Sample records for complicates continuous wave

  1. An LDA (Laser-Doppler Anemometry) investigation of three-dimensional normal shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.

    1989-01-01

    Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.

  2. 2-micrometer continuous wave laser treatment for multiple non-muscle-invasive bladder cancer with intravesical instillation of epirubicin.

    PubMed

    Liu, Haitao; Xue, Song; Ruan, Yuan; Sun, Xiaowen; Han, Bangmin; Xia, Shujie

    2011-01-01

    We have reported the efficacy and safety of 2-micrometer continuous wave laser resection of non-muscle-invasive bladder tumor (NMIVBC) (World J Urology 2010;28:157-161). In this study, we evaluated the use of 2-micrometer continuous wave laser resection in combination with intravesical instillation of epirubicin for the treatment of multiple NMIVBC. From September 2007 to April 2008, sixty patients with multiple NMIVBC were included in this study (44 cases of low grade papillary urothelial carcinoma, 10 cases of high grade papillary urothelial carcinoma, and six cases of papillary urothelial neoplasm with low malignant potential). Imaging examinations including pelvic computer tomography (CT) and intravenous urography showed no extravesical extension, lymphatic metastasis or any lesions of upper urinary tract. All patients received 2-micrometer continuous wave laser therapy under continuous epidural anesthesia, and intravesical chemotherapy with epirubicin 1 week later (intravesical instillation weekly for 8 weeks, followed by monthly maintenance to 12 months). Totally 211 tumors in 60 patients were successfully removed with 2-micrometer continuous wave laser. The mean operation time was 48 minutes per patient (ranged 20-90 minutes) and 13.6 minutes per tumor (range 5-25 minutes). No obturator nerve reflection or bladder perforation occurred during the procedure. All patients finished 12 months of intravesical chemotherapy without severe complications. The mean followed-up time was 23 months. Tumor recurrences were found in 13 patients (22%). The combination of 2-micrometer continuous wave laser and intravesical chemotherapy is feasible, safe, and efficacious for the treatment of multiple NMIVBC. Copyright © 2011 Wiley-Liss, Inc.

  3. Continuous-wave optical parametric oscillators on their way to the terahertz range

    NASA Astrophysics Data System (ADS)

    Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten

    2010-02-01

    Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.

  4. Noninvasive diagnosis of right-sided extracardiac conduit obstruction by combined magnetic resonance imaging and continuous-wave Doppler echocardiography.

    PubMed

    Canter, C E; Gutierrez, F R; Molina, P; Hartmann, A F; Spray, T L

    1991-04-01

    Right-sided extracardiac conduits are frequently complicated by obstruction over time. We compared the utility of two-dimensional and Doppler echocardiography and magnetic resonance imaging in the diagnosis of postoperative right-sided obstruction with cardiac catheterization and angiography in 10 patients with xenograft or homograft conduits. Correlation (r = 0.95) between continuous-wave Doppler estimates and catheter pullback pressure gradients across the conduits was excellent. Echocardiography could only visualize five of 10 conduits in their entirety. Magnetic resonance imaging visualized all conduits and showed statistically significant (kappa = 0.58) agreement with angiography in the localization and estimation of severity of a variety of right-sided obstructions in these patients. However, flow voids created by the metallic ring around xenograft valves led to a false negative diagnosis of valvular stenosis in four patients when magnetic resonance imaging was used alone. Doppler studies correctly indicated obstruction in these patients. The combination of magnetic resonance imaging studies and continuous-wave Doppler echocardiography can be useful to noninvasively evaluate right-sided obstruction in postoperative patients with right-sided extracardiac conduits.

  5. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    NASA Astrophysics Data System (ADS)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  6. Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.

    PubMed

    Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping

    2016-01-01

    Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.

  7. Feelings of worthlessness during a single complicated major depressive episode predict postremission suicide attempt.

    PubMed

    Wakefield, J C; Schmitz, M F

    2016-04-01

    To establish which symptoms of major depressive episode (MDE) predict postremission suicide attempts in complicated single-episode cases. Using the nationally representative two-wave National Epidemiologic Survey on Alcohol and Related Conditions data set, we identified wave 1 lifetime single-episode MDE cases in which the episode remitted by the beginning of the wave 2 three-year follow-up period (N = 2791). The analytic sample was further limited to 'complicated' cases (N = 1872) known to have elevated suicide attempt rates, defined as having two or more of the following: suicidal ideation, marked role impairment, feeling worthless, psychomotor retardation, and prolonged (>6 months) duration. Logistic regression analyses showed that, after controlling for wave 1 suicide attempt which significantly predicted postremission suicide attempt (OR = 10.0), the additional complicated symptom 'feelings of worthlessness' during the wave 1 index episode significantly and very substantially predicted postremission suicide attempt (OR = 6.96). Neither wave 1 psychomotor retardation nor wave 1 suicidal ideation nor any of the other wave 1 depressive symptoms were significant predictors of wave 2 suicide attempt. Among depressive symptoms during an MDE, feelings of worthlessness is the only significant indicator of elevated risk of suicide attempt after the episode has remitted, beyond previous suicide attempts. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Probe Oscillation Shear Wave Elastography: Initial In Vivo Results in Liver.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Trzasko, Joshua D; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2018-05-01

    Shear wave elastography methods are able to accurately measure tissue stiffness, allowing these techniques to monitor the progression of hepatic fibrosis. While many methods rely on acoustic radiation force to generate shear waves for 2-D imaging, probe oscillation shear wave elastography (PROSE) provides an alternative approach by generating shear waves through continuous vibration of the ultrasound probe while simultaneously detecting the resulting motion. The generated shear wave field in in vivo liver is complicated, and the amplitude and quality of these shear waves can be influenced by the placement of the vibrating probe. To address these challenges, a real-time shear wave visualization tool was implemented to provide instantaneous visual feedback to optimize probe placement. Even with the real-time display, it was not possible to fully suppress residual motion with established filtering methods. To solve this problem, the shear wave signal in each frame was decoupled from motion and other sources through the use of a parameter-free empirical mode decomposition before calculating shear wave speeds. This method was evaluated in a phantom as well as in in vivo livers from five volunteers. PROSE results in the phantom as well as in vivo liver correlated well with independent measurements using the commercial General Electric Logiq E9 scanner.

  9. Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves

    NASA Astrophysics Data System (ADS)

    Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu

    2017-04-01

    Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.

  10. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane.

    PubMed

    Liu, T Y; Chiu, T L; Clarkson, P A; Chow, K W

    2017-09-01

    Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.

  11. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane

    NASA Astrophysics Data System (ADS)

    Liu, T. Y.; Chiu, T. L.; Clarkson, P. A.; Chow, K. W.

    2017-09-01

    Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.

  12. Emergency shock wave lithotripsy for ureteric stones.

    PubMed

    Dasgupta, Ranan; Hegarty, Nicholas; Thomas, Kay

    2009-03-01

    Extracorporeal shock wave lithotripsy has been used for over 2 decades, but its application in the acute setting remains under review. With continuing refinements to the technology, it is timely to review its efficacy in the emergency setting. The procedure has an overall low morbidity and is generally well tolerated. Success rates of 70-80% are reported in a number of studies, with relatively low complication rates. Although much attention has been given to the improvements in the outcome of ureteroscopic stone clearance, the benefits of a noninvasive procedure which does not require general anaesthesia may be appealing and indeed preferable for many patients. This should remain a valid alternative treatment option offered to patients, and its provision may be restricted by resource availability rather than clinical evidence. Centres should be identified that can offer an emergency extracorporeal shock wave lithotripsy service and patients informed of outcome data from such centres.

  13. Analysis of the safety profile of treatment with a large number of shock waves per session in extracorporeal lithotripsy.

    PubMed

    Budía Alba, A; López Acón, J D; Polo-Rodrigo, A; Bahílo-Mateu, P; Trassierra-Villa, M; Boronat-Tormo, F

    2015-06-01

    To assess the safety of increasing the number of waves per session in the treatment of urolithiasis using extracorporeal lithotripsy. Prospective, comparative, nonrandomized parallel study of patients with renoureteral lithiasis and an indication for extracorporeal lithotripsy who were consecutively enrolled between 2009 and 2010. We compared group I (160 patients) treated on schedule with a standard number of waves/session (mean 2858,3±302,8) using a Dornier lithotripter U/15/50 against group II (172 patients) treated with an expanded number of waves/session (mean, 6728,9±889,6) using a Siemens Modularis lithotripter. The study variables were age, sex, location, stone size, number of waves/session and total number of waves to resolution, stone-free rate (SFR) and rate of complications (Clavien-Dindo classification). Student's t-test and the chi-squared test were employed for the statistical analysis. The total rate of complications was 11.9% and 10.46% for groups I and II, respectively (P=.39). All complications were minor (Clavien-Dindo grade I). The most common complications were colic pain and hematuria in groups I and II, respectively, with a similar treatment intolerance rate (P>.05). The total number of waves necessary was lower in group II than in group I (P=.001), with SFRs of 96.5% and 71.5%, respectively (P=.001). Treatment with an expanded number of waves per session in extracorporeal lithotripsy does not increase the rate of complications or their severity. However, it could increase the overall effectiveness of the treatment. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Interaction and influence of two creeks on Escherichia coli concentrations of nearby beaches: Exploration of predictability and mechanisms

    USGS Publications Warehouse

    Nevers, M.B.; Whitman, R.L.; Frick, W.E.; Ge, Z.

    2007-01-01

    The impact of river outfalls on beach water quality depends on numerous interacting factors. The delivery of contaminants by multiple creeks greatly complicates understanding of the source contributions, especially when pollution might originate up- or down-coast of beaches. We studied two beaches along Lake Michigan that are located between two creek outfalls to determine the hydrometeorologic factors influencing near-shore microbiologic water quality and the relative impact of the creeks. The creeks continuously delivered water with high concentrations of Escherichia coli to Lake Michigan, and the direction of transport of these bacteria was affected by current direction. Current direction reversals were associated with elevated E. coli concentrations at Central Avenue beach. Rainfall, barometric pressure, wave height, wave period, and creek specific conductance were significantly related to E. coli concentration at the beaches and were the parameters used in predictive models that best described E. coli variation at the two beaches. Multiple inputs to numerous beaches complicates the analysis and understanding of the relative relationship of sources but affords opportunities for showing how these complex creek inputs might interact to yield collective or individual effects on beach water quality.

  15. Myofiber turnover is used to retrofit frog jaw muscles during metamorphosis.

    PubMed

    Alley, K E

    1989-01-01

    Metamorphic reorganization of the head in anuran amphibians entails abrupt restructuring of the jaw complex as larval feeding structures are transformed into their adult configurations. In this morphometric study, light microscopy wa used to analyze the larval maturation and metamorphic transfiguration of the adductor jaw muscles in the leopard frog (Rana pipiens). Larval jaw muscles, first established during embryogenesis, continue to grow by fiber addition until prometamorphosis, stage XII. Thereafter, fiber number remains stable but additional muscle growth continues by hypertrophy of the individual fibers until metamorphic climax. During metamorphic stages XIX-XXIII, a complete involution of all larval myofibers occurs. Simultaneously, within the same muscle beds, a second wave of myogenesis produces myoblasts which are the precursors of adult jaw myofibers. New muscle fibers continue to be added to these muscles well after the completion of metamorphosis; however, the total duration of the postmetamorphic myogenic period has not been defined. These observations provide clear evidence that the entir population of primary myofibers used in larval oral activity disappears from the adductor muscle beds and is replaced by a second wave of myogenesis commencing during climax. These findings indicate that the adductor jaw muscles are prepared for adult feeding by a complicated cellular process that retrofits existing muscle beds with a completely new complement of myofibers.

  16. Early results of patellofemoral inlay resurfacing arthroplasty using the HemiCap Wave prosthesis.

    PubMed

    Patel, Akash; Haider, Zakir; Anand, Amarjit; Spicer, Dominic

    2017-01-01

    Common surgical treatment options for isolated patellofemoral osteoarthritis include arthroscopic procedures, total knee replacement and patellofemoral replacement. The HemiCap Wave patellofemoral resurfacing prosthesis is a novel inlay design introduced in 2009 with scarce published data on its functional outcomes. We aim to prospectively evaluate early functional outcomes and complications, for patients undergoing a novel inlay resurfacing arthroplasty for isolated patellofemoral arthrosis in an independent centre. From 2010 to 2013, 16 consecutive patients underwent patellofemoral resurfacing procedures using HemiCap Wave (Arthrosurface Inc., Franklin, Massachusetts, USA) for anterior knee pain with confirmed radiologically and/or arthroscopically isolated severe patellofemoral arthrosis. Standardized surgical technique, as recommended by the implant manufacturer, was followed. Outcome measures included range of movement, functional knee scores (Oxford Knee Score (OKS), Knee Injury and Osteoarthritis Outcome Score (KOOS) and Short Form-36 (SF-36)), radiographic disease progression, revision rates and complications. Eight men and eight women underwent patellofemoral HemiCap Wave resurfacing, with an average age of 63 years (range: 46-83). Average follow-up was 24.1 months (6-34). Overall, post-operative scores were excellent. There was a statistically significant improvement in the post-operative OKS, KOOS and SF-36 scores ( p < 0.01). One patient had radiological disease progression. One patient underwent revision for deep infection. Two other minor complications were observed and treated conservatively. The HemiCap Wave patellofemoral resurfacing prosthesis has excellent early results in terms of functional outcomes, radiological outcomes and low complication rates. At the very least, early results show that the HemiCap Wave is comparable to more established onlay prostheses. The HemiCap Wave thus provides a safe and effective surgical option in the treatment of isolated patellofemoral osteoarthritis in selected patients.

  17. [Renal hematomas after extracorporeal shock-wave lithotripsy (ESWL)].

    PubMed

    Pastor Navarro, Héctor; Carrión López, Pedro; Martínez Ruiz, Jesús; Pastor Guzmán, José Ma; Martínez Martín, Mariano; Virseda Rodríguez, Julio A

    2009-03-01

    The use of fragmentation due to shock- waves as a treatment of urinary stone was one of the most important therapeutics findings in the history of urology. It's the first election treatment for most of the calculus at renal and urethral location due to the fact that it is a low invasive treatment and it has a few number of complications, but this method also has a few negative side effects, it can caused a more or less important traumatic lesion at the organs which crosses the shock-waves, including the kidney where it can caused a small contusion or renal hematoma with different resolution and treatment. We reviewed 4815 extracorporeal shock-wave lithotripsy that we performed in our department in which we found six cases with subcapsular and perirenal hematoma which we followed up and treated. After the urological complications (pain, obstruction and infection) the renal and perirenal hematic collections are the most frequent adverse effects of shock-waves used in lithotripsy, these are related to the power of energy used and patient age. Between the years 1992-2007 we performed 4.815 extracorporeal shock-wave lithotripsy finding seven cases of severe hematoma, less then 1%. Treatment of these complications is usually not aggressive though sometimes it is necessary to perform surgical drainage and even nephrectomy.

  18. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  19. High-Performance Computing and Visualization of Tsunamis and Wind-Driven Waves

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Zhang, H.; Yuen, D. A.; Wang, M.

    2005-12-01

    The Sumatran earthquake and the tsunami waves produced have awakened great scientific interest in wave-propagation over undulated bottom topography and along complicated coastlines. The recent hurricane Katrina has also called our attention to shorter period waves near the coast. Analytical approximations are valid over long wavelengths in the far field. For near field regions with complex geography and other complications, such as islands and harbors, numerical simulations must be employed to obtain accurate predictions in time and space. Nowadays using 10**7 to 10**8 grid points become quite routine with massively parallel computers and large RAM and disk memories. Besides tsunamis, river discharges from upstream events and waves driven by hurricanes are also of societal relevance, especially in central China and now also in U.S.A. Using automatic grid generation methods, we have devised a finite-element based code, for the three stages which culminates with the use of the augmented Lagrangian method for the run-up process, as well as the Arbitrary Lagrange- Euler Configuration method to tackle the free surface problem near the seashore. This formulation allows for the wave surface to be self-consistently determined within a linearized framework and is computationally very fast. Our continuous efforts are focussed on seeking novel algorithms and state of art techniques, in order to unravel the mysteries associated with tsunami wave propagation and wind-driven waves in 3-D. We have cast the Navier-Stokes equations within the framework of a compressible model with an equation of state for sea-water. Our formulation allows the tracking and simulation of three stages , principally the formation, propagation and run-up stages of tsunami and waves coming ashore. The sequential version of this code can run on a workstation with 4 Gbyte memory less than 2 minutes per time step for one million grid points. This code has also been parallelized with MPI-2 and has good scaling properties, nearly linear speedup, which has been tested on a 32-node PC cluster. We have employed the actual ocean seafloor topographical data to construct oceanic volume and attempt to construct the coastline as realistic as possible, using 11 levels structure meshes in the radial direction of the earth. In order to understand the intricate dynamics of the wave interactions, we have implemented a visualization overlay based on Amira, a 3-D volume rendering visualization tools for massive data post-processing. The ability to visualize the large data sets remotely is an important objective we are aiming for, as international collaboration is one of the top aims of this research.

  20. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.

    PubMed

    Zhang, Chao; Chen, Dong; Jiang, Xuefeng

    2017-11-13

    An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.

  1. Nonlinear Internal Wave Interaction in the China Seas

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hsu, Ming-K.

    1998-01-01

    This project researched the nonlinear wave interactions in the East China Sea, and the South China Sea, using Synthetic Aperture Radar (SAR) images. The complicated nature of the internal wave field, including the generation mechanisms, was studied, and is discussed. Discussion of wave-wave interactions in the East China Sea, the area of the China Sea northeast of Taiwan, and the Yellow Sea is included.

  2. Wave Intensity Analysis of Right Ventricular Function during Pulsed Operation of Rotary Left Ventricular Assist Devices.

    PubMed

    Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod

    2018-05-29

    Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.

  3. Computation of shock wave/target interaction

    NASA Technical Reports Server (NTRS)

    Mark, A.; Kutler, P.

    1983-01-01

    Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.

  4. Wave Probe - New Instrument For Space Research

    NASA Astrophysics Data System (ADS)

    Korepanov, V.; Dudkin, F.

    2007-12-01

    The dispersion relations are very important for the wave activity study in space plasmas. One of the most efficient methods for their analysis is the simultaneous measurements of spatial current density and magnetic field fluctuations during such a wave process. Whereas the measurement of the magnetic field is a routine task realized onboard practically every spacecraft (SC), the direct measurement of spatial current density (SCD) still remains a complicated scientific and technological problem. First attempt to solve it was executed in late 60-ties by a group headed by F. Mozer. They proposed and launched in a rocket experiment the device named "Split Langmuir Probe" (SLP) - two conducting plates separated by a thin insulated split. Unfortunately this experiment failed what diverted the attention of experimenters in space branch from this instrument for many years, practically till now. But the importance to know the SCD stimulated the development of new principles and devices to measure it. A short review of known versions is discussed. The newly evoked interest to this problem caused next attempt to improve the SLP construction and methodology of its application for SCD measurements, which resulted in first successful attempt in 1985: the measured SCD onboard Prognos-10 SC in the bow shock region was in rather good agreement with the calculated value. This attempt was continued onboard Interball-Tail SC (1995-2000) where again a qualitatively good coincidence of measured and calculated values was observed. The obtained experience and further theoretical research allowed developing a new instrument - Wave Probe - which is a combination of induction magnetometer and SLP in one body. Both on-ground tests in plasma chamber and the spatial experiment executed onboard Ukrainian "Sich-1M" SC (2004) showed that the combined in-situ simultaneous measurements of SCD and magnetic field fluctuations allowed obtaining the wave number of the whistler wave. The same wave number was calculated theoretically from dispersion relations of whistler wave using known ionosphere model and the comparison of measured and calculated values of both wave number and SCD gave a good quantitative agreement. The details of theoretical and experimental study are discussed in the report. There is a pleasant duty of the authors to thank Prof. F. Mozer and Prof. S. Klimov for continuous attention and practical support of this work. It was also supported by NSAU contract No 1-02/03.

  5. Development of Extended Ray-tracing method including diffraction, polarization and wave decay effects

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru

    2017-10-01

    Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.

  6. A multicenter, randomized, controlled trial of transureteral and shock wave lithotripsy--which is the best minimally invasive modality to treat distal ureteral calculi in children?

    PubMed

    Basiri, Abbas; Zare, Samad; Tabibi, Ali; Sharifiaghdas, Farzaneh; Aminsharifi, Alireza; Mousavi-Bahar, Seyed Habibollah; Ahmadnia, Hassan

    2010-09-01

    Since there is insufficient evidence to determine the best treatment modality in children with distal ureteral calculi, we designed a multicenter, randomized, controlled trial to evaluate the efficacy and complications of transureteral and shock wave lithotripsy in these patients. A total of 100 children with distal ureteral calculi were included in the study. Of the patients 50 were randomized consecutively to undergo shock wave lithotripsy using a Compact Delta II lithotriptor (Dornier MedTech, Kennesaw, Georgia), and 50 were randomized to undergo transureteral lithotripsy with holmium laser and pneumatic lithotriptor between February 2007 and October 2009. Stone-free, complication and efficiency quotient rates were assessed in each group. Mean +/- SD patient age was 6.5 +/- 3.7 years (range 1 to 13). Mean stone surface was 35 mm(2) in the transureteral group and 37 mm(2) in the shock wave lithotripsy group. Stone-free rates at 2 weeks after transureteral lithotripsy and single session shock wave lithotripsy differed significantly, at 78% and 56%, respectively (p = 0.004). With 2 sessions of shock wave lithotripsy the stone-free rate increased to 72%. Efficiency quotient was significantly higher for transureteral vs shock wave lithotripsy (81% vs 62%, p = 0.001). Minor complications were comparable and negligible between the groups. Two patients (4%) who underwent transureteral lithotripsy sustained a ureteral perforation. In the short term it seems that transureteral and shock wave lithotripsy are acceptable modalities for the treatment of distal ureteral calculi in children. However, transureteral lithotripsy has a higher efficacy rate when performed meticulously by experienced hands using appropriate instruments. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. The predictive value of P-wave duration by signal-averaged electrocardiogram in acute ST elevation myocardial infarction.

