraxin 3 (PTX3) in predicting complications of neutropenic fever (bacteraemia, septic shock) in haematological patients. A prospective study during 2006-2009 was performed at haematology ward in Kuopio University Hospital. A patient was eligible for the study if having neutropenic fever after intensive therapy for acute myeloid leukaemia (AML) (n = 32) or non-Hodgkin lymphoma (NHL) (n = 35). Blood cultures were taken, and maximal PTX3 and C-reactive protein (CRP) were evaluated during d0 to d3 from the beginning of fever onset. The level of PTX3 was associated with both the underlying malignancy and the presence of complications, with highest level in NHL patients with complicated course of febrile neutropenia and lowest in AML patients with non-complicated course. The cut-off level of PTX3 to predict complications was ten-fold in patients with NHL (115 μg/L) in comparison with patients with AML (11.5 μg/L). In combined analysis based on separate cut-offs, PTX3 predicted complications of febrile neutropenia with sensitivity of 0.86, specificity of 0.83, positive predictive value of 0.57 and negative predictive value of 0.96.   PTX3 was superior to CRP in predicting complicated course of febrile neutropenia, but only when the effect of the underlying malignancy had been taken into account. © 2011 John Wiley & Sons A/S.

  15. Fabrication of 3D nano-structures using reverse imprint lithography

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  16. Fabrication of 3D nano-structures using reverse imprint lithography.

    PubMed

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  17. First trimester size charts of embryonic brain structures.

    PubMed

    Gijtenbeek, M; Bogers, H; Groenenberg, I A L; Exalto, N; Willemsen, S P; Steegers, E A P; Eilers, P H C; Steegers-Theunissen, R P M

    2014-02-01

    Can reliable size charts of human embryonic brain structures be created from three-dimensional ultrasound (3D-US) visualizations? Reliable size charts of human embryonic brain structures can be created from high-quality images. Previous studies on the visualization of both the cavities and the walls of the brain compartments were performed using 2D-US, 3D-US or invasive intrauterine sonography. However, the walls of the diencephalon, mesencephalon and telencephalon have not been measured non-invasively before. Last-decade improvements in transvaginal ultrasound techniques allow a better visualization and offer the tools to measure these human embryonic brain structures with precision. This study is embedded in a prospective periconceptional cohort study. A total of 141 pregnancies were included before the sixth week of gestation and were monitored until delivery to assess complications and adverse outcomes. For the analysis of embryonic growth, 596 3D-US scans encompassing the entire embryo were obtained from 106 singleton non-malformed live birth pregnancies between 7(+0) and 12(+6) weeks' gestational age (GA). Using 4D View (3D software) the measured embryonic brain structures comprised thickness of the diencephalon, mesencephalon and telencephalon, and the total diameter of the diencephalon and mesencephalon. Of 596 3D scans, 161 (27%) high-quality scans of 79 pregnancies were eligible for analysis. The reliability of all embryonic brain structure measurements, based on the intra-class correlation coefficients (ICCs) (all above 0.98), was excellent. Bland-Altman plots showed moderate agreement for measurements of the telencephalon, but for all other measurements the agreement was good. Size charts were constructed according to crown-rump length (CRL). The percentage of high-quality scans suitable for analysis of these brain structures was low (27%).  The size charts of human embryonic brain structures can be used to study normal and abnormal development of brain development in future. Also, the effects of periconceptional maternal exposures, such as folic acid supplement use and smoking, on human embryonic brain development can be a topic of future research. This study was supported by the Department of Obstetrics and Gynaecology of the Erasmus University Medical Center. M.G. was supported by an additional grant from the Sophia Foundation for Medical Research (SSWO grant number 644). No competing interests are declared.

  18. 3D Printer-Manufacturing of Complex Geometry Elements

    NASA Astrophysics Data System (ADS)

    Ciubară, A.; Burlea, Ș L.; Axinte, M.; Cimpoeșu, R.; Chicet, D. L.; Manole, V.; Burlea, G.; Cimpoeșu, N.

    2018-06-01

    In the last 5-10 years the process of 3D printing has an incredible advanced in all the fields with a tremendous number of applications. Plastic materials exhibit highly beneficial mechanical properties while delivering complex designs impossible to achieve using conventional manufacturing. In this article the printing process (filling degree, time, complications and details finesse) of few plastic elements with complicated geometry and fine details was analyzed and comment. 3D printing offers many of the thermoplastics and industrial materials found in conventional manufacturing. The advantages and disadvantages of 3D printing for plastic parts are discussed. Time of production for an element with complex geometry, from the design to final cut, was evaluated.

  19. IL-10 combined with procalcitonin improves early prediction of complications of febrile neutropenia in hematological patients.

    PubMed

    Vänskä, Matti; Koivula, Irma; Jantunen, Esa; Hämäläinen, Sari; Purhonen, Anna-Kaisa; Pulkki, Kari; Juutilainen, Auni

    2012-12-01

    Early diagnosis of complicated course in febrile neutropenia is cumbersome due to the non-specificity of clinical and laboratory signs of severe infection. This prospective study included 100 adult hematological patients with febrile neutropenia after intensive chemotherapy at the onset of fever (d0) and for 3 days (d1-d3) thereafter. The study aim was to find early predictors for complicated course of febrile neutropenia, defined as bacteremia or septic shock. Interleukin 6 (IL-6), interleukin 10 (IL-10), procalcitonin (PCT) and C-reactive protein (CRP) all predicted complicated course of febrile neutropenia on d0, but only PCT was predictive throughout the study period. For IL-10 on d0-1 with cut-off 37 ng/L, sensitivity was 0.71, specificity 0.82, positive predictive value 0.52 and negative predictive value 0.92. For PCT on d0-1 with cut-off 0.13 μg/L, the respective measures were 0.95, 0.53, 0.36, and 0.98. For the combination of IL-10 and PCT on d0-1 with the same cut-offs, specificity improved to 0.85 and positive predictive value to 0.56. In conclusion, the present study confirms the high negative predictive value of PCT and provides new evidence for IL-10 as an early predictor for complicated course of febrile neutropenia in hematological patients. Combining IL-10 with PCT improves the early prediction for complicated course of febrile neutropenia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Dynamic Change of Total Bilirubin after Portal Vein Embolization is Predictive of Major Complications and Posthepatectomy Mortality in Patients with Hilar Cholangiocarcinoma.

    PubMed

    Ou Yang, Qing; Zhang, Sheng; Cheng, Qing-Bao; Li, Bin; Feng, Fei-Ling; Yu, Yong; Luo, Xiang-Ji; Lin, Zhao-Fen; Jiang, Xiao-Qing

    2016-05-01

    This study aims to evaluate the role of dynamic change in total bilirubin after portal vein embolization (PVE) in predicting major complications and 30-day mortality in patients with hilar cholangiocarcinoma (HCCA). Retrospective analysis of prospectively maintained data of 64 HCCA patients who underwent PVE before hepatectomy in our institution was used. Total bilirubin and other parameters were measured daily in peri-PVE period. The difference between them and the baseline value from days 0-5 to day -1 (∆D1) and days 5-14 to day -1 (∆D2) were calculated. The relationship between ∆D1 and ∆D2 of total bilirubin and major complications as well as 30-day mortality was analyzed. Out of 64 patients, 10 developed major complications (15.6 %) and 6 patients (9.3 %) had died within 30 days after surgery. The ∆D2 of total bilirubin after PVE was most significantly associated with major complications (P < 0.001) and 30-day mortality (P = 0.002). In addition, it was found to be an independent predictor of major complications after PVE (odds ratio (OR) = 1.050; 95 % CI 1.017-1.084). ASA >3 (OR = 12.048; 95 % CI 1.019-143.321), ∆D2 of total bilirubin (OR = 1.058; 95 % CI 1.007-1.112), and ∆D2 of prealbumin (OR = 0.975; 95 % CI 0.952-0.999) were associated with higher risk of 30-day mortality after PVE. Receiver operating characteristic curves showed that ∆D2 of total bilirubin were better predictors than ∆D1 for major complications (AUC (∆D2) 0.817; P = 0.002 vs. AUC (∆D1) 0.769; P = 0.007) and 30-day mortality (ACU(∆D2) 0.868; P = 0.003 vs. AUC(∆D1) 0.721;P = 0.076). Patients with increased total bilirubin in 5-14 days after PVE may indicate a higher risk of major complications and 30-day mortality if the major hepatectomy were performed.

  1. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr3+ in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hu, Dong-Cheng; Fan, Yan; Si, Chang-Dai; Wu, Ya-Jun; Dong, Xiu-Yan; Yang, Yun-Xia; Yao, Xiao-Qiang; Liu, Jia-Cheng

    2016-09-01

    A novel series of Zn/Cd coordination polymers based on H3L, namely, [Zn2(HL)2(bipy)2(H2O)6]n (1), [Zn(HL)(phen)]n (2), [Cd3L2(bbi)3]n (3), [Zn3L2(bbi)3]n (4) [(H3L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4‧-bipyridine, phen =1,10-phenanthroline, bbi =1,1‧-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibit similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (63.8.102)2(63)2(64.8.10). In particular, compound 3 exhibited a high sensitivity for Cr3+ in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr3+.

  2. A systematic review of clinical value of three-dimensional printing in renal disease.

    PubMed

    Sun, Zhonghua; Liu, Dongting

    2018-04-01

    The aim of this systematic review is to analyse current literature related to the clinical value of three-dimensional (3D) printed models in renal disease. A literature search of PubMed and Scopus databases was performed to identify studies reporting the clinical application and usefulness of 3D printed models in renal disease. Fifteen studies were found to meet the selection criteria and were included in the analysis. Eight of them provided quantitative assessments with five studies focusing on dimensional accuracy of 3D printed models in replicating renal anatomy and tumour, and on measuring tumour volume between 3D printed models and original source images and surgical specimens, with mean difference less than 10%. The other three studies reported that the use of 3D printed models significantly enhanced medical students and specialists' ability to identify anatomical structures when compared to two-dimensional (2D) images alone; and significantly shortened intraoperative ultrasound duration compared to without use of 3D printed models. Seven studies provided qualitative assessments of the usefulness of 3D printed kidney models with findings showing that 3D printed models improved patient's understanding of renal anatomy and pathology; improved medical trainees' understanding of renal malignant tumours when compared to viewing medical images alone; and assisted surgical planning and simulation of renal surgical procedures with significant reductions of intraoperative complications. The cost and time associated with 3D printed kidney model production was reported in 10 studies, with costs ranging from USD$100 to USD$1,000, and duration of 3D printing production up to 31 h. The entire process of 3D printing could take up to a few days. This review shows that 3D printed kidney models are accurate in delineating renal anatomical structures and renal tumours with high accuracy. Patient-specific 3D printed models serve as a useful tool in preoperative planning and simulation of surgical procedures for treatment of renal tumours. Further studies with inclusion of more cases and with a focus on reducing the cost and 3D model production time deserve to be investigated.

  3. A systematic review of clinical value of three-dimensional printing in renal disease

    PubMed Central

    2018-01-01

    The aim of this systematic review is to analyse current literature related to the clinical value of three-dimensional (3D) printed models in renal disease. A literature search of PubMed and Scopus databases was performed to identify studies reporting the clinical application and usefulness of 3D printed models in renal disease. Fifteen studies were found to meet the selection criteria and were included in the analysis. Eight of them provided quantitative assessments with five studies focusing on dimensional accuracy of 3D printed models in replicating renal anatomy and tumour, and on measuring tumour volume between 3D printed models and original source images and surgical specimens, with mean difference less than 10%. The other three studies reported that the use of 3D printed models significantly enhanced medical students and specialists’ ability to identify anatomical structures when compared to two-dimensional (2D) images alone; and significantly shortened intraoperative ultrasound duration compared to without use of 3D printed models. Seven studies provided qualitative assessments of the usefulness of 3D printed kidney models with findings showing that 3D printed models improved patient’s understanding of renal anatomy and pathology; improved medical trainees’ understanding of renal malignant tumours when compared to viewing medical images alone; and assisted surgical planning and simulation of renal surgical procedures with significant reductions of intraoperative complications. The cost and time associated with 3D printed kidney model production was reported in 10 studies, with costs ranging from USD$100 to USD$1,000, and duration of 3D printing production up to 31 h. The entire process of 3D printing could take up to a few days. This review shows that 3D printed kidney models are accurate in delineating renal anatomical structures and renal tumours with high accuracy. Patient-specific 3D printed models serve as a useful tool in preoperative planning and simulation of surgical procedures for treatment of renal tumours. Further studies with inclusion of more cases and with a focus on reducing the cost and 3D model production time deserve to be investigated. PMID:29774184

  4. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  5. Role of frailty and nutritional status in predicting complications following total gastrectomy with D2 lymphadenectomy in patients with gastric cancer: a prospective study.

    PubMed

    Chen, Fan-Feng; Zhang, Fei-Yu; Zhou, Xuan-You; Shen, Xian; Yu, Zhen; Zhuang, Cheng-Le

    2016-09-01

    This study was performed to determine the association of frailty and nutritional status with postoperative complications after total gastrectomy (TG) with D2 lymphadenectomy in patients with gastric cancer. Patients undergoing TG with D2 lymphadenectomy for gastric cancer between August 2014 and February 2016 were enrolled. Frailty was evaluated by sarcopenia which was diagnosed by a combination of third lumbar vertebra muscle index (L3 MI), handgrip strength, and 6-m usual gait speed. Nutritional status was evaluated by the nutritional risk screening 2002 (NRS 2002) score. Univariate and multivariate analyses evaluating the risk factors for postoperative complications were performed. A total of 158 patients were analyzed, and 27.2 % developed complications within 30 days of surgery. One patient died within 30 days of the operation. In the univariate analyses, NRS 2002 score ≥3 (OR = 2.468, P = 0.012), sarcopenia (OR = 2.764, P = 0.008), and tumor located at the cardia (OR = 2.072, P = 0.046) were associated with the postoperative complications. Multivariable analysis revealed that sarcopenia (OR = 3.084, P = 0.005) and tumor located at the cardia (OR = 2.347, P = 0.026) were independent predictors of postoperative complications. This study showed a significant relationship between postoperative complications and geriatric frailty using sarcopenia in patients with gastric cancer after TG with D2 lymphadenectomy. Frailty should be integrated into preoperative risk assessment and may have implications in preoperative decisionmaking.

  6. [Clinical Values of Combined Detection of CRP and D-D for AL Patients Complicated with DIC].

    PubMed

    Ji, Xue-Hong

    2015-12-01

    To explore the clinical values of the combined detection of C-reactive protein (CRP) and D-dimer (D-D) for acute leukemia (AL) patients complicated with disseminated intravascular coagulation (DIC). Among 52 cases of AL, 20 cases of AL complicated with DIC were selected as AL+DIC group, 32 cases of AL were selected as AL group, 30 healthy volunteers were used as control group; the detected values of CRP and D-D in 3 groups were compared. The CRP and D-D levels in AL+DIC group were significantly higher than those in AL and control groups (P < 0.05); the CRP and D-D levels in AL group were significatly higher than those in control group (P < 0.05). The D-D level and complicated DIC rate in patients with CRP < 10 mg/L were significantly lower than those in patients with CRP 10-100 and >100 mg/L (P <0.05), while the D-D level and complicated DIC rate in patients with 10-100 mg/L were significantly lower than those in patients with CRP > 100 mg/L (P <0.05). After treatment of patients, the CRP and D-D levels in AL and AL+DIC groups were obviously reduced as compared with levels of these 2 groups before treatment (P <0.05); the CRP and D-D levels in AL+DIC after treatment were significantly higher than those in AL group (P <0.05). The combined detection of CRP and D-D possesses a higher reference value for diagnosis and differentiation of AL and AL complicated with DIC, thus also has an important role in evaluation of therapeutic efficacy of AL.

  7. Papua New Guinea MT: Looking where seismic is blind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoversten, G.M.

    1996-11-01

    Hydrocarbon exploration in the Papuan fold belt is made extremely difficult by mountainous terrain, equatorial jungle and thick karstified Miocene limestones at the surface. The high-velocity karstified limestones at or near the surface often render the seismic technique useless for imaging the subsurface. In such areas magnetotellurics (MT) provides a valuable capability for mapping subsurface structure. Numerical and field data examples are presented which demonstrate the severity of the 1D errors and the improvements in accuracy which can be achieved using a 2D inverse solution. Two MT lines over adjacent anticlines, both with well control and seismic data, are usedmore » to demonstrate the application of 1D and 2D inversions for structural models. The example over the Hides anticline illustrates a situation where 1D inversion of either TE or TM mode provides essentially the same depth to base of Darai as 2D inversion of both TE and TM. The example over the Angore anticline illustrates the inadequacy of 1D inversion in structurally complex geology complicated by electrical statics. Four MT lines along the Angore anticline have been interpreted using 2D inversion. Three-dimensional modelling has been used to simulate 3D statics in an otherwise 2D earth. These data were used to test the Groom-Bailey (GB) decomposition for possible benefits in reducing static effects and estimating geoelectric strike in the Papua New Guinea (PNG) field data. It has been found that the GB decomposition can provide improved regional 2D strike estimates in 3D contaminated data. However, in situations such as PNG, where the regional 2D strike is well established and hence can be fixed, the GB decomposition provides apparent resistivities identical to those simply rotated to strike.« less

  8. High-Resolution Three-Dimensional Computed Tomography for Assessing Complications Related to Intrathecal Drug Delivery.

    PubMed

    Morgalla, Matthias; Fortunato, Marcos; Azam, Ala; Tatagiba, Marcos; Lepski, Guillherme

    2016-07-01

    The assessment of the functionality of intrathecal drug delivery (IDD) systems remains difficult and time-consuming. Catheter-related problems are still very common, and sometimes difficult to diagnose. The aim of the present study is to investigate the accuracy of high-resolution three-dimensional computed tomography (CT) in order to detect catheter-related pump dysfunction. An observational, retrospective investigation. Academic medical center in Germany. We used high-resolution three dimensional (3D) computed tomography with volume rendering technique (VRT) or fluoroscopy and conventional axial-CT to assess IDD-related complications in 51 patients from our institution who had IDD systems implanted for the treatment of chronic pain or spasticity. Twelve patients (23.5%) presented a total of 22 complications. The main type of complication in our series was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling. Fluoroscopy and conventional CT were used in 12 cases. High-resolution 3D CT VRT scan was used in 35 instances with suspected yet unclear complications. Using 3D-CT (VRT) the sensitivity was 58.93% - 100% (CI 95%) and the specificity 87.54% - 100% (CI 95%).The positive predictive value was 58.93% - 100% (CI 95%) and the negative predictive value: 87.54% - 100% (CI 95%).Fluoroscopy and axial CT as a combined diagnostic tool had a sensitivity of 8.3% - 91.7% (CI 95%) and a specificity of 62.9% - 100% (CI 95%). The positive predictive value was 19.29% - 100% (CI 95%) and the negative predictive value: 44.43% - 96.89% (CI 95%). This study is limited by its observational design and the small number of cases. High-resolution 3D CT VRT is a non- invasive method that can identify IDD-related complications with more precision than axial CT and fluoroscopy.

  9. SU-E-T-72: A Retrospective Correlation Analysis On Dose-Volume Control Points and Treatment Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, A; Nohadani, O; Refaat, T

    2015-06-15

    Purpose: To quantify correlation between dose-volume control points and treatment outcomes. Specifically, two outcomes are analyzed: occurrence of radiation induced dysphagia and target complications. The results inform the treatment planning process when competing dose-volume criteria requires relaxations. Methods: 32 patients, treated with whole-field sequential intensity modulated radiation therapy during 2009–2010 period, are considered for this study. Acute dysphagia that is categorized into 3 grades is observed on all patients. 3 patients are observed in grade 1, 17 patients in grade 2, and 12 patients in grade 3. Ordinal logistic regression is employed to establish correlations between grades of dysphagia andmore » dose to cervico-thoracic esophagus. Particularly, minimum (Dmin), mean (Dmean), and maximum (Dmax) dose control points are analyzed. Additionally, target complication, which includes local-regional recurrence and/or distant metastasis, is observed on 4 patients. Binary logistic regression is used to quantify correlation between target complication and four dose control points. Namely, ICRU recommended dose control points, D2, D50, D95, and D98 are analyzed. Results: For correlation with dysphagia, Dmin on cervico-thoracic esophagus is statistically significant (p-value = 0.005). Additionally, Dmean on cervico-thoracic esophagus is also significant in association with dysphagia (p-value = 0.012). However, no correlation was observed between Dmax and dysphagia (p-value = 0.263). For target complications, D50 on the target is a statistically significant dose control point (p-value = 0.032). No correlations were observed between treatment complications and D2 (p-value = 0.866), D95 (p-value = 0.750), and D98 (p-value = 0.710) on the target. Conclusion: Significant correlations are observed between radiation induced dysphagia and Dmean (and Dmin) to cervico-thoracic esophagus. Additionally, correlation between target complications and median dose to target (D50) is observed. Quantification of these correlations can inform treatment planners when any competing objectives requires relaxation of target D50 or Dmean (or Dmin) to cervico-thoracic esophagus.« less

  10. Experimental and theoretical determination of σ bands on ("2 √{3 }×2 √{3 } ") silicene grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Wang, W.; Olovsson, W.; Uhrberg, R. I. G.

    2015-11-01

    Silicene, the two-dimensional (2D) allotrope of silicon, has very recently attracted a lot of attention. It has a structure that is similar to graphene and it is theoretically predicted to show the same kind of electronic properties which have put graphene into the focus of large research and development projects worldwide. In particular, a 2D structure made from Si is of high interest because of the application potential in Si-based electronic devices. However, so far there is not much known about the silicene band structure from experimental studies. A comprehensive study is here presented of the atomic and electronic structure of the silicene phase on Ag(111) denoted as (2 √ 3 ×2 √ 3 )R30° in the literature. Low energy electron diffraction (LEED) shows an unconventional rotated ("2 √ 3 ×2 √ 3 ") pattern with a complicated set of split diffraction spots. Scanning tunneling microscopy (STM) results reveal a Ag(111) surface that is homogeneously covered by the ("2 √ 3 ×2 √ 3 ") silicene which exhibits an additional quasiperiodic long-range ordered superstructure. The complex structure, revealed by STM, has been investigated in detail and we present a consistent picture of the silicene structure based on both STM and LEED. The homogeneous coverage by the ("2 √ 3 ×2 √ 3 ") silicene facilitated an angle-resolved photoelectron spectroscopy study which reveals a silicene band structure of unprecedented detail. Here we report four silicene bands which are compared to calculated dispersions based on a relaxed (2 √ 3 ×2 √ 3 ) model. We find good qualitative agreement between the experimentally observed bands and calculated silicene bands of σ character.

  11. Incorporating 3D laparoscopy for the management of locally advanced cervical cancer: a comparison with open surgery.

    PubMed

    Raspagliesi, Francesco; Bogani, Giorgio; Martinelli, Fabio; Signorelli, Mauro; Chiappa, Valentina; Scaffa, Cono; Sabatucci, Ilaria; Adorni, Marco; Lorusso, Domenica; Ditto, Antonino

    2016-08-03

    To test the effects of the implementation of 3D laparoscopic technology for the execution of nerve-sparing radical hysterectomy. Thirty patients undergoing nerve-sparing radical hysterectomy via 3D laparoscopic (3D-LNSRH, n = 10) or open surgery (NSRH, n = 20) were studied prospectively. No significant differences were observed in baseline patient characteristics. Operative times were similar between groups. We compared the first 10 patients undergoing 3D-LNSRH with the last 20 patients undergoing NSRH. Baseline characteristics were similar between groups (p>0.2). Patients undergoing 3D-LNSRH had longer operative time (264.4 ± 21.5 vs 217.2 ± 41.0 minutes; p = 0.005), lower blood loss (53.4 ± 26.1 vs 177.7 ± 96.0 mL; p<0.001), and shorter length of hospital stay (4.3 ± 1.2 vs 5.4 ± 0.7 days; p = 0.03) in comparison to patients undergoing open abdominal procedures. No intraoperative complication occurred. One (10%) patient had conversion to open surgery due to technical difficulties and the inability to insert the uterine manipulator. A trend towards higher complication (grade 2 or worse) rate was observed for patients undergoing NSRH in comparison to 3D-LNSRH (p = 0.06). Considering only severe complications (grade 3 or worse), no difference was observed (0/10 vs 2/20; p = 0.54). 3D-laparoscopic nerve-sparing radical hysterectomy is a safe and effective procedure. The implementation of 3D laparoscopic technology allows the execution of challenging operations via minimally invasive surgery, thus reducing open abdominal procedure rates. Further large prospective studies are warranted.

  12. Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.

    PubMed

    Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti

    2006-02-01

    Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.

  13. Magnetic impurities in conducting oxides. II. (Sr1-xLax)(Ru1-xCox)O3 system

    NASA Astrophysics Data System (ADS)

    Mamchik, A.; Dmowski, W.; Egami, T.; Chen, I.-Wei

    2004-09-01

    The perovskite solid solution between ferromagnetic SrRuO3 and antiferromagnetic LaCoO3 is studied and its structural, electronic,and magnetic properties are compared with (Sr1-xLax)(Ru1-xFex)O3 . The lower 3d energy levels of Co3+ cause a local charge transfer from 4dRu4+ , a reaction that has the novel feature of being sensitive to the local atomic structure such as cation order. Despite such a complication, Co , like Fe , spin-polarizes the itinerant electrons in SrRuO3 to form a large local magnetic moment that is switchable at high fields. In the spin glass regime when Anderson localization dominates, a large negative magnetoresistance emerges as a result of spin polarization of mobile electronic carriers that occupy states beyond the mobility edge. A phenomenological model predicting an inverse relation between magnetoresistance and saturation magnetization is proposed to explain the composition dependence of magnetoresistance for both (Sr1-xLax)(Ru1-xCOx)O3 and (Sr1-xLax)(Ru1-xFex)O3 systems.

  14. Play dough as an educational tool for visualization of complicated cerebral aneurysm anatomy

    PubMed Central

    Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Ghazvini, Arman Rakan

    2005-01-01

    Background Imagination of the three-dimensional (3D) structure of cerebral vascular lesions using two-dimensional (2D) angiograms is one of the skills that neurosurgical residents should achieve during their training. Although ongoing progress in computer software and digital imaging systems has facilitated viewing and interpretation of cerebral angiograms enormously, these facilities are not always available. Methods We have presented the use of play dough as an adjunct to the teaching armamentarium for training in visualization of cerebral aneurysms in some cases. Results The advantages of play dough are low cost, availability and simplicity of use, being more efficient and realistic in training the less experienced resident in comparison with the simple drawings and even angiographic views from different angles without the need for computers and similar equipment. The disadvantages include the psychological resistance of residents to the use of something in surgical training that usually is considered to be a toy, and not being as clean as drawings or computerized images. Conclusion Although technology and computerized software using the patients' own imaging data seems likely to become more advanced in the future, use of play dough in some complicated cerebral aneurysm cases may be helpful in 3D reconstruction of the real situation. PMID:15885141

  15. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  16. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering.

  17. Evaluation of normal lung tissue complication probability in gated and conventional radiotherapy using the 4D XCAT digital phantom.

    PubMed

    Shahzadeh, Sara; Gholami, Somayeh; Aghamiri, Seyed Mahmood Reza; Mahani, Hojjat; Nabavi, Mansoure; Kalantari, Faraz

    2018-06-01

    The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Internet-Based Exposure and Behavioral Activation for Complicated Grief and Rumination: A Randomized Controlled Trial.

    PubMed

    Eisma, Maarten C; Boelen, Paul A; van den Bout, Jan; Stroebe, Wolfgang; Schut, Henk A W; Lancee, Jaap; Stroebe, Margaret S

    2015-11-01

    This study examined the effectiveness and feasibility of therapist-guided Internet-delivered exposure (EX) and behavioral activation (BA) for complicated grief and rumination. Forty-seven bereaved individuals with elevated levels of complicated grief and grief rumination were randomly assigned to three conditions: EX (N=18), BA (N=17), or a waiting-list (N=12). Treatment groups received 6 homework assignments over 6 to 8weeks. Intention-to-treat analyses showed that EX reduced complicated grief, posttraumatic stress, depression, grief rumination, and brooding levels relative to the control group at posttreatment (d=0.7-1.2). BA lowered complicated grief, posttraumatic stress, and grief rumination levels at posttreatment (d=0.8-0.9). At 3-month follow-up, effects of EX were maintained on complicated grief and grief rumination (d=0.6-1.2), and for BA on complicated grief, posttraumatic stress, and grief rumination (d=0.8-0.9). EX reduced depression more strongly than BA (d=0.6). Completers analyses corroborated results for EX, and partially those for BA, but no group differences were detected. BA suffered from high dropout (59%), relative to EX (33%) and the waiting-list (17%). Feasibility appeared higher for EX than BA. Results supported potential applicability of online exposure but not behavioral activation to decrease complicated grief and rumination. Copyright © 2015. Published by Elsevier Ltd.

  19. Defect-enhanced performance of a 3D graphene anode in a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Guo, Hongchen; Long, Deng; Zheng, Zongmin; Chen, Xinyi; Ng, Alan M. C.; Lu, Miao

    2017-12-01

    Morphological defects were generated in an undoped 3D graphene structure via the involvement of a ZnO and Mg(OH)2 intermediate nanostructure layer placed between two layers of vapor-deposited graphene. Once the intermediate layer was etched, the 3D graphene lost support and shrank; during this process many morphological defects were formed. The electrochemical performance of the derived defective graphene utilized as the anode of a lithium (Li)-ion battery was significantly improved from ˜382 mAh g-1 to ˜2204 mAh g-1 at 0.5 A g-1 compared to normal 3D graphene. The derived defective graphene exhibited an initial capacity of 1009 mAh g-1 and retention of 83% at 4 A g-1 for 500 cycles, and ˜330 mAh g-1 at a high rate of 20 A g-1. Complicated defects such as wrinkles, pores, and particles formed during the etching of the intermediate layer, were considered to contribute to the improvement of the electrochemical performance.

  20. Multinozzle Multichannel Temperature Deposition System for Construction of a Blood Vessel.

    PubMed

    Liu, Huanbao; Zhou, Huixing; Lan, Haiming; Liu, Fu; Wang, Xuhan

    2018-02-01

    3D bioprinting is an emerging technology that drives us to construct the complicated tissues and organs consisting of various materials and cells, which has been in widespread use in tissue engineering and organ regeneration. However, the protection and accurate distribution of cells are the most urgent problems to achieve tissue and organ reconstruction. In this article, a multinozzle multichannel temperature deposition and manufacturing (MTDM) system is proposed to fabricate a blood vessel with heterogeneous materials and gradient hierarchical porous structures, which enables not only the reconstruction of a blood vessel with an accurate 3D model structure but also the capacity to distribute bioactive materials such as growth factors, nutrient substance, and so on. In addition, a coaxial focusing nozzle is proposed and designed to extrude the biomaterial and encapsulation material, which can protect the cell from damage. In the MTDM system, the tubular structure of a blood vessel was successfully fabricated with the different biomaterials, which proved that the MTDM system has a potential application prospect in tissue engineering and organ regeneration.

  1. Predictors of Postoperative Complications After Trimodality Therapy for Esophageal Cancer

    PubMed Central

    Wang, Jingya; Wei, Caimiao; Tucker, Susan L.; Myles, Bevan; Palmer, Matthew; Hofstetter, Wayne L.; Swisher, Stephen G.; Ajani, Jaffer A.; Cox, James D.; Komaki, Ritsuko; Liao, Zhongxing; Lin, Steven H.

    2013-01-01

    Purpose While trimodality therapy for esophageal cancer has improved patient outcomes, surgical complication rates remain high. The goal of this study was to identify modifiable factors associated with postoperative complications after neoadjuvant chemoradiation. Methods and Materials From 1998 to 2011, 444 patients were treated at our institution with surgical resection after chemoradiation. Postoperative (pulmonary, gastrointestinal [GI], cardiac, wound healing) complications were recorded up to 30 days postoperatively. Kruskal-Wallis tests and χ2 or Fisher exact tests were used to assess associations between continuous and categorical variables. Multivariate logistic regression tested the association between perioperative complications and patient or treatment factors that were significant on univariate analysis. Results The most frequent postoperative complications after trimodality therapy were pulmonary (25%) and GI (23%). Lung capacity and the type of radiation modality used were independent predictors of pulmonary and GI complications. After adjusting for confounding factors, pulmonary and GI complications were increased in patients treated with 3-dimensional conformal radiation therapy (3D-CRT) versus intensity modulated radiation therapy (IMRT; odds ratio [OR], 2.018; 95% confidence interval [CI], 1.104–3.688; OR, 1.704; 95% CI, 1.03–2.82, respectively) and for patients treated with 3D-CRT versus proton beam therapy (PBT; OR, 3.154; 95% CI, 1.365–7.289; OR, 1.55; 95% CI, 0.78–3.08, respectively). Mean lung radiation dose (MLD) was strongly associated with pulmonary complications, and the differences in toxicities seen for the radiation modalities could be fully accounted for by the MLD delivered by each of the modalities. Conclusions The radiation modality used can be a strong mitigating factor of postoperative complications after neoadjuvant chemoradiation. PMID:23845841

  2. Predictors of Postoperative Complications After Trimodality Therapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jingya; Wei, Caimiao; Tucker, Susan L.

    2013-08-01

    Purpose: While trimodality therapy for esophageal cancer has improved patient outcomes, surgical complication rates remain high. The goal of this study was to identify modifiable factors associated with postoperative complications after neoadjuvant chemoradiation. Methods and Materials: From 1998 to 2011, 444 patients were treated at our institution with surgical resection after chemoradiation. Postoperative (pulmonary, gastrointestinal [GI], cardiac, wound healing) complications were recorded up to 30 days postoperatively. Kruskal-Wallis tests and χ{sup 2} or Fisher exact tests were used to assess associations between continuous and categorical variables. Multivariate logistic regression tested the association between perioperative complications and patient or treatment factorsmore » that were significant on univariate analysis. Results: The most frequent postoperative complications after trimodality therapy were pulmonary (25%) and GI (23%). Lung capacity and the type of radiation modality used were independent predictors of pulmonary and GI complications. After adjusting for confounding factors, pulmonary and GI complications were increased in patients treated with 3-dimensional conformal radiation therapy (3D-CRT) versus intensity modulated radiation therapy (IMRT; odds ratio [OR], 2.018; 95% confidence interval [CI], 1.104-3.688; OR, 1.704; 95% CI, 1.03-2.82, respectively) and for patients treated with 3D-CRT versus proton beam therapy (PBT; OR, 3.154; 95% CI, 1.365-7.289; OR, 1.55; 95% CI, 0.78-3.08, respectively). Mean lung radiation dose (MLD) was strongly associated with pulmonary complications, and the differences in toxicities seen for the radiation modalities could be fully accounted for by the MLD delivered by each of the modalities. Conclusions: The radiation modality used can be a strong mitigating factor of postoperative complications after neoadjuvant chemoradiation.« less

  3. Perioperative considerations and complications in pediatric parathyroidectomy.

    PubMed

    Hanba, Curtis; Bobian, Michael; Svider, Peter F; Sheyn, Anthony; Siegel, Bianca; Lin, Ho-Sheng; Raza, S Naweed

    2016-12-01

    To evaluate perioperative considerations and post-operative complications associated with parathyroidectomy in the pediatric population. The Kids' Inpatient Database 21 (KID) was searched for patients who underwent parathyroidectomy in 2009 and 2012. Patient demographics, hospital stay, associated charges, and post-operative adverse sequelae were evaluated in all patients and included patient comorbidity and additional procedure requirement analysis. There were 182 patients extrapolating to 262 parathyroidectomies over the two years analyzed. Although a minority of patients were male (45.4%), these patients had greater rates of complications, length of stay, and hospital charges. Importantly, minorities and younger patients (≤15y) also had more complicated post-operative courses. The lengths of stay for patients experiencing post-operative altered mental status (18.7d), post-operative infection (15.5d), respiratory complications (19d), and cardiac complications (13d) were significantly increased compared to individuals without major complications (3.4d) (p < 0.001). Patients with pre-existing chronic kidney disease, dialysis-dependence, and bone sequelae (most commonly from hungry bone syndrome) also had significantly lengthier stays and greater associated costs. Findings from this analysis can be included in a comprehensive pre-operative informed consent process between physicians and patients discussing perioperative considerations and potential complications of parathyroidectomy. Males, younger children, and patients with preexisting renal conditions experienced lengthier and more complicated hospital stays, suggesting the need for closer monitoring of these cohorts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Cross modality registration of video and magnetic tracker data for 3D appearance and structure modeling

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang

    2010-02-01

    The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).

  5. Standardized analysis of frequency and severity of complications after robot-assisted radical cystectomy.

    PubMed

    Yuh, Bertram E; Nazmy, Michael; Ruel, Nora H; Jankowski, Jason T; Menchaca, Anita R; Torrey, Robert R; Linehan, Jennifer A; Lau, Clayton S; Chan, Kevin G; Wilson, Timothy G

    2012-11-01

    Comprehensive and standardized reporting of adverse events after robot-assisted radical cystectomy (RARC) and urinary diversion for bladder cancer is necessary to evaluate the magnitude of morbidity for this complex operation. To accurately identify and assess postoperative morbidity after RARC using a standardized reporting system. A total of 241 consecutive patients underwent RARC, extended pelvic lymph node dissection, and urinary diversion between 2003 and 2011. In all, 196 patients consented to a prospective database, and they are the subject of this report. Continent diversions were performed in 68% of cases. All complications within 90 d of surgery were defined and categorized by a five-grade and 10-domain modification of the Clavien system. Univariable and multivariable logistic regression analyses were used to identify predictors of complications. Grade 1-2 complications were categorized as minor, and grade 3-5 complications were categorized as major. All blood transfusions were recorded as grade ≥2. Eighty percent of patients (156 of 196 patients) experienced a complication of any grade ≤90 d after surgery. A total of 475 adverse events (113 major) were recorded, with 365 adverse events (77%) occurring ≤30 d after surgery. Sixty-eight patients (35%) experienced a major complication within the first 90 d. Other than blood transfusions given (86 patients [43.9%]), infectious, gastrointestinal, and procedural complications were the most common, at 16.2%, 14.1%, and 10.3%, respectively. Age, comorbidity, preoperative hematocrit, estimated blood loss, and length of surgery were predictive of a complication of any grade, while comorbidity, preoperative hematocrit, and orthotopic diversion were predictive of major complications. The 90-d mortality rate was 4.1%. The main limitation is lack of a control group. Analysis of postoperative morbidity following RARC demonstrates a considerable complication rate, though the rate is comparable to contemporary open series that followed similar reporting guidelines. This finding reinforces the need for complete and standardized reporting when evaluating surgical techniques and comparing published series. Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Novel Three-Dimensional Image Fusion Software to Facilitate Guidance of Complex Cardiac Catheterization : 3D image fusion for interventions in CHD.

    PubMed

    Goreczny, Sebastian; Dryzek, Pawel; Morgan, Gareth J; Lukaszewski, Maciej; Moll, Jadwiga A; Moszura, Tomasz

    2017-08-01

    We report initial experience with novel three-dimensional (3D) image fusion software for guidance of transcatheter interventions in congenital heart disease. Developments in fusion imaging have facilitated the integration of 3D roadmaps from computed tomography or magnetic resonance imaging datasets. The latest software allows live fusion of two-dimensional (2D) fluoroscopy with pre-registered 3D roadmaps. We reviewed all cardiac catheterizations guided with this software (Philips VesselNavigator). Pre-catheterization imaging and catheterization data were collected focusing on fusion of 3D roadmap, intervention guidance, contrast and radiation exposure. From 09/2015 until 06/2016, VesselNavigator was applied in 34 patients for guidance (n = 28) or planning (n = 6) of cardiac catheterization. In all 28 patients successful 2D-3D registration was performed. Bony structures combined with the cardiovascular silhouette were used for fusion in 26 patients (93%), calcifications in 9 (32%), previously implanted devices in 8 (29%) and low-volume contrast injection in 7 patients (25%). Accurate initial 3D roadmap alignment was achieved in 25 patients (89%). Six patients (22%) required realignment during the procedure due to distortion of the anatomy after introduction of stiff equipment. Overall, VesselNavigator was applied successfully in 27 patients (96%) without any complications related to 3D image overlay. VesselNavigator was useful in guidance of nearly all of cardiac catheterizations. The combination of anatomical markers and low-volume contrast injections allowed reliable 2D-3D registration in the vast majority of patients.

  7. Investigation on asymmetric flow over a blunt-nose slender body at high angle of attack

    NASA Astrophysics Data System (ADS)

    Zhongyang, Qi; Yankui, Wang; Lei, Wang; Qian, Li

    2017-12-01

    The asymmetric vortices over a blunt-nose slender body are investigated experimentally and numerically at a high angle of attack (AoA, α = 50°) and a Reynolds number of Re D = 1.54 × 105 on the basis of an incoming free-stream velocity and diameter (D) of the model. A micro-perturbation in the form of a hemispherical protrusion with a radius of r = 0.012D is introduced and attached on the nose of the slender body to control the behavior of the asymmetric vortices. Given the predominant role of micro perturbation in the asymmetric vortex pattern, a square wave, which is singly periodic, is observed for side-force variation by setting the circumferential angle (θ) of the micro perturbation from 0° to 360°. The asymmetric vortex pattern and the corresponding side force are manageable and highly dependent on the location of perturbation. The flow structure over the blunt-nose slender body is clarified by building a physical model of asymmetric vortex flow structure in a regular state at a high AoA (α = 50°). This model is divided into several regions by flow structure development along the model body-axis, i.e., inception region at x/D ≤ 3.0, triple-vortex region at 3.0 ≤ x/D ≤ 6.0, four-vortex region at 6.0 ≤ x/D ≤ 8.5, and five-vortex region at 8.5 ≤ x/D ≤ 12. The model reveals a complicated multi-vortex system. The associated pressure distributions and flow characteristics are discussed in detail.

  8. Determination of the hydrogen-bond network and the ferrimagnetic structure of a rockbridgeite-type compound, {Fe^{2+Fe^{3+}_{3.2}(Mn^{2+}, Zn)_{0.8}(PO_{4})_{3}(OH)_{4.2}(HOH)_{0.8}}}

    NASA Astrophysics Data System (ADS)

    Röska, B.; Park, S.-H.; Behal, D.; Hess, K.-U.; Günther, A.; Benka, G.; Pfleiderer, C.; Hoelzel, M.; Kimura, T.

    2018-06-01

    Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, . Its honeycomb-like H-bond network running without interruption along the crystallographic axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature –83 K could be determined from the structure analysis with neutron diffraction data at 25 K.

  9. Impact of Three-Dimensional Laparoscopy in a Bariatric Surgery Program: Influence in the Learning Curve.

    PubMed

    Padin, Esther Mariño; Santos, Raquel Sánchez; Fernández, Sonia González; Jimenez, Antonia Brox; Fernández, Sergio Estevez; Dacosta, Ester Carrera; Duran, Agata Rial; Artime Rial, Maria; Dominguez Sanchez, Ivan

    2017-10-01

    3D laparoscopy allows the surgeon to regain the sense of depth and improve accuracy. The aim of the study was to assess the impact of 3D in bariatric surgery. A retrospective cohort study was conducted. All our patients who underwent bariatric surgery (sleeve gastrectomy (SG) or gastric bypass (GB)) between 2013 and 2016 were included. We compared 3D laparoscopy cohort and 2D laparoscopy cohort. Variables are as follows: age, sex, DM, hypertension, surgeon experience, and type of intervention. Comparisons of operative time, hospital stay, conversion, complications, reoperation, and exitus are completed. Three hundred twelve consecutive patients were included. 56.9% of patients underwent GB and 43.1% SG. Global complications were 3.2% (fistula 2.5%, hemoperitoneum 0.3%, others 0.4%). One hundred four procedures were performed in the 3D cohort and 208 in the 2D cohort. The 2D cohort and 3D cohort were similar regarding the following: percentage of GB vs SG, age, gender, learning curve, diabetes mellitus 2, hypertension, and sleep apnea. The operating time and hospital stay were significantly reduced in the 3D cohort (144.07 ± 58.07 vs 172.11 ± 76.11 min and 5.12 ± 9.6 vs 7.7 ± 13.2 days. It was the same when we stratified the sample by type of surgery or experience of the surgeon. Complications were reduced in the 3D cohort in the surgeries performed by novice surgeons (10.2 vs 1.8%, p = 0.034). The use of 3D laparoscopy in bariatric surgery in our center has helped reducing the operating time and hospital stay, and improving the safety of the surgery, either in GB or SG, being equally favorable in novice or more experienced surgeons.

  10. Complex crustal structures: their 3D grav/mag modelling and 3D printing

    NASA Astrophysics Data System (ADS)

    Götze, Hans-Jürgen; Schmidt, Sabine; Menzel, Peter

    2017-04-01

    Our new techniques for modelling and visualization are user-friendly because they are highly interactive, ideally real-time and topology conserving and can be used for both flat and spherical models in 3D. These are important requirements for joint inversion for gravity and magnetic modelling of fields and their derivatives, constrained by seismic and structural input from independent data sources. A borehole tool for magnetic and gravity modelling will also be introduced. We are already close to satisfying the demand of treating several geophysical methods in a single model for subsurface evaluation purposes and aim now for fulfilling most of the constraints: consistency of modelling results and measurements and geological plausibility as well. For 3D modelling, polyhedrons built by triangles are used. All elements of the gravity and magnetic tensors can be included. In the modelling interface, after geometry changes the effect on the model is quickly updated because only the changed triangles have to be recalculated. Because of the triangular model structure, our approach can handle complex structures very well and flexible (e.g. overhangs of salt domes or plumes). For regional models, the use of spherical geometries and calculations is necessary and available. 3D visualization is performed with a 3D-printer (Ultimaker 2) and gives new insights into even rather complicated Earth subsurface structures. Inversion can either be run over the whole model, but typically it is used in smaller parts of the model, helping to solve local problems and/or proving/disproving local hypotheses. The basic principles behind this interactive approach are high performance optimized algorithms (CMA-ES: Covariance-matrix-adoption-evolution-strategy). The efficiency of the algorithm is rather good in terms of stable convergence due to topological model validity. Potential field modelling is always influenced by edge effects. To avoid this, a simple but very robust method has been developed: Derive a density/susceptibility-depth function by taking the mean value of the borders of depth slices through the model. The focus of the presentation is set on two practical examples: From the international KTB - Project, Germanýs deep continental borehole as well as a very complex salt structure in the Northwest German Basin.

  11. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    NASA Astrophysics Data System (ADS)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  12. Optical conductivity of alpha-Mn

    NASA Technical Reports Server (NTRS)

    Scoles, K. J.; Christy, R. W.

    1982-01-01

    The optical constants were measured at room temperature in the photon-energy range 0.6 to 6.5 eV on evaporated thin films. Evaporation conditions were chosen that gave the alpha-Mn crystal structure with reasonably large grains. The optical conductivity was separated into intraband and interband contributions by fitting to the Drude formula at low energies. The results are anomalous in comparison to other 3d transition metals. The free-electron lifetime is exceptionally sort (in agreement with the large dc resistivity of Mn), and the interband transitions seem unusually weak at the lower energies. Possible explanations related to the complicated crystal structure of alpha-Mn are discussed.

  13. Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies

    PubMed Central

    Ferrara, Maria Antonietta; De Tommasi, Edoardo; Coppola, Giuseppe; De Stefano, Luca; Rea, Ilaria; Dardano, Principia

    2016-01-01

    The frustule of diatoms, unicellular microalgae, shows very interesting photonic features, generally related to its complicated and quasi-periodic micro- and nano-structure. In order to simulate light propagation inside and through this natural structure, it is important to develop three-dimensional (3D) models for synthetic replica with high spatial resolution. In this paper, we present a new method that generates images of microscopic diatoms with high definition, by merging scanning electron microscopy and digital holography microscopy or atomic force microscopy data. Starting from two digital images, both acquired separately with standard characterization procedures, a high spatial resolution (Δz = λ/20, Δx = Δy ≅ 100 nm, at least) 3D model of the object has been generated. Then, the two sets of data have been processed by matrix formalism, using an original mathematical algorithm implemented on a commercially available software. The developed methodology could be also of broad interest in the design and fabrication of micro-opto-electro-mechanical systems. PMID:27690008

  14. Relationship between lunar cycle and haemorrhagic complication rate in surgery.

    PubMed

    Raposio, Edoardo; Caruana, Giorgia; Santi, Pierluigi; Cafiero, Ferdinando

    2017-08-01

    The aim of this study was to evaluate a possible relationship between lunar cycles and haemorrhagic complication rate in surgery. The possible relationship between moon phases and surgical outcome was tested by evaluating the haemorrhagic complication rate for 18,760 patients who underwent surgery between January 2001 and December 2008 at the National Institute for Cancer Research in Genoa. A total of 103 lunar phases were considered using Chi-square (χ 2 ) test analysis, and patients were allocated a surgery date. One hundred and sixty-seven haemorrhagic complications were observed. Three hundred and nine new moon phase days were analysed and 12 incidences of complications detected, with a 3.9% complication rate per day. In the waxing moon phase, 1184.5 d were analysed with 68 incidences of complications at a daily rate of 5.7%. In the full moon phase there was a 4.9% complication rate per day (15 incidences in 309 d), whereas in the waning moon phase, the 6% percentage rate per day resulted from 72 incidences in 1184.5 d. No statistically significant correlations were found between moon cycles and postoperative haemorrhagic complications (p = .50).

  15. Preparation of monodispersed macroporous core-shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Liu, Yongliang; He, Yonghuan; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-03

    Porous polymers have aroused extensive attention due to their controllable porous structure in favor of mass transfer and binding capacity. In this work, the novel macroporous core-shell molecularly imprinted polymers (MIP) for selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared by surface initiated atom transfer radical polymerization (si-ATRP). By using one-step swelling and polymerization method, the monodispersed macroporous poly(glycidyl methacrylate) (PGMA) particles were synthesized and used as supporting matrix for preparing surface MIP particles (PGMA@MIP). Thanks to the inner and outer surface-located binding cavities and the macroporous structure, the PGMA@MIPs revealed desirable efficiency for template removal and mass transfer, and thus excellent accessibility and affinity toward template 2,4-D. Moreover, PGMA@MIPs exhibited much higher selectivity toward 2,4-D than PGMA@NIPs. PGMA@MIP particles were directly used to selectively enrich 2,4-D from tap water and the recoveries of 2,4-D were obtained as 90.0-93.4% with relative standard division of 3.1-3.4% (n=3). The macroporous PGMA@MIPs also possessed steady and excellent reusable performance for 2,4-D in four extraction/stripping cycles. This novel macroporous core-shell imprinted material may become a powerful tool for rapid and efficient enrichment and separation of target compounds from the complicated samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; Zhang, L; Balter, P

    2015-06-15

    Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points.more » It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and research applications. This work was partially supported by Cancer Prevention & Research Institute of Texas (CPRIT) RP110562.« less

  17. Electron-phonon coupling in superconducting β-PdBi{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com

    2015-06-24

    We have studied the electronic, transport and vibrational properties of low temperature superconductor β-PdBi{sub 2}. The band manifold clearly demonstrates the 2D-layered structure with multiple gaps. The intersection of bands at E{sub F} in the Γ-P, Γ-N directions gives rise to complicated Fermi surface topology, which contains quite complicated multiple connected sheets, as well as hole and electron-like pockets. From the low temperature specific heat, we have estimated the electron-phonon coupling constant λ{sub el-ph} which has a very high value of 3.66. The vibrational properties clearly illustrates that the strong coupling makes the lattice unstable. The calculated properties confirm thatmore » β-PdBi{sub 2} is an intermediate coupling superconductor.« less

  18. Three-dimensional (3D)- computed tomography bronchography and angiography combined with 3D-video-assisted thoracic surgery (VATS) versus conventional 2D-VATS anatomic pulmonary segmentectomy for the treatment of non-small cell lung cancer.

    PubMed

    She, Xiao-Wei; Gu, Yun-Bin; Xu, Chun; Li, Chang; Ding, Cheng; Chen, Jun; Zhao, Jun

    2018-02-01

    Compared to the pulmonary lobe, the anatomical structure of the pulmonary segment is relatively complex and prone to variation, thus the risk and difficulty of segmentectomy is increased. We compared three-dimensional computed tomography bronchography and angiography (3D-CTBA) combined with 3D video-assisted thoracic surgery (3D-VATS) to perform segmentectomy to conventional two-dimensional (2D)-VATS for the treatment of non-small cell lung cancer (NSCLC). We retrospectively reviewed the data of randomly selected patients who underwent 3D-CTBA combined with 3D-VATS (3D-CTBA-VATS) or 2D-VATS at the Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University Hospital, from January 2014 to May 2017. The operative duration of 3D group was significantly shorter than the 2D group (P < 0.05). There was no significant difference in the number of dissected lymph nodes between the two groups (P > 0.05). The extent of intraoperative bleeding and postoperative drainage in the 3D group was significantly lower than in the 2D group (P < 0.05). Chest tube duration in the 3D group was shorter than in the 2D group (P < 0.05). Incidences of pulmonary infection, atelectasis, and arrhythmia were not statistically different between the two groups (P > 0.05). However, hemoptysis and pulmonary air leakage (>3d) occurred significantly less frequently in the 3D than in the 2D group (P < 0.05). 3D-CTBA-VATS is a more accurate and smooth technique and leads to reduced intraoperative and postoperative complications. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  19. Electromagnetic study of lithospheric structure in Trans-European Suture Zone in Poland

    NASA Astrophysics Data System (ADS)

    Jóźwiak, Waldemar; Ślęzak, Katarzyna; Nowożyński, Krzysztof; Neska, Anne

    2016-04-01

    The area covered by magnetotelluric surveys in Poland is mostly related to the Trans-European Suture Zone (TESZ), the largest tectonic boundary in Europe. Numerous 1D, 2D, and pseudo-3D and 3D models of the electrical resistivity distribution were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results indicate that the TESZ is a lithospheric discontinuity and there are noticeable differences in geoelectric structures between the East European Craton (EEC), the transitional zone (TESZ), and the Paleozoic Platform (PP). The electromagnetic sounding is a very efficient tool for recognizing the lithospheric structure especially it helps in identification of important horizontal (or lateral) inhomogeneities in the crust. Due to our study we can clearly determine the areas of the East European Craton of high resistivity, Paleozoic Platform of somewhat lower resistivity value, and transitional TESZ of complicated structure. At the East European Craton, we observe very highly resistive lithosphere, reaching 220-240 km depth. Underneath, there is distinctly greater conductivity values, most probably resulting from partial melting of rocks; this layer may represent the asthenosphere. The resistivity of the lithosphere under the Paleozoic Platform is somewhat lower, and its thickness does not exceed 150 km. The properties of the lithosphere in the transition zone, under the TESZ, differ significantly. The presented models include prominent, NW-SE striking conductive lineaments. These structures, that related with the TESZ, lie at a depth of 10-30 km. They are located in a mid-crustal level and they reach the boundary of the EEC. The structures we initially connect to the Variscan Deformation Front (VDF) and the Caledonian Deformation Front (CDF). The differentiation of conductivity visible in the crust continues in the upper mantle.

  20. Accurate 3d Scanning of Damaged Ancient Greek Inscriptions for Revealing Weathered Letters

    NASA Astrophysics Data System (ADS)

    Papadaki, A. I.; Agrafiotis, P.; Georgopoulos, A.; Prignitz, S.

    2015-02-01

    In this paper two non-invasive non-destructive alternative techniques to the traditional and invasive technique of squeezes are presented alongside with specialized developed processing methods, aiming to help the epigraphists to reveal and analyse weathered letters in ancient Greek inscriptions carved in masonry or marble. The resulting 3D model would serve as a detailed basis for the epigraphists to try to decipher the inscription. The data were collected by using a Structured Light scanner. The creation of the final accurate three dimensional model is a complicated procedure requiring large computation cost and human effort. It includes the collection of geometric data in limited space and time, the creation of the surface, the noise filtering and the merging of individual surfaces. The use of structured light scanners is time consuming and requires costly hardware and software. Therefore an alternative methodology for collecting 3D data of the inscriptions was also implemented for reasons of comparison. Hence, image sequences from varying distances were collected using a calibrated DSLR camera aiming to reconstruct the 3D scene through SfM techniques in order to evaluate the efficiency and the level of precision and detail of the obtained reconstructed inscriptions. Problems in the acquisition processes as well as difficulties in the alignment step and mesh optimization are also encountered. A meta-processing framework is proposed and analysed. Finally, the results of processing and analysis and the different 3D models are critically inspected and then evaluated by a specialist in terms of accuracy, quality and detail of the model and the capability of revealing damaged and "hidden" letters.

  1. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  2. Three-dimensional contrast-enhanced magnetic resonance angiography (3-D CE-MRA) in the evaluation of hemodialysis access complications, and the condition of central veins in patients who are candidates for hemodialysis access.