    PubMed

    Shturman, Alexander; Bickel, Amitai; Atar, Shaul

    2012-08-01

    The prognostic value of P-wave duration has been previously evaluated by signal-averaged ECG (SAECG) in patients with various arrhythmias not associated with acute myocardial infarction (AMI). To investigate the clinical correlates and prognostic value of P-wave duration in patients with ST elevation AMI (STEMI). The patients (n = 89) were evaluated on the first, second and third day after admission, as well as one week and one month post-AMI. Survival was determined 2 years after the index STEMI. In comparison with the upper normal range of P-wave duration (<120 msec), the P-wave duration in STEMI patients was significantly increased on the first day (135.31 +/- 29.29 msec, P < 0.001), up to day 7 (127.17 +/- 30.02 msec, P = 0.0455). The most prominent differences were observed in patients with left ventricular ejection fraction (LVEF) < or = 40% (155.47 +/- 33.8 msec), compared to LVEF > 40% (128.79 +/- 28 msec) (P = 0.001). P-wave duration above 120 msec was significantly correlated with increased complication rate; namely, sustained ventricular tachyarrhythmia (36%), congestive heart failure (41%), atrial fibrillation (11%), recurrent angina (14%), and re-infarction (8%) (P = 0.012, odds ratio 4.267, 95% confidence interval 1.37-13.32). P-wave duration of 126 msec on the day of admission was found to have the highest predictive value for in-hospital complications including LVEF 40% (area under the curve 0.741, P < 0.001). However, we did not find a significant correlation between P-wave duration and mortality after multivariate analysis. P-wave duration as evaluated by SAECG correlates negatively with LVEF post-STEMI, and P-wave duration above 126 msec can be utilized as a non-invasive predictor of in-hospital complications and low LVEF following STEMI.

  8. Numerical investigation of bubble nonlinear dynamics characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  9. Abnormal Q waves in right sided chest leads provoked by onset of right bundle-branch block in patients with anteroseptal infarction.

    PubMed Central

    Rosenbaum, M B; Girotti, L A; Lázzari, J O; Halpern, M S; Elizari, M V

    1982-01-01

    In five cases of anteroseptal myocardial infarction complicated by intermittent right bundle-branch block, the onset of right bundle-branch block provoked the appearance of abnormal Q waves in leads V1 and V2, whereas a small initial R wave was present in the same leads during normal conduction. The intermittency of the conduction disturbance indicated that the Q waves were "right bundle-branch block dependent". It was also apparent that right bundle-branch block shifted the electrical location of the infarct towards the right, and made it look much larger. Right bundle-branch block dependent Q waves may arise during the acute stage of an anterior infarct suggesting, fallaciously, that an acute extension has occurred, or during the chronic stage, leading to the erroneous supposition that a new infarct had developed. The abnormal Q waves anteroseptal infarction complicated by fixed right bundle-branch block, though obviously related to the infarct, may be dependent on the right bundle-branch block. PMID:7059400

  10. Plasma Heating and Alfvénic Turbulence Enhancement During Two Steps of Energy Conversion in Magnetic Reconnection Exhaust Region of Solar Wind

    NASA Astrophysics Data System (ADS)

    Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu

    2018-04-01

    The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.

  11. Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Wei, Yingbin; Huang, Wencai; Wei, Zheng; Zhang, Jie; An, Tong; Wang, Xiulin; Xu, Huizhen

    2017-06-01

    We present a technique based on self-mixing interferometry for acquiring the pulse wave transit time (PWTT) and heartbeat. A signal processing method based on Continuous Wavelet Transform and Hilbert Transform is applied to extract potentially useful information in the self-mixing interference (SMI) signal, including PWTT and heartbeat. Then, some cardiovascular characteristics of the human body are easily acquired without retrieving the SMI signal by complicated algorithms. Experimentally, the PWTT is measured on the finger and the toe of the human body using double-path self-mixing interferometry. Experimental statistical data show the relation between the PWTT and blood pressure, which can be used to estimate the systolic pressure value by fitting. Moreover, the measured heartbeat shows good agreement with that obtained by a photoplethysmography sensor. The method that we demonstrate, which is based on self-mixing interferometry with significant advantages of simplicity, compactness and non-invasion, effectively illustrates the viability of the SMI technique for measuring other cardiovascular signals.

  12. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California

    USGS Publications Warehouse

    Ruhl, C.A.; Schoellhamer, D.H.; Stumpf, R.P.; Lindsay, C.L.

    2001-01-01

    Analysis of suspended-sediment concentration data in San Francisco Bay is complicated by spatial and temporal variability. In situ optical backscatterance sensors provide continuous suspended-sediment concentration data, but inaccessibility, vandalism, and cost limit the number of potential monitoring stations. Satellite imagery reveals the spatial distribution of surficial-suspended sediment concentrations in the Bay; however, temporal resolution is poor. Analysis of the in situ sensor data in conjunction with the satellite reflectance data shows the effects of physical processes on both the spatial and temporal distribution of suspended sediment in San Francisco Bay. Plumes can be created by large freshwater flows. Zones of high suspended-sediment concentrations in shallow subembayments are associated with wind-wave resuspension and the spring-neap cycle. Filaments of clear and turbid water are caused by different transport processes in deep channels, as opposed to adjacent shallow water.

  13. Three-dimensional freak waves and higher-order wave-wave resonances

    NASA Astrophysics Data System (ADS)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover period October 14 - November 6, 2009 almost continuously. Antenna of 6 resistance wave gauges (a pentagon with one center gauge) is used to gain information on wave directions. Wave conditions vary from perfect still to storms with significant wave heights up to Hs = 1.7 meters and wind speeds 15m/s. Measurements with frequency 10Hz for dominant frequencies 0.1 - 0.2Hz fixed 40 freak wave events (criterium H/Hs > 2) and showed no dependence on Hs definitely. Data processing within frequency quasi-spectra approach and directional spectra reconstructions found pronounced features of essentially three-dimensional anomalous waves. All the events are associated with dramatic widening of instant frequency spectra in the range fp - f5w and stronger directional spreading. On the contrary, the classic Benjamin-Feir modulations show no definite links with the events and can be likely treated as dynamically neutral part of wave field. The apparent contradiction with the recent study (Saprykina, Dulov, Kuznetsov, Smolov, 2010) based on the same data collection can be explained partially by features of data processing. Physical roots of the inconsistency should be detailed in further studies. The work was supported by the Russian government contract 11.G34.31.0035 (signed 25 November 2010), Russian Foundation for Basic Research grant 11-05-01114-a, Ukrainian State Agency of Science, Innovations and Information under Contract M/412-2011 and ONR grant N000141010991. Authors gratefully acknowledge continuing support of these foundations.

  14. Application of finite difference techniques to noise propagation in jet engine ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1973-01-01

    A finite difference formulation is presented for wave propagation in a rectangular two-dimensional duct without steady flow. The difference technique, which should be used in the study of acoustically treated inlet and exhausts ducts used in turbofan engines, can readily handle acoustical flow field complications such as axial variations in wall impedance and cross-section area. In the numerical analysis, the continuous acoustic field is lumped into a series of grid points in which the pressure and velocity at each grid point are separated into real and imaginary terms. An example calculation is also presented for the sound attenuation in a two-dimensional straight soft-walled suppressor.

  15. Application of finite difference techniques to noise propagation in jet engine ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1973-01-01

    A finite difference formulation is presented for wave propagation in a rectangular two-dimensional duct without steady flow. The difference technique, which should be useful in the study of acoustically treated inlet and exhausts ducts used in turbofan engines, can readily handle acoustical flow field complications such as axial variations in wall impedance and cross section area. In the numerical analysis, the continuous acoustic field is lumped into a series of grid points in which the pressure and velocity at each grid point are separated into real and imaginary terms. An example calculation is also presented for the sound attenuation in a two-dimensional straight soft-walled suppressor.

  16. Ultrasound-assisted drug delivery for treatment of venous thrombosis: a case study.

    PubMed

    Marchiondo, Kathleen; Frink, Amber

    2008-01-01

    Ultrasound-assisted drug delivery is a relatively new medical intervention that combines low-intensity ultrasound waves with infusion of a thrombolytic agent directly into a thrombosed vein. Studies have demonstrated that clots are eradicated faster, more completely, and with fewer bleeding events with the use of ultrasound-assisted drug delivery for treatment of deep vein thrombosis compared to that of traditional therapies. Critical care nurses are responsible for preprocedure assessment and teaching and continuous monitoring of the patient during therapy for effectiveness and potential complications. An advantage of this technology from a nursing perspective is the minimal amount of time required for monitoring the drug delivery system, allowing greater focus on patient assessment and care.

  17. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.

    PubMed

    Yang, Guangye; Li, Lu; Jia, Suotang

    2012-04-01

    Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.

  18. COMPARATIVE DISINFECTION EFFICIENCY OF PULSED AND CONTINUOUS-WAVE UV IRRADIATION TECHNOLOGIES

    EPA Science Inventory

    Pulsed UV (PUV) is novel UV irradiation system that is a non-mercury lamp based alternative to currently used continuous-wave systems for water disinfection. To compare the polychromatic PUV irradiation disinfection efficiency with that from continuous wave monochromatic low-pre...

  19. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    NASA Technical Reports Server (NTRS)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  20. Lagrangian methods in nonlinear plasma wave interaction

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1980-01-01

    Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.

  1. Detection of Geomagnetic Pulsations of the Earth Using GPS-TEC Data

    NASA Astrophysics Data System (ADS)

    Koroglu, Ozan; Arikan, Feza; Köroǧlu, Meltem; Sabri Ozkazanc, Yakup

    2016-07-01

    The magnetosphere of the Earth is made up of both magnetic fields and plasma. In this layer, plasma waves propagate as Ultra Low Frequency (ULF) waves having mHz scale frequencies. ULF waves are produced due to complicated solar-geomagnetic interactions. In the literature, these ULF waves are defined as pulsations. The geomagnetic pulsations are classified into main two groups as continuous pulsations (Pc) and irregular pulsations (Pi). These pulsations can be determined by ionospheric parameters due to the complex lithosphere-ionosphere-magnetosphere coupling processes. Total Electron Content (TEC) is one of the most important parameters for investigating the variability of ionosphere. Global Positioning System (GPS) provides a cost-effective means for estimating TEC from GPS satellite orbital height of 20,000 km to the ground based receivers. Therefore, the time series of GPS-TEC inherently contains the above mentioned ULF waves. In this study, time series analysis of GPS-TEC is carried out by applying periodogram method to the mid-latitude annual TEC data. After the analysis of GPS-TEC data obtained for GPS stations located in Central Europe and Turkey for 2011, it is observed that some of the fundamental frequencies that are indicators of Pc waves, diurnal and semi-diurnal periodicity and earth-free oscillations can be identified. These results will be used in determination of low frequency trend structure of magnetosphere and ionosphere. Further investigation of remaining relatively low magnitude frequencies, all Pi and Pc can be identified by using time and frequency domain techniques such as wavelet analysis. This study is supported by the joint TUBITAK 115E915 and joint TUBITAK114E092 and AS CR 14/001 projects.

  2. Broadband transmission-type coding metamaterial for wavefront manipulation for airborne sound

    NASA Astrophysics Data System (ADS)

    Li, Kun; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2018-07-01

    The recent advent of coding metamaterials, as a new class of acoustic metamaterials, substantially reduces the complexity in the design and fabrication of acoustic functional devices capable of manipulating sound waves in exotic manners by arranging coding elements with discrete phase states in specific sequences. It is therefore intriguing, both physically and practically, to pursue a mechanism for realizing broadband acoustic coding metamaterials that control transmitted waves with a fine resolution of the phase profile. Here, we propose the design of a transmission-type acoustic coding device and demonstrate its metamaterial-based implementation. The mechanism is that, instead of relying on resonant coding elements that are necessarily narrow-band, we build weak-resonant coding elements with a helical-like metamaterial with a continuously varying pitch that effectively expands the working bandwidth while maintaining the sub-wavelength resolution of the phase profile that is vital for the production of complicated wave fields. The effectiveness of our proposed scheme is numerically verified via the demonstration of three distinctive examples of acoustic focusing, anomalous refraction, and vortex beam generation in the prescribed frequency band on the basis of 1- and 2-bit coding sequences. Simulation results agree well with theoretical predictions, showing that the designed coding devices with discrete phase profiles are efficient in engineering the wavefront of outcoming waves to form the desired spatial pattern. We anticipate the realization of coding metamaterials with broadband functionality and design flexibility to open up possibilities for novel acoustic functional devices for the special manipulation of transmitted waves and underpin diverse applications ranging from medical ultrasound imaging to acoustic detections.

  3. A novel ultrasonic NDE for shrink fit welded structures using interface waves.

    PubMed

    Lee, Jaesun; Park, Junpil; Cho, Younho

    2016-05-01

    Reactor vessel inspection is a critical part of safety maintenance in a nuclear power plant. The inspection of shrink fit welded structures in a reactor nozzle can be a challenging task due to the complicated geometry. Nozzle inspection using pseudo interface waves allows us to inspect the nozzle from outside of the nuclear reactor. In this study, layered concentric pipes were manufactured with perfect shrink fit conditions using stainless steel 316. The displacement distributions were calculated with boundary conditions for a shrink fit welded structure. A multi-transducer guided wave phased array system was employed to monitor the welding quality of the nozzle end at a distance from a fixed position. The complicated geometry of a shrink fit welded structure can be overcome by using the pseudo interface waves in identifying the location and size of defects. The experimental results demonstrate the feasibility of detecting weld delamination and defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Velocity Memory Effect for polarized gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  5. Patterns of heterotypic continuity associated with the cross-sectional correlational structure of prevalent mental disorders in adults.

    PubMed

    Lahey, Benjamin B; Zald, David H; Hakes, Jahn K; Krueger, Robert F; Rathouz, Paul J

    2014-09-01

    Mental disorders predict future occurrences of both the same disorder (homotypic continuity) and other disorders (heterotypic continuity). Heterotypic continuity is inconsistent with a view of mental disorders as fixed entities. In contrast, hierarchical-dimensional conceptualizations of psychopathology, in which each form of psychopathology is hypothesized to have both unique and broadly shared etiologies and mechanisms, predict both homotypic and heterotypic continuity. To test predictions derived from a hierarchical-dimensional model of psychopathology that (1) heterotypic continuity is widespread, even controlling for homotypic continuity, and that (2) the relative magnitudes of heterotypic continuities recapitulate the relative magnitudes of cross-sectional correlations among diagnoses at baseline. Ten prevalent diagnoses were assessed in the same person twice (ie, in 2 waves separated by 3 years). We used a representative sample of adults in the United States (i.e., 28,958 participants 18-64 years of age in the National Epidemiologic Study of Alcohol and Related Conditions who were assessed in both waves). Diagnoses from reliable and valid structured interviews. Adjusting for sex and age, we found that bivariate associations of all pairs of diagnoses from wave 1 to wave 2 exceeded chance levels (P < .05) for all homotypic (median tetrachoric correlation of ρ = 0.54 [range, 0.41-0.79]) and for nearly all heterotypic continuities (median tetrachoric correlation of ρ = 0.28 [range, 0.07-0.50]). Significant heterotypic continuity was widespread even when all wave 1 diagnoses (including the same diagnosis) were simultaneous predictors of each wave 2 diagnosis. The rank correlation between age- and sex-adjusted tetrachoric correlation for cross-sectional associations among wave 1 diagnoses and for heterotypic associations from wave 1 to wave 2 diagnoses was ρ = 0.86 (P < .001). For these prevalent mental disorders, heterotypic continuity was nearly universal and not an artifact of failure to control for homotypic continuity. Furthermore, the relative magnitudes of heterotypic continuity closely mirrored the relative magnitudes of cross-sectional associations among these disorders, consistent with the hypothesis that both sets of associations reflect the same factors. Mental disorders are not fixed and independent entities. Rather, each diagnosis is robustly related to other diagnoses in a correlational structure that is manifested both concurrently and in patterns of heterotypic continuity across time.

  6. Bounded extremum seeking with discontinuous dithers

    DOE PAGES

    Scheinker, Alexander; Scheinker, David

    2016-03-21

    The analysis of discontinuous extremum seeking (ES) controllers, e.g. those applicable to digital systems, has historically been more complicated than that of continuous controllers. We establish a simple and general extension of a recently developed bounded form of ES to a general class of oscillatory functions, including functions discontinuous with respect to time, such as triangle or square waves with dead time. We establish our main results by combining a novel idea for oscillatory control with an extension of functional analytic techniques originally utilized by Kurzweil, Jarnik, Sussmann, and Liu in the late 80s and early 90s and recently studiedmore » by Durr et al. Lastly, we demonstrate the value of the result with an application to inverter switching control.« less

  7. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  8. Associations Between the Continuity of Ambulatory Care of Adult Diabetes Patients in Korea and the Incidence of Macrovascular Complications.

    PubMed

    Gong, Young-Hoon; Yoon, Seok-Jun; Seo, Hyeyoung; Kim, Dongwoo

    2015-07-01

    The goal of this study was to identify association between the continuity of ambulatory care of diabetes patients in South Korea (hereafter Korea) and the incidence of macrovascular complications of diabetes, using claims data compiled by the National Health Insurance Services of Korea. This study was conducted retrospectively. The subjects of the study were 43 002 patients diagnosed with diabetes in 2007, who were over 30 years of age, and had insurance claim data from 2008. The macrovascular complications of diabetes mellitus were limited to ischemic heart disease and ischemic stroke. We compared the characteristics of the patients in whom macrovascular complications occurred from 2009 to 2012 to the characteristics of the patients who had no such complications. Multiple logistic regression was used to assess the effects of continuity of ambulatory care on diabetic macrovascular complications. The continuity of ambulatory diabetes care was estimated by metrics such as the medication possession ratio, the quarterly continuity of care and the number of clinics that were visited. Patients with macrovascular complications showed statistically significant differences regarding sex, age, comorbidities, hypertension, dyslipidemia and continuity of ambulatory diabetes care. Visiting a lower number of clinics reduced the odds ratio for macrovascular complications of diabetes. A medication possession ratio below 80% was associated with an increased odds ratio for macrovascular complications, but this result was of borderline statistical significance. Diabetes care by regular health care providers was found to be associated with a lower occurrence of diabetic macrovascular complications. This result has policy implications for the Korean health care system, in which the delivery system does not work properly.

  9. Extending fullwave core ICRF simulation to SOL and antenna regions using FEM solver

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wright, J. C.

    2016-10-01

    A full wave simulation approach to solve a driven RF waves problem including hot core, SOL plasmas and possibly antenna is presented. This approach allows for exploiting advantages of two different way of representing wave field, namely treating spatially dispersive hot conductivity in a spectral solver and handling complicated geometry in SOL/antenna region using an unstructured mesh. Here, we compute a mode set in each region with the RF electric field excitation on the connecting boundary between core and edge regions. A mode corresponding to antenna excitation is also computed. By requiring the continuity of tangential RF electric and magnetic fields, the solution is obtained as unique superposition of these modes. In this work, TORIC core spectral solver is modified to allow for mode excitation, and the edge region of diverted Alcator C-Mod plasma is modeled using COMSOL FEM package. The reconstructed RF field is similar in the core region to TORIC stand-alone simulation. However, it contains higher poloidal modes near the edge and captures a wave bounced and propagating in the poloidal direction near the vacuum-plasma boundary. These features could play an important role when the single power pass absorption is modest. This new capability will enable antenna coupling calculations with a realistic load plasma, including collisional damping in realistic SOL plasma and other loss mechanisms such as RF sheath rectification. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  10. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  11. Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury.

    PubMed

    Lobenwein, Daniela; Tepeköylü, Can; Kozaryn, Radoslaw; Pechriggl, Elisabeth J; Bitsche, Mario; Graber, Michael; Fritsch, Helga; Semsroth, Severin; Stefanova, Nadia; Paulus, Patrick; Czerny, Martin; Grimm, Michael; Holfeld, Johannes

    2015-10-27

    Paraplegia following spinal cord ischemia represents a devastating complication of both aortic surgery and endovascular aortic repair. Shock wave treatment was shown to induce angiogenesis and regeneration in ischemic tissue by modulation of early inflammatory response via Toll-like receptor (TLR) 3 signaling. In preclinical and clinical studies, shock wave treatment had a favorable effect on ischemic myocardium. We hypothesized that shock wave treatment also may have a beneficial effect on spinal cord ischemia. A spinal cord ischemia model in mice and spinal slice cultures ex vivo were performed. Treatment groups received immediate shock wave therapy, which resulted in decreased neuronal degeneration and improved motor function. In spinal slice cultures, the activation of TLR3 could be observed. Shock wave effects were abolished in spinal slice cultures from TLR3(-/-) mice, whereas the effect was still present in TLR4(-/-) mice. TLR4 protein was found to be downregulated parallel to TLR3 signaling. Shock wave-treated animals showed significantly better functional outcome and survival. The protective effect on neurons could be reproduced in human spinal slices. Shock wave treatment protects from neuronal degeneration via TLR3 signaling and subsequent TLR4 downregulation. Consequently, it represents a promising treatment option for the devastating complication of spinal cord ischemia after aortic repair. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. [Extracorporeal shock-wave therapy in the treatment of Peyronie's disease].