    PubMed

    Paksoy, Yahya; Gormus, Niyazi; Tercan, Mehmet Akif

    2004-01-01

    Arteriovenous (AV) fistulas are crucial in patients requiring long-term hemodialysis (HD). Dysfunctions of these fistulas are the most common causes of recurrent hospitalizations. This study aimed to evaluate the feasibility, safety and usefulness of contrast-enhanced magnetic resonance angiography (CE-MRA) in the evaluation of HD fistulas complications, and the condition of the central veins before HD access. This study comprised 30 consecutive patients (15 females, 15 males; age range 25-66 yrs, mean +/- SD 51.2 +/- 9.9 yrs). Of 30 patients, 26 had native AV fistulas and the remaining four patients, who had a history of previous subclavian vein catheterization, were candidates for HD fistulas. Nine patients had a radiocephalic fistula, 15 had a brachiobasilic fistula, one had a saphenous vein graft, and one had brachiobasilic vein transposition. To observe the fistula complications in these cases, three-dimensional (3-D) CE-MRA using gadolinium was performed. The results were considered normal in three patients (10%), who were candidates for AV fistula construction; one patient had central vein occlusion due to previous catheterization. Thirteen patients (43.3%) had venous stenosis or occlusion; three of them (10%) had low CE arteries distal to fistula region, leading to ischemic complications, and six (20%) had stenosis at the fistula region. Seven patients (23.3%) had venous pseudoaneurysms, whereas two of them had both pseudoaneurysms and fistula region stenosis, and one had both venous stenosis and pseudoaneurysm. There were no adverse or allergic-like reactions or heat and taste sensations observed in our series. 3-D CE-MRA is a useful, safe and a practical imaging modality in complicated fistula diagnosis with fewer complications and side-effects in comparison to fistulography.

  3. Zero mortality in more than 300 hepatic resections: validity of preoperative volumetric analysis.

    PubMed

    Itoh, Shinji; Shirabe, Ken; Taketomi, Akinobu; Morita, Kazutoyo; Harimoto, Norifumi; Tsujita, Eiji; Sugimachi, Keishi; Yamashita, Yo-Ichi; Gion, Tomonobu; Maehara, Yoshihiko

    2012-05-01

    We reviewed a series of patients who underwent hepatic resection at our institution, to investigate the risk factors for postoperative complications after hepatic resection of liver tumors and for procurement of living donor liver transplantation (LDLT) grafts. Between April 2004 and August 2007, we performed 304 hepatic resections for liver tumors or to procure grafts for LDLT. Preoperative volumetric analysis was done using 3-dimensional computed tomography (3D-CT) prior to major hepatic resection. We compared the clinicopathological factors between patients with and without postoperative complications. There was no operative mortality. According to the 3D-CT volumetry, the mean error ratio between the actual and the estimated remnant liver volume was 13.4%. Postoperative complications developed in 96 (31.6%) patients. According to logistic regression analysis, histological liver cirrhosis and intraoperative blood loss >850 mL were significant risk factors of postoperative complications after hepatic resection. Meticulous preoperative evaluation based on volumetric analysis, together with sophisticated surgical techniques, achieved zero mortality and minimized intraoperative blood loss, which was classified as one of the most significant predictors of postoperative complications after major hepatic resection.

  4. Luminescence mechanism and energy transfer in doubly-doped BaY2F8:Tm,Nd VUV scintillator

    NASA Astrophysics Data System (ADS)

    Pejchal, J.; Nikl, M.; Moretti, F.; Vedda, A.; Fukuda, K.; Kawaguchi, N.; Yanagida, T.; Yokota, Y.; Yoshikawa, A.

    2010-11-01

    Doubly-doped BaY2F8:Tm,Nd scintillation crystals were grown by modified micro-pulling-down method. Nd co-doping was chosen to enhance the energy transfer from the host lattice to the Nd3+ luminescence center via the 5d-levels of Tm3+, due to the overlap of Tm3+ 5d-4f emission spectrum with the Nd3+ 4f-5d absorption. The energy transfer was clearly evidenced in the BaY2F8:Tm,Nd. This process is not complicated by an energy migration to killer centers and/or cross-relaxation. The radioluminescence process is complicated by an energy transfer from the host lattice exciton states to the lower f-levels of Tm3+ ion.

  5. Seismic Velocity Structure of the San Jacinto Fault Zone from Double-Difference Tomography and Expected Distribution of Head Waves

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Ben-Zion, Y.

    2010-12-01

    We present initial results of double-difference tomographic images for the velocity structure of the San Jacinto Fault Zone (SJFZ), and related 3D forward calculations of waves in the immediate vicinity of the SJFZ. We begin by discretizing the SJFZ region with a uniform grid spacing of 500 m, extending 140 km by 80 km and down to 25 km depth. We adopt the layered 1D model of Dreger & Helmberger (1993) as a starting model for this region, and invert for 3D distributions of VP and VS with the double-difference tomography of Zhang & Thurber (2003), which makes use of absolute event-station travel times as well as relative travel times for phases from nearby event pairs. Absolute arrival times of over 78,000 P- and S-wave phase picks generated by 1127 earthquakes and recorded at 70 stations near the SJFZ are used. Only data from events with Mw greater than 2.2 are used. Though ray coverage is limited at shallow depths, we obtain relatively high-resolution images from 4 to 13 km which show a clear contrast in velocity across the NW section of the SJFZ. To the SE, in the so-called trifurcation area, the structure is more complicated, though station coverage is poorest in this region. Using the obtained image, the current event locations, and the 3D finite-difference code of Olsen (1994), we estimate the likely distributions of fault zone head waves as a tool for future deployment of instrument. We plan to conduct further studies by including more travel time picks, including those from newly-deployed stations in the SJFZ area, in order to gain a more accurate image of the velocity structure.

  6. Cardiac autonomic function in children with type 1 diabetes.

    PubMed

    Metwalley, Kotb Abbass; Hamed, Sherifa Ahmed; Farghaly, Hekma Saad

    2018-06-01

    Cardiovascular autonomic neuropathy (CAN) is a major complication of type 1 diabetes (T1D). This study aimed to evaluate cardiac autonomic nervous system (ANS) function in children with T1D and its relation to different demographic, clinical and laboratory variable. This cross-sectional study included 60 children with T1D (mean age = 15.1 ± 3.3 years; duration of diabetes = 7.95 ± 3.83 years). The following 8 non-invasive autonomic testing were used for evaluation: heart rate at rest and in response to active standing (30:15 ratio), deep breathing and Valsalva maneuver (indicating parasympathetic function); blood pressure response to standing (orthostatic hypotension or OH), sustained handgrip and cold; and heart rate response to standing or positional orthostatic tachycardia syndrome or POTs (indicating sympathetic function). None had clinically manifest CAN. Compared to healthy children (5%), 36.67% of children with T1D had ≥ 2 abnormal tests (i.e., CAN) (P = 0.0001) which included significantly abnormal heart rate response to standing (POTs) (P = 0.052), active standing (30:15 ratio) (P = 0.0001) and Valsalva maneuver (P = 0.0001), indicating parasympathetic autonomic dysfunction, and blood pressure response to cold (P = 0.01), indicating sympathetic autonomic dysfunction. 54.55, 27.27 and 18.18% had early, definite and severe dysfunction of ANS. All patients had sensorimotor peripheral neuropathy. The longer duration of diabetes (> 5 years), presence of diabetic complications and worse glycemic control were significantly associated with CAN. The study concluded that both parasympathetic and sympathetic autonomic dysfunctions are common in children with T1D particularly with longer duration of diabetes and presence of microvascular complications. What is Known: • Cardiovascular autonomic neuropathy (CAN) is a major complication of type 1 diabetes (T1D). • Limited studies evaluated CAN in children with T1D. What is New: • CAN is common in children with T1D. • Cardiac autonomic functions should be assessed in children with T1D particularly in presence of microvascular complications.

  7. [Effect of antibiotics on postoperative inflammatory complications after surgical extraction of the impacted mandibular third molar].

    PubMed

    Xue, Peng; Hou, Rui; Shang, Lei; Ma, Yuanyuan; Wu, Fang; Zhang, Sijia

    2014-10-01

    To investigate the effect of antibiotics on postoperative inflammatory complications after surgical extraction of the impacted mandibular third molar. Ninety-Six patients had their bilateral third molars removed through a split-mouth, double-blind, controlled, clinical trial in two visits. On one side amoxicillin (or clindamycin) was used (antibiotics group) from 1 h pre-operation to 3 d post-operation. On the other side, placebo was used (placebo group) the same time. Postoperative inflammatory complications including alveolar osteitis (AO), surgical site infection (SSI), pre-buccal site infection and anterior isthmus faucium space infection were monitored and recorded 2 d and 10 d after the surgery. The pain, swelling, and trismus were also recorded. All 96 patients completed the study. Two AO (2.1%), one SSI (1.0%) and seven other infections were observed in the treatment group. Also three AO (3.1%), one SSI (1.0%) and eleven other infections were observed in the placebo group. However, no statistically significant differences were found in the incidence of various postoperative inflammatory complications and reactions between the groups (P > 0.05). There was no significant difference on the postoperative reaction, except pain on 10 d. Patients who had inflammatory infection recovered well with symptomatic anti-infection treatment. The use of amoxicillin (or clindamycin) cannot effectively prevent and reduce the postoperative inflammatory complications after surgical extraction of the impacted mandibular third molar.

  8. Radiobiological Impact of Reduced Margins and Treatment Technique for Prostate Cancer in Terms of Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Ingelise, E-mail: inje@rn.d; Carl, Jesper; Lund, Bente

    2011-07-01

    Dose escalation in prostate radiotherapy is limited by normal tissue toxicities. The aim of this study was to assess the impact of margin size on tumor control and side effects for intensity-modulated radiation therapy (IMRT) and 3D conformal radiotherapy (3DCRT) treatment plans with increased dose. Eighteen patients with localized prostate cancer were enrolled. 3DCRT and IMRT plans were compared for a variety of margin sizes. A marker detectable on daily portal images was presupposed for narrow margins. Prescribed dose was 82 Gy within 41 fractions to the prostate clinical target volume (CTV). Tumor control probability (TCP) calculations based on themore » Poisson model including the linear quadratic approach were performed. Normal tissue complication probability (NTCP) was calculated for bladder, rectum and femoral heads according to the Lyman-Kutcher-Burman method. All plan types presented essentially identical TCP values and very low NTCP for bladder and femoral heads. Mean doses for these critical structures reached a minimum for IMRT with reduced margins. Two endpoints for rectal complications were analyzed. A marked decrease in NTCP for IMRT plans with narrow margins was seen for mild RTOG grade 2/3 as well as for proctitis/necrosis/stenosis/fistula, for which NTCP <7% was obtained. For equivalent TCP values, sparing of normal tissue was demonstrated with the narrow margin approach. The effect was more pronounced for IMRT than 3DCRT, with respect to NTCP for mild, as well as severe, rectal complications.« less

  9. Mapping Strain Gradients in the FIB-Structured InGaN/GaN Multilayered Films with 3D X-ray Microbeam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabash, Rozaliya; Gao, Yanfei; Ice, Gene E

    2010-01-01

    This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence ({mu}-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation ofmore » complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent.« less

  10. Mapping strain gradients in the FIB-structured InGaN/GaN multilayered films with 3D x-ray microbeam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabash, R. I.; Gao, Y. F.; Ice, G. E.

    2010-11-25

    This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence ({mu}-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation ofmore » complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent.« less

  11. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method.

    PubMed

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H

    2016-07-01

    Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction.

  12. Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP

    NASA Astrophysics Data System (ADS)

    Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.

    2017-10-01

    In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.

  13. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  14. Conservative boundary conditions for 3D gas dynamics problems

    NASA Technical Reports Server (NTRS)

    Gerasimov, B. P.; Karagichev, A. B.; Semushin, S. A.

    1986-01-01

    A method is described for 3D-gas dynamics computer simulation in regions of complicated shape by means of nonadjusted rectangular grids providing unified treatment of various problems. Some test problem computation results are given.

  15. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Preoperative Nutritional Status as an Adjunct Predictor of Major Postoperative Complications Following Anterior Cervical Discectomy and Fusion.

    PubMed

    Fu, Michael C; Buerba, Rafael A; Grauer, Jonathan N

    2016-05-01

    Retrospective analysis of the National Surgical Quality Improvement Program (NSQIP), a prospectively collected multicenter surgical outcomes database. To determine the effect of preoperative nutritional status, as measured by serum albumin concentration, on outcomes following anterior cervical discectomy and fusion (ACDF). Nutritional status has been shown to be an important predictor of postoperative recovery and outcomes. Serum albumin concentration is an established marker of overall nutrition and systemic disease, however, its correlation to outcomes following ACDF is unknown. ACDF cases from 2005 to 2010 were identified in the NSQIP and categorized by preoperative serum albumin: normal (≥3.5 g/dL), hypoalbuminemic (<3.5 g/dL), or not measured. Independent demographic and comorbidity variables were assessed, including American Society of Anesthesiologists (ASA) classification. Risk factors for major postoperative complications were identified, including preoperative hypoalbuminemia, and incorporated into a multivariable logistic regression model to determine the strength of preoperative hypoalbuminemia as an adjusted predictor of major postoperative complications. There were 3671 ACDF cases, of which 1382 (37.6%) had preoperative albumin measurements. Patients with albumin measurements were older and more likely to have higher ASA class, hypertension, and diabetes. Hypoalbuminemic patients had higher rates of having any major postoperative complication(s), specifically pulmonary complications, cardiac complications, and reoperation, relative to those with normal albumin (all P<0.01). These patients also had longer lengths of stay (5.0 vs. 1.9 d). With multivariable regression, preoperative hypoalbuminemia was a strong independent predictor of major postoperative complications, with an adjusted odds ratio of 3.37 (P=0.003). In this analysis of a prospective surgical outcomes database, preoperative serum hypoalbuminemia was an important adjunct predictor of major complications following ACDF. In high-risk patients with multiple medical comorbidities, we recommend that clinicians consider nutritional screening and optimization as part of preoperative risk assessment.

  17. Can Serum Albumin Level and Total Lymphocyte Count be Surrogates for Malnutrition to Predict Wound Complications After Total Knee Arthroplasty?

    PubMed

    Morey, Vivek M; Song, Young Dong; Whang, Ji Sup; Kang, Yeon Gwi; Kim, Tae Kyun

    2016-06-01

    Although the serum albumin level and total lymphocyte count (TLC) have been reported as valid and reliable markers for defining malnutrition, their cutoff levels and predictive values for wound complications in patients undergoing total knee arthroplasty (TKA) remain questionable. A total of 3169 TKAs performed between April 2003 and December 2013 were retrospectively reviewed. We determined the prevalence of malnutrition on applying different definitions, with various cutoff values of serum albumin and TLC and analyzed the variations in outcome. The differences between groups with and without malnutrition in terms of functional outcome and complications were determined using Student's t test and analysis of variance. Multivariate logistic regression analysis was conducted to identify the independent risk factors. Among all the patients (N = 3169), the serum albumin level and TLC varied widely, with means of 4.1 g/dL and 2189 cells/mm(3), respectively. The prevalence of malnutrition (21%) as per the conventional definition (serum albumin level <3.5 g/dL or a serum TLC <1500 cells/mm(3)) dropped to only 1.6% when malnutrition was defined as serum albumin <3.5 g/dL "and" TLC <1500/mm(3), indicating a very small overlap between the 2 markers. No differences were observed between 2 groups in functional outcomes and incidence of wound complications. Our findings call into question the values of serum albumin level and TLC as a surrogate of malnutrition for predicting wound complications after TKA. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A Modified Microsurgical Endoscopic-Assisted Transpedicular Corpectomy of the Thoracic Spine Based on Virtual 3-Dimensional Planning.

    PubMed

    Archavlis, Eleftherios; Schwandt, Eike; Kosterhon, Michael; Gutenberg, Angelika; Ulrich, Peter; Nimer, Amr; Giese, Alf; Kantelhardt, Sven Rainer

    2016-07-01

    The main difficulties of transpedicular corpectomies are lack of space for vertebral body replacement in the neighborhood of critical structures, the necessity for sacrifice of nerve roots in the thoracic spine. and the extent of hemorrhage due to venous epidural bleeding. We present a modified technique of transpedicular corpectomy by using an endoscopic-assisted microsurgical technique performed through a single posterior approach. A 3-dimensional (3D) preoperative reconstruction could be helpful in the planning for this complex anatomic region. Surface and volume 3D reconstruction were performed by Amira or the Dextroscope. The clinical experience of this study includes 7 cases, 2 with an unstable burst fracture and 5 with metastatic destructive vertebral body disease, all with significant retropulsion and obstruction of the spinal canal. We performed a comparison with a conventional cohort of transpedicular thoracic corpectomies. Qualitative parameters of the 3D virtual reality planning included degree of bone removal and distance from critical structures such as myelon and implant diameter. Parameters were met in each case, with demonstration of optimal positioning of the implant without neurological complications. In all patients, the endoscope was a significant help in identifying the origins of active bleeding, residual tumor, extent of bone removal, facilitating cage insertion in a minimally invasive way, and helping to avoid root sacrifice on both sides. Microsurgical endoscopic-assisted transpedicular corpectomy may prove valuable in enhancing the safety of corpectomy in destructive vertebral body disease. The 3D virtual anatomic model greatly facilitated the preoperative planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Prototyping of cerebral vasculature physical models.

    PubMed

    Khan, Imad S; Kelly, Patrick D; Singer, Robert J

    2014-01-01

    Prototyping of cerebral vasculature models through stereolithographic methods have the ability to accurately depict the 3D structures of complicated aneurysms with high accuracy. We describe the method to manufacture such a model and review some of its uses in the context of treatment planning, research, and surgical training. We prospectively used the data from the rotational angiography of a 40-year-old female who presented with an unruptured right paraclinoid aneurysm. The 3D virtual model was then converted to a physical life-sized model. The model constructed was shown to be a very accurate depiction of the aneurysm and its associated vasculature. It was found to be useful, among other things, for surgical training and as a patient education tool. With improving and more widespread printing options, these models have the potential to become an important part of research and training modalities.

  20. Decoupling local mechanics from large-scale structure in modular metamaterials.

    PubMed

    Yang, Nan; Silverberg, Jesse L

    2017-04-04

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  1. Decoupling local mechanics from large-scale structure in modular metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  2. Semi-automatic central-chest lymph-node definition from 3D MDCT images

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Higgins, William E.

    2010-03-01

    Central-chest lymph nodes play a vital role in lung-cancer staging. The three-dimensional (3D) definition of lymph nodes from multidetector computed-tomography (MDCT) images, however, remains an open problem. This is because of the limitations in the MDCT imaging of soft-tissue structures and the complicated phenomena that influence the appearance of a lymph node in an MDCT image. In the past, we have made significant efforts toward developing (1) live-wire-based segmentation methods for defining 2D and 3D chest structures and (2) a computer-based system for automatic definition and interactive visualization of the Mountain central-chest lymph-node stations. Based on these works, we propose new single-click and single-section live-wire methods for segmenting central-chest lymph nodes. The single-click live wire only requires the user to select an object pixel on one 2D MDCT section and is designed for typical lymph nodes. The single-section live wire requires the user to process one selected 2D section using standard 2D live wire, but it is more robust. We applied these methods to the segmentation of 20 lymph nodes from two human MDCT chest scans (10 per scan) drawn from our ground-truth database. The single-click live wire segmented 75% of the selected nodes successfully and reproducibly, while the success rate for the single-section live wire was 85%. We are able to segment the remaining nodes, using our previously derived (but more interaction intense) 2D live-wire method incorporated in our lymph-node analysis system. Both proposed methods are reliable and applicable to a wide range of pulmonary lymph nodes.

  3. Biometric and structural ocular manifestations of Marfan syndrome.

    PubMed

    Gehle, Petra; Goergen, Barbara; Pilger, Daniel; Ruokonen, Peter; Robinson, Peter N; Salchow, Daniel J

    2017-01-01

    To study biometric and structural ocular manifestations of Marfan syndrome (MFS). Observational, retrospective, comparative cohort study in a tertiary referral center on 285 MFS patients and 267 controls. Structural and biometric ocular characteristic were compared. MFS eyes were longer (axial length 24.25 ± 1.74 mm versus 23.89 ± 1.31 mm, p < 0.001) and had a flatter cornea than control eyes (mean keratometry 41.78 ± 1.80 diopters (D) versus 43.05 ± 1.51 D, p < 0.001). Corneal astigmatism was greater and the central cornea was thinner in MFS eyes (530.14 ± 41.31 μm versus 547.02 ± 39.18 μm, p < 0.001). MFS eyes were more myopic than control eyes (spherical equivalent -2.16 ± 3.75 D versus -1.17 ± 2.58 D, p < 0.001). Visual acuity was reduced (0.13 ± 0.25 logMAR versus 0.05 ± 0.18 logMAR, p < 0.001) and intraocular pressure was lower in MFS eyes (14.6 ± 3.4 mmHg versus 15.1 ± 3.2 mmHg, p = 0.01). Iris transillumination defects (ITD) were significantly more common in MFS eyes (odds ratio for MFS in the presence of ITD, 3.7). Ectopia lentis (EL) was only present in MFS eyes (33.4%). History of retinal detachment was significantly more common in MFS eyes. Glaucoma was equally common in both groups. ITD and EL are most characteristic findings in MFS. ITD and corneal curvature should be studied as diagnostic criteria for MFS. Visual acuity is reduced in MFS. MFS patients need regular eye exams to identify serious ocular complications.

  4. Biometric and structural ocular manifestations of Marfan syndrome

    PubMed Central

    Gehle, Petra; Goergen, Barbara; Pilger, Daniel; Ruokonen, Peter; Robinson, Peter N.

    2017-01-01

    Background To study biometric and structural ocular manifestations of Marfan syndrome (MFS). Methods Observational, retrospective, comparative cohort study in a tertiary referral center on 285 MFS patients and 267 controls. Structural and biometric ocular characteristic were compared. Results MFS eyes were longer (axial length 24.25 ± 1.74 mm versus 23.89 ± 1.31 mm, p < 0.001) and had a flatter cornea than control eyes (mean keratometry 41.78 ± 1.80 diopters (D) versus 43.05 ± 1.51 D, p < 0.001). Corneal astigmatism was greater and the central cornea was thinner in MFS eyes (530.14 ± 41.31 μm versus 547.02 ± 39.18 μm, p < 0.001). MFS eyes were more myopic than control eyes (spherical equivalent -2.16 ± 3.75 D versus -1.17 ± 2.58 D, p < 0.001). Visual acuity was reduced (0.13 ± 0.25 logMAR versus 0.05 ± 0.18 logMAR, p < 0.001) and intraocular pressure was lower in MFS eyes (14.6 ± 3.4 mmHg versus 15.1 ± 3.2 mmHg, p = 0.01). Iris transillumination defects (ITD) were significantly more common in MFS eyes (odds ratio for MFS in the presence of ITD, 3.7). Ectopia lentis (EL) was only present in MFS eyes (33.4%). History of retinal detachment was significantly more common in MFS eyes. Glaucoma was equally common in both groups. Conclusions ITD and EL are most characteristic findings in MFS. ITD and corneal curvature should be studied as diagnostic criteria for MFS. Visual acuity is reduced in MFS. MFS patients need regular eye exams to identify serious ocular complications. PMID:28931008

  5. Reconstitution of hepatic tissue architectures from fetal liver cells obtained from a three-dimensional culture with a rotating wall vessel bioreactor.

    PubMed

    Ishikawa, Momotaro; Sekine, Keisuke; Okamura, Ai; Zheng, Yun-wen; Ueno, Yasuharu; Koike, Naoto; Tanaka, Junzo; Taniguchi, Hideki

    2011-06-01

    Reconstitution of tissue architecture in vitro is important because it enables researchers to investigate the interactions and mutual relationships between cells and cellular signals involved in the three-dimensional (3D) construction of tissues. To date, in vitro methods for producing tissues with highly ordered structure and high levels of function have met with limited success although a variety of 3D culture systems have been investigated. In this study, we reconstituted functional hepatic tissue including mature hepatocyte and blood vessel-like structures accompanied with bile duct-like structures from E15.5 fetal liver cells, which contained more hepatic stem/progenitor cells comparing with neonatal liver cells. The culture was performed in a simulated microgravity environment produced by a rotating wall vessel (RWV) bioreactor. The hepatocytes in the reconstituted 3D tissue were found to be capable of producing albumin and storing glycogen. Additionally, bile canaliculi between hepatocytes, characteristics of adult hepatocyte in vivo were also formed. Apart from this, bile duct structure secreting mucin was shown to form complicated tubular branches. Furthermore, gene expression analysis by semi-quantitative RT-PCR revealed the elevated levels of mature hepatocyte markers as well as genes with the hepatic function. With RWV culture system, we could produce functionally reconstituted liver tissue and this might be useful in pharmaceutical industry including drug screening and testing and other applications such as an alternative approach to experimental animals. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. DeepNeuron: an open deep learning toolbox for neuron tracing.

    PubMed

    Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui

    2018-06-06

    Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

  7. Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases.

    PubMed

    Mukherjee, Payal; Cheng, Kai; Flanagan, Sean; Greenberg, Simon

    2017-08-01

    With the advent of single-sided hearing loss increasingly being treated with cochlear implantation, bone conduction implants are reserved for cases of conductive and mixed hearing loss with greater complexity. The BoneBridge (BB, MED-EL, Innsbruck, Austria) is an active fully implantable device with no attenuation of sound energy through soft tissue. However, the floating mass transducer (FMT) part of the device is very bulky, which limits insertion in complicated ears. In this study, 3D printed temporal bones of patients were used to study its utility in preoperative planning on complicated cases. Computed tomography (CT) scans of 16 ears were used to 3D print their temporal bones. Three otologists graded the use of routine preoperative planning provided by MED-EL and that of operating on the 3D printed bone of the patient. Data were collated to assess the advantage and disadvantage of the technology. There was a statistically significant benefit in using 3D printed temporal bones to plan surgery for difficult cases of BoneBridge surgery compared to the current standard. Surgeons preferred to have the printed bones in theatre to plan their drill sites and make the transition of the planning to the patient's operation more precise. 3D printing is an innovative use of technology in the use of preoperative planning for complex ear surgery. Surgical planning can be done on the patient's own anatomy which may help to decrease operating time, reduce cost, increase surgical precision and thus reduce complications.

  8. Three-dimensional multimodality fusion imaging as an educational and planning tool for deep-seated meningiomas.

    PubMed

    Sato, Mitsuru; Tateishi, Kensuke; Murata, Hidetoshi; Kin, Taichi; Suenaga, Jun; Takase, Hajime; Yoneyama, Tomohiro; Nishii, Toshiaki; Tateishi, Ukihide; Yamamoto, Tetsuya; Saito, Nobuhito; Inoue, Tomio; Kawahara, Nobutaka

    2018-06-26

    The utility of surgical simulation with three-dimensional multimodality fusion imaging (3D-MFI) has been demonstrated. However, its potential in deep-seated brain lesions remains unknown. The aim of this study was to investigate the impact of 3D-MFI in deep-seated meningioma operations. Fourteen patients with deeply located meningiomas were included in this study. We constructed 3D-MFIs by fusing high-resolution magnetic resonance (MR) and computed tomography (CT) images with a rotational digital subtraction angiogram (DSA) in all patients. The surgical procedure was simulated by 3D-MFI prior to operation. To assess the impact on neurosurgical education, the objective values of surgical simulation by 3D-MFIs/virtual reality (VR) video were evaluated. To validate the quality of 3D-MFIs, intraoperative findings were compared. The identification rate (IR) and positive predictive value (PPV) for the tumor feeding arteries and involved perforating arteries and veins were also assessed for quality assessment of 3D-MFI. After surgical simulation by 3D-MFIs, near-total resection was achieved in 13 of 14 (92.9%) patients without neurological complications. 3D-MFIs significantly contributed to the understanding of surgical anatomy and optimal surgical view (p < .0001) and learning how to preserve critical vessels (p < .0001) and resect tumors safety and extensively (p < .0001) by neurosurgical residents/fellows. The IR of 3D-MFI for tumor-feeding arteries and perforating arteries and veins was 100% and 92.9%, respectively. The PPV of 3D-MFI for tumor-feeding arteries and perforating arteries and veins was 98.8% and 76.5%, respectively. 3D-MFI contributed to learn skull base meningioma surgery. Also, 3D-MFI provided high quality to identify critical anatomical structures within or adjacent to deep-seated meningiomas. Thus, 3D-MFI is promising educational and surgical planning tool for meningiomas in deep-seated regions.

  9. The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and interstation horizontal magnetic transfer function data: results from a synthetic case study

    NASA Astrophysics Data System (ADS)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser

    2016-12-01

    As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low electrical resistivity; and (4) superior imaging of the horizontal continuity of structures with low electrical resistivity. These advantages offer new opportunities for the MT method by making the results from a MT profile in a 3-D environment more convincing, supporting the possibility of high-resolution studies in 3-D areas without expending a large amount of economical and computational resources, and also offering better resolution of targets with high electrical resistivity.

  10. TU-F-17A-08: The Relative Accuracy of 4D Dose Accumulation for Lung Radiotherapy Using Rigid Dose Projection Versus Dose Recalculation On Every Breathing Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Lee, C; Tee, S

    2014-06-15

    Purpose: To investigate the accuracy of 4D dose accumulation using projection of dose calculated on the end-exhalation, mid-ventilation, or average intensity breathing phase CT scan, versus dose accumulation performed using full Monte Carlo dose recalculation on every breathing phase. Methods: Radiotherapy plans were analyzed for 10 patients with stage I-II lung cancer planned using 4D-CT. SBRT plans were optimized using the dose calculated by a commercially-available Monte Carlo algorithm on the end-exhalation 4D-CT phase. 4D dose accumulations using deformable registration were performed with a commercially available tool that projected the planned dose onto every breathing phase without recalculation, as wellmore » as with a Monte Carlo recalculation of the dose on all breathing phases. The 3D planned dose (3D-EX), the 3D dose calculated on the average intensity image (3D-AVE), and the 4D accumulations of the dose calculated on the end-exhalation phase CT (4D-PR-EX), the mid-ventilation phase CT (4D-PR-MID), and the average intensity image (4D-PR-AVE), respectively, were compared against the accumulation of the Monte Carlo dose recalculated on every phase. Plan evaluation metrics relating to target volumes and critical structures relevant for lung SBRT were analyzed. Results: Plan evaluation metrics tabulated using 4D-PR-EX, 4D-PR-MID, and 4D-PR-AVE differed from those tabulated using Monte Carlo recalculation on every phase by an average of 0.14±0.70 Gy, - 0.11±0.51 Gy, and 0.00±0.62 Gy, respectively. Deviations of between 8 and 13 Gy were observed between the 4D-MC calculations and both 3D methods for the proximal bronchial trees of 3 patients. Conclusions: 4D dose accumulation using projection without re-calculation may be sufficiently accurate compared to 4D dose accumulated from Monte Carlo recalculation on every phase, depending on institutional protocols. Use of 4D dose accumulation should be considered when evaluating normal tissue complication probabilities as well as in clinical situations where target volumes are directly inferior to mobile critical structures.« less

  11. Joint volumetric extraction and enhancement of vasculature from low-SNR 3-D fluorescence microscopy images.

    PubMed

    Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin

    2017-03-01

    To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.

  12. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    NASA Astrophysics Data System (ADS)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.

    2013-12-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.

  13. 3D deeply supervised network for automated segmentation of volumetric medical images.

    PubMed

    Dou, Qi; Yu, Lequan; Chen, Hao; Jin, Yueming; Yang, Xin; Qin, Jing; Heng, Pheng-Ann

    2017-10-01

    While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D medical image segmentation, it is still a difficult task for CNNs to segment important organs or structures from 3D medical images owing to several mutually affected challenges, including the complicated anatomical environments in volumetric images, optimization difficulties of 3D networks and inadequacy of training samples. In this paper, we present a novel and efficient 3D fully convolutional network equipped with a 3D deep supervision mechanism to comprehensively address these challenges; we call it 3D DSN. Our proposed 3D DSN is capable of conducting volume-to-volume learning and inference, which can eliminate redundant computations and alleviate the risk of over-fitting on limited training data. More importantly, the 3D deep supervision mechanism can effectively cope with the optimization problem of gradients vanishing or exploding when training a 3D deep model, accelerating the convergence speed and simultaneously improving the discrimination capability. Such a mechanism is developed by deriving an objective function that directly guides the training of both lower and upper layers in the network, so that the adverse effects of unstable gradient changes can be counteracted during the training procedure. We also employ a fully connected conditional random field model as a post-processing step to refine the segmentation results. We have extensively validated the proposed 3D DSN on two typical yet challenging volumetric medical image segmentation tasks: (i) liver segmentation from 3D CT scans and (ii) whole heart and great vessels segmentation from 3D MR images, by participating two grand challenges held in conjunction with MICCAI. We have achieved competitive segmentation results to state-of-the-art approaches in both challenges with a much faster speed, corroborating the effectiveness of our proposed 3D DSN. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The electronic structure of lithium metagallate.

    PubMed

    Johnson, N W; McLeod, J A; Moewes, A

    2011-11-09

    Herein we present a study of the electronic structure of lithium metagallate (LiGaO(2)), a material of interest in the field of optoelectronics. We use soft x-ray spectroscopy to probe the electronic structure of both the valence and conduction bands and compare our measurements to ab initio density functional theory calculations. We use several different exchange-correlation functionals, but find that no single theoretical approach used herein accurately quantifies both the band gap and the Ga 3d(10) states in LiGaO(2). We derive a band gap of 5.6 eV, and characterize electron hybridization in both the valence and conduction bands. Our study of the x-ray spectra may prove useful in analysing spectra from more complicated LiGaO(2) heterostructures. © 2011 IOP Publishing Ltd

  15. Modeling rock specimens through 3D printing: Tentative experiments and prospects

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Feng, Xiating; Song, Lvbo; Gong, Yahua; Zheng, Hong; Cui, Jie

    2016-02-01

    Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.

  16. Competition between quasi-planar and cage-like structures in the B29- cluster: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Li, Hai-Ru; Jian, Tian; Li, Wei-Li; Miao, Chang-Qing; Wang, Ying-Jin; Chen, Qiang; Luo, Xue-Mei; Wang, Kang; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2016-10-26

    Size-selected boron clusters have been found to be predominantly planar or quasi-planar (2D) in the small size regime with the appearance of three-dimensional (3D) borospherene cages of larger sizes. A seashell-like B 28 - cluster was previously shown to be the smallest borospherene, which competes with a quasi-planar isomer for the global minimum. Here we report a study on the structures and bonding of the B 29 - and B 29 clusters using photoelectron spectroscopy (PES) and first-principles calculations and demonstrate the continued competition between the 2D and borospherene structures. The PES spectrum of B 29 - displays a complex pattern with evidence of low-lying isomers. Global-minimum searches and extensive theoretical calculations revealed a complicated potential energy surface for B 29 - with five low-lying isomers, among which the lowest three were shown to contribute to the experimental spectrum. A 3D seashell-like C s (2, 1 A') isomer, featuring two heptagons on the waist and one octagon at the bottom, is the global minimum for B 29 - , followed by a 2D C 1 (3, 1 A) isomer with a hexagonal hole and a stingray-shaped 2D C s (1, 1 A') isomer with a pentagonal hole. However, by taking into account the entropic effects, the stingray-shaped isomer 1 was shown to be the lowest in energy at room temperature and was found to dominate the PES spectrum. Isomers 2 and 3, which have lower electron binding energies, were also found to be present in the experiment. Chemical bonding analyses showed that isomer 1 is an all-boron analogue of benzo[ghi]fluoranthene (C 18 H 10 ), whereas the borospherene isomer 2 possesses 18π electrons, conforming to the 2(N + 1) 2 electron counting rule for spherical aromaticity. For the B 29 neutral cluster, the seashell-like borospherene isomer is the global minimum, significantly lower in energy than the stingray-shaped quasi-planar structure.

  17. A comparative analysis of lung cancer patients treated with lobectomy via three-dimensional video-assisted thoracoscopic surgery versus two-dimensional resection

    PubMed Central

    Yang, Chengliang; Mo, Lili; Ma, Yegang; Peng, Guilin; Ren, Yi; Wang, Wei; Liu, Yongyu

    2015-01-01

    Background Three-dimensional (3D) vision systems are now available for thoracic surgery. It is unclear whether 3D video-assisted thoracic surgery (VATS) is superior to 2D VATS systems. This study aimed to compare the operative and perioperative data between 2D and 3D VATS lobectomy (VTL) and to identify the actual role of 3D VTL in thoracic surgery. Methods A two-institutional comparative study was conducted from November 2013 to November 2014 at Liaoning Cancer Hospital & Institute and the First Affiliated Hospital of Guangzhou Medical University, China, of 300 patients with resectable non-small cell lung cancer (NSCLC). Patients were assigned to receive either the 3D VATS (n=150) or 2D VATS (n=150) lobectomy. The operative and perioperative data between 2D VATS and 3D VATS were compared. Results Although there was no significant difference between the two groups regarding the incidence of each single complication, a significantly less operative time was found in the 3D VATS group (145 min) than in the 2D VATS group (176 min) (P=0.006). Postoperative mortality rates in 3D VATS and 2D VATS groups were both 0%.No significant difference was found between groups for estimated blood loss (P=0.893), chest drainage tube placement time (P=0.397), length of hospital stay (P=0.199), number of lymph nodes resected (P=0.397), postoperative complications (P=0.882) and cost of care (P=0.913). Conclusions Early results of this study demonstrate that the 3D VATS lobectomy procedure can be performed with less operative time. 3D VATS and 2D VATS lobectomy are both safe procedures in first-line surgical treatment of NSCLC. PMID:26623103

  18. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Treesearch

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  19. Temporal Role for MyD88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation.

    PubMed

    Lacey, Carolyn A; Mitchell, William J; Brown, Charles R; Skyberg, Jerod A

    2017-03-01

    Brucella spp. are facultative intracellular Gram-negative bacteria that cause the zoonotic disease brucellosis, one of the most common global zoonoses. Osteomyelitis, arthritis, and musculoskeletal inflammation are common focal complications of brucellosis in humans; however, wild-type (WT) mice infected systemically with conventional doses of Brucella do not develop these complications. Here we report C57BL/6 WT mice infected via the footpad with 10 3 to 10 6 CFU of Brucella spp. display neutrophil and monocyte infiltration of the joint space and surrounding musculoskeletal tissue. Joint inflammation is detectable as early as 1 day postinfection and peaks 1 to 2 weeks later, after which WT mice are able to slowly resolve inflammation. B and T cells were dispensable for the onset of swelling but required for resolution of joint inflammation and infection. At early time points, MyD88 -/- mice display decreased joint inflammation, swelling, and proinflammatory cytokine levels relative to WT mice. Subsequently, swelling of MyD88 -/- joints surpassed WT joint swelling, and resolution of joint inflammation was prolonged. Joint bacterial loads in MyD88 -/- mice were significantly greater than those in WT mice by day 3 postinfection and at all time points thereafter. In addition, MyD88 -/- joint inflammatory cytokine levels on day 3 and beyond were similar to WT levels. Collectively these data demonstrate MyD88 signaling mediates early inflammatory responses in the joint but also contributes to subsequent clearance of Brucella and resolution of inflammation. This work also establishes a mouse model for studying Brucella -induced arthritis, musculoskeletal complications, and systemic responses, which will lead to a better understanding of focal complications of brucellosis. Copyright © 2017 American Society for Microbiology.

  20. NH NMR shifts of new structurally characterized fac-[Re(CO)3(polyamine)]n+ complexes probed via outer-sphere hydrogen-bonding interactions to anions, including the paramagnetic [Re(IV)Br6]2- anion.

    PubMed

    Perera, Theshini; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2010-06-21

    fac-[Re(I)(CO)(3)L](n) complexes serve as models for short-lived fac-[(99m)Tc(I)(CO)(3)L](n) imaging tracers (L = tridentate ligands forming two five-membered chelate rings defining the L face). Dangling groups on L, needed to achieve desirable biodistribution, complicate the NMR spectra, which are not readily understood. Using less complicated L, we found that NH groups (exo-NH) projecting toward the L face sometimes showed an upfield shift attributable to steric shielding of the exo-NH group from the solvent by the chelate rings. Our goal is to advance our ability to relate these spectral features to structure and solution properties. To investigate whether exo-NH groups in six-membered rings exhibit the same effect and whether the presence of dangling groups alters the effect, we prepared new fac-[Re(CO)(3)L](n+) complexes that allow direct comparisons of exo-NH shifts for six-membered versus five-membered chelate rings. New complexes were structurally characterized with the following L: dipn [N-3-(aminopropyl)-1,3-propanediamine], N'-Medipn (3,3'-diamino-N-methyldipropylamine), N,N-Me(2)dipn (N,N-dimethyldipropylenetriamine), aepn [N-2-(aminoethyl)-1,3-propanediamine], trpn [tris-(3-aminopropyl)amine], and tren [tris-(2-aminoethyl)amine]. In DMSO-d(6), the upfield exo-NH signals were exhibited by all complexes, indicating that the rings sterically shield the exo-NH groups from bulky solvent molecules. This interpretation was supported by exo-NH signal shift changes caused by added halide and [ReBr(6)](2-) anions, consistent with outer-sphere hydrogen-bond interactions between these anions and the exo-NH groups. For fac-[Re(CO)(3)(dipn)]PF(6) in acetonitrile-d(3), the exo-NH signal shifted further downfield in the series, Cl(-) > Br(-) > I(-), and the plateau in the shift change required a lower concentration for smaller anions. These results are consistent with steric shielding of the exo-NH groups by the chelate rings. Nevertheless, despite its size, the shape and charge of [ReBr(6)](2-) allowed the dianion to induce large upfield paramagnetic shifts of the exo-NH signal of fac-[Re(CO)(3)(dipn)]PF(6). This dianion shows promise as an outer-sphere hydrogen-bonding paramagnetic shift reagent.

  1. Hearing results using the SMart piston prosthesis.

    PubMed

    Fayad, Jose N; Semaan, Maroun T; Meier, Josh C; House, John W

    2009-12-01

    SMart, a newly introduced piston prosthesis for stapedotomy, is a nitinol-based, heat-activated, self-crimping prosthesis. We review our hearing results and postoperative complications using this self-crimped piston prosthesis and compare them with those obtained using stainless steel or platinum piston prostheses. Audiometric results using the SMart piston are identical to those obtained using a conventional piston prosthesis. Retrospective chart review. Private neurotologic tertiary referral center. The 416 ears reviewed included 306 with a SMart prosthesis and 110 conventional prostheses. 61% were women. Mean follow-up time was 5.6 (standard deviation [SD], 6.3 mo) and 6.9 months (SD, 7.0 mo) for the 2 groups, respectively. Stapedotomy using the SMart or a conventional (non-SMart) prosthesis. Audiometric hearing results, including pure-tone average (PTA) and air-bone gap (ABG), and prevalence of postoperative complications. Mean postoperative PTA was 32.6 (SD, 16.8) dB for the SMart group and 29.4 (SD, 13.5) dB for the non-SMart group, with ABGs of 7.6 (SD, 8.9) and 6.0 (SD, 5.2) dB, respectively. Mean change (decrease) in ABG was 18.7 (SD, 13.1) dB for the SMart group and 19.9 (SD, 10.3) dB for the non-SMart group. High-frequency bone PTAs showed overclosure of 2.0 (SD, 7.9) dB for the SMart group and 3.6 (SD, 8.6) dB for the non-SMart group. Postoperative vertigo and tinnitus were infrequent. No significant differences in these audiometric outcomes or complication rates were noted between groups. There was no significant difference in rate of gap closure to within 10 dB (78.3 versus 84.2%, SMart and non-SMart, respectively) or 20 dB (94.2 and 98.0%). Compared with conventional stapes prostheses, the nitinol-based SMart is a safe and reliable stapes prosthesis that eliminates manual crimping without significantly altering the audiometric outcome. Complications are rare, but longer follow-up is needed before establishing long-term stability.

  2. Fold pattern formation in 3D

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Dabrowski, Marcin; Krotkiewski, Marcin

    2010-05-01

    The vast majority of studies concerned with folding focus on 2D and assume that the resulting fold structures are cylindrically extended in the out of place direction. This simplification is often justified as fold aspect ratios, length/width, are quite large. However, folds always exhibit finite aspect ratios and it is unclear what controls this (cf. Fletcher 1995). Surprisingly little is known about the fold pattern formation in 3D for different in-plane loading conditions. Even more complicated is the pattern formation when several folding events are superposed. Let us take the example of a plane strain pure shear superposed by the same kind of deformation but rotated by 90 degrees. The text book prediction for this event is the formation of an egg carton structure; relevant analogue models either agree and produce type 1 interference patterns or contradict and produce type 2. In order to map out 3D fold pattern formation we have performed a systematic parameter space investigation using BILAMIN, our efficient unstructured mesh finite element Stokes solver. BILAMIN is capable of solving problems with more than half a billion unknowns. This allows us to study fold patterns that emerge in randomly (red noise) perturbed layers. We classify the resulting structures with differential geometry tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton shaped dome and basin structures resulting from folding instabilities in constriction is largely oversimplified. The fold patterns resulting in this setting are curved, elongated folds with random orientation. Reference Fletcher, R. C. 1995. 3-Dimensional Folding and Necking of a Power-Law Layer - Are Folds Cylindrical, and, If So, Do We Understand Why. Tectonophysics 147(1-4), 65-83.

  3. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    PubMed

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Structural analysis of N-glycans by the glycan-labeling method using 3-aminoquinoline-based liquid matrix in negative-ion MALDI-MS.

    PubMed

    Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-ichirou; Tanaka, Koichi

    2012-11-06

    Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.

  5. Early postoperative pulmonary complications after heart transplantation.

    PubMed

    Camkiran Firat, A; Komurcu, O; Zeyneloglu, P; Turker, M; Sezgin, A; Pirat, A

    2015-05-01

    The aim of this study was to determine the types, incidence, and risk factors for early postoperative pulmonary complications in heart transplant recipients. We retrospectively collected data from the records of consecutive heart transplantations from January 2003 to December 2013. A total of 83 patients underwent heart transplantation. The data collected for each case were demographic features, duration of mechanical ventilation, respiratory problems that developed during the intensive care unit (ICU) stay, and early postoperative mortality (<30 d). Of the 72 patients considered, 52 (72.2%) were male. The overall mean age at the time of transplantation was 32.1 ± 16.6 years. Twenty-five patients (34.7%) developed early postoperative respiratory complications. The most frequent problem was pleural effusion (n = 19; 26.4%), followed by atelectasis (n = 6; 8.3%), acute respiratory distress syndrome (n = 5; 6.9%), pulmonary edema (n = 4; 5.6%), and pneumonia (n = 3; 4.2%). Postoperative duration of mechanical ventilation (44.2 ± 59.2 h vs 123.8 ± 190.8 h; P = .005) and the length of postoperative ICU stay (10.1 ± 5.8 h vs 19.8 ± 28.9 h; P = .03) were longer among patients who had respiratory problems. Postoperative length of stay in the hospital (22.3 ± 12.5 d vs 30.3 ± 38.3 d; P = .75) was similar in the 2 groups. The overall mortality rate was 12.5% (n = 9). The patients who had respiratory problems did not show higher mortality than those who did not have respiratory problems (16.0% vs 10.6%; P = .71). Respiratory complications were relatively common in our cohort of heart transplant recipients. However, these complications were mostly self-limiting and did not result in worse mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Automatic cerebrospinal fluid segmentation in non-contrast CT images using a 3D convolutional network

    NASA Astrophysics Data System (ADS)

    Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra

    2017-03-01

    Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.

  7. Multi-institutional analysis of radiation modality use and postoperative outcomes of neoadjuvant chemoradiation for esophageal cancer.

    PubMed

    Lin, Steven H; Merrell, Kenneth W; Shen, Jincheng; Verma, Vivek; Correa, Arlene M; Wang, Lu; Thall, Peter F; Bhooshan, Neha; James, Sarah E; Haddock, Michael G; Suntharalingam, Mohan; Mehta, Minesh P; Liao, Zhongxing; Cox, James D; Komaki, Ritsuko; Mehran, Reza J; Chuong, Michael D; Hallemeier, Christopher L

    2017-06-01

    Relative radiation dose exposure to vital organs in the thorax could influence clinical outcomes in esophageal cancer (EC). We assessed whether the type of radiation therapy (RT) modality used was associated with postoperative outcomes after neoadjuvant chemoradiation (nCRT). Contemporary data from 580 EC patients treated with nCRT at 3 academic institutions from 2007 to 2013 were reviewed. 3D conformal RT (3D), intensity modulated RT (IMRT) and proton beam therapy (PBT) were used for 214 (37%), 255 (44%), and 111 (19%) patients, respectively. Postoperative outcomes included pulmonary, GI, cardiac, wound healing complications, length of in-hospital stay (LOS), and 90-day postoperative mortality. Cox model fits, and log-rank tests both with and without Inverse Probability of treatment Weighting (IPW) were used to correct for bias due to non-randomization. RT modality was significantly associated with the incidence of pulmonary, cardiac and wound complications, which also bore out on multivariate analysis. Mean LOS was also significantly associated with treatment modality (13.2days for 3D (95%CI 11.7-14.7), 11.6days for IMRT (95%CI 10.9-12.7), and 9.3days for PBT (95%CI 8.2-10.3) (p<0.0001)). The 90day postoperative mortality rates were 4.2%, 4.3%, and 0.9%, respectively, for 3D, IMRT and PBT (p=0.264). Advanced RT technologies (IMRT and PBT) were associated with significantly reduced rate of postoperative complications and LOS compared to 3D, with PBT displaying the greatest benefit in a number of clinical endpoints. Ongoing prospective randomized trial will be needed to validate these results. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Design of mulitlevel OLF approach ("V"-shaped decompressive laminoplasty) based on 3D printing technology.

    PubMed

    Ling, Qinjie; He, Erxing; Ouyang, Hanbin; Guo, Jing; Yin, Zhixun; Huang, Wenhua

    2017-07-27

    To introduce a new surgical approach to the multilevel ossification of the ligamentum flavum (OLF) aided by three-dimensional (3D) printing technology. A multilevel OLF patient (male, 66 years) was scanned using computed tomography (CT). His saved DICOM format data were inputted to the Mimics14.0 3D reconstruction software (Materialise, Belgium). The resulting 3D model was used to observe the anatomical features of the multilevel OLF area and to design the surgical approach. At the base of the spinous process, two channels were created using an osteotomy bilaterally to create a "V" shape to remove the bone ligamentous complex (BLC). The decompressive laminoplasty using mini-plate fixation was simulated with the computer. The physical model was manufactured using 3D printing technology. The patient was subsequently treated using the designed surgery. The operation was completed successfully without any complications. The operative time was 90 min, and blood loss was 200 ml. One month after the operation, neurologic function was recovered well, and the JOA score was improved from 6 preoperatively to 10. Postoperative CT scanning showed that the OLF was totally removed, and the replanted BLC had not subsided. 3D printing technology is an effective, reliable, and minimally invasive method to design operations. The technique can be an option for multilevel OLF surgical treatment. This can provide sufficient decompression with minimum damage to the spine and other intact anatomical structures.

  9. Radiobiological impact of reduced margins and treatment technique for prostate cancer in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP).

    PubMed

    Jensen, Ingelise; Carl, Jesper; Lund, Bente; Larsen, Erik H; Nielsen, Jane

    2011-01-01

    Dose escalation in prostate radiotherapy is limited by normal tissue toxicities. The aim of this study was to assess the impact of margin size on tumor control and side effects for intensity-modulated radiation therapy (IMRT) and 3D conformal radiotherapy (3DCRT) treatment plans with increased dose. Eighteen patients with localized prostate cancer were enrolled. 3DCRT and IMRT plans were compared for a variety of margin sizes. A marker detectable on daily portal images was presupposed for narrow margins. Prescribed dose was 82 Gy within 41 fractions to the prostate clinical target volume (CTV). Tumor control probability (TCP) calculations based on the Poisson model including the linear quadratic approach were performed. Normal tissue complication probability (NTCP) was calculated for bladder, rectum and femoral heads according to the Lyman-Kutcher-Burman method. All plan types presented essentially identical TCP values and very low NTCP for bladder and femoral heads. Mean doses for these critical structures reached a minimum for IMRT with reduced margins. Two endpoints for rectal complications were analyzed. A marked decrease in NTCP for IMRT plans with narrow margins was seen for mild RTOG grade 2/3 as well as for proctitis/necrosis/stenosis/fistula, for which NTCP <7% was obtained. For equivalent TCP values, sparing of normal tissue was demonstrated with the narrow margin approach. The effect was more pronounced for IMRT than 3DCRT, with respect to NTCP for mild, as well as severe, rectal complications. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  10. Computer-assisted planning and patient-specific guides for the treatment of midshaft clavicle malunions.

    PubMed

    Vlachopoulos, Lazaros; Schweizer, Andreas; Meyer, Dominik C; Gerber, Christian; Fürnstahl, Philipp

    2017-08-01

    The surgical treatment of malunions after midshaft clavicle fractures is associated with a number of potential complications and the surgical procedure is challenging. However, with appropriate and meticulous preoperative surgical planning, the surgical correction yields satisfactory results. The purpose of this study was to provide a guideline and detailed overview for the computer-assisted planning and 3-dimensional (3D) correction of malunions of the clavicle. The 3D bone surface models of the pathologic and contralateral sides were created on the basis of computed tomography data. The computer-assisted assessment of the deformity, the preoperative plan, and the design of patient-specific guides enabling compression plating are described. We demonstrate the benefit and versatility of computer-assisted planning for corrective osteotomies of malunions of the midshaft clavicle. In combination with patient-specific guides and compression plating technique, the correction can be performed in a more standardized fashion. We describe the determination of the contact-optimized osteotomy plane. An osteotomy along this plane facilitates the correction and enlarges the contact between the fragments at once. We further developed a technique of a stepped osteotomy that is based on the calculation of the contact-optimized osteotomy plane. The stepped osteotomy enables the length to be restored without the need of structural bone graft. The application of the stepped osteotomy is presented for malunions of the clavicle with shortening and excessive callus formation. The 3D preoperative planning and patient-specific guides for corrective osteotomies of the clavicle may help reduce the number of potential complications and yield results that are more predictable. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Non-noble metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jun-Ling, E-mail: s070054@e.ntu.edu.sg; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002; Zhang, Jian-Han

    2016-05-15

    We reported the synthesis and crystal structures of alkali metal and alkali-earth metal phosphite, namely, CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} (1), and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6} (2). Both compounds were prepared by hydrothermal reactions and feature unique new structures. They both exhibit 3D complicated frameworks based on VO{sub 6} octahedra which are connected by HPO{sub 3} tetrahedra via corner-sharing. Alkali or alkali earth metal cations are filled in the different channels of the frameworks. Topological analysis shows that the framework of CsV{sub 2}(H{sub 3}O) (HPO{sub 3}){sub 4} (1) is a new 3,3,3,4,5-connected network with the Schläfli symbol of {4.6"2}{submore » 2}{4"2.6"6.8"2}{6"3}{6"5.8}. The investigations of X-ray photoelectron spectroscopy (XPS) and magnetic measurement on CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} suggest a +3 oxidation state of the vanadium ions in compound 1. Photocatalytic performance was evaluated by photocatalytic H{sub 2} evolution and degradation of methylene blue, which shows that both compounds exhibit activity under visible-light irradiation. IR spectrum, UV–vis-NIR spectrum and thermogravimetric analysis (TGA) of compounds were also investigated. - Graphical abstract: Metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution and the degradation of methylene blue aqueous solution. - Highlights: • Two new vanadium phosphites, CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6}, are reported. • CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6} feature complicated 3D framework structures with different channels. • CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6} exhibit strong and broad absorptions in the visible and Near IR region. • Photocatalytic properties of CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6} are investigated. • The magnetic measurement of CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} was performed in the temperature range of 2–300 K.« less

  12. Three-dimensional interactive and stereotactic atlas of head muscles and glands correlated with cranial nerves and surface and sectional neuroanatomy.