    PubMed

    Neĭmark, A I; Astakhov, Iu I; Sidor, M V

    2004-01-01

    The authors analyse the results of treatment of 28 patients with Peyronie's disease using extracorporeal shock-wave lithotripsy (ESWL) performed on Dornier U15 lithotriptor. A total of 2-6 sessions were made, maximal number--12. The efficacy was controlled by clinical indices and ultrasonic investigation (Doppler mapping of the blood flow). ESWL proved to be efficient in the treatment of Peyronie's disease (PD), primarily, in patients with early disease before appearance of severe fibroplastic alterations. Less plaque vascularization by energetic Doppler mapping due to ESWL is an important diagnostic criterion of PD treatment efficacy. Conservative treatment is not indicated in marked deformities and plaque calcification, erectile dysfunction. Moreover, any injection into the tunica albuginea, especially complicated by hematomas may be a damaging factor which triggers fibrous inflammation. Such patients should be treated surgically. If the patient is interested in immediate results or is not interested in continuation of sexual life, the treatment is prognostically uneffective. Thus, ESWL is an effective, safe method of PD treatment but requires further study and accumulation of clinical experience.

  13. Structural Damage Detection with Piezoelectric Wafer Active Sensors

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor

    2011-07-01

    Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive enablers for a large class of damage detection and structural health monitoring (SHM) applications. This paper starts with a brief review of PWAS physical principles and basic modelling and continues by considering the various ways in which PWAS can be used for damage detection: (a) embedded guided-wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays, thickness mode; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; (c) passive detection, i.e., acoustic emission and impact detection. An example of crack-like damage detection and localization with PWAS phased arrays on a small metallic plate is given. The modelling of PWAS detection of disbond damage in adhesive joints is achieved with the analytical transfer matrix method (TMM). The analytical methods offer the advantage of fast computation which enables parameter studies and carpet plots. A parametric study of the effect of crack size and PWAS location on disbond detection is presented. The power and energy transduction between PWAS and structure is studied analytically with a wave propagation method. Special attention is given to the mechatronics modeling of the complete transduction cycle from electrical excitation into ultrasonic acoustic waves by the piezoelectric effect, the transfer through the structure, and finally reverse piezoelectric transduction to generate the received electric signal. It is found that the combination of PWAS size and wave frequency/wavelength play an important role in identifying transduction maxima and minima that could be exploited to achieve an optimum power-efficient design. The multi-physics finite element method (MP-FEM), which permits fine discretization of damaged regions and complicated structural geometries, is used to study the generation of guided waves in a plate from an electrically excited transmitter PWAS and the capture of these waves as electric signals at a receiver PWAS. Wave diffraction from a hole damage is illustrated through time-frame snapshots. The paper ends with conclusions and suggestions for further work.

  14. Stationary propagation of a wave segment along an inhomogeneous excitable stripe

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Hong; Zykov, Vladimir; Bodenschatz, Eberhard

    2014-03-01

    We report a numerical and theoretical study of an excitation wave propagating along an inhomogeneous stripe of an excitable medium. The stripe inhomogeneity is due to a jump of the propagation velocity in the direction transverse to the wave motion. Stationary propagating wave segments of rather complicated curved shapes are observed. We demonstrate that the stationary segment shape strongly depends on the initial conditions which are used to initiate the excitation wave. In a certain parameter range, the wave propagation is blocked at the inhomogeneity boundary, although the wave propagation is supported everywhere within the stripe. A free-boundary approach is applied to describe these phenomena which are important for a wide variety of applications from cardiology to information processing.

  15. Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view

    NASA Astrophysics Data System (ADS)

    Laval, Guy; Pesme, Denis; Adam, Jean-Claude

    2016-11-01

    The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.

  16. Patterns of Heterotypic Continuity Associated With the Cross-Sectional Correlational Structure of Prevalent Mental Disorders in Adults

    PubMed Central

    Lahey, Benjamin B.; Zald, David H.; Hakes, Jahn K.; Krueger, Robert F.; Rathouz, Paul J.

    2014-01-01

    Importance Mental disorders predict future occurrences of both the same disorder (homotypic continuity) and other disorders (heterotypic continuity). Heterotypic continuity is inconsistent with a view of mental disorders as fixed entities. In contrast, hierarchical-dimensional conceptualizations of psychopathology, in which each form of psychopathology is hypothesized to have both unique and broadly shared etiologies and mechanisms, predict both homotypic and heterotypic continuity. Objective To test predictions derived from a hierarchical-dimensional model of psychopathology that (a) heterotypic continuity is widespread, even controlling for homotypic continuity, and (b) the relative magnitudes of heterotypic continuities recapitulate the relative magnitudes of cross-sectional correlations among diagnoses at baseline. Design Assess 10 prevalent diagnoses in the same persons 3 years apart. Setting Representative sample of adults in the United States. Participants The 28,958 participants in the National Epidemiologic Study of Alcohol and Related Condition aged 18–64 years who were assessed in both waves. Main Outcome Measure Diagnoses from reliable and valid structured interviews. Results Bivariate associations of all pairs of diagnoses from wave 1 to wave 2 exceeded chance levels for all homotypic (tetrachoric ρ = 0.41 – 0.79, median = 0.54) and for nearly all heterotypic continuities (tetrachoric ρ = 0.07 – 0.50, median = 0.28), adjusted for sex and age. Significant heterotypic continuity was widespread even when all other wave 1 diagnoses (including the same diagnosis) were simultaneous predictors of each wave 2 diagnosis. The rank correlation between age and sex adjusted tetrachoric ρs for cross-sectional associations among wave 1 diagnoses and heterotypic associations from wave 1 to wave 2 diagnoses was ρ = .86. Conclusions and Relevance For these prevalent mental disorders, heterotypic continuity was nearly universal and not an artifact of failure to control for homotypic continuity. Furthermore, the relative magnitudes of heterotypic continuity closely mirrored the relative magnitudes of cross-sectional associations among these disorders, consistent with the hypothesis that both sets of associations reflect the same factors. Mental disorders are not fixed and independent entities. Rather, each diagnosis is robustly related to other diagnoses in a correlational structure that is manifested both concurrently and in patterns of heterotypic continuity across time. PMID:24989054

  17. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  18. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  19. Toward continuous-wave operation of organic semiconductor lasers

    PubMed Central

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  20. Toward continuous-wave operation of organic semiconductor lasers.

    PubMed

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-04-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  1. Study of mesoscale phenomena, winter monsoon clouds and snow area based on LANDSAT data

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Most longitudinal clouds which appear as continuous linear clouds are composed of small transversal clouds. There are mountain waves of different wavelength in a comparatively narrow area indicating complicated orographical effects on wind and temperature distribution or on both dynamical and static stability condition. There is a particular shape of cirrus cloud suggestive of turbulence in the vicinity of CAT in the upper troposphere near jet stream level and its cold air side. Thin cirrus of overcast condition can be distinguished by MSS; however, extremely thin cirrus of partly cloudy condition cannot be detected even in LANDSAT data. This presents a serious problem in the interpretation of satellite thermal infrared radiation data since they affect the value.

  2. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    DTIC Science & Technology

    2017-04-18

    facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave...record achieved with strained material at this wavelength. Keywords quantum cascade laser, quantum cascade detector, lab- on -a-chip, monolithic integrated...materials, which makes their integration on Si particularly dicult. Heterogeneous integration using transfer techniques allows both single device and wafer

  3. Reasons for Trying E-cigarettes and Risk of Continued Use

    PubMed Central

    Kong, Grace; Cavallo, Dana A.; Camenga, Deepa R.; Krishnan-Sarin, Suchitra

    2016-01-01

    BACKGROUND: Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). METHODS: Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. RESULTS: Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. CONCLUSIONS: Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. PMID:27503349

  4. Reasons for Trying E-cigarettes and Risk of Continued Use.

    PubMed

    Bold, Krysten W; Kong, Grace; Cavallo, Dana A; Camenga, Deepa R; Krishnan-Sarin, Suchitra

    2016-09-01

    Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. Copyright © 2016 by the American Academy of Pediatrics.

  5. RF wave simulation for cold edge plasmas using the MFEM library

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wright, J. C.; Bonoli, P. T.; Kolev, T.; Stowell, M.

    2017-10-01

    A newly developed generic electro-magnetic (EM) simulation tool for modeling RF wave propagation in SOL plasmas is presented. The primary motivation of this development is to extend the domain partitioning approach for incorporating arbitrarily shaped SOL plasmas and antenna to the TORIC core ICRF solver, which was previously demonstrated in the 2D geometry [S. Shiraiwa, et. al., "HISTORIC: extending core ICRF wave simulation to include realistic SOL plasmas", Nucl. Fusion in press], to larger and more complicated simulations by including a 3D realistic antenna and integrating RF rectified sheath potential model. Such an extension requires a scalable high fidelity 3D edge plasma wave simulation. We used the MFEM [http://mfem.org], open source scalable C++ finite element method library, and developed a Python wrapper for MFEM (PyMFEM), and then a radio frequency (RF) wave physics module in Python. This approach allows for building a physics layer rapidly, while separating the physics implementation being apart from the numerical FEM implementation. An interactive modeling interface was built on pScope [S Shiraiwa, et. al. Fusion Eng. Des. 112, 835] to work with an RF simulation model in a complicated geometry.

  6. EFFECTS OF CONTINUOUS-WAVE, PULSED, AND SINUSOIDAL-AMPLITUDE-MODULATED MICROWAVES ON BRAIN ENERGY METABOLISM

    EPA Science Inventory

    A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...

  7. Propagation Characteristics Of Weakly Guiding Optical Fibers

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    1992-01-01

    Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.

  8. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    NASA Technical Reports Server (NTRS)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  9. A convergent series expansion for hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Harabetian, E.

    1985-01-01

    The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.

  10. Non-stationary Alfvén resonator: new results on Pc1 pearls and IPDP events

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Prikner, K.; Feygin, F. Z.; Bräysy, T.; Kangas, J.; Kerttula, R.; Pollari, P.; Pikkarainen, T.; Pokhotelov, O. A.

    2000-03-01

    We analyse a Pc1 pearl event observed by the Finnish search-coil magnetometer network on 15 December 1984, which subsequently developed into a structured IPDP after a substorm onset. The EISCAT radar was simultaneously monitoring the mid- to high-latitude ionosphere. We have calculated the ionospheric resonator properties during the different phases of the event using EISCAT observations. Contrary to the earlier results, we find that the Pc1/IPDP (Interval of Pulsations of Diminishing Period) frequency observed on the ground corresponds to the maximum of the transmission coefficient rather than that of the reflection coefficient. This casts strong doubts on the bouncing wave packet model of Pc1 pearls. Instead, we present evidence for an alternative model of pearl formation in which long-period ULF waves modulate the Pc1 growth rate. Moreover, we propose a new model for IPDP formation, whereby the ionosphere acts as an active agent in forming the IPDP signal on the ground. The model calculations show that the ionospheric resonator properties can be modified during the event so that the resonator eigenfrequency increases according to the observed frequency increase during the IPDP phase. We suggest that the IPDP signal on the ground is a combined effect of the frequency increase in the magnetospheric wave source and the simultaneous increase of the resonator eigenfrequency. The need for such a complicated matching of the two factors explains the rarity of IPDPs on the ground despite the ubiquitous occurrence of EMIC waves in the magnetosphere and the continuous substorm cycle.

  11. Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi

    Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.

  12. Design of a Tunable, Room Temperature, Continuous-Wave Terahertz Source and Detector using Silicon Waveguides

    DTIC Science & Technology

    2008-01-30

    that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3

  13. Freak Waves In The Ocean A~é­ We Need Continuous Measurements!

    NASA Astrophysics Data System (ADS)

    Liu, P.; Teng, C.; Mori, N.

    Freak waves, sometimes also known as rogue waves, are a particular kind of ocean waves that displays a singular, unexpected, and unusually high wave profile with an extraordinarily large and steep trough or crest. The existence of freak waves has be- come widely accepted while it always poses severe hazard to the navy fleets, merchant marines, offshore structures, and virtually all oceanic ventures. Multitudes of seagoing vessels and mariners have encountered freak waves over the years, many had resulted in disasters. The emerging interest in freak waves and the quest to grasp an understand- ing of the phenomenon have inspired numerous theoretical conjectures in recent years. But the practical void of actual field observation on freak waves renders even the well- developed theories remain unverified. Furthermore, the present wave measurement systems, which have been in practice for the last 5 decades, are not at all designed to capture freak waves. We wish therefore to propose and petition to all oceanic scientist and engineers to consider undertaking an unprecedented but technologically feasible practice of making continuous and uninterrupted wave measurements. As freak waves can happen anywhere in the ocean and at anytime, the continuous and uninterrupted measurements at a fixed station would certainly be warranted to document the occur- rence of freak waves, if present, and thus lead to basic realizations of the underlying driving mechanisms.

  14. Crustal seismic structure of Tohoku region, Japan constrained by ambient noises

    NASA Astrophysics Data System (ADS)

    Chen, K. X.; Gung, Y.; Kuo, B. Y.; Huang, T. Y.

    2016-12-01

    We present 3D crustal models of Vs and Vs azimuthal anisotropy of Tohoku region, Japan. We construct the models by using short to intermediate periods of Rayleigh waves retreated from noise interferometry and a wavelet-based multi-scale inversion technique. We employ the Welch's method to derive the empirical Green's functions (EGF) of Rayleigh waves from one year of continuous records of 123 short-period stations of the dense high-sensitivity seismograph network (Hi-net), operated by National Research Institute for Earth Science and Disaster Prevention (NIED). We compute EGFs for about 4000 station pairs with interstation distance less than 300 km. For each qualified EGF, we measure the dispersion in the period range from 2 to 18 seconds. While our results are still at the preliminary stage, we have noticed few interesting features in the models: (1) the quasi-N-S trend volcano front seems to be a major boundary for the variations of both velocity and anisotropy, with the eastern part characterized by higher Vs and the western part by low Vs anomalies, consistent with their corresponding surface geology; (2) patterns of the Vs azimuthal anisotropy demonstrate a clear depth-dependent variation, with fast polarization direction (FPD) parallels the strike of the island at the shallow crust; at the larger depths, the FPD gradually rotates to the direction of absolute plate motion in the SW region, and is getting complicated in the NW region, respectively. We present the revealed depth-dependent anisotropy and discuss the tectonic implications of our models. Key words: Tohoku, ambient noise, seismic anisotropy, surface wave tomography We present 3D crustal models of Vs and Vs azimuthal anisotropy of Tohoku region, Japan. We construct the models by using short to intermediate periods of Rayleigh waves retreated from noise interferometry and a wavelet-based multi-scale inversion technique. We employ the Welch's method to derive the empirical Green's functions (EGF) of Rayleigh waves from one year of continuous records of 123 short-period stations of the dense high-sensitivity seismograph network (Hi-net), operated by National Research Institute for Earth Science and Disaster Prevention (NIED). We compute EGFs for about 4000 station pairs with interstation distance less than 300 km. For each qualified EGF, we measure the dispersion in the period range from 2 to 18 seconds. While our results are still at the preliminary stage, we have noticed few interesting features in the models: (1) the quasi-N-S trend volcano front seems to be a major boundary for the variations of both velocity and anisotropy, with the eastern part characterized by higher Vs and the western part by low Vs anomalies, consistent with their corresponding surface geology; (2) patterns of the Vs azimuthal anisotropy demonstrate a clear depth-dependent variation, with fast polarization direction (FPD) parallels the strike of the island at the shallow crust; at the larger depths, the FPD gradually rotates to the direction of absolute plate motion in the SW region, and is getting complicated in the NW region, respectively. We present the revealed depth-dependent anisotropy and discuss the tectonic implications of our models. Key words: Tohoku, ambient noise, seismic anisotropy, surface wave tomography

  15. Multiple damage identification on a wind turbine blade using a structural neural system

    NASA Astrophysics Data System (ADS)

    Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.

    2007-04-01

    A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system relatively inexpensive and simple to implement on large structures.

  16. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    PubMed

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  17. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    PubMed Central

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188

  18. A Simple Theory of Capillary-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1995-01-01

    Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.

  19. Comparison of the safety and efficacy of conventional monopolar and 2-micron laser transurethral resection in the management of multiple nonmuscle-invasive bladder cancer.

    PubMed

    Liu, H; Wu, J; Xue, S; Zhang, Q; Ruan, Y; Sun, X; Xia, S

    2013-08-01

    To compare the safety and efficacy of conventional monopolar transurethral resection of bladder tumour (TURBT) and 2-micron continuous-wave laser resection (2-µm laser) techniques in the management of multiple nonmuscle-invasive bladder cancer (NMIBC), and to investigate long-term effects on tumour recurrence. Patients with multiple NMIBC were randomized to receive TURBT or 2-µm laser in a nonblinded manner. All patients received intravesical chemotherapy with epirubicin (40 mg/40 ml) for 8 weeks, beginning 1 week after surgery, followed with monthly maintenance therapy for 12 months. Three-year follow-up data of preoperative, operative and postoperative management were recorded. In total, 120 patients were included: 56 in the TURBT group and 64 in the 2-µm laser group. Intra- and postoperative complications (including bladder perforation, bleeding and irritation) were less frequently observed in the 2-µm laser group compared with the TURBT group. There were no significant differences in first time to recurrence, overall recurrence or occurrence of urethral strictures. The 2-µm laser resection method was more effective than TURBT in reducing rates of intra- and postoperative complications, but offered no additional benefit regarding tumour recurrence.

  20. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  1. Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

    DOE PAGES

    Xiao, Fuliang; Zhou, Qinghua; He, Yihua; ...

    2015-09-11

    During the small storm on 14–15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then graduallymore » cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.« less

  2. Directed search for continuous gravitational waves from the Galactic center

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-11-01

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.

  3. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun

    2017-11-01

    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  4. Mechanical complications of continuous ambulatory peritoneal dialysis: Experience at the Ibn Sina University Hospital.

    PubMed

    Flayou, Kaoutar; Ouzeddoun, Naima; Bayahia, Rabia; Rhou, Hakima; Benamar, Loubna

    2016-01-01

    Peritoneal dialysis is a new renal replacement therapy recently introduced in Morocco since 2006. Continuous ambulatory peritoneal dialysis has proven to be as effective as hemodialysis. However, it is associated with several complications. The aim of this study was to evaluate the outcome of complications in patients treated with peritoneal dialysis at our center. The nature of non-infectious complications was noted during follow-up in these patients. Fiftyseven complications were noted among 34 patients between June 2006 and June 2014. Catheter migration was the most common complication (36.8%), followed by obstruction (14%), dialysate leaks (14%), hemorrhagic complications (10.5%) and, finally, hernia (12.2%), catheter perforation (5.2%) and externalization (3.5%).

  5. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes.

    PubMed

    Rostami, Javad; Chen, Jingming; Tse, Peter W

    2017-02-07

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed.

  6. Pediatric extracorporeal shock wave lithotripsy: Predicting successful outcomes.

    PubMed

    McAdams, Sean; Shukla, Aseem R

    2010-10-01

    Extracorporeal shock wave lithotripsy (ESWL) is currently a first-line procedure of most upper urinary tract stones <2 cm of size because of established success rates, its minimal invasiveness and long-term safety with minimal complications. Given that alternative surgical and endourological options exist for the management of stone disease and that ESWL failure often results in the need for repeat ESWL or secondary procedures, it is highly desirable to identify variables predicting successful outcomes of ESWL in the pediatric population. Despite numerous reports and growing experience, few prospective studies and guidelines for pediatric ESWL have been completed. Variation in the methods by which study parameters are measured and reported can make it difficult to compare individual studies or make definitive recommendations. There is ongoing work and a need for continuing improvement of imaging protocols in children with renal colic, with a current focus on minimizing exposure to ionizing radiation, perhaps utilizing advancements in ultrasound and magnetic resonance imaging. This report provides a review of the current literature evaluating the patient attributes and stone factors that may be predictive of successful ESWL outcomes along with reviewing the role of pre-operative imaging and considerations for patient safety.

  7. Diabetic ketoacidosis producing extreme hyperkalemia in a patient with type 1 diabetes on hemodialysis.

    PubMed

    Yamada, Hodaka; Funazaki, Shunsuke; Kakei, Masafumi; Hara, Kazuo; Ishikawa, San-E

    2017-01-01

    Diabetic ketoacidosis (DKA) is a critical complication of type 1 diabetes associated with water and electrolyte disorders. Here, we report a case of DKA with extreme hyperkalemia (9.0 mEq/L) in a patient with type 1 diabetes on hemodialysis. He had a left frontal cerebral infarction resulting in inability to manage his continuous subcutaneous insulin infusion pump. Electrocardiography showed typical changes of hyperkalemia, including absent P waves, prolonged QRS interval and tented T waves. There was no evidence of total body water deficit. After starting insulin and rapid hemodialysis, the serum potassium level was normalized. Although DKA may present with hypokalemia, rapid hemodialysis may be necessary to resolve severe hyperkalemia in a patient with renal failure. Patients with type 1 diabetes on hemodialysis may develop ketoacidosis because of discontinuation of insulin treatment.Patients on hemodialysis who develop ketoacidosis may have hyperkalemia because of anuria.Absolute insulin deficit alters potassium distribution between the intracellular and extracellular space, and anuria abolishes urinary excretion of potassium.Rapid hemodialysis along with intensive insulin therapy can improve hyperkalemia, while fluid infusions may worsen heart failure in patients with ketoacidosis who routinely require hemodialysis.

  8. Recent searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Riles, Keith

    2017-12-01

    Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.

  9. Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation.

    PubMed

    Hu, Xiao-Rui; Lou, Sen-Yue; Chen, Yong

    2012-05-01

    In nonlinear science, it is very difficult to find exact interaction solutions among solitons and other kinds of complicated waves such as cnoidal waves and Painlevé waves. Actually, even if for the most well-known prototypical models such as the Kortewet-de Vries (KdV) equation and the Kadomtsev-Petviashvili (KP) equation, this kind of problem has not yet been solved. In this paper, the explicit analytic interaction solutions between solitary waves and cnoidal waves are obtained through the localization procedure of nonlocal symmetries which are related to Darboux transformation for the well-known KdV equation. The same approach also yields some other types of interaction solutions among different types of solutions such as solitary waves, rational solutions, Bessel function solutions, and/or general Painlevé II solutions.