    PubMed

    Nowinski, Wieslaw L; Chua, Beng Choon; Johnson, Aleksandra; Qian, Guoyu; Poh, Lan Eng; Yi, Su Hnin Wut; Bivi, Aminah; Nowinska, Natalia G

    2013-04-30

    Three-dimensional (3D) relationships between head muscles and cranial nerves innervating them are complicated. Existing sources present these relationships in illustrations, radiologic scans, or autopsy photographs, which are limited for learning and use. Developed electronic atlases are limited in content, quality, functionality, and/or presentation. We create a truly 3D interactive, stereotactic and high quality atlas, which provides spatial relationships among head muscles, glands and cranial nerves, and correlates them to surface and sectional neuroanatomy. The head muscles and glands were created from a 3T scan by contouring them and generating 3D models. They were named and structured according to Terminologia anatomica. The muscles were divided into: extra-ocular, facial, masticatory and other muscles, and glands into mouth and other glands. The muscles, glands (and also head) were placed in a stereotactic coordinate system. This content was integrated with cranial nerves and neuroanatomy created earlier. To explore this complex content, a scalable user interface was designed with 12 modules including central nervous system (cerebrum, cerebellum, brainstem, spinal cord), cranial nerves, muscles, glands, arterial system, venous system, tracts, deep gray nuclei, ventricles, white matter, visual system, head. Anatomy exploration operations include compositing/decompositing, individual/group selection, 3D view-index mapping, 3D labeling, highlighting, distance measuring, 3D brain cutting, and axial/coronal/sagittal triplanar display. To our best knowledge, this is the first truly 3D, stereotactic, interactive, fairly complete atlas of head muscles, and the first attempt to create a 3D stereotactic atlas of glands. Its use ranges from education of students and patients to research to potential clinical applications. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  13. Predictors of Toxicity After Image-guided High-dose-rate Interstitial Brachytherapy for Gynecologic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Larissa J.; Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu

    2012-12-01

    Purpose: To identify predictors of grade 3-4 complications and grade 2-4 rectal toxicity after three-dimensional image-guided high-dose-rate (HDR) interstitial brachytherapy for gynecologic cancer. Methods and Materials: Records were reviewed for 51 women (22 with primary disease and 29 with recurrence) treated with HDR interstitial brachytherapy. A single interstitial insertion was performed with image guidance by computed tomography (n = 43) or magnetic resonance imaging (n = 8). The median delivered dose in equivalent 2-Gy fractions was 72.0 Gy (45 Gy for external-beam radiation therapy and 24 Gy for brachytherapy). Toxicity was reported according to the Common Toxicity Criteria for Adversemore » Events. Actuarial toxicity estimates were calculated by the Kaplan-Meier method. Results: At diagnosis, the median patient age was 62 years and the median tumor size was 3.8 cm. The median D90 and V100 were 71.4 Gy and 89.5%; the median D2cc for the bladder, rectum, and sigmoid were 64.6 Gy, 61.0 Gy, and 52.7 Gy, respectively. The actuarial rates of all grade 3-4 complications at 2 years were 20% gastrointestinal, 9% vaginal, 6% skin, 3% musculoskeletal, and 2% lymphatic. There were no grade 3-4 genitourinary complications and no grade 5 toxicities. Grade 2-4 rectal toxicity was observed in 10 patients, and grade 3-4 complications in 4; all cases were proctitis with the exception of 1 rectal fistula. D2cc for rectum was higher for patients with grade 2-4 (68 Gy vs 57 Gy for grade 0-1, P=.03) and grade 3-4 (73 Gy vs 58 Gy for grade 0-2, P=.02) rectal toxicity. The estimated dose that resulted in a 10% risk of grade 2-4 rectal toxicity was 61.8 Gy (95% confidence interval, 51.5-72.2 Gy). Discussion: Image-guided HDR interstitial brachytherapy results in acceptable toxicity for women with primary or recurrent gynecologic cancer. D2cc for the rectum is a reliable predictor of late rectal complications. Three-dimensional-based treatment planning should be performed to ensure adequate tumor coverage while minimizing the D2cc to the rectum.« less

  14. To generate a finite element model of human thorax using the VCH dataset

    NASA Astrophysics Data System (ADS)

    Shi, Hui; Liu, Qian

    2009-10-01

    Purpose: To generate a three-dimensional (3D) finite element (FE) model of human thorax which may provide the basis of biomechanics simulation for the study of design effect and mechanism of safety belt when vehicle collision. Methods: Using manually or semi-manually segmented method, the interested area can be segmented from the VCH (Visible Chinese Human) dataset. The 3D surface model of thorax is visualized by using VTK (Visualization Toolkit) and further translated into (Stereo Lithography) STL format, which approximates the geometry of solid model by representing the boundaries with triangular facets. The data in STL format need to be normalized into NURBS surfaces and IGES format using software such as Geomagic Studio to provide archetype for reverse engineering. The 3D FE model was established using Ansys software. Results: The generated 3D FE model was an integrated thorax model which could reproduce human's complicated structure morphology including clavicle, ribs, spine and sternum. It was consisted of 1 044 179 elements in total. Conclusions: Compared with the previous thorax model, this FE model enhanced the authenticity and precision of results analysis obviously, which can provide a sound basis for analysis of human thorax biomechanical research. Furthermore, using the method above, we can also establish 3D FE models of some other organizes and tissues utilizing the VCH dataset.

  15. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces

    PubMed Central

    Zhu, Xuan; Li, Xiaoshi; Chen, Zeyu; Chen, Yimu; Lei, Yusheng; Li, Yang; Nomoto, Akihiro; Zhou, Qifa; di Scalea, Francesco Lanza

    2018-01-01

    Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects. This study reports a stretchable ultrasound probe that can conform to and detect nonplanar complex surfaces. The probe consists of a 10 × 10 array of piezoelectric transducers that exploit an “island-bridge” layout with multilayer electrodes, encapsulated by thin and compliant silicone elastomers. The stretchable probe shows excellent electromechanical coupling, minimal cross-talk, and more than 50% stretchability. Its performance is demonstrated by reconstructing defects in 3D space with high spatial resolution through flat, concave, and convex surfaces. The results hold great implications for applications of ultrasound that require imaging through complex surfaces. PMID:29740603

  16. Computer-aided design/computer-aided manufacturing skull base drill.

    PubMed

    Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K

    2017-05-01

    The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.

  17. Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal.

    PubMed

    Subramania, Ganapathi; Lee, Yun-Ju; Brener, Igal; Luk, Ting-Shan; Clem, Paul G

    2007-10-01

    Photonic crystals (PC) have emerged as important types of structures for light manipulation. Ultimate control of light is possible by creating PCs with a complete three dimensional (3D) gap [1, 2]. This has proven to be a considerable challenge in the visible and ultraviolet frequencies mainly due to complications in integrating transparent, high refractive index (n) materials with fabrication techniques to create ~ 100nm features with long range translational order. In this letter, we demonstrate a nano-lithography approach based on a multilevel electron beam direct write and physical vapor deposition, to fabricate four-layer titania woodpile PCs that potentially exhibit complete 3D gap at visible wavelengths. We achieved a short wavelength bandedge of 525nm with a 300nm lattice constant PC. Due to the nanoscale precision and capability for defect control, the nanolithography approach represents an important step toward novel visible photonic devices for lighting, lasers, sensing and biophotonics.

  18. Prototyping of cerebral vasculature physical models

    PubMed Central

    Khan, Imad S.; Kelly, Patrick D.; Singer, Robert J.

    2014-01-01

    Background: Prototyping of cerebral vasculature models through stereolithographic methods have the ability to accurately depict the 3D structures of complicated aneurysms with high accuracy. We describe the method to manufacture such a model and review some of its uses in the context of treatment planning, research, and surgical training. Methods: We prospectively used the data from the rotational angiography of a 40-year-old female who presented with an unruptured right paraclinoid aneurysm. The 3D virtual model was then converted to a physical life-sized model. Results: The model constructed was shown to be a very accurate depiction of the aneurysm and its associated vasculature. It was found to be useful, among other things, for surgical training and as a patient education tool. Conclusion: With improving and more widespread printing options, these models have the potential to become an important part of research and training modalities. PMID:24678427

  19. Outcomes of Retreatment after Aborted Laser In Situ Keratomileusis due to Flap Complications.

    PubMed

    Al-Mezaine, Hani S; Al-Amro, Saleh A; Al-Fadda, Abdulaziz; Al-Obeidan, Saleh

    2011-07-01

    To determine the refractive outcomes and complications of retreatment after aborted primary laser in situ keratomileusis (LASIK) due to flap complications. This retrospective study evaluated 50 retreated eyes that had flap complications during primary LASIK at the Eye Consultants Center in Riyadh, Saudi Arabia. Data were analyzed for patients with at least 3 months follow-up post retreatment. Thirty-three eyes of 31 consecutive patients with 3 months follow-up or later post retreatment were included. The primary LASIK was aborted due to incomplete flaps in 22 eyes (66.7%), buttonhole flaps in 7 eyes (21.2%), free partial flaps in 3 eyes (9.1%), and a free complete flap in 1 eye (3.0%). Twenty-two eyes (66.7%) were retreated with LASIK, and 11 eyes (33.3%) were retreated with surface ablation. The mean spherical equivalent (SE) was -0.23 ± 0.72 D, the mean astigmatism was -0.65 ± 0.89 D, and the mean loss of the best corrected visual acuity (BCVA) was 0.78 lines at the final postoperative visit. At the last postoperative visit, 20/30 or better BCVA was achieved in 90.1% of eyes that underwent retreatment with LASIK and in 91% of eyes that were retreated with surface ablation. There was no statistical difference in postoperative SE between eyes retreated with LASIK and eyes retreated with surface ablation (P = 0.610). There was no statistical difference in postoperative BCVA between eyes retreated with LASIK and those retreated with surface ablation (P = 0.756). There were no intraoperative complications and no eyes required a second retreatment. Creation of a flap after a previous intraoperative flap complication was not associated with any complications. The refractive outcomes of retreatment with LASIK or surface ablation were comparable and reasonably favorable.

  20. Disentangling the Cosmic Web with Lagrangian Submanifold

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.; Medvedev, Mikhail V.

    2016-10-01

    The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.

  1. The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.

    2017-12-01

    Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.

  2. Electronic structures of C u 2 O , C u 4 O 3 , and CuO: A joint experimental and theoretical study

    DOE PAGES

    Wang, Y.; Lany, S.; Ghanbaja, J.; ...

    2016-12-14

    We present a joint experimental and theoretical study for the electronic structures of copper oxides including Cu 2O, CuO, and the metastable mixed-valence oxide Cu 4O 3. The optical band gap is determined by experimental optical absorption coefficient, and the electronic structure in valence and conduction bands is probed by photoemission and electron energy loss spectroscopies, respectively. Furthermore, we compare our experimental results with many-body GW calculations utilizing an additional on-site potential for d-orbital energies that facilitates tractable and predictive computations. The side-by-side comparison between the three oxides, including a band insulator (Cu2O) and two Mott/charge-transfer insulators (CuO, Cu 4Omore » 3) leads to a consistent picture for the optical and band-structure properties of the Cu oxides, strongly supporting indirect band gaps of about 1.2 and 0.8 eV in CuO and Cu 4O 3, respectively. This comparison also points towards surface oxidation and reduction effects that can complicate the interpretation of the photoemission spectra.« less

  3. Usefulness of three-dimensional full-scale modeling of surgery for a giant cell tumor of the cervical spine.

    PubMed

    Yamazaki, M; Akazawa, T; Okawa, A; Koda, M

    2007-03-01

    Case report. To report a case with giant cell tumor (GCT) of C6 vertebra, in which three-dimensional (3-D) full-scale modeling of the cervical spine was useful for preoperative planning and intraoperative navigation. A university hospital in Japan. A 27-year-old man with a GCT involving the C6 vertebra presented with severe neck pain. The C6 vertebra was collapsed and the tumor had infiltrated around both vertebral arteries (VAs). A single-stage operation combining anterior and posterior surgical procedures was scheduled to resect the tumor and stabilize the spine. To evaluate the anatomic structures within the surgical fields, we produced a 3-D full-scale model from the computed tomography angiography data. The 3-D full-scale model clearly showed the relationships between the destroyed C6 vertebra and the deviations in the courses of both VAs. Using the model, we were able to identify the anatomic landmarks around the VAs during anterior surgery and to successfully resect the tumor. During the posterior surgery, we were able to determine accurate starting points for the pedicle screws. Anterior iliac bone graft from C5 to C7 and posterior fixation with a rod and screw system from C4 to T2 were performed without any complications. Postoperatively, the patient experienced relief of his neck pain. The 3-D full-scale model was useful for simultaneously evaluating the destruction of the vertebral bony structures and the deviations in the courses of the VAs during surgery for GCT involving the cervical spine.

  4. Structure of the LPS O-chain from Fusobacterium nucleatum strain 10953, containing sialic acid

    PubMed Central

    Vinogradov, Evgeny; St. Michael, Frank; Homma, Kiyonobu; Sharma, Ashu; Cox, Andrew D.

    2017-01-01

    Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about virulence factors of this organism and thus we have initiated studies to examine the bacterial surface glycochemistry. Consistent with a recent paper suggesting that F. nucleatum strain 10593 can synthesize sialic acid, a staining technique identified sialic acid on the bacterial surface. We isolated lipopolysaccharide from this F. nucleatum strain and performed structural analysis on the O-antigen. Our studies identified a trisaccharide repeating unit of the O-antigen with the following structure: -[→4)-α-Neup5Ac-(2→4)-β-D-Galp-(1→3)-α-D-FucpNAc4NAc-(1-]-where Ac indicates 4-N-acetylation of ∼30% FucNAc4N residues. The presence of sialic acid as a constituent of the O-antigen is consistent with recent data identifying de novo sialic acid synthesis in this strain. PMID:28199859

  5. Prospective validation of a surgical complications grading system in a cohort of 2114 patients.

    PubMed

    Mazeh, Haggi; Cohen, Oded; Mizrahi, Ido; Hamburger, Tamar; Stojadinovic, Alexander; Abu-Wasel, Bassam; Alaiyan, Bilal; Freund, Herbert R; Eid, Ahmed; Nissan, Aviram

    2014-05-01

    We recently reported a grading system for surgical complications. This system proved to have a high sensitivity for recording minor but meaningful complications prolonging hospital stay in patients after colorectal surgery. We aimed to prospectively validate the complication grading system in a general surgery department over 1 year. All surgical procedures and related complications were prospectively recorded between January 1st and December 31st, 2009. Surgical complications were graded on a severity scale of 1-5. The system classifies short-term outcome by grade emphasizing intensity of therapy required for treatment of the defined complication. During the study period, 2114 patients underwent surgery. Elective and oncological surgeries were performed in 1606 (76%) and 465 (22%) patients, respectively. There were 422 surgical complications in 304 (14%) patients (Grade 1/2: 203 [67%]; Grade 3/4: 90 [29%]; Grade 5: 11 [4%]). Median length of stay correlated significantly with complication severity: 2.3 d for no complication, 6.2 and 11.8 d for Grades 1/2 and 3/4, respectively (P < 0.001). Older age (OR 2.75, P < 0.001), comorbidities (OR 1.44, P = 0.02), American Society of Anesthesiology score >2 (OR 2.07, P < 0.001), contamination Grade (OR 1.85, P = 0.001), oncological (OR 2.82, P < 0.001), open (OR 1.22, P = 0.03), prolonged >120 min (OR 2.08, P < 0.001), and emergency surgery (OR 1.42, P = 0.02) independently predicted postoperative complications. This system of grading surgical complications permits standardized reporting of surgical morbidity according to the severity of impact. Prospective validation of this system supports its use in a general surgery setting as a tool for surgical outcome assessment and quality assurance. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Factors associated with postoperative complications and 1-year mortality after surgery for colorectal cancer in octogenarians and nonagenarians

    PubMed Central

    Kim, Young Wan; Kim, Ik Yong

    2016-01-01

    Purpose To identify the factors affecting 30-day postoperative complications and 1-year mortality after surgery for colorectal cancer in octogenarians and nonagenarians. Methods Between 2005 and 2014, a total of 204 consecutive patients aged ≥80 years who underwent major colorectal surgery were included. Results One hundred patients were male (49%) and 52 patients had American Society of Anesthesiologists (ASA) score ≥3 (25%). Combined surgery was performed in 32 patients (16%). Postoperative complications within 30 days after surgery occurred in 54 patients (26%) and 30-day mortality occurred in five patients (2%). Independent risk factors affecting 30-day postoperative complications were older age (≥90 years, hazard ratio [HR] with 95% confidence interval [CI] =4.95 [1.69−14.47], P=0.004), an ASA score ≥3 (HR with 95% CI =4.19 [1.8−9.74], P=0.001), performance of combined surgery (HR with 95% CI =3.1 [1.13−8.46], P=0.028), lower hemoglobin level (<10 g/dL, HR with 95% CI =7.56 [3.07−18.63], P<0.001), and lower albumin level (<3.4 g/dL, HR with 95% CI =3.72 [1.43−9.69], P=0.007). An ASA score ≥3 (HR with 95% CI =2.72 [1.15−6.46], P=0.023), tumor-node-metastasis (TNM) stage IV (HR with 95% CI =3.47 [1.44−8.39], P=0.006), and occurrence of postoperative complications (HR with 95% CI =4.42 [1.39−14.09], P=0.012) were significant prognostic factors for 1-year mortality. Conclusion Patient-related factors (older age, higher ASA score, presence of anemia, and lower serum albumin) and procedure-related factors (performance of combined surgical procedure) increased postoperative complications. Avoidance of 30-day postoperative complications may decrease 1-year mortality. PMID:27279741

  7. Expression of cholinergic, insulin, vitamin D receptors and GLUT 3 in the brainstem of streptozotocin induced diabetic rats: effect of treatment with vitamin D₃.

    PubMed

    Peeyush Kumar, T; Paul, Jes; Antony, Sherin; Paulose, C S

    2011-11-01

    Complications arising from diabetes mellitus include cognitive deficits, neurophysiological and structural changes in the brain. The current study investigated the expression of cholinergic, insulin, Vitamin D receptor and GLUT 3 in the brainstem of streptozotocin-induced diabetic rats. Radioreceptor binding assays and gene expression were done in the brainstem of male Wistar rats. Our results showed that B(max) of total muscarinic, muscarinic M3 receptors was increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. A significant increase in gene expression of muscarinic M3, α7 nicotinic acetylcholine, insulin, Vitamin D₃ receptors, acetylcholine esterase, choline acetyl transferase and GLUT 3 were observed in the brainstem of diabetic rats. Immunohistochemistry studies of muscarinic M1, M3 and α7 nicotinic acetylcholine receptors confirmed the gene expression at protein level. Vitamin D₃ and insulin treatment reversed diabetes-induced alterations to near control. This study provides an evidence that diabetes can alter the expression of cholinergic, insulin, Vitamin D receptors and GLUT 3 in brainstem. We found that Vitamin D₃ treatment could modulate the Vitamin D receptors and plays a pivotal role in maintaining the glucose transport and expressional level of cholinergic receptors in the brainstem of diabetic rats. Thus, our results suggest a therapeutic role of Vitamin D₃ in managing neurological disorders associated with diabetes.

  8. Virtual 3D planning of tracheostomy placement and clinical applicability of 3D cannula design: a three-step study.

    PubMed

    de Kleijn, Bertram J; Kraeima, Joep; Wachters, Jasper E; van der Laan, Bernard F A M; Wedman, Jan; Witjes, M J H; Halmos, Gyorgy B

    2018-02-01

    We aimed to investigate the potential of 3D virtual planning of tracheostomy tube placement and 3D cannula design to prevent tracheostomy complications due to inadequate cannula position. 3D models of commercially available cannula were positioned in 3D models of the airway. In study (1), a cohort that underwent tracheostomy between 2013 and 2015 was selected (n = 26). The cannula was virtually placed in the airway in the pre-operative CT scan and its position was compared to the cannula position on post-operative CT scans. In study (2), a cohort with neuromuscular disease (n = 14) was analyzed. Virtual cannula placing was performed in CT scans and tested if problems could be anticipated. Finally (3), for a patient with Duchenne muscular dystrophy and complications of conventional tracheostomy cannula, a patient-specific cannula was 3D designed, fabricated, and placed. (1) The 3D planned and post-operative tracheostomy position differed significantly. (2) Three groups of patients were identified: (A) normal anatomy; (B) abnormal anatomy, commercially available cannula fits; and (C) abnormal anatomy, custom-made cannula, may be necessary. (3) The position of the custom-designed cannula was optimal and the trachea healed. Virtual planning of the tracheostomy did not correlate with actual cannula position. Identifying patients with abnormal airway anatomy in whom commercially available cannula cannot be optimally positioned is advantageous. Patient-specific cannula design based on 3D virtualization of the airway was beneficial in a patient with abnormal airway anatomy.

  9. Total artificial heart in the pediatric patient with biventricular heart failure.

    PubMed

    Park, S S; Sanders, D B; Smith, B P; Ryan, J; Plasencia, J; Osborn, M B; Wellnitz, C M; Southard, R N; Pierce, C N; Arabia, F A; Lane, J; Frakes, D; Velez, D A; Pophal, S G; Nigro, J J

    2014-01-01

    Mechanical circulatory support emerged for the pediatric population in the late 1980s as a bridge to cardiac transplantation. The Total Artificial Heart (TAH-t) (SynCardia Systems Inc., Tuscon, AZ) has been approved for compassionate use by the Food and Drug Administration for patients with end-stage biventricular heart failure as a bridge to heart transplantation since 1985 and has had FDA approval since 2004. However, of the 1,061 patients placed on the TAH-t, only 21 (2%) were under the age 18. SynCardia Systems, Inc. recommends a minimum patient body surface area (BSA) of 1.7 m(2), thus, limiting pediatric application of this device. This unique case report shares this pediatric institution's first experience with the TAH-t. A 14-year-old male was admitted with dilated cardiomyopathy and severe biventricular heart failure. The patient rapidly decompensated, requiring extracorporeal life support. An echocardiogram revealed severe biventricular dysfunction and diffuse clot formation in the left ventricle and outflow tract. The decision was made to transition to biventricular assist device. The biventricular failure and clot formation helped guide the team to the TAH-t, in spite of a BSA (1.5 m(2)) below the recommendation of 1.7 m(2). A computed tomography (CT) scan of the thorax, in conjunction with a novel three-dimensional (3D) modeling system and team, assisted in determining appropriate fit. Chest CT and 3D modeling following implantation were utilized to determine all major vascular structures were unobstructed and the bronchi were open. The virtual 3D model confirmed appropriate device fit with no evidence of compression to the left pulmonary veins. The postoperative course was complicated by a left lung opacification. The left lung anomalies proved to be atelectasis and improved with aggressive recruitment maneuvers. The patient was supported for 11 days prior to transplantation. Chest CT and 3D modeling were crucial in assessing whether the device would fit, as well as postoperative complications in this smaller pediatric patient.

  10. Wall touching kink mode calculations with the M3D code

    NASA Astrophysics Data System (ADS)

    Breslau, J. A.

    2014-10-01

    In recent years there have been a number of results published concerning the transient vessel currents and forces occurring during a tokamak VDE, as predicted by simulations with the nonlinear MHD code M3D. The nature of the simulations is such that these currents and forces occur at the boundary of the computational domain, making the proper choice of boundary conditions critical to the reliability of the results. The M3D boundary condition includes the prescription that the normal component of the velocity vanish at the wall. It has been argued that this prescription invalidates the calculations because it would seem to rule out the possibility of advection of plasma surface currents into the wall. This claim has been tested by applying M3D to an idealized case - a kink-unstable plasma column - in order to abstract the essential physics from the complications involved in the attempt to model real devices. While comparison of the results is complicated by effects arising from the higher dimensionality and complexity of M3D, we have verified that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the ``Hiro'' currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.

  11. The Feasibility of 3D Printing Technology on the Treatment of Pilon Fracture and Its Effect on Doctor-Patient Communication.

    PubMed

    Zheng, Wenhao; Chen, Chunhui; Zhang, Chuanxu; Tao, Zhenyu; Cai, Leyi

    2018-01-01

    The aim of this study was to assess the feasibility and effectiveness of the three-dimensional (3D) printing technology in the treatment of Pilon fractures. 100 patients with Pilon fractures from March 2013 to December 2016 were enrolled in our study. They were divided randomly into 3D printing group ( n = 50) and conventional group ( n = 50). The 3D models were used to simulate the surgery and carry out the surgery according to plan in 3D printing group. Operation time, blood loss, fluoroscopy times, fracture union time, and fracture reduction as well as functional outcomes including VAS and AOFAS score and complications were recorded. To examine the feasibility of this approach, we invited surgeons and patients to complete questionnaires. 3D printing group showed significantly shorter operation time, less blood loss volume and fluoroscopy times, higher rate of anatomic reduction and rate of excellent and good outcome than conventional group ( P < 0.001, P < 0.001, P < 0.001, P = 0.040, and P = 0.029, resp.). However, no significant difference was observed in complications between the two groups ( P = 0.510). Furthermore, the questionnaire suggested that both surgeons and patients got high scores of overall satisfaction with the use of 3D printing models. Our study indicated that the use of 3D printing technology to treat Pilon fractures in clinical practice is feasible.

  12. The Feasibility of 3D Printing Technology on the Treatment of Pilon Fracture and Its Effect on Doctor-Patient Communication

    PubMed Central

    Zheng, Wenhao; Chen, Chunhui; Zhang, Chuanxu; Tao, Zhenyu

    2018-01-01

    Purpose The aim of this study was to assess the feasibility and effectiveness of the three-dimensional (3D) printing technology in the treatment of Pilon fractures. Methods 100 patients with Pilon fractures from March 2013 to December 2016 were enrolled in our study. They were divided randomly into 3D printing group (n = 50) and conventional group (n = 50). The 3D models were used to simulate the surgery and carry out the surgery according to plan in 3D printing group. Operation time, blood loss, fluoroscopy times, fracture union time, and fracture reduction as well as functional outcomes including VAS and AOFAS score and complications were recorded. To examine the feasibility of this approach, we invited surgeons and patients to complete questionnaires. Results 3D printing group showed significantly shorter operation time, less blood loss volume and fluoroscopy times, higher rate of anatomic reduction and rate of excellent and good outcome than conventional group (P < 0.001, P < 0.001, P < 0.001, P = 0.040, and P = 0.029, resp.). However, no significant difference was observed in complications between the two groups (P = 0.510). Furthermore, the questionnaire suggested that both surgeons and patients got high scores of overall satisfaction with the use of 3D printing models. Conclusion Our study indicated that the use of 3D printing technology to treat Pilon fractures in clinical practice is feasible. PMID:29581985

  13. Terrestrial and Aerial Laser Scanning Data Integration Using Wavelet Analysis for the Purpose of 3D Building Modeling

    PubMed Central

    Kedzierski, Michal; Fryskowska, Anna

    2014-01-01

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1–5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed. PMID:25004157

  14. Simplified three-dimensional model provides anatomical insights in lizards' caudal autotomy as printed illustration.

    PubMed

    De Amorim, Joana D C G; Travnik, Isadora; De Sousa, Bernadete M

    2015-03-01

    Lizards' caudal autotomy is a complex and vastly employed antipredator mechanism, with thorough anatomic adaptations involved. Due to its diminished size and intricate structures, vertebral anatomy is hard to be clearly conveyed to students and researchers of other areas. Three-dimensional models are prodigious tools in unveiling anatomical nuances. Some of the techniques used to create them can produce irregular and complicated forms, which despite being very accurate, lack didactical uniformity and simplicity. Since both are considered fundamental characteristics for comprehension, a simplified model could be the key to improve learning. The model here presented depicts the caudal osteology of Tropidurus itambere, and was designed to be concise, in order to be easily assimilated, yet complete, not to compromise the informative aspect. The creation process requires only basic skills in manipulating polygons in 3D modeling softwares, in addition to the appropriate knowledge of the structure to be modeled. As reference for the modeling, we used microscopic observation and a photograph database of the caudal structures. This way, no advanced laboratory equipment was needed and all biological materials were preserved for future research. Therefore, we propose a wider usage of simplified 3D models both in the classroom and as illustrations for scientific publications.

  15. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling.

    PubMed

    Kedzierski, Michal; Fryskowska, Anna

    2014-07-07

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1-5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed.

  16. Robust surface reconstruction by design-guided SEM photometric stereo

    NASA Astrophysics Data System (ADS)

    Miyamoto, Atsushi; Matsuse, Hiroki; Koutaki, Gou

    2017-04-01

    We present a novel approach that addresses the blind reconstruction problem in scanning electron microscope (SEM) photometric stereo for complicated semiconductor patterns to be measured. In our previous work, we developed a bootstrapping de-shadowing and self-calibration (BDS) method, which automatically calibrates the parameter of the gradient measurement formulas and resolves shadowing errors for estimating an accurate three-dimensional (3D) shape and underlying shadowless images. Experimental results on 3D surface reconstruction demonstrated the significance of the BDS method for simple shapes, such as an isolated line pattern. However, we found that complicated shapes, such as line-and-space (L&S) and multilayered patterns, produce deformed and inaccurate measurement results. This problem is due to brightness fluctuations in the SEM images, which are mainly caused by the energy fluctuations of the primary electron beam, variations in the electronic expanse inside a specimen, and electrical charging of specimens. Despite these being essential difficulties encountered in SEM photometric stereo, it is difficult to model accurately all the complicated physical phenomena of electronic behavior. We improved the robustness of the surface reconstruction in order to deal with these practical difficulties with complicated shapes. Here, design data are useful clues as to the pattern layout and layer information of integrated semiconductors. We used the design data as a guide of the measured shape and incorporated a geometrical constraint term to evaluate the difference between the measured and designed shapes into the objective function of the BDS method. Because the true shape does not necessarily correspond to the designed one, we use an iterative scheme to develop proper guide patterns and a 3D surface that provides both a less distorted and more accurate 3D shape after convergence. Extensive experiments on real image data demonstrate the robustness and effectiveness of our method.

  17. Neuropsychological correlates of complicated grief in older spousally bereaved adults.

    PubMed

    O'Connor, Mary-Frances; Arizmendi, Brian J

    2014-01-01

    Across many research domains, evidence for complicated grief as a distinct psychopathology continues to grow. Previous research from neuropsychology has shown an increased attentional bias to emotionally relevant stimuli in those suffering from complicated grief. This study furthers our understanding of the characteristics that distinguish complicated grief. We expand on previous research by (a) testing older adults, (b) excluding those with comorbid major depressive disorder, (c) using participant-chosen grief-related stimuli, and (d) using a married, nonbereaved control group. We recruited 76 older adults in 3 groups: spousally bereaved with complicated grief, spousally bereaved with noncomplicated grief, and nonbereaved controls. Performance on the Wisconsin Card Sorting Task, Digit Span Backwards, and the emotional counting Stroop was examined. Results indicate longer reaction time across 3 blocks of grief-related words in the complicated grief group but no difference across 3 blocks of the neutral words. The 3 groups performed comparably on the other neurocognitive tasks, indicating no cognitive differences in working memory or set shifting between groups. Furthermore, these effects of complicated grief generalize to older adults and appear independent of major depression. Complicated grief has cognitive interference as a neuropsychological component highlighting it as distinct from noncomplicated grief.

  18. Robot-assisted, single-site, dismembered pyeloplasty for ureteropelvic junction obstruction with the new da Vinci platform: a stage 2a study.

    PubMed

    Buffi, Nicolò Maria; Lughezzani, Giovanni; Fossati, Nicola; Lazzeri, Massimo; Guazzoni, Giorgio; Lista, Giuliana; Larcher, Alessandro; Abrate, Alberto; Fiori, Cristian; Cestari, Andrea; Porpiglia, Francesco

    2015-01-01

    Laparoendoscopic single-site surgery (LESS) has gained popularity in urology over the last few years. To report a stage 2a study of robot-assisted single-site (R-LESS) pyeloplasty for ureteropelvic junction obstruction (UPJO). This study is an investigative pilot study of 30 consecutive cases of R-LESS pyeloplasty performed at two participating institutions between July 2011 and September 2013. Dismembered R-LESS pyeloplasty was performed at two surgical centers. Feasibility (conversion rate), safety (complication rate and Clavien-Dindo classification), efficacy (clinical outcome) of the procedure were assessed. The median patient age was 37 yr (range: 19-65 yr) and median body mass index was 23 kg/m(2) (range: 19-29 kg/m(2)). The median operative time was 160 min (range: 101-300 min), the median postoperative stay was 5 d (range: 3-13 d), and the median time to catheter removal was 3 d (range: 2-10). Two cases required conversion, the first one to standard laparoscopic technique and the second one to standard robotic technique. No intraoperative complications were reported. In three cases, an additional 5-mm trocar was needed. The postoperative complications rate was 26% (n=8). Most of them were grade 1 complications (n=4; 13%), followed by grade 2 (n=3; 10%) and grade 3 (n=1; 3.3%) complications, according to the Clavien-Dindo classification. One patient needed a surgical reintervention with standard robotic technique 3 d after surgery for urinary leakage. The overall success rate, considered as the resolution of symptoms and the absence of functional impairment at postoperative imaging, was 93.3% (n=28) at a median follow-up of 13 mo (range: 3-21 mo). The main limitations of this study are the limited number of patients included and the short-term follow-up. Single-site robotic pyeloplasty is a feasible technique in selected patients, with good cosmetic results and excellent short-term clinical outcomes. Prospective studies are needed to further assess its role for the treatment of UPJO. Single-site robot-assisted pyeloplasty is a feasible technique with good cosmetic results and excellent short-term clinical outcomes. Copyright © 2014. Published by Elsevier B.V.

  19. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  20. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  1. RAG-3D: A search tool for RNA 3D substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  2. Percutaneous CT-guided radiofrequency ablation of renal cell carcinoma: efficacy of organ displacement by injection of 5% dextrose in water into the retroperitoneum.

    PubMed

    Arellano, Ronald S; Garcia, Rodrigo G; Gervais, Debra A; Mueller, Peter R

    2009-12-01

    The objective of this study was to evaluate the effectiveness of CT-guided injection of 5% dextrose in water solution (D5W) into the retroperitoneum to displace organs adjacent to renal cell carcinoma. An interventional radiology database was searched to identify the cases of patients who underwent CT-guided percutaneous radiofrequency ablation of biopsy-proven renal cell carcinoma in which D5W was injected into the retroperitoneal space to displace structures away from the targeted renal tumor. The number of organs displaced and the distance between the renal tumor and adjacent organs before and after displacement with D5W were assessed. The cases of 135 patients with 139 biopsy-proven renal cell carcinomas who underwent 154 percutaneous CT-guided radiofrequency ablation procedures were found in the search. Thirty-one patients with 33 renal cell carcinomas underwent 36 ablation procedures after injection of D5W into the retroperitoneal space. Fifty-five organs were displaced away from renal cell carcinoma with this technique. The average distance between adjacent structures and renal cell carcinomas before displacement was 0.36 cm (range, 0.1-1.0 cm). The average distance between structures and adjacent renal cell carcinomas after displacement was 1.94 cm (range, 1.1-4.3 cm) (p < 0.0001). The average volume of D5W used to achieve organ displacement was 273.5 mL. No complications were associated with this technique. CT-guided injection of D5W into the retroperitoneum is an effective method for displacing vital structures away from renal cell carcinoma.

  3. Simple setup for gas-phase H/D exchange mass spectrometry coupled to electron transfer dissociation and ion mobility for analysis of polypeptide structure on a liquid chromatographic time scale.

    PubMed

    Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F; Rand, Kasper D

    2014-12-02

    Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX inside a mass spectrometer immediately after ESI (gas-phase HDX-MS) and show utility for studying the primary and higher-order structure of peptides and proteins. HDX was achieved by passing N2-gas through a container filled with aqueous deuterated ammonia reagent (ND3/D2O) and admitting the saturated gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3/D2O as HDX reagent indicate that labeling is facilitated exclusively through gaseous ND3, yielding similar results to the infusion of purified ND3-gas, while circumventing the complications associated with the use of hazardous purified gases. Comparison of the solution-phase- and gas-phase deuterium uptake of Leu-Enkephalin and Glu-Fibrinopeptide B, confirmed that this gas-phase HDX-MS approach allows for labeling of sites (heteroatom-bound non-amide hydrogens located on side-chains, N-terminus and C-terminus) not accessed by classical solution-phase HDX-MS. The simple setup is compatible with liquid chromatography and a chip-based automated nanoESI interface, allowing for online gas-phase HDX-MS analysis of peptides and proteins separated on a liquid chromatographic time scale at increased throughput. Furthermore, online gas-phase HDX-MS could be performed in tandem with ion mobility separation or electron transfer dissociation, thus enabling multiple orthogonal analyses of the structural properties of peptides and proteins in a single automated LC-MS workflow.

  4. Sulfonylureas as Concomitant Insulin Secretagogues and NLRP3 Inflammasome Inhibitors.

    PubMed

    Hill, James R; Coll, Rebecca C; Sue, Nancy; Reid, Janet C; Dou, Jennifer; Holley, Caroline L; Pelingon, Ruby; Dickinson, Joshua B; Biden, Trevor J; Schroder, Kate; Cooper, Matthew A; Robertson, Avril A B

    2017-09-07

    Insulin-secretory sulfonylureas are widely used, cost-effective treatments for type 2 diabetes (T2D). However, pancreatic β-cells are continually depleted as T2D progresses, thereby rendering the sulfonylurea drug class ineffective in controlling glycaemia. Dysregulation of the innate immune system via activation of the NLRP3 inflammasome, and the consequent production of interleukin-1β, has been linked to pancreatic β-cell death and multiple inflammatory complications of T2D disease. One proposed strategy for treating T2D is the use of sulfonylurea insulin secretagogues that are also NLRP3 inhibitors. We report the synthesis and biological evaluation of nine sulfonylureas that inhibit NLRP3 activation in murine bone-marrow- derived macrophages in a potent, dose-dependent manner. Six of these compounds inhibited NLRP3 at nanomolar concentrations and can also stimulate insulin secretion from a murine pancreatic cell line (MIN6). These novel compounds possess unprecedented dual modes of action, paving the way for a new generation of sulfonylureas that may be useful as therapeutic candidates and/or tool compounds in T2D and its associated inflammatory complications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion.

    PubMed

    Deng, Ting; Jiang, Minghui; Lei, Qing; Cai, Lihong; Chen, Li

    2016-12-01

    Clinical trial for cervical screw insertion by using individualized 3-dimensional (3D) printing screw insertion templates device. The objective of this study is to evaluate the safety and accuracy of the individualized 3D printing screw insertion template in the cervical spine. Ten patients who underwent posterior cervical fusion surgery with cervical pedicle screws, laminar screws or lateral mass screws between December 2014 and December 2015 were involved in this study. The patients were examined by CT scan before operation. The individualized 3D printing templates were made with photosensitive resin by a 3D printing system to ensure the screw shafts entered the vertebral body without breaking the pedicle or lamina cortex. The templates were sterilized by a plasma sterilizer and used during the operation. The accuracy and the safety of the templates were evaluated by CT scans at the screw insertion levels after operation. The accuracy of this patient-specific template technique was demonstrated. Only one screw axis greatly deviated from the planned track and breached the cortex of the pedicle because the template was split by rough handling and then we inserted the screws under the fluoroscopy. The remaining screws were inserted in the track as preoperative design and the screw axis deviated by less than 2 mm. Vascular or neurologic complications or injuries did not happen. And no infection, broken nails, fracture of bone structure, or screw pullout occurred. This study verified the safety and the accuracy of the individualized 3D printing screw insertion templates in the cervical spine as a kind of intraoperative screw navigation. This individualized 3D printing screw insertion template was user-friendly, moderate cost, and enabled a radiation-free cervical screw insertion.

  6. Accordion complication grading predicts short-term outcome after right colectomy.

    PubMed

    Klos, Coen L; Safar, Bashar; Hunt, Steven R; Wise, Paul E; Birnbaum, Elisa H; Mutch, Matthew G; Fleshman, James W; Dharmarajan, Sekhar

    2014-08-01

    The Accordion severity grading system is a novel system to score the severity of postoperative complications in a standardized fashion. This study aims to demonstrate the validity of the Accordion system in colorectal surgery by correlating severity grades with short-term outcomes after right colectomy for colon cancer. This is a retrospective cohort review of patients who underwent right colectomy for cancer between January 1, 2002, and January 31, 2007, at a single tertiary care referral center. Complications were categorized according to the Accordion severity grading system: grades 1 (mild), 2 (moderate), 3-5 (severe), and 6 (death). Outcome measures were hospital stay, 30-d readmission rate and 1-y survival. Correlation between Accordion grades and outcome measures is reflected by Spearman rho (ρ). One-year survival was obtained per Kaplan-Meier method and compared by logrank test for trend. Significance was set at P ≤ 0.05. Overall, 235 patients underwent right colectomy for cancer of which 122 (51.9%) had complications. In total, 52 (43%) had an Accordion grade 1 complication; 44 (36%) grade 2; four (3%) grade 3; 11 (9%) grade 4; seven (6%) grade 5; and four (3%) grade 6. There was significant correlation between Accordion grades and hospital stay (ρ = 0.495, P < 0.001) and 30-d readmission rate (ρ = 0.335, P < 0.001). There was a significant downward trend in 1-y survival as complication severity by Accordion grade increased (P = 0.02). The Accordion grading system is a useful tool to estimate short-term outcomes after right colectomy for cancer. High-grade Accordion complications are associated with longer hospital stay and increased risk of readmission and mortality. Published by Elsevier Inc.

  7. Floor-of-Mouth Hematoma Following Dental Implant Placement: Literature Review and Case Presentation.

    PubMed

    Law, Catherine; Alam, Peyman; Borumandi, Farzad

    2017-11-01

    The authors provide a structured review of reported cases of floor-of-mouth hematoma during or after dental implantation and frequent causes and management and present a related case. An online search of the medical literature was conducted from 1990 through 2016. The following search terms were used: floor of mouth hematoma, sublingual hematoma, dental implant hematoma, implant in mandible, and complication of dental implant. Abstracts were screened for relevance to the aims of the review. Relevant reports in the English language were included and referenced. The articles were reviewed for patient demographics, implant location, coagulopathy, pre- or postoperative imaging, airway management, treatment of the hematoma, and management of the offending implant. The literature search identified 25 reported cases. Hemorrhage was caused by perforation of the lingual cortex in 84% of cases (n = 21). Airway obstruction resulted in emergency intubation or tracheostomy in 68% of patients (n = 17). Most cases (n = 18; 72%) required surgical management in the hospital setting. Management of the offending implant was reported inconsistently. Of 17 reported cases, 5 implants had to be removed, 9 remained in situ, and in 3 cases implant placement was abandoned. Only 1 case involved preoperative 3-dimensional (3D) imaging before implant insertion. The authors report on an additional case with a serious floor-of-mouth hematoma that required immediate surgical evacuation and hemostasis. Serious complications, such as floor-of-mouth hematoma after dental implant insertion, can occur, which could be life-threatening. Preoperative 3D imaging helps to visualize the individual mandibular shape, which could decrease the incidence of serious complications. If injury to vessels of the floor of the mouth cannot be confidently excluded, then further assessment and treatment are recommended before the patient is discharged. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    NASA Astrophysics Data System (ADS)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.

  9. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-07

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations.

  10. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    NASA Astrophysics Data System (ADS)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  11. Visualization of Topology through Simulation

    NASA Astrophysics Data System (ADS)

    Mulderig, Andrew; Beaucage, Gregory; Vogtt, Karsten; Jiang, Hanqiu

    Complex structures can be decomposed into their minimal topological description coupled with complications of tortuosity. We have found that a stick figure representation can account for the topological content of any structure and coupling with scaling measures of tortuosity we can reconstruct an object. This deconstruction is native to static small-angle scattering measurements where we can obtain quantitative measures of the tortuous structure and the minimal topological structure. For example, a crumpled sheet of paper is composed of a minimal sheet structure and parameters reflecting the extent of crumpling. This quantification yields information that can be used to calculate the hydrodynamic radius, radius of gyration, structural conductive pathway, modulus, and other properties of complex structures. The approach is general and has been applied to a wide range of nanostructures from crumpled graphene to branched polymers and unfolded proteins and RNA. In this poster we will demonstrate how simple structural simulations can be used to reconstruct from these parameters a 3d representation of the complex structure through a heuristic approach. Several examples will be given from nano-fractal aggregates.

  12. [Prosthetic rehabilitation of patients with parodontitis based upon the use of 3D-technologies--clinical case example].

    PubMed

    Riakhovskiĭ, A N

    2011-01-01

    Clinical case of prosthetic rehabilitation of patient (female) with generalized parodontitis complicated by defects and deformations of dentitions was offered. Using 3D-technologies position of teeth was corrected with the help of a series of temporary transparent splints-modifiers with subsequent guy splintage and esthetic 3D-planning of front teeth forms. Teeth forms correction was made by composite using preliminary prepared templet.

  13. Signal and Noise in 3D Environments

    DTIC Science & Technology

    2015-09-30

    complicated 3D environments. I have also been doing a great deal of work in modeling the noise field (the ocean soundscape ) due to various sources... soundscape to learn about the ocean environment. I distinguish this from geoacoustic inversion and ocean tomography, in that the methods envisioned will rely...on broader features of the soundscape . OBJECTIVES In the first phase of this effort we will focus on the 3D modeling solutions, documenting the

  14. A Proposal of Monitoring and Forecasting Method for Crustal Activity in and around Japan with 3-dimensional Heterogeneous Medium Using a Large-scale High-fidelity Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Hori, T.; Agata, R.; Ichimura, T.; Fujita, K.; Yamaguchi, T.; Takahashi, N.

    2017-12-01

    Recently, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. For construct a system for monitoring and forecasting, it is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate inter-face and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Unstructured FE non-linear seismic wave simulation code has been developed. This achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. A high fidelity FEM simulation code with mesh generator has also been developed to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. This code has been improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, waveform inversion code for modeling 3D crustal structure has been developed, and the high-fidelity FEM code has been improved to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. We are developing the methods for forecasting the slip velocity variation on the plate interface. Although the prototype is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model. Furthermore, large-scale simulation codes for monitoring are being implemented on the GPU clusters and analysis tools are developing to include other functions such as examination in model errors.

  15. [Diagnossis and treatment of complicated anterior teeth esthetic defects by combination of whole-process digital esthetic rehabilitation with periodontic surgery].

    PubMed

    Li, Z; Liu, Y S; Ye, H Q; Liu, Y S; Hu, W J; Zhou, Y S

    2017-02-18

    To explore a new method of whole-process digital esthetic prosthodontic rehabilitation combined with periodontic surgery for complicated anterior teeth esthetic defects accompanied by soft tissue morphology, to provide an alternative choice for solving this problem under the guidance of three-dimensional (3D) printing digital dental model and surgical guide, thus completing periodontic surgery and digital esthetic rehabilitation of anterior teeth. In this study, 12 patients with complicated esthetic problems accompanied by soft tissue morphology in their anterior teeth were included. The dentition and facial images were obtained by intra-oral scanning and three-dimensional (3D) facial scanning and then calibrated. Two esthetic designs and prosthodontic outcome predictions were created by computer aided design /computer aided manufacturing (CAD/CAM) software combined with digital photography, including consideration of white esthetics and comprehensive consideration of pink-white esthetics. The predictive design of prostheses and the facial appearances of the two designs were evaluated by the patients. If the patients chose the design of comprehensive consideration of pink-white esthetics, they would choose whether they would receive periodontic surgery before esthetic rehabilitation. The dentition design cast of those who chose periodontic surgery would be 3D printed for the guide of periodontic surgery accordingly. In light of the two digital designs based on intra-oral scanning, facing scanning and digital photography, the satisfaction rate of the patients was significantly higher for the comprehensive consideration of pink-white esthetic design (P<0.05) and more patients tended to choose priodontic surgery before esthetic rehabilitation. The 3D printed digital dental model and surgical guide provided significant instructions for periodontic surgery, and achieved success transfer from digital design to clinical application. The prostheses were fabricated by CAD/CAM, thus realizing the whole-process digital esthetic rehabilitation. The new method for esthetic rehabilitation of complicated anterior teeth esthetic defects accompanied by soft tissue morphology, including patient-involved digital esthetic analysis, design, esthetic outcome prediction, 3D printing surgical guide for periodontic surgery and digital fabrication is a practical technology. This method is useful for improvement of clinical communication efficiency between doctor-patient, doctor-technician and doctors from different departments, and is conducive to multidisciplinary treatment of this complicated anterior teeth esthetic problem.

  16. Temporal Role for MyD88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation

    PubMed Central

    Lacey, Carolyn A.; Mitchell, William J.; Brown, Charles R.

    2017-01-01

    ABSTRACT Brucella spp. are facultative intracellular Gram-negative bacteria that cause the zoonotic disease brucellosis, one of the most common global zoonoses. Osteomyelitis, arthritis, and musculoskeletal inflammation are common focal complications of brucellosis in humans; however, wild-type (WT) mice infected systemically with conventional doses of Brucella do not develop these complications. Here we report C57BL/6 WT mice infected via the footpad with 103 to 106 CFU of Brucella spp. display neutrophil and monocyte infiltration of the joint space and surrounding musculoskeletal tissue. Joint inflammation is detectable as early as 1 day postinfection and peaks 1 to 2 weeks later, after which WT mice are able to slowly resolve inflammation. B and T cells were dispensable for the onset of swelling but required for resolution of joint inflammation and infection. At early time points, MyD88−/− mice display decreased joint inflammation, swelling, and proinflammatory cytokine levels relative to WT mice. Subsequently, swelling of MyD88−/− joints surpassed WT joint swelling, and resolution of joint inflammation was prolonged. Joint bacterial loads in MyD88−/− mice were significantly greater than those in WT mice by day 3 postinfection and at all time points thereafter. In addition, MyD88−/− joint inflammatory cytokine levels on day 3 and beyond were similar to WT levels. Collectively these data demonstrate MyD88 signaling mediates early inflammatory responses in the joint but also contributes to subsequent clearance of Brucella and resolution of inflammation. This work also establishes a mouse model for studying Brucella-induced arthritis, musculoskeletal complications, and systemic responses, which will lead to a better understanding of focal complications of brucellosis. PMID:28069819

  17. Complicated pregnancies in inherited distal renal tubular acidosis: importance of acid-base balance.

    PubMed

    Seeger, Harald; Salfeld, Peter; Eisel, Rüdiger; Wagner, Carsten A; Mohebbi, Nilufar

    2017-06-01

    Inherited distal renal tubular acidosis (dRTA) is caused by impaired urinary acid excretion resulting in hyperchloremic metabolic acidosis. Although the glomerular filtration rate (GFR) is usually preserved, and hypertension and overt proteinuria are absent, it has to be considered that patients with dRTA also suffer from chronic kidney disease (CKD) with an increased risk for adverse pregnancy-related outcomes. Typical complications of dRTA include severe hypokalemia leading to cardiac arrhythmias and paralysis, nephrolithiasis and nephrocalcinosis. Several physiologic changes occur in normal pregnancy including alterations in acid-base and electrolyte homeostasis as well as in GFR. However, data on pregnancy in women with inherited dRTA are scarce. We report the course of pregnancy in three women with hereditary dRTA. Complications observed were severe metabolic acidosis, profound hypokalemia aggravated by hyperemesis gravidarum, recurrent urinary tract infection (UTI) and ureteric obstruction leading to renal failure. However, the outcome of all five pregnancies (1 pregnancy each for mothers n. 1 and 2; 3 pregnancies for mother n. 3) was excellent due to timely interventions. Our findings highlight the importance of close nephrologic monitoring of women with inherited dRTA during pregnancy. In addition to routine assessment of creatinine and proteinuria, caregivers should especially focus on acid-base status, plasma potassium and urinary tract infections. Patients should be screened for renal obstruction in the case of typical symptoms, UTI or renal failure. Furthermore, genetic identification of the underlying mutation may (a) support early nephrologic referral during pregnancy and a better management of the affected woman, and (b) help to avoid delayed diagnosis and reduce complications in affected newborns.

  18. Determination of the hydrogen-bond network and the ferrimagnetic structure of a rockbridgeite-type compound, [Formula: see text].

    PubMed

    Röska, B; Park, S-H; Behal, D; Hess, K-U; Günther, A; Benka, G; Pfleiderer, C; Hoelzel, M; Kimura, T

    2018-06-13

    Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, [Formula: see text] [Formula: see text]. Its honeycomb-like H-bond network running without interruption along the crystallographic [Formula: see text] axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by [Formula: see text] cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature [Formula: see text]-83 K could be determined from the structure analysis with neutron diffraction data at 25 K.

  19. [A correlation study between diarrhea-predominant irritable bowel syndrome complicated functional dyspepsia patients of Gan-stagnation Pi-deficiency syndrome and gastrointestinal hormones].

    PubMed

    Zhao, Liang; Song, Wen; Zhu, Ping; Zhang, Yu; Bu, Ping

    2014-10-01

    To investigate the correlation between the pathogeneses of diarrhea-pre- dominant irritable bowel syndrome (D-IBS) complicated functional dyspepsia (FD) patients of Gan-stagnation Pi-deficiency Syndrome (GSPDS) and symptoms, psychological states, and gastrointestinal hormones. A total of 111 patients with confirmed D-IBS complicated FD of GSPDS were recruited as the treated group by using Rome III standard and Chinese medical syndrome standard. And 30 healthy volunteers were recruited as the control group. The general condition, scoring for digestive symptoms, and the distribution of GSPDS subtype of all subjects were recorded by a questionnaire, and assessed by Symptom Checklist (SCL-90; a software for psychological test developed by Beijing Huicheng Adult Cor- poration). Meanwhile, plasma levels of 5-hydroxytryptamine (5-HT), somatostatin (SS), vasoactive intestinal peptide (VIP), endothelin (ET), interleukin 10 (IL-10), and interleukin 12 (IL-12) were measured in all subjects. (1) The subtype of D-IBS complicated FD of GSPDS was dominant in Pi-qi deficiency type (51/111,45.9%),Pi yang deficiency type (34/111,30.6%), and GSPDS. There was no statistical difference in the scoring of digestive symptoms among the 3 subtypes (P >0.05). (2) Compared with the control group, the anxiety factor score and the total score significantly increased in all three subtypes of D-IBS complicated FD of GSPDS, and the depression score of Pi yang deficiency type and Gan-depression type also significantly increased (P <0.05, P <0.01); the depression score of Gan-depression type was significantly higher than that of the Pi-qi deficiency type (P <0.01). Plasma 5-HT levels were obviously lower in D-IBS complicated FD patients of GSPDS accompanied with anxiety or depression than in those with no obvious psychological abnormalities, and VIP and IL-10 levels were significantly lower than those in the control group (P <0.05). Plasma VIP levels were also obviously lower in D-IBS complicated FD patients of GSPDS accompanied with anxiety or depression than in those with no obvious psychological abnormalities (P <0.01), and SS levels were significantly lower than those in the control group (P <0.05). There was no statistical difference in plasma ET or IL-12 levels in each patient group, when compared with the control group (P >0.05). (3) Compared with the.control group, plasma 5-HT levels significantly increased, plasma VIP and IL-10 levels significantly decreased in ach subtype of D-IBS complicated FD patients of GSPDS (P <0.05, P <0.01), and no significant change of SS, ET, or IL-12 occurred (P >0.05). Besides, plasma 5-HT levels were significantly higher in Gan-depression type than in Pi yang deficiency type, VIP levels were lower in Gan-depression type than in Pi-qi deficiency type (all P <0.05). Gan stagnation and Pi deficiency were dominant in D-IBS complicated FD patients of GSPDS. Psychological abnormalities, increased plasma 5-HT levels, and decreased plasma VIP levels were closely correlated with Gan stagnation subtype, which provided some reference for looking for objective indicators of Chinese medical syndromes in treating D-IBS complicated FD patients of GSPDS.

  20. 3D vision improves outcomes in early cervical cancer treated with laparoscopic type B radical hysterectomy and pelvic lymphadenectomy.

    PubMed

    Raspagliesi, Francesco; Bogani, Giorgio; Martinelli, Fabio; Signorelli, Mauro; Scaffa, Cono; Sabatucci, Ilaria; Lorusso, Domenica; Ditto, Antonino

    2017-01-21

    To evaluate the alterations on surgical outcomes after of the implementation of 3D laparoscopic technology for the surgical treatment of early-stage cervical carcinoma. Data of patients undergoing type B radical hysterectomy (with or without bilateral salpingo-oophorectomy) and pelvic lymphadenectomy via 3D laparoscopy were compared with a historical cohort of patients undergoing type B radical hysterectomy via conventional laparoscopy. Complications (within 60 days) were graded per the Accordion severity system. Data of 75 patients were studied: 15 (20%) and 60 (80%) patients undergoing surgery via 3D laparoscopy and conventional laparoscopy, respectively. Baseline patient characteristics as well as pathologic findings were similar between groups (p>0.1). Patients undergoing 3D laparoscopy experienced a trend toward shorter operative time than patients undergoing conventional laparoscopy (176.7 ± 74.6 vs 215.9 ± 61.6 minutes; p = 0.09). Similarly, patients undergoing 3D laparoscopic radical hysterectomy experienced shorter length of hospital stay (2 days, range 2-6, vs 4 days, range 3-11; p<0.001) in comparison to patients in the control group, while no difference in estimated blood loss was observed (p = 0.88). No between-group difference in complication rate was observed. 3D technology is a safe and effective way to perform type B radical hysterectomy and pelvic node dissection in early-stage cervical cancer. Further large prospective studies are warranted in order to assess the cost-effectiveness of the introduction of 3D technology in comparison to robotic assisted surgery.

  1. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  2. Parallel transjugular intrahepatic portosystemic shunt for controlling portal hypertension complications in cirrhotic patients.

    PubMed

    He, Fu-Liang; Wang, Lei; Yue, Zhen-Dong; Zhao, Hong-Wei; Liu, Fu-Quan

    2014-09-07

    To evaluate the feasibility of a second parallel transjugular intrahepatic portosystemic shunt (TIPS) to reduce portal venous pressure and control complications of portal hypertension. From January 2011 to December 2012, 10 cirrhotic patients were treated for complications of portal hypertension. The demographic data, operative data, postoperative recovery data, hemodynamic data, and complications were analyzed. Ten patients underwent a primary and parallel TIPS. Technical success rate was 100% with no technical complications. The mean duration of the first operation was 89.20 ± 29.46 min and the second operation was 57.0 ± 12.99 min. The mean portal system pressure decreased from 54.80 ± 4.16 mmHg to 39.0 ± 3.20 mmHg after the primary TIPS and from 44.40 ± 3.95 mmHg to 26.10 ± 4.07 mmHg after the parallel TIPS creation. The mean portosystemic pressure gradient decreased from 43.80 ± 6.18 mmHg to 31.90 ± 2.85 mmHg after the primary TIPS and from 35.60 ± 2.72 mmHg to 15.30 ± 3.27 mmHg after the parallel TIPS creation. Clinical improvement was seen in all patients after the parallel TIPS creation. One patient suffered from transient grade I hepatic encephalopathy (HE) after the primary TIPS and four patients experienced transient grade I-II after the parallel TIPS procedure. Mean hospital stay after the first and second operations were 15.0 ± 3.71 d and 16.90 ± 5.11 d (P = 0.014), respectively. After a mean 14.0 ± 3.13 mo follow-up, ascites and bleeding were well controlled and no stenosis of the stents was found. Parallel TIPS is an effective approach for controlling portal hypertension complications.

  3. Prevention of parastomal hernias with 3D funnel meshes in intraperitoneal onlay position by placement during initial stoma formation.

    PubMed

    Köhler, G; Hofmann, A; Lechner, M; Mayer, F; Wundsam, H; Emmanuel, K; Fortelny, R H

    2016-02-01

    In patients with terminal ostomies, parastomal hernias (PSHs) occur on a frequent basis. They are commonly associated with various degrees of complaints and occasionally lead to life-threatening complications. Various strategies and measures have been tested and evaluated, but to date there is a lack of published evidence with regard to the best surgical technique for the prevention of PSH development. We conducted a retrospective analysis of prospectively collected data of eighty patients, who underwent elective permanent ostomy formation between 2009 and 2014 by means of prophylactic implantation of a three-dimensional (3D) funnel mesh in intraperitoneal onlay (IPOM) position. PSH developed in three patients (3.75%). No mesh-related complications were encountered and none of the implants had to be removed. Ostomy-related complications had to be noted in seven (8.75%) cases. No manifestation of ostomy prolapse occurred. Follow-up time was a median 21 (range 3-47) months. The prophylactical implantation of a specially shaped, 3D mesh implant in IPOM technique during initial formation of a terminal enterostomy is safe, highly efficient and comparatively easy to perform. As opposed to what can be achieved with flat or keyhole meshes, the inner boundary areas of the ostomy itself can be well covered and protected from the surging viscera with the 3D implants. At the same time, the vertical, tunnel-shaped part of the mesh provides sufficient protection from an ostomy prolapse. Further studies will be needed to compare the efficacy of various known approaches to PSH prevention.

  4. Some Observations on the Current Status of Performing Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr; Shivakumar, Kunigal N.

    2015-01-01

    Aerospace structures are complex high-performance structures. Advances in reliable and efficient computing and modeling tools are enabling analysts to consider complex configurations, build complex finite element models, and perform analysis rapidly. Many of the early career engineers of today are very proficient in the usage of modern computers, computing engines, complex software systems, and visualization tools. These young engineers are becoming increasingly efficient in building complex 3D models of complicated aerospace components. However, the current trends demonstrate blind acceptance of the results of the finite element analysis results. This paper is aimed at raising an awareness of this situation. Examples of the common encounters are presented. To overcome the current trends, some guidelines and suggestions for analysts, senior engineers, and educators are offered.

  5. Safety of perioperative ketorolac administration in pediatric appendectomy.

    PubMed

    Naseem, Hibbut-Ur-Rauf; Dorman, Robert Michael; Ventro, George; Rothstein, David H; Vali, Kaveh

    2017-10-01

    Recent studies in adults undergoing gastrointestinal surgeries show an increased rate of complications with the use of ketorolac. This calls into question the safety of ketorolac in certain procedures. We sought to evaluate the impact of perioperative ketorolac administration on outcomes in pediatric appendectomy. The Pediatric Health Information System database was queried for patients aged 5-17 y with a primary diagnosis of appendicitis and a primary procedure of appendectomy during the period 2010-2014. Patients with procedures suggesting incidental appendectomy, those records with data quality issues, deaths, and extracorporeal membrane oxygenation were excluded. Variables recorded included age, sex, race, ethnicity, discharge year, complex chronic conditions, geographic region, intensive care unit admission, mechanical ventilation, and whether appendicitis was coded as complicated. The exposure variable was ketorolac administration on the day of or day after operation. The primary outcomes of interest were any surgical complications during the initial encounter, postoperative length of stay (LOS), total cost for the initial visit, any readmission to ambulatory, observation, or inpatient status within 30 d, and readmission with a diagnosis of peritoneal abscess or other postoperative infection or with transabdominal drainage performed. A total of 78,926 patients were included in the analysis cohort. Mean age was 11.4 y (standard deviation 3.3 y), the majority were males (61%), White (70%), and non-Hispanic (65%). Few had a complex chronic condition (3%) or required mechanical ventilation (2%) or an intensive care unit admission (1%). Patients with complicated appendicitis comprised 28% of the cohort. Most (73%) received ketorolac on postoperative day 0-1; those with complicated appendicitis were more likely to receive ketorolac. In all, 2.6% of the cohort had a surgical complication during the index visit, 4.3% were readmitted within 30 d, and 2% had a postoperative infection or transabdominal drainage (1% in the uncomplicated group and 5% in the complicated group). Median postoperative LOS was 1 d and mean cost was $9811 ± $9509. On bivariate analysis, ketorolac administration was associated with a decrease in same-visit surgical complications (P = 0.004) and cost ($459 decrease, P < 0.001) but was not associated with readmission, postoperative LOS, or postoperative infection. On multivariate analysis, ketorolac administration was associated with a significant decrease in any complication (adjusted odds ratio 0.89, 95% confidence interval 0.80-0.99) and cost (analysis of variance P < 0.001) but was not associated with readmission, postoperative LOS, or postoperative infection. Based on a large, contemporary data set from children's hospitals, ketorolac administration in the immediate postoperative period after appendectomy for appendicitis is common and was not associated with an increase in postoperative LOS, postoperative infection, or any-cause 30-d readmission. Ketorolac was, however, independently associated with a lower overall rate of postoperative complications and cost in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Correlative factors for the location of tracheobronchial foreign bodies in infants and children.

    PubMed

    Xu, Ying; Feng, Rui-Ling; Jiang, Lan; Ren, Hong-Bo; Li, Qi

    2018-02-01

    This study aims to analyze factors related to the location of tracheobronchial foreign bodies in infants and children, and provide help in the assessment of the disease, surgical risk and prognosis. The clinical data of 1,060 pediatric patients with tracheobronchial foreign bodies diagnosed from January 2015 to December 2015 were retrospectively studied, the association of the location of the foreign bodies with age, gender, granulation formation, chest computed tomography and 3D reconstruction results, preoperative complications, operation time, and hospital stay was analyzed. The location of foreign bodies was not correlated with age, gender, operation time and length of hospital stay, but was correlated to granulation formation, chest computed tomography and 3D reconstruction results, and preoperative complications. The location of foreign bodies was correlated to granulation formation, the location of foreign bodies displayed by chest computed tomography, and preoperative complications.

  7. The Results of Toric Intraocular Lens Implantation in Patients With Cataract and High Astigmatism After Penetrating Keratoplasty.

    PubMed

    Müftüoğlu, İlkay Klç; Akova, Yonca Aydn; Egrilmez, Sait; Yilmaz, Suzan Guven

    2016-03-01

    To evaluate the results of toric intraocular lens (IOL) implantation in patients with cataract and postpenetrating keratoplasty astigmatism. Seven eyes of 7 patients with cataract and more than 3.5 diopters (D) astigmatism following penetrating keratoplasty were included in this retrospective case series study. All of the eyes underwent phacoemulsification and Acrysof toric IOL (t5-t9) implantation at least 6 months later than the complete suture removal. Corrected visual acuity (CVA), manifest astigmatism, the keratometry measurements, and complications were assessed. The mean preoperative CVA significantly increased (0.7±0.3 [range: 0.3-1.3] logMAR to 0.1±0.04 [range: 0.05-0.15] logMAR; P<0.05) at mean 8.71±4.11 months after the surgery. The mean preoperative corneal astigmatism and the average manifest refractive astigmatism at the last visit were 5.4±0.9 D (range: 4.25-7 D) and 1.6±0.6 D (range: 0.5-2.5 D), respectively. The mean attempted cylinder correction at spectacle plane was 4.3±0.9 D (range: 2.4-4.7 D) whereas the mean cylinder correction was 4.6±0.5 D (range: 3.9-5.9 D), showing a slightly tendency for overcorrection. All eyes (100%) were within 1 D of predicted residual astigmatism. No complication occurred during the follow-up. Toric IOL implantation seems to be an effective, predictable, and safe procedure in patients with cataract formation and high astigmatism after penetrating keratoplasty.

  8. SU-G-TeP3-11: Radiobiological-Cum-Dosimetric Quality Assurance of Complex Radiotherapy Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Narayanasamy, G; Zhang, X

    2016-06-15

    Purpose: Dosimetric gamma-analysis used for QA of complex radiotherapy plans tests the dosimetric equivalence of a delivered plan with the treatment planning system (TPS) optimized plan. It does not examine whether a dosimetric difference results in any radiobiological difference. This study introduces a method to test the radiobiological and dosimetric equivalence between a delivered and the TPS optimized plan. Methods: Six head and neck and seven lung cancer VMAT or IMRT plans optimized for patient treatment were calculated and delivered to an ArcCheck phantom. ArcCheck measured dose distributions were compared with the TPS calculated dose distributions using a 2-D gamma-analysis.more » Dose volume histograms (DVHs) for various patient structures were obtained by using measured data in 3DVH software and compared against the TPS calculated DVHs using 3-D gamma analysis. DVH data were used in the Poisson model to calculate tumor control probability (TCP) for the treatment targets and in the sigmoid dose response model to calculate normal tissue complication probability (NTCP) for the normal structures. Results: Two-D and three-D gamma passing rates among six H&N patient plans differed by 0 to 2.7% and among seven lung plans by 0.1 to 4.5%. Average ± SD TCPs based on measurement and TPS were 0.665±0.018 and 0.674±0.044 for H&N, and 0.791±0.027 and 0.733±0.031 for lung plans, respectively. Differences in NTCPs were usually negligible. The differences in dosimetric results, TCPs and NTCPs were insignificant. Conclusion: The 2-D and 3-D gamma-analysis based agreement between measured and planned dose distributions may indicate their dosimetric equivalence. Small and insignificant differences in TCPs and NTCPs based on measured and planned dose distributions indicate the radiobiological equivalence between the measured and optimized plans. However, patient plans showing larger differences between 2-D and 3-D gamma-analysis can help us make a more definite conclusion through our ongoing research with a larger number of patients.« less

  9. MT2D Inversion to Image the Gorda Plate Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lubis, Y. K.; Niasari, S. W.; Hartantyo, E.

    2018-04-01

    The magnetotelluric method is applicable for studying complicated geological structures because the subsurface electrical properties are strongly influenced by the electric and magnetic fields. This research located in the Gorda subduction zone beneath the North American continental plate. Magnetotelluric 2D inversion was used to image the variation of subsurface resistivity although the phase tensor analysis shows that the majority of dimensionality data is 3D. 19 MT sites were acquired from EarthScope/USArray Project. Wepresent the image of MT 2D inversion to exhibit conductivity distribution from the middle crust to uppermost asthenosphere at a depth of 120 kilometers. Based on the inversion, the overall data misfit value is 3.89. The Gorda plate subduction appears as a high resistive zone beneath the California. Local conductive features are found in the middle crust downward Klamath Mountain, Bonneville Lake, and below the eastern of Utah. Furthermore, mid-crustal is characterized by moderately resistive. Below the extensional Basin and Range province was related to highly resistive. The middle crust to the uppermost asthenosphere becomes moderately resistive. We conclude that the electrical parameters and the dimensionality of datain the shallow depth(about 22.319 km) beneath the North American platein accordance with surface geological features.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut; Pisano, Silvia

    The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong in- teractions. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first stud- ies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides ac- cess to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure.more » Large acceptance of the CLAS detector at Jef- ferson Lab, allowing detection of two hadrons, produced back-to-back (b2b) in the current and target fragmentation regions, provides a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions« less

  11. X-ray mosaic nanotomography of large microorganisms.

    PubMed

    Mokso, R; Quaroni, L; Marone, F; Irvine, S; Vila-Comamala, J; Blanke, A; Stampanoni, M

    2012-02-01

    Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Internal Fixation of Complicated Acetabular Fractures Directed by Preoperative Surgery with 3D Printing Models.

    PubMed

    Liu, Zhao-Jie; Jia, Jian; Zhang, Yin-Guang; Tian, Wei; Jin, Xin; Hu, Yong-Cheng

    2017-05-01

    The purpose of this article is to evaluate the efficacy and feasibility of preoperative surgery with 3D printing-assisted internal fixation of complicated acetabular fractures. A retrospective case review was performed for the above surgical procedure. A 23-year-old man was confirmed by radiological examination to have fractures of multiple ribs, with hemopneumothorax and communicated fractures of the left acetabulum. According to the Letounel and Judet classification, T-shaped fracture involving posterior wall was diagnosed. A 3D printing pelvic model was established using CT digital imaging and communications in medicine (DICOM) data preoperatively, with which surgical procedures were simulated in preoperative surgery to confirm the sequence of the reduction and fixation as well as the position and length of the implants. Open reduction with internal fixation (ORIF) of the acetabular fracture using modified ilioinguinal and Kocher-Langenbeck approaches was performed 25 days after injury. Plates that had been pre-bent in the preoperative surgery were positioned and screws were tightened in the directions determined in the preoperative planning following satisfactory reduction. The duration of the operation was 170 min and blood loss was 900 mL. Postoperative X-rays showed that anatomical reduction of the acetabulum was achieved and the hip joint was congruous. The position and length of the implants were not different when compared with those in preoperative surgery on 3D printing models. We believe that preoperative surgery using 3D printing models is beneficial for confirming the reduction and fixation sequence, determining the reduction quality, shortening the operative time, minimizing preoperative difficulties, and predicting the prognosis for complicated fractures of acetabulam. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  13. Finite element generation of arbitrary 3-D fracture networks for flow analysis in complicated discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Hua

    2015-10-01

    Finite element generation of complicated fracture networks is the core issue and source of technical difficulty in three-dimensional (3-D) discrete fracture network (DFN) flow models. Due to the randomness and uncertainty in the configuration of a DFN, the intersection lines (traces) are arbitrarily distributed in each face (fracture and other surfaces). Hence, subdivision of the fractures is an issue relating to subdivision of two-dimensional (2-D) domains with arbitrarily-distributed constraints. When the DFN configuration is very complicated, the well-known approaches (e.g. Voronoi Delaunay-based methods and advancing-front techniques) cannot operate properly. This paper proposes an algorithm to implement end-to-end connection between traces to subdivide 2-D domains into closed loops. The compositions of the vertices in the common edges between adjacent loops (which may belong to a single fracture or two connected fractures) are thus ensured to be topologically identical. The paper then proposes an approach for triangulating arbitrary loops which does not add any nodes to ensure consistency of the meshes at the common edges. In addition, several techniques relating to tolerance control and improving code robustness are discussed. Finally, the equivalent permeability of the rock mass is calculated for some very complicated DFNs (the DFN may contain 1272 fractures, 633 connected fractures, and 16,270 closed loops). The results are compared with other approaches to demonstrate the veracity and efficiency of the approach proposed in this paper.

  14. Advanced NASA Earth Science Mission Concept for Vegetation 3D Structure, Biomass and Disturbance

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon

    2007-01-01

    Carbon in forest canopies represents about 85% of the total carbon in the Earth's aboveground biomass (Olson et al., 1983). A major source of uncertainty in global carbon budgets derives from large errors in the current estimates of these carbon stocks (IPCC, 2001). The magnitudes and distributions of terrestrial carbon storage along with changes in sources and sinks for atmospheric C02 due to land use change remain the most significant uncertainties in Earth's carbon budget. These uncertainties severely limit accurate terrestrial carbon accounting; our ability to evaluate terrestrial carbon management schemes; and the veracity of atmospheric C02 projections in response to further fossil fuel combustion and other human activities. Measurements of vegetation three-dimensional (3D) structural characteristics over the Earth's land surface are needed to estimate biomass and carbon stocks and to quantify biomass recovery following disturbance. These measurements include vegetation height, the vertical profile of canopy elements (i.e., leaves, stems, branches), andlor the volume scattering of canopy elements. They are critical for reducing uncertainties in the global carbon budget. Disturbance by natural phenomena, such as fire or wind, as well as by human activities, such as forest harvest, and subsequent recovery, complicate the quantification of carbon storage and release. The resulting spatial and temporal heterogeneity of terrestrial biomass and carbon in vegetation make it very difficult to estimate terrestrial carbon stocks and quantify their dynamics. Vegetation height profiles and disturbance recovery patterns are also required to assess ecosystem health and characterize habitat. The three-dimensional structure of vegetation provides habitats for many species and is a control on biodiversity. Canopy height and structure influence habitat use and specialization, two fundamental processes that modify species richness and abundance across ecosystems. Accurate and consistent 3D measurements of forest structure at the landscape scale are needed for assessing impacts to animal habitats and biodiversity following disturbance.

  15. Surface Wave Tomography across the Alpine-Mediterranean Mobile Belt

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, A. M. M. E.; Meier, T. M.; Lebedev, S.; Weidle, C.; Cristiano, L.

    2017-12-01

    The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. The purpose of this study is to better define the 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain Rayleigh fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 3000 broadband seismic stations within the area (WebDc/EIDA, IRIS). Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. We calculate maps of Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical slices through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates

  16. Determination of Paleoseismic Ground Motions from Inversion of Block Failures in Masonry Structures

    NASA Astrophysics Data System (ADS)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2010-12-01

    Accurate estimation of ground motion parameters such as expected peak ground acceleration (PGA), predominant frequency and duration of motion in seismically active regions, is crucial for hazard preparedness and sound engineering design. The best way to estimate quantitatively these parameters would be to investigate long term recorded data of past strong earthquakes in a studied region. In some regions of the world however recorded data are scarce due to lack of seismic network infrastructure, and in all regions the availability of recorded data is restricted to the late 19th century and onwards. Therefore, existing instrumental data are hardly representative of the true seismicity of a region. When recorded data are scarce or not available, alternative methods may be applied, for example adopting a quantitative paleoseismic approach. In this research we suggest the use of seismically damaged masonry structures as paleoseismic indicators. Visitors to archeological sites all over the world are often struck by structural failure features which seem to be "seismically driven", particularly when inspecting old masonry structures. While it is widely accepted that no other loading mechanism can explain the preserved damage, the actual driving mechanism remains enigmatic even now. In this research we wish to explore how such failures may be triggered by earthquake induced ground motions and use observed block displacements to determine the characteristic parameters of the paleoseismic earthquake motion, namely duration, frequency, and amplitude. This is performed utilizing a 3D, fully dynamic, numerical analysis performed with the Discontinuous Deformation Analysis (DDA) method. Several case studies are selected for 3D numerical analysis. First we study a simple structure in the old city of L'Aquila, Italy. L'Aquila was hit by an earthquake on April 6th, 2009, with over 300 casualties and many of its medieval buildings damaged. This case study is an excellent opportunity to validate our method, since in the case of L'Aquila, both the damaged structure and the ground motions are recorded. The 3D modeling of the structure is rather complicated, and is performed by first modeling the structure with CAD software and later "translating" the model to the numerical code used. In the future, several more case studies will be analyzed, such as Kedesh and Avdat in Israel, and in collaboration with Hugh and Bilham the Temple of Shiva at Pandrethan, Kashmir. Establishing a numerical 3D dynamic analysis for back analysis of stone displacement in masonry structures as a paleoseismic tool can provide much needed data on ground motion parameters in regions where instrumental data are scarce, or are completely absent.

  17. Three-Dimensional Printing as an Interdisciplinary Communication Tool: Preparing for Removal of a Giant Renal Tumor and Atrium Neoplastic Mass.

    PubMed

    Golab, Adam; Slojewski, Marcin; Brykczynski, Miroslaw; Lukowiak, Magdalena; Boehlke, Marek; Matias, Daniel; Smektala, Tomasz

    2016-08-22

    Three-dimensional (3D) printing involves preparing 3D objects from a digital model. These models can be used to plan and practice surgery. We used 3D printing to plan for a rare complicated surgery involving the removal of a renal tumor and neoplastic mass, which reached the heart atrium. A printed kidney model was an essential element of communication for physicians with different specializations.

  18. An LDA (Laser-Doppler Anemometry) investigation of three-dimensional normal shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.

    1989-01-01

    Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.

  19. Anatomical thoracoscopic segmentectomy for lung cancer.

    PubMed

    Ohtaki, Yoichi; Shimizu, Kimihiro

    2014-10-01

    Minimally invasive surgery for lung cancer has seen considerable progress. A segmentectomy is less invasive than a lobectomy as it preserves lung parenchyma. The preservation of pulmonary function can reduce complications. The combination of a thoracoscopic approach with a segmentectomy should be less invasive, and retrospective studies have shown that the thoracoscopic approach is safe and feasible due to the lower postoperative mortality and complication rates as compared to an open thoracotomy. The validity of a segmentectomy for ground-glass-opacity-type lung cancer has been demonstrated, and it has also been evaluated for small, predominantly solid, lung cancers. Two prospective studies of segmentectomy versus lobectomy for ≤2-cm non-small-cell lung cancer are now underway (CALGB 140503 and JCOG0802/WJTOG4607L) and should clarify the role of segmentectomy. Regarding thoracoscopic segmentectomy, few retrospective studies have reported the oncological outcome for lung cancer and there is inadequate evidence regarding the long-term oncological outcome, although the perioperative complication rate and duration of hospital stay seem to be non-inferior to those of an open approach. For preoperative simulation, three-dimensional multidetector computed tomography (3D-CT) is essential for performing an atypical thoracoscopic segmentectomy safely. Preoperative 3D-CT angiography and bronchography (3D-CTAB) enable accurate identification of the venous branches in the affected segment and the intersegmental vein. This review describes the surgical and oncological outcomes, utility of 3D-CTAB, and surgical techniques and procedure used for a thoracoscopic segmentectomy.

  20. Relationship between vitamin D status and vascular complications in patients with type 2 diabetes mellitus.

    PubMed

    Jung, Chan-Hee; Kim, Kyu-Jin; Kim, Bo-Yeon; Kim, Chul-Hee; Kang, Sung Koo; Mok, Ji-Oh

    2016-02-01

    We aimed to investigate the association between serum 25-hydroxyvitamin D (25[OH]D) and microvascular complications in type 2 diabetes mellitus (T2DM) patients. It was hypothesized that lower 25(OH)D would be associated with increased microvascular complications in T2DM. A total of 257 T2DM patients (111 men, 146 women) who underwent diabetic microvascular complication (peripheral neuropathy, nephropathy, retinopathy) studies were recruited. Patients were categorized into 3 groups according to vitamin D status: vitamin D sufficient (n = 41, 25[OH]D ≥ 20 ng/mL), vitamin D insufficient (n = 132, 10 ≤ 25[OH]D < 20 ng/mL), and vitamin D deficient (n = 84, 25[OH]D < 10 ng/mL). In men, the prevalence of diabetic peripheral neuropathy (DPN) was significantly higher in patients with vitamin D deficiency than in those with insufficiency or sufficiency (38%, 11.7%, and 10%, respectively; P = .005). In addition, the prevalence of diabetic nephropathy (DN) was significantly higher in women with vitamin D deficiency than in the other 2 groups (40%, 20.6%, and 0%; P = .007). Compared with men in the vitamin D-sufficient group (reference), men in the vitamin D-deficient group had an increased risk of DPN after adjusting for confounding factors (odds ratio, 7.79; 95% confidence interval, 1.52-40.05). For women, when the vitamin D-sufficient group was used as a reference, those in the vitamin D-deficient group had an increased risk of DN after adjusting for confounding factors (odds ratio, 4.27; 95% confidence interval, 1.58-11.56). This present study found that a serum 25(OH)D level less than 10 ng/mL is independently associated with increased DPN in male patients and increased DN in female patients with T2DM. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Lifecycle of a large-scale polar coronal pseudostreamer/cavity system

    NASA Astrophysics Data System (ADS)

    Guennou, Chloé; Auchere, Frederic; Seaton, Daniel; Rachmeler, Laurel

    2016-07-01

    Coronal cavities, tunnel-like areas of rarefied density, provide important information about the magnetic structures that support prominences. The magnetic energy is stored through the twisted or shared magnetic field, ultimately released through Coronal Mass Ejections (CME). To be able to forecast these energetic releases of material and prevent potential terrestrial consequences, the understanding of the cavity 3D morphology, magnetic and thermal properties are essential. The prominences embedded in the cavity only trace a small part of the magnetic field, whereas the much larger cavity provides more information about the magnetic field morphology. As a result, a clear understanding of the coronal volume of the cavity significantly advances our understanding of both the pre-eruption equilibrium and the triggers of such eruptions. Determining both morphological and thermodynamical coronal structures is difficult due to the optically thin nature of the plasma. Observations are subject to integration along the line-of-sight (LOS). This effect can strongly complicate both the derivation and the interpretation of important physical quantities. One way to deduce the 3D structure is with Solar Rotational Tomography (SRT). The 3D plasma emissivity is estimated from EUV/white light images taken from different viewpoints. Physical properties can be then derived using Differential Emission Measure analysis from multi-wavelength 3D reconstructions. We applied this technique to an exceptional large-scale coronal pseudostreamer/cavity system in the southern polar region of the solar corona that was visible for approximately a year starting in February 2014. It is unusual to see such a large closed-field structure embedded within the open polar coronal hole. We investigate this structure to document its formation, evolution and eventually its shrinking process using data from both the PROBA2/SWAP and SDO/AIA EUV imagers. We found that the cavity temperature is extremely stable with time and is essentially at a similar or slightly hotter temperature than the surrounding pseudostreamer. Two regimes in cavity thermal properties were observed: during the first 5 months of observation, we found lower density depletion and highly multi-thermal plasma, while after the pseudostreamer became stable and slowly shrank, the depletion was more pronounced and the plasma was less multithermal. As the thermodynamic properties are strongly correlated with the magnetic structure, these results provide constraints on both the trigger of CMEs and the processes that maintain cavities stability for such a long lifetime.

  2. Economics of appendicitis: cost trend analysis of laparoscopic versus open appendectomy from 1998 to 2008.

    PubMed

    McGrath, Brian; Buckius, Michelle T; Grim, Rod; Bell, Theodore; Ahuja, Vanita

    2011-12-01

    Laparoscopic appendectomy (LA) has become more acceptable for the treatment of appendicitis over the last decade; however, its cost benefit compared to open appendectomy (OA) remains under debate. The purpose of this study is to evaluate the utilization of LA and its cost effectiveness based on total hospital charges stratified by complexity of disease and complications compared to OA. Nationwide Inpatient Sample data from 1998 to 2008 with the principal diagnosis of appendicitis were included. Appendicitis cases were divided by simple and complex (peritonitis or abscess) and subdivided by OA, LA, and lap converted to open (CONV). Total charges (2008 value), length of stay (LOS), and complications were assessed by disease presentation and operative approach. Between 1998 and 2008, 1,561,518 (54.3%) OA, 1,231,643 (42.8%) LA, and 84,662 (2.9%) CONV appendectomies were performed. LA had shorter LOS (2 d) than OA (3 d) and CONV (5 d) (P<0.001). CONV (7.4%) cases had more complications than OA (3.7%) and LA (2.6%). LA ($19,978) and CONV ($28,103) are costlier than OA ($15,714) based on normalized cost for simple and complex diseases (P<0.001). LA is more prevalent but its cost is higher in both simple and complex cases. Cost and complications increase if the case is converted to open. OA remains the most cost effective approach for patients with acute appendicitis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The 3d Rydberg (3A2) electronic state observed by Herzberg and Shoosmith for methylene

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III

    1997-06-01

    In 1959 and 1961 Herzberg and Shoosmith reported the vacuum ultraviolet spectrum of the triplet state of CH2. The present study focuses on a characterization of the upper state, the 3d Rydberg (3A2) state, observed at 1415 Å. The theoretical interpretation of these experiments is greatly complicated by the presence of a lower-lying 3A2 valence state with a very small equilibrium bond angle. Ab initio electronic structure methods involving self-consistent-field (SCF), configuration interaction with single and double excitations (CISD), complete active space (CAS) SCF, state-averaged (SA) CASSCF, coupled cluster with single and double excitations (CCSD), CCSD with perturbative triple excitations [CCSD(T)], CASSCF second-order (SO) CI, and SACASSCF-SOCI have been employed with six distinct basis sets. With the largest basis set, triple zeta plus triple polarization with two sets of higher angular momentum functions and three sets of diffuse functions TZ3P(2 f,2d)+3diff, the CISD level of theory predicts the equilibrium geometry of the 3d Rydberg (3A2) state to be re=1.093 Å and θe=141.3 deg. With the same basis set the energy (Te value) of the 3d Rydberg state relative to the ground (X˜ 3B1) state has been determined to be 201.6 kcal mol-1 (70 500 cm-1) at the CCSD (T) level, 200.92kcal mol-1 (70 270 cm-1) at the CASSCF-SOCI level, and 200.89kcal mol-1 (70 260 cm-1) at the SACASSCF-SOCI level of theory. These predictions are in excellent agreement with the experimental T0 value of 201.95 kcalmol-1 (70 634 cm-1) reported by Herzberg.

  4. Outcomes of Retreatment after Aborted Laser In Situ Keratomileusis due to Flap Complications

    PubMed Central

    Al-Mezaine, Hani S.; Al-Amro, Saleh A.; Al-Fadda, Abdulaziz; Al-Obeidan, Saleh

    2011-01-01

    Purpose: To determine the refractive outcomes and complications of retreatment after aborted primary laser in situ keratomileusis (LASIK) due to flap complications. Materials and Methods: This retrospective study evaluated 50 retreated eyes that had flap complications during primary LASIK at the Eye Consultants Center in Riyadh, Saudi Arabia. Data were analyzed for patients with at least 3 months follow-up post retreatment. Results: Thirty-three eyes of 31 consecutive patients with 3 months follow-up or later post retreatment were included. The primary LASIK was aborted due to incomplete flaps in 22 eyes (66.7%), buttonhole flaps in 7 eyes (21.2%), free partial flaps in 3 eyes (9.1%), and a free complete flap in 1 eye (3.0%). Twenty-two eyes (66.7%) were retreated with LASIK, and 11 eyes (33.3%) were retreated with surface ablation. The mean spherical equivalent (SE) was –0.23 ± 0.72 D, the mean astigmatism was –0.65 ± 0.89 D, and the mean loss of the best corrected visual acuity (BCVA) was 0.78 lines at the final postoperative visit. At the last postoperative visit, 20/30 or better BCVA was achieved in 90.1% of eyes that underwent retreatment with LASIK and in 91% of eyes that were retreated with surface ablation. There was no statistical difference in postoperative SE between eyes retreated with LASIK and eyes retreated with surface ablation (P = 0.610). There was no statistical difference in postoperative BCVA between eyes retreated with LASIK and those retreated with surface ablation (P = 0.756). There were no intraoperative complications and no eyes required a second retreatment. Conclusion: Creation of a flap after a previous intraoperative flap complication was not associated with any complications. The refractive outcomes of retreatment with LASIK or surface ablation were comparable and reasonably favorable. PMID:21887080

  5. A proposal of monitoring and forecasting system for crustal activity in and around Japan using a large-scale high-fidelity finite element simulation codes

    NASA Astrophysics Data System (ADS)

    Hori, Takane; Ichimura, Tsuyoshi; Takahashi, Narumi

    2017-04-01

    Here we propose a system for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. Although, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2015, SC15) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Fujita et al. (2016, SC16) has improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, AGU Fall Meeting) has improved the high-fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model.

  6. A proposal of monitoring and forecasting system for crustal activity in and around Japan using a large-scale high-fidelity finite element simulation codes

    NASA Astrophysics Data System (ADS)

    Hori, T.; Ichimura, T.

    2015-12-01

    Here we propose a system for monitoring and forecasting of crustal activity, especially great interplate earthquake generation and its preparation processes in subduction zone. Basically, we model great earthquake generation as frictional instability on the subjecting plate boundary. So, spatio-temporal variation in slip velocity on the plate interface should be monitored and forecasted. Although, we can obtain continuous dense surface deformation data on land and partly at the sea bottom, the data obtained are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1)&(2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2014, SC14) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 10.7 BlnDOF x 30 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, this meeting) has improved the high fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we will apply it for 3D heterogeneous structure with the high fidelity FE model.

  7. Safe refeeding management of anorexia nervosa inpatients: an evidence-based protocol.

    PubMed

    Hofer, Michael; Pozzi, Antonio; Joray, Maya; Ott, Rebecca; Hähni, Florence; Leuenberger, Michéle; von Känel, Roland; Stanga, Zeno

    2014-05-01

    Anorexia nervosa is associated with several serious medical complications related to malnutrition, severe weight loss, and low levels of micronutrients. The refeeding phase of these high-risk patients bears a further threat to health and potentially fatal complications. The objective of this study was to examine complications due to refeeding of patients with anorexia nervosa, as well as their mortality rate after the implementation of guidelines from the European Society of Clinical Nutrition and Metabolism. We analyzed retrospective, observational data of a consecutive, unselected anorexia nervosa cohort during a 5-y period. The sample consisted of 65 inpatients, 14 were admitted more than once within the study period, resulting in 86 analyzed cases. Minor complications associated with refeeding during the first 10 d (replenishing phase) were recorded in nine cases (10.5%), four with transient pretibial edemas and three with organ dysfunction. In two cases, a severe hypokalemia occurred. During the observational phase of 30 d, 16 minor complications occurred in 14 cases (16.3%). Six infectious and 10 non-infectious complications occurred. None of the patients with anorexia nervosa died within a follow-up period of 3 mo. Our data demonstrate that the seriousness and rate of complications during the replenishment phase in this high-risk population can be kept to a minimum. The findings indicate that evidence-based refeeding regimens, such as our guidelines are able to reduce complications and prevent mortality. Despite anorexia nervosa, our sample were affected by serious comorbidities, no case met the full diagnostic criteria for refeeding syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Multi-dimensional printing in thoracic surgery: current and future applications

    PubMed Central

    Kwok, Jackson K. S.; Lau, Rainbow W. H.; Zhao, Ze-Rui; Yu, Peter S. Y.; Ho, Jacky Y. K.; Chow, Simon C. Y.; Wan, Innes Y. P.

    2018-01-01

    Three-dimensional (3D) printing has been gaining much attention in the medical field in recent years. At present, 3D printing most commonly contributes in pre-operative surgical planning of complicated surgery. It is also utilized for producing personalized prosthesis, well demonstrated by the customized rib cage, vertebral body models and customized airway splints. With on-going research and development, it will likely play an increasingly important role across the surgical fields. This article reviews current application of 3D printing in thoracic surgery and also provides a brief overview on the extended and updated use of 3D printing in bioprinting and 4D printing. PMID:29732197

  9. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin.

    PubMed Central

    Prosser, R S; Daleman, S I; Davis, J H

    1994-01-01

    Solid state deuterium NMR was employed on oriented multilamellar dispersions consisting of 1,2-dilauryl-sn-glycero-3-phosphatidylcholine and deuterium (2H) exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamic structure of the channel conformation of gramicidin in a liquid crystalline phase. The corresponding spectra were used to discriminate between several structural models for the channel structure of gramicidin (based on the left- and right-handed beta 6.3 LD helix) and other models based on a structure obtained from high resolution NMR. The oriented spectrum is complicated by the fact that many of the doublets, corresponding to the 20 exchangeable sites, partially overlap. Furthermore, the asymmetry parameter, eta, of the electric field gradient tensor of the amide deuterons is large (approximately 0.2) and many of the amide groups are involved in hydrogen bonding, which is known to affect the quadrupole coupling constant. In order to account for these complications in simulating the spectra in the fast motional regime, an ab initio program called Gaussian 90 was employed, which permitted us to calculate, by quantum mechanical means, the complete electric field gradient tensor for each residue in gramicidin (using two structural models). Our results indicated that the left-handed helical models were inconsistent with our observed spectra, whereas a model based on the high-resolution structure derived by Arseniev and coworkers, but relaxed by a simple energy minimization procedure, was consistent with our observed spectra. The molecular order parameter was then estimated from the motional narrowing assuming the relaxed (right-handed) Arseniev structure. Our resultant order parameter of SZZ = 0.91 translates into an rms angle of 14 degrees, formed by the helix axis and the local bilayer normal. The strong resemblance between our spectra (and also those reported for gramicidin in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) multilayers) and the spectra of the same peptide incorporated in a lyotropic nematic phase, suggests that the lyotropic nematic phase simulates the local environment of the lipid bilayer. PMID:7520293

  10. Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold.

    PubMed

    Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon

    2015-03-07

    We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).

  11. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study.

    PubMed

    Maddox, Michael M; Feibus, Allison; Liu, James; Wang, Julie; Thomas, Raju; Silberstein, Jonathan L

    2018-03-01

    To construct patient-specific physical three-dimensional (3D) models of renal units with materials that approximates the properties of renal tissue to allow pre-operative and robotic training surgical simulation, 3D physical kidney models were created (3DSystems, Rock Hill, SC) using computerized tomography to segment structures of interest (parenchyma, vasculature, collection system, and tumor). Images were converted to a 3D surface mesh file for fabrication using a multi-jet 3D printer. A novel construction technique was employed to approximate normal renal tissue texture, printers selectively deposited photopolymer material forming the outer shell of the kidney, and subsequently, an agarose gel solution was injected into the inner cavity recreating the spongier renal parenchyma. We constructed seven models of renal units with suspected malignancies. Partial nephrectomy and renorrhaphy were performed on each of the replicas. Subsequently all patients successfully underwent robotic partial nephrectomy. Average tumor diameter was 4.4 cm, warm ischemia time was 25 min, RENAL nephrometry score was 7.4, and surgical margins were negative. A comparison was made between the seven cases and the Tulane Urology prospectively maintained robotic partial nephrectomy database. Patients with surgical models had larger tumors, higher nephrometry score, longer warm ischemic time, fewer positive surgical margins, shorter hospitalization, and fewer post-operative complications; however, the only significant finding was lower estimated blood loss (186 cc vs 236; p = 0.01). In this feasibility study, pre-operative resectable physical 3D models can be constructed and used as patient-specific surgical simulation tools; further study will need to demonstrate if this results in improvement of surgical outcomes and robotic simulation education.

  12. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen

    2014-11-15

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd,more » 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A series of water-soluble acidic 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]n·2Cl{sub n}·3nH{sub 2}O have been converted to their 2D and 3D lanthanides, which are active for the catalytic conversion of ester hydrolysis. - Highlights: • Novel acidic propanediaminetetraacetato lanthanides. • Water-soluble 1D coordination polymers. • Acidic conditions are suitable for the isolations of lanthanide complexes in different structures. • 1 and 5 show good catalytic activity to ester hydrolysis. • Europium coordination polymers 13 and 20 give visible fluorescence.« less

  13. Manganese oxide octahedral molecular sieves: Synthesis, self-assembly, control over morphologies and tunnel structure

    NASA Astrophysics Data System (ADS)

    Yuan, Jikang

    Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.

  14. R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures.

    PubMed

    Rahrig, Ryan R; Petrov, Anton I; Leontis, Neocles B; Zirbel, Craig L

    2013-07-01

    The R3D Align web server provides online access to 'RNA 3D Align' (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/.

  15. Diagnosis and Endodontic Management of Fused Mandibular Second Molar and Paramolar with Concrescent Supernumerary Tooth Using Cone-beam CT and 3-D Printing Technology: A Case Report.

    PubMed

    Kato, Hiroshi; Kamio, Takashi

    2015-01-01

    Supernumerary teeth in the molar area are classified as paramolars or distomolars based on location. They occur frequently in the maxilla, but only rarely in the mandible. These teeth are frequently fused with adjacent teeth. When this occurs, the pulp cavities may also be connected. This makes diagnosis and planning of endodontic treatment extremely difficult. Here we report a case of a mandibular second molar fused with a paramolar, necessitating dental pulp treatment. Intraoral and panoramic radiographs were obtained for an evaluation and diagnosis. Although the images revealed a supernumerary tooth-like structure between the posterior area of the mandibular second molar and mandibular third molar, it was difficult to confirm the morphology of the tooth root apical area. Subsequent cone-beam computed tomography (CBCT) revealed that the supernumerary tooth-like structure was concrescent with the root apical area of the mandibular second molar. Based on these findings, the diagnosis was a fused mandibular second molar and paramolar with a concrescent supernumerary tooth. A 3-dimensional (3-D) printer was used to produce models based on the CBCT data to aid in treatment planning and explanation of the proposed procedures to the patient. These models allowed the complicated morphology involved to be clearly viewed, which facilitated a more precise diagnosis and better treatment planning than would otherwise have been possible. These technologies were useful in obtaining informed consent from the patient, promoting 3-D morphological understanding, and facilitating simulation of endodontic treatment.

  16. [3D-visualization by MRI for surgical planning of Wilms tumors].

    PubMed

    Schenk, J P; Waag, K-L; Graf, N; Wunsch, R; Jourdan, C; Behnisch, W; Tröger, J; Günther, P

    2004-10-01

    To improve surgical planning of kidney tumors in childhood (Wilms tumor, mesoblastic nephroma) after radiologic verification of the presumptive diagnosis with interactive colored 3D-animation in MRI. In 7 children (1 boy, 6 girls) with a mean age of 3 years (1 month to 11 years), the MRI database (DICOM) was processed with a raycasting-based 3D-volume-rendering software (VG Studio Max 1.1/Volume Graphics). The abdominal MRI-sequences (coronal STIR, coronal T1 TSE, transverse T1/T2 TSE, sagittal T2 TSE, transverse and coronal T1 TSE post contrast) were obtained with a 0.5T unit in 4 - 6 mm slices. Additionally, a phase-contrast-MR-angiography was applied to delineate the large abdominal and retroperitoneal vessels. A notebook was used to demonstrate the 3D-visualization for surgical planning before surgery and during the surgical procedure. In all 7 cases, the surgical approach was influenced by interactive 3D-animation and the information found useful for surgical planning. Above all, the 3D-visualization demonstrates the mass effect of the Wilms tumor and its anatomical relationship to the renal hilum and to the rest of the kidney as well as the topographic relationship of the tumor to the critical vessels. One rupture of the tumor capsule occurred as a surgical complication. For the surgeon, the transformation of the anatomical situation from MRI to the surgical situs has become much easier. For surgical planning of Wilms tumors, the 3D-visualization with 3D-animation of the situs helps to transfer important information from the pediatric radiologist to the pediatric surgeon and optimizes the surgical preparation. A reduction of complications is to be expected.

  17. Persistent Pulmonary Hypertension of the Newborn with D-transposition of the Great Arteries: Management and Prognosis.

    PubMed

    Sallaam, Salaam; Natarajan, Girija; Aggarwal, Sanjeev

    2016-05-01

    There is a paucity of data on clinical correlates and outcomes of pulmonary hypertension (PH) in patients with D-transposition of the great arteries (D-TGA) in the era of inhaled nitric oxide (iNO) and extracorporeal membrane oxygenation (ECMO). Our objective was to compare clinical characteristics and outcomes of infants with D-TGA with and without PH, defined as hypoxemia that required iNO and/or ECMO. We undertook a single-center retrospective chart review involving infants with gestational age ≥32 weeks with D-TGA who, underwent arterial switch operation over a 12-year period. Demographic and clinical data, details of the repair and postoperative complications were abstracted. Our cohort (n = 93), 61 (66%) of whom were males, had a mean (SD) gestational age and birth weight of 38.7 (1.8) weeks and 3.2 (0.6) kg, respectively. PH requiring iNO and/or ECMO was noted in 20 (21.5%) infants. Infants with PH had significantly lower birth weight [2.8 (0.56) vs. 3.33 (0.61)] and gestational age [37.7 (2.1) vs. 38.9 (1.7)] than those without PH. Rates of postoperative complications (duration of pressors, sedative medicaiton and duration of hospital stay, and mechanical ventilation were higher in the group with PH. Of the five (5.4%) infants who died, four received iNO and ECMO. Death or postoperative complications tended to be associated with lower gestational age [OR 0.689; 95% CI: 0.469-1.012, P = 0.058] but not with D-TGA category or bypass duration. Despite aggressive treatment with iNO and ECMO, the coexistence of PH in this population is associated with higher rates of mortality and postoperative complications. Our results also suggest that an early term birth may be associated with PH in infants with D-TGA. © 2015 Wiley Periodicals, Inc.

  18. [Effect of 3D printing technology on pelvic fractures:a Meta-analysis].

    PubMed

    Zhang, Yu-Dong; Wu, Ren-Yuan; Xie, Ding-Ding; Zhang, Lei; He, Yi; Zhang, Hong

    2018-05-25

    To evaluate the effect of 3D printing technology applied in the surgical treatment of pelvic fractures through the published literatures by Meta-analysis. The PubMed database, EMCC database, CBM database, CNKI database, VIP database and Wanfang database were searched from the date of database foundation to August 2017 to collect the controlled clinical trials in wich 3D printing technology was applied in preoperative planning of pelvic fracture surgery. The retrieved literatures were screened according to predefined inclusion and exclusion criteria, and quality evaluation were performed. Then, the available data were extracted and analyzed with the RevMan5.3 software. Totally 9 controlled clinical trials including 638 cases were chosen. Among them, 279 cases were assigned to the 3D printing technology group and 359 cases to the conventional group. The Meta-analysis results showed that the operative time[SMD=-2.81, 95%CI(-3.76, -1.85)], intraoperative blood loss[SMD=-3.28, 95%CI(-4.72, -1.85)] and the rate of complication [OR=0.47, 95%CI(0.25, 0.87)] in the 3D printing technology were all lower than those in the conventional group;the excellent and good rate of pelvic fracture reduction[OR=2.09, 95%CI(1.32, 3.30)] and postoperative pelvic functional restoration [OR=1.94, 95%CI(1.15, 3.28) in the 3D printing technology were all superior to those in the conventional group. 3D printing technology applied in the surgical treatment of pelvic fractures has the advantage of shorter operative time, less intraoperative blood loss and lower rate of complication, and can improve the quality of pelvic fracture reduction and the recovery of postoperative pelvic function. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  19. Technical aspects of virtual liver resection planning.

    PubMed

    Glombitza, G; Lamadé, W; Demiris, A M; Göpfert, M R; Mayer, A; Bahner, M L; Meinzer, H P; Richter, G; Lehnert, T; Herfarth, C

    1998-01-01

    Operability of a liver tumor is depending on its three dimensional relation to the intrahepatic vascular trees which define autonomously functioning liver (sub-)segments. Precise operation planning is complicated by anatomic variability, distortion of the vascular trees by the tumor or preceding liver resections. Because of the missing possibility to track the deformation of the liver during the operation an integration of the resection planning system into an intra-operative navigation system is not feasible. So the main task of an operation planning system in this domain is a quantifiable patient selection by exact prediction of post-operative liver function and a quantifiable resection proposal. The system quantifies the organ structures and resection volumes by means of absolute and relative values. It defines resection planes depending on security margins and the vascular trees and presents the data in visualized form as a 3D movie. The new 3D operation planning system offers quantifiable liver resection proposals based on individualized liver anatomy. The results are visualized in digital movies as well as in quantitative reports.

  20. Neutron-Helium-3 Analyzing Power at 4.05 and 5.54 MeV*

    NASA Astrophysics Data System (ADS)

    Esterline, J. H.; Howell, C. R.; Macri, R. A.; Tajima, S.; Tornow, W.; Crowe, B.; Pedroni, R. S.; Weisel, G. J.

    2004-10-01

    It has been proposed that, to better understand long-standing discrepancies between calculated and measured analyzing powers in the three-nucleon system, an investigation of analyzing powers be undertaken in the four-nucleon system, in which similar discrepancies have recently been observed. To this end, the analyzing power for polarized neutron-helion scattering has been measured at Triangle Universities Nuclear Laboratory (TUNL) at 27 angles for both incident neutron energies of 4.05 and 5.54 MeV. These data were obtained with neutrons generated by the polarization-transfer reaction D(d,n)He-3, with neutron polarizations of approximately .4 and .5, respectively, for the two energies. Preliminary analysis yields uncertainties in the analyzing powers not exceeding .03 at the cross section minima, at which point the analyzing powers achieve values in excess of .60. Since rigorous theoretical calculations are presently unavailable for neutron-helion scattering due to complications involving isospin structure, the data are compared favorably to previously obtained proton-triton data corrected for the Coulomb barrier.

  1. Studies of the nucleon structure in back-to-back SIDIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    2016-03-01

    The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue tomore » study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.« less

  2. MMDB: Entrez’s 3D-structure database

    PubMed Central

    Wang, Yanli; Anderson, John B.; Chen, Jie; Geer, Lewis Y.; He, Siqian; Hurwitz, David I.; Liebert, Cynthia A.; Madej, Thomas; Marchler, Gabriele H.; Marchler-Bauer, Aron; Panchenko, Anna R.; Shoemaker, Benjamin A.; Song, James S.; Thiessen, Paul A.; Yamashita, Roxanne A.; Bryant, Stephen H.

    2002-01-01

    Three-dimensional structures are now known within many protein families and it is quite likely, in searching a sequence database, that one will encounter a homolog with known structure. The goal of Entrez’s 3D-structure database is to make this information, and the functional annotation it can provide, easily accessible to molecular biologists. To this end Entrez’s search engine provides three powerful features. (i) Sequence and structure neighbors; one may select all sequences similar to one of interest, for example, and link to any known 3D structures. (ii) Links between databases; one may search by term matching in MEDLINE, for example, and link to 3D structures reported in these articles. (iii) Sequence and structure visualization; identifying a homolog with known structure, one may view molecular-graphic and alignment displays, to infer approximate 3D structure. In this article we focus on two features of Entrez’s Molecular Modeling Database (MMDB) not described previously: links from individual biopolymer chains within 3D structures to a systematic taxonomy of organisms represented in molecular databases, and links from individual chains (and compact 3D domains within them) to structure neighbors, other chains (and 3D domains) with similar 3D structure. MMDB may be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Structure. PMID:11752307

  3. Echocardiographic Techniques of Deformation Imaging in the Evaluation of Maternal Cardiovascular System in Patients with Complicated Pregnancies.

    PubMed

    Visentin, Silvia; Palermo, Chiara; Camerin, Martina; Daliento, Luciano; Muraru, Denisa; Cosmi, Erich; Badano, Luigi P

    2017-01-01

    Cardiovascular diseases (CVD) represent the leading cause of maternal mortality and morbidity. Knowledge of CVD in women is constantly evolving and data are emerging that female-specific risk factors as complications of pregnancy are conditions associated with an increased risk for the long-term development of CVD. Echocardiography is a safe and effective imaging technique indicated in symptomatic or asymptomatic pregnant women with congenital heart diseases who require close monitoring of cardiac function. Deformation imaging is an echocardiographic technique used to assess myocardial function by measuring the actual deformation of the myocardium through the cardiac cycle. Speckle-tracking echocardiography (STE) is a two-dimensional (2D) technique which has been found to be more accurate than tissue Doppler to assess both left ventricular (LV) and right ventricular (RV) myocardial function. The use of 2D STE however might present some technical issues due to the tomographic nature of the technique and the motion in the three-dimensional space of the myocardial speckles. This has promoted the use of 3D STE to track the motion of the speckles in the 3D space. This review will focus on the clinical value of the new echocardiographic techniques of deformation imaging used to assess the maternal cardiovascular system in complicated pregnancies.

  4. Simulation of Dose to Surrounding Normal Structures in Tangential Breast Radiotherapy Due to Setup Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakar, Ramachandran; Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi; Department of Radiology, All India Institute of Medical Sciences, New Delhi

    Setup error plays a significant role in the final treatment outcome in radiotherapy. The effect of setup error on the planning target volume (PTV) and surrounding critical structures has been studied and the maximum allowed tolerance in setup error with minimal complications to the surrounding critical structure and acceptable tumor control probability is determined. Twelve patients were selected for this study after breast conservation surgery, wherein 8 patients were right-sided and 4 were left-sided breast. Tangential fields were placed on the 3-dimensional-computed tomography (3D-CT) dataset by isocentric technique and the dose to the PTV, ipsilateral lung (IL), contralateral lung (CLL),more » contralateral breast (CLB), heart, and liver were then computed from dose-volume histograms (DVHs). The planning isocenter was shifted for 3 and 10 mm in all 3 directions (X, Y, Z) to simulate the setup error encountered during treatment. Dosimetric studies were performed for each patient for PTV according to ICRU 50 guidelines: mean doses to PTV, IL, CLL, heart, CLB, liver, and percentage of lung volume that received a dose of 20 Gy or more (V20); percentage of heart volume that received a dose of 30 Gy or more (V30); and volume of liver that received a dose of 50 Gy or more (V50) were calculated for all of the above-mentioned isocenter shifts and compared to the results with zero isocenter shift. Simulation of different isocenter shifts in all 3 directions showed that the isocentric shifts along the posterior direction had a very significant effect on the dose to the heart, IL, CLL, and CLB, which was followed by the lateral direction. The setup error in isocenter should be strictly kept below 3 mm. The study shows that isocenter verification in the case of tangential fields should be performed to reduce future complications to adjacent normal tissues.« less

  5. pySeismicFMM: Python based Travel Time Calculation in Regular 2D and 3D Grids in Cartesian and Geographic Coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, M.; Polkowski, M.

    2016-12-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation final release of a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. Source code of pySeismicFMM will be published before Fall Meeting. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  6. Biliary reconstruction in liver transplant patients with primary sclerosing cholangitis, duct-to-duct or Roux-en-Y?

    PubMed

    Shamsaeefar, Alireza; Shafiee, Mohammad; Nikeghbalian, Saman; Kazemi, Kourosh; Mansorian, Mohsenreza; Motazedian, Nasrin; Afshinnia, Farsad; Geramizadeh, Bita; Malekhosseini, Seyed Ali

    2017-06-01

    Roux-en-Y choledochojejunostomy and duct-to-duct (D-D) anastomosis are biliary reconstruction methods for liver transplantation. However, there is a controversy over which method produces better results. We have compared the outcome of D-D anastomosis vs. Roux-en-Y hepaticojejunostomy in patients with primary sclerosing cholangitis who had undergone liver transplant in Shiraz Organ Transplant Center. The medical records of 405 patients with primary sclerosing cholangitis (PSC) who had undergone liver transplant from 1996 to 2015 were reviewed. Patients were divided into two groups: Roux-en-Y group and D-D group. Morbidity, disease recurrence, and graft and patient survival rates were compared between the two groups. Total of 143 patients underwent a D-D biliary reconstruction, and 260 patients had a Roux-en-Y loop. Biliary complication involved 4.2% of patients from the D-D group, and 3.9% from the Roux-en-Y group (P=. 863). Actuarial 1-, 3-, and 5-year patient survival for D-D and Roux-en-Y group was 92%, 85%, and 74%; and 87%, 83%, and 79%, respectively (P=.384). The corresponding 1-, 3-, and 5-year probability of biliary complication was 97%, 95%, and 92%; and 98%, 97%, and 94%, respectively (P=.61). Duct-to-duct biliary reconstruction in liver transplantation for selected patients with PSC is a good alternative instead of Roux-en-Y biliary reconstruction. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. geomIO: A tool for geodynamicists to turn 2D cross-sections into 3D geometries

    NASA Astrophysics Data System (ADS)

    Baumann, Tobias; Bauville, Arthur

    2016-04-01

    In numerical deformation models, material properties are usually defined on elements (e.g., in body-fitted finite elements), or on a set of Lagrangian markers (Eulerian, ALE or mesh-free methods). In any case, geometrical constraints are needed to assign different material properties to the model domain. Whereas simple geometries such as spheres, layers or cuboids can easily be programmed, it quickly gets complex and time-consuming to create more complicated geometries for numerical model setups, especially in three dimensions. geomIO (geometry I/O, http://geomio.bitbucket.org/) is a MATLAB-based library that has two main functionalities. First, it can be used to create 3D volumes based on series of 2D vector drawings similar to a CAD program; and second, it uses these 3D volumes to assign material properties to the numerical model domain. The drawings can conveniently be created using the open-source vector graphics software Inkscape. Adobe Illustrator is also partially supported. The drawings represent a series of cross-sections in the 3D model domain, for example, cross-sectional interpretations of seismic tomography. geomIO is then used to read the drawings and to create 3D volumes by interpolating between the cross-sections. In the second part, the volumes are used to assign material phases to markers inside the volumes. Multiple volumes can be created at the same time and, depending on the order of assignment, unions or intersections can be built to assign additional material phases. geomIO also offers the possibility to create 3D temperature structures for geodynamic models based on depth dependent parameterisations, for example the half space cooling model. In particular, this can be applied to geometries of subducting slabs of arbitrary shape. Yet, geomIO is held very general, and can be used for a variety of applications. We present examples of setup generation from pictures of micro-scale tectonics and lithospheric scale setups of 3D present-day model geometries.