  10. Optical Peregrine rogue waves of self-induced transparency in a resonant erbium-doped fiber.

    PubMed

    Chen, Shihua; Ye, Yanlin; Baronio, Fabio; Liu, Yi; Cai, Xian-Ming; Grelu, Philippe

    2017-11-27

    The resonant interaction of an optical field with two-level doping ions in a cryogenic optical fiber is investigated within the framework of nonlinear Schrödinger and Maxwell-Bloch equations. We present explicit fundamental rational rogue wave solutions in the context of self-induced transparency for the coupled optical and matter waves. It is exhibited that the optical wave component always features a typical Peregrine-like structure, while the matter waves involve more complicated yet spatiotemporally balanced amplitude distribution. The existence and stability of these rogue waves is then confirmed by numerical simulations, and they are shown to be excited amid the onset of modulation instability. These solutions can also be extended, using the same analytical framework, to include higher-order dispersive and nonlinear effects, highlighting their universality.

  11. VLF Wave Properties During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.

  12. Predicting Waves in the Pacific Northwest of the US

    NASA Astrophysics Data System (ADS)

    Ozkan-Haller, H. T.; Oskamp, J. A.; Garcia, G.; Kassem, S.; McNutt, J.

    2010-12-01

    The Pacific Northwest region of the US is characterized by an energetic deep water wave climate with large swell and sea waves that can approach from multiple directions. As these waves propagate from the open ocean over the continental shelf towards shore, they are affected by the underwater topography (or bathymetry) of the shelf. The US West Coast shelf is characterized by complicated bathymetry with numerous canyons and large banks. Such features can at places focus wave energy and at others divert waves away. As a result the wave field near the coast (in 10-50m water depth) varies significantly along the coast. Although a comprehensive prediction and validation effort for waves exists for the California shoreline, it is currently lacking for the Pacific Northwest shorelines. Herein, we present comprehensive long-term wave model simulations for several regions within the Oregon coastline, show validation of the results with existing nearshore observations, and discuss the dominant dynamics responsible for the observed wave transformation.

  13. Bowel cancer screening is safe, detects earlier stage cancer and adenomas in 50% of cases: experience of the prevalent round of screening from two first wave centres in the North East of England.

    PubMed

    Rajasekhar, P T; Clifford, G M; Lee, T J W; Rutter, M D; Waddup, G; Ritchie, M; Nylander, D; Painter, J; Singh, J; Ward, I; Dempsey, N; Bowes, J; Handley, G; Henry, J; Rees, C J

    2012-01-01

    The NHS Bowel Cancer Screening Programme (BCSP) began roll-out in 2006 aiming to reduce cancer mortality through detection at an earlier stage. We report results from the prevalent round of screening at two first wave centres and compare with the UK pilot study. This is a service evaluation study. Data were collected prospectively for all individuals undergoing faecal occult blood testing (FOBt) and colonoscopy including: uptake and outcomes of FOBt, colonoscopic performance, findings, histological data and complications. Continuous data were compared using a two-tailed test of two proportions. The South of Tyne and Tees Bowel Cancer Screening centres. Participants of the BCSP. 1) Colonoscopy Quality Assurance and 2) Cancer stage shift. 195,772 individuals were invited to participate. Uptake was 54% and FOBt positivity 1.7%. 1524 underwent colonoscopy with caecal intubation in 1485 (97%). 180 (12%) cancers were detected. Dukes stages were: 76 (42%) A; 47 (26%) B; 47 (26%) C; 8 (4%) D and 2 (1%) unknown. This demonstrates a significantly earlier stage at diagnosis compared with data from 2867 non-screening detected cancers (p<0.001). Adenomas were detected in 758 (50%). One perforation occurred (0.07%) and two intermediate bleeds requiring transfusion only (0.12%). Both caecal intubation and adenoma detection were significantly higher than in the UK pilot study (p<0.001). The prevalent round of screening demonstrates a high adenoma and cancer detection rate and significantly earlier stage at diagnosis. Complications were few providing reassurance regarding safety. Efforts are required to improve uptake.

  14. Bowel cancer screening is safe, detects earlier stage cancer and adenomas in 50% of cases: experience of the prevalent round of screening from two first wave centres in the North East of England

    PubMed Central

    Rajasekhar, P T; Clifford, G M; Lee, T J W; Rutter, M D; Waddup, G; Ritchie, M; Nylander, D; Painter, J; Singh, J; Ward, I; Dempsey, N; Bowes, J; Handley, G; Henry, J; Rees, C J

    2012-01-01

    Objective The NHS Bowel Cancer Screening Programme (BCSP) began roll-out in 2006 aiming to reduce cancer mortality through detection at an earlier stage. We report results from the prevalent round of screening at two first wave centres and compare with the UK pilot study. Design This is a service evaluation study. Data were collected prospectively for all individuals undergoing faecal occult blood testing (FOBt) and colonoscopy including: uptake and outcomes of FOBt, colonoscopic performance, findings, histological data and complications. Continuous data were compared using a two-tailed test of two proportions. Setting The South of Tyne and Tees Bowel Cancer Screening centres. Patients Participants of the BCSP. Main Outcome Measures 1) Colonoscopy Quality Assurance and 2) Cancer stage shift. Results 195,772 individuals were invited to participate. Uptake was 54% and FOBt positivity 1.7%. 1524 underwent colonoscopy with caecal intubation in 1485 (97%). 180 (12%) cancers were detected. Dukes stages were: 76 (42%) A; 47 (26%) B; 47 (26%) C; 8 (4%) D and 2 (1%) unknown. This demonstrates a significantly earlier stage at diagnosis compared with data from 2867 non-screening detected cancers (p<0.001). Adenomas were detected in 758 (50%). One perforation occurred (0.07%) and two intermediate bleeds requiring transfusion only (0.12%). Both caecal intubation and adenoma detection were significantly higher than in the UK pilot study (p<0.001). Conclusions The prevalent round of screening demonstrates a high adenoma and cancer detection rate and significantly earlier stage at diagnosis. Complications were few providing reassurance regarding safety. Efforts are required to improve uptake. PMID:28839624

  15. The relationship between grief adjustment and continuing bonds for parents who have lost a child.

    PubMed

    Ronen, Rama; Packman, Wendy; Field, Nigel P; Davies, Betty; Kramer, Robin; Long, Janet K

    This article presents findings from a study on the impact of a child's death on parents. We explored the prominence and adaptiveness of parents' continuing bonds expressions, psychological adjustment, and grief reactions. A qualitative case study methodology was used to describe six cases. Participants were classified into two groups based on scores on the Inventory of Complicated Grief. Commonalities in themes on the Continuing Bonds Interview and projective drawings were assessed. Those in the Non-Complicated Grief Group reported internalization of positive qualities and identification with the deceased child as a role model, whereas participants in the Complicated Grief Group did not report these experiences. In addition, the drawings of those in the Non-Complicated Grief Group were evaluated as more adaptive than those in the Complicated Grief Group.

  16. Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates

    NASA Astrophysics Data System (ADS)

    Ashton, G.; Prix, R.

    2018-05-01

    Leveraging Markov chain Monte Carlo optimization of the F statistic, we introduce a method for the hierarchical follow-up of continuous gravitational wave candidates identified by wide-parameter space semicoherent searches. We demonstrate parameter estimation for continuous wave sources and develop a framework and tools to understand and control the effective size of the parameter space, critical to the success of the method. Monte Carlo tests of simulated signals in noise demonstrate that this method is close to the theoretical optimal performance.

  17. Seismic anisotropy and the state of stress in volcanic systems

    NASA Astrophysics Data System (ADS)

    Kendall, Michael

    2017-04-01

    The active magmatic and hydrothermal systems of volcanoes can lead to complicated stress patterns that can vary over short spatial and temporal scales. An attractive approach to studying the state of stress in such systems is to investigate seismic anisotropy using shear-wave splitting in upper-crustal earthquakes. Anisotropy can be caused by a range of mechanisms, including crystal preferred orientation and fine scale layering, but the dominant mechanism in volcanic systems is likely the preferred alignment of fluid-filled cracks and fractures. In general, cracks and fractures in the near surface tend to align parallel to the dominant direction of maximum horizontal stress. However, the observed patterns in volcanoes indicate more complicated stress patterns, which sometimes even change in time. A challenge is to untangle the magmatic versus hydrothermal control on stress. Here I summarise observations of seismic anisotropy across several volcanoes in different settings. Seismic anisotropy of the upper crust in the vicinity of the Soufrière Hills volcano - on the island of Montserrat in the Lesser Antilles - has been studied using shear wave splitting (SWS) analysis of shallow volcano-tectonic events. Clear spatial variations in anisotropy are observed, which are consistent with structurally controlled anisotropy resulting from a left-lateral transtensional array of faults that crosses the volcanic complex. Corbetti and Aluto are two volcanoes located roughly 100 km apart in the Main Ethiopian Rift. Their evolution is strongly controlled by pre-existing structural trends. In the case of Aluto, the anisotropy follows the Wonji fault belt in a rift parallel nearly N-S direction, but significantly oblique to the older border faults. In contrast, the shear-wave splitting at Corbetti is more complicated and supports ideas of the influence of a much-older pre-existing cross-rift structure known as the Goba-Bonga fault. Ontake volcano in Japan is another arc volcano. It exhibits a complicated stress system, as revealed by earthquake source mechanisms and patterns of shear-wave splitting. Ontake has seen two recent eruptions, a minor phreatic eruption in 2007 and a more significant eruption in 2014. The pattern of seismic anisotropy shows no temporal variation with the first eruption. However, with the second eruption there is a clear change in both the magnitude of the shear-wave splitting and the orientation of the fast shear-wave, suggesting that there is a critical stress threshold where the anisotropy changes. In summary, with a good seismic network, shear-wave splitting measurements are relatively easy to make. They capture details of changes in the stress system across a volcano, which may be a useful monitoring tool. Furthermore, they also provide a good reconnaissance tool that provides insights into structural controls on the formation of volcanoes.

  18. First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves.

    PubMed

    Chaussy, Christian; Schmiedt, Egbert; Jocham, Dieter; Brendel, Walter; Forssmann, Bernd; Walther, Volker

    2017-02-01

    We performed extracorporeally induced destruction of kidney stones on 72 patients. No complications have resulted from the tissue exposure to high energy shock waves. Clearance studies before and after the shock wave treatment indicate no changes in renal function. The method was used successfully in all patients with stones in the renal pelvis. In none of these patients was an open operation required. Two patients with ureteral stones also were treated with shock waves but had to be operated upon because of insufficient destruction of the stone. Copyright © 2002 American Urological Association, Inc.®. Published by Elsevier Inc. All rights reserved.

  19. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  20. A combined representation method for use in band structure calculations. 1: Method

    NASA Technical Reports Server (NTRS)

    Friedli, C.; Ashcroft, N. W.

    1975-01-01

    A representation was described whose basis levels combine the important physical aspects of a finite set of plane waves with those of a set of Bloch tight-binding levels. The chosen combination has a particularly simple dependence on the wave vector within the Brillouin Zone, and its use in reducing the standard one-electron band structure problem to the usual secular equation has the advantage that the lattice sums involved in the calculation of the matrix elements are actually independent of the wave vector. For systems with complicated crystal structures, for which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Orthogonalized-Plane Wave (OPW) methods are difficult to apply, the present method leads to results with satisfactory accuracy and convergence.

  1. The theory and method of variable frequency directional seismic wave under the complex geologic conditions

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Yue, Y.

    2017-12-01

    It is well known that the mono-frequency directional seismic wave technology can concentrate seismic waves into a beam. However, little work on the method and effect of variable frequency directional seismic wave under complex geological conditions have been done .We studied the variable frequency directional wave theory in several aspects. Firstly, we studied the relation between directional parameters and the direction of the main beam. Secondly, we analyzed the parameters that affect the beam width of main beam significantly, such as spacing of vibrator, wavelet dominant frequency, and number of vibrator. In addition, we will study different characteristics of variable frequency directional seismic wave in typical velocity models. In order to examine the propagation characteristics of directional seismic wave, we designed appropriate parameters according to the character of direction parameters, which is capable to enhance the energy of the main beam direction. Further study on directional seismic wave was discussed in the viewpoint of power spectral. The results indicate that the energy intensity of main beam direction increased 2 to 6 times for a multi-ore body velocity model. It showed us that the variable frequency directional seismic technology provided an effective way to strengthen the target signals under complex geological conditions. For concave interface model, we introduced complicated directional seismic technology which supports multiple main beams to obtain high quality data. Finally, we applied the 9-element variable frequency directional seismic wave technology to process the raw data acquired in a oil-shale exploration area. The results show that the depth of exploration increased 4 times with directional seismic wave method. Based on the above analysis, we draw the conclusion that the variable frequency directional seismic wave technology can improve the target signals of different geologic conditions and increase exploration depth with little cost. Due to inconvenience of hydraulic vibrators in complicated surface area, we suggest that the combination of high frequency portable vibrator and variable frequency directional seismic wave method is an alternative technology to increase depth of exploration or prospecting.

  2. Restorative retinal laser therapy: Present state and future directions.

    PubMed

    Chhablani, Jay; Roh, Young Jung; Jobling, Andrew I; Fletcher, Erica L; Lek, Jia Jia; Bansal, Pooja; Guymer, Robyn; Luttrull, Jeffrey K

    Because of complications and side effects, conventional laser therapy has taken a back seat to drugs in the treatment of macular diseases. Despite this, research on new laser modalities remains active. In particular, various approaches are being pursued to preserve and improve retinal structure and function. These include micropulsing, various exposure titration algorithms, and real-time temperature feedback control of short-pulse continuous wave lasers, and ultra-short-pulse nanosecond lasers. Some of these approaches are at the preclinical stage of development, whereas others are available for clinical use. Cell biology is providing important insights into the mechanisms of action of retinal laser treatment. We outline the technological bases of current laser platforms, their basic science, therapeutic concepts, clinical experience, and future directions for retinal laser treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. [Physical factors in the treatment and rehabilitation of patients with chronic prostatitis complicated by impotence].

    PubMed

    Karpukhin, I V; Bogomol'nyĭ, V A

    1999-01-01

    103 patients with chronic prostatitis complicated by erectile impotence were given combined treatment including shock-wave massage, mud applications, local vacuum magnetotherapy. This combination was found to stimulate copulative function, urodynamics of the lower urinary tracts, to produce an antiinflammatory effect. These benefits allow to recommend the above physical factors for management of chronic prostatitis patients with copulative dysfunction.

  4. [Possibilities of ultrasonic spectroscopy of the blood in the diagnosis of early postoperative inflammatory complications in patients with stomach cancer].

    PubMed

    Moskalenko, O V

    1998-01-01

    The indexes of ultrasound wave absorption in the blood serum of patients with gastric cancer were studied using ultrasound spectroscopy method. The coefficient of absorption (CA) changes were registered 1-2 days before the first clinical signs occurrence. While inflammatory complications presence CA had lowered, the daily gradient of lowering had raised.

  5. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.

    PubMed

    Sun, Wen-Rong; Liu, De-Yin; Xie, Xi-Yang

    2017-04-01

    We report the existence and properties of vector breather and semirational rogue-wave solutions for the coupled higher-order nonlinear Schrödinger equations, which describe the propagation of ultrashort optical pulses in birefringent optical fibers. Analytic vector breather and semirational rogue-wave solutions are obtained with Darboux dressing transformation. We observe that the superposition of the dark and bright contributions in each of the two wave components can give rise to complicated breather and semirational rogue-wave dynamics. We show that the bright-dark type vector solitons (or breather-like vector solitons) with nonconstant speed interplay with Akhmediev breathers, Kuznetsov-Ma solitons, and rogue waves. By adjusting parameters, we note that the rogue wave and bright-dark soliton merge, generating the boomeron-type bright-dark solitons. We prove that the rogue wave can be excited in the baseband modulation instability regime. These results may provide evidence of the collision between the mixed ultrashort soliton and rogue wave.

  6. Extracorporeal shock waves in the treatment of nonunions.

    PubMed

    Biedermann, Rainer; Martin, Arho; Handle, Gerhart; Auckenthaler, Thomas; Bach, Christian; Krismer, Martin

    2003-05-01

    Nonunion remains a major complication after skeletal trauma. In the last decade, extracorporeal shock wave therapy has become a common tool for the treatment of nonunions. To date, no prospective, randomized trial has been conducted to show the efficacy of this form of treatment. This study was performed to determine the value of extracorporeal shock wave therapy for nonunions. Previous published results in the literature and our own clinical results were analyzed and related to the natural history of bony union. No study has proven that extracorporeal shock wave therapy improves bone healing. Clinical studies reporting the acceleration of union after application of shock waves instead seem to misinterpret the natural history of bony union. No evidence supports the treatment of pseudarthroses with extracorporeal shock waves. A randomized, prospective, clinical trial with a control group has to be performed before a final decision can be made regarding this indication for extracorporeal shock wave therapy.

  7. Travelling waves and spatial hierarchies in measles epidemics

    NASA Astrophysics Data System (ADS)

    Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.

    2001-12-01

    Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.

  8. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  9. Shift within age-groups of mumps incidence, hospitalizations and severe complications in a highly vaccinated population. Spain, 1998-2014.

    PubMed

    López-Perea, Noemí; Masa-Calles, Josefa; Torres de Mier, María de Viarce; Fernández-García, Aurora; Echevarría, Juan E; De Ory, Fernando; Martínez de Aragón, María Victoria

    2017-08-03

    The mumps vaccine (Jeryl-Lynn-strain) was introduced in Spain in 1981, and a vaccination policy which included a second dose was added in 1995. From 1992-1999, a Rubini-strain based vaccine was administered in many regions but later withdrawn due to lack of effectiveness. Despite high levels of vaccination coverage, epidemics have continued to appear. We characterized the three epidemic waves of mumps between 1998 and 2014, identifying major changes in susceptible populations using Poisson regression. For the period 1998-2003 (P1), the most affected group was from 1 to 4years old (y) [Incidence Rate (IR)=71.7 cases/100,000 population]; in the periods 2004-2009 (P2) and 2010-2014 (P3) IR ratio (IRR) increased among 15-24y (P2=1.46; P3=2.68) and 25-34y (P2=2.17; P3=4.05). Hospitalization rate (HR), complication rate (CR) and neurological complication rate (NR) among hospitalized subjects decreased across the epidemics, except for 25-34y which increased: HR ratio (HRR) (P2=2.18; P3=2.16), CRR (P3=2.48), NRR (P3=2.41). In Spain mumps incidence increased, while an overall decrease of hospitalizations and severe complications occurred across the epidemics. Cohorts born during periods of low vaccination coverage and those vaccinated with Rubini-strain were the most affected populations, leading to a shift in mumps cases from children to adolescents and young adults; this also reveals the waning immunity provided by the mumps vaccine. Despite not preventing all mumps cases, the vaccine appears to prevent serious forms of the disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The advantages of carbon dioxide laser applications in paediatric oral surgery. A prospective cohort study.

    PubMed

    Hanna, R; Parker, S

    2016-11-01

    The aim of this study is to evaluate and demonstrate the advantages of the carbon dioxide laser in paediatric oral surgery patients in terms of less post-operative complications, healing without scaring, functional benefits, positive patient perception and acceptance of the treatment. One hundred fit and healthy paediatric patients (aged 4-15 years) were recruited to undergo laser surgery for different soft tissue conditions. The outcome of these laser treatments was examined. The Wong-Baker Faces Pain Rating Scale was employed to evaluate the pain before, immediately after laser treatment in the clinic and 1 day after post-operatively at home. Post-operative complications and patients' perception and satisfaction were self-reported during a review telephone call the day after treatment. The patients were reviewed 2 weeks after surgery. Laser parameter was 1.62 W, measured by power meter, continuous wave mode with 50 % emission cycle. The beam spot size at the target tissue was 0.8 mm. The pain score pre-operative, during and immediately after laser treatment was rated 0. Whilst the pain score 1 day after surgery was rated between 0 and 2, the healing time was measured over 2 weeks. None of the patients reported post-operative complications after surgery. Patients' perception and acceptance were rated very good. Laser dentistry is a promising field in modern minimally invasive dentistry, which enables provision of better care for children and adolescents. In this cohort study, the use of the carbon dioxide laser therapy offers a desirable, acceptable and minimally invasive technique in the surgical management of soft tissues in paediatric oral surgery with minimal post-operative complications.

  11. CO2 and diode laser for excisional biopsies of oral mucosal lesions. A pilot study evaluating clinical and histopathological parameters.

    PubMed

    Suter, Valérie G A; Altermatt, Hans Jörg; Sendi, Pedram; Mettraux, Gérald; Bornstein, Michael M

    2010-01-01

    The present pilot study evaluates the histopathological characteristics and suitability of CO2 and diode lasers for performing excisional biopsies in the buccal mucosa with special emphasis on the extent of the thermal damage zone created. 15 patients agreed to undergo surgical removal of their fibrous hyperplasias with a laser. These patients were randomly assigned to one diode or two CO2 laser groups. The CO2 laser was used in a continuous wave mode (cw) with a power of 5 W (Watts), and in a pulsed char-free mode (cf). Power settings for the diode laser were 5.12 W in a pulsed mode. The thermal damage zone of the three lasers and intraoperative and postoperative complications were assessed and compared. The collateral thermal damage zone on the borders of the excisional biopsies was significantly smaller with the CO, laser for both settings tested compared to the diode laser regarding values in pm or histopathological index scores. The only intraoperative complication encountered was bleeding, which had to be controlled with electrocauterization. No postoperative complications occurred in any of the three groups. The CO2 laser seems to be appropriate for excisional biopsies of benign oral mucosal lesions. The CO2 laser offers clear advantages in terms of smaller thermal damage zones over the diode laser. More study participants are needed to demonstrate potential differences between the two different CO2 laser settings tested.

  12. Effective therapy with infliximab for clinically mild encephalitis/encephalopathy with a reversible splenial lesion in an infant with Kawasaki disease.