  8. A Randomized Phase IV Control Trial of Single High Dose Oral Vitamin D3 in Pediatric Patients Undergoing HSCT

    ClinicalTrials.gov

    2017-06-01

    Vitamin D Deficiency; Stem Cell Transplant Complications; Pediatric Cancer; Blood Disorder; Pediatric Acute Myeloid Leukemia; Pediatric Acute Lymphoid Leukemia; Myelodysplastic Syndromes; Sickle Cell Anemia in Children; Aplastic Anemia; Thalassemia in Children

  9. Coverage of whole proteome by structural genomics observed through protein homology modeling database

    PubMed Central

    Yamaguchi, Akihiro; Go, Mitiko

    2006-01-01

    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617

  10. Gender-Related Differences in Outcomes of Patients with Cardiac Resynchronization Therapy.

    PubMed

    Nevzorov, Roman; Porter, Avital; Mostov, Shanie; Kazum, Shirit; Eisen, Alon; Goldenberg, Gustavo; Iakobishvili, Zaza; Kusniec, Jairo; Golovchiner, Gregory; Strasberg, Boris; Haim, Moti

    2018-05-01

    Gender-related differences (GRD) exist in the outcome of patients with cardiac resynchronization therapy (CRT). To assess GRD in patients who underwent CRT. A retrospective cohort of 178 patients who were implanted with a CRT in a tertiary center 2005-2009 was analyzed. Primary outcome was 1 year mortality. Secondary endpoints were readmission and complication rates. No statistically significant difference was found in 1 year mortality rates (14.6% males vs. 11.8% females, P = 0.7) or in readmission rate (50.7% vs. 41.2%, P = 0.3). The complication rate was only numerically higher in women (14.7% vs. 5.6%, P = 0.09). Men more often had CRT-defibrillator (CRT-D) implants (63.2% vs. 35.3%, P = 0.003) and had a higher rate of ischemic cardiomyopathy (79.2% vs. 38.2%, P < 0.001). There was a trend to higher incidence of ventricular fibrillation/ventricular tachycardia in men before CRT implantation (29.9% vs. 14.7%, P = 0.07%). A higher proportion of men upgraded from implantable cardioverter defibrillator (ICD) to CRT-D, 20.8% vs. 8.8%, P = 0.047. On multivariate model, chronic renal failure was an independent predictor of 1 year mortality (hazard ratio [HR] 3.6; 95% confidence interval [95%CI] 1.4-9.5), CRT-D had a protective effect compared to CRT-pacemaker (HR 0.3, 95%CI 0.12-0.81). No GRD was found in 1 year mortality or readmission rates in patients treated with CRT. There was a trend toward a higher complication rate in females. Men were implanted more often with CRT-D and more frequently underwent upgrading of ICD to CRT-D.

  11. Increasing Severity of Malnutrition Is Associated With Poorer 30-Day Outcomes in Patients Undergoing Hip Fracture Surgery.

    PubMed

    Chung, Andrew S; Hustedt, Joshua W; Walker, Robert; Jones, Clifford; Lowe, Jason; Russell, George V

    2018-04-01

    Low serum albumin levels (hypoalbuminemia) have classically been used to identify malnutrition. The effect of increasing severity of malnutrition on postoperative outcomes in patients undergoing hip fracture surgery has not been well delineated on a large scale. Retrospective. Multicenter. A total of 12,373 patients undergoing hip fracture surgery from 2006 to 2013 National Surgery Quality Improvement Project data were identified. Patient demographic, comorbidity, and preoperative laboratory data and complication, reoperation, and readmission data were collected. Multivariate logistic regression was used to determine the effect of increasing severity of malnutrition on rates of 30-day postoperative complications, readmissions, and reoperations. A total of 12,373 hip fractures met inclusion criteria. A total of 6506 (52.6%) patients had normal albumin levels (albumin ≥3.5 g/dL), 3205 (25.9%) patients were mildly malnourished (albumin 3.1-3.49 g/dL), 2265 (18.3%) were moderately malnourished (albumin 2.4-3.1 g/dL), and 397 (3.2%) patients were severely malnourished (albumin <2.4 g/dL). Mean age was similar between the 4 cohorts (P < 0.001). Severe malnutrition was associated with a 2-fold increase in the odds of postoperative complications and mortality when compared with mild malnutrition (P < 0.001). Increasing severity of malnutrition was associated with significantly longer lengths of stay and higher odds of experiencing a related readmission (P < 0.001). Increasing severity of hypoalbuminemia is independently associated with poorer outcomes in the 30 days after hip fracture surgery. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  12. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes

    PubMed Central

    Dayal, Jasbani H. S.; Cole, Clare L.; Pourreyron, Celine; Watt, Stephen A.; Lim, Yok Zuan; Salas-Alanis, Julio C.; Murrell, Dedee F.; McGrath, John A.; Stieger, Bruno; Jahoda, Colin; Leigh, Irene M.; South, Andrew P.

    2014-01-01

    ABSTRACT Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332. PMID:24357722

  13. Epidural analgesia for traumatic rib fractures is associated with worse outcomes: a matched analysis.

    PubMed

    McKendy, Katherine M; Lee, Lawrence F; Boulva, Kerianne; Deckelbaum, Dan L; Mulder, David S; Razek, Tarek S; Grushka, Jeremy R

    2017-06-15

    The optimal method of pain control for patients with traumatic rib fractures is unknown. The aim of this study was to determine the effect of epidural analgesia on respiratory complications and in-hospital mortality in patients with rib fractures. Adult patients at a level I trauma center with ≥1 rib fracture from blunt trauma were included (2004-2013). Those with a blunt-penetrating mechanism, traumatic brain injury, or underwent a laparotomy or thoracotomy were excluded. Patients who were treated with epidural analgesia (EPI) were compared with those were not treated with epidural analgesia (NEPI) using coarsened exact matching. Primary outcomes were respiratory complications (pneumonia, deep vein thrombosis/pulmonary embolus, and respiratory failure) and 30-d in-hospital mortality. Secondary outcomes were total hospital and intensive care unit length of stay, and duration of ventilator support. About 1360 patients (EPI: 329 and NEPI: 1031) met inclusion criteria (mean age: 54.2 y; standard deviation [SD]: 19.7; 68% male). The mean number of rib fractures was 4.8 (SD: 3.3; 21% bilateral) with a high total burden of injury (mean Injury Severity Score: 19.9 [SD: 8.9]). The overall incidence of respiratory complications was 13% and mortality was 4%. After matching, 204 EPI patients were compared with 204 NEPI patients, with no differences in baseline characteristics. EPI patients experienced more respiratory complications (19% versus 10%, P = 0.009), but no differences in 30-d mortality (5% versus 2%, P = 0.159), duration of mechanical ventilation (EPI: 148 h [SD: 167] versus NEPI: 117 h [SD: 187], P = 0.434), or duration of intensive care unit length of stay (6.5 d [SD: 7.6] versus 5.8 d [SD: 9.1], P = 0.626). Hospital stay was higher in the EPI group (16.6 d [SD: 19.6] vs 12.7 d [SD: 15.2], P = 0.026). Epidural analgesia is associated with increased respiratory complications without providing mortality benefit after traumatic rib fractures. Alternate analgesic strategies should be investigated to treat these severely injured patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Structure, stability, thermodynamic properties, and infrared spectra of the protonated water octamer H(+)(H2O)8.

    PubMed

    Karthikeyan, S; Park, Mina; Shin, Ilgyou; Kim, Kwang S

    2008-10-16

    We investigated various two-dimensional (2D) and three-dimensional (3D) structures of H (+)(H 2O) 8, using density functional theory (DFT), Moller-Plesset second-order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)). The 3D structure is more stable than the 2D structure at all levels of theory on the Born-Oppenheimer surface. With the zero-point energy (ZPE) correction, the predicted structure varies depending on the level of theory. The DFT employing Becke's three parameters with Lee-Yang-Parr functionals (B3LYP) favors the 2D structure. At the complete basis set (CBS) limit, the MP2 calculation favors the 3D structure by 0.29 kcal/mol, and the CCSD(T) calculation favors the 3D structure by 0.27 kcal/mol. It is thus expected that both 2D and 3D structures are nearly isoenergetic near 0 K. At 100 K, all the calculations show that the 2D structure is much more stable in free binding energy than the 3D structure. The DFT and MP2 vibrational spectra of the 2D structure are consistent with the experimental spectra. First-principles Car-Parrinello molecular dynamics (CPMD) simulations show that the 2D Zundel-type vibrational spectra are in good agreement with the experiment.

  15. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    PubMed

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  16. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  17. MINEMOTION3D: A new set of Programs for Predicting Ground Motion From Explosions in Complex 3D Media

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Bonner, J. L.; Orrey, J. L.; Yang, X.

    2004-12-01

    Predicting ground motion from complicated mining explosions is important for mines developing new blasting programs in regions where vibrations must be kept below certain levels. Additionally, predicting ground motion from mining explosions in complex 3D media is important for moment estimation for nuclear test treaty monitoring. Both problems have been addressed under the development of a new series of numerical prediction programs called MINEMOTION3D including 1) Generalized Fourier Methods to generate Green's functions in 3D media for a moment tensor source implementation and 2) MineSeis3D, a program that simulates seismograms for delay-fired mining explosions with a linear relationship between signals from small size individual shots. To test the programs, local recordings (5 - 23 km) of three production shots at a mine in northern Minnesota were compared to synthetic waveforms in 3D media. A non-zero value of the moment tensor component M12 was considered, to introduce a horizontal spall component into the waveform synthesis when the Green's functions were generated for each model. Methods using seismic noise crosscorrelation for improved inter-element subsurface structure estimation were also evaluated. Comparison of the observed and synthetic waveforms shows promising results. The shape and arrival times of the normalized synthetic and observed waveforms are similar for most of the stations. The synthetic and observed waveform amplitude fit is best for the vertical components in the mean 3D model and worst for the transversal components. The observed effect of spall on the waveform spectra was weak in the case of fragmentation delay fired commercial explosions. Commercial applications of the code could provide data needed for designing explosions which do not exceed ground vibration requirements posed by the U.S. Department of the Interior, Office of Surface Mining.

  18. Use of Image Based Modelling for Documentation of Intricately Shaped Objects

    NASA Astrophysics Data System (ADS)

    Marčiš, M.; Barták, P.; Valaška, D.; Fraštia, M.; Trhan, O.

    2016-06-01

    In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.

  19. Simulation of the fine structure of the 12 July 1996 Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) storm accounting for effects of terrain and interaction with mesoscale flow

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy; Pickering, Kenneth; Decaria, Alex; Tao, W.-K.; Scala, John; Ott, Lesley; Bartels, Diana; Matejka, Thomas

    2005-07-01

    Vertical mixing of chemical tracers and optically active constituents by deep convection affects regional and global chemical balances in the troposphere and lower stratosphere. This important process is not explicitly resolved in global and regional models and has to be parameterized. However, mixing depends strongly on the spatial structure, strength, and temporal evolution of the particular storm, complicating parameterization of this important effect in the large-scale models. To better quantify dynamic fields and associated mixing processes, we simulate a thunderstorm observed on 12 July 1996 during the STERAO-A (Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone) Deep Convection field project using the Goddard Cloud Ensemble (GCE) model. The 12 July STERAO-A storm had very complex temporal and spatial structure. The meteorological environment and evolution of the storm were significantly different than those of the 10 July STERAO-A storm extensively discussed in previous studies. Our 2-D and 3-D GCE model runs with uniform one-sounding initialization were unable to reproduce the full life cycle of the 12 July storm observed by the CHILL radar system. To describe the storm evolution, we modified the 3-D GCE model to include the effects of terrain and the capability of using nonuniform initial fields. We conducted a series of numerical experiments and reproduced the observed life cycle and fine spatial structure of the storm. The main characteristics of the 3-D simulation of the 12 July storm were compared with observations, with 2-D simulations of the same storm, and with the evolution of the 10 July storm. The simulated 3-D convection appears to be stronger and more realistic than in our 2-D simulations. Having developed in a less unstable environment than the 10 July 1996 STERAO-A storm, our simulation of the 12 July storm produced weaker but sustainable convection that was significantly fed by wind shear instability in the lower troposphere. The time evolution, direction, and speed of propagation of the storm were determined by interaction with the nonuniform background mesoscale flow. For example, storm intensity decreased drastically when the storm left the region with large convective available potential energy. The model appears to be successful in reproducing the rectangular four-cell structure of the convection. The distributions of convergence, vertical vorticity, and position of the inflow level in the later single-cell regime compare favorably with the airborne Doppler radar observations. This analysis allowed us to better understand the role of terrain and mesoscale circulation in the development of a midlatitude deep convective system and associated convective mixing. Wind, temperature, hydrometeor, and turbulent diffusion coefficient data from the cloud model simulations were provided for off-line 3-D cloud-scale chemical transport simulations discussed in the companion paper by DeCaria et al. (2005).

  20. Metabolic control and chronic complications during a 3-year follow-up period in a cohort of type 2 diabetic patients attended in primary care in the Community of Madrid (Spain).

    PubMed

    Arrieta, Francisco; Piñera, Marbella; Iglesias, Pedro; Nogales, Pedro; Salinero-Fort, Miguel Angel; Abanades, Juan Carlos; Botella-Carretero, José Ignacio; Calañas, Alfonso; Balsa, José Antonio; Zamarrón, Isabel; Rovira, Adela; Vázquez, Clotilde

    2014-01-01

    Our aim was to analyze both metabolic control and chronic complications of type 2 diabetes mellitus (T2D) patients regularly attended in primary care during a 3 years of follow-up in the Community of Madrid (Spain). From 2007 to 2010 we prospectively included 3268 patients with T2D attended by 153 primary care physicians from 51 family health centers. An prospective cohort study with annual evaluation over 3 years to the same population was performed. We measured the goals of control in diabetic patients and the incidence of chronic complications of diabetes during the study period. A significant decrease in serum glucose levels (143±42mg/dl vs 137±43mg/dl, p<0.00), HbA1c (7.09±1.2% vs 7.02±1.2%, p<0.00), total cholesterol (191.4±38mg/dl vs 181.5±36mg/dl, p<0.00), LDL cholesterol (114.7±31mg/dl vs 105.5±30mg/dl, p<0.00) and triglyceride levels (144.5±93mg/dl vs 138±84mg/dl, p<0.00) during study period was documented. On the contrary, a significant elevation in HDL cholesterol levels was observed (49.2±14mg/dl vs 49.9±16mg/dl, p<0.00). The incidence of diabetic complications throughout the study period was low, with a incidence of coronary heart disease of 6.2%, peripheral arterial disease 3%, ischemic stroke 2.8%, diabetic foot 11.2%, nephropathy 5.9%, retinopathy 4.5%, and neuropathy 3%. Metabolic control in T2D patients attended in primary care in the Community of Madrid throughout 3 years is adequate and is accompanied by low percent of chronic diabetic complications during this period of follow-up. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Subjective Global Nutritional Assessment for children.

    PubMed

    Secker, Donna J; Jeejeebhoy, Khursheed N

    2007-04-01

    Subjective Global Assessment (SGA), a method of nutritional assessment based on clinical judgment, has been widely used to assess the nutritional status of adults for both clinical and research purposes. Foreseeing benefits of its use in children, we chose to adapt SGA and test its validity and reproducibility in the pediatric population. We prospectively evaluated the preoperative nutritional status of 175 children (aged 31 d to 17.9 y) having major thoracic or abdominal surgery with the use of Subjective Global Nutritional Assessment (SGNA) and commonly used objective measurements. Each child underwent nutritional assessment by 2 independent assessors, one performing measurements of anthropometrics and handgrip strength and one performing SGNA. To test interrater reproducibility, 78 children had SGNA performed by a third assessor. Occurrence of nutrition-associated complications was documented for 30 d postoperatively. SGNA successfully divided children into 3 groups (well nourished, moderately malnourished, severely malnourished) with different mean values for various anthropometric and biochemical measures (P < 0.05). Malnourished children had higher rates of infectious complications than did well-nourished children (P = 0.042). Postoperative length of stay was longer for malnourished children (8.2 +/- 10 d) than for well-nourished children (5.3 +/- 5.4 d) (P = 0.002). No objective nutritional measures showed association with outcomes, with the exception of serum albumin, which was not clinically predictive because mean concentrations were in the normal range irrespective of the presence or absence of complications. SGNA is a valid tool for assessing nutritional status in children and identifying those at higher risk of nutrition-associated complications and prolonged hospitalizations.

  2. Three novel lanthanide metal-organic frameworks (Ln-MOFs) constructed by unsymmetrical aromatic dicarboxylatic tectonics: synthesis, crystal structures and luminescent properties.

    PubMed

    Wu, Ya-Pan; Li, Dong-Sheng; Xia, Wei; Guo, Sha-Sha; Dong, Wen-Wen

    2014-09-11

    Three novel Ln(III)-based coordination polymers, {[Ln2 (2,4-bpda)3 (H2O)x]·yH2O}n (Ln = La (III) (1), x = 2, y = 0, Ce (III) (2), Pr (III) (3), x = 4, y = 1) (2,4-H2bpda = benzophenone-2,4-dicarboxylic acid) have been prepared via a solvothermal method and characterized by elemental analysis, IR, and single-crystal X-ray diffraction techniques. Complex 1 exhibits a 3D complicated framework with a new 2-nodal (3,7)-connected (42·5) (44·51·66·8) topology. Complexes 2 and 3 are isomorphous, and feature a 3D 4-connected (65·8)-CdSO4 network. Moreover, solid-state properties such as thermal stabilities and luminescent properties of 1 and 2 were also investigated. Complex 1 crystallized in a monoclinic space group P21/c with a = 14.800 (3), b = 14.500 (3), c = 18.800 (4) Å, β = 91.00 (3), V = 4033.9 (14) Å3 and Z = 4. Complex 2 crystallized in a monoclinic space group Cc with a = 13.5432 (4), b = 12.9981 (4), c = 25.7567 (11) Å, β = 104.028 (4), V = 1374.16 (7) Å3 and Z = 4.

  3. Application of full-scale three-dimensional models in patients with rheumatoid cervical spine.

    PubMed

    Mizutani, Jun; Matsubara, Takeshi; Fukuoka, Muneyoshi; Tanaka, Nobuhiko; Iguchi, Hirotaka; Furuya, Aiharu; Okamoto, Hideki; Wada, Ikuo; Otsuka, Takanobu

    2008-05-01

    Full-scale three-dimensional (3D) models offer a useful tool in preoperative planning, allowing full-scale stereoscopic recognition from any direction and distance with tactile feedback. Although skills and implants have progressed with various innovations, rheumatoid cervical spine surgery remains challenging. No previous studies have documented the usefulness of full-scale 3D models in this complicated situation. The present study assessed the utility of full-scale 3D models in rheumatoid cervical spine surgery. Polyurethane or plaster 3D models of 15 full-sized occipitocervical or upper cervical spines were fabricated using rapid prototyping (stereolithography) techniques from 1-mm slices of individual CT data. A comfortable alignment for patients was reproduced from CT data obtained with the patient in a comfortable occipitocervical position. Usefulness of these models was analyzed. Using models as a template, appropriate shape of the plate-rod construct could be created in advance. No troublesome Halo-vests were needed for preoperative adjustment of occipitocervical angle. No patients complained of dysphasia following surgery. Screw entry points and trajectories were simultaneously determined with full-scale dimensions and perspective, proving particularly valuable in cases involving high-riding vertebral artery. Full-scale stereoscopic recognition has never been achieved with any existing imaging modalities. Full-scale 3D models thus appear useful and applicable to all complicated spinal surgeries. The combination of computer-assisted navigation systems and full-scale 3D models appears likely to provide much better surgical results.

  4. A review of blood transfusions in a trauma unit for young children.

    PubMed

    Salverda, M; Ketharanathan, N; Van Dijk, M; Beltchev, E; Buys, H; Numanoglu, A; Van As, A B

    2017-02-27

    Trauma is the leading cause of mortality and morbidity worldwide. Blood transfusions play an incremental role in the acute phase, yet practice varies owing to variations in transfusion thresholds and concerns about potential complications, especially in children. To evaluate protocol adherence to blood transfusion thresholds in paediatric trauma patients and determine the degree of blood product wastage, as defined by discarded units. A retrospective, descriptive study of trauma patients (age 0 - 13 years) who received a blood transfusion in the trauma unit at Red Cross War Memorial Children's Hospital, Cape Town, South Africa, over a 5.5-year period (1 January 2009 - 1 July 2014). Haemoglobin (Hb) transfusion thresholds were defined as 10 g/dL for neurotrauma patients and patients requiring skin grafting or a musculocutaneous flap (group 1). All other trauma patients had an Hb transfusion threshold of 7 g/dL (group 2). A total of 144 patients were included (mean age 5.2 years (standard deviation (SD) 3.3), 68.1% male). The mean Hb increase after transfusion was 3.5 g/dL (SD 1.7). Adherence to the transfusion Hb threshold protocol was 96.7% for group 1 v. 34.0% for group 2. No complications were reported. Average blood wastage was 3.5 units per year during the study period. Adherence to paediatric blood transfusion protocol was low in the Hb threshold group <7 g/dL. However, transfusion-related complications and wastage were minimal. Further prospective research is required to determine optimal blood transfusion guidelines for paediatric trauma patients.

  5. New method of limb deformities correction in children.

    PubMed Central

    Atar, D.; Lehman, W. B.; Grant, A. D.; Strongwater, A.; Frankel, V. H.; Posner, M.; Golyakhovsky, V.

    1992-01-01

    A new "bloodless" technique (Ilizarov) was used to correct 36 limb deformities in 29 children. There were six leg length discrepancies, five achondroplasias, four deformed feet, five joint contractures, one rotational deformity of tibia, and in three the apparatus was used as an external fixator after corrective osteotomy. Lengthening was accomplished in 15 of the 16 procedures (93%). Average increase in femur length was 10 cm (32%), in tibial length 7.5 cm (30%), in humerus 11 cm (40%). Bony union was achieved in two out of five pseudoarthroses. Four deformed feet were fully corrected. Joint contractures were corrected in four out of five. The complication rate is as high as in other methods but with the Ilizarov apparatus, longer segments of bone were lengthened and more complex deformities were treated. Complications lessened as experience was gained. Images Fig. 1a,b Fig. 1 Fig. 1c Fig. 1d Fig. 1e Fig. 2a Fig. 2b Fig. 2c Fig. 2d Fig. 2e Fig. 3a Fig. 3b Fig. 3c Fig. 3d Fig. 4a Fig. 4b Fig. 4c Fig. 4d Fig. 4e Fig. 5a Fig. 5b Fig. 5c Fig. 5d PMID:1490205

  6. Standardized Protocol for Virtual Surgical Plan and 3-Dimensional Surgical Template-Assisted Single-Stage Mandible Contour Surgery.

    PubMed

    Fu, Xi; Qiao, Jia; Girod, Sabine; Niu, Feng; Liu, Jian Feng; Lee, Gordon K; Gui, Lai

    2017-09-01

    Mandible contour surgery, including reduction gonioplasty and genioplasty, has become increasingly popular in East Asia. However, it is technically challenging and, hence, leads to a long learning curve and high complication rates and often needs secondary revisions. The increasing use of 3-dimensional (3D) technology makes accurate single-stage mandible contour surgery with minimum complication rates possible with a virtual surgical plan (VSP) and 3-D surgical templates. This study is to establish a standardized protocol for VSP and 3-D surgical templates-assisted mandible contour surgery and evaluate the accuracy of the protocol. In this study, we enrolled 20 patients for mandible contour surgery. Our protocol is to perform VSP based on 3-D computed tomography data. Then, design and 3-D print surgical templates based on preoperative VSP. The accuracy of the method was analyzed by 3-D comparison of VSP and postoperative results using detailed computer analysis. All patients had symmetric, natural osteotomy lines and satisfactory facial ratios in a single-stage operation. The average relative error of VSP and postoperative result on the entire skull was 0.41 ± 0.13 mm. The average new left gonial error was 0.43 ± 0.77 mm. The average new right gonial error was 0.45 ± 0.69 mm. The average pognion error was 0.79 ± 1.21 mm. Patients were very satisfied with the aesthetic results. Surgeons were very satisfied with the performance of surgical templates to facilitate the operation. Our standardized protocol of VSP and 3-D printed surgical templates-assisted single-stage mandible contour surgery results in accurate, safe, and predictable outcome in a single stage.

  7. Structural color mechanism in the Papilio blumei butterfly.

    PubMed

    Lo, Mei-Ling; Lee, Cheng-Chung

    2014-02-01

    The structural color found in biological systems has complicated nanostructure. It is very important to determine its color mechanism. In this study, the 2D photonic crystal structures of the Papilio blumei butterfly were constructed, and the corresponding reflectance spectra were simulated by the finite-difference time-domain method. The structural color of the butterfly depends on the incident angle of light, film thickness, film material (film refractive index), and the size of the air hole (effective refractive index). Analysis of simulations can help us understand the hue, brightness, and saturation of structural color on the butterfly wing. As a result, the analysis can help us fabricate expected structural color.

  8. Patient stratification in the management of acute bacterial exacerbation of chronic bronchitis: the role of levofloxacin 750 mg.

    PubMed

    Martinez, F J; Grossman, R F; Zadeikis, N; Fisher, A C; Walker, K; Ambruzs, M E; Tennenberg, A M

    2005-06-01

    This is the first prospective clinical trial in which patients with acute bacterial exacerbation of chronic bronchitis have been stratified by degree of underlying illness. Uncomplicated patients were randomised to levofloxacin 750 mg once daily (q.d.) for 3 days or azithromycin q.d. for 5 days. Complicated patients were randomised to levofloxacin 750 mg q.d. for 5 days or amoxicillin 875 mg/clavulanate 125 mg twice daily for 10 days. Regardless of therapy, complicated patients demonstrated lower clinical and microbiological success than uncomplicated patients. Clinical success for clinically evaluable patients was similar for levofloxacin and azithromycin (93.0 versus 90.1%, respectively), and levofloxacin and amoxicillin/clavulanate (79.2 versus 81.7%, respectively). For microbiologically evaluable patients, clinical response to levofloxacin for 3 days was superior to azithromycin for 5 days (96.3 versus 87.4%, respectively), and levofloxacin for 5 days was similar to amoxicillin/clavulanate for 10 days (81.4 versus 80.9%, respectively). Microbiological eradication was superior for levofloxacin for 3 days compared with azithromycin for 5 days (93.8 versus 82.8%, respectively), and similar for levofloxacin and amoxicillin/clavulanate for 10 days (81.4 versus 79.8%, respectively). In conclusion, levofloxacin 750 mg for 3 days was comparable to azithromycin for 5 days for uncomplicated patients with acute bacterial exacerbation of chronic bronchitis, while 5 days of 750 mg levofloxacin was comparable to 10 days of amoxicillin/clavulanate for complicated acute bacterial exacerbation of chronic bronchitis.

  9. [Myasthenia gravis, Graves-Basedow disease and other autoimmune diseases in patient with diabetes type 1 - APS-3 case report, therapeutic complications].

    PubMed

    Klenczar, Karolina; Deja, Grażyna; Kalina-Faska, Barbara; Jarosz-Chobot, Przemysława

    2017-01-01

    Diabetes type 1(T1D) is the most frequent form of diabetes in children and young people, which essence is autoimmune destruction of pancreatic B cells islet. Co-occurrence of other autoimmune diseases is observed in children with T1D, the most often are: Hashimoto disease or coeliac disease. We report the case of the patient, who presents coincidence of T1D with other rare autoimmune diseases such as: Graves - Basedow disease, myasthenia gravis, vitiligo and IgA deficiency. All mentioned diseases significantly complicated both endocrine and diabetic treatment of our patient and they negatively contributed her quality of life. The clinical picture of the case allows to recognize one of the autoimmune polyendocrine syndromes: APS-3 and is associated with still high risk of developing another autoimmune disease. © Polish Society for Pediatric Endocrinology and Diabetology.

  10. An audit of diabetes care at 3 centres in Alexandria.

    PubMed

    Abou El-Enein, N Y; Abolfotouh, M A

    2008-01-01

    Selected indicators for structure, process and outcome of care were used to audit diabetes care in 3 centres in Alexandria. Structure was poor: main problems included absence of appointment and recall system, deficiencies in laboratory resources and lack of educational material. Process of care was poor for 69.2% of patients: deficiencies included absence of essential information in records and missing some essential clinical examinations. Degree of control was poor for 49.2% of patients and only 30.6% had no complications. Compliance to appointment was good for about 80% of patients. Better outcome (fewer complications and higher compliance) was significantly associated with poor process of care. This cannot, however, be considered a valid predictor of outcome as good care might be initiated by the presence of complications.

  11. Congenital aural atresia and stenosis: surgery strategies and long-term results.

    PubMed

    Li, Chenlong; Zhang, Tianyu; Fu, Yaoyao; Qing, Fenghua; Chi, Fanglu

    2014-07-01

    To compare the patients who underwent surgery for congenital aural atresia (CAA) with congenital aural stenosis (CAS) for the stability of hearing results and complications during long-term follow-up. Retrospective review. Seventy-five CAA patients and fifty CAS patients who underwent congenital meatoplasty with canalplasty and tympanoplasty between 2007 and 2012. Paired comparison analyses detected no significant difference in preoperative ABG but significant changes in postoperative ABG, ΔABG, the number of ABG < 30 dB and ABG < 10 dB between CAA and CAS. Complications such as postoperative stenosis, bony regrowth, external aural canal (EAC) infection, EAC eczema, total deaf, and lateralization of the tympanic membrane (TM) were observed in 61.3% of patients with CAA and 20% of patients with CAS. Chi square test detected significant differences in complications between patients with CAA and CAS (χ(2) = 20.73, p < 0.01). Meatoplasty with canalplasty and tympanoplasty in individuals with CAS can yield reliable and lasting positive hearing results with a low incidence of severe complications. The existence and preoperative condition of patients' TM and EAC skin helped improve hearing results and decrease the incidence of complications. However, the final hearing results and complications required stricter indications for CAA patients.

  12. Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3- and 7-tesla scans.

    PubMed

    Nowinski, Wieslaw L; Chua, Beng Choon; Volkau, Ihar; Puspitasari, Fiftarina; Marchenko, Yevgen; Runge, Val M; Knopp, Michael V

    2010-12-01

    The most severe complication of deep brain stimulation (DBS) is intracranial hemorrhage. Detailed knowledge of the cerebrovasculature could reduce the rate of this disorder. Morphological scans typically acquired in stereotactic and functional neurosurgery (SFN) by using 1.5-T (or sometimes even 3-T) imaging units poorly depict the vasculature. Advanced angiographic imaging, including 3- and 7-T 3D time-of-flight and susceptibility weighted imaging as well as 320-slice CT angiography, depict the vessels in great detail. However, these acquisitions are not used in SFN clinical practice, and robust methods for their processing are not available yet. Therefore, the authors proposed the use of a detailed 3D stereotactic cerebrovascular atlas to assist in SFN planning and to potentially reduce DBS-induced hemorrhage. A very detailed 3D cerebrovascular atlas of arteries, veins, and dural sinuses was constructed from multiple 3- and 7-T scans. The atlas contained>900 vessels, each labeled with a name and diameter with the smallest having a 90-μm diameter. The cortical areas, ventricular system, and subcortical structures were fully segmented and labeled, including the main stereotactic target structures: subthalamic nucleus, ventral intermediate nucleus of the thalamus, and internal globus pallidus. The authors also developed a computer simulator with the embedded atlas that was able to compute the effective electrode trajectory by minimizing penetration of the cerebrovascular system and vital brain structures by a DBS electrode. The simulator provides the neurosurgeon with functions for atlas manipulation, target selection, trajectory planning and editing, 3D display and manipulation, and electrode-brain penetration calculation. This simulation demonstrated that a DBS electrode inserted in the middle frontal gyrus may intersect several arteries and veins including 1) the anteromedial frontal artery of the anterior cerebral artery as well as the prefrontal artery and the precentral sulcus artery of the middle cerebral artery (range of diameters 0.4-0.6 mm); and 2) the prefrontal, anterior caudate, and medullary veins (range of diameters 0.1-2.3 mm). This work also shows that field strength and pulse sequence have a substantial impact on vessel depiction. The numbers of 3D vascular segments are 215, 363, and 907 for 1.5-, 3-, and 7-T scans, respectively. Inserting devices into the brain during microrecording and stimulation may cause microbleeds not discernible on standard scans. A small change in the location of the DBS electrode can result in a major change for the patient. The described simulation increases the neurosurgeon's awareness of this phenomenon. The simulator enables the neurosurgeon to analyze the spatial relationships between the track and the cerebrovasculature, ventricles, subcortical structures, and cortical areas, which allows the DBS electrode to be placed more effectively, and thus potentially reducing the invasiveness of the stimulation procedure for the patient.

  13. Lightweight Towed Howitzer Demonstrator. Phase 1 and Partial Phase 2. Volume D3. Part 1. Structural Analysis of System.

    DTIC Science & Technology

    1987-04-01

    Volume D3 - Part I Structural Analysis of System DTIC ELECTE a MApril 1987 SE 03 O0 Contract Number DAAA21-86-C-0047 FMC CORPORATION Northern Ordnance... system , In turn. facilitated crew reductilon via hydraulic emplacement, .four-way Joystick tube- lay, and _power ralming. . MC completed C;oncep)t...D3 Structural Analysis of System PART I D3/050 Table of Contents D3/100 Structural Analysis of SystemUD3/110 CXL Memo: October 3, 1986 D3/120 o

  14. Glycation of H1 Histone by 3-Deoxyglucosone: Effects on Protein Structure and Generation of Different Advanced Glycation End Products

    PubMed Central

    Ashraf, Jalaluddin Mohammad; Rabbani, Gulam; Ahmad, Saheem; Hasan, Qambar; Khan, Rizwan Hasan; Alam, Khursheed; Choi, Inho

    2015-01-01

    Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications. PMID:26121680

  15. Hypoalbuminaemia-a marker of malnutrition and predictor of postoperative complications and mortality after hip fractures.

    PubMed

    Aldebeyan, Sultan; Nooh, Anas; Aoude, Ahmed; Weber, Michael H; Harvey, Edward J

    2017-02-01

    Our aim was to determine the effect of hypoalbuminaemia as a marker of malnutrition on the 30-day postoperative complication rate and mortality in patients receiving surgical treatment for hip fractures using the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. We analyzed all patients admitted with hip fractures receiving surgical treatment from 2011 to 2013. Patients were dichotomized based on their albumin levels; hypoalbuminaemia (albumin <3.5g/dL), and nonhypoalbuminaemia (albumin >3.5g/dL). Patient demographics, postoperative complications, and length of stay were analysed. Logistic regression analysis was conducted to assess the ability of albumin level for predicting postoperative complications, length of stay, and mortality. A total of 10,117 patients with hip fractures were identified with 5414 patients with normal albumin levels, and 4703 with low albumin. Multivariate analysis showed that when controlling for comorbidities; hypoalbuminaemia alone was a predictor of postoperative complications (death, unplanned intubation, being on a ventilator >48h, sepsis, and blood transfusion), and increased length of stay (6.90±7.23 versus 8.44±8.70, CI 0.64-1.20, P<0.001). Hypoalbuminaemia alone can predict postoperative outcomes in patients with hip fractures. Furthermore, patients with hypoalbuminaemia had a longer hospital length of stay. Further studies are needed to assess whether nutritional support can improve postoperative complications in patients with hypoalbuminaemia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PSS-3D1D: an improved 3D1D profile method of protein fold recognition for the annotation of twilight zone sequences.

    PubMed

    Ganesan, K; Parthasarathy, S

    2011-12-01

    Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However, for the twilight zone sequences which have only 15-25% identity, the pair-wise comparison methods are inadequate and the annotation becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score (w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method. Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The web based PSS-3D1D method is freely available in the PredictFold server at http://bioinfo.bdu.ac.in/servers/ .

  17. The anatomy of E-Learning tools: Does software usability influence learning outcomes?

    PubMed

    Van Nuland, Sonya E; Rogers, Kem A

    2016-07-08

    Reductions in laboratory hours have increased the popularity of commercial anatomy e-learning tools. It is critical to understand how the functionality of such tools can influence the mental effort required during the learning process, also known as cognitive load. Using dual-task methodology, two anatomical e-learning tools were examined to determine the effect of their design on cognitive load during two joint learning exercises. A.D.A.M. Interactive Anatomy is a simplistic, two-dimensional tool that presents like a textbook, whereas Netter's 3D Interactive Anatomy has a more complex three-dimensional usability that allows structures to be rotated. It was hypothesized that longer reaction times on an observation task would be associated with the more complex anatomical software (Netter's 3D Interactive Anatomy), indicating a higher cognitive load imposed by the anatomy software, which would result in lower post-test scores. Undergraduate anatomy students from Western University, Canada (n = 70) were assessed using a baseline knowledge test, Stroop observation task response times (a measure of cognitive load), mental rotation test scores, and an anatomy post-test. Results showed that reaction times and post-test outcomes were similar for both tools, whereas mental rotation test scores were positively correlated with post-test values when students used Netter's 3D Interactive Anatomy (P = 0.007), but not when they used A.D.A.M. Interactive Anatomy. This suggests that a simple e-learning tool, such as A.D.A.M. Interactive Anatomy, is as effective as more complicated tools, such as Netter's 3D Interactive Anatomy, and does not academically disadvantage those with poor spatial ability. Anat Sci Educ 9: 378-390. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.

  18. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    PubMed

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  19. Metrology of deep trench etched memory structures using 3D scatterometry

    NASA Astrophysics Data System (ADS)

    Reinig, Peter; Dost, Rene; Moert, Manfred; Hingst, Thomas; Mantz, Ulrich; Moffitt, Jasen; Shakya, Sushil; Raymond, Christopher J.; Littau, Mike

    2005-05-01

    Scatterometry is receiving considerable attention as an emerging optical metrology in the silicon industry. One area of progress in deploying these powerful measurements in process control is performing measurements on real device structures, as opposed to limiting scatterometry measurements to periodic structures, such as line-space gratings, placed in the wafer scribe. In this work we will discuss applications of 3D scatterometry to the measurement of advanced trench memory devices. This is a challenging and complex scatterometry application that requires exceptionally high-performance computational abilities. In order to represent the physical device, the relatively tall structures require a high number of slices in the rigorous coupled wave analysis (RCWA) theoretical model. This is complicated further by the presence of an amorphous silicon hard mask on the surface, which is highly sensitive to reflectance scattering and therefore needs to be modeled in detail. The overall structure is comprised of several layers, with the trenches presenting a complex bow-shape sidewall that must be measured. Finally, the double periodicity in the structures demands significantly greater computational capabilities. Our results demonstrate that angular scatterometry is sensitive to the key parameters of interest. The influence of further model parameters and parameter cross correlations have to be carefully taken into account. Profile results obtained by non-library optimization methods compare favorably with cross-section SEM images. Generating a model library suitable for process control, which is preferred for precision, presents numerical throughput challenges. Details will be discussed regarding library generation approaches and strategies for reducing the numerical overhead. Scatterometry and SEM results will be compared, leading to conclusions about the feasibility of this advanced application.

  20. Microfabricating 3D Structures by Laser Origami

    DTIC Science & Technology

    2011-11-09

    10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com...materials Figure 1. (A–C) Schematic illustrating the steps in the laser origami process and (D) a resulting folded out-of-plane 3D structure. that can

  1. Homology Modeling of Dopamine D2 and D3 Receptors: Molecular Dynamics Refinement and Docking Evaluation

    PubMed Central

    Platania, Chiara Bianca Maria; Salomone, Salvatore; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio

    2012-01-01

    Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D3 (hD3) receptor has been recently solved. Based on the hD3 receptor crystal structure we generated dopamine D2 and D3 receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD3 and hD2L receptors was differentiated by means of MD simulations and D3 selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental Ki was obtained for hD3 and hD2L receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands. PMID:22970199

  2. Analytical computation of three-dimensional synthetic seismograms by Modal Summation: method, validation and applications

    NASA Astrophysics Data System (ADS)

    La Mura, Cristina; Gholami, Vahid; Panza, Giuliano F.

    2013-04-01

    In order to enable realistic and reliable earthquake hazard assessment and reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered. The propagation of seismic waves in complex laterally varying 3D layered structures is a complicated process. Analytical solutions of the elastodynamic equations for such types of media are not known. The most common approaches to the formal description of seismic wavefields in such complex structures are methods based on direct numerical solutions of the elastodynamic equations, e.g. finite-difference, finite-element method, and approximate asymptotic methods. In this work, we present an innovative methodology for computing synthetic seismograms, complete of the main direct, refracted, converted phases and surface waves in three-dimensional anelastic models based on the combination of the Modal Summation technique with the Asymptotic Ray Theory in the framework of the WKBJ - approximation. The three - dimensional models are constructed using a set of vertically heterogeneous sections (1D structures) that are juxtaposed on a regular grid. The distribution of these sections in the grid is done in such a way to fulfill the requirement of weak lateral inhomogeneity in order to satisfy the condition of applicability of the WKBJ - approximation, i.e. the lateral gradient of the parameters characterizing the 1D structure has to be small with respect to the prevailing wavelength. The new method has been validated comparing synthetic seismograms with the records available of three different earthquakes in three different regions: Kanto basin (Japan) triggered by the 1990 Odawara earthquake Mw= 5.1, Romanian territory triggered by the 30 May 1990 Vrancea intermediate-depth earthquake Mw= 6.9 and Iranian territory affected by the 26 December 2003 Bam earthquake Mw= 6.6. Besides the advantage of being a useful tool for assessment of seismic hazard and seismic risk reduction, it is characterized by high efficiency, in fact, once the study region is identified and the 3D model is constructed, the computation, at each station, of the three components of the synthetic signal (displacement, velocity, and acceleration) takes less than 3 hours on a 2 GHz CPU.

  3. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by georeferenced geological field data acquired along mountain trail transects, mainly using the MVE Field Move software application. In our experience, vertical aerophotos were sufficient to generate precise surface models in all but the steepest mountain cliffs. Therefore, using existing vertical photoimagery (where available) is a very cost-effective alternative to organizing shooting campaigns with rented aircraft. For handling reasonably large models (cca 3 x 3 km, up to 10 million triangles), a low-end computer workstation with mid-range professional 3D graphic card is sufficient. The biggest bottleneck is the photogrammetric processing step which is time-consuming (10s of hrs) and has large RAM requirements, although those can be offset by dividing models into smaller parts. The major problem with geological modeling software like Gocad or Move is that it at present does not handle well projecting of phototextures. Whereas Photoscan-generated orthophotos can be vertically projected onto mesh models, this results in unacceptable distortions and gaps in subvertical or overhanging parts of the mountain cliff models. A real 3D UV texture mapping method, such as implemented in Photoscan, would be required to realistically model such areas. This limitations notwithstanding, digital geological mapping of photogrammetric models of mountains is a very promising, cost- and time-effective method for rapid structural interpretation and mapping of barren mountainous terrains, particularly when it is complemented by field measurements and observations.

  4. Quantum Corral Wave-function Engineering

    NASA Astrophysics Data System (ADS)

    Correa, Alfredo; Reboredo, Fernando; Balseiro, Carlos

    2005-03-01

    We present a theoretical method for the design and optimization of quantum corrals[1] with specific electronic properties. Taking advantage that spins are subject to a RKKY interaction that is directly controlled by the scattering of the quantum corral, we design corral structures that reproduce spin Hamiltonians with coupling constants determined a priori[2]. We solve exactly the bi-dimensional scattering problem for each corral configuration within the s-wave approximation[3] and subsequently the geometry of the quantum corral is optimized by means of simulated annealing[4] and genetic algorithms[5]. We demonstrate the possibility of automatic design of structures with complicated target electronic properties[6]. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48. [1] M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 403, 512 (2000) [2] D. P. DiVincenzo et al., Nature 408, 339 (2000) [3] G. A. Fiete and E. J. Heller, Rev. Mod. Phys. 75, 933 (2003) [4] M. R. A. T. N. Metropolis et al., J. Chem. Phys. 1087 (1953) [5] E. Aarts and J. K. Lenstra, eds. Local search in combinatorial problems (Princeton University Press, 1997) [6] A. A. Correa, F. Reboredo and C. Balseiro, Phys. Rev. B (in press).

  5. Surface-Embedded Stretchable Electrodes by Direct Printing and their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures.

    PubMed

    Song, Jun Hyuk; Kim, Young-Tae; Cho, Sunghwan; Song, Woo-Jin; Moon, Sungmin; Park, Chan-Gyung; Park, Soojin; Myoung, Jae Min; Jeong, Unyong

    2017-11-01

    Printing is one of the easy and quick ways to make a stretchable wearable electronics. Conventional printing methods deposit conductive materials "on" or "inside" a rubber substrate. The conductors made by such printing methods cannot be used as device electrodes because of the large surface topology, poor stretchability, or weak adhesion between the substrate and the conducting material. Here, a method is presented by which conductive materials are printed in the way of being surface-embedded in the rubber substrate; hence, the conductors can be widely used as device electrodes and circuits. The printing process involves a direct printing of a metal precursor solution in a block-copolymer rubber substrate and chemical reduction of the precursor into metal nanoparticles. The electrical conductivity and sensitivity to the mechanical deformation can be controlled by adjusting the number of printing operations. The fabrication of highly sensitive vibration sensors is thus presented, which can detect weak pulses and sound waves. In addition, this work takes advantage of the viscoelasticity of the composite conductor to fabricate highly conductive stretchable circuits for complicated 3D structures. The printed electrodes are also used to fabricate a stretchable electrochemiluminescence display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A computational approach for coupled 1D and 2D/3D CFD modelling of pulse Tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.

    2017-12-01

    The physics behind Stirling-type cryocoolers are complicated. One dimensional (1D) simulation tools offer limited details and accuracy, in particular for cryocoolers that have non-linear configurations. Multi-dimensional Computational Fluid Dynamic (CFD) methods are useful but are computationally expensive in simulating cyrocooler systems in their entirety. In view of the fact that some components of a cryocooler, e.g., inertance tubes and compliance tanks, can be modelled as 1D components with little loss of critical information, a 1D-2D/3D coupled model was developed. Accordingly, one-dimensional - like components are represented by specifically developed routines. These routines can be coupled to CFD codes and provide boundary conditions for 2D/3D CFD simulations. The developed coupled model, while preserving sufficient flow field details, is two orders of magnitude faster than equivalent 2D/3D CFD models. The predictions show good agreement with experimental data and 2D/3D CFD model.

  7. Study on embedding fiber Bragg grating sensor into the 3D printing structure for health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Ruiya; Tan, Yuegang; Zhou, Zude; Fang, Liang; Chen, Yiyang

    2016-10-01

    3D printing technology is a rapidly developing manufacturing technology, which is known as a core technology in the third industrial revolution. With the continuous improvement of the application of 3D printing products, the health monitoring of the 3D printing structure is particularly important. Fiber Bragg grating (FBG) sensing technology is a new type of optical sensing technology with unique advantages comparing to traditional sensing technology, and it has great application prospects in structural health monitoring. In this paper, the FBG sensors embedded in the internal structure of the 3D printing were used to monitor the static and dynamic strain variation of 3D printing structure during loading process. The theoretical result and experimental result has good consistency and the characteristic frequency detected by FBG sensor is consistent with the testing results of traditional accelerator in the dynamic experiment. The results of this paper preliminary validate that FBG embedded in the 3D printing structure can effectively detecting the static and dynamic stain change of the 3D printing structure, which provide some guidance for the health monitoring of 3D printing structure.

  8. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical structure located in layer number J of an N-layered elastic medium. The algorithm developed for modeling, and the method of mapping and monitoring of heterogenic highly complicated two-phase medium can be used for managing viscous oil extraction in mining conditions and light oil in sub-horizontal boreholes. The demand for effective economic parameters and fuller extraction of oil and gas from deposits dictates the necessity of developing new geotechnology based on the fundamental achievements in the area of geophysics and geomechanics

  9. Virtually fabricated guide for placement of the C-tube miniplate.

    PubMed

    Paek, Janghyun; Jeong, Do-Min; Kim, Yong; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2014-05-01

    This paper introduces a virtually planned and stereolithographically fabricated guiding system that will allow the clinician to plan carefully for the best location of the device and to achieve an accurate position without complications. The scanned data from preoperative dental casts were edited to obtain preoperative 3-dimensional (3D) virtual models of the dentition. After the 3D virtual models were repositioned, the 3D virtual surgical guide was fabricated. A surgical guide was created onscreen, and then these virtual guides were materialized into real ones using the stereolithographic technique. Whereas the previously described guide required laboratory work to be performed by the orthodontist, our technique is more convenient because the laboratory work is done remotely by computer-aided design/computer-aided manufacturing technology. Because the miniplate is firmly held in place as the patient holds his or her mandibular teeth against the occlusal pad of the surgical guide, there is no risk that the miniscrews can slide on the bone surface during placement. The software program (2.5-dimensional software) in this study combines 2-dimensional cephalograms with 3D virtual dental models. This software is an effective and efficient alternative to 3D software when 3D computed tomography data are not available. To confidently and safely place a miniplate with screw fixation, a simple customized guide for an orthodontic miniplate was introduced. The use of a custom-made, rigid guide when placing miniplates will minimize complications such as vertical mislocation or slippage of the miniplate during placement. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. LASER BIOLOGY AND MEDICINE: Visualisation of details of a complicated inner structure of model objects by the method of diffusion optical tomography

    NASA Astrophysics Data System (ADS)

    Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.; Shutov, I. V.

    2002-11-01

    An approximate algorithm is tested for solving the problem of diffusion optical tomography in experiments on the visualisation of details of the inner structure of strongly scattering model objects containing scattering and semitransparent inclusions, as well as absorbing inclusions located inside other optical inhomogeneities. The stability of the algorithm to errors is demonstrated, which allows its use for a rapid (2 — 3 min) image reconstruction of the details of objects with a complicated inner structure.

  11. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets.

    PubMed

    Arafat, Basel; Wojsz, Magdalena; Isreb, Abdullah; Forbes, Robert T; Isreb, Mohammad; Ahmed, Waqar; Arafat, Tawfiq; Alhnan, Mohamed A

    2018-06-15

    Fused deposition modelling (FDM) 3D printing has shown the most immediate potential for on-demand dose personalisation to suit particular patient's needs. However, FDM 3D printing often involves employing a relatively large molecular weight thermoplastic polymer and results in extended release pattern. It is therefore essential to fast-track drug release from the 3D printed objects. This work employed an innovative design approach of tablets with unique built-in gaps (Gaplets) with the aim of accelerating drug release. The novel tablet design is composed of 9 repeating units (blocks) connected with 3 bridges to allow the generation of 8 gaps. The impact of size of the block, the number of bridges and the spacing between different blocks was investigated. Increasing the inter-block space reduced mechanical resistance of the unit, however, tablets continued to meet pharmacopeial standards for friability. Upon introduction into gastric medium, the 1 mm spaces gaplet broke into mini-structures within 4 min and met the USP criteria of immediate release products (86.7% drug release at 30 min). Real-time ultraviolet (UV) imaging indicated that the cellulosic matrix expanded due to swelling of hydroxypropyl cellulose (HPC) upon introduction to the dissolution medium. This was followed by a steady erosion of the polymeric matrix at a rate of 8 μm/min. The design approach was more efficient than a comparison conventional formulation approach of adding disintegrants to accelerate tablet disintegration and drug release. This work provides a novel example where computer-aided design was instrumental at modifying the performance of solid dosage forms. Such an example may serve as the foundation for a new generation of dosage forms with complicated geometric structures to achieve functionality that is usually achieved by a sophisticated formulation approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Epidémiologie et facteurs de risque des complications respiratoires majeures après chirurgie de l'aorte abdominale au CHU Ibn Sina, Maroc

    PubMed Central

    Awab, Almahdi; Elahmadi, Brahim; Lamkinsi, Tarik; El Moussaoui, Rachid; El Hijri, Ahmed; Azzouzi, Abderrahim; Alilou, Mustapha

    2013-01-01

    Introduction L'incidence des complications respiratoires postopératoires (CRPO) reste très diversement appréciées selon les critères diagnostiques retenues dans les différentes études, ce qui la fait varier de 5 à plus de 50%. Les CRPO majeurs après chirurgie de l'aorte abdominale sont responsables d'une grande morbi-mortalité pouvant aller jusqu’à 36%, d'une durée d'hospitalisation et d'un coût plus importants. Ainsi dans l'optique d'améliorer notre prise en charge périopératoire de la chirurgie de l'aorte, nous avons décidé de mener une étude pour dresser le profil épidémiologique et déterminer les facteurs de risque des complications respiratoires dans notre contexte Méthodes Il s'agit d'une étude de cohorte rétrospective du mois de Janvier 2007 au mois de décembre 2011 portant sur l'ensemble des patients opérés pour pathologie aortique au bloc opératoire central de l'hôpital Ibn Sina de Rabat, Maroc. Résultats Cent vingt cinq patients ont été inclus dans notre étude, 24 patients ont été opérés pour anévrysme de l'aorte abdominale et 101 patients pour lésion occlusive aortoiliaque. Dans notre série 22 malades soit 17,6% ont présenté une complication respiratoire majeure avec, une reventilation dans 4,8% des cas, une difficulté de sevrage de la ventilation artificielle dans 3,2% des cas, une pneumopathie dans 4% des cas, un syndrome de détresse respiratoire aigue (SDRA) dans 4% des cas et une nécessité de fibroaspiration bronchique dans 1,6% des cas. En analyse univariée: l’âge, la présence d'une BPCO avec dyspnée stade 3 ou 4, la présence d'une anomalie à l'EFR préopératoire, la présence d'un stade avancé (III ou IV) de LOAI et la reprise chirurgicale étaient statistiquement associés à la survenue d'une complication respiratoire postopératoire. En analyse multivariée, seule une anomalie à l'EFR en préopératoire constituait un facteur de risque indépendant de survenue d'une complication respiratoire postopératoire dans notre série avec un Odds Ratio (OR): 11,5; un Intervalle de Confiance (IC) à 95% de (1,6 - 85,2) et un p = 0,016. Conclusion Au terme de notre étude, il nous parait donc nécessaire pour diminuer l'incidence des CRPO majeurs dans notre population, d'agir sur les facteurs que nous jugeons modifiables tel l'amélioration de l’état respiratoire basal moyennant une préparation respiratoire préopératoire, s'intégrant dans un véritable programme de réhabilitation et associant une rééducation à l'effort, une kinésithérapie incitative ainsi qu'une optimisation des thérapeutiques habituelles. PMID:23504435

  13. Magnetic Field Generation During the Collision of Narrow Plasma Clouds

    NASA Astrophysics Data System (ADS)

    Sakai, Jun-ichi; Kazimura, Yoshihiro; Haruki, Takayuki

    1999-06-01

    We investigate the dynamics of the collision of narrow plasma clouds,whose transverse dimension is on the order of the electron skin depth.A 2D3V (two dimensions in space and three dimensions in velocity space)particle-in-cell (PIC) collisionless relativistic code is used toshow the generation of a quasi-staticmagnetic field during the collision of narrow plasma clouds both inelectron-ion and electron-positron (pair) plasmas. The localizedstrong magnetic fluxes result in the generation of the charge separationwith complicated structures, which may be sources of electromagneticas well as Langmuir waves. We also present one applicationof this process, which occurs during coalescence of magnetic islandsin a current sheet of pair plasmas.

  14. Comparison of the Conventional Surgery and the Surgery Assisted by 3d Printing Technology in the Treatment of Calcaneal Fractures.

    PubMed

    Zheng, Wenhao; Tao, Zhenyu; Lou, Yiting; Feng, Zhenhua; Li, Hang; Cheng, Liang; Zhang, Hui; Wang, Jianshun; Guo, Xiaoshan; Chen, Hua

    2017-09-19

    This study was aimed to compare conventional surgery and surgery assisted by 3D printing technology in the treatment of calcaneal fractures. In addition, we also investigated the effect of 3D printing technology on the communication between doctors and patients. we enrolled 75 patients with calcaneal fracture from April 2014 to August 2016. They were divided randomly into two groups: 35 cases of 3D printing group, 40 cases of conventional group. The individual models were used to simulate the surgical procedures and carry out the surgery according to plan in 3D printing group. Operation duration, blood loss volume during the surgery, number of intraoperative fluoroscopy and fracture union time were recorded. The radiographic outcomes Böhler angle, Gissane angle, calcaneal width and calcaneal height and final functional outcomes including VAS and AOFAS score as well as the complications were also evaluated. Besides, we made a simple questionnaire to verify the effectiveness of the 3D-printed model for both doctors and patients. The operation duration, blood loss volume and number of intraoperative fluoroscopy for 3D printing group was 71.4 ± 6.8 minutes, 226.1 ± 22.6 ml and 5.6 ± 1.9 times, and for conventional group was 91.3 ± 11.2 minutes, 288.7 ± 34.8 ml and 8.6 ± 2.7 times respectively. There was statistically significant difference between the conventional group and 3D printing group (p < 0.05). Additionally, 3D printing group achieved significantly better radiographic results than conventional group both postoperatively and at the final follow-up (p < 0.05). However, No significant difference was noted in the final functional outcomes between the two groups. As for complications, there was no significant difference between the two groups. Furthermore, the questionnaire showed that both doctors and patients exhibited high scores of overall satisfaction with the use of a 3D printing model. This study suggested the clinical feasibility of 3D printing technology in treatment of calcaneal fractures.

  15. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper formulated a suite of comprehensive application system of seismic and electromagnetic methods for the advanced geological exploration of complicated tunnels. This research is funded by National Natural Science Foundation of China (Grant No. 41202223) .

  16. Assessment of normal tissue complications following prostate cancer irradiation: Comparison of radiation treatment modalities using NTCP models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.

    2010-09-15

    Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less

  17. Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications

    PubMed Central

    Adebiyi, Oluwafeyisetan O.; Adebiyi, Olubunmi A.; Owira, Peter M. O.

    2015-01-01

    Nucleoside Reverse Transcriptase Inhibitors (NRTIs) have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7) were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT) (groups I, II III), 50 mg/kg stavudine (d4T) (groups IV, V, VI) and 3 mL/kg of distilled water (group VII). Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy. PMID:26690471

  18. Improving fault image by determination of optimum seismic survey parameters using ray-based modeling

    NASA Astrophysics Data System (ADS)

    Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali

    2018-06-01

    In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.

  19. The correlation of fractal structures in the photospheric and the coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Georgoulis, M.; Isliker, H.; Vlahos, L.; Anastasiadis, A.; Strintzi, D.; Moussas, X.