    PubMed

    Kurokawa, Yoshie; Masuda, Hiroshi; Kobayashi, Tohru; Ono, Hiroshi; Kato, Hitoshi; Imadome, Ken-Ichi; Abe, Jun; Abe, Yuichi; Ito, Shuichi; Ishiguro, Akira

    2017-01-01

    Kawasaki disease (KD) is a systemic vasculitis in infants. In KD, encephalopathy is rarely (0.1%) associated, however, clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) has previously been reported in some pediatric patients. Here, we report on a 2-year-old girl who had KD complicated with MERS. The patient experienced generalized clonic convulsion and prolonged consciousness disturbance with fever for 2 days. Her head MRI showed a high signal intensity lesion in the splenium of the corpus callosum in diffusion-weighted images, and low apparent diffusion coefficient (ADC) values on day 3. An electroencephalogram showed high voltage slow waves on the occipital and parietal head. On the same day, it was confirmed that the patient showed all the main symptoms of KD. Based on these findings, we diagnosed her with MERS-complicated KD. Even though she was treated with immunoglobulin (total 4 g/kg) and pulsed-dose methylprednisolone, her fever and consciousness disturbance continued, and blood tests showed that inflammation markers remained high. We then treated the patient with infliximab on day 9, and within a few hours of the treatment her fever dropped and all symptoms of KD and consciousness disturbance disappeared. No recurrence of KD or other complications of KD occurred, and she was discharged on day 23. We propose that infliximab is an effective optional treatment for immunoglobulin/glucocorticoid-resistant KD with MERS. To clarify this possibility, further case accumulation is warranted.

  13. Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.

    PubMed

    Stothard, David J M; Dunn, Malcolm H

    2010-01-18

    We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.

  14. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes

    PubMed Central

    Rostami, Javad; Chen, Jingming; Tse, Peter W.

    2017-01-01

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed. PMID:28178220

  15. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  16. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  17. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.

    PubMed

    Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi

    2008-11-01

    In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.

  18. Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.

    ERIC Educational Resources Information Center

    Branson, David

    1979-01-01

    Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)

  19. Picture of the global field of quasi-monochromatic gravity waves observed by stratospheric balloons and MST radars

    NASA Technical Reports Server (NTRS)

    Yamanaka, M. D.

    1989-01-01

    In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.

  20. The Relationship of Dysthymia, Minor Depression, and Gender to Changes in Smoking for Current and Former Smokers: Longitudinal Evaluation in the U.S. Population

    PubMed Central

    Weinberger, Andrea H.; Pilver, Corey E.; Desai, Rani A.; Mazure, Carolyn M.; McKee, Sherry A.

    2012-01-01

    BACKGROUND Although data clearly link major depression and smoking, little is known about the association between dysthymia and minor depression and smoking behavior. The current study examined changes in smoking over three years for current and former smokers with and without dysthymia and minor depression. METHODS Participants who were current or former daily cigarette smokers at Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions and completed the Wave 2 assessment were included in these analyses (n=11,973; 46% female). Analyses examined the main and gender-specific effects of current dysthymia, lifetime dysthymia, and minor depression (a single diagnostic category that denoted current and or lifetime prevalence) on continued smoking for Wave 1 current daily smokers and continued abstinence for Wave 1 former daily smokers. RESULTS Wave 1 current daily smokers with current dysthymia (OR=2.13, 95% CI=1.23, 3.70) or minor depression (OR=1.53, 95% CI=1.07, 2.18) were more likely than smokers without the respective diagnosis to report continued smoking at Wave 2. Wave 1 former daily smokers with current dysthymia (OR=0.44, 95% CI=0.20, 0.96) and lifetime dysthymia (OR=0.37, 95% CI=0.15, 0.91) were less likely than those without the diagnosis to remain abstinent from smoking at Wave 2. The gender-by-diagnosis interactions were not significant, suggesting that the impact of dysthymia and minor depression on smoking behavior is similar among men and women. CONCLUSIONS Current dysthymia and minor depression are associated with a greater likelihood of continued smoking; current and lifetime dysthymia are associated with a decreased likelihood of continued smoking abstinence. PMID:22809897

  1. The relationship of dysthymia, minor depression, and gender to changes in smoking for current and former smokers: longitudinal evaluation in the U.S. population.

    PubMed

    Weinberger, Andrea H; Pilver, Corey E; Desai, Rani A; Mazure, Carolyn M; McKee, Sherry A

    2013-01-01

    Although data clearly link major depression and smoking, little is known about the association between dysthymia and minor depression and smoking behavior. The current study examined changes in smoking over 3 years for current and former smokers with and without dysthymia and minor depression. Participants who were current or former daily cigarette smokers at Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions and completed the Wave 2 assessment were included in these analyses (n=11,973; 46% female). Analyses examined the main and gender-specific effects of current dysthymia, lifetime dysthymia, and minor depression (a single diagnostic category that denoted current and/or lifetime prevalence) on continued smoking for Wave 1 current daily smokers and continued abstinence for Wave 1 former daily smokers. Wave 1 current daily smokers with current dysthymia (OR=2.13, 95% CI=1.23, 3.70) or minor depression (OR=1.53, 95% CI=1.07, 2.18) were more likely than smokers without the respective diagnosis to report continued smoking at Wave 2. Wave 1 former daily smokers with current dysthymia (OR=0.44, 95% CI=0.20, 0.96) and lifetime dysthymia (OR=0.37, 95% CI=0.15, 0.91) were less likely than those without the diagnosis to remain abstinent from smoking at Wave 2. The gender-by-diagnosis interactions were not significant, suggesting that the impact of dysthymia and minor depression on smoking behavior is similar among men and women. Current dysthymia and minor depression are associated with a greater likelihood of continued smoking; current and lifetime dysthymia are associated with a decreased likelihood of continued smoking abstinence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. [Research on Shielding of Emboli with the Phase-Controlled Ultrasound].

    PubMed

    Liu, Chuang; Bai, Jingfeng

    2016-01-01

    The postoperative neurological complications is associated with intraoperative cerebral emboli, which results from extracorporeal circulation and operation. It can effectively reduce the incidence of neurological complications with ultrasonic radiation. In fluids, a particle will change it's motion trail when it is acted by the radiation force generated by the ultrasound. This article mainly discuss how to shielding emboli with ultrasound. The equipment can transmit phased ultrasonic signals, which is designed on a FPGA development board. The board can generate a square wave, which is converted into a sine wave through a power amplifier. In addition, the control software has been developed on Qt development environment. The result indicates it's feasible to shielding emboli with ultrasonic radiation force. This article builds a strong foundation for the future research.

  3. Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA

    USGS Publications Warehouse

    Eshleman, Jodi L.; Barnard, Patrick L.; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1971) and Wright et al. (1985) described commonly occurring beach states. Most studies utilize widest spaced 2-D cross shore profiles or shorelines extracted from aerial photographs (e.g. Winant et al. 1975; Aubrey, 1979, Aubrey and Ross, 1985; Larson and Kraus, 1994; Jimenez et al., 1977; Lacey and Peck, 1998; Guillen et al., 1999; Norcorss et al., 2002) to analyzed systematic changes in beach evolution. But with the exception of established field stations, such as Duck, NC (Birkemeier and Mason, 1984), ans Hazaki Oceanographical Research Station (HORS) in Japan (Katoh, 1997), there are very few beach change data sets with high temporal and spatial resolutions (e.g. Dail et al., 2000; Ruggiero et al., 2005; Yates et al., in press). Comprehensive sets of nearshore morphological data and local in situ measurements outside of these field stations are very rare and virtually non-existent high-energy coasts. Studied that have attempted to relate wave statistics to beach morphology change require some knowledge of the nearshore wave climate, and have had limited success using offshore measurement (Sonu and Van Beek, 1971; Dail et al., 2000). The primary objective of this study is to qualitatively compare spatially variable nearshore wave predictions to beach change measurements in order to understand the processes responsible for a persistent erosion 'hotspot' at Ocean Beach, San Francisco, CA. Local wave measurements are used to calibrate and validate a wave model that provides nearshore wave prediction along the beach. The model is run for thousands of binned offshore wave conditions to help isolate the effects of offshore wave direction and period on nearshore wave predictions. Alongshore varying average beach change statistics are computed at specific profile locations from topographic beach surveys and lidar data. The study area is located in the San Francisco Bight in central California. Ocean Beach is a seven kilometer long north-south trending sandy coastline located just south of the entrance to the San Francisco Bay Estuary (Figure 1). It contains an erosion hotspot in the southern part of the beach which has resulted in damage to local infrastructure and is the cause of continued concern. A wide range of field data collection and numerical modeling efforts have been focused here as part of the United States Geological Survey's (USGS) San Francisco Bight Coastal Processes Study, which began in October 2003 and represents the first comprehensive study of coastal processes at the mouth of San Francisco Bay. Ocean Beach is exposed to very strong tidal flows, with measured currents often in excess of 1 m/s at the north end of the beach. Current profiler measurements indicate that current magnitudes are greater in the northern portion of the beach, while wave energy is greater in the southern portion where erosion problems are greatest (Barnard et al., 2007). The sub-aerial beach volume fluctuates seasonally over a maximum envelope of 400,000 m3 for the seven kilometer stretch (Barnard et al, 2007). The wave climate in the region is dominated by an abundance of low frequency energy (greater than 20 s period) and prevailing northwest incident wave angles. The application of a wave model to the region is further complicated by the presence of the Farallon Islands 40 kilometers west, and a massive ebb tidal delta at the mouth of San Francisco Bay (~150 km2), which creates complicated refraction patterns as wave energy moves from offshore Ocean Beach; however the cost and threat of the energetic nearshore environment have limited the temporal and spatial resolution of these measurements. Applying numerical models to predict wave and current patterns along the beach can help supplement the filed data that exists and provide opportunities to make prediction about the impacts of changing environmental forcing.

  4. Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)

    NASA Astrophysics Data System (ADS)

    Harris, John G.

    2001-10-01

    Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines

  5. Adhesive joint evaluation by ultrasonic interface and lamb waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1986-01-01

    Some results on the application of interface and Lamb waves for the study of curing of thin adhesive layers were summarized. In the case of thick substrates (thickness much more than the wave length) the interface waves can be used. In this case the experimental data can be inverted and the shear modulus of the adhesive film may be explicitly found based on the measured interface wave velocity. It is shown that interface waves can be used for the study of curing of structural adhesives as a function of different temperatures and other experimental conditions. The kinetics of curing was studied. In the case of thin substrates the wave phenomena are much more complicated. It is shown that for successful measurements proper selection of experimental conditions is very important. This can be done based on theoretical estimations. For correctly selected experimental conditions the Lamb waves may be a sensitive probe of adhesive bond quality and may be used or cure monitoring.

  6. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less

  7. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less

  8. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-05-01

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  9. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    PubMed

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  10. Continuous Aspirin Use Does Not Increase Bleeding Risk of Split-Thickness Skin Transplantation Repair to Chronic Wounds.

    PubMed

    Sun, Yanwei; Wang, Yibing; Li, Liang; Zhang, Zheng; Wang, Ning; Wu, Dan

    Discontinuation of aspirin therapy before cutaneous surgery may cause serious complications. The aim of this prospective study was to evaluate the bleeding risk of split-thickness skin transplantation repair to chronic wounds in patients on aspirin therapy. A total of 97 patients who underwent split-thickness skin transplantation surgery of chronic wounds during a 2-year period were enrolled. They were categorized on the basis of aspirin therapies. The primary outcome was postoperative bleeding and bleeding complications. Univariate analysis was performed to examine the association between aspirin and bleeding complications. Among the 26 patients taking aspirin continuously in group A, there were 5 bleeding complications (19.23%). Among the 55 nonusers in group B, there were 10 bleeding complications (18.18%). Among the 16 discontinuous patients in group C, there were 3 bleeding complications (18.75%). No statistical differences were found among the groups ( P = .956). Univariate analysis showed that continuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.933; 95% confidence interval, 0.283-3.074; P = .910 in the aspirin and control groups) and that discontinuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.963; 95% confidence interval, 0.230-4.025; P = .959 in the aspirin and control groups; odds ratio, 0.969; 95% confidence interval, 0.198-4.752; P = .969 in the aspirin and discontinuous groups). Continuous aspirin use does not produce an additional bleeding risk in patients who undergo split-thickness skin transplantation repair of chronic wounds.

  11. The local nanohertz gravitational-wave landscape from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.

    2017-12-01

    Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.

  12. Effects of grape seed proanthocyanidin extracts on aortic pulse wave velocity in streptozocin induced diabetic rats.

    PubMed

    Li, Xiao-li; Li, Bao-ying; Gao, Hai-qing; Cheng, Mei; Xu, Ling; Li, Xian-hua; Ma, Ya-bing

    2009-06-01

    Grape seed proanthocyanidin extracts (GSPEs) have been reported to be effective in treating arteriosclerosis, while little is known about therapeutic agents against diabetic macrovascular complications. We used streptozocin to induce diabetic rats. GSPEs (250 mg/kg of body weight) were administrated to diabetic rats for 24 weeks. Aortic blood pressure and pulse wave velocity (PWV) were determined in anesthetized rats. Serum glycated hemoglobin and advanced glycation end products (AGEs) were determined. An electronic microscope was used to observe the changes in aortic ultrastructure. Immunohistochemistry was used to evaluate the receptor of advanced glycation end product (RAGE) protein expression in aortic tissue. GSPEs significantly decreased aortic PWV, blood pressure, and aortic medial thickness (P<0.05), and inhibited the migration of vascular smooth muscle cells. GSPEs significantly reduced the AGEs (P<0.05) and the expression of RAGE in aortas of diabetic rats. GSPEs play an important role against diabetic macrovascular complications. This study may provide a new recognition of natural medicine for the treatment of diabetic macrovascular complications.

  13. Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique

    NASA Technical Reports Server (NTRS)

    Berger, H.

    1967-01-01

    Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.

  14. Calibration of Ocean Wave Measurements by the TOPEX, Jason-1, and Jason-2 Satellites

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Beckley, B. D.

    2012-01-01

    The calibration and validation of ocean wave height measurements by the TOPEX, Jason-1, and Jason-2 satellite altimeters is addressed by comparing the measurements internally among them- selves and against independent wave measurements at moored buoys. The two six-month verification campaigns, when two of the satellites made near-simultaneous measurements along the same ground track, are invaluable for such work and reveal subtle aspects that otherwise might go undetected. The two Jason satellites are remarkably consistent; Topex reports waves generally 1-2% larger. External calibration is complicated by some systematic errors in the buoy data. We confirm a recent report by Durrant et al. that Canadian buoys underestimate significant wave heights by about 10% relative to U.S. buoys. Wave heights from all three altimetric satellites require scaling upwards by 5 6% to be consistent with U.S. buoys.

  15. Influence of vegetable cover on propagation of electromagnetic waves with wavelength longer than 100 m

    NASA Astrophysics Data System (ADS)

    Egorov, V. A.; Makarov, G. I.

    2006-12-01

    [1] The influence of vegetable cover on propagation ofelectromagnetic waves in the Earth-ionosphere wave channel isstudied in the scope of the model of a homogeneous isotropic``forest layer'' with effective value of the dielectric permeabilityɛf=1.2 and electric conductivityσf (t oC)depending on theenvironmental temperature according to the results obtained in thispaper. It is shown that the character of the electromagnetic fieldbehavior in the presence of large forests is of a well-pronouncedseasonal character additionally complicated by the diurnalvariations of the field depending on the environmental temperaturevariations.

  16. On the eigenfrequencies of elastic shear waves propagating in an inhomogeneous layer

    NASA Astrophysics Data System (ADS)

    Khachatryan, V. M.

    2018-04-01

    In this work, we consider the problem of eigenfrequencies of elastic shear waves propagating in a layer whose Young’s modulus and density are functions of the longitudinal coordinate. Taking into account the material inhomogeneity makes the problem of the eigenfrequencies of the waves propagating in the layer more complicated. In this paper, the problem of pure shear is considered. To solve the problem, we use an integral formula which allows us to represent the general solution of the original equation with variable coefficients in terms of the general solution of the accompanying equation with constant coefficients.

  17. Combining the ASA Physical Classification System and Continuous Intraoperative Surgical Apgar Score Measurement in Predicting Postoperative Risk.

    PubMed

    Jering, Monika Zdenka; Marolen, Khensani N; Shotwell, Matthew S; Denton, Jason N; Sandberg, Warren S; Ehrenfeld, Jesse Menachem

    2015-11-01

    The surgical Apgar score predicts major 30-day postoperative complications using data assessed at the end of surgery. We hypothesized that evaluating the surgical Apgar score continuously during surgery may identify patients at high risk for postoperative complications. We retrospectively identified general, vascular, and general oncology patients at Vanderbilt University Medical Center. Logistic regression methods were used to construct a series of predictive models in order to continuously estimate the risk of major postoperative complications, and to alert care providers during surgery should the risk exceed a given threshold. Area under the receiver operating characteristic curve (AUROC) was used to evaluate the discriminative ability of a model utilizing a continuously measured surgical Apgar score relative to models that use only preoperative clinical factors or continuously monitored individual constituents of the surgical Apgar score (i.e. heart rate, blood pressure, and blood loss). AUROC estimates were validated internally using a bootstrap method. 4,728 patients were included. Combining the ASA PS classification with continuously measured surgical Apgar score demonstrated improved discriminative ability (AUROC 0.80) in the pooled cohort compared to ASA (0.73) and the surgical Apgar score alone (0.74). To optimize the tradeoff between inadequate and excessive alerting with future real-time notifications, we recommend a threshold probability of 0.24. Continuous assessment of the surgical Apgar score is predictive for major postoperative complications. In the future, real-time notifications might allow for detection and mitigation of changes in a patient's accumulating risk of complications during a surgical procedure.

  18. Estimation of the gravitational wave polarizations from a nontemplate search

    NASA Astrophysics Data System (ADS)

    Di Palma, Irene; Drago, Marco

    2018-01-01

    Gravitational wave astronomy is just beginning, after the recent success of the four direct detections of binary black hole (BBH) mergers and the first observation from a binary neutron star inspiral, with the expectation of many more events to come. Given the possibility to detect waves from not exactly modeled astrophysical processes, it is fundamental to be ready to calculate the polarization waveforms in the case of searches using nontemplate algorithms. In such a case, the waveform polarizations are the only quantities that contain direct information about the generating process. We present the performance of a new valuable tool to estimate the inverse solution of gravitational wave transient signals, starting from the analysis of the signal properties of a nontemplate algorithm that is open to a wider class of gravitational signals not covered by template algorithms. We highlight the contributions to the wave polarization associated with the detector response, the sky localization, and the polarization angle of the source. In this paper we present the performances of such a method and its implications by using two main classes of transient signals, resembling the limiting case for most simple and complicated morphologies. The performances are encouraging for the tested waveforms: the correlation between the original and the reconstructed waveforms spans from better than 80% for simple morphologies to better than 50% for complicated ones. For a nontemplate search these results can be considered satisfactory to reconstruct the astrophysical progenitor.

  19. Experimental studies of a continuous-wave HF(DF) confocal unstable resonator. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chodzko, R.A.; Cross, E.F.; Durran, D.A.

    1976-05-03

    A series of experiments were performed on a continuous-wave HF(DF) multiline edge-coupled confocal unstable resonator at The Aerospace Corporation MESA facility. Experimental techniques were developed to measure remotely (from a blockhouse) the output power, the near-field intensity distribution, the spatially resolved spectral content of the near field, and the far-field power distribution. A new technique in which a variable aperture calorimeter absorbing scraper (VACAS) was used for measuring the continuous-wave output power from an unstable resonator with variable-mode geometry and without the use of an output coupling mirror was developed. (GRA)

  20. Noninvasive estimation of cardiac systolic function using continuous-wave Doppler echocardiography in dogs with experimental mitral regurgitation.

    PubMed

    Asano, K; Masui, Y; Masuda, K; Fujinaga, T

    2002-01-01

    To evaluate the feasibility of noninvasive estimation of cardiac systolic function using transthoracic continuous-wave Doppler echocardiography in dogs with mitral regurgitation. Seven mongrel dogs with experimental mitral regurgitation were used. Left ventriculography and measurement of pulmonary capillary wedge pressure were performed under inhalational anaesthesia. A micromanometer-tipped catheter was placed into the left ventricle and transthoracic echocardiography was carried out. The peak rate of left ventricular pressure rise (peak dP/dt) was derived simultaneously by continuous-wave Doppler and manometer measurements. The Doppler-derived dP/dt was compared with the catheter-measured peak dP/dt in the dogs. Classification of the severity of mitral regurgitation in the dogs was as follows: 1+, 2 dogs; 2+, 1 dog; 3+, 2 dogs; 4+, 1 dog; and not examined, 1 dog. We were able to derive dP/dt from the transthoracic continuous-wave Doppler echocardiography in all dogs. Doppler-derived dP/dt had a significant correlation with the catheter-measured peak dP/dt (r = 0.90, P < 0.0001). It was demonstrated that transthoracic continuous-wave Doppler echocardiography is a feasible method of noninvasive estimation of cardiac systolic function in dogs with experimental mitral regurgitation and may have clinical usefulness in canine patients with spontaneous mitral regurgitation.

  1. Mode Identification of High-Amplitude Pressure Waves in Liquid Rocket Engines

    NASA Astrophysics Data System (ADS)

    EBRAHIMI, R.; MAZAHERI, K.; GHAFOURIAN, A.

    2000-01-01

    Identification of existing instability modes from experimental pressure measurements of rocket engines is difficult, specially when steep waves are present. Actual pressure waves are often non-linear and include steep shocks followed by gradual expansions. It is generally believed that interaction of these non-linear waves is difficult to analyze. A method of mode identification is introduced. After presumption of constituent modes, they are superposed by using a standard finite difference scheme for solution of the classical wave equation. Waves are numerically produced at each end of the combustion tube with different wavelengths, amplitudes, and phases with respect to each other. Pressure amplitude histories and phase diagrams along the tube are computed. To determine the validity of the presented method for steep non-linear waves, the Euler equations are numerically solved for non-linear waves, and negligible interactions between these waves are observed. To show the applicability of this method, other's experimental results in which modes were identified are used. Results indicate that this simple method can be used in analyzing complicated pressure signal measurements.