    2009-10-01

    Context: This work examines the relation between the fractal properties of the photospheric magnetic patterns and those of the coronal magnetic fields in solar active regions. Aims: We investigate whether there is any correlation between the fractal dimensions of the photospheric structures and the magnetic discontinuities formed in the corona. Methods: To investigate the connection between the photospheric and coronal complexity, we used a nonlinear force-free extrapolation method that reconstructs the 3d magnetic fields using 2d observed vector magnetograms as boundary conditions. We then located the magnetic discontinuities, which are considered as spatial proxies of reconnection-related instabilities. These discontinuities form well-defined volumes, called here unstable volumes. We calculated the fractal dimensions of these unstable volumes and compared them to the fractal dimensions of the boundary vector magnetograms. Results: Our results show no correlation between the fractal dimensions of the observed 2d photospheric structures and the extrapolated unstable volumes in the corona, when nonlinear force-free extrapolation is used. This result is independent of efforts to (1) bring the photospheric magnetic fields closer to a nonlinear force-free equilibrium and (2) omit the lower part of the modeled magnetic field volume that is almost completely filled by unstable volumes. A significant correlation between the fractal dimensions of the photospheric and coronal magnetic features is only observed at the zero level (lower limit) of approximation of a current-free (potential) magnetic field extrapolation. Conclusions: We conclude that the complicated transition from photospheric non-force-free fields to coronal force-free ones hampers any direct correlation between the fractal dimensions of the 2d photospheric patterns and their 3d counterparts in the corona at the nonlinear force-free limit, which can be considered as a second level of approximation in this study. Correspondingly, in the zero and first levels of approximation, namely, the potential and linear force-free extrapolation, respectively, we reveal a significant correlation between the fractal dimensions of the photospheric and coronal structures, which can be attributed to the lack of electric currents or to their purely field-aligned orientation.

  20. Bioengineered 3D Scaffolds in Cancer Research: Focus on Epithelial to Mesenchymal Transition and Drug Screening.

    PubMed

    Xu, Xiaoli; Tang, LiLing

    2017-01-01

    The living environment of cancer cells is complicated and information-rich. Thus, traditional 2D culture mold in vitro cannot mimic the microenvironment of cancer cells exactly. Currently, bioengineered 3D scaffolds have been developed which can better simulate the microenvironment of tumors and fill the gap between 2D culture and clinical application. In this review, we discuss the scaffold materials used for fabrication techniques, biological behaviors of cancer cells in 3D scaffolds and the scaffold-based drug screening. A major emphasis is placed on the description of scaffold-based epithelial to mesenchymal transition and drug screening in 3D culture. By overcoming the defects of traditional 2D culture, 3D scaffolds culture can provide a simpler, safer and more reliable approach for cancer research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Case report: Osteonecrosis of the femoral head after hip arthroscopy.

    PubMed

    Scher, Danielle L; Belmont, Philip J; Owens, Brett D

    2010-11-01

    Hip arthroscopy is a common orthopaedic procedure used as a diagnostic and therapeutic tool with a multitude of surgical indications. The complication rate is reportedly between 1.3% and 23.3%. Major complications are related to traction, fluid extravasation, and iatrogenic chondral injury. Although osteonecrosis is a concern with any surgical procedure about the hip, this complication has been primarily a theoretical concern with hip arthroscopy. We report the case of a 24-year-old man who presented with a 2-year history of left hip pain. He underwent hip arthroscopy to include débridement of a torn labrum and removal of a prominent pincer lesion for femoroacetabular impingement. Traction was initiated by applying manual traction to the traction bar until 10 mm of joint distraction was obtained. Traction was removed at 90 minutes. At the 3-month followup, MRI showed osteonecrosis in the subcapital region of the left femoral head. It generally is agreed the magnitude and duration of traction during hip arthroscopy increase the risk of traction-related injuries. Only one previous case of femoral head osteonecrosis associated with hip arthroscopy has been reported, and this may have resulted from the initial traumatic event. Based on anatomic studies, the use of standard arthroscopic portals would not put at risk any dominant normal vascular structures supplying the femoral head. In contrast, the literature shows that femoral head osteonecrosis may develop secondary to a combination of increased intraarticular pressure and traction. We suspect this case of femoral head osteonecrosis after hip arthroscopy was caused by traction used in the procedure.

  2. A parallel algorithm for viewshed analysis in three-dimensional Digital Earth

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Gang, Wang; Deji, Pan; Yuan, Liu; Liuzhong, Yang; Hongbo, Wang

    2015-02-01

    Viewshed analysis, often supported by geographic information systems, is widely used in the three-dimensional (3D) Digital Earth system. Many of the analyzes involve the siting of features and real-timedecision-making. Viewshed analysis is usually performed at a large scale, which poses substantial computational challenges, as geographic datasets continue to become increasingly large. Previous research on viewshed analysis has been generally limited to a single data structure (i.e., DEM), which cannot be used to analyze viewsheds in complicated scenes. In this paper, a real-time algorithm for viewshed analysis in Digital Earth is presented using the parallel computing of graphics processing units (GPUs). An occlusion for each geometric entity in the neighbor space of the viewshed point is generated according to line-of-sight. The region within the occlusion is marked by a stencil buffer within the programmable 3D visualization pipeline. The marked region is drawn with red color concurrently. In contrast to traditional algorithms based on line-of-sight, the new algorithm, in which the viewshed calculation is integrated with the rendering module, is more efficient and stable. This proposed method of viewshed generation is closer to the reality of the virtual geographic environment. No DEM interpolation, which is seen as a computational burden, is needed. The algorithm was implemented in a 3D Digital Earth system (GeoBeans3D) with the DirectX application programming interface (API) and has been widely used in a range of applications.

  3. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    PubMed

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  4. Hamilton rating scale for depression-24 (HAM-D24) as a novel predictor for diabetic microvascular complications in type 2 diabetes mellitus patients.

    PubMed

    Pan, Shuo; Liu, Zhong-Wei; Shi, Shuang; Ma, Xun; Song, Wen-Qian; Guan, Gong-Chang; Zhang, Yong; Zhu, Shun-Ming; Liu, Fu-Qiang; Liu, Bo; Tang, Zhi-Guo; Wang, Jun-Kui; Lv, Ying

    2017-12-01

    The study was designed to investigate whether the hamilton rating scale for depression (24-items) (HAM-D 24 ) can be used to predict the diabetic microvascular complications in type 2 diabetes mellitus (T2DM) patients. 288 hospitalized patients with T2DM were enrolled. Their diabetic microvascular complications including diabetic nephropathy, diabetic retinopathy, diabetic peripheral neuropathy and diabetic foot as well as demographic, clinical data, blood samples and echocardiography were documented. All the enrolled patients received HAM-D 24 evaluation. The HAM-D 24 score and incidence of depression in T2DM patients with each diabetic microvascular complication were significantly higher than those in T2DM patients without each diabetic microvascular complication. After the adjustment of use of insulin and hypoglycemic drug, duration of T2DM, mean platelet volume, creatinine, albumin, fasting glucose, glycosylated hemoglobin type A1C, left ventricular ejection fraction, respectively, HAM-D 24 score was still significantly associated with diabetic microvascular complications (OR = 1.188-1.281, all P < 0.001). The AUC of HAM-D 24 score for the prediction of diabetic microvascular complication was 0.832 (0.761-0.902). 15 points of HAM-D 24 score was considered as the optimal cutoff with the sensitivity of 0.778 and specificity of 0.785. In summary, HAM-D 24 score may be used as a novel predictor of diabetic microvascular complications in T2DM patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evaluating the reliability, validity and minimally important difference of the Taiwanese version of the diabetes quality of life (DQOL) measurement

    PubMed Central

    Huang, I-Chan; Liu, Jung-Hua; Wu, Albert W; Wu, Ming-Yen; Leite, Walter; Hwang, Chyng-Chuang

    2008-01-01

    Background Few diabetes HRQOL instruments are available in Chinese language. We tested psychometric properties of a Diabetes Quality of Life (DQOL) in Chinese language for diabetes patients in Taiwan and estimated its minimally important differences (MIDs). Methods Data were collected from 337 patients treated in diabetes clinics of a Taiwan teaching hospital. Pearson's correlations among domain scores of the DQOL (satisfaction, impact, and worry), the D-39S (a diabetes-specific instrument, including domains of diabetes control, energy and mobility, social burden and anxiety and worry, and sexual functioning) and the RAND-12 (a generic instrument, including physical health composite (PHC) and mental health composite (MHC)) were estimated to determine convergent/discriminant validity. Known-groups validity was examined using 2-hour postprandial plasma glucose (2 h PPG), hemoglobin A1c (HbA1c)) and presence of complications (retinopathy, neuropathy, and diabetic foot complications rather than the known groups of cardiovascular and cerebrovascular complications). We used a combined anchor- and distribution-based approach to establish MIDs. Results The DQOL scores were more strongly correlated with the physical domains of the D-39S (diabetes control and energy and mobility) and RAND-12 PHC than psychological domains of the D-39S (social burden, anxiety and worry, and sexual functioning) and RAND-12 MHC. The DQOL showed satisfactory discriminative ability for the known groups of 2 h PPG and HbA1c (effect size (ES) ≥ 0.2) and retinopathy, neuropathy, and diabetic foot complications (ES ≥ 0.3), but less satisfactory for the known groups of cardiovascular and cerebrovascular complications. MIDs for the DQOL domains were 3–5 points for satisfaction, 4–5 points for impact, 6–8 points for worry, and 3–4 points for overall HRQOL. Conclusion We validated a DQOL in Chinese language for diabetes patients in Taiwan and provided MIDs to facilitate the measure of diabetes HRQOL. PMID:18957127

  6. New on-line separation workflow of microbial metabolites via hyphenation of analytical and preparative comprehensive two-dimensional liquid chromatography.

    PubMed

    Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun

    2016-10-15

    Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Total Laparoscopic Hysterectomy With Percutaneous (Percuvance) Instruments: New Frontier of Minimally Invasive Gynecological Surgery.

    PubMed

    Rossitto, Cristiano; Gueli Alletti, Salvatore; Costantini, Barbara; Fanfani, Francesco; Scambia, Giovanni

    2016-01-01

    To highlight the first case of laparoscopic hysterectomy performed with percutaneous instruments (The Percuvance System, Teleflex Incorporated, Wayne, PA). The basis of the system is a <3-mm diameter shaft that, when connected to an introducer tool tip, can be inserted percutaneously through the skin. The introducer tool tip can then be exchanged outside the body for a wide variety of 5-mm interchangeable surgical tool tips. The shaft is sufficiently strong to hold structures, and surgeons can use its interchangeable tool tips to grasp, cut, and manipulate tissue. We used a 3-dimensional high-definition 10-mm flexible tip endoscope (ENDOEYE FLEX 3D, Olympus Winter & IBE GMBH, Hamburg, Germany). Minilaparoscopy is an attractive approach for hysterectomy due to advantages such as reduced morbidities and enhanced cosmesis. However, it has not been popularized because of the lack of suitable instruments and high technical demand. The Percuvance system represents a significant advance in minimally invasive surgery. Catholic University of the Sacred Hearth, Rome, Italy. A 53-year-old, multiparous patient with endometrial endometroid cancer grade 1, Fédération Internationale de Gynécologie et d'Obstétrique stage IA. The patient provided informed consent to use the images and video of the procedure. Institutional review board approval was not required. The patient was hysteroscopically diagnosed with endometrial cancer after removal of an endometrial polyp adnexectomy. Once referred to our center, surgical staging was planned, including total hysterectomy and bilateral adnexectomy. Laparoscopy with 2 lateral percutaneous and 1 soprapubic 3-mm instruments was believed to be feasible to achieve these procedures. The operation was performed successfully with no intraoperative or postoperative complications. Operative time was 80 minutes overall, and blood loss was 50 mL. The pathology report confirmed endometrial endometroid cancer grading 1, Fédération Internationale de Gynécologie et d'Obstétrique stage IA. The patient was discharged on day 1. After 2 months, no late complications or recurrence was detected. Percutaneous total hysterectomy is technically feasible, and the use of this novel device permits surgeons to maintain a standard setting. Further studies are mandatory to define the benefits, advantages, and costs of this novel approach with respect to other minimally invasive approaches. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  8. Measurement of multiaxial ply strength by an off-axis flexure test

    NASA Technical Reports Server (NTRS)

    Crews, John H., Jr.; Naik, Rajiv A.

    1992-01-01

    An off-axis flexure (OAF) test was performed to measure ply strength under multiaxial stress states. This test involves unidirectional off-axis specimens loaded in bending, using an apparatus that allows these anisotropic specimens to twist as well as flex without the complications of a resisting torque. A 3D finite element stress analysis verified that simple beam theory could be used to compute the specimen bending stresses at failure. Unidirectional graphite/epoxy specimens with fiber angles ranging from 90 deg to 15 deg have combined normal and shear stresses on their failure planes that are typical of 45 deg plies in structural laminates. Tests for a range of stress states with AS4/3501-6 specimens showed that both normal and shear stresses on the failure plane influenced cracking resistance. This OAF test may prove to be useful for generating data needed to predict ply cracking in composite structures and may also provide an approach for studying fiber-matrix interface failures under stress states typical of structures.

  9. Enteral Nutrition Is a Risk Factor for Airway Complications in Subjects Undergoing Noninvasive Ventilation for Acute Respiratory Failure.

    PubMed

    Kogo, Mariko; Nagata, Kazuma; Morimoto, Takeshi; Ito, Jiro; Sato, Yuki; Teraoka, Shunsuke; Fujimoto, Daichi; Nakagawa, Atsushi; Otsuka, Kojiro; Tomii, Keisuke

    2017-04-01

    Early enteral nutrition is recommended for mechanically ventilated patients in several studies and guidelines. In contrast, the effects of early enteral nutrition on noninvasive ventilation (NIV) have not been investigated extensively. The lack of an established method of airway protection suggests that enteral nutrition administration to these patients could increase airway complications and worsen outcomes. Between January 2007 and January 2015, 150 patients were admitted to our respiratory department for acute respiratory failure and received NIV for >48 h. Of these, 107 subjects incapable of oral intake were retrospectively analyzed. Clinical background and complications were compared in subjects who did and did not receive enteral nutrition. Sixty of the 107 subjects (56%) incapable of oral intake who received NIV also received enteral nutrition. Serum albumin concentration was significantly lower in subjects who received enteral nutrition than in those who did not (mean 2.7 ± 0.68 mg/dL vs 3.0 ± 0.75 mg/dL, P = .048). The rate of airway complications was significantly higher (53% [32/60] vs 32% [15/47], P = .03), and median NIV duration was significantly longer (16 [interquartile range 7-43] d vs 8 [5-20] d, P = .02) in subjects who received enteral nutrition than in those who did not. Multivariate analysis showed that enteral nutrition was unrelated to in-hospital mortality. Among subjects receiving NIV, enteral nutrition was associated with increased risk of airway complications but did not affect mortality. Enteral nutrition should be carefully considered in these patients. Copyright © 2017 by Daedalus Enterprises.

  10. 3D Printed Abdominal Aortic Aneurysm Phantom for Image Guided Surgical Planning with a Patient Specific Fenestrated Endovascular Graft System

    PubMed Central

    Meess, Karen M.; Izzo, Richard L.; Dryjski, Maciej L.; Curl, Richard E.; Harris, Linda M.; Springer, Michael; Siddiqui, Adnan H.; Rudin, Stephen; Ionita, Ciprian N.

    2017-01-01

    Following new trends in precision medicine, Juxatarenal Abdominal Aortic Aneurysm (JAAA) treatment has been enabled by using patient-specific fenestrated endovascular grafts. The X-ray guided procedure requires precise orientation of multiple modular endografts within the arteries confirmed via radiopaque markers. Patient-specific 3D printed phantoms could familiarize physicians with complex procedures and new devices in a risk-free simulation environment to avoid periprocedural complications and improve training. Using the Vascular Modeling Toolkit (VMTK), 3D Data from a CTA imaging of a patient scheduled for Fenestrated EndoVascular Aortic Repair (FEVAR) was segmented to isolate the aortic lumen, thrombus, and calcifications. A stereolithographic mesh (STL) was generated and then modified in Autodesk MeshMixer for fabrication via a Stratasys Eden 260 printer in a flexible photopolymer to simulate arterial compliance. Fluoroscopic guided simulation of the patient-specific FEVAR procedure was performed by interventionists using all demonstration endografts and accessory devices. Analysis compared treatment strategy between the planned procedure, the simulation procedure, and the patient procedure using a derived scoring scheme. Results With training on the patient-specific 3D printed AAA phantom, the clinical team optimized their procedural strategy. Anatomical landmarks and all devices were visible under x-ray during the simulation mimicking the clinical environment. The actual patient procedure went without complications. Conclusions With advances in 3D printing, fabrication of patient specific AAA phantoms is possible. Simulation with 3D printed phantoms shows potential to inform clinical interventional procedures in addition to CTA diagnostic imaging. PMID:28638171

  11. 3D Printed Abdominal Aortic Aneurysm Phantom for Image Guided Surgical Planning with a Patient Specific Fenestrated Endovascular Graft System.

    PubMed

    Meess, Karen M; Izzo, Richard L; Dryjski, Maciej L; Curl, Richard E; Harris, Linda M; Springer, Michael; Siddiqui, Adnan H; Rudin, Stephen; Ionita, Ciprian N

    2017-02-11

    Following new trends in precision medicine, Juxatarenal Abdominal Aortic Aneurysm (JAAA) treatment has been enabled by using patient-specific fenestrated endovascular grafts. The X-ray guided procedure requires precise orientation of multiple modular endografts within the arteries confirmed via radiopaque markers. Patient-specific 3D printed phantoms could familiarize physicians with complex procedures and new devices in a risk-free simulation environment to avoid periprocedural complications and improve training. Using the Vascular Modeling Toolkit (VMTK), 3D Data from a CTA imaging of a patient scheduled for Fenestrated EndoVascular Aortic Repair (FEVAR) was segmented to isolate the aortic lumen, thrombus, and calcifications. A stereolithographic mesh (STL) was generated and then modified in Autodesk MeshMixer for fabrication via a Stratasys Eden 260 printer in a flexible photopolymer to simulate arterial compliance. Fluoroscopic guided simulation of the patient-specific FEVAR procedure was performed by interventionists using all demonstration endografts and accessory devices. Analysis compared treatment strategy between the planned procedure, the simulation procedure, and the patient procedure using a derived scoring scheme. With training on the patient-specific 3D printed AAA phantom, the clinical team optimized their procedural strategy. Anatomical landmarks and all devices were visible under x-ray during the simulation mimicking the clinical environment. The actual patient procedure went without complications. With advances in 3D printing, fabrication of patient specific AAA phantoms is possible. Simulation with 3D printed phantoms shows potential to inform clinical interventional procedures in addition to CTA diagnostic imaging.

  12. Design and experimental validation of novel 3D optical scanner with zoom lens unit

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Cheng; Liu, Chien-Sheng; Chiang, Pei-Ju; Hsu, Wei-Yan; Liu, Jian-Liang; Huang, Bai-Hao; Lin, Shao-Ru

    2017-10-01

    Optical scanners play a key role in many three-dimensional (3D) printing and CAD/CAM applications. However, existing optical scanners are generally designed to provide either a wide scanning area or a high 3D reconstruction accuracy from a lens with a fixed focal length. In the former case, the scanning area is increased at the expense of the reconstruction accuracy, while in the latter case, the reconstruction performance is improved at the expense of a more limited scanning range. In other words, existing optical scanners compromise between the scanning area and the reconstruction accuracy. Accordingly, the present study proposes a new scanning system including a zoom-lens unit, which combines both a wide scanning area and a high 3D reconstruction accuracy. In the proposed approach, the object is scanned initially under a suitable low-magnification setting for the object size (setting 1), resulting in a wide scanning area but a poor reconstruction resolution in complicated regions of the object. The complicated regions of the object are then rescanned under a high-magnification setting (setting 2) in order to improve the accuracy of the original reconstruction results. Finally, the models reconstructed after each scanning pass are combined to obtain the final reconstructed 3D shape of the object. The feasibility of the proposed method is demonstrated experimentally using a laboratory-built prototype. It is shown that the scanner has a high reconstruction accuracy over a large scanning area. In other words, the proposed optical scanner has significant potential for 3D engineering applications.

  13. 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system

    NASA Astrophysics Data System (ADS)

    Meess, Karen M.; Izzo, Richard L.; Dryjski, Maciej L.; Curl, Richard E.; Harris, Linda M.; Springer, Michael; Siddiqui, Adnan H.; Rudin, Stephen; Ionita, Ciprian N.

    2017-03-01

    Following new trends in precision medicine, Juxatarenal Abdominal Aortic Aneurysm (JAAA) treatment has been enabled by using patient-specific fenestrated endovascular grafts. The X-ray guided procedure requires precise orientation of multiple modular endografts within the arteries confirmed via radiopaque markers. Patient-specific 3D printed phantoms could familiarize physicians with complex procedures and new devices in a risk-free simulation environment to avoid periprocedural complications and improve training. Using the Vascular Modeling Toolkit (VMTK), 3D Data from a CTA imaging of a patient scheduled for Fenestrated EndoVascular Aortic Repair (FEVAR) was segmented to isolate the aortic lumen, thrombus, and calcifications. A stereolithographic mesh (STL) was generated and then modified in Autodesk MeshMixer for fabrication via a Stratasys Eden 260 printer in a flexible photopolymer to simulate arterial compliance. Fluoroscopic guided simulation of the patient-specific FEVAR procedure was performed by interventionists using all demonstration endografts and accessory devices. Analysis compared treatment strategy between the planned procedure, the simulation procedure, and the patient procedure using a derived scoring scheme. Results: With training on the patient-specific 3D printed AAA phantom, the clinical team optimized their procedural strategy. Anatomical landmarks and all devices were visible under x-ray during the simulation mimicking the clinical environment. The actual patient procedure went without complications. Conclusions: With advances in 3D printing, fabrication of patient specific AAA phantoms is possible. Simulation with 3D printed phantoms shows potential to inform clinical interventional procedures in addition to CTA diagnostic imaging.

  14. [Applications of 3D printing technology in teaching of oromaxillofacial head and neck surgical oncology].

    PubMed

    Ruan, Min; Ji, Tong; Zhang, Chen-Ping

    2016-12-01

    With the increasing maturation of 3D printing technology, as well as its application in various industries, investigation of 3D printing technology into clinic medical education becomes an important task of the current medical education. The teaching content of oromaxillofacial head and neck surgical oncology is complicated and diverse, making lower understanding/memorizing efficiency and insufficient skill training. To overcome the disadvantage of traditional teaching method, it is necessary to introduce 3D printing technique into teaching of oromaxillofacial head and neck surgical oncology, in order to improve the teaching quality and problem solving capabilities, and finally promote cultivation of skilled and innovative talents.

  15. Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Miyashita, S.; Iwase, E.

    2017-12-01

    This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.

  16. Generation of three-dimensional optical cusp beams with ultrathin metasurfaces.

    PubMed

    Liu, Weiwei; Zhang, Yuchao; Gao, Jie; Yang, Xiaodong

    2018-06-22

    Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.

  17. Evaluating Stellarator Divertor Designs with EMC3

    NASA Astrophysics Data System (ADS)

    Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.

    2013-10-01

    In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.

  18. A population-based analysis of temporal perioperative complication rates after minimally invasive radical prostatectomy.

    PubMed

    Schmitges, Jan; Trinh, Quoc-Dien; Abdollah, Firas; Sun, Maxine; Bianchi, Marco; Budäus, Lars; Zorn, Kevin; Perotte, Paul; Schlomm, Thorsten; Haese, Alexander; Montorsi, Francesco; Menon, Mani; Graefen, Markus; Karakiewicz, Pierre I

    2011-09-01

    Existing population-based reports on complication rates after minimally invasive radical prostatectomy (MIRP) did not address temporal trends. To examine contemporary temporal trends in perioperative MIRP outcomes. Between 2001 and 2007, 4387 patients undergoing MIRP were identified using the Nationwide Inpatient Sample. To examine the rates and trends of intraoperative and postoperative complications, transfusion rates, length of stay in excess of the median, and in-hospital mortality. We tested the effect of the late (2006-2007) versus the early (2001-2005) study period on all outcomes using multivariable logistic regression models controlled for clustering among hospitals. Intraoperative and postoperative complications decreased from 7.0% to 0.8% (p < 0.001) and from 28.5% to 8.7% (p < 0.001), respectively. Transfusion rates decreased from 3.5% to 2.1% (p = 0.3). Hospital length of stay >2 d decreased from 56% to 15% (p < 0.001). In multivariable analyses, intraoperative (odds ratio [OR]: 0.41; p = 0.002) and postoperative (OR: 0.65; p = 0.007) complications were less frequent in the late versus the early study period. Late study period patients were less likely to stay >2 d than early study period patients (OR: 0.34; p > 0.001). Limitations of these findings include the lack of adjustment for several patient variables including disease characteristics, surgeon variables including surgeon caseload, and the restriction to in-hospital events. Our analyses demonstrate that in-hospital complication rates and length of stay after MIRP decreased over time. This implies that temporal differences specific to complication rates after MIRP must be considered when comparisons are made with other radical prostatectomy techniques. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  19. Development of the Improving Process for the 3D Printed Structure

    NASA Astrophysics Data System (ADS)

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-01

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.

  20. Development of the Improving Process for the 3D Printed Structure

    PubMed Central

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-01

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics. PMID:28054558

  1. Development of the Improving Process for the 3D Printed Structure.

    PubMed

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-05

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.

  2. Vitamin D and Diabetic Complications: True or False Prophet?

    PubMed

    Alam, Uazman; Arul-Devah, Vilashini; Javed, Saad; Malik, Rayaz A

    2016-03-01

    Vitamin D deficiency is now recognized as a condition of increasing prevalence worldwide. Vitamin D has an established role in calcium and bone metabolism; however, more recently associations with vitamin D deficiency and risk of developing diabetes, diabetes complications, and cardiovascular disease have all been acknowledged. The vitamin D receptor is ubiquitously expressed, and experimental, in vitro, and in vivo studies strongly suggest a role in regulating the transcription of multiple genes beyond calcium homeostasis. These include antiproliferative, immunomodulatory, angiogenic, inhibition of the renin-angiotensin-aldosterone system, and neurotrophic factor expression. Observational studies report a strong association between vitamin D deficiency and cardiovascular and metabolic disorders; however, there remains a paucity of large long-term randomized clinical trials showing a benefit with treatment. An increasing body of literature suggests a possible pathogenetic role of vitamin D in the long-term complications of diabetes and vitamin D deficiency may also exacerbate symptoms of painful diabetic peripheral neuropathy. It remains unknown if supplementation of vitamin D to normal or non-deficient levels alters pathogenetic processes related to diabetic microvascular complications. With the high prevalence of vitamin D deficiency in patients with diabetes and putative mechanisms linking vitamin D deficiency to diabetic complications, there is a compelling argument for undertaking large well-designed randomized controlled trials of vitamin D supplementation.

  3. Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models.

    PubMed

    Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro

    2015-01-01

    The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.

  4. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less

  5. The simulation of 3D structure of groundwater system based on Java/Java3D

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Cui, Weihong; Wang, Peifa; Huang, Yongqi

    2007-06-01

    With the singular development of Internet technique and 3DGIS as well as VR and the imminence demand of 3D visualization from Groundwater information management field, how to display, roam, anatomize and analyze of 3D structure of Groundwater system on Internet have become a research hotspot in hydrogeology field. We simulated the 3D Groundwater resource structure of Taiyuan basin and implemented displaying, roaming, anatomizing and analyzing functions on Internet by Java 3D.

  6. Oblique Photogrammetry and Usage on Land Administration

    NASA Astrophysics Data System (ADS)

    Kisa, A.; Ozmus, L.; Erkek, B.; Ates, H. B.; Bakici, S.

    2013-08-01

    Projects based on Geographic Information Systems (GIS) have started within the body of the General Directorate of Land Registry and Cadastre (GDLRC) by the Land Registry and Cadastre Information System (LRCIS) in the beginning of 2000s. LRCIS was followed by other projects which are Turkish National Geographic Information System (TNGIS), Continuously Operating GPS Reference Stations (CORS-TR), Geo Metadata Portal (GMP), Orthophoto Web Services, Completion of Initial Cadastre, Cadastre Renovation Project (CRP), 2B and Land Registry Achieve Information System (LRAIS). When examining the projects generated by GDLRC, it is realized that they include basic functions of land administration required for sustainable development. Sustainable development is obtained through effective land administration as is known. Nowadays, land use becomes more intense as a result of rapid population increase. The importance of land ownership has increased accordingly. At this point, the necessity of cadastre appears. In Turkey, cadastral registration is carried out by the detection of parcels. In other words, it is obtained through the division of land surface into 2D boundaries and mapping of them. However, existing land administration systems have begun to lose their efficiency while coping with rights, restrictions and responsibilities (RRRs) belonging to land which become more complicated day by day. Overlapping and interlocking constructions appear particularly in urban areas with dense housing and consequently, the problem of how to project these structures onto the surface in 2D cadastral systems has arisen. Herein, the necessity of 3D cadastre concept and 3D property data is confronted. In recent years, oblique photogrammetry, whose applications are gradually spreading, is used as an effective method for producing 3D data. In this study, applications of oblique photogrammetry and usability of oblique images as base for 3D Cadastre and Land Administration projects are examined.

  7. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong-Cheng; Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063; Fan, Yan

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibitmore » similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.« less

  8. Experimental Investigation of the Near Wall Flow Structure of a Low Reynolds Number 3-D Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Fleming, J. L.; Simpson, R. L.

    1997-01-01

    Laser Doppler velocimetry (LDV) measurements and hydrogen bubble flow visualization techniques were used to examine the near-wall flow structure of 2D and 3D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers,(2) to observe and quantify differences between 2D and 3D TBL flow structures, and (3) to document Reynolds number effects for 3D TBLs. The LDV data have provided results detailing the turbulence structure of the 2D and 3D TBLs. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3D flow were also examined. Comparison to results with the same 3D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3D TBLs. While the 3D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen bubble technique was used as a flow visualization tool to examine the near-wall flow structure of 2D and 3D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2D flow.

  9. Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination

    PubMed Central

    Park, Anjin; Lee, Byeong Ha; Eom, Joo Beom

    2017-01-01

    We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast. PMID:28714897

  10. High-pressure synthesis, crystal structure, and magnetic properties of KSbO3-type 5d oxides K0.84OsO3 and Bi2.93Os3O11

    NASA Astrophysics Data System (ADS)

    Yuan, Yahua; Feng, Hai L.; Shi, Youguo; Tsujimoto, Yoshihiro; Belik, Alexei A.; Matsushita, Yoshitaka; Arai, Masao; He, Jianfeng; Tanaka, Masahiko; Yamaura, Kazunari

    2014-12-01

    5d Solid-state oxides K0.84OsO3 (Os5.16+; 5d 2.84) and Bi2.93Os3O11 (Os4.40+; 5d 3.60) were synthesized under high-pressure and high-temperature conditions (6 GPa and 1500-1700 °C). Their crystal structures were determined by synchrotron x-ray diffraction and their 5d electronic properties and tunnel-like structure motifs were investigated. A KSbO3-type structure with a space group of Im-3 and Pn-3 was determined for K0.84OsO3 and Bi2.93Os3O11, respectively. The magnetic and electronic transport properties of the polycrystalline compounds were compared with those obtained theoretically. It was revealed that the 5d tunnel-like structures are paramagnetic with metallic charge conduction at temperatures above 2 K. This was similar to what was observed for structurally relevant 5d oxides, including Bi3Re3O11 (Re4.33+; 5d 2.66) and Ba2Ir3O9 (Ir4.66+; 5d 4.33). The absence of long-range magnetic order seems to be common among 5d KSbO3-like oxides, regardless of the number of 5d electrons (between 2.6 and 4.3 per 5d atom).

  11. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.

    PubMed

    Tung, Yi-Chung; Hsiao, Amy Y; Allen, Steven G; Torisawa, Yu-suke; Ho, Mitchell; Takayama, Shuichi

    2011-02-07

    Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.

  12. Safety of ultrasound-guided high-intensity focused ultrasound ablation for diffuse adenomyosis: A retrospective cohort study.

    PubMed

    Feng, Yujie; Hu, Liang; Chen, Wenzhi; Zhang, Rong; Wang, Xi; Chen, Jinyun

    2017-05-01

    To evaluate the safety of ultrasound-guided high-intensity focused ultrasound (HIFU) ablation for patients with diffuse adenomyosis. This was a retrospective cohort study. The data was collected from 417 symptomatic adenomyosis patients who underwent ultrasound-guided HIFU between January 2012 and December 2015 at 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China. Among them were 260 patients with diffuse adenomyosis (Group D) and 157 patients with focal adenomyosis (Group F). All patients underwent contrast-enhanced magnetic resonance imaging (MRI) one week before and the day after HIFU treatment. Successful treatment with HIFU was measured by the non-perfused volume ratio (NPVR). Intraprocedural and postprocedural adverse effects and complications were recorded to assess the safety of the procedure. Patients were followed-up for three months post-treatment. Complications were given a grade A through F according to the SIR Standards. All patients successfully completed the procedure, non-perfused regions appeared in 415 (99.5%) patients. The non-perfused volume ratio (NPVR) of Group D was significantly lower than that of Group F (P<0.05). During the procedure, the odds ratio of skin-burning pain was 1.7 (OR=1.617, 95% CI: 1.103-2.532), when comparing Group D with Group F, while the odds ratio of inguinal pain was equal to 2.0 (OR=2.038, 95% CI: 1.161-3.580), when Group F was compared to Group D. 97 patients (23.3%) received nominal therapy due to complications ([Society of interventional radiology, SIR]-B grade), among them, there were 62 cases (23.8%) in Group D and 35 cases (22.3%) in Group F. No significant difference was found between the two groups (P>0.05) and neither of the reported complications of SIR-C-SIR-F occurred within the two groups. Based on our results, ultrasound-guided HIFU is safe for the treatment of diffuse adenomyosis, and controlling the ablation zone is crucial to ensure patients' safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Accurate 3d Textured Models of Vessels for the Improvement of the Educational Tools of a Museum

    NASA Astrophysics Data System (ADS)

    Soile, S.; Adam, K.; Ioannidis, C.; Georgopoulos, A.

    2013-02-01

    Besides the demonstration of the findings, modern museums organize educational programs which aim to experience and knowledge sharing combined with entertainment rather than to pure learning. Toward that effort, 2D and 3D digital representations are gradually replacing the traditional recording of the findings through photos or drawings. The present paper refers to a project that aims to create 3D textured models of two lekythoi that are exhibited in the National Archaeological Museum of Athens in Greece; on the surfaces of these lekythoi scenes of the adventures of Odysseus are depicted. The project is expected to support the production of an educational movie and some other relevant interactive educational programs for the museum. The creation of accurate developments of the paintings and of accurate 3D models is the basis for the visualization of the adventures of the mythical hero. The data collection was made by using a structured light scanner consisting of two machine vision cameras that are used for the determination of geometry of the object, a high resolution camera for the recording of the texture, and a DLP projector. The creation of the final accurate 3D textured model is a complicated and tiring procedure which includes the collection of geometric data, the creation of the surface, the noise filtering, the merging of individual surfaces, the creation of a c-mesh, the creation of the UV map, the provision of the texture and, finally, the general processing of the 3D textured object. For a better result a combination of commercial and in-house software made for the automation of various steps of the procedure was used. The results derived from the above procedure were especially satisfactory in terms of accuracy and quality of the model. However, the procedure was proved to be time consuming while the use of various software packages presumes the services of a specialist.

  14. The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses.

    PubMed

    Huang, Yuan; Teng, Zhongzhao; Sadat, Umar; Graves, Martin J; Bennett, Martin R; Gillard, Jonathan H

    2014-04-11

    Compositional and morphological features of carotid atherosclerotic plaques provide complementary information to luminal stenosis in predicting clinical presentations. However, they alone cannot predict cerebrovascular risk. Mechanical stress within the plaque induced by cyclical changes in blood pressure has potential to assess plaque vulnerability. Various modeling strategies have been employed to predict stress, including 2D and 3D structure-only, 3D one-way and fully coupled fluid-structure interaction (FSI) simulations. However, differences in stress predictions using different strategies have not been assessed. Maximum principal stress (Stress-P1) within 8 human carotid atherosclerotic plaques was calculated based on geometry reconstructed from in vivo computerized tomography and high resolution, multi-sequence magnetic resonance images. Stress-P1 within the diseased region predicted by 2D and 3D structure-only, and 3D one-way FSI simulations were compared to 3D fully coupled FSI analysis. Compared to 3D fully coupled FSI, 2D structure-only simulation significantly overestimated stress level (94.1 kPa [65.2, 117.3] vs. 85.5 kPa [64.4, 113.6]; median [inter-quartile range], p=0.0004). However, when slices around the bifurcation region were excluded, stresses predicted by 2D structure-only simulations showed a good correlation (R(2)=0.69) with values obtained from 3D fully coupled FSI analysis. 3D structure-only model produced a small yet statistically significant stress overestimation compared to 3D fully coupled FSI (86.8 kPa [66.3, 115.8] vs. 85.5 kPa [64.4, 113.6]; p<0.0001). In contrast, one-way FSI underestimated stress compared to 3D fully coupled FSI (78.8 kPa [61.1, 100.4] vs. 85.5 kPa [64.4, 113.7]; p<0.0001). A 3D structure-only model seems to be a computationally inexpensive yet reasonably accurate approximation for stress within carotid atherosclerotic plaques with mild to moderate luminal stenosis as compared to fully coupled FSI analysis. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. SEMICONDUCTOR INTEGRATED CIRCUITS: A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    NASA Astrophysics Data System (ADS)

    Jizhi, Liu; Xingbi, Chen

    2009-12-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  16. Once-daily, high-dose levofloxacin versus ticarcillin-clavulanate alone or followed by amoxicillin-clavulanate for complicated skin and skin-structure infections: a randomized, open-label trial.

    PubMed

    Graham, Donald R; Talan, David A; Nichols, Ronald L; Lucasti, Christopher; Corrado, Michael; Morgan, Nancy; Fowler, Cynthia L

    2002-08-15

    This study tested whether levofloxacin, at a new high dose of 750 mg, was effective for the treatment of complicated skin and skin-structure infections (SSSIs). Patients with complicated SSSIs (n=399) were randomly assigned in a ratio of 1:1 to 2 treatment arms: levofloxacin (750 mg given once per day intravenously [iv], orally, or iv/orally) or ticarcillin-clavulanate (TC; 3.1 g given iv every 4-6 hours) followed, at the investigator's discretion, by amoxicillin-clavulanate (AC; 875 mg given orally every 12 hours). In the clinically evaluable population, therapeutic equivalence was demonstrated between the levofloxacin and TC/AC regimens (success rates of 84.1% and 80.3%, respectively). In the microbiologically evaluable population, the overall rate of eradication was 83.7% in the levofloxacin treatment group and 71.4% in the TC/AC treatment group (95% confidence interval, -24.3 to -0.2). Both levofloxacin and TC/AC were well tolerated. These data demonstrate that levofloxacin (750 mg once per day) is safe and at least as effective as TC/AC for complicated SSSIs.

  17. Multi-scale characterization by FIB-SEM/TEM/3DAP.

    PubMed

    Ohkubo, T; Sepehri-Amin, H; Sasaki, T T; Hono, K

    2014-11-01

    In order to improve properties of functional materials, it is important to understand the relation between the structure and the properties since the structure has large effect to the properties. This can be done by using multi-scale microstructure analysis from macro-scale to nano and atomic scale. Scanning electron microscope (SEM) equipped with focused ion beam (FIB), transmission electron microscope (TEM) and 3D atom probe (3DAP) are complementary analysis tools making it possible to know the structure and the chemistry from micron to atomic resolution. SEM gives us overall microstructural and chemical information by various kinds of detectors such as secondary electron, backscattered electron, EDS and EBSD detectors. Also, it is possible to analyze 3D structure and chemistry via FIB serial sectioning. In addition, using TEM we can focus on desired region to get more complementary information from HRTEM/STEM/Lorentz images, SAED/NBD patterns and EDS/EELS to see the detail micro or nano-structure and chemistry. Especially, combination of probe Cs corrector and split EDS detectors with large detector size enable us to analyze the atomic scale elemental distribution. Furthermore, if the specimen has a complicated 3D nanostructure, or we need to analyze light elements such as hydrogen, lithium or boron, 3DAP can be used as the only technique which can visualize and analyze distribution of all constituent atoms of our materials within a few hundreds nm area. Hence, site-specific sample preparation using FIB/SEM is necessary to get desired information from region of interest. Therefore, this complementary analysis combination works very well to understand the detail of materials.In this presentation, we will show the analysis results obtained from some of functional materials by Carl Zeiss CrossBeam 1540EsB FIB/SEM, FEI Tecnai G(2) F30, Titan G2 80-200 TEMs and locally build laser assisted 3DAP. As the one of the example, result of multi-scale characterization for ultra-fine grain Nd-Fe-B permanent magnet will be shown [1]. In order to improve the magnetic properties, especially to increase the coercivity (resistance against magnetization reversal) of the magnet, decreasing the grain size and isolating each grain by non-ferromagnetic grain boundary phase are quite important since the nucleation of magnetic reversal from grain boundary phase can be suppressed and pinning force of magnetic domain wall at the grain boundary phase can be strengthened. Therefore, micro and nano structure and chemistry analysis can shed a light do grain boundary engineering.Figure 1(a,b) shows SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet and the reconstructed 3D tomography of Nd-rich phases obtained by FIB/SEM serial sectioning. This data can provide us information about the distribution of Nd-rich phase and its volume fraction. Moreover, the HRTEM image from the grain boundary phase, the 3DAP maps and the concentration depth profiles are shown in Fig. 1(c,d,e). This magnet shows high coercivity (1517kA/m), and by comparing these results with the microstructures of low coercivity specimen, importance of grain boundary formation was confirmed and it gives us hint to improve the coercivity further. We will show the detail and results from other materials.jmicro;63/suppl_1/i6/DFU046F1F1DFU046F1Fig. 1.(a) SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet. (b) 3D FIB/SEM tomography of Nd-rich phases. (c) HRTEM image from the grain boundary phase. (d) 3DAP maps of Nd, Cu and Al. (e) Concentration depth profiles for Fe, Nd+Pr, B, Co, Cu and Al, determined from the selected box in (d)[1]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Genes associated with Type 2 Diabetes and vascular complications.

    PubMed

    Montesanto, Alberto; Bonfigli, Anna Rita; Crocco, Paolina; Garagnani, Paolo; De Luca, Maria; Boemi, Massimo; Marasco, Elena; Pirazzini, Chiara; Giuliani, Cristina; Franceschi, Claudio; Passarino, Giuseppe; Testa, Roberto; Olivieri, Fabiola; Rose, Giuseppina

    2018-02-04

    Type 2 Diabetes (T2D) is a chronic disease associated with a number of micro- and macrovascular complications that increase the morbidity and mortality of patients. The risk of diabetic complications has a strong genetic component. To this end, we sought to evaluate the association of 40 single nucleotide polymorphisms (SNPs) in 21 candidate genes with T2D and its vascular complications in 503 T2D patients and 580 healthy controls. The genes were chosen because previously reported to be associated with T2D complications and/or with the aging process. We replicated the association of T2D risk with I GF2BP rs4402960 and detected novel associations with TERT rs2735940 and rs2736098. The addition of these SNPs to a model including traditional risk factors slightly improved risk prediction. After stratification of patients according to the presence/absence of vascular complications, we found significant associations of variants in the CAT , FTO , and UCP1 genes with diabetic retinopathy and nephropathy. Additionally, a variant in the ADIPOQ gene was found associated with macrovascular complications. Notably, these genes are involved in some way in mitochondrial biology and reactive oxygen species regulation. Hence, our findings strongly suggest a potential link between mitochondrial oxidative homeostasis and individual predisposition to diabetic vascular complications.

  19. Effective 2D-3D medical image registration using Support Vector Machine.

    PubMed

    Qi, Wenyuan; Gu, Lixu; Zhao, Qiang

    2008-01-01

    Registration of pre-operative 3D volume dataset and intra-operative 2D images gradually becomes an important technique to assist radiologists in diagnosing complicated diseases easily and quickly. In this paper, we proposed a novel 2D/3D registration framework based on Support Vector Machine (SVM) to compensate the disadvantages of generating large number of DRR images in the stage of intra-operation. Estimated similarity metric distribution could be built up from the relationship between parameters of transform and prior sparse target metric values by means of SVR method. Based on which, global optimal parameters of transform are finally searched out by an optimizer in order to guide 3D volume dataset to match intra-operative 2D image. Experiments reveal that our proposed registration method improved performance compared to conventional registration method and also provided a precise registration result efficiently.

  20. Feasibility of Proton Beam Therapy for Ocular Melanoma Using a Novel 3D Treatment Planning Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartsell, William F., E-mail: whartsell@chicagocancer.org; Kapur, Rashmi; Hartsell, Siobhan O'Connor

    Purpose: We evaluated sparing of normal structures using 3-dimensional (3D) treatment planning for proton therapy of ocular melanomas. Methods and Materials: We evaluated 26 consecutive patients with choroidal melanomas on a prospective registry. Ophthalmologic work-up included fundoscopic photographs, fluorescein angiography, ultrasonographic evaluation of tumor dimensions, and magnetic resonance imaging of orbits. Three tantalum clips were placed as fiducial markers to confirm eye position for treatment. Macula, fovea, optic disc, optic nerve, ciliary body, lacrimal gland, lens, and gross tumor volume were contoured on treatment planning compute tomography scans. 3D treatment planning was performed using noncoplanar field arrangements. Patients were typicallymore » treated with 3 fields, with at least 95% of planning target volume receiving 50 GyRBE in 5 fractions. Results: Tumor stage was T1a in 10 patients, T2a in 10 patients, T2b in 1 patient, T3a in 2 patients, T3b in 1 patient, and T4a in 2 patients. Acute toxicity was mild. All patients completed treatment as planned. Mean optic nerve dose was 10.1 Gy relative biological effectiveness (RBE). Ciliary body doses were higher for nasal (mean: 11.4 GyRBE) than temporal tumors (5.8 GyRBE). Median follow-up was 31 months (range: 18-40 months). Six patients developed changes which required intraocular bevacizumab or corticosteroid therapy, but only 1 patient developed neovascular glaucoma. Five patients have since died: 1 from metastatic disease and 4 from other causes. Two patients have since required enucleation: 1 due to tumor and 1 due to neovascular glaucoma. Conclusions: 3D treatment planning can be used to obtain appropriate coverage of choroidal melanomas. This technique is feasible with relatively low doses to anterior structures, and appears to have acceptable rates of local control with low risk of enucleation. Further evaluation and follow-up is needed to determine optimal dose-volume relationships for organs at risk to decrease complications rates.« less

  1. Improved planning of endoscopic sinonasal surgery from 3-dimensional images with Osirix® and stereolithography.

    PubMed

    Sánchez-Gómez, Serafín; Herrero-Salado, Tomás F; Maza-Solano, Juan M; Ropero-Romero, Francisco; González-García, Jaime; Ambrosiani-Fernández, Jesús

    2015-01-01

    The high variability of sinonasal anatomy requires the best knowledge of its three-dimensional (3D) conformation to perform surgery more safely and efficiently. The aim of the study was to validate the utility of Osirix® and stereolithography in improving endoscopic sinonasal surgery planning. Osirix® was used as a viewer and Digital Imaging and Communications in Medicine (DICOM) 3D imaging manager to improve planning for 114 sinonasal endoscopic operations with polyposis (86) and chronic rhinosinusitis (CRS) (28). Stereolithography rapid prototyping was used for 7 frontoethmoidal mucoceles. Using Osirix® and stereolithography, a greater number of anatomical structures were identified and this was done faster, with a statistically-significant clinical-radiological correlation (P<.01) compared with 2D CT plates. With a share of more than 75% of surgery performed by residents, surgical time was reduced by 38±12.3min in CRS and 42±27.9 in sinonasal polyposis. The fourth-year residents reached 100% surgical competence in critical surgical milestones with 16 surgeries (CI 12-19). The systematic use of Osirix® for visualisation and treatment of 3D sinonasal images from DICOM data files, along with the surgical team's ability to manipulate them as virtual reality, allows surgeons to perform endoscopic sinonasal surgery with greater confidence and in less time than using 2D images. Residents also achieve surgical competence faster, more safely and with fewer complications. This beneficial impact is increased when the surgical team has stereolithography rapid prototyping in more complex cases. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  2. Effective Moment Feature Vectors for Protein Domain Structures

    PubMed Central

    Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun

    2013-01-01

    Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828

  3. Double filtration plasmapheresis in the treatment of pancreatitis due to severe hypertriglyceridemia.

    PubMed

    Galán Carrillo, Isabel; Demelo-Rodriguez, Pablo; Rodríguez Ferrero, María Luisa; Anaya, Fernando

    2015-01-01

    Severe hypertriglyceridemia (HTG) leads to major complications such as acute pancreatitis. Lipoprotein apheresis has been proposed as a therapeutic tool for decreasing triglyceride levels, although experience is limited. To describe our experience with double filtration plasmapheresis (DFPP) in patients with severe HTG and pancreatitis in the plasmapheresis unit of a tertiary hospital in Spain. We recruited 4 patients with severe HTG (triglycerides [TGs] >1000 mg/dL) and acute pancreatitis. All the patients underwent DFPP as part of their treatment. Epidemiologic and laboratory data were collected before and after each plasmapheresis session. The average TG level before plasmapheresis was 3136 mg/dL (35.44 mmol/L; range, 1306-6693 mg/dL, 14.76-75.63 mmol/L), and the average Acute Physiology And Chronic Health Evaluation (APACHE) II level before the first session was 6 (range, 3-8). All patients made a full recovery, with a significant improvement in TG levels after plasmapheresis. The mean number of sessions was 2.1 (range, 1-3), and mean TG level after plasmapheresis was 428 mg/dL (4.84 mmol/L; range, 169-515 mg/dL; 1.91-5.82 mmol/L). After the first session, the mean decrease in TG levels was 69.16% (2169 mg/dL, range, 945-5925 mg/dL; 24.51 mmol/L, range, 10.78-66.95 mmol/L), and after the last session, TG levels fell by 89.09% (2794 mg/dL, range, 945-6198 mg/dL; 31.57 mmol/L, range, 10.68-70.04 mmol/L). None of the patients developed complications related to plasmapheresis. According to available evidence and our own experience, DFPP can be an effective and rapid treatment option in patients with severe HTG and complications. However, further research, including randomized controlled studies, is necessary. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  4. Fusion of the 2nd maxillary molar with the impacted 3rd molar.

    PubMed

    Strecha, J; Jurkovic, R; Siebert, T

    2012-01-01

    Subject matter: The dentist has to deal with complicated cases of fused molars, which are rather rare and morphologically very varied. A wrong or incomplete diagnosis can considerably complicate a planned therapy. The authors describe a case of apical periodontal complication of fused teeth that had to be removed surgically. The upper 2nd molar fused with the impacted 3rd molar and was diagnosed for extraction. Even a careful diagnostic procedure and X-ray image sometimes may not indicate the exact location and mutual position of the fused teeth. The authors make us aware of the possible occurrence of fused roots, and the necessity to inform the patient ahead of time about the course of endodontic or surgical interventions, possible complications and their removal. They describe the positive influence of PRP (platelet rich plasma) in wound healing. In order to establish the exact indication and therapy, they emphasize the importance of using CT imaging diagnostics or a 3D-CT examination (Fig. 7, Ref. 15).

  5. A method for brain 3D surface reconstruction from MR images

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin

    2014-09-01

    Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to complicated computing. In this paper, we explore an efficient method for brain surface reconstruction from magnetic resonance (MR) images of head, which is helpful to surgery planning and tumor localization. A heuristic algorithm is proposed for surface triangle mesh generation with preserved features, and the diagonal length is regarded as the heuristic information to optimize the shape of triangle. The experimental results show that our approach not only reduces the computational complexity, but also completes 3D visualization with good quality.

  6. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    PubMed

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. 1550 nm superluminescent diode and anti-Stokes effect CCD camera based optical coherence tomography for full-field optical metrology

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2011-06-01

    Optical Coherence Tomography (OCT) is a promising non-invasive imaging technology capable of carrying out 3D high-resolution cross-sectional images of the internal microstructure of examined material. However, almost all of these systems are expensive, requiring the use of complex optical setups, expensive light sources and complicated scanning of the sample under test. In addition most of these systems have not taken advantage of the competitively priced optical components available at wavelength within the main optical communications band located in the 1550 nm region. A comparatively simple and inexpensive full-field OCT system (FF-OCT), based on a superluminescent diode (SLD) light source and anti-stokes imaging device was constructed, to perform 3D cross-sectional imaging. This kind of inexpensive setup with moderate resolution could be easily applicable in low-level biomedical and industrial diagnostics. This paper involves calibration of the system and determines its suitability for imaging structures of biological tissues such as teeth, which has low absorption at 1550 nm.

  8. Real-Time 3D Fluoroscopy-Guided Large Core Needle Biopsy of Renal Masses: A Critical Early Evaluation According to the IDEAL Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeze, Stephanie G. C.; Huisman, Merel; Verkooijen, Helena M.

    2012-06-15

    Introduction: Three-dimensional (3D) real-time fluoroscopy cone beam CT is a promising new technique for image-guided biopsy of solid tumors. We evaluated the technical feasibility, diagnostic accuracy, and complications of this technique for guidance of large-core needle biopsy in patients with suspicious renal masses. Methods: Thirteen patients with 13 suspicious renal masses underwent large-core needle biopsy under 3D real-time fluoroscopy cone beam CT guidance. Imaging acquisition and subsequent 3D reconstruction was done by a mobile flat-panel detector (FD) C-arm system to plan the needle path. Large-core needle biopsies were taken by the interventional radiologist. Technical success, accuracy, and safety were evaluatedmore » according to the Innovation, Development, Exploration, Assessment, Long-term study (IDEAL) recommendations. Results: Median tumor size was 2.6 (range, 1.0-14.0) cm. In ten (77%) patients, the histological diagnosis corresponded to the imaging findings: five were malignancies, five benign lesions. Technical feasibility was 77% (10/13); in three patients biopsy results were inconclusive. The lesion size of these three patients was <2.5 cm. One patient developed a minor complication. Median follow-up was 16.0 (range, 6.4-19.8) months. Conclusions: 3D real-time fluoroscopy cone beam CT-guided biopsy of renal masses is feasible and safe. However, these first results suggest that diagnostic accuracy may be limited in patients with renal masses <2.5 cm.« less

  9. Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing

    2017-12-01

    Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.

  10. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants.

    PubMed

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure-activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein-ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. © The Author(s) 2014. Published by Oxford University Press.

  11. Sinusoidal Obstruction Syndrome during Treatment for Wilms' Tumor: A Life-threatening Complication.

    PubMed

    Totadri, Sidharth; Trehan, Amita; Bansal, Deepak; Jain, Richa

    2017-01-01

    Survival rates exceed 90% in Wilms' tumor (WT). Actinomycin-D (ACT-D) which is indispensable in the management of WT is associated with the development of sinusoidal obstruction syndrome (SOS), a potentially fatal complication. The aim is to study the presentation, management, and outcome of SOS complicating ACT-D administration in WT. Retrospective file review conducted in a Pediatric Hematology-Oncology unit. Patients diagnosed and treated for WT from January 2012 to December 2015 were analyzed. SOS was diagnosed clinically, based on McDonalds criteria, requiring two of the following: jaundice, hepatomegaly and/or right upper quadrant pain, weight gain with or without ascites. Of 104 patients treated, SOS occurred in 5 (4.8%). Age: 6 months to 5 years, 3 were girls. Tumor involved left kidney in 3, right in 1 and a horseshoe kidney in 1. Histopathology was consistent with WT in 4 and clear cell sarcoma kidney in 1. One had pulmonary metastases. Three developed SOS preoperatively and two during adjuvant chemotherapy. None received radiotherapy. Clinical manifestations comprised of jaundice, hepatomegaly, ascites/weight gain, respiratory distress, hypotension, and encephalopathy. Laboratory findings included thrombocytopenia, elevated serum transaminases, and coagulopathy. Treatment included fluid restriction, broad spectrum antibiotics, and transfusional support. Two children received N-acetyl cysteine infusion. Defibrotide was administered to two patients. Four recovered and one succumbed to multi-organ failure. Two patients were safely re-challenged with 50% doses of ACT-D. SOS is a clinical diagnosis. Systematic supportive care can enable complete recovery. Under close monitoring, re-challenge of ACT-D can be performed in gradually escalating doses.

  12. Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, Stephanie T.H.; Lebesque, Joos V.; Heemsbergen, Wilma D.

    2006-03-15

    Purpose: To identify dosimetric parameters derived from anorectal, rectal, and anal wall dose distributions that correlate with different late gastrointestinal (GI) complications after three-dimensional conformal radiotherapy for prostate cancer. Methods and Materials: In this analysis, 641 patients from a randomized trial (68 Gy vs. 78 Gy) were included. Toxicity was scored with adapted Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer (RTOG/EORTC) criteria and five specific complications. The variables derived from dose-volume histogram of anorectal, rectal, and anal wall were as follows: % receiving {>=}5-70 Gy (V5-V70), maximum dose (D{sub max}), and mean dose (D{sub mean}).more » The anus was defined as the most caudal 3 cm of the anorectum. Statistics were done with multivariate Cox regression models. Median follow-up was 44 months. Results: Anal dosimetric variables were associated with RTOG/EORTC Grade {>=}2 (V5-V40, D{sub mean}) and incontinence (V5-V70, D{sub mean}). Bleeding correlated most strongly with anorectal V55-V65, and stool frequency with anorectal V40 and D{sub mean}. Use of steroids was weakly related to anal variables. No volume effect was seen for RTOG/EORTC Grade {>=}3 and pain/cramps/tenesmus. Conclusion: Different volume effects were found for various late GI complications. Therefore, to evaluate the risk of late GI toxicity, not only intermediate and high doses to the anorectal wall volume should be taken into account, but also the dose to the anal wall.« less

  13. Guidelines for colorectal cancer: effects on nutritional intervention.

    PubMed

    Planas, M; Peñalva, A; Burgos, R; Puiggrós, C; Pérez-Portabella, C; Espín, E; Armengol, M; Rosselló, J

    2007-12-01

    Although parenteral nutrition is a vital method of delivery essential nutrients in patients with malnutrition associated to gastro-intestinal insufficiency, its inappropriate use can increase the risk of complications and incur unnecessary expenses. Our goal was to evaluate the influence of both, the presence of the Nutritional Support Unit and the implementing clinical practice guidelines on post-operative nutritional status, complications and length of stay among patients undergoing elective colorectal cancer surgery. Prospective and observational study: Three period times were included-the year during the guidelines elaboration (A), and the first (B) and the second year (C) after their implementation. All patients submitted to elective colorectal cancer surgery at least 18 years of age were included (A: n=297; B: n=103, and C: n=149). WE ANALYSED: Nutritional status (NS) on admission to hospital and at discharge, use of post-operative parenteral nutrition (PPN), incidence of post-operative complications (PC), number of days of nil by mouth following surgery (NPO), and hospital length of stay (LOS). Although the prevalence of malnutrition on admission was low, an increment was observed during the hospitalisation time. However, only in the first period time, the increment was significantly different (A: from 8.4% to 19.5%, p<0.001; B: from 3.9% to 8.7%, and C: from 4.7% to 6.7%). Globally, the use of PPN decreased (A: 79.1%, B: 47.0%, and C: 12.8%; p<0.001). This behaviour was mainly observed in well-nourished patients (use of PPN in well nourished, A: 79.3%, B: 44.4%, and C: 11.3%; p<0.001). Significant differences were observed in the global incidence of PC (A: 27.9%, B: 28.2%, and C: 8.1%, p<0.001). Furthermore, PC was higher in well-nourished patients with PPN versus without PPN, with significant differences in B and C periods (A: 29.3% vs. 25.0%; B: 38.6% vs. 18.8%, p=0.004; C: 31.3% vs. 4.8%, p=0.003). The NPO was higher in patients without PPN in period A (7 d vs. 5 d, p<0.001) and higher in those with PPN in period C (8 d vs. 6 d, p=0.035). All in all, LOS decreased significantly during the study period time (A: 16 d, B: 13 d, and C: 11 d, p<0.001). The presence of Nutritional Support Unit and clinical practice guidelines for colorectal cancer management and treatment, optimised the use of hospital resources, namely unnecessary use of parenteral nutrition, reduction along with decrease in number of complications and length of hospital stay.

  14. Online interactive analysis of protein structure ensembles with Bio3D-web.

    PubMed

    Skjærven, Lars; Jariwala, Shashank; Yao, Xin-Qiu; Grant, Barry J

    2016-11-15

    Bio3D-web is an online application for analyzing the sequence, structure and conformational heterogeneity of protein families. Major functionality is provided for identifying protein structure sets for analysis, their alignment and refined structure superposition, sequence and structure conservation analysis, mapping and clustering of conformations and the quantitative comparison of their predicted structural dynamics. Bio3D-web is based on the Bio3D and Shiny R packages. All major browsers are supported and full source code is available under a GPL2 license from http://thegrantlab.org/bio3d-web CONTACT: bjgrant@umich.edu or lars.skjarven@uib.no. © The Author 2016. Published by Oxford University Press.

  15. Fabrication of 2D and 3D photonic structures using laser lithography

    NASA Astrophysics Data System (ADS)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  16. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pressure-temperature phase diagram of a charge-ordered organic conductor studied by C13 NMR

    NASA Astrophysics Data System (ADS)

    Itou, T.; Miyagawa, K.; Nakamura, J.; Kanoda, K.; Hiraki, K.; Takahashi, T.

    2014-07-01

    We performed C13 NMR measurements on the quasi-one-dimensional (Q1D) charge-ordered system (DI-DCNQI)2Ag under ambient and applied pressure to clarify the pressure-temperature phase diagram. For pressures up to 15 kbar, the NMR spectra exhibit complicated splitting at low temperatures, indicating a "generalized 3D Wigner crystal" state. In this pressure region, we find that increased pressure causes a decrease in the charge disproportionation ratio, along with a decrease in the transition temperature of the generalized 3D Wigner crystal. In the high-pressure region, near 20 kbar, where a 1D confined liquid crosses over to a 3D Fermi liquid at high temperatures, the ground state is replaced by a nonmagnetic insulating state that is qualitatively different from the generalized 3D Wigner crystal.

  18. Complications among colorectal cancer survivors: SF-6D preference-weighted quality of life scores.

    PubMed

    Hornbrook, Mark C; Wendel, Christopher S; Coons, Stephen Joel; Grant, Marcia; Herrinton, Lisa J; Mohler, M Jane; Baldwin, Carol M; McMullen, Carmit K; Green, Sylvan B; Altschuler, Andrea; Rawl, Susan M; Krouse, Robert S

    2011-03-01

    Societal preference-weighted health-related quality of life (HRQOL) scores enable comparing multidimensional health states across diseases and treatments for research and policy. To assess the effects of living with a permanent intestinal stoma, compared with a major bowel resection, among colorectal cancer (CRC) survivors. Cross-sectional multivariate linear regression analysis to explain preference-weighted HRQOL scores. In all, 640 CRC survivors (≥ 5 years) from 3 group model health maintenance organizations; ostomates and nonostomates with colorectal resections for CRC were matched on gender, age (± 5 years), time since diagnosis, and tumor site (rectum vs. colon). SF-6D scoring system was applied to Medical Outcomes Study Short Form-36 version 2 (SF-36v2); City of Hope Quality of Life-Ostomy; and Charlson-Deyo comorbidity index. Survey of CRC survivors linked to respondents' clinical data extracted from health maintenance organization files. Response rate was 52%. Ostomates and nonostomates had similar sociodemographic characteristics. Mean SF-6D score was 0.69 for ostomates, compared with 0.73 for nonostomates (P < 0.001), but other factors explained this difference. Complications of initial cancer surgery, and previous year comorbidity burden, and hospital use were negatively associated with SF-6D scores, whereas household income was positively associated. CRC survivors' SF-6D scores were not associated with living with a permanent ostomy after other factors were taken into account. Surgical complications, comorbidities, and metastatic disease lowered the preference-weighted HRQOL of CRC survivors with and without ostomies. Further research to understand and reduce late complications from CRC surgeries as well as associated depression is warranted.

  19. Resource use associated with type 2 diabetes in Africa, the Middle East, South Asia, Eurasia and Turkey: results from the International Diabetes Management Practice Study (IDMPS).

    PubMed

    Gagliardino, Juan J; Atanasov, Petar K; Chan, Juliana C N; Mbanya, Jean C; Shestakova, Marina V; Leguet-Dinville, Prisca; Annemans, Lieven

    2017-01-01

    Type 2 diabetes (T2D) and its complications form a global healthcare burden but the exact impact in some geographical regions is still not well documented. We describe the healthcare resource usage (HRU) associated with T2D in Africa, the Middle East, South Asia, Eurasia and Turkey. In the fifth wave of the International Diabetes Management Practices Study (IDMPS; 2011-2012), we collected self-reported and physician-reported cross-sectional data from 8156 patients from 18 countries across 5 regions, including different types of HRU in the previous 3-6 months. Negative binomial regression was used to identify parameters associated with HRU, using incidence rate ratios (IRRs) to express associations. Patients in Africa (n=2220), the Middle East (n=2065), Eurasia (n=1843), South Asia (n=1195) and Turkey (n=842) experienced an annual hospitalization rate (mean±SD) of 0.6±1.9, 0.3±1.2, 1.7±4.1, 0.4±1.5 and 1.3±2.7, respectively. The annual number of diabetes-related inpatient days (mean±SD) was 4.7±22.7, 1.1±6.1, 16.0±30.0, 1.5±6.8 and 10.8±34.3, respectively. Despite some inter-regional heterogeneity, macrovascular complications (IRRs varying between 1.4 and 8.9), microvascular complications (IRRs varying between 3.4 and 4.3) and, to a large extent, inadequate glycemic control (IRRs varying between 1.89 and 10.1), were independent parameters associated with hospitalization in these respective regions. In non-Western countries, macrovascular/microvascular complications and inadequate glycemic control were common and important parameters associated with increased HRU.

  20. Unveiling the Sweet Conformations of Ketohexoses

    NASA Astrophysics Data System (ADS)

    Bermudez, C.; Pena, I.; Cabezas, C.; Daly, A. M.; Mata, S.; Alonso, J. L.

    2013-06-01

    The conformational behavior of ketohexoses D-Fructose, L-Sorbose, D-Tagatose and D-Psicose has been revealed from their rotational spectra. A broadband microwave spectrometer (CP-FTMW) has been used to rapidly acquire the rotational spectra in the 6 to 12 GHz frequency range. All observed species are stabilized by complicated intramolecular hydrogen-bonding networks. Structural motifs related to the sweetness of ketohexoses are revealed. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 2008, 79, 053103. S. Mata, I. Peña, C. Cabezas, J. C. López, J. L. Alonso, J. Mol. Spectrosc. 2012, 280, 91.

  1. Robot-assisted Salvage Lymph Node Dissection for Clinically Recurrent Prostate Cancer.

    PubMed

    Montorsi, Francesco; Gandaglia, Giorgio; Fossati, Nicola; Suardi, Nazareno; Pultrone, Cristian; De Groote, Ruben; Dovey, Zach; Umari, Paolo; Gallina, Andrea; Briganti, Alberto; Mottrie, Alexandre

    2017-09-01

    Salvage lymph node dissection has been described as a feasible treatment for the management of prostate cancer patients with nodal recurrence after primary treatment. To report perioperative, pathologic, and oncologic outcomes of robot-assisted salvage nodal dissection (RASND) in patients with nodal recurrence after radical prostatectomy (RP). We retrospectively evaluated 16 patients affected by nodal recurrence following RP documented by positive positron emission tomography/computed tomography scan. Surgery was performed using DaVinci Si and Xi systems. A pelvic nodal dissection that included lymphatic stations overlying the external, internal, and common iliac vessels, the obturator fossa, and the presacral nodes was performed. In 13 (81.3%) patients a retroperitoneal lymph node dissection that included all nodal tissue located between the aortic bifurcation and the renal vessels was performed. Perioperative outcomes consisted of operative time, blood loss, length of hospital stay, and complications occurred within 30 d after surgery. Biochemical response (BR) was defined as a prostate-specific antigen level <0.2 ng/ml at 40 d after RASND. Median operative time, blood loss, and length of hospital stay were 210min, 250ml, and 3.5 d. The median number of nodes removed was 16.5. Positive lymph nodes were detected in 11 (68.8%) patients. Overall, four (25.0%) and five (31.2%) patients experienced intraoperative and postoperative complications, respectively. Overall, one (6.3%) and four (25.0%) patients had Clavien I and II complications within 30 d after RASND, respectively. Overall, five (33.3%) patients experienced BR after surgery. Our study is limited by the small cohort of patients evaluated and by the follow-up duration. RASND represents a feasible procedure in patients with nodal recurrence after RP and provides acceptable short-term oncologic outcomes, where one out of three patients experience BR immediately after surgery. Long-term data are needed to confirm the effectiveness of this approach. We report our initial experience with robot-assisted salvage nodal dissection for the management of patients with lymph node recurrence after radical prostatectomy. This technique represents a feasible and effective approach, where no high-grade complications were recorded and one out of three patients experienced biochemical response at 40 d after surgery. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  2. Electronic structure of rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) by X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crerar, Shane J.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca; Grosvenor, Andrew P.

    The electronic structure of the ternary rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) has been examined by high-resolution X-ray photoelectron spectroscopy (XPS) for the first time. The RE 3d or 4d core-line spectra are substantially complicated by the presence of satellite peaks but their general resemblance to those of RE{sub 2}O{sub 3} tends to support the presence of trivalent RE atoms in RECrSb{sub 3}. However, the Yb 4d spectrum of YbCrSb{sub 3} also shows peaks that are characteristic of divalent ytterbium. The Cr 2p core-line spectra exhibit asymmetric lineshapes and little change in binding energy (BE) relative tomore » Cr metal, providing strong evidence for electronic delocalization. The Sb 3d core-line spectra reveal slightly negative BE shifts relative to elemental antimony, supporting the presence of anionic Sb species in RECrSb{sub 3}. The experimental valence band spectrum of LaCrSb{sub 3} matches well with the calculated density of states, and it can be fitted to component peaks belonging to individual atoms to yield an average formulation that agrees well with expectations ('La{sup 3+}Cr{sup 3+}(Sb{sup 2-}){sub 3}'). On progressing from LaCrSb{sub 3} to NdCrSb{sub 3}, the 4f-band in the valence band spectra grows in intensity and shifts to higher BE. The valence band spectrum for YbCrSb{sub 3} also supports the presence of divalent ytterbium. - Graphical Abstract: In their valence band spectra, the 4f-band intensifies and shifts to higher BE on progressing from LaCrSb{sub 3} to NdCrSb{sub 3}. Highlights: Black-Right-Pointing-Pointer High-resolution core-line and valence band XPS spectra were measured for RECrSb{sub 3}. Black-Right-Pointing-Pointer Divalent Yb is present in YbCrSb{sub 3}, in contrast to trivalent RE in other members. Black-Right-Pointing-Pointer Asymmetric Cr 2p spectral lineshape confirms delocalization of Cr valence electrons. Black-Right-Pointing-Pointer Small negative Sb 3d BE shifts support assignment of anionic Sb atoms. Black-Right-Pointing-Pointer Fitted valence band spectra show shifts in the 4f band as RE is changed.« less

  3. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS].

    PubMed

    Lu, Qi; Yu, Binsheng

    2016-09-08

    To summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. The recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. At present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. 3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.

  4. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  5. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  6. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  7. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  8. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  9. New Global 3D Upper to Mid-mantle Electrical Conductivity Model Based on Observatory Data with Realistic Auroral Sources

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Egbert, G. D.; Sun, J.

    2011-12-01

    Poleward of 45-50 degrees (geomagnetic) observatory data are influenced significantly by auroral ionospheric current systems, invalidating the simplifying zonal dipole source assumption traditionally used for long period (T > 2 days) geomagnetic induction studies. Previous efforts to use these data to obtain the global electrical conductivity distribution in Earth's mantle have omitted high-latitude sites (further thinning an already sparse dataset) and/or corrected the affected transfer functions using a highly simplified model of auroral source currents. Although these strategies are partly effective, there remain clear suggestions of source contamination in most recent 3D inverse solutions - specifically, bands of conductive features are found near auroral latitudes. We report on a new approach to this problem, based on adjusting both external field structure and 3D Earth conductivity to fit observatory data. As an initial step towards full joint inversion we are using a two step procedure. In the first stage, we adopt a simplified conductivity model, with a thin-sheet of variable conductance (to represent the oceans) overlying a 1D Earth, to invert observed magnetic fields for external source spatial structure. Input data for this inversion are obtained from frequency domain principal components (PC) analysis of geomagnetic observatory hourly mean values. To make this (essentially linear) inverse problem well-posed we regularize using covariances for source field structure that are consistent with well-established properties of auroral ionospheric (and magnetospheric) current systems, and basic physics of the EM fields. In the second stage, we use a 3D finite difference inversion code, with source fields estimated from the first stage, to further fit the observatory PC modes. We incorporate higher latitude data into the inversion, and maximize the amount of available information by directly inverting the magnetic field components of the PC modes, instead of transfer functions such as C-responses used previously. Recent improvements in accuracy and speed of the forward and inverse finite difference codes (a secondary field formulation and parallelization over frequencies) allow us to use finer computational grid for inversion, and thus to model finer scale features, making full use of the expanded data set. Overall, our approach presents an improvement over earlier observatory data interpretation techniques, making better use of the available data, and allowing to explore the trade-offs between complications in source structure, and heterogeneities in mantle conductivity. We will also report on progress towards applying the same approach to simultaneous source/conductivity inversion of shorter period observatory data, focusing especially on the daily variation band.

  10. Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique

    NASA Astrophysics Data System (ADS)

    Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew

    2013-05-01

    Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.

  11. GRID3D-v2: An updated version of the GRID2D/3D computer program for generating grid systems in complex-shaped three-dimensional spatial domains

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.

    1991-01-01

    In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.

  12. Modeling ECM fiber formation: structure information extracted by analysis of 2D and 3D image sets

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Voytik-Harbin, Sherry L.; Filmer, David L.; Hoffman, Christoph M.; Yuan, Bo; Chiang, Ching-Shoei; Sturgis, Jennis; Robinson, Joseph P.

    2002-05-01

    Recent evidence supports the notion that biological functions of extracellular matrix (ECM) are highly correlated to its structure. Understanding this fibrous structure is very crucial in tissue engineering to develop the next generation of biomaterials for restoration of tissues and organs. In this paper, we integrate confocal microscopy imaging and image-processing techniques to analyze the structural properties of ECM. We describe a 2D fiber middle-line tracing algorithm and apply it via Euclidean distance maps (EDM) to extract accurate fibrous structure information, such as fiber diameter, length, orientation, and density, from single slices. Based on a 2D tracing algorithm, we extend our analysis to 3D tracing via Euclidean distance maps to extract 3D fibrous structure information. We use computer simulation to construct the 3D fibrous structure which is subsequently used to test our tracing algorithms. After further image processing, these models are then applied to a variety of ECM constructions from which results of 2D and 3D traces are statistically analyzed.

  13. Computing 3-D steady supersonic flow via a new Lagrangian approach

    NASA Technical Reports Server (NTRS)

    Loh, C. Y.; Liou, M.-S.

    1993-01-01

    The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.

  14. Acute mastoiditis in children: Middle ear cultures may help in reducing use of broad spectrum antibiotics.

    PubMed

    Garcia, Catarina; Salgueiro, Ana Bárbara; Luís, Catarina; Correia, Paula; Brito, Maria João

    2017-01-01

    Acute mastoiditis (AM) is a suppurative infection of the mastoid air cells, representing the most frequent complication of acute otitis media. AM remains an important entity in children due to its potential complications and sequelae. We aim to describe the cases of AM admitted at our department, identify risk factors potentially associated with complications and analyse the changes in clinical approach of AM over time. Case review of clinical files of children admitted with acute mastoiditis from June 1996 to May 2013 at a Lisbon metropolitan area hospital. Data was divided into two groups (prior and after May 2005) in order to evaluate changes in AM approach over the years. 135 AM episodes were included. The median age was 3.8 years and 42% children were less than 24 months of age. Symptoms at presentation included fever (69%), ear pain (56%) and otorrhea (40%). Complications occurred in 22% patients and were more common in children under 24 months (33% vs 15%, p ≤ 0.01). Leukocyte count was significantly higher in children with complications (16.7 vs 14.5 × 10 9 /μL, p ≤ 0.05) as was C-Reactive Protein value (13 vs 6.3 mg/dL, p ≤ 0.001). There was a significant association between the development of complications and C-Reactive Protein value at admission (OR 1.892; IC95%: 1.018-2.493, p ≤ 0.01). The optimal cut-off value was 7.21 mg/dL. Over time there was a significant increase in middle ear cultures obtained by tympanocentesis during surgery (2% vs 16%, p ≤ 0,01) and also a decrease in the use of broad spectrum antibiotherapy as initial treatment (52% vs 25%,p ≤ 0,001). Children under 24 months, with high leukocyte count or with high C-Reactive Protein value should be monitored closely since complications tend to be more frequent. A CRP value of 7.21 mg/dL at admission seems to be a good cut-off to monitor children for potential complications. Throughout the period analysed more cultures were performed allowing identification of the pathogens and implementation of appropriate antibiotic therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.

    2000-01-01

    USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.

  16. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  17. Genetic and Environmental Pathways in Type 1 Diabetes Complications

    DTIC Science & Technology

    2009-09-01

    increased risk of T1D-Nephropathy (T1DN) and is usually accompanied by other diabetic -related complications such as retinopathy , neuropathy, blood...Genetic and Environmental Pathways in Type 1 Diabetes Complications PRINCIPAL INVESTIGATOR: Massimo Trucco, M.D...To) 27 August 2008 – 26 August 2009 4. TITLE AND SUBTITLE Genetic and Environmental Pathways in Type 1 Diabetes Complications New Advanced

  18. Relationship between lipoprotein (a) and micro/macro complications in type 2 diabetes mellitus: a forgotten target.

    PubMed

    Toro, Rocio; Segura, Eduardo; Nuñez-Cortes, Jesús Millan; Pedro-Botet, Juan Carlos; Quezada-Feijoo, Maribel; Mangas, Alipio

    2015-03-01

    Increased lipoprotein (a) serum concentrations seems to be a cardiovascular risk factor; this has not been confirmed in extracoronary atherosclerosis complications. We therefore wished to gain a deeper insight into relationship between the plasma concentrations of lipoprotein (a) and the micro- and macro-vascular complications of type 2 diabetes mellitus and to identify possible differences in this association. This is a descriptive observational cross-sectional study. Two-hundred and seventeen elderly patients with type 2 diabetes mellitus were included from the internal medicine outclinic. Anthropometric data, analytical data (insulin reserve, basal and postprandial peptide C, glycosylated hemoglobin, renal parameters, lipid profile and clinical data as hypertension, obesity, micro- and macrovascular complications were collected. Patients were grouped according to the type 2 diabetes mellitus time of evolution. The mean plasma concentration of lipoprotein (a) was 22.2 ± 17.3 mg/dL (22.1 ± 15.9 mg/dL for males, and 22.1 ± 18.4 mg/dL for females). Patients with hypertension, coronary heart disease, cerebrovascular accident, microalbuminuria and proteinuria presented a statistically significant increased level of lipoprotein (a). Similarly, the patients with hyperlipoprotein (a) (≥ 30 mg/dL) presented significantly increased levels of urea and total cholesterol. In the multivariate regression model, the level of lipoprotein (a) is positively correlated with coronary heart disease and diabetic nephropathy (P < 0.01 and P < 0.005, respectively). The elevation of plasma levels of lipoprotein (a) are associated with the development of coronary heart disease and diabe tic nephropathy. Therefore, we consider that the determination of lipoprotein (a) may be a prognostic marker of vascular complications in patients with type 2 diabetes mellitus.

  19. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    PubMed

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  20. Long Term Analysis of Deformations in Salt Mines: Kłodawa Salt Mine Case Study, Central Poland

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Tajduś, Antoni; Andrusikiewicz, Wacław; Kowalski, Michał; Kolano, Malwina; Stopkowicz, Agnieszka; Cyran, Katarzyna; Jakóbczyk, Joanna

    2017-09-01

    Located in central Poland, the Kłodawa salt dome is 26 km long and about 2 km wide. Exploitation of the dome started in 1956, currently rock salt extraction is carried out in 7 mining fields and the 12 mining levels at the depth from 322 to 625 meters below sea level (m.b.s.l.). It is planned to maintain the mining activity till 2052 and extend rock salt extraction to deeper levels. The dome is characterised by complex geological structure resulted from halokinetic and tectonic processes. Projection of the 3D numerical analysis took into account the following factors: mine working distribution within the Kłodawa mine (about 1000 rooms, 350 km of galleries), complex geological structure of the salt dome, complicated structure and geometry of mine workings and distinction in rocks mechanical properties e.g. rock salt and anhydrite. Analysis of past mine workings deformation and prediction of future rock mass behaviour was divided into four stages: building of the 3D model (state of mine workings in year 2014), model extension of the future mine workings planned for extraction in years 2015-2052, the 3D model calibration and stability analysis of all mine workings. The 3D numerical model of Kłodawa salt mine included extracted and planned mine workings in 7 mining fields and 14 mining levels (about 2000 mine workings). The dimensions of the model were 4200 m × 4700 m × 1200 m what was simulated by 33 million elements. The 3D model was calibrated on the grounds of convergence measurements and laboratory tests. Stability assessment of mine workings was based on analysis of the strength/stress ratio and vertical stress. The strength/stress ratio analysis enabled to indicate endangered area in mine workings and can be defined as the factor of safety. Mine workings in state close to collapse are indicated by the strength/stress ratio equals 1. Analysis of the vertical stress in mine workings produced the estimation of current state of stress in comparison to initial (pre-mining) conditions. The long-term deformation analysis of the Kłodawa salt mine for year 2014 revealed that stability conditions were fulfilled. Local disturbances indicated in the numerical analysis were connected with high chambers included in the mining field no 1 and complex geological structure in the vicinity of mine workings located in the mining fields no 2 and 3. Moreover, numerical simulations that projected the future extraction progress (till year 2052) showed positive performance. Local weakness zones in the mining field no 7 are associated with occurrence of carnallite layers and intensive mining which are planned in the mining field no 6 at the end of rock salt extraction.

  1. RNA 3D Modules in Genome-Wide Predictions of RNA 2D Structure

    PubMed Central

    Theis, Corinna; Zirbel, Craig L.; zu Siederdissen, Christian Höner; Anthon, Christian; Hofacker, Ivo L.; Nielsen, Henrik; Gorodkin, Jan

    2015-01-01

    Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution. These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D module prediction tools and apply them on a 13-way vertebrate sequence-based alignment. We find that RNA 3D modules predicted by metaRNAmodules and JAR3D are significantly enriched in the screened windows compared to their shuffled counterparts. The initially estimated FDR of 47.0% is lowered to below 25% when certain 3D module predictions are present in the window of the 2D prediction. We discuss the implications and prospects for further development of computational strategies for detection of RNA 2D structure in genomic sequence. PMID:26509713

  2. Impact of transient or persistent slow flow and adjunctive distal protection on mortality in ST-segment elevation myocardial infarction.

    PubMed

    Fujii, Toshiharu; Masuda, Naoki; Nakano, Masataka; Nakazawa, Gaku; Shinozaki, Norihiko; Matsukage, Takashi; Ogata, Nobuhiko; Yoshimachi, Fuminobu; Ikari, Yuji

    2015-04-01

    Routine use of distal protection for ST-segment elevation myocardial infarction (STEMI) is not recommended. The purpose of this study was to analyze the impact of slow flow on mortality after STEMI, and the efficacy of adjunctive distal protection following primary thrombus aspiration. We retrospectively analyzed 414 STEMI patients who underwent primary PCI. Distal protection was used following primary thrombus aspiration only when the operator judged the patient to be at high risk of slow flow. Patients were divided into 3 groups: those receiving no thrombus aspiration (A- Group), thrombus aspiration without distal protection (A+/D- Group) or a combination of aspiration with distal protection (A+/D+ Group). Slow flow/no reflow was characterized as transient or persistent. The A-, A+/D-, and A+/D+ Groups consisted of 28.5 % (n = 118), 44.4 % (n = 184), and 27.1 % (n = 112) of patients, respectively. All-cause mortality at 180 days was 6.8 % without slow flow, 14.1 % with transient and 44.4 % with persistent slow flow (P < 0.0001), but was similar whether or not distal protection was used among these groups complicated without slow flow (A-, 8.7 %; A+/D-, 6.3 %; A+/D+, 4.3 %; P = 0.5854). However, in cases complicated with transient or persistent slow flow, distal protection reduced all-cause mortality to 38.5 % (A-), 23.3 % (A+/D-), and 10.8 % (A+/D+) at 180 days (P = 0.0114). Our data confirm that routine distal protection is not to be recommended. However, it is suggested that it could reduce mortality of patients with slow flow. Predicting slow flow accurately before PCI, however, remains a challenge.

  3. Hypocalcemia and tetany caused by vitamin D deficiency in a child with intestinal lymphangiectasia.

    PubMed

    Lu, Ying-Yi; Wu, Jia-Feng; Ni, Yen-Hsuan; Peng, Steven Shinn-Forng; Shun, Chia-Tung; Chang, Mei-Hwei

    2009-10-01

    Primary intestinal lymphangiectasia is a rare disease of children, which is characterized by chronic diarrhea and complicated with malnutrition, including fat-soluble vitamin deficiency. We report a girl aged 4 years and 8 months who was diagnosed with the disease by endoscopic duodenal biopsy at 8 months of age. She presented initially with chronic diarrhea at 4 months of age. Generalized edema with hypoalbuminemia frequently occurred despite regular albumin supplements. Multiple vitamins initially were not supplied regularly. Episodes of tetany caused by hypocalcemia developed 4 years after the diagnosis of intestinal lymphangiectasia. Imaging study (long-bone X-ray and dual-energy X-ray absorptiometry) revealed low bone density. Complicated vitamin D deficiency [low serum 25-hydroxy vitamin D concentration (< 12.48 mmol/L, the detection limit)] and secondary hyperparathyroidism were confirmed via blood testing. Vitamin D supplementation for 3 months improved her bone density, secondary hyperparathyroidism and frequent tetany. Vitamin D status should be monitored in patients with intestinal lymphangiectasia.

  4. Beyond small molecule SAR – using the dopamine D3 receptor crystal structure to guide drug design

    PubMed Central

    Keck, Thomas M.; Burzynski, Caitlin; Shi, Lei; Newman, Amy Hauck

    2016-01-01

    The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This review will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small molecule SAR to improve the selectivity and directed efficacy profiles are examined. PMID:24484980

  5. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants

    PubMed Central

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure–activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein–ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. PMID:24930145

  6. Importance of recurrence rating, morphology, hernial gap size, and risk factors in ventral and incisional hernia classification.

    PubMed

    Dietz, U A; Winkler, M S; Härtel, R W; Fleischhacker, A; Wiegering, A; Isbert, C; Jurowich, Ch; Heuschmann, P; Germer, C-T

    2014-02-01

    There is limited evidence on the natural course of ventral and incisional hernias and the results of hernia repair, what might partially be explained by the lack of an accepted classification system. The aim of the present study is to investigate the association of the criteria included in the Wuerzburg classification system of ventral and incisional hernias with postoperative complications and long-term recurrence. In a retrospective cohort study, the data on 330 consecutive patients who underwent surgery to repair ventral and incisional hernias were analyzed. The following four classification criteria were applied: (a) recurrence rating (ventral, incisional or incisional recurrent); (b) morphology (location); (c) size of the hernial gap; and (d) risk factors. The primary endpoint was the occurrence of a recurrence during follow-up. Secondary endpoints were incidence of postoperative complications. Independent association between classification criteria, type of surgical procedures and postoperative complications was calculated by multivariate logistic regression analysis and between classification criteria, type of surgical procedures and risk of long-term recurrence by Cox regression analysis. Follow-up lasted a mean 47.7 ± 23.53 months (median 45 months) or 3.9 ± 1.96 years. The criterion "recurrence rating" was found as predictive factor for postoperative complications in the multivariate analysis (OR 2.04; 95 % CI 1.09-3.84; incisional vs. ventral hernia). The criterion "morphology" had influence neither on the incidence of the critical event "recurrence during follow-up" nor on the incidence of postoperative complications. Hernial gap "width" predicted postoperative complications in the multivariate analysis (OR 1.98; 95 % CI 1.19-3.29; ≤5 vs. >5 cm). Length of the hernial gap was found to be an independent prognostic factor for the critical event "recurrence during follow-up" (HR 2.05; 95 % CI 1.25-3.37; ≤5 vs. >5 cm). The presence of 3 or more risk factors was a consistent predictor for "recurrence during follow-up" (HR 2.25; 95 % CI 1.28-9.92). Mesh repair was an independent protective factor for "recurrence during follow-up" compared to suture (HR 0.53; 95 % CI 0.32-0.86). The ventral and incisional hernia classification of Dietz et al. employs a clinically proven terminology and has an open classification structure. Hernial gap size and the number of risk factors are independent predictors for "recurrence during follow-up", whereas recurrence rating and hernial gap size correlated significantly with the incidence of postoperative complications. We propose the application of these criteria for future clinical research, as larger patient numbers will be needed to refine the results.

  7. Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour.

    PubMed

    Wang, Baichuan; Hao, Yongqiang; Pu, Feifei; Jiang, Wenbo; Shao, Zengwu

    2018-03-01

    Prosthetic reconstruction may be a promising treatment for peri-acetabular malignant bone tumour; however, it is associated with a high complication rate. Therefore, prosthetic design and approach of prosthetic reconstruction after tumour resection warrant study. We retrospectively analyzed 11 patients with peri-acetabular malignant bone tumours treated by personalized 3D-printed hemipelvic prostheses after en bloc resection between 2015 and 2016. Pre-operative and post-operative pain at rest was assessed according to a 10-cm VAS score. The results of functional improvement were evaluated using the MSTS-93 score at the final follow-up. We also analyzed tumour recurrence, metastases, and complications associated with the reconstruction procedure. All patients were observed for six to 24 months with an average follow-up of 15.5 months. One patient had occasional pain of the involved hip at the final follow-up (VAS, pre vs. post 8 months: 3 vs. 2). The mean MSTS-93 score was 19.2 (range, 13-25). Hip dislocation was detected in two patients, while delayed wound healing occurred in one patient. One patient with mesenchymal chondrosarcoma had a left iliac bone metastasis. Local tumour recurrence was not observed. Reconstruction of bony defect after tumour resection using personalized 3D-printed hemipelvic prostheses can obtain acceptable functional results without severe complications. Based on previous reports and our results, we believe that reconstruction arthroplasty using 3D-printed hemipelvic prostheses will provide a promising alternative for those patients with peri-acetabular malignant bone tumours. Level IV, therapeutic study.

  8. Combining 3D structure of real video and synthetic objects

    NASA Astrophysics Data System (ADS)

    Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon

    1998-04-01

    This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.

  9. Use of 3D reconstruction cloacagrams and 3D printing in cloacal malformations.

    PubMed

    Ahn, Jennifer J; Shnorhavorian, Margarett; Amies Oelschlager, Anne-Marie E; Ripley, Beth; Shivaram, Giridhar M; Avansino, Jeffrey R; Merguerian, Paul A

    2017-08-01

    Cloacal anomalies are complex to manage, and the anatomy affects prognosis and management. Assessment historically includes examination under anesthesia, and genitography is often performed, but these do not consistently capture three-dimensional (3D) detail or spatial relationships of the anatomic structures. Three-dimensional reconstruction cloacagrams can provide a high level of detail including channel measurements and the level of the cloaca (<3 cm vs. >3 cm), which typically determines the approach for surgical reconstruction and can impact long-term prognosis. Yet this imaging modality has not yet been directly compared with intra-operative or endoscopic findings. Our objective was to compare 3D reconstruction cloacagrams with endoscopic and intraoperative findings, as well as to describe the use of 3D printing to create models for surgical planning and education. An IRB-approved retrospective review of all cloaca patients seen by our multi-disciplinary program from 2014 to 2016 was performed. All patients underwent examination under anesthesia, endoscopy, 3D reconstruction cloacagram, and subsequent reconstructive surgery at a later date. Patient characteristics, intraoperative details, and measurements from endoscopy and cloacagram were reviewed and compared. One of the 3D cloacagrams was reformatted for 3D printing to create a model for surgical planning. Four patients were included for review, with the Figure illustrating 3D cloacagram results. Measurements of common channel length and urethral length were similar between modalities, particularly with confirming the level of cloaca. No patient experienced any complications or adverse effects from cloacagram or endoscopy. A model was successfully created from cloacagram images with the use of 3D printing technology. Accurate preoperative assessment for cloacal anomalies is important for counseling and surgical planning. Three-dimensional cloacagrams have been shown to yield a high level of anatomic detail. Here, cloacagram measurements are shown to correlate well with endoscopic and intraoperative findings with regards to level of cloaca and Müllerian development. Measurement discrepancies may be due to technical variation indicating a need for further evaluation. The translation of the cloacagram images into a 3D printed model demonstrates potential applications of these models for pre-operative planning and education of both families and trainees. In our series, 3D reconstruction cloacagrams yielded accurate measurements of urethral length and level of cloaca common channel and urethral length, similar to those found on endoscopy. Three-dimensional models can be printed from using cloacagram images, and may be useful for surgical planning and education. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  10. Structures of EccB 1 and EccD 1 from the core complex of the mycobacterial ESX-1 type VII secretion system

    DOE PAGES

    Wagner, Jonathan M.; Chan, Sum; Evans, Timothy J.; ...

    2016-02-27

    The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system. This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB 1 and EccD 1. The periplasmic domain of EccB 1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. Themore » repeat domains of EccB 1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD 1 has a ubiquitin-like fold and forms a dimer with a negatively charged groove. In conclusion, these structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.« less

  11. Structures of EccB 1 and EccD 1 from the core complex of the mycobacterial ESX-1 type VII secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Jonathan M.; Chan, Sum; Evans, Timothy J.

    The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system. This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB 1 and EccD 1. The periplasmic domain of EccB 1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. Themore » repeat domains of EccB 1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD 1 has a ubiquitin-like fold and forms a dimer with a negatively charged groove. In conclusion, these structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.« less

  12. Shallow Refraction and Rg Analysis at the Source Physics Experiment Site

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Carmichael, J. D.; Patton, H. J.; Snelson, C. M.; Coblentz, D. D.; Larmat, C. S.; Yang, X.

    2014-12-01

    We present analyses of the two-dimensional (2D) seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended 100 to 2000 m from the source borehole with 100 m spacing. With seismic sources provided only at one end of the geophone lines, standard refraction profiling methods are unable to resolve the seismic velocity structures unambiguously. In previous work we have shown overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines, Line 2, leading us to offer a simplified1D model for this line. A more detailed inspection of Line 2 supports a 2D re-interpretation of the structure on this line. We observe variation along the length of the line, as evidenced by abrupt and consistent changes in the behavior of surface waves at higher frequencies. We interpret this as a manifestation of significant material or structural heterogeneity in the shallowest strata. This interpretation is consistent with P-wave and Rg attenuation observations. Planned additional sources, both at the distal ends of the profiles and intermittently within their lengths, will provide significant enhancement to our ability to resolve this complicated shallow structure.

  13. Procoagulant activity of extracellular vesicles as a potential biomarker for risk of thrombosis and DIC in patients with acute leukaemia.

    PubMed

    Gheldof, Damien; Haguet, Hélène; Dogné, Jean-Michel; Bouvy, Céline; Graux, Carlos; George, Fabienne; Sonet, Anne; Chatelain, Christian; Chatelain, Bernard; Mullier, François

    2017-02-01

    Haemostatic complication is common for patients with hematologic malignancies. Recent studies suggest that the procoagulant activity (PCA) of extracellular vesicles (EV) may play a major role in venous thromboembolism and disseminated intravascular coagulation (DIC) in acute leukaemia. To study the impact of EVs from leukaemic patients on thrombin generation and to assess EV-PCA as a potential biomarker for thrombotic complications in patients with acute leukaemia. Blood samples from a cohort of patients with newly diagnosed acute leukaemia were obtained before treatment (D-0), 3 and 7 days after treatment (D-3 and D-7). Extracellular vesicles were isolated and concentrated by ultracentrifugation. EV-PCA was assessed by thrombin generation assay, and EV-associated tissue factor activity was measured using a commercial bio-immunoassay (Zymuphen MP-TF®). Of the 53 patients, 6 had increased EV-PCA at D-0 and 4 had a thrombotic event. Patients without thrombotic events (n = 47) had no elevated EV-PCA. One patient had increased EVs with procoagulant activity at D-3 and developed a DIC at D-5. This patient had no increased EVs-related tissue factor activity from D-0 to D-7 (<2 pg/ml). Eight patients had increased EVs with tissue factor activity (>2 pg/ml), of these, four had a thrombosis and two had haemorrhages. Procoagulant activity of extracellular vesicles could have a predictive value in excluding the risk of thrombotic events. Our findings also suggest a possible association between thrombotic events and EV-PCA.

  14. Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures.

    PubMed

    Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi

    2014-09-18

    Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.

  15. Validation of the comprehensive ICF core sets for diabetes mellitus:a Malaysian perspective.

    PubMed

    Abdullah, Mohd Faudzi; Nor, Norsiah Mohd; Mohd Ali, Siti Zubaidah; Ismail Bukhary, Norizzati Bukhary; Amat, Azlin; Latif, Lydia Abdul; Hasnan, Nazirah; Omar, Zaliha

    2011-04-01

    Diabetes mellitus (DM) is a chronic disease that is prevalent in many countries. The prevalence of DM is on the rise, and its complications pose a heavy burden on the healthcare systems and on the patients' quality of life worldwide. This is a multicentre, cross-sectional study involving 5 Health Clinics conducted by Family Medicine Specialists in Malaysia. Convenience sampling of 100 respondents with DM were selected. The International Classifi cation of Functioning, Disability and Health (ICF) based measures were collected using the Comprehensive Core Set for DM. SF-36 and self-administered forms and comorbidity questionnaire (SCQ) were also used. Ninety-seven percent had Type 2 DM and 3% had Type 1 DM. The mean period of having DM was 6 years. Body functions related to physical health including exercise tolerance (b455), general physical endurance (b4550), aerobic capacity (b4551) and fatiguability (b4552) were the most affected. For body structures, the structure of pancreas (s550) was the most affected. In the ICF component of activities and participation, limitation in sports (d9201) was the highest most affected followed by driving (d475), intimate relationships (d770), handling stress and other psychological demands (d240) and moving around (d455). Only 7% (e355 and e450) in the environmental category were documented as being a relevant factor by more than 90% of the patients. The content validity of the comprehensive ICF Core set DM for Malaysian population were identified and the results show that physical and mental functioning were impaired in contrast to what the respondents perceived as leading healthy lifestyles.

  16. Pop-up assembly of 3D structures actuated by heat shrinkable polymers

    NASA Astrophysics Data System (ADS)

    Cui, Jianxun; Adams, J. G. M.; Zhu, Yong

    2017-12-01

    Folding 2D sheets into desired 3D structures is a promising fabrication technique that can find a wide range of applications. Compressive buckling provides an attractive strategy to actuate the folding and can be applied to a broad range of materials. Here a new and simple method is reported to achieve controlled compressive buckling, which is actuated by a heat shrinkable polymer sheet. The buckling deformation is localized at the pre-defined creases in the 2D sheet, resulting in sharp folding. Two approaches are developed to actuate the transformation, which follow similar geometric rules. In the first approach, the 2D precursor is pushed from outside, which leads to a 3D structure surrounded by the shrunk polymer sheet. Assembled 3D structures include prisms/pyramids with different base shapes, house roof, partial soccer ball, Miura-ori structure and insect wing. In the second approach, the 2D precursor is pulled from inside, which leads to a 3D structure enclosing the shrunk polymer sheet. Prisms/pyramids with different base shapes are assembled. The assembled structures are further tessellated to fabricate cellular structures that can be used as thermal insulator and crash energy absorber. They are also stacked vertically to fabricate complex multilayer structures.

  17. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    NASA Astrophysics Data System (ADS)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2016-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D lithospheric thickness and viscosity structure. Future sea level change due to ongoing melting is primarily influenced by 3-D viscosity structure. We show that 1-D Earth models built using regional inferences of viscosity and lithospheric thickness do not accurately capture the variability introduced by 3-D Earth structure.

  18. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    NASA Astrophysics Data System (ADS)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2017-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D lithospheric thickness and viscosity structure. Future sea level change due to ongoing melting is primarily influenced by 3-D viscosity structure. We show that 1-D Earth models built using regional inferences of viscosity and lithospheric thickness do not accurately capture the variability introduced by 3-D Earth structure.

  19. Whole pelvis megavoltage irradiation with single doses of 1000 rad to palliate advanced gynecologic cancers. [Incidence and severity of acute complications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulware, R.J.; Caderao, J.B.; Delclos, L.

    1979-03-01

    This study reviews the experiences at M.D. Anderson Hospital of treating advanced gynecologic malignacies for palliation with single doses of 1000 rad per fraction. When feasible, this treatment was repeated twice (for a total of 3 treatments between intervals of 3 to 4 weeks. The patients who received 3 treatments had the best palliation; 2 treatments were more effective than 1. The palliative response was good in cervix, vagina, and vulva, poor in endometrial and ovarian carcinoma. The follow-up was short in some cases, but the acute complications appear minimal.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Tzu-Ling; Yang, Chen-I., E-mail: ciyang@thu.edu.tw

    The preparations and properties of three new homochiral three-dimensional (3D) coordination polymers, [M(D-cam)(pyz)(H{sub 2}O){sub 2}]{sub n} (M=Co (1) and Ni (2); D-H{sub 2}cam=(+) D-camphoric acid; pyz=pyrazine) and [Mn{sub 2}(D-cam){sub 2}(H{sub 2}O){sub 2}] (3), under solvothermal conditions is described. Single-crystal X-ray diffraction analyses revealed that all of compounds are homochiral 3D structure. 1 and 2 are isostructural and crystallize in the trigonal space group P3{sub 2}21, while 3 crystallizes in monoclinic space group P2{sub 1}. The structure of 1 and 2 consists of metal-D-cam helical chains which are pillared with pyrazine ligands into a 3D framework structure and 3 features amore » 3D homochiral framework involving one-dimensional manganese-carboxylate chains that are aligned parallel to the b axis. Magnetic susceptibility data of all compounds were collected. The findings indicate that μ{sub 2}-pyrazine dominate weak antiferromagnetic coupling within 1 and 2, while 3 exhibits antiferromagnetic behavior through the carboxylate groups of D-cam ligand. -- Graphical abstract: The preparations and properties of three new homochiral three-dimensional (3D) coordination polymers, [M(D-cam)(pyz)(H{sub 2}O){sub 2}]{sub n} (M=Co (1) and Ni (2); D-H{sub 2}cam=(+) D-camphoric acid; pyz=pyrazine) and [Mn{sub 2}(D-cam){sub 2}(H{sub 2}O){sub 2}] (3), under solvothermal conditions is described. Single-crystal X-ray diffraction analyses revealed that all of compounds are homochiral 3D structure. 1 and 2 are isostructural and crystallize in the trigonal space group P3{sub 2}21, while 3 crystallizes in monoclinic space group P2{sub 1}. The structure of 1 and 2 consists of metal-D-cam helical chains which are pillared with pyrazine ligands into a 3D framework structure and 3 features a 3D homochiral framework involving one-dimensional manganese-carboxylate chains that are aligned parallel to the b axis. Magnetic susceptibility data of all compounds were collected. The findings indicate that μ{sub 2}-pyrazine dominate weak antiferromagnetic coupling within 1 and 2, while 3 exhibits antiferromagnetic behavior through the carboxylate groups of D-cam ligand. Highlights: • Three homochiral 3D coordination polymers were synthesized. • 1 and 2 are 3D structure with metal-D-cam helical chains pillared by pyrazine. • 3 shows a 3D homochiral framework involving 1D manganese-carboxylate chains. • Magnetic data analysis indicates that 1–3 exhibit weak antiferromagnetic coupling.« less

  1. Direct 3D Printing of Catalytically Active Structures

    DOE PAGES

    Manzano, J. Sebastian; Weinstein, Zachary B.; Sadow, Aaron D.; ...

    2017-09-22

    3D printing of materials with active functional groups can provide custom-designed structures that promote chemical conversions. Catalytically active architectures were produced by photopolymerizing bifunctional molecules using a commercial stereolithographic 3D printer. Functionalities in the monomers included a polymerizable vinyl group to assemble the 3D structures and a secondary group to provide them with active sites. The 3D-printed architectures containing accessible carboxylic acid, amine, and copper carboxylate functionalities were catalytically active for the Mannich, aldol, and Huisgen cycloaddition reactions, respectively. The functional groups in the 3D-printed structures were also amenable to post-printing chemical modification. And as proof of principle, chemically activemore » cuvette adaptors were 3D printed and used to measure in situ the kinetics of a heterogeneously catalyzed Mannich reaction in a conventional solution spectrophotometer. In addition, 3D-printed millifluidic devices with catalytically active copper carboxylate complexes were used to promote azide-alkyne cycloaddition under flow conditions. The importance of controlling the 3D architecture of the millifluidic devices was evidenced by enhancing reaction conversion upon increasing the complexity of the 3D prints.« less

  2. Direct 3D Printing of Catalytically Active Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzano, J. Sebastian; Weinstein, Zachary B.; Sadow, Aaron D.

    3D printing of materials with active functional groups can provide custom-designed structures that promote chemical conversions. Catalytically active architectures were produced by photopolymerizing bifunctional molecules using a commercial stereolithographic 3D printer. Functionalities in the monomers included a polymerizable vinyl group to assemble the 3D structures and a secondary group to provide them with active sites. The 3D-printed architectures containing accessible carboxylic acid, amine, and copper carboxylate functionalities were catalytically active for the Mannich, aldol, and Huisgen cycloaddition reactions, respectively. The functional groups in the 3D-printed structures were also amenable to post-printing chemical modification. And as proof of principle, chemically activemore » cuvette adaptors were 3D printed and used to measure in situ the kinetics of a heterogeneously catalyzed Mannich reaction in a conventional solution spectrophotometer. In addition, 3D-printed millifluidic devices with catalytically active copper carboxylate complexes were used to promote azide-alkyne cycloaddition under flow conditions. The importance of controlling the 3D architecture of the millifluidic devices was evidenced by enhancing reaction conversion upon increasing the complexity of the 3D prints.« less

  3. Usefulness of three-dimensional(3D) simulation software in hepatectomy for pediatric hepatoblastoma.

    PubMed

    Zhang, Gang; Zhou, Xian-Jun; Zhu, Cheng-Zhan; Dong, Qian; Su, Lin

    2016-09-01

    Hepatoblastoma (HB) is the most common malignant liver tumor in childhood. Complete HB surgical resection which is technically demanding is the cornerstone of effective therapy with a good prognosis. The aim of our study is to evaluate the usefulness of 3D simulation software in assisting hepatectomy in pediatric patients with HB. 21 children with HB who underwent hepatectomy were enrolled in this study. All patients underwent computer tomography (CT) imaging preoperatively. CT images from 11 cases (from September 2013 to August 2015) were reconstructed with Hisense CAS, and performed hetpatectomy. While 10 cases (from September 2011 to August 2013) without 3D simulation were token as the control group. The clinical outcome were analyzed and compared between the 2 groups. All the HB were successfully removed for all patients and there was no positive margins in the surgical specimens, no complications, and no recurrences. For the reconstructing group, 3D simulation software successfully reconstructed the 3D images of liver and were used as a navigator in the operation room during hepatectomy. Anatomic hepatectomy were successfully completed for all patients after operation planning using the software. There was no obvious discrepancy between the virtual and the actual hepatectomy. The mean operation time was shorter (142.18 ± 21.87 min VS. the control group, 173.5 ± 54.88 min, p = 0.047) and intraoperative bleeding was less (28.73 ± 14.17 ml VS. 42.8 ± 41.12 ml, p = 0.011) in the reconstructing group. Moreover, postoperative hospital stay tended to be shorter in the reconstructing group (11.18 ± 2.78d VS. the control group 13 ± 3.46d, P = 0.257). 3D simulation software facilitates the investigation of the complex liver structure, contributes to the optimal operation planning, and enables an individualized anatomic hepatectomy for each pediatric patient with HB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparative Study on Cushion Performance Between 3D Printed Kelvin Structure and 3D Printed Lattice Structure

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Lakshmi

    Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.

  5. Integration of Component Knowledge in Penalized-Likelihood Reconstruction with Morphological and Spectral Uncertainties.

    PubMed

    Stayman, J Webster; Tilley, Steven; Siewerdsen, Jeffrey H

    2014-01-01

    Previous investigations [1-3] have demonstrated that integrating specific knowledge of the structure and composition of components like surgical implants, devices, and tools into a model-based reconstruction framework can improve image quality and allow for potential exposure reductions in CT. Using device knowledge in practice is complicated by uncertainties in the exact shape of components and their particular material composition. Such unknowns in the morphology and attenuation properties lead to errors in the forward model that limit the utility of component integration. In this work, a methodology is presented to accommodate both uncertainties in shape as well as unknown energy-dependent attenuation properties of the surgical devices. This work leverages the so-called known-component reconstruction (KCR) framework [1] with a generalized deformable registration operator and modifications to accommodate a spectral transfer function in the component model. Moreover, since this framework decomposes the object into separate background anatomy and "known" component factors, a mixed fidelity forward model can be adopted so that measurements associated with projections through the surgical devices can be modeled with much greater accuracy. A deformable KCR (dKCR) approach using the mixed fidelity model is introduced and applied to a flexible wire component with unknown structure and composition. Image quality advantages of dKCR over traditional reconstruction methods are illustrated in cone-beam CT (CBCT) data acquired on a testbench emulating a 3D-guided needle biopsy procedure - i.e., a deformable component (needle) with strong energy-dependent attenuation characteristics (steel) within a complex soft-tissue background.

  6. A Three-Dimensional Mediastinal Model Created with Rapid Prototyping in a Patient with Ectopic Thymoma

    PubMed Central

    Nakada, Takeo; Inagaki, Takuya

    2014-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases. PMID:24633133

  7. A three-dimensional mediastinal model created with rapid prototyping in a patient with ectopic thymoma.

    PubMed

    Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya

    2015-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeff

    Berkeley Lab materials scientist, Jeff Urban presents his research on using metal-organic frameworks to capture carbon at Berkeley Lab's Cleantech Pitchfest on June 1, 2016. Removing excess carbon from an overheating atmosphere is an urgent and complicated problem. The answer, according to Berkeley Lab’s Jeff Urban, could lie at the nanoscale, where specially designed cage-like structures called metal organic frameworks, or MOFs, can trap large amounts of carbon in microscopically tiny structures. A Harvard PhD with expertise in thermoelectrics, gas separation and hydrogen storage, Urban directs teams at the Molecular Foundry’s Inorganic Materials Facility.

  9. A majorized Newton-CG augmented Lagrangian-based finite element method for 3D restoration of geological models

    NASA Astrophysics Data System (ADS)

    Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia

    2016-04-01

    In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.

  10. Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery.

    PubMed

    Ferrero, Emmanuelle; Mazda, Keyvan; Simon, Anne-Laure; Ilharreborde, Brice

    2018-04-24

    Preoperative planning of scoliosis surgery is essential in the effective treatment of spine pathology. Thus, precontoured rods have been recently developed to avoid iatrogenic sagittal misalignment and rod breakage. Some specific issues exist in adolescent idiopathic scoliosis (AIS), such as a less distal lower instrumented level, a great variability in the location of inflection point (transition from lumbar lordosis to thoracic kyphosis), and sagittal correction is limited by both bone-implant interface. Since 2007, stereoradiographic imaging system is used and allows for 3D reconstructions. Therefore, a software was developed to perform preoperative 3D surgical planning and to provide rod's shape and length. The goal of this preliminary study was to assess the feasibility, reliability, and the clinical relevance of this new software. Retrospective study on 47 AIS patients operated with the same surgical technique: posteromedial translation through posterior approach with lumbar screws and thoracic sublaminar bands. Pre- and postoperatively, 3D reconstructions were performed on stereoradiographic images (EOS system, Paris, France) and compared. Then, the software was used to plan the surgical correction and determine rod's shape and length. Simulated spine and rods were compared to postoperative real 3D reconstructions. 3D reconstructions and planning were performed by an independent observer. 3D simulations were performed on the 47 patients. No difference was found between the simulated model and the postoperative 3D reconstructions in terms of sagittal parameters. Postoperatively, 21% of LL were not within reference values. Postoperative SVA was 20 mm anterior in 2/3 of the cases. Postoperative rods were significantly longer than precontoured rods planned with the software (mean 10 mm). Inflection points were different on the rods used and the planned rods (2.3 levels on average). In this preliminary study, the software based on 3D stereoradiography low-dose system used to plan AIS surgery seems reliable for preoperative planning and precontoured rods. It is an interesting tool to improve surgeons' practice, since 3D planning is expected to reduce complications such as iatrogenic malalignment and to help for a better understanding of the complications, choosing the location of the transitional vertebra. However, further work is needed to improve thoracic kyphosis planning. These slides can be retrieved under Electronic Supplementary Material.