  2. Dynamic response analysis of surrounding rock under the continuous blasting seismic wave

    NASA Astrophysics Data System (ADS)

    Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.

    2017-10-01

    The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.

  3. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Poggi, V.; Fäh, D.; Giardini, D.

    2013-03-01

    A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.

  4. A full-wave Helmholtz model for continuous-wave ultrasound transmission.

    PubMed

    Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo

    2005-03-01

    A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.

  5. Body-wave traveltime and amplitude shifts from asymptotic travelling wave coupling

    USGS Publications Warehouse

    Pollitz, F.

    2006-01-01

    We explore the sensitivity of finite-frequency body-wave traveltimes and amplitudes to perturbations in 3-D seismic velocity structure relative to a spherically symmetric model. Using the approach of coupled travelling wave theory, we consider the effect of a structural perturbation on an isolated portion of the seismogram. By convolving the spectrum of the differential seismogram with the spectrum of a narrow window taper, and using a Taylor's series expansion for wavenumber as a function of frequency on a mode dispersion branch, we derive semi-analytic expressions for the sensitivity kernels. Far-field effects of wave interactions with the free surface or internal discontinuities are implicitly included, as are wave conversions upon scattering. The kernels may be computed rapidly for the purpose of structural inversions. We give examples of traveltime sensitivity kernels for regional wave propagation at 1 Hz. For the direct SV wave in a simple crustal velocity model, they are generally complicated because of interfering waves generated by interactions with the free surface and the Mohorovic??ic?? discontinuity. A large part of the interference effects may be eliminated by restricting the travelling wave basis set to those waves within a certain range of horizontal phase velocity. ?? Journal compilation ?? 2006 RAS.

  6. On selection of primary modes for generation of strong internally resonant second harmonics in plate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chillara, Vamshi Krishna; Lissenden, Cliff J.

    2013-09-01

    The selection of primary shear-horizontal (SH) and Rayleigh-Lamb (RL) ultrasonic wave modes that generate cumulative second harmonics in homogeneous isotropic plates is analyzed by theoretical modeling. Selection criteria include: internal resonance (synchronism and nonzero power flux), group velocity matching, and excitability/receivability. The power flux, group velocity matching, and excitability are tabulated for the SH and RL internal resonance points. The analysis indicates that SH waves can generate cumulative symmetric RL secondary wave fields. Laboratory experiments on aluminum plates demonstrate that excitation of the SH3 primary mode generates the s4 secondary RL mode and that the secondary wave field amplitude increases linearly with propagation distance. Simple magnetostrictive transducers were used to excite the primary SH wave and to receive the SH and RL wave signals. Reception of these wave modes having orthogonal polarizations was achieved by simply reorienting the electrical coil. The experiment was complicated by the presence of a nonplanar primary wavefront, however finite element simulations were able to clarify the experimental results.

  7. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  8. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  9. Epileptic encephalopathy with continuous spike-waves during sleep: the need for transition from childhood to adulthood medical care appears to be related to etiology.

    PubMed

    de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard

    2014-08-01

    Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  10. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B. E.; Sharma, A.; Chang, C.; Parrot, M.; Papadopoulos, K.

    2013-12-01

    We report observations of VLF waves by the DEMETER satellite overflying the HAARP facility during ionospheric heating experiments. The detected VLF waves were in the range 8-17 kHz and coincided with times of continuous heating. The experiments indicate whistler generation due to conversion of artificial lower hybrid waves to whistlers on small scale field-aligned plasma density striations. The observations are compared with theoretical models, taking into account both linear and nonlinear processes. Implications of the mode conversion technique on VLF generation with subsequent injection into the radiation belts to trigger particle precipitation are discussed.

  11. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh

    2016-01-01

    A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375

  12. Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO's fifth science run

    NASA Astrophysics Data System (ADS)

    Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Zhu, Sylvia; Pletsch, Holger; Allen, Bruce; Bock, Oliver; Maschenchalk, Bernd; Prix, Reinhard; Siemens, Xavier

    2016-09-01

    We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGO's fifth science run (S5) data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high-frequency range on S5 data. We find no significant candidate signal, so we set 90% confidence level upper limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper limit is 5.0 ×10-24, while at the higher end, around 1500 Hz, it is 6.2 ×10-24. Based on these upper limits, and assuming a fiducial value of the principal moment of inertia of 1038 kg m2 , we can exclude objects with ellipticities higher than roughly 2.8 ×10-7 within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.

  13. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers.

    PubMed

    Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh

    2016-03-24

    A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.

  14. Intracranial pressure monitoring in pediatric and adult patients with hydrocephalus and tentative shunt failure: a single-center experience over 10 years in 146 patients.

    PubMed

    Sæhle, Terje; Eide, Per Kristian

    2015-05-01

    OBJECT In patients with hydrocephalus and shunts, lasting symptoms such as headache and dizziness may be indicative of shunt failure, which may necessitate shunt revision. In cases of doubt, the authors monitor intracranial pressure (ICP) to determine the presence of over- or underdrainage of CSF to tailor management. In this study, the authors reviewed their experience of ICP monitoring in shunt failure. The aims of the study were to identify the complications and impact of ICP monitoring, as well as to determine the mean ICP and characteristics of the cardiac-induced ICP waves in pediatric versus adult over- and underdrainage. METHODS The study population included all pediatric and adult patients with hydrocephalus and shunts undergoing diagnostic ICP monitoring for tentative shunt failure during the 10-year period from 2002 to 2011. The patients were allocated into 3 groups depending on how they were managed following ICP monitoring: no drainage failure, overdrainage, or underdrainage. While patients with no drainage failure were managed conservatively without further actions, over- or underdrainage cases were managed with shunt revision or shunt valve adjustment. The ICP and ICP wave scores were determined from the continuous ICP waveforms. RESULTS The study population included 71 pediatric and 75 adult patients. There were no major complications related to ICP monitoring, but 1 patient was treated for a postoperative superficial wound infection and another experienced a minor bleed at the tip of the ICP sensor. Following ICP monitoring, shunt revision was performed in 74 (51%) of 146 patients, while valve adjustment was conducted in 17 (12%) and conservative measures without any actions in 55 (38%). Overdrainage was characterized by a higher percentage of episodes with negative mean ICP less than -5 to -10 mm Hg. The ICP wave scores, in particular the mean ICP wave amplitude (MWA), best differentiated underdrainage. Neither mean ICP nor MWA levels showed any significant association with age. CONCLUSIONS In this cohort of pediatric and adult patients with hydrocephalus and tentative shunt failure, the risk of ICP monitoring was very low, and helped the authors avoid shunt revision in 49% of the patients. Mean ICP best differentiated overdrainage, which was characterized by a higher percentage of episodes with negative mean ICP less than -5 to -10 mm Hg. Underdrainage was best characterized by elevated MWA values, indicative of impaired intracranial compliance.

  15. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  16. Propagation characteristics of ultrasonic guided waves in continuously welded rail

    NASA Astrophysics Data System (ADS)

    Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan

    2017-07-01

    Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.

  17. Distinguishing transient signals and instrumental disturbances in semi-coherent searches for continuous gravitational waves with line-robust statistics

    NASA Astrophysics Data System (ADS)

    Keitel, David

    2016-05-01

    Non-axisymmetries in rotating neutron stars emit quasi-monochromatic gravitational waves. These long-duration ‘continuous wave’ signals are among the main search targets of ground-based interferometric detectors. However, standard detection methods are susceptible to false alarms from instrumental artefacts that resemble a continuous-wave signal. Past work [Keitel, Prix, Papa, Leaci and Siddiqi 2014, Phys. Rev. D 89 064023] showed that a Bayesian approach, based on an explicit model of persistent single-detector disturbances, improves robustness against such artefacts. Since many strong outliers in semi-coherent searches of LIGO data are caused by transient disturbances that last only a few hours or days, I describe in a recent paper [Keitel D 2015, LIGO-P1500159] how to extend this approach to cover transient disturbances, and demonstrate increased sensitivity in realistic simulated data. Additionally, neutron stars could emit transient signals which, for a limited time, also follow the continuous-wave signal model. As a pragmatic alternative to specialized transient searches, I demonstrate how to make standard semi-coherent continuous-wave searches more sensitive to transient signals. Focusing on the time-scale of a single segment in the semi-coherent search, Bayesian model selection yields a simple detection statistic without a significant increase in computational cost. This proceedings contribution gives a brief overview of both works.

  18. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper formulated a suite of comprehensive application system of seismic and electromagnetic methods for the advanced geological exploration of complicated tunnels. This research is funded by National Natural Science Foundation of China (Grant No. 41202223) .

  19. Extracorporeal shock wave lithotripsy as first line treatment for urinary tract stones in children: outcome of 500 cases.

    PubMed

    Badawy, Abdelbasset A; Saleem, Mohamed D; Abolyosr, Ahmad; Aldahshoury, Mohamed; Elbadry, Mohamed S B; Abdalla, Medhat A; Abuzeid, Abdelmoneim M

    2012-06-01

    The continued evolution of stone treatment modalities, such as endourologic procedures, open surgery and shock wave lithotripsy, makes the assessment of continuous outcomes are essential. Pediatric urolithiasis are an important health problem allover the world, especially in Middle East region. We evaluate the safety, efficacy and factors affecting success rate and clearance of stones in children treated with shock wave lithotripsy. Between 2005 and 2010, a total of 500 children with stones in the upper urinary tract at different locations were treated by Extracorporeal shock wave lithotripsy (ESWL) in our department, Sohag University, Egypt. We have used the Siemn's Lithostar Modularis machine, Germany. A total of 371 boys and 129 girls with the average age of 8.63 ± 5 years, and a range from 9 months to 17 years were included in this study. Diagnosis of their urinary calculi was established either by the use of abdominal ultrasound, plain X-ray, intravenous urography, or CT scan. The stones were located in the kidney in 450 (90%) patients; 298 (66%) pelvic, 26 (5.7%) upper calices, 57 (12.6%) mid calices, and lower calices in 69 (15.3%) patients. The average of their stone sizes was 12.5 ± 7.2 mm. The other 50 children their stone were located in the proximal ureteral stones in 35 patients (70%); middle third in 5 (10%) patients and in the distal ureter in 10 (20%) patients. The average ureteral stone size was 7.5 ± 3.2 mm. All children were treated under general anesthesia with adequate lung and testes shielding using air foam. We treated the distal ureteral stones of young children in the supine position through greater sciatic foramen and lesser sciatic foramen as the path of shockwave instead of prone position, which is not a comfortable or natural position and could adversely affect cardiopulmonary function especially under general anesthesia. Localization was mainly done by ultrasound, and X-ray was only used to localize ureteral calculi. For follow-up, we have used abdominal ultrasound, plain X-ray, and CT scan if needed to confirm stone disintegration and clearance. The overall success rate for renal and ureteral calculi was 83.4 and 58.46%, respectively. The re-treatment rate was 4% in renal group and 28% for the ureteral group. No serious complications were recorded in our patients. Minor complications occurred in 15% of our patients; renal colic was reported in 10% of our treated patients, and repeated vomiting was reported in 5% that respond to antiemetics. In the renal group; children with history of pervious urologic surgical procedures had low success rate of stone clearance after ESWL. In the ureteral group stone burden, stone location, had a significant impact on stone clearance outcome. This study showed that SWL in pediatric age group for both renal and ureteral stone is cost effective, safe with an acceptable re-treatment rate; however children with large stone burden or previous urologic surgery have low success rate.

  20. Semi-continuous detection of mercury in gases

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

  1. Global Observation of Planetary-Scale Waves in UARS HRDI and WINDII MLT Winds

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth

    1999-01-01

    The purpose of this study is to use examine planetary-scale motions in the UARS mesosphere and lower thermospheric data. The actual study was confined to HRDI winds and temperatures, since these observations were more continuous, and spanned the 60-120 km range. Three classes of waves were studied: fast equatorial Kelvin waves, nonmigrating tides, and the midlatitude 2-day wave. The purpose of the Kelvin wave and the 2-day wave studies was to test whether the waves significantly affect the mean flow. Such studies require high-quality spectral definitions in order to derive the wave heat and momentum flux divergence which can act in comination to drive the mean flow. Accordingly, HRDI winds from several special observing campaigns were used for analyses of fast (periods under 5 days) waves. The campaigns are characterized by continuous viewing by HRDI in 2 viewing directions, for periods of 10-12 days. Data sampled in this manner lend themselves quite well to "asynoptic spectral analysis", from which motions with periods as low as one day can be retrieved with relatively minimal aliasing.

  2. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    NASA Astrophysics Data System (ADS)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  3. Emergence and robustness of target waves in a neuronal network

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Jin, Wuyin; Ma, Jun

    2015-08-01

    Target waves in excitable media such as neuronal network can regulate the spatial distribution and orderliness as a continuous pacemaker. Three different schemes are used to develop stable target wave in the network, and the potential mechanism for emergence of target waves in the excitable media is investigated. For example, a local pacing driven by external periodical forcing can generate stable target wave in the excitable media, furthermore, heterogeneity and local feedback under self-feedback coupling are also effective to generate continuous target wave as well. To discern the difference of these target waves, a statistical synchronization factor is defined by using mean field theory and artificial defects are introduced into the network to block the target wave, thus the robustness of these target waves could be detected. However, these target waves developed from the above mentioned schemes show different robustness to the blocking from artificial defects. A regular network of Hindmarsh-Rose neurons is designed in a two-dimensional square array, target waves are induced by using three different ways, and then some artificial defects, which are associated with anatomical defects, are set in the network to detect the effect of defects blocking on the travelling waves. It confirms that the robustness of target waves to defects blocking depends on the intrinsic properties (ways to generate target wave) of target waves.

  4. Complications employing the holmium:YAG laser.

    PubMed

    Beaghler, M; Poon, M; Ruckle, H; Stewart, S; Weil, D

    1998-12-01

    We report the operative and early postoperative complications and limitations in 133 patients treated with the holmium laser. Complications included urinary tract infection (N = 3), postoperative bradycardia (1), inverted T-waves (1), intractable flank pain (1), urinary retention (1), inability to access a lower-pole calix with a 365-microm fiber (9), stone migration (5), and termination of procedure because of poor visibility (2). No ureteral perforations or strictures occurred, and no complications were directly attributable to the laser. The holmium laser was capable of fragmenting all urinary calculi in this study. In our initial experience, the holmium laser is safe and effective in the treatment of urinary pathology. Use of laser fibers larger than 200 microm occasionally limits deflection of the endoscope into a lower-pole or dependent calix.

  5. Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Korinek, Ginger C.; Byappanahalli, Muruleedhara N.

    2004-01-01

    Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coliinactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coliconcentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism.

  6. Continuous irrigation with suction started at early days after pancreatic surgery prevents severe complications.

    PubMed

    Sawada, Shigeaki; Yamagishi, Fuminori; Suzuki, Syuuichiro; Matsuoha, Jiro; Arai, Hideki; Tsukada, Kazuhiro

    2008-01-01

    The management of pancreatic leakage is important after pancreatic resection because such leakagge can be associated with additional complications. In this paper, we present a new therapy "irrigation with suction" after pancreatic surgery. The addition of suction permits the start of irrigation early after surgery and prevents severe post-operative complications. Between January 1995 and June 2003, 29 consecutive patients underwent surgical treatment of the pancreas for a variety of indications. Among them, 18 patients were treated with continuous irrigation with suction prophylactically. In these 29 patients, we did not encounter any additional complications such as intraabdominal hemorrhage or abscess formation. A representative case report demonstrates the application of this treatment. The irrigation with suction therapy was started on the first post-operative day after the pylorus-preserving pancreatoduodenectomy with left lobectomy of the liver. CT with irrigation of contrast reagent showed that the reagent did not spread to the uninvolved abdominal area, and the patient did not develop hemorrhage or abscess. It seems that continuous irrigation with suction therapy was effective in preventing additional serious complications after pancreatic resection.

  7. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, H.; Osada, A.; Itoh, S.; Kato, Y.

    2007-12-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  8. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, Hideki; Osada, Akinori; Kato, Yukio; Itoh, Shigeru

    2007-06-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  9. [The characteristics of auditory brainstem response in preterm very low birth weight babies].

    PubMed

    Wang, Xiaoya; Luo, Renzhong; Wen, Ruijin; Chen, Qian; Zhou, Jialin; Zou, Yu

    2009-08-01

    To discuss the characteristics of auditory brainstem response in preterm very low birth weight (VLBW) babies and to investigate the correlations between the ABR and clinical characteristics. Fifty-nine VLBW babies (118 ears) were enrolled in the study and 30 term normal babies as the control group. Tympanometry, acoustic reflex, DPOAE, ABR were obtained in all the babies. The prevalence of hearing loss in VLBW babies was higher than normal term babies and babies with perinatal complications higher than those without perinatal complications. There was no correlations between ABR threshold and gestational age, birth weight, postconceptional age, negative correlations between wave I, III and V latencies I - III, III - V and I - V intervals and postconceptional age. Wave I and V latencies, I - III and III - V intervals differed significantly between the two groups. The perinatal complications were the most important causes of the hearing loss in preterm VLBW babies than the gestational age and birth weight. There was a high prevalence of peripheral hearing loss in the preterm VLBW babies. Combining OAE and automated ABR should be applied for hearing screening. Regular follow-up was very important in all the preterm VLBW neonatal.

  10. On the measurement of airborne, angular-dependent sound transmission through supercritical bars.

    PubMed

    Shaw, Matthew D; Anderson, Brian E

    2012-10-01

    The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.

  11. Cluster Observations of Non-Time Continuous Magnetosonic Waves

    NASA Technical Reports Server (NTRS)

    Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.

    2016-01-01

    Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.

  12. Single-center North American experience with wolf Piezolith 3000 in management of urinary calculi.

    PubMed

    Wang, Rou; Faerber, Gary J; Roberts, William W; Morris, David S; Wolf, J Stuart

    2009-05-01

    To review our experience with the newest generation piezoelectric lithotripter, the Piezolith 3000, in adult patients undergoing extracorporeal shock wave lithotripsy for solitary urinary calculi. We identified 139 shock wave lithotripsy procedures that had used the Piezolith 3000 from February 2005 to July 2007. All procedures were performed under intravenous sedation. Retrospective chart review was used to obtain the pertinent information. Stone-free status was defined as the absence of any fragments, and success as the absence of stone fragments >4 mm, on follow-up imaging after a single treatment. The stone-free and success rate 1 month after a single shock wave lithotripsy session was 45% and 64%, respectively. Only stone size correlated with the overall success rate (P = .004). The overall complication rate was 15% and included a 5.8% major complication rate requiring intervention or admission. The median time in the procedure room was 33 minutes. The adjunctive procedure rate was 1.4%, and the secondary retreatment rate was 10%. The Piezolith 3000 provides modest, but acceptable, single-treatment stone-free and success rates, with a reasonable safety profile, and offers rapid and convenient lithotripsy requiring only intravenous sedation.

  13. Sonic boom interaction with turbulence

    NASA Technical Reports Server (NTRS)

    Rusak, Zvi; Giddings, Thomas E.

    1994-01-01

    A recently developed transonic small-disturbance model is used to analyze the interactions of random disturbances with a weak shock. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. It shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed-type elliptic hyperbolic flows around the shock wave is presented. Numerical calculations of shock wave interactions with various deterministic vorticity and temperature disturbances result in complicate shock wave structures and describe peaked as well as rounded pressure signatures behind the shock front, as were recorded in experiments of sonic booms running through atmospheric turbulence.

  14. The propagation of Lamb waves in multilayered plates: phase-velocity measurement

    NASA Astrophysics Data System (ADS)

    Grondel, Sébastien; Assaad, Jamal; Delebarre, Christophe; Blanquet, Pierrick; Moulin, Emmanuel

    1999-05-01

    Owing to the dispersive nature and complexity of the Lamb waves generated in a composite plate, the measurement of the phase velocities by using classical methods is complicated. This paper describes a measurement method based upon the spectrum-analysis technique, which allows one to overcome these problems. The technique consists of using the fast Fourier transform to compute the spatial power-density spectrum. Additionally, weighted functions are used to increase the probability of detecting the various propagation modes. Experimental Lamb-wave dispersion curves of multilayered plates are successfully compared with the analytical ones. This technique is expected to be a useful way to design composite parts integrating ultrasonic transducers in the field of health monitoring. Indeed, Lamb waves and particularly their velocities are very sensitive to defects.

  15. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

  16. Reverberant shear wave fields and estimation of tissue properties

    NASA Astrophysics Data System (ADS)

    Parker, Kevin J.; Ormachea, Juvenal; Zvietcovich, Fernando; Castaneda, Benjamin

    2017-02-01

    The determination of shear wave speed is an important subject in the field of elastography, since elevated shear wave speeds can be directly linked to increased stiffness of tissues. MRI and ultrasound scanners are frequently used to detect shear waves and a variety of estimators are applied to calculate the underlying shear wave speed. The estimators can be relatively simple if plane wave behavior is assumed with a known direction of propagation. However, multiple reflections from organ boundaries and internal inhomogeneities and mode conversions can create a complicated field in time and space. Thus, we explore the mathematics of multiple component shear wave fields and derive the basic properties, from which efficient estimators can be obtained. We approach this problem from the historic perspective of reverberant fields, a conceptual framework used in architectural acoustics and related fields. The framework can be recast for the alternative case of shear waves in a bounded elastic media, and the expected value of displacement patterns in shear reverberant fields are derived, along with some practical estimators of shear wave speed. These are applied to finite element models and phantoms to illustrate the characteristics of reverberant fields and provide preliminary confirmation of the overall framework.

  17. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  18. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2010-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.

  19. Wave field and evanescent waves produced by a sound beam incident on a simulated sediment

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.; Marston, Philip L.; Morse, Scot F.

    2005-09-01

    When a sound beam in water is incident on a sediment at a sufficiently small grazing angle, the resulting wave field in the sediment is complicated, even for the case of flat, fluidlike sediments. The wave field in the sediment for a sound beam from a simple, unshaded, finite transducer has an evanescent component and diffractive components. These components can interfere to produce a series of nulls outside the spatial region dominated by the evanescent wave field. This situation has been experimentally simulated by using a combination of previously described immiscible liquids [Osterhoudt et al., J. Acoust. Soc. Am. 117, 2483 (2005)]. The spacing between the observed nulls is similar to that seen in a wave-number-integration-based synthesis (using OASES) for a related problem. An analysis of a dephasing distance for evanescent and algebraically decaying components [T .J. Matula and P. L. Marston, J. Acoust. Soc. Am. 97, 1389-1398 (1995)] explains the spacing of the nulls. [Work supported by ONR.

  20. Out in the cold: the hypothermic heart response

    PubMed Central

    Nabeel, Yassar; Ali, Omair

    2014-01-01

    We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. PMID:25406217

  1. Out in the cold: the hypothermic heart response.

    PubMed

    Nabeel, Yassar; Ali, Omair

    2014-11-18

    We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. 2014 BMJ Publishing Group Ltd.

  2. Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission

    PubMed Central

    Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.

    2013-01-01

    We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840

  3. Increasing body mass index z-score is continuously associated with complications of overweight in children, even in the healthy weight range.

    PubMed

    Bell, Lana M; Byrne, Sue; Thompson, Alisha; Ratnam, Nirubasini; Blair, Eve; Bulsara, Max; Jones, Timothy W; Davis, Elizabeth A

    2007-02-01

    Overweight/obesity in children is increasing. Incidence data for medical complications use arbitrary cutoff values for categories of overweight and obesity. Continuous relationships are seldom reported. The objective of this study is to report relationships of child body mass index (BMI) z-score as a continuous variable with the medical complications of overweight. This study is a part of the larger, prospective cohort Growth and Development Study. Children were recruited from the community through randomly selected primary schools. Overweight children seeking treatment were recruited through tertiary centers. Children aged 6-13 yr were community-recruited normal weight (n = 73), community-recruited overweight (n = 53), and overweight treatment-seeking (n = 51). Medical history, family history, and symptoms of complications of overweight were collected by interview, and physical examination was performed. Investigations included oral glucose tolerance tests, fasting lipids, and liver function tests. Adjusted regression was used to model each complication of obesity with age- and sex-specific child BMI z-scores entered as a continuous dependent variable. Adjusted logistic regression showed the proportion of children with musculoskeletal pain, obstructive sleep apnea symptoms, headaches, depression, anxiety, bullying, and acanthosis nigricans increased with child BMI z-score. Adjusted linear regression showed BMI z-score was significantly related to systolic and diastolic blood pressure, insulin during oral glucose tolerance test, total cholesterol, high-density lipoprotein, triglycerides, and alanine aminotransferase. Child's BMI z-score is independently related to complications of overweight and obesity in a linear or curvilinear fashion. Children's risks of most complications increase across the entire range of BMI values and are not defined by thresholds.

  4. Data reduction and analysis of HELIOS plasma wave data

    NASA Technical Reports Server (NTRS)

    Anderson, Roger R.

    1988-01-01

    Reduction of data acquired from the HELIOS Solar Wind Plasma Wave Experiments on HELIOS 1 and 2 was continued. Production of 24 hour survey plots of the HELIOS 1 plasma wave data were continued and microfilm copies were submitted to the National Space Science Data Center. Much of the effort involved the shock memory from both HELIOS 1 and 2. This data had to be deconvoluted and time ordered before it could be displayed and plotted in an organized form. The UNIVAX 418-III computer was replaced by a DEC VAX 11/780 computer. In order to continue the reduction and analysis of the data set, all data reduction and analysis computer programs had to be rewritten.

  5. Intraoperative assessment of in situ saphenous vein bypass grafts with continuous-wave Doppler probe.

    PubMed

    Spencer, T D; Goldman, M H; Hyslop, J W; Lee, H M; Barnes, R W

    1984-11-01

    A 5 MHz continuous-wave Doppler probe was used intraoperatively to evaluate 25 in situ saphenous vein bypass grafts. At least one arteriovenous fistula per case and five retained competent posterior valvular leaflets were identified before completion angiography. The Doppler was able to distinguish a retained valve from an arteriovenous fistula on clinical grounds but not by waveform analysis. Intraoperative assessment of in situ saphenous vein bypass grafts with the continuous-wave Doppler can identify retained valves that might be missed by angiography. It can reduce the number of angiograms needed to demonstrate a technically perfect result, thus saving operative time and contrast agent load to the patient.

  6. Continuous wave room temperature external ring cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  7. High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuemin; Shen, Changle; Jiang, Tao

    2016-07-15

    Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.

  8. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    NASA Astrophysics Data System (ADS)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  9. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    NASA Astrophysics Data System (ADS)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  10. Using left-ventricular-only pacing to eliminate T-wave oversensing in a biventricular implantable cardiac defibrillator.

    PubMed

    Khoo, Clarence; Bennett, Matthew; Chakrabarti, Santabhanu; LeMaitre, John; Tung, Stanley K K

    2013-02-01

    A man aged 75 years and with nonischemic cardiomyopathy had implantation of a biventricular implantable cardiac defibrillator (ICD). Consistent biventricular pacing was limited by intermittent T-wave oversensing (TWOS). A strategy of left-ventricular-only pacing was used to eliminate TWOS. This strategy obviates the need to reduce ventricular sensitivity and thus may be an effective alternative to biventricular pacing complicated by TWOS. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  11. Wave Information Studies of US Coastlines: Hindcast Wave Information for the Great Lakes: Lake Erie

    DTIC Science & Technology

    1991-10-01

    total ice cover) for individual grid cells measuring 5 km square. 42. The GLERL analyzed each half-month data set to provide the maximum, minimum...average, median, and modal ice concentrations for each 5-km cell . The median value, which represents an estimate of the 50-percent point of the ice...incorporating the progression and decay of the time-dependent ice cover was complicated by the fact that different grid cell sizes were used for mapping the ice

  12. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  13. A fiber-based quasi-continuous-wave quantum key distribution system

    PubMed Central

    Shen, Yong; Chen, Yan; Zou, Hongxin; Yuan, Jianmin

    2014-01-01

    We report a fiber-based quasi-continuous-wave (CW) quantum key distribution (QKD) system with continuous variables (CV). This system employs coherent light pulses and time multiplexing to maximally reduce cross talk in the fiber. No-switching detection scheme is adopted to optimize the repetition rate. Information is encoded on the sideband of the pulsed coherent light to fully exploit the continuous wave nature of laser field. With this configuration, high secret key rate can be achieved. For the 50 MHz detected bandwidth in our experiment, when the multidimensional reconciliation protocol is applied, a secret key rate of 187 kb/s can be achieved over 50 km of optical fiber against collective attacks, which have been shown to be asymptotically optimal. Moreover, recently studied loopholes have been fixed in our system. PMID:24691409

  14. Propagation path effects for rayleigh and love waves. Semi-annual technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrin, E.; Goforth, T.

    Seismic surface waves are usually composed of overlapping wave trains representing multi-path propagation. A first task in the analysis of such waves is to identify and separate the various component wave trains so that each can be analyzed separately. Phase-matched filters are a class of linear filters in which the Fourier phase of the filter is made equal to that of a given signal. The authors previously described an iterative technique which can be used to find a phase-matched filter for a particular component of a seismic signal. Application of the filters to digital records of Rayleigh waves allowed multiplemore » arrivals to be identified and removed, and allowed recovery of the complex spectrum of the primary wave train along with its apparent group velocity dispersion curve. A comparable analysis of Love waves presents additional complications. Love waves are contaminated by both Love and Rayleigh multipathing and by primary off-axis Rayleigh energy. In the case of explosions, there is much less energy generated as Love waves than as Rayleigh waves. The applicability of phase-matched filtering to Love waves is demonstrated by its use on earthquakes occurring in the Norwegian Sea and near Iceland and on a nuclear explosion in Novaya Zemlya. Despite severe multipathing in two of the three events, the amplitude and phase of each of the primary Love waves were recovered without significant distortion.« less

  15. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.

    PubMed

    Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu

    2018-01-01

    Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    NASA Astrophysics Data System (ADS)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less

  18. General personality and psychopathology in referred and nonreferred children and adolescents: an investigation of continuity, pathoplasty, and complication models.

    PubMed

    De Bolle, Marleen; Beyers, Wim; De Clercq, Barbara; De Fruyt, Filip

    2012-11-01

    This study investigated the continuity, pathoplasty, and complication models as plausible explanations for personality-psychopathology relations in a combined sample of community (n = 571) and referred (n = 146) children and adolescents. Multivariate structural equation modeling was used to examine the structural relations between latent personality and psychopathology change across a 2-year period. Item response theory models were fitted as an additional test of the continuity hypothesis. Even after correcting for item overlap, the results provided strong support for the continuity model, demonstrating that personality and psychopathology displayed dynamic change patterns across time. Item response theory models further supported the continuity conceptualization for understanding the association between internalizing problems and emotional stability and extraversion as well as between externalizing problems and benevolence and conscientiousness. In addition to the continuity model, particular personality and psychopathology combinations provided evidence for the pathoplasty and complication models. The theoretical and practical implications of these results are discussed, and suggestions for future research are provided. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  19. An unified numerical simulation of seismic ground motion, ocean acoustics, coseismic deformations and tsunamis of 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Furumura, T.; Noguchi, S.; Takemura, S.; Iwai, K.; Lee, S.; Sakai, S.; Shinohara, M.

    2011-12-01

    The fault rupture of the 2011 Tohoku (Mw9.0) earthquake spread approximately 550 km by 260 km with a long source rupture duration of ~200 s. For such large earthquake with a complicated source rupture process the radiation of seismic wave from the source rupture and initiation of tsunami due to the coseismic deformation is considered to be very complicated. In order to understand such a complicated process of seismic wave, coseismic deformation and tsunami, we proposed a unified approach for total modeling of earthquake induced phenomena in a single numerical scheme based on a finite-difference method simulation (Maeda and Furumura, 2011). This simulation model solves the equation of motion of based on the linear elastic theory with equilibrium between quasi-static pressure and gravity in the water column. The height of tsunami is obtained from this simulation as a vertical displacement of ocean surface. In order to simulate seismic waves, ocean acoustics, coseismic deformations, and tsunami from the 2011 Tohoku earthquake, we assembled a high-resolution 3D heterogeneous subsurface structural model of northern Japan. The area of simulation is 1200 km x 800 km and 120 km in depth, which have been discretized with grid interval of 1 km in horizontal directions and 0.25 km in vertical direction, respectively. We adopt a source-rupture model proposed by Lee et al. (2011) which is obtained by the joint inversion of teleseismic, near-field strong motion, and coseismic deformation. For conducting such a large-scale simulation, we fully parallelized our simulation code based on a domain-partitioning procedure which achieved a good speed-up by parallel computing up to 8192 core processors with parallel efficiency of 99.839%. The simulation result demonstrates clearly the process in which the seismic wave radiates from the complicated source rupture over the fault plane and propagating in heterogeneous structure of northern Japan. Then, generation of tsunami from coseismic ground deformation at sea floor due to the earthquake and propagation is also well demonstrated . The simulation also demonstrates that a very large slip up to 40 m at shallow plate boundary near the trench pushes up sea floor with source rupture propagation, and the highly elevated sea surface gradually start propagation as tsunamis due to the gravity. The result of simulation of vertical-component displacement waveform matches the ocean-bottom pressure gauge record which is installed just above the source fault area (Maeda et al., 2011) very consistently. Strong reverberation of the ocean-acoustic waves between sea surface and sea bottom particularly near the Japan Trench for long time after the source rupture ends is confirmed in the present simulation. Accordingly, long wavetrains of high-frequency ocean acoustic waves is developed and overlap to later tsunami waveforms as we found in the observations.

  20. Complex seismic anisotropy beneath Germany from shear wave splitting and surface wave models

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Long, M. D.; Becker, T. W.; Lebedev, S.

    2013-12-01

    Seismic anisotropy beneath stable continental interiors likely reflects a host of processes, including deformation in the lower crust, frozen anisotropy from past deformation processes in the lithospheric mantle, and present-day mantle flow in the asthenosphere. Because the anisotropic structure beneath continental interiors is generally complicated and often exhibits heterogeneity both laterally and with depth, a complete characterization of anisotropy and its interpretation in terms of deformational processes is challenging. In this study, we aim to expand our understanding of continental anisotropy by characterizing in detail the geometry and strength of azimuthal anisotropy beneath Germany and the surrounding region, using a combination of shear wave splitting and surface wave constraints. We utilize data from long-running broadband stations in and around Germany, collected from a variety of national and temporary European networks. We measure the splitting of SKS, SKKS, and PKS phases, with the aim of obtaining the best possible backazimuthal coverage. Preliminary results indicate that anisotropy beneath Germany is generally complex; we observe shear wave splitting patterns that are complicated and are inconsistent with a single horizontal layer of anisotropy beneath the station. Observed delay times are generally small (<1 sec), and there is a preponderance of null *KS arrivals in the dataset, with null measurements detected over a fairly large range of backazimuths. We also observe dramatic differences in splitting patterns over relatively short horizontal distances. Although we note backazimuthal variations in splitting at several stations, we do not observe a clear 90-degree periodicity that one would expect for the case of multiple anisotropic layers. We are currently carrying out comparisons between our observed splitting patterns and those predicted from tomographic models of azimuthal anisotropy derived from surface wave observations. The ultimate goal of this work is to combine different types of observations (shear wave splitting, surface wave models, and eventually anisotropic receiver function analysis) to place precise constraints on the anisotropic structure beneath Germany, and to interpret this structure in terms of on-going and past deformational processes in the crust and mantle.

  1. A probabilistic method for constructing wave time-series at inshore locations using model scenarios

    USGS Publications Warehouse

    Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.

    2014-01-01

    Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.

  2. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    USGS Publications Warehouse

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  3. Wave Response during Hydrostatic and Geostrophic Adjustment. Part I: Transient Dynamics.

    NASA Astrophysics Data System (ADS)

    Chagnon, Jeffrey M.; Bannon, Peter R.

    2005-05-01

    The adjustment of a compressible, stably stratified atmosphere to sources of hydrostatic and geostrophic imbalance is investigated using a linear model. Imbalance is produced by prescribed, time-dependent injections of mass, heat, or momentum that model those processes considered “external” to the scales of motion on which the linearization and other model assumptions are justifiable. Solutions are demonstrated in response to a localized warming characteristic of small isolated clouds, larger thunderstorms, and convective systems.For a semi-infinite atmosphere, solutions consist of a set of vertical modes of continuously varying wavenumber, each of which contains time dependencies classified as steady, acoustic wave, and buoyancy wave contributions. Additionally, a rigid lower-boundary condition implies the existence of a discrete mode—the Lamb mode— containing only a steady and acoustic wave contribution. The forced solutions are generalized in terms of a temporal Green's function, which represents the response to an instantaneous injection.The response to an instantaneous warming with geometry representative of a small, isolated cloud takes place in two stages. Within the first few minutes, acoustic and Lamb waves accomplish an expansion of the heated region. Within the first quarter-hour, nonhydrostatic buoyancy waves accomplish an upward displacement inside of the heated region with inflow below, outflow above, and weak subsidence on the periphery—all mainly accomplished by the lowest vertical wavenumber modes, which have the largest horizontal group speed. More complicated transient patterns of inflow aloft and outflow along the lower boundary are accomplished by higher vertical wavenumber modes. Among these is an outwardly propagating rotor along the lower boundary that effectively displaces the low-level inflow upward and outward.A warming of 20 min duration with geometry representative of a large thunderstorm generates only a weak acoustic response in the horizontal by the Lamb waves. The amplitude of this signal increases during the onset of the heating and decreases as the heating is turned off. The lowest vertical wavenumber buoyancy waves still dominate the horizontal adjustment, and the horizontal scale of displacements is increased by an order of magnitude. Within a few hours the transient motions remove the perturbations and an approximately trivial balanced state is established.A warming of 2 h duration with geometry representative of a large convective system generates a weak but discernible Lamb wave signal. The response to the conglomerate system is mainly hydrostatic. After several hours, the only signal in the vicinity of the heated region is that of inertia-gravity waves oscillating about a nontrivial hydrostatic and geostrophic state.This paper is the first of two parts treating the transient dynamics of hydrostatic and geostrophic adjustment. Part II examines the potential vorticity conservation and the partitioning of total energy.

  4. Punctuated equilibrium and shock waves in molecular models of biological evolution.

    PubMed

    Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.

  5. Response functions of free mass gravitational wave antennas

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1985-01-01

    The work of Gursel, Linsay, Spero, Saulson, Whitcomb and Weiss (1984) on the response of a free-mass interferometric antenna is extended. Starting from first principles, the earlier work derived the response of a 2-arm gravitational wave antenna to plane polarized gravitational waves. Equivalent formulas (generalized slightly to allow for arbitrary elliptical polarization) are obtained by a simple differencing of the '3-pulse' Doppler response functions of two 1-arm antennas. A '4-pulse' response function is found, with quite complicated angular dependences for arbitrary incident polarization. The differencing method can as readily be used to write exact response functions ('3n+1 pulse') for antennas having multiple passes or more arms.

  6. Diagnostic and prognostic role of computed tomography in extracorporeal shock wave lithotripsy complications

    PubMed Central

    Telegrafo, Michele; Carluccio, Davide Antonio; Rella, Leonarda; Ianora, Amato Antonio Stabile; Angelelli, Giuseppe; Moschetta, Marco

    2016-01-01

    Purpose: To evaluate the role of multidetector computed tomography (MDCT) in recognizing the complications of extracorporeal shock wave lithotripsy (ESWL) and providing a prognostic grading system for the therapeutic approach. Materials and Methods: A total of 43 patients who underwent ESWL because of urinary stone disease were assessed by 320-row MDCT examination before and after ESWL. Pre-ESWL CT unenhanced scans were performed for diagnosing stone disease. Post-ESWL CT scans were acquired before and after intravenous injection of contrast medium searching for peri-renal fluid collection or hyper-density, pyelic or ureteral wall thickening, blood clots in the urinary tract, peri- or intra-renal hematoma or abscess, active bleeding. A severity grading system of ESWL complications was established. Results: Patients were affected by renal (n = 36) or ureteral (n = 7) lithiasis. Post-ESWL CT examination detected small fluid collections and hyper-density of peri-renal fat tissue in 35/43 patients (81%), pyelic or ureteral wall thickening in 2/43 (4%), blood clots in the urinary tract in 9/43 (21%), renal abscesses or hematomas with a diameter of <2 cm in 10/43 (23%), large retroperitoneal collections in 3/43 (7%), active bleeding from renal vessels in 1/43 (2%). Mild complications were found in 30 cases; moderate in 9; severe in 4. The therapeutic choice was represented by clinical follow-up (n = 20), clinical and CT follow-up (n = 10), ureteral stenting (n = 9), drainage of large retroperitoneal collections (n = 3), and arterial embolization (n = 1). Conclusion: MDCT plays a crucial role in the diagnosis of urolithiasis and follow-up of patients treated with ESWL recognizing its complications and providing therapeutic and prognostic indications. PMID:27141186

  7. Diagnostic and prognostic role of computed tomography in extracorporeal shock wave lithotripsy complications.

    PubMed

    Telegrafo, Michele; Carluccio, Davide Antonio; Rella, Leonarda; Ianora, Amato Antonio Stabile; Angelelli, Giuseppe; Moschetta, Marco

    2016-01-01

    To evaluate the role of multidetector computed tomography (MDCT) in recognizing the complications of extracorporeal shock wave lithotripsy (ESWL) and providing a prognostic grading system for the therapeutic approach. A total of 43 patients who underwent ESWL because of urinary stone disease were assessed by 320-row MDCT examination before and after ESWL. Pre-ESWL CT unenhanced scans were performed for diagnosing stone disease. Post-ESWL CT scans were acquired before and after intravenous injection of contrast medium searching for peri-renal fluid collection or hyper-density, pyelic or ureteral wall thickening, blood clots in the urinary tract, peri- or intra-renal hematoma or abscess, active bleeding. A severity grading system of ESWL complications was established. Patients were affected by renal (n = 36) or ureteral (n = 7) lithiasis. Post-ESWL CT examination detected small fluid collections and hyper-density of peri-renal fat tissue in 35/43 patients (81%), pyelic or ureteral wall thickening in 2/43 (4%), blood clots in the urinary tract in 9/43 (21%), renal abscesses or hematomas with a diameter of <2 cm in 10/43 (23%), large retroperitoneal collections in 3/43 (7%), active bleeding from renal vessels in 1/43 (2%). Mild complications were found in 30 cases; moderate in 9; severe in 4. The therapeutic choice was represented by clinical follow-up (n = 20), clinical and CT follow-up (n = 10), ureteral stenting (n = 9), drainage of large retroperitoneal collections (n = 3), and arterial embolization (n = 1). MDCT plays a crucial role in the diagnosis of urolithiasis and follow-up of patients treated with ESWL recognizing its complications and providing therapeutic and prognostic indications.