  11. Tuning the formations of metal-1,3,5-benzenetricarboxylate frameworks via the assistance of amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Xiao-Ping; Lian, Ting-Ting; Chen, Shu-Mei, E-mail: csm@fzu.edu.cn

    Seven new metal-1,3,5-benzenetricarboxylate coordination polymers have been synthesized by modification of auxiliary components during the assembly reactions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by XRD and TGA. Interestingly, they show fascinating topological structures. Compounds 1 and 2 possess the undulating layer structure with 3-connected hcb network and (3,6)-connected kgd network. Compound 3 possesses three-dimensional (3D) pillared-layer structure with 3-connected 2-fold interpenetrating srs net. Compound 4 also has the 3D 2-fold interpenetrating pillared-layer structure; however, it has (3,5)-connected hms topology because the Cd(II) center is 5-connected. Compound 5 possess 3D structure through hydrogen bondingmore » interactions between ladder-like layers. Compounds 6 and 7 have the similar 3D frameworks with 4-connected umc net and (3,7)-connected (3.4.5)(3{sup 2}.4{sup 6}.5{sup 5}.6{sup 8}) topology, respectively. The photoluminescent properties of compounds 2–7 were also investigated. - Graphical abstract: Presented here are seven new metal-1,3,5-benzenetricarboxylate coordination polymers with diverse structures from 2D layers to 3D open frameworks. The synthesis and structural diversity of these compounds are determined by the additional amino acids as unusual buffering agents. - Highlights: • Structural diversity of metal-1,3,5-benzenetricarboxylate frameworks. • Tuning structural topologies of MOFs via the assistance of amino acids. • Amino acids as unusual buffering agents for the synthesis of MOFs.« less

  12. Animation and radiobiological analysis of 3D motion in conformal radiotherapy.

    PubMed

    MacKay, R I; Graham, P A; Moore, C J; Logue, J P; Sharrock, P J

    1999-07-01

    To allow treatment plans to be evaluated against the range of expected organ motion and set up error anticipated during treatment. Planning tools have been developed to allow concurrent animation and radiobiological analysis of three dimensional (3D) target and organ motion in conformal radiotherapy. Surfaces fitted to structures outlined on CT studies are projected onto pre-treatment images or onto megavoltage images collected during the patient treatment. Visual simulation of tumour and normal tissue movement is then performed by the application of three dimensional affine transformations, to the selected surface. Concurrent registration of the surface motion with the 3D dose distribution allows calculation of the change in dose to the volume. Realistic patterns of motion can be applied to the structure to simulate inter-fraction motion and set-up error. The biologically effective dose for the structure is calculated for each fraction as the surface moves over the course of the treatment and is used to calculate the normal tissue complication probability (NTCP) or tumour control probability (TCP) for the moving structure. The tool has been used to evaluate conformal therapy plans against set up measurements recorded during patient treatments. NTCP and TCP were calculated for a patient whose set up had been corrected after systematic deviations from plan geometry were measured during treatment, the effect of not making the correction were also assessed. TCP for the moving tumour was reduced if inadequate margins were set for the treatment. Modelling suggests that smaller margins could have been set for the set up corrected during the course of the treatment. The NTCP for the rectum was also higher for the uncorrected set up due to a more rectal tissue falling in the high dose region. This approach provides a simple way for clinical users to utilise information incrementally collected throughout the whole of a patient's treatment. In particular it is possible to test the robustness of a patient plan against a range of possible motion patterns. The methods described represent a move from the inspection of static pre-treatment plans to a review of the dynamic treatment.

  13. Identifying novel sequence variants of RNA 3D motifs

    PubMed Central

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  14. Structure of high-resolution K β1 ,3 x-ray emission spectra for the elements from Ca to Ge

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Tochio, T.; Yamashita, M.; Fukushima, S.; Vlaicu, A. M.; Syrocki, Ł.; Słabkowska, K.; Weder, E.; Polasik, M.; Sawicka, K.; Indelicato, P.; Marques, J. P.; Sampaio, J. M.; Guerra, M.; Santos, J. P.; Parente, F.

    2018-05-01

    The K β x-ray spectra of the elements from Ca to Ge have been systematically investigated using a high-resolution antiparallel double-crystal x-ray spectrometer. Each K β1 ,3 natural linewidth has been corrected using the instrumental function of this type of x-ray spectrometer, and the spin doublet energies have been obtained from the peak position values in K β1 ,3 x-ray spectra. For all studied elements the corrected K β1 x-ray lines FWHM increase linearly as a function of Z . However, for K β3 x-ray lines this dependence is generally not linear in the case of 3 d elements but increases from Sc to Co elements. It has been found that the contributions of satellite lines are considered to be [K M ] shake processes. Our theoretically predicted synthetic spectra of Ca, Mn, Cu, and Zn are in very good agreement with our high-resolution measurements, except in the case of Mn, due to the open-shell valence configuration effect (more than 7000 transitions for diagram lines and more than 100 000 transitions for satellite lines) and the influence of the complicated structure of the metallic Mn.

  15. Methane Provenance Determined by CH2D2 and 13CH3D Abundances

    NASA Astrophysics Data System (ADS)

    Kohl, I. E.; Giunta, T.; Warr, O.; Ash, J. L.; Ruffine, L.; Sherwood Lollar, B.; Young, E. D.

    2017-12-01

    Determining the provenance of naturally occurring methane gases is of major interest to energy companies and atmospheric climate modelers, among others. Bulk isotopic compositions and other geochemical tracers sometimes fail to provide definitive determinations of sources of methane due to complications from mixing and complicated chemical pathways of origin. Recent measurements of doubly-substituted isotopologues of methane, CH2D2 (UCLA) and 13CH3D (UCLA, CalTech, and MIT) have allowed for major improvements in sourcing natural methane gases. Early work has focused on formation temperatures obtained when the relative abundances of both doubly-substituted mass-18 species are consistent with internal equilibrium. When methane gases do not plot on the thermodynamic equilibrium curve in D12CH2D2 vs D13CH3D space, temperatures determined from D13CH3D values alone are usually spurious, even when appearing reasonable. We find that the equilibrium case is actually rare and almost exclusive to thermogenic gases produced at temperatures exceeding 100°C. All other relevant methane production processes appear to generate gases that are not in isotopologue-temperature equilibrium. When gases show departures from equilibrium as determined by the relationship between CH2D2 and 13CH3D abundances, data fall within empirically defined fields representing formation pathways. These fields are thus far consistent between different geological settings and and between lab experiments and natural samples. We have now defined fields for thermogenic gas production, microbial methanogenesis, low temperature abiotic (Sabatier) synthesis and higher temperature FTT synthesis. The majority of our natural methane data can be explained by mixing between end members originating within these production fields. Mixing can appear complex, resulting in both hyper-clumped and anti-clumped isotopologue abundances. In systems where mixtures dominate and end-members are difficult to sample, mixing models can be used to extrapolate end member compositions. Post formation equilibration with time is evident in some cases and is most likely attributable to anaerobic methane oxidation. Large variation in CH2D2 abundances related to quantum tunneling and /or combinatorial effects is a crucial arbiter for methane sources.

  16. Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.

    PubMed

    Jin, Yifei; Compaan, Ashley; Chai, Wenxuan; Huang, Yong

    2017-06-14

    Additive manufacturing (AM) enables the freeform fabrication of complex structures from various build materials. The objective of this study is to develop a novel Laponite nanoclay-enabled "printing-then-solidification" additive manufacturing approach to extrude complex three-dimensional (3D) structures made of various liquid build materials. Laponite, a member of the smectite mineral family, is investigated to serve as a yield-stress support bath material for the extrusion printing of liquid build materials. Using the printing-then-solidification approach, the printed structure remains liquid and retains its shape with the help of the Laponite support bath. Then the completed liquid structures are solidified in situ by applying suitable cross-linking mechanisms. Finally, the solidified structures are harvested from the Laponite nanoclay support bath for any further processing as needed. Due to its chemical and physical stability, liquid build materials with different solidification/curing/gelation mechanisms can be fabricated in the Laponite bath using the printing-then-solidification approach. The feasibility of the proposed Laponite-enabled printing-then-solidification approach is demonstrated by fabricating several complicated structures made of various liquid build materials, including alginate with ionic cross-linking, gelatin with thermal cross-linking, and SU-8 with photo-cross-linking. During gelatin structure printing, living cells are included and the postfabrication cell viability is above 90%.

  17. Practical guide for validated memristance measurements

    NASA Astrophysics Data System (ADS)

    Du, Nan; Shuai, Yao; Luo, Wenbo; Mayr, Christian; Schüffny, René; Schmidt, Oliver G.; Schmidt, Heidemarie

    2013-02-01

    Chua [IEEE Trans. Circuit Theory 18, 507-519 (1971), 10.1109/TCT.1971.1083337] predicted rather simple charge-flux curves for active and passive memristors (short for memory resistors) and presented active memristor circuit realizations already in the 1970 s. The first passive memristor has been presented in 2008 [D. B. Strukov, G. S. Snider, and D. R. Williams, Nature (London) 453, 80-83 (2008), 10.1038/nature06932]. Typically, memristors are traced in complicated hysteretic current-voltage curves. Therefore, the true essence of many new memristive devices has not been discovered so far. Here, we give a practical guide on how to use normalized charge-flux curves for the prediction of hysteretic current-voltage characteristics of memristors. In the case of memristive BiFeO3 thin film capacitor structures, the normalized charge-flux curves superimpose for different numbers of measurement points Ns and a different measurement time per measurement point Ts. Such normalized charge-flux curves can be used for the prediction of current-voltage characteristics for input signals with arbitrarily chosen Ns and Ts.

  18. The Utility of Proton Beam Therapy with Concurrent Chemotherapy for the Treatment of Esophageal Cancers

    PubMed Central

    Lin, Steven H.

    2011-01-01

    The standard of care for the management of locally advanced esophageal cancers in the United States is chemotherapy combined with radiation, either definitively, or for those who could tolerate surgery, preoperatively before esophagectomy. Although the appropriate radiation dose remains somewhat controversial, the quality of the radiation delivery is critical for the treatment of esophageal cancer since the esophagus is positioned close to vital structures, such as the heart and lung. The volume and relative doses to these normal tissues affect acute and late term complications. Advances in radiation delivery from 2D to 3D conformal radiation therapy, to Intensity Modulated Radiation Therapy (IMRT) or charged particle therapy (carbon ion or proton beam therapy (PBT)), allow incremental improvements in the therapeutic ratio. This could have implications in non-cancer related morbidity for long term survivors. This article reviews the evolution in radiation technologies and the use of PBT with chemotherapy in the management of esophageal cancer. PMID:24213126

  19. Sinusoidal Obstruction Syndrome during Treatment for Wilms' Tumor: A Life-threatening Complication

    PubMed Central

    Totadri, Sidharth; Trehan, Amita; Bansal, Deepak; Jain, Richa

    2017-01-01

    Context: Survival rates exceed 90% in Wilms' tumor (WT). Actinomycin-D (ACT-D) which is indispensable in the management of WT is associated with the development of sinusoidal obstruction syndrome (SOS), a potentially fatal complication. Aims: The aim is to study the presentation, management, and outcome of SOS complicating ACT-D administration in WT. Settings and Design: Retrospective file review conducted in a Pediatric Hematology-Oncology unit. Materials and Methods: Patients diagnosed and treated for WT from January 2012 to December 2015 were analyzed. SOS was diagnosed clinically, based on McDonalds criteria, requiring two of the following: jaundice, hepatomegaly and/or right upper quadrant pain, weight gain with or without ascites. Results: Of 104 patients treated, SOS occurred in 5 (4.8%). Age: 6 months to 5 years, 3 were girls. Tumor involved left kidney in 3, right in 1 and a horseshoe kidney in 1. Histopathology was consistent with WT in 4 and clear cell sarcoma kidney in 1. One had pulmonary metastases. Three developed SOS preoperatively and two during adjuvant chemotherapy. None received radiotherapy. Clinical manifestations comprised of jaundice, hepatomegaly, ascites/weight gain, respiratory distress, hypotension, and encephalopathy. Laboratory findings included thrombocytopenia, elevated serum transaminases, and coagulopathy. Treatment included fluid restriction, broad spectrum antibiotics, and transfusional support. Two children received N-acetyl cysteine infusion. Defibrotide was administered to two patients. Four recovered and one succumbed to multi-organ failure. Two patients were safely re-challenged with 50% doses of ACT-D. Conclusions: SOS is a clinical diagnosis. Systematic supportive care can enable complete recovery. Under close monitoring, re-challenge of ACT-D can be performed in gradually escalating doses. PMID:29333010

  20. Assessment of solute fluxes beneath an orchard irrigated with treated sewage water: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Shapira, Roi H.; Kurtzman, Daniel

    2013-02-01

    Detailed numerical simulations were used to analyze water flow and transport of nitrate, chloride, and a tracer solute in a 3-D, spatially heterogeneous, variably saturated soil, originating from a citrus orchard irrigated with treated sewage water (TSW) considering realistic features of the soil-water-plant-atmosphere system. Results of this study suggest that under long-term irrigation with TSW, because of nitrate uptake by the tree roots and nitrogen transformations, the vadose zone may provide more capacity for the attenuation of the nitrate load in the groundwater than for the chloride load in the groundwater. Results of the 3-D simulations were used to assess their counterparts based on a simplified, deterministic, 1-D vertical simulation and on limited soil monitoring. Results of the analyses suggest that the information that may be gained from a single sampling point (located close to the area active in water uptake by the tree roots) or from the results of the 1-D simulation is insufficient for a quantitative description of the response of the complicated, 3-D flow system. Both might considerably underestimate the movement and spreading of a pulse of a tracer solute and also the groundwater contamination hazard posed by nitrate and particularly by chloride moving through the vadose zone. This stems mainly from the rain that drove water through the flow system away from the rooted area and could not be represented by the 1-D model or by the single sampling point. It was shown, however, that an additional sampling point, located outside the area active in water uptake, may substantially improve the quantitative description of the response of the complicated, 3-D flow system.

  1. Evaluation of 3D-Jury on CASP7 models.

    PubMed

    Kaján, László; Rychlewski, Leszek

    2007-08-21

    3D-Jury, the structure prediction consensus method publicly available in the Meta Server http://meta.bioinfo.pl/, was evaluated using models gathered in the 7th round of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7). 3D-Jury is an automated expert process that generates protein structure meta-predictions from sets of models obtained from partner servers. The performance of 3D-Jury was analysed for three aspects. First, we examined the correlation between the 3D-Jury score and a model quality measure: the number of correctly predicted residues. The 3D-Jury score was shown to correlate significantly with the number of correctly predicted residues, the correlation is good enough to be used for prediction. 3D-Jury was also found to improve upon the competing servers' choice of the best structure model in most cases. The value of the 3D-Jury score as a generic reliability measure was also examined. We found that the 3D-Jury score separates bad models from good models better than the reliability score of the original server in 27 cases and falls short of it in only 5 cases out of a total of 38. We report the release of a new Meta Server feature: instant 3D-Jury scoring of uploaded user models. The 3D-Jury score continues to be a good indicator of structural model quality. It also provides a generic reliability score, especially important for models that were not assigned such by the original server. Individual structure modellers can also benefit from the 3D-Jury scoring system by testing their models in the new instant scoring feature http://meta.bioinfo.pl/compare_your_model_example.pl available in the Meta Server.

  2. Evaluation of 3D-Jury on CASP7 models

    PubMed Central

    Kaján, László; Rychlewski, Leszek

    2007-01-01

    Background 3D-Jury, the structure prediction consensus method publicly available in the Meta Server , was evaluated using models gathered in the 7th round of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7). 3D-Jury is an automated expert process that generates protein structure meta-predictions from sets of models obtained from partner servers. Results The performance of 3D-Jury was analysed for three aspects. First, we examined the correlation between the 3D-Jury score and a model quality measure: the number of correctly predicted residues. The 3D-Jury score was shown to correlate significantly with the number of correctly predicted residues, the correlation is good enough to be used for prediction. 3D-Jury was also found to improve upon the competing servers' choice of the best structure model in most cases. The value of the 3D-Jury score as a generic reliability measure was also examined. We found that the 3D-Jury score separates bad models from good models better than the reliability score of the original server in 27 cases and falls short of it in only 5 cases out of a total of 38. We report the release of a new Meta Server feature: instant 3D-Jury scoring of uploaded user models. Conclusion The 3D-Jury score continues to be a good indicator of structural model quality. It also provides a generic reliability score, especially important for models that were not assigned such by the original server. Individual structure modellers can also benefit from the 3D-Jury scoring system by testing their models in the new instant scoring feature available in the Meta Server. PMID:17711571

  3. 3D isotropic shear wave velocity structure of the lithosphere-asthenosphere system underneath the Alpine-Mediterranean Mobile belt

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas

    2017-04-01

    The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. During the late Mesozoic, it was dominated by subduction zones (e.g., in Anatolia, the Dinarides, the Carpathians, the Alps, the Apennines, and the Betics), which inverted the extensional regime, consuming the previously formed oceanic lithosphere, the adjacent passive continental margins and presumably partly also continental lithosphere. The location, distribution, and evolution of these subduction zones were mainly controlled by the continental or oceanic nature, density, and thickness of the lithosphere inherited from the Mesozoic rift after the European Variscan Orogeny. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. A 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean is investigated using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 2000 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.

  4. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.; Jones, G.L.

    1996-01-01

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less

  5. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.; Jones, G.L.

    1996-12-31

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less

  6. Complicated Grief Among Military Service Members and Veterans Who Served After September 11, 2001.

    PubMed

    Charney, Meredith E; Bui, Eric; Sager, Julia C; Ohye, Bonnie Y; Goetter, Elizabeth M; Simon, Naomi M

    2018-02-01

    Minimal research is available on the prevalence and impact of complicated grief (CG) in military service members and veterans, despite high reported rates of loss in this population. The present study aimed to examine prevalence rates of CG in a sample of treatment-seeking military service and members and veterans who served after September 11, 2001. Additionally, the study aimed to examine characteristics associated with CG as well as the association between CG and quality of life. In a sample of 622 military service members and veterans who served after September 11, 2001, 502 reported a significant loss (80.7%). Usable data were available for a total of 468 participants. Of these 468 participants, 30.3% (n = 142) met diagnostic criteria for CG, as defined by a score of 30 or more on the Inventory of Complicated Grief (ICG; Prigerson et al., 1995). We conducted a series of t tests and chi-square tests to examine the differences between individuals who met criteria for CG and those who did not. The presence of CG was associated with worse PTSD, d = 0.68, p < .001; depression, d = -1.10, p < .001; anxiety, d = -1.02, p < .001; stress, d = 0.99, p < .001; and quality of life, d = 0.76, p < .001. Multiple regression analyses examined the independent impact of CG on quality of life. Complicated grief was associated with poorer quality of life above and beyond PTSD, β = -.12, p = .017. In addition, in a separate regression, CG was associated with poorer quality of life above and beyond depression, β = -.13, p < .001. Overall, our findings highlight the impact of CG on this population, and have implications for assessment and treatment. Copyright © 2018 International Society for Traumatic Stress Studies.

  7. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography.

    PubMed

    Toda, Hiroyuki

    2014-11-01

    X-ray microtomography has been utilized for the in-situ observation of various structural metals under external loading. Recent advances in X-ray microtomography provide remarkable tools to image the interior of materials. In-situ X-ray microtomography provides a unique possibility to access the 3D character of internal microstructure and its time evolution behaviours non-destructively, thereby enabling advanced techniques for measuring local strain distribution. Local strain mapping is readily enabled by processing such high-resolution tomographic images either by the particle tracking technique or the digital image correlation technique [1]. Procedures for tracking microstructural features which have been developed by the authors [2], have been applied to analyse localised deformation and damage evolution in a material [3]. Typically several tens of thousands of microstructural features, such as particles and pores, are tracked in a tomographic specimen (0.2 - 0.3 mm(3) in volume). When a sufficient number of microstructural features is dispersed in 3D space, the Delaunay tessellation algorithm is used to obtain local strain distribution. With these techniques, 3D strain fields can be measured with reasonable accuracy. Even local crack driving forces, such as local variations in the stress intensity factor, crack tip opening displacement and J integral along a crack front line, can be measured from discrete crack tip displacement fields [4]. In the present presentation, complicated crack initiation and growth behaviour and the extensive formation of micro cracks ahead of a crack tip are introduced as examples.A novel experimental method has recently been developed by amalgamating a pencil beam X-Ray diffraction (XRD) technique with the microstructural tracking technique [5]. The technique provides information about individual grain orientations and 1-micron-level grain morphologies in 3D together with high-density local strain mapping. The application of this technique to the deformation behavior of a polycrystalline aluminium alloy will be demonstrated in the presentation [6].The synchrotron-based microtomography has been mainly utilized to light materials due to their good X-ray transmission. In the present talk, the application of the synchrotron-based microtomography to steels will be also introduced. Degradation of contrast and spatial resolution due to forward scattering could be avoided by selecting appropriate experimental conditions in order to obtain superior spatial resolution close to the physical limit even in ferrous materials [7]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Effect of Calcium β-Hydroxy-β-Methylbutyrate (CaHMB), Vitamin D, and Protein Supplementation on Postoperative Immobilization in Malnourished Older Adult Patients With Hip Fracture: A Randomized Controlled Study.

    PubMed

    Ekinci, Osman; Yanık, Serhat; Terzioğlu Bebitoğlu, Berna; Yılmaz Akyüz, Elvan; Dokuyucu, Ayfer; Erdem, Şevki

    2016-12-01

    Nutrition support in orthopedic patients with malnutrition shortens the immobilization period. The efficacy of calcium β-hydroxy-β-methylbutyrate (CaHMB), vitamin D, and protein intake on bone structure is studied and well known; however, there is no evidence supporting the effect of combined use in orthopedic conditions. We investigated the effects of CaHMB, vitamin D, and protein supplementation on wound healing, immobilization period, muscle strength, and laboratory parameters. This randomized controlled study included 75 older female patients with a hip fracture admitted to orthopedic clinics. The control group received standard postoperative nutrition. The study group received an enteral product containing 3 g CaHMB, 1000 IU vitamin D, and 36 g protein, in addition to standard postoperative nutrition. Anthropometric, laboratory, wound-healing, immobilization period, and muscle strength assessments were evaluated preoperatively and on postoperative days 15 and 30. Wound-healing period was significantly shorter in the CaHMB/vitamin D/protein group than in the control group ( P < .05). The number of patients in the CaHMB/vitamin D/protein group who were mobile on days 15 and 30 (81.3%) was significantly higher than patients in the control group, who were mobile on days 15 and 30 (26.7%) ( P = .001). Muscle strength on day 30 was significantly higher in the CaHMB/vitamin D/protein group vs the control group. Nutrition of elderly patients with a CaHMB/vitamin D/protein combination led to acceleration of wound healing, shortening of immobilization period, and increased muscle strength without changing body mass index. It also reduced dependence to bed and related complications after an orthopedic operation.

  9. On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change.

    PubMed

    Memmolo, Pasquale; Iannone, Maria; Ventre, Maurizio; Netti, Paolo Antonio; Finizio, Andrea; Paturzo, Melania; Ferraro, Pietro

    2012-12-17

    Digital Holography (DH) in microscopic configuration is a powerful tool for the imaging of micro-objects contained into a three dimensional (3D) volume, by a single-shot image acquisition. Many studies report on the ability of DH to track particle, microorganism and cells in 3D. However, very few investigations are performed with objects that change severely their morphology during the observation period. Here we study DH as a tool for 3D tracking an osteosarcoma cell line for which extensive changes in cell morphology are associated to cell motion. Due to the great unpredictable morphological change, retrieving cell's position in 3D can become a complicated issue. We investigate and discuss in this paper how the tridimensional position can be affected by the continuous change of the cells. Moreover we propose and test some strategies to afford the problems and compare it with others approaches. Finally, results on the 3D tracking and comments are reported and illustrated.

  10. [Ways to improve efficacy of emergency operative interventions in patients with cancer of the left flank of the colon complicated by obstruction].

    PubMed

    Beliaev, A M; Bagnenko, S F; Kabanov, M Iu; Vashetko, R V; Surov, D A; Zakharenko, A A; Babkov, O V; Koshevoĭ, A A; Novitskaia, N Iu; Rumiantsev, V N

    2011-01-01

    In order to improve radicalism of emergency surgical interventions an appropriate method of total mesocolonectomy and D3-lymph node dissection in the medial-lateral direction and the principle of "no-touch technique" were used in 14 patients. This technique is safe, effective, does not prolong the duration of operation and postoperative period, is not followed by increased number of complications and lethality.

  11. Spatially encoded phase-contrast MRI-3D MRI movies of 1D and 2D structures at millisecond resolution.

    PubMed

    Merboldt, Klaus-Dietmar; Uecker, Martin; Voit, Dirk; Frahm, Jens

    2011-10-01

    This work demonstrates that the principles underlying phase-contrast MRI may be used to encode spatial rather than flow information along a perpendicular dimension, if this dimension contains an MRI-visible object at only one spatial location. In particular, the situation applies to 3D mapping of curved 2D structures which requires only two projection images with different spatial phase-encoding gradients. These phase-contrast gradients define the field of view and mean spin-density positions of the object in the perpendicular dimension by respective phase differences. When combined with highly undersampled radial fast low angle shot (FLASH) and image reconstruction by regularized nonlinear inversion, spatial phase-contrast MRI allows for dynamic 3D mapping of 2D structures in real time. First examples include 3D MRI movies of the acting human hand at a temporal resolution of 50 ms. With an even simpler technique, 3D maps of curved 1D structures may be obtained from only three acquisitions of a frequency-encoded MRI signal with two perpendicular phase encodings. Here, 3D MRI movies of a rapidly rotating banana were obtained at 5 ms resolution or 200 frames per second. In conclusion, spatial phase-contrast 3D MRI of 2D or 1D structures is respective two or four orders of magnitude faster than conventional 3D MRI. Copyright © 2011 Wiley-Liss, Inc.

  12. A finite element analysis of a 3D auxetic textile structure for composite reinforcement

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoyang; Hu, Hong; Liu, Yanping

    2013-08-01

    This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites.

  13. 3D Encoding of Musical Score Information and the Playback Method Used by the Cellular Phone

    NASA Astrophysics Data System (ADS)

    Kubo, Hitoshi; Sugiura, Akihiko

    Recently, 3G cellular phone that can take a movie has spread by improving the digital camera function. And, 2Dcode has accurate readout and high operability. And it has spread as an information transmission means. However, the symbol is expanded and complicated when information of 2D codes increases. To solve these, 3D code was proposed. But it need the special equipment for readout, and specializes in the enhancing reality feeling technology. Therefore, it is difficult to apply it to the cellular phone. And so, we propose 3D code that can be recognized by the movie shooting function of the cellular phone. And, score information was encoded. We apply Gray Code to the property of music, and encode it. And the effectiveness was verified.

  14. A novel knowledge-based potential for RNA 3D structure evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Gu, Qi; Zhang, Ben-Gong; Shi, Ya-Zhou; Shao, Zhi-Gang

    2018-03-01

    Ribonucleic acids (RNAs) play a vital role in biology, and knowledge of their three-dimensional (3D) structure is required to understand their biological functions. Recently structural prediction methods have been developed to address this issue, but a series of RNA 3D structures are generally predicted by most existing methods. Therefore, the evaluation of the predicted structures is generally indispensable. Although several methods have been proposed to assess RNA 3D structures, the existing methods are not precise enough. In this work, a new all-atom knowledge-based potential is developed for more accurately evaluating RNA 3D structures. The potential not only includes local and nonlocal interactions but also fully considers the specificity of each RNA by introducing a retraining mechanism. Based on extensive test sets generated from independent methods, the proposed potential correctly distinguished the native state and ranked near-native conformations to effectively select the best. Furthermore, the proposed potential precisely captured RNA structural features such as base-stacking and base-pairing. Comparisons with existing potential methods show that the proposed potential is very reliable and accurate in RNA 3D structure evaluation. Project supported by the National Science Foundation of China (Grants Nos. 11605125, 11105054, 11274124, and 11401448).

  15. Comprehensive 3D-modeling of allergenic proteins and amino acid composition of potential conformational IgE epitopes

    PubMed Central

    Oezguen, Numan; Zhou, Bin; Negi, Surendra S.; Ivanciuc, Ovidiu; Schein, Catherine H.; Labesse, Gilles; Braun, Werner

    2008-01-01

    Similarities in sequences and 3D structures of allergenic proteins provide vital clues to identify clinically relevant IgE cross-reactivities. However, experimental 3D structures are available in the Protein Data Bank for only 5% (45/829) of all allergens catalogued in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP). Here, an automated procedure was used to prepare 3D-models of all allergens where there was no experimentally determined 3D structure or high identity (95%) to another protein of known 3D structure. After a final selection by quality criteria, 433 reliable 3D models were retained and are available from our SDAP Website. The new 3D models extensively enhance our knowledge of allergen structures. As an example of their use, experimentally derived “continuous IgE epitopes” were mapped on 3 experimentally determined structures and 13 of our 3D-models of allergenic proteins. Large portions of these continuous sequences are not entirely on the surface and therefore cannot interact with IgE or other proteins. Only the surface exposed residues are constituents of “conformational IgE epitopes” which are not in all cases continuous in sequence. The surface exposed parts of the experimental determined continuous IgE epitopes showed a distinct statistical distribution as compared to their presence in typical protein-protein interfaces. The amino acids Ala, Ser, Asn, Gly and particularly Lys have a high propensity to occur in IgE binding sites. The 3D-models will facilitate further analysis of the common properties of IgE binding sites of allergenic proteins. PMID:18621419

  16. Modeling 2D and 3D diffusion.

    PubMed

    Saxton, Michael J

    2007-01-01

    Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

  17. External-Beam Radiation Therapy and High-Dose Rate Brachytherapy Combined With Long-Term Androgen Deprivation Therapy in High and Very High Prostate Cancer: Preliminary Data on Clinical Outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Monge, Rafael, E-mail: rmartinezm@unav.es; Moreno, Marta; Ciervide, Raquel

    2012-03-01

    Purpose: To determine the feasibility of combined long-term androgen deprivation therapy (ADT) and dose escalation with high-dose-rate (HDR) brachytherapy. Methods and Materials: Between 2001 and 2007, 200 patients with high-risk prostate cancer (32.5%) or very high-risk prostate cancer (67.5%) were prospectively enrolled in this Phase II trial. Tumor characteristics included a median pretreatment prostate-specific antigen of 15.2 ng/mL, a clinical stage of T2c, and a Gleason score of 7. Treatment consisted of 54 Gy of external irradiation (three-dimensional conformal radiotherapy [3DCRT]) followed by 19 Gy of HDR brachytherapy in four twice-daily treatments. ADT started 0-3 months before 3DCRT and continuedmore » for 2 years. Results: One hundred and ninety patients (95%) received 2 years of ADT. After a median follow-up of 3.7 years (range, 2-9), late Grade {>=}2 urinary toxicity was observed in 18% of the patients and Grade {>=}3 was observed in 5%. Prior transurethral resection of the prostate (p = 0.013) and bladder D{sub 50} {>=}1.19 Gy (p = 0.014) were associated with increased Grade {>=}2 urinary complications; age {>=}70 (p = 0.05) was associated with Grade {>=}3 urinary complications. Late Grade {>=}2 gastrointestinal toxicity was observed in 9% of the patients and Grade {>=}3 in 1.5%. CTV size {>=}35.8 cc (p = 0.007) and D{sub 100} {>=}3.05 Gy (p = 0.01) were significant for increased Grade {>=}2 complications. The 5-year and 9-year biochemical relapse-free survival (nadir + 2) rates were 85.1% and 75.7%, respectively. Patients with Gleason score of 7-10 had a decreased biochemical relapse-free survival (p = 0.007). Conclusions: Intermediate-term results at the 5-year time point indicate a favorable outcome without an increase in the rate of late complications.« less

  18. Insights into the Mechanism of Severe Mitral Regurgitation: RT-3D TEE Guided Management with Pathological Correlation.

    PubMed

    Anand, Senthil; Hamoud, Naktal; Thompson, Jess; Janardhanan, Rajesh

    2015-01-01

    Mitral valve perforation is an uncommon but important complication of infective endocarditis. We report a case of a 65-year-old man who was diagnosed to have infective endocarditis of his mitral valve. Through the course of his admission he had a rapid development of hemodynamic instability and pulmonary edema secondary to acutely worsening mitral regurgitation. While the TEE demonstrated an increase in the size of his bacterial vegetation, Real Time 3D TEE was ultimately the imaging modality through which the valve perforation was identified. Through this case report we discuss the advantages that RT-3D TEE has over traditional 2D TEE in the management of valve perforation.

  19. The effect of canaloplasty with suprachoroidal drainage combined with cataract surgery - 1-year results.

    PubMed

    Seuthe, Anna-Maria; Januschowski, Kai; Mariacher, Siegfried; Ebner, Martina; Opitz, Natalia; Szurman, Peter; Boden, Karl

    2018-02-01

    The purpose of this study was to investigate the safety and efficacy of phacocanaloplasty with suprachoroidal drainage (PCscD) and to compare its intraocular pressure (IOP)-lowering and drug-sparing effect to canaloplasty with suprachoroidal drainage (CscD). The study retrospective interventional study included patients with open-angle glaucoma or secondary forms of glaucoma who underwent either CscD or PCscD between the year 2011 and 2014 in Knappschaft Eye Clinic Sulzbach. Primary end-points were IOP reduction and the number of IOP-lowering medication after 12 months. Secondary end-points were intraoperative and postoperative complications. A total of 328 eyes were included, 193 were treated with CscD and 135 underwent PCscD. Canaloplasty with scD achieved an IOP reduction of 37.0% (from 20.9 ± 3.6 mmHg to 13.2 ± 2.6 mmHg) after 1 year, whereas PCscD showed a significant higher reduction of 47.4% (from 23.2 ± 5.1 mmHg to 12.2 ± 1.7 mmHg). Reduction in IOP-lowering medication was higher after PCscD (from 3.6 ± 0.6 to 0.2 ± 0.5) than after CscD (from 3.5 ± 0.8 to 0.7 ± 1.0). Twelve months after surgery 55.5% in the CscD group and 80.2% in the PCscD group were free of IOP-lowering medication. In both groups, no severe or sight-threatening complications occurred. Combining cataract surgery and CscD achieves a higher IOP reduction, and patients postoperatively need less IOP-lowering medication than after CscD alone. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out on the Puy de Dôme volcano resulting in 12 ERT profiles with approximatively 800 electrodes. We performed two processing stages by inverting independently each profiles in 2D (RES2DINV software) and the complete data set in 3D (EResI). The comparison of the 3D inversion results with those obtained through a conventional 2D inversion process underlined that EResI allows to accurately take into account the random electrodes positioning and reduce out-line artefacts into the inversion models due to positioning errors out of the profile axis. This comparison also highlighted the advantages to integrate several ERT lines to compute the 3D models of complex volcanic structures. Finally, the resulting 3D model allows a better interpretation of the Puy de Dome Volcano.

  1. Application of modern computer-aided technologies in the production of individual bone graft: A case report.

    PubMed

    Mirković, Sinisa; Budak, Igor; Puskar, Tatjana; Tadić, Ana; Sokac, Mario; Santosi, Zeljko; Djurdjević-Mirković, Tatjana

    2015-12-01

    An autologous bone (bone derived from the patient himself) is considered to be a "golden standard" in the treatment of bone defects and partial atrophic alveolar ridge. However, large defects and bone losses are difficult to restore in this manner, because extraction of large amounts of autologous tissue can cause donor-site problems. Alternatively, data from computed tomographic (CT) scan can be used to shape a precise 3D homologous bone block using a computer-aided design-computer-aided manufacturing (CAD-CAM) system. A 63-year old male patient referred to the Clinic of Dentistry of Vojvodina in Novi Sad, because of teeth loss in the right lateral region of the lower jaw. Clinical examination revealed a pronounced resorption of the residual ridge of the lower jaw in the aforementioned region, both horizontal and vertical. After clinical examination, the patient was referred for 3D cone beam (CB)CT scan that enables visualization of bony structures and accurate measurement of dimensions of the residual alveolar ridge. Considering the large extent of bone resorption, the required ridge augmentation was more than 3 mm in height and 2 mm in width along the length of some 2 cm, thus the use of granular material was excluded. After consulting prosthodontists and engineers from the Faculty of Technical Sciences in Novi Sad we decided to fabricate an individual (custom) bovine-derived bone graft designed according to the obtained-3D CBCT scan. Application of 3D CBCT images, computer-aided systems and software in manufacturing custom bone grafts represents the most recent method of guided bone regeneration. This method substantially reduces time of recovery and carries minimum risk of postoperative complications, yet the results fully satisfy the requirements of both the patient and the therapist.

  2. Large scale CIV3 calculations of fine-structure energy levels, oscillator strengths, and lifetimes in Fe XIV and Ni XVI

    NASA Astrophysics Data System (ADS)

    Gupta, G. P.; Msezane, A. Z.

    2005-01-01

    We have performed large scale CIV3 calculations of excitation energies from ground states for 109 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the (1s 22s 22p 6)3s 23p( 2P 0), 3s3p 2( 2S, 2P, 2D, 4P), 3s 23d( 2D), 3p 3( 4S 0, 2P 0, 2D 0), 3s3p( 3P 0)3d( 2P 0, 2D 0, 2F 0, 4P 0, 4D 0, 4F 0), 3s3p( 1P 0)3d( 2P 0, 2D 0, 2F 0), 3p 2( 1S)3d( 2D), 3p 2( 1D)3d( 2S, 2P, 2D), 3p 2( 3P)3d( 2P, 2D, 4P), 3s3d 2( 2S, 2P, 2D, 4P), 3p3d 2( 1S)( 2P 0), 3p3d 2( 1D)( 2P 0, 2D 0, 2F 0), 3p3d 2( 1G)( 2F 0), 3p3d 2( 3P)( 2P 0, 2D 0, 4S 0, 4P 0, 4D 0), 3p3d 2( 3F)( 2D 0, 2F 0, 4D 0, 4F 0), 3s 24s( 2S), 3s 24p( 2P 0), 3s 24d( 2D), 3s 24f( 2F 0), 3s3p( 3P 0)4s( 2P 0, 4P 0), and 3s3p( 1P 0)4s( 2P 0) states of Fe XIV and Ni XVI. These states are represented by very extensive configuration-interaction (CI) wavefunctions obtained using the CIV3 computer code of Hibbert. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian which consists of the nonrelativistic term plus the one-body mass correction, Darwin term, and spin-orbit, spin-other-orbit, and spin-spin operators. The errors which often occur with sophisticated ab initio atomic structure calculations are reduced. Our calculated excitation energies, including their ordering, are in excellent agreement with the available experimental results for both of the ions studied. From our transition probabilities, we have also calculated radiative lifetimes of the lowest 37 fine-structure levels in Fe XIV and Ni XVI and compared them with available theoretical and experimental results. The mixing among several fine-structure levels is found to be so strong that the correct identification of these levels becomes very difficult. We predict new data for several levels where no other theoretical and/or experimental results are available. We hope that our extensive calculations will be useful to experimentalists in identifying the fine-structure levels in their future work.

  3. Response of severely malnourished patients to preoperative parenteral nutrition: a randomized clinical trial of water and sodium restriction.

    PubMed

    Gil, M J; Franch, G; Guirao, X; Oliva, A; Herms, R; Salas, E; Girvent, M; Sitges-Serra, A

    1997-01-01

    Preoperative parenteral nutrition (PPN) may be beneficial for severely malnourished patients who are candidates for a major elective surgical procedure. The response to PPN, however, has not been thoroughly investigated. Expansion of the extracellular water compartment may occur in some patients, producing a further decrease in the serum albumin concentration and increasing the postoperative complications. Our aims were to investigate the occurrence of and factors associated with water and sodium retention during PPN and its impact on postoperative respiratory complications. Forty-one patients with gastrointestinal cancer and severe malnutrition (weight loss > 15% and/or serum albumin < 35 g/L) were randomly allocated to two groups receiving isocaloric isonitrogenous PPN for 10 d. The Standard PPN Group (SG, n = 19) received 70% of nonprotein calories as glucose, 45 cc of water.kg-1.d-1, and 140 mEq/d of sodium chloride; and the Modified Group (MG, n = 22) received 70% of calories as fat, 30 cc of water.kg-1.d-1, and no sodium. Weight and albumin changes, diuresis, sodium and water balances, and postoperative complications were recorded. At the end of PPN, the SG showed a higher weight gain (0.8 versus -1.5 kg, P = 0.0001) and albumin decrease (-0.7 versus 2.3 g/L, P = 0.006). Diuresis and sodium balance were greater in the SG (1,230 versus 959 mL/d, P = 0.003 and 40 versus -27 mEq/d, P = 0.001). Weight changes correlated with water (r2 = 0.46, P = 0.001) and sodium (r2 = 0.62, P = 0.0001) balances. Inappropriate responses to PPN in both groups (expansion or depletion of the extracellular water compartment) were associated with a significant increase in pulmonary postoperative complications. During PPN, extracellular water expansion--as determined by increasing weight and lowering of the serum albumin concentration--and aggressive fluid therapy to treat water and sodium depletion seem crucial to the development of postoperative respiratory complications.

  4. Blood urea nitrogen to serum creatinine ratio is an accurate predictor of outcome in diarrhea-associated hemolytic uremic syndrome, a preliminary study.

    PubMed

    Keenswijk, Werner; Vanmassenhove, Jill; Raes, Ann; Dhont, Evelyn; Vande Walle, Johan

    2017-03-01

    Diarrhea-associated hemolytic uremic syndrome (D+HUS) is a common thrombotic microangiopathy during childhood and early identification of parameters predicting poor outcome could enable timely intervention. This study aims to establish the accuracy of BUN-to-serum creatinine ratio at admission, in addition to other parameters in predicting the clinical course and outcome. Records were searched for children between 1 January 2008 and 1 January 2015 admitted with D+HUS. A complicated course was defined as developing one or more of the following: neurological dysfunction, pancreatitis, cardiac or pulmonary involvement, hemodynamic instability, and hematologic complications while poor outcome was defined by death or development of chronic kidney disease. Thirty-four children were included from which 11 with a complicated disease course/poor outcome. Risk of a complicated course/poor outcome was strongly associated with oliguria (p = 0.000006) and hypertension (p = 0.00003) at presentation. In addition, higher serum creatinine (p = 0.000006) and sLDH (p = 0.02) with lower BUN-to-serum creatinine ratio (p = 0.000007) were significantly associated with development of complications. A BUN-to-sCreatinine ratio ≤40 at admission was a sensitive and highly specific predictor of a complicated disease course/poor outcome. A BUN-to-serum Creatinine ratio can accurately identify children with D+HUS at risk for a complicated course and poor outcome. What is Known: • Oliguria is a predictor of poor long-term outcome in D+HUS What is New: • BUN-to-serum Creatinine ratio at admission is an entirely novel and accurate predictor of poor outcome and complicated clinical outcome in D+HUS • Early detection of the high risk group in D+HUS enabling early treatment and adequate monitoring.

  5. Semiautomatic approaches to account for 3-D distortion of the electric field from local, near-surface structures in 3-D resistivity inversions of 3-D regional magnetotelluric data

    USGS Publications Warehouse

    Rodriguez, Brian D.

    2017-03-31

    This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.

  6. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  7. Radiological Air Sampling. Protocol Development for the Canadian Forces

    DTIC Science & Technology

    2003-03-01

    samplers trap these airborne radon daughters . Because radon is ubiquitous, all air samplers will catch these radioactive radon daughters in the...environment is complicated because all air sampler filters are radioactive because of the radon daughters . ’Actually, D will often depend on the isotope that...simply as "radon". 2 DRDC Ottawa TM 2003-149 -28 - 22 R_ 211p0 214pb 3.8 d 3.0 m 27 m 214Bi 210TI Radon Daughters 20 m ŕ.3 m (Uranium Decay Chain

  8. Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation.

    PubMed

    Zhou, Chenkun; Tian, Yu; Wang, Mingchao; Rose, Alyssa; Besara, Tiglet; Doyle, Nicholas K; Yuan, Zhao; Wang, Jamie C; Clark, Ronald; Hu, Yanyan; Siegrist, Theo; Lin, Shangchao; Ma, Biwu

    2017-07-24

    Hybrid organic-inorganic metal halide perovskites possess exceptional structural tunability, with three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures on the molecular level all possible. While remarkable progress has been realized in perovskite research in recent years, the focus has been mainly on 3D and 2D structures, with 1D and 0D structures significantly underexplored. The synthesis and characterization of a series of low-dimensional organic tin bromide perovskites with 1D and 0D structures is reported. Using the same organic and inorganic components, but at different ratios and reaction conditions, both 1D (C 4 N 2 H 14 )SnBr 4 and 0D (C 4 N 2 H 14 Br) 4 SnBr 6 can be prepared in high yields. Moreover, photoinduced structural transformation from 1D to 0D was investigated experimentally and theoretically in which photodissociation of 1D metal halide chains followed by structural reorganization leads to the formation of a more thermodynamically stable 0D structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Accurate facade feature extraction method for buildings from three-dimensional point cloud data considering structural information

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia

    2018-05-01

    Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.

  10. The application of 3D printed surgical guides in resection and reconstruction of malignant bone tumor.

    PubMed

    Wang, Fengping; Zhu, Jun; Peng, Xuejun; Su, Jing

    2017-10-01

    The clinical value of 3D printed surgical guides in resection and reconstruction of malignant bone tumor around the knee joint were studied. For this purpose, a sample of 66 patients from October 2013 to October 2015 were randomly selected and further divided into control group and observation group, each group consisted of 33 cases. The control group was treated by conventional tumor resection whereas, in the observation group, the tumor was resected with 3D printed surgical guide. However, reconstruction of tumor-type hinge prosthesis was performed in both groups and then the clinical effect was compared. Results show that there was no significant difference in the operation time between the two groups (p>0.05). However, the blood loss, resection length and complication rate were found significantly lower in the observation group than in the control group (p<0.05). The rate of negative margin and the recurrence rate in the 12-month follow-up (p>0.05) between two groups were statistically the same (p>0.05), whereas the Musculoskeletal Tumor Society (MSTS) score of the knee joint in the observation group was significantly better than that of the control group (p<0.05) after 1, 3, 6 and 12 months of the operation. Consequently, the 3D printed surgical guides can significantly improve the postoperative joint function after resection and reconstruction of malignant bone tumor around the knee joint and can reduce the incidence of complications.

  11. Why prescribe exercise as therapy in type 2 diabetes? We have a pill for that!

    PubMed

    Ried-Larsen, Mathias; MacDonald, Christopher S; Johansen, Mette Y; Hansen, Katrine B; Christensen, Robin; Almdal, Thomas P; Pedersen, Bente K; Karstoft, Kristian

    2018-02-28

    The majority of T2D cases are preventable through a healthy lifestyle, leaving little room for questions that lifestyle should be the first line of defence in the fight against the development of T2D. However, when it comes to the clinical care of T2D, the potential efficacy of lifestyle is much less clear-cut, both in terms of impacting the pathological metabolic biomarkers of the disease, and long-term complications. A healthy diet, high leisure-time physical activity, and exercise are considered to be cornerstones albeit adjunct to drug therapy in the management of T2D. The prescription and effective implementation of structured exercise and other lifestyle interventions in the treatment of T2D have not been routinely used. In this article, we critically appraise and debate our reflections as to why exercise and physical activity may not have reached the status of a viable and effective treatment in the clinical care of T2D to the same extent as pharmaceutical drugs. We argue that the reason why exercise therapy is not utilized to a satisfactory degree is multifaceted and primarily relates to a "vicious cycle" with lack of proven efficacy on T2D complications and a lack of proven effectiveness on risk factors in the primary care of T2D. Furthermore, there is a lack of experimental research establishing the optimal dose of exercise. This precludes widespread and sustained implementation of physical activity and exercise in the clinical treatment of T2D will not succeed. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Intracorporeal esophagojejunostomy after totally laparoscopic total gastrectomy: A single-center 7-year experience

    PubMed Central

    Chen, Ke; Pan, Yu; Cai, Jia-Qin; Xu, Xiao-Wu; Wu, Di; Yan, Jia-Fei; Chen, Rong-Gao; He, Yang; Mou, Yi-Ping

    2016-01-01

    AIM: To assess the efficacy and safety of intracorporeal esophagojejunostomy in patients undergoing laparoscopic total gastrectomy (LTG) for gastric cancer. METHODS: A retrospective review of 81 consecutive patients who underwent LTG with the same surgical team between November 2007 and July 2014 was performed. Four types of intracorporeal esophagojejunostomy using staplers or hand-sewn suturing were performed after LTG. Data on clinicopatholgoical characteristics, occurrence of complications, postoperative recovery, anastomotic time, and operation time among the surgical groups were obtained through medical records. RESULTS: The average operation time was 288.7 min, the average anastomotic time was 54.3 min, and the average estimated blood loss was 82.7 mL. There were no cases of conversion to open surgery. The first flatus was observed around 3.7 d, while the liquid diet was started, on average, from 4.9 d. The average postoperative hospital stay was 10.1 d. Postoperative complications occurred in 14 patients, nearly 17.3%. However, there were no cases of postoperative death. CONCLUSION: LTG performed with intracorporeal esophagojejunostomy using laparoscopic staplers or hand-sewn suturing is feasible and safe. The surgical results were acceptable from the perspective of minimal invasiveness. PMID:27022225

  13. Telecentric 3D profilometry based on phase-shifting fringe projection.

    PubMed

    Li, Dong; Liu, Chunyang; Tian, Jindong

    2014-12-29

    Three dimensional shape measurement in the microscopic range becomes increasingly important with the development of micro manufacturing technology. Microscopic fringe projection techniques offer a fast, robust, and full-field measurement for field sizes from approximately 1 mm2 to several cm2. However, the depth of field is very small due to the imaging of non-telecentric microscope, which is often not sufficient to measure the complete depth of a 3D-object. And the calibration of phase-to-depth conversion is complicated which need a precision translation stage and a reference plane. In this paper, we propose a novel telecentric phase-shifting projected fringe profilometry for small and thick objects. Telecentric imaging extends the depth of field approximately to millimeter order, which is much larger than that of microscopy. To avoid the complicated phase-to-depth conversion in microscopic fringe projection, we develop a new system calibration method of camera and projector based on telecentric imaging model. Based on these, a 3D reconstruction of telecentric imaging is presented with stereovision aided by fringe phase maps. Experiments demonstrated the feasibility and high measurement accuracy of the proposed system for thick object.

  14. Intracorporeal esophagojejunostomy after totally laparoscopic total gastrectomy: A single-center 7-year experience.

    PubMed

    Chen, Ke; Pan, Yu; Cai, Jia-Qin; Xu, Xiao-Wu; Wu, Di; Yan, Jia-Fei; Chen, Rong-Gao; He, Yang; Mou, Yi-Ping

    2016-03-28

    To assess the efficacy and safety of intracorporeal esophagojejunostomy in patients undergoing laparoscopic total gastrectomy (LTG) for gastric cancer. A retrospective review of 81 consecutive patients who underwent LTG with the same surgical team between November 2007 and July 2014 was performed. Four types of intracorporeal esophagojejunostomy using staplers or hand-sewn suturing were performed after LTG. Data on clinicopatholgoical characteristics, occurrence of complications, postoperative recovery, anastomotic time, and operation time among the surgical groups were obtained through medical records. The average operation time was 288.7 min, the average anastomotic time was 54.3 min, and the average estimated blood loss was 82.7 mL. There were no cases of conversion to open surgery. The first flatus was observed around 3.7 d, while the liquid diet was started, on average, from 4.9 d. The average postoperative hospital stay was 10.1 d. Postoperative complications occurred in 14 patients, nearly 17.3%. However, there were no cases of postoperative death. LTG performed with intracorporeal esophagojejunostomy using laparoscopic staplers or hand-sewn suturing is feasible and safe. The surgical results were acceptable from the perspective of minimal invasiveness.

  15. Investigation of multiple factors which may contribute to vitamin D levels of bedridden pregnant women and their preterm neonates.

    PubMed

    Skouroliakou, Maria; Ntountaniotis, Dimitrios; Massara, Paraskevi; Koutri, Katerina

    2016-01-01

    25-Hydroxyvitamin D (25-OH-D) is the marker, which indicates vitamin D levels. The aim of this study was to investigate the possible factors, which contribute to serum 25-OH-D levels in bedridden mothers and their preterm neonates. Twenty-six preterm neonates born during the period of 24-33 weeks of gestational age and 20 mothers (who experienced pregnancy complications) were recruited to the study. Five major results were obtained. (i) The 25-OH-D serum levels for preterm neonates and their mothers were found to possess strong correlation (ii) and both differed significantly in comparison with the optimal levels. (iii) An increase of mothers' 25-OH-D serum levels was associated with an increased possibility that the neonates would be measured to have normal 25-OH-D levels. (iv) Sex was not a key factor to neonates' 25-OH-D levels. (v) No correlation was found between mothers' 25-OH-D levels and their vitamin D3 supplement (400 IU/d during pregnancy). Due to insufficient exposure to sunlight and a diet not enriched with vitamin D, bedridden pregnant women suffer from vitamin D deficiency and pregnancy complications lead often to birth of preterm neonates with the same deficiency. Mothers should increase the total amount of vitamin D intake (food and supplement).

  16. Structure-From-Motion in 3D Space Using 2D Lidars

    PubMed Central

    Choi, Dong-Geol; Bok, Yunsu; Kim, Jun-Sik; Shim, Inwook; Kweon, In So

    2017-01-01

    This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging). In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method. PMID:28165372

  17. Electronic structure and magnetic anisotropy of L1{sub 0}-FePt thin film studied by hard x-ray photoemission spectroscopy and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, S.; Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Mizuguchi, M.

    2016-07-25

    We have studied the electronic structure of the L1{sub 0} ordered FePt thin film by hard x-ray photoemission spectroscopy (HAXPES), cluster model, and first-principles calculations to investigate the relationship between the electronic structure and perpendicular magneto-crystalline anisotropy (MCA). The Fe 2p core-level HAXPES spectrum of the ordered film revealed the strong electron correlation in the Fe 3d states and the hybridization between the Fe 3d and Pt 5d states. By comparing the experimental valence band structure with the theoretical density of states, the strong electron correlation in the Fe 3d states modifies the valence band electronic structure of the L1{submore » 0} ordered FePt thin film through the Fe 3d-Pt 5d hybridization. These results strongly suggest that the strong electron correlation effect in the Fe 3d states and the Fe 3d-Pt 5d hybridization as well as the spin-orbit interaction in the Pt 5d states play important roles in the perpendicular MCA for L1{sub 0}-FePt.« less

  18. Quality-of-Life Outcomes following Thoracolumbar and Lumbar Fusion with and without the Use of Recombinant Human Bone Morphogenetic Protein-2: Does Recombinant Human Bone Morphogenetic Protein-2 Make a Difference?

    PubMed Central

    Lubelski, Daniel; Alvin, Matthew D.; Torre-Healy, Andrew; Abdullah, Kalil G.; Nowacki, Amy S.; Whitmore, Robert G.; Steinmetz, Michael P.; Benzel, Edward C.; Mroz, Thomas E.

    2014-01-01

    Design Retrospective study. Objectives (1) To investigate the quality-of-life (QOL) outcomes in the population undergoing lumbar spine surgery with versus without recombinant human bone morphogenetic protein-2 (rhBMP-2); (2) to determine QOL outcomes for those patients who experience postoperative complications; and (3) to identify the effect of patient characteristics on postoperative QOL outcomes. Methods A retrospective review of QOL questionnaires, including the Patient Health Questionnaire-9, Patient Disability Questionnaire (PDQ), EuroQol-5D (EQ-5D), and quality of life-year (QALY), was performed for all patients who underwent thoracolumbar and lumbar fusion surgery with versus without rhBMP-2 between March 2008 and September 2010. Individual preoperative and postoperative QOL data were compared for each patient. Demographic factors and complications were reviewed. Results We identified 266 patients, including 60 with and 206 without rhBMP-2. Questionnaires were completed an average of 10.3 ± 5 months after surgery. For all measures, average scores improved postoperatively compared with preoperatively. No differences in postoperative QOL outcomes were identified between the rhBMP-2 and the control cohorts. Median annual household income was positively associated with EQ-5D and QALY. Compared with those without, patients with postoperative complications had fewer QOL improvements. Conclusions There was no difference in QOL outcomes in the rhBMP-2 compared with the control group. Socioeconomic status and postoperative complications affected QOL outcomes following surgery. The QOL questionnaires provide the clinician with information regarding the patients' self-perceived well-being and can be helpful in the selection of surgical candidates and for understanding the effectiveness of a given surgical procedure. PMID:25396105

  19. A noise-reduction program in a pediatric operation theatre is associated with surgeon's benefits and a reduced rate of complications: a prospective controlled clinical trial.

    PubMed

    Engelmann, Carsten R; Neis, Jan Philipp; Kirschbaum, Clemens; Grote, Gudela; Ure, Benno M

    2014-05-01

    We assessed the impact of a noise-reduction program in a pediatric operating theatre. Adverse effects from noise pollution in theatres have been demonstrated. In 156 operations spatially resolved, sound levels were measured before and after a noise-reduction program on the basis of education, rules, and technical devices (Sound Ear). Surgical complications were recorded. The surgeon's biometric (saliva cortisol, electrodermal activity) and behavioral stress responses (questionnaires) were measured and correlated with mission protocols and individual noise sensitivity. Median noise levels in the control group versus the interventional group were reduced by -3 ± 3 dB(A) (63 vs 59 dB(A), P < 0.001) with a grossly decreased number of peaks greater than 70 dB(A) (Δn = -61/hour, P < 0.01). The intervention significantly reduced non-operation-related noise. The incidence of postoperative complications was significantly lower in patients of the intervention group (n = 10/56 vs 20/58 control; P < 0.05). "Responders," surgeons with an above-average noise sensitivity (correlation r = -0.6 for the work subscale of the NoiseQ questionnaire, P < 0.05), experienced improved intrateam communication, a decrease in disturbing conversations and sudden noise peaks (P < 0.05). Biometrically, the intervention decreased both the surgeon's pre- to postoperative rise in cortisol by approximately 20% and the surgeon's electrodermal potentials of greater than 15 μS, indicating severe stress by 60% (P > 0.05). Spontaneous noise during pediatric operations attains the magnitude of a lawn mower and peaks resemble a passing truck. The sound intensity could be reduced by 50% by specific measures. This reduction was associated with a significantly lowered number of postoperative complications. The surgeon's benefits are idiosyncratic with "responders" experiencing marked improvements.

  20. Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms.

    PubMed

    Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S

    2006-12-21

    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H(+)(H(2)O)(7). For H(+)(H(2)O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H(+)(H(2)O)(7) [though nearly isoenergetic to the 3D structure for D(+)(D(2)O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.

Top