  8. Simple Numerical Modelling for Gasdynamic Design of Wave Rotors

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Nagashima, Toshio

    The precise estimation of pressure waves generated in the passages is a crucial factor in wave rotor design. However, it is difficult to estimate the pressure wave analytically, e.g. by the method of characteristics, because the mechanism of pressure-wave generation and propagation in the passages is extremely complicated as compared to that in a shock tube. In this study, a simple numerical modelling scheme was developed to facilitate the design procedure. This scheme considers the three dominant factors in the loss mechanism —gradual passage opening, wall friction and leakage— for simulating the pressure waves precisely. The numerical scheme itself is based on the one-dimensional Euler equations with appropriate source terms to reduce the calculation time. The modelling of these factors was verified by comparing the results with those of a two-dimensional numerical simulation, which were previously validated by the experimental data in our previous study. Regarding wave rotor miniaturization, the leakage flow effect, which involves the interaction between adjacent cells, was investigated extensively. A port configuration principle was also examined and analyzed in detail to verify the applicability of the present numerical modelling scheme to the wave rotor design.

  9. Wave Energy from the North Sea: Experiences from the Lysekil Research Site

    NASA Astrophysics Data System (ADS)

    Leijon, Mats; Boström, Cecilia; Danielsson, Oskar; Gustafsson, Stefan; Haikonen, Kalle; Langhamer, Olivia; Strömstedt, Erland; Stålberg, Magnus; Sundberg, Jan; Svensson, Olle; Tyrberg, Simon; Waters, Rafael

    2008-05-01

    This paper provides a status update on the development of the Swedish wave energy research area located close to Lysekil on the Swedish West coast. The Lysekil project is run by the Centre for Renewable Electric Energy Conversion at Uppsala University. The project was started in 2004 and currently has permission to run until the end of 2013. During this time period 10 grid-connected wave energy converters, 30 buoys for studies on environmental impact, and a surveillance tower for monitoring the interaction between waves and converters will be installed and studied. To date the research area holds one complete wave energy converter connected to a measuring station on shore via a sea cable, a Wave Rider™ buoy for wave measurements, 25 buoys for studies on environmental impact, and a surveillance tower. The wave energy converter is based on a linear synchronous generator which is placed on the sea bed and driven by a heaving point absorber at the ocean surface. The converter is directly driven, i.e. it has no gearbox or other mechanical or hydraulic conversion system. This results in a simple and robust mechanical system, but also in a somewhat more complicated electrical system.

  10. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rumpker, G.

    2017-12-01

    We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by simultaneously minimizing their transverse energy - this includes the analysis of null measurements. vi) comparison of results with theoretical splitting parameters determined for one, two, or continuously-varying anisotropic layer(s). Examples for the application of SplitRacer will be presented.

  11. Laser-assisted solar-cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.

  12. Intracavity-pumped Raman laser action in a mid IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Okishev, Andrey V.; Zuegel, Jonathan D.

    2006-12-01

    Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.

  13. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun

    2011-08-01

    We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.

  14. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.

    PubMed

    Taylor, Adam B; Kim, Jooho; Chon, James W M

    2012-02-27

    In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.

  15. Non-invasive continuous blood pressure measurement based on mean impact value method, BP neural network, and genetic algorithm.

    PubMed

    Tan, Xia; Ji, Zhong; Zhang, Yadan

    2018-04-25

    Non-invasive continuous blood pressure monitoring can provide an important reference and guidance for doctors wishing to analyze the physiological and pathological status of patients and to prevent and diagnose cardiovascular diseases in the clinical setting. Therefore, it is very important to explore a more accurate method of non-invasive continuous blood pressure measurement. To address the shortcomings of existing blood pressure measurement models based on pulse wave transit time or pulse wave parameters, a new method of non-invasive continuous blood pressure measurement - the GA-MIV-BP neural network model - is presented. The mean impact value (MIV) method is used to select the factors that greatly influence blood pressure from the extracted pulse wave transit time and pulse wave parameters. These factors are used as inputs, and the actual blood pressure values as outputs, to train the BP neural network model. The individual parameters are then optimized using a genetic algorithm (GA) to establish the GA-MIV-BP neural network model. Bland-Altman consistency analysis indicated that the measured and predicted blood pressure values were consistent and interchangeable. Therefore, this algorithm is of great significance to promote the clinical application of a non-invasive continuous blood pressure monitoring method.

  16. Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.

    2018-05-01

    The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.

  17. Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data

    USGS Publications Warehouse

    Fletcher, Joe B.; Fumal, T.; Hsi-Ping, Liu; Carroll, L.C.

    1990-01-01

    To investigate near-surface site effects in granite rock, we drilled 300-m deep boreholes at two sites which are collocated with stations from the digital array at Anza, California. Significant motion perpendicular to the polarizations of the first shear-wave arrival was recorded within a few meters of the surface. Apparently, the rock structure is sufficiently complicated that body waves are being converted (SH to SV at oblique incidence) very close to the surface. The presence of these elliptical particle motions within a mere few m of the pure shear-wave source suggests that the detection of polarizations perpendicular to the main shear arrival at a single location at the surface is not, by itself, a good method for detecting shear-wave splitting within the upper few tens of kilometers of the earth's crust. -from Authors

  18. Causal properties of nonlinear gravitational waves in modified gravity

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  19. Nonlinear Schroedinger Approximations for Partial Differential Equations with Quadratic and Quasilinear Terms

    NASA Astrophysics Data System (ADS)

    Cummings, Patrick

    We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.

  20. Monitoring leaf water content with THz and sub-THz waves.

    PubMed

    Gente, Ralf; Koch, Martin

    2015-01-01

    Terahertz technology is still an evolving research field that attracts scientists with very different backgrounds working on a wide range of subjects. In the past two decades, it has been demonstrated that terahertz technology can provide a non-invasive tool for measuring and monitoring the water content of leaves and plants. In this paper we intend to review the different possibilities to perform in-vivo water status measurements on plants with the help of THz and sub-THz waves. The common basis of the different methods is the strong absorption of THz and sub-THz waves by liquid water. In contrast to simpler, yet destructive, methods THz and sub-THz waves allow for the continuous monitoring of plant water status over several days on the same sample. The technologies, which we take into focus, are THz time domain spectroscopy, THz continuous wave setups, THz quasi time domain spectroscopy and sub-THz continuous wave setups. These methods differ with respect to the generation and detection schemes, the covered frequency range, the processing and evaluation of the experimental data, and the mechanical handling of the measurements. Consequently, we explain which method fits best in which situation. Finally, we discuss recent and future technological developments towards more compact and budget-priced measurement systems for use in the field.

  1. Long-term use of nerve block catheters in paediatric patients with cancer related pathologic fractures

    PubMed Central

    BURGOYNE, L. L.; PEREIRAS, L. A.; BERTANI, L. A.; KADDOUM, R. N.; NEEL, M.; FAUGHNAN, L. G.; ANGHELESCU, D. L.

    2013-01-01

    SUMMARY We report three cases of children with osteosarcoma and pathologic fractures treated with long-term continuous nerve blocks for preoperative pain control. One patient with a left distal femoral diaphysis fracture had a femoral continuous nerve block catheter for 41 days without complications. Another with a fractured left proximal femoral shaft had three femoral continuous nerve block catheters for 33, 26 and 22 days respectively. The third patient, whose right proximal humerus was fractured, had a brachial plexus continuous nerve block catheter for 36 days without complication. In our experience, prolonged use of continuous nerve block is safe and effective in children with pathologic fractures for preoperative pain control. PMID:22813501

  2. Theory of Electromagnetic Surface Waves in Plasma with Smooth Boundaries

    NASA Astrophysics Data System (ADS)

    Kuzelev, M. V.

    2018-05-01

    A theory of nonpotential surface waves in plasma with smooth boundaries is developed. The complex frequencies of surface waves for plasma systems of different geometries and different profiles of the plasma density are calculated. Expressions for the rates of collisionless damping of surface waves due to their resonance interaction with local plasma waves of continuous spectrum are obtained. The influence of collisions in plasma is also considered.

  3. A 24 km fiber-based discretely signaled continuous variable quantum key distribution system.

    PubMed

    Dinh Xuan, Quyen; Zhang, Zheshen; Voss, Paul L

    2009-12-21

    We report a continuous variable key distribution system that achieves a final secure key rate of 3.45 kilobits/s over a distance of 24.2 km of optical fiber. The protocol uses discrete signaling and post-selection to improve reconciliation speed and quantifies security by means of quantum state tomography. Polarization multiplexing and a frequency translation scheme permit transmission of a continuous wave local oscillator and suppression of noise from guided acoustic wave Brillouin scattering by more than 27 dB.

  4. Geometrical optics analysis of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Davis, Christopher C.

    2013-09-01

    2D phase screen methods have been frequently applied to estimate atmospheric turbulence in free space optic communication and imaging systems. In situations where turbulence is "strong" enough to cause severe discontinuity of the wavefront (small Fried coherence length), the transmitted optic signal behaves more like "rays" rather than "waves". However, to achieve accurate simulation results through ray modeling requires both a high density of rays and a large number of eddies. Moreover, their complicated interactions require significant computational resources. Thus, we introduce a 3D ray model based on simple characteristics of turbulent eddies regardless of their particular geometry. The observed breakup of a beam wave into patches at a receiver and the theoretical description indicates that rays passing through the same sequence of turbulent eddies show "group" behavior whose wavefront can still be regarded as continuous. Thus, in our approach, we have divided the curved trajectory of rays into finite line segments and intuitively related their redirections to the refractive property of large turbulent eddies. As a result, our proposed treatment gives a quick and effective high-density ray simulation of a turbulent channel which only requires knowledge of the magnitude of the refractive index deviations. And our method points out a potential correction in reducing equivalent Cn2 by applying adaptive optics. This treatment also shows the possibility of extending 2D phase screen simulations into more general 3D treatments.

  5. X-Band wave radar system for monitoring and risk management of the coastal infrastructures

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco

    2017-04-01

    The presence of the infrastructures in coastal region entails an increase of the sea level and the shift of the sediment on the bottom with a continuous change of the coastline. In order to preserve the coastline, it has been necessary to resort the use of applications coastal engineering, as the construction of the breakwaters for preventing the coastal erosion. In this frame, the knowledge of the sea state parameters, as wavelength, period and significant wave height and of surface current and bathymetry can be used for the harbor operations and to prevent environmental disasters. In the last years, the study of the coastal phenomena and monitoring of the sea waves impact on the coastal infrastructures through the analysis of images acquired by marine X-band radars is of great interest [1-3]. The possibility to observe the sea surface from radar images is due to the fact that the X-band electromagnetic waves interact with the sea capillary waves (Bragg resonance), which ride on the gravity waves. However, the image acquired by a X-band radar is not the direct representation of the sea state, but it represents the sea surface as seen by the radar. Accordingly, to estimate the sea state parameters as, direction, wavelength, period of dominant waves, the significant wave height as well as the bathymetry and surface current, through a time stack of radar data are required advanced data processing procedures. In particular, in the coastal areas due to the non-uniformity of sea surface current and bathymetry fields is necessary a local analysis of the sea state parameters. In order to analyze the data acquired in coastal area an inversion procedure defined "Local Method" is adopted, which is based on the spatial partitioning of the investigated area in partially overlapping sub-areas. In addition, the analysis of the sea spectrum of each sub-area allows us to retrieve the local sea state parameters. In particular, this local analysis allows us to detect the reflected waves from the coastal infrastructures, e.g. from the harbor jetties. In fact, the reflected waves may significantly complicate the harbour activities (e.g., berthing operations), as they interfere with the oncoming waves thus creating a confused sea [2]. References [1] G. Ludeno, C. Brandini, C. Lugni, D. Arturi, A. Natale, F. Soldovieri, B. Gozzini, F. Serafino, "Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.7, no.3, pp.3011-3018, July 2014. [2] G. Ludeno, F. Reale, F. Dentale, E. Pugliese Carratelli, A. Natale, F. Soldovieri, F. Serafino "An X-Band Radar System for Bathymetry and Wave Field Analysis in Harbor Area", Sensors, Vol.15, no.1, pp. 1691-1707, January 2015. [3] F. Raffa, G. Ludeno, B. Patti, F. Soldovieri, S. Mazzola, and F. Serafino, "X-band wave radar for coastal upwelling detection off the southern coast of Sicily.", Journal of Atmospheric and Oceanic Technology, January 2017, Vol. 34, No. 1, Published online on 22 Dec 2016.

  6. Advances in wave turbulence: rapidly rotating flows

    NASA Astrophysics Data System (ADS)

    Cambon, C.; Rubinstein, R.; Godeferd, F. S.

    2004-07-01

    At asymptotically high rotation rates, rotating turbulence can be described as a field of interacting dispersive waves by the general theory of weak wave turbulence. However, rotating turbulence has some complicating features, including the anisotropy of the wave dispersion relation and the vanishing of the wave frequency on a non-vanishing set of 'slow' modes. These features prevent straightforward application of existing theories and lead to some interesting properties, including the transfer of energy towards the slow modes. This transfer competes with, and might even replace, the transfer to small scales envisioned in standard turbulence theories. In this paper, anisotropic spectra for rotating turbulence are proposed based on weak turbulence theory; some evidence for their existence is given based on numerical calculations of the wave turbulence equations. Previous arguments based on the properties of resonant wave interactions suggest that the slow modes decouple from the others. Here, an extended wave turbulence theory with non-resonant interactions is proposed in which all modes are coupled; these interactions are possible only because of the anisotropy of the dispersion relation. Finally, the vanishing of the wave frequency on the slow modes implies that these modes cannot be described by weak turbulence theory. A more comprehensive approach to rotating turbulence is proposed to overcome this limitation.

  7. Initial observations from seismometers frozen into a borehole through the McMurdo Ice Shelf.

    NASA Astrophysics Data System (ADS)

    Prior, David; Eccles, Jennifer; Cooper, Joanna; Craw, Lisa; van Haastrecht, Laurine; Hamish Bowman, M.; Stevens, Craig; Gamble Rosevear, Madi; Hulbe, Christina; Gorman, Andrew; Horgan, Huw; Pyne, Alex

    2017-04-01

    A seismometer cable with two, three-component seismometers was frozen into a hot water borehole through the McMurdo Ice Shelf at Windless Bight in late December 2016. The seismometers are at 39m and 189m depth. The upper seismometer lies just below the firn-ice transition ( 37m) and very close to sea level ( 38m). The lower seismometer is positioned 30m above the base of the ice shelf ( 222m). The seismometers froze in within 40 (upper) to 60 (lower) hours of the last reaming operation. The temperature evolution during freezing is complicated, particularly for the lower seismometer. The complications are interpreted as the result of brine expulsion and brine pocket migration. We conducted an active source experiment using the frozen-in seismometers together with a surface seismometer and four lines of geophones radiating from the borehole, at 45-degree angles, to a distance of 240m. Sources included a traditional hammer and surface plate, two types of hammer activated surface shear wave sources (for hard and soft surfaces) and a hammer activated borehole source. The frozen-in seismometers show excellent separation of P - wave and S - wave arrivals for all sources, particularly on the lower seismometer. The surface shear sources give clearer separation of arrivals on the vertical and horizontal components. For some source to receiver geometries the surface shear sources give no P - wave arrival on the horizontal seismometer components and a very strong S - wave arrival that is partitioned between the horizontal components in correspondence with the source orientation. The borehole source (at 3 to 10m in the firn) also gives clearer separation of P - wave and S - wave arrivals compared to a surface hammer and plate. The frozen-in seismometers were also used to listen for natural events in the ice. Comparing the same events recorded at the surface and at depth, the latter are much less noisy than the former, leading to more clear interpretation. As in the active source experiments, P-wave and S-wave arrivals are clear and the partitioning onto different components (vertical and horizontal) is very clear. Using seismology to interpret the physical properties of ice masses is dependent on quality data. The patterns of anisotropy related to ice crystallographic preferred orientations (CPOs) are particularly rich for S - waves and the ability to measure S - wave velocities and shear wave splitting is of particular importance in using seismology to constrain CPOs. Our initial observations suggest that seismometers frozen-in at depth, together with artificial sources with controlled shear wave kinematics have great potential to help us constrain ice CPOs and resultant plastic anisotropy through seismic data.

  8. Source parameters derived from seismic spectrum in the Jalisco block

    NASA Astrophysics Data System (ADS)

    Gutierrez, Q. J.; Escudero, C. R.; Nunez-Cornu, F. J.

    2012-12-01

    The direct measure of the earthquake fault dimension represent a complicated task nevertheless a better approach is using the seismic waves spectrum. With this method we can estimate the dimensions of the fault, the stress drop and the seismic moment. The study area comprises the complex tectonic configuration of Jalisco block and the subduction of the Rivera plate beneath the North American plate; this causes that occur in Jalisco some of the most harmful earthquakes and other related natural disasters. Accordingly it is important to monitor and perform studies that helps to understand the physics of earthquake rupture mechanism in the area. The main proposue of this study is estimate earthquake seismic source parameters. The data was recorded by the MARS network (Mapping the Riviera Subduction Zone) and the RESAJ network. MARS had 51 stations and settled in the Jalisco block; that is delimited by the mesoamerican trench at the west, the Colima grabben to the south, and the Tepic-Zacoalco to the north; for a period of time, of January 1, 2006 until December 31, 2007 Of this network was taken 104 events, the magnitude range of these was between 3 to 6.5 MB. RESJAL has 10 stations and is within the state of Jalisco, began to record since October 2011 and continues to record. We firs remove the trend, the mean and the instrument response, then manually chosen the S wave, then the multitaper method was used to obtain the spectrum of this wave and so estimate the corner frequency and the spectra level. We substitude the obtained in the equations of the Brune model to calculate the source parameters. Doing this we obtained the following results; the source radius was between .1 to 2 km, the stress drop was between .1 to 2 MPa.

  9. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    PubMed

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  10. Detecting gravity waves from binary black holes

    NASA Technical Reports Server (NTRS)

    Wahlquist, Hugo D.

    1989-01-01

    One of the most attractive possible sources of strong gravitational waves would be a binary system comprising massive black holes (BH). The gravitational radiation from a binary is an elliptically polarized, periodic wave which could be observed continuously - or at intervals whenever a detector was available. This continuity of the signal is certainly appealing compared to waiting for individual pulses from infrequent random events. It also has the advantage over pulses that continued observation can increase the signal-to-noise ratio almost indefinitely. Furthermore, this system is dynamically simple; the theory of the generation of the radiation is unambiguous; all characteristics of the signal can be precisely related to the dynamical parameters of the source. The current situation is that while there is no observational evidence as yet for the existence of massive binary BH, their formation is theoretically plausible, and within certain coupled constraints of mass and location, their existence cannot be observationally excluded. Detecting gravitational waves from these objects might be the first observational proof of their existence.

  11. [EFFECTIVENESS OF EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY IN PATIENTS WITH UROLITHIASIS OF A SOLITARY KIDNEY].

    PubMed

    Parshenkova, I G; Dutov, V V; Rumjancev, A A; Mamedov, E A

    2015-01-01

    The article presents results of extracorporeal shock wave lithotripsy (ESWL) in 62 patients with urolithiasis of a solitary kidney. In 50 (80.6%) patients calculi were located in the kidney and in 12 (19.4%) patients in the ureter. Effectiveness of ESWL at 3 month follow-up was 85.5%, which is somewhat lower than in patients with two healthy kidneys due to the choice of sparing low-energy modes of lithotripsy. The effectiveness of ESWL depended on the size of the original calculi (p<0.0001), and the baseline urodynamics of the upper urinary tract (p<0.0001). The rates of complications (32.3%) and auxiliary procedures (16.1%) were relatively low, due to the usage of pre-drainage of the kidney before a session of ESWL in patients with large and multiple calculi. There was no correlation between the occurrence of complications during treatment and the clinical form of a solitary kidney (p>0.05). In patients with stones larger than 1 cm and a moderate baseline abnormalities of the upper urinary tract urodynamics ESWL was less effective (p<0.0001), they had increased time of lithotripsy (p=0.013), more sessions (p<0.0001), complications (19.4%, p=0.043) and auxiliary manipulation (9.7%). Nevertheless, the duration of stay in hospital in the postoperative period did not correlate with the size of calculus (p=0.504). Extracorporeal shock wave lithotripsy is a highly effective and safe treatment of stones of a solitary kidney. Rational choice of indications and contraindications for the use of ESWL in a specific clinical situation is of great importance.

  12. El Niño Surges; Warm Kelvin Wave Headed for South America

    NASA Image and Video Library

    2009-12-17

    The most recent sea-level height data from the NASA/European Ocean Surface Topography Mission/Jason-2 oceanography satellite show the continued eastward progression of a strong wave of warm water, known as a Kelvin wave, now approaching South America.

  13. 1.9 μm square-wave passively Q-witched mode-locked fiber laser.

    PubMed

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin

    2018-05-14

    We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

  14. Photoacoustic imaging optimization with raw signal deconvolution and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Guo, Chengwen; Wang, Jing; Qin, Yu; Zhan, Hongchen; Yuan, Jie; Cheng, Qian; Wang, Xueding

    2018-02-01

    Photoacoustic (PA) signal of an ideal optical absorb particle is a single N-shape wave. PA signals of a complicated biological tissue can be considered as the combination of individual N-shape waves. However, the N-shape wave basis not only complicates the subsequent work, but also results in aliasing between adjacent micro-structures, which deteriorates the quality of the final PA images. In this paper, we propose a method to improve PA image quality through signal processing method directly working on raw signals, which including deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure, the raw PA signals are de-convolved with a system dependent point spread function (PSF) which is measured in advance. Then, EMD is adopted to adaptively re-shape the PA signals with two constraints, positive polarity and spectrum consistence. With our proposed method, the built PA images can yield more detail structural information. Micro-structures are clearly separated and revealed. To validate the effectiveness of this method, we present numerical simulations and phantom studies consist of a densely distributed point sources model and a blood vessel model. In the future, our study might hold the potential for clinical PA imaging as it can help to distinguish micro-structures from the optimized images and even measure the size of objects from deconvolved signals.

  15. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  16. Continuous-time quantum random walks require discrete space

    NASA Astrophysics Data System (ADS)

    Manouchehri, K.; Wang, J. B.

    2007-11-01

    Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.

  17. Full Spectrum Conversion Using Traveling Pulse Wave Quantization

    DTIC Science & Technology

    2017-03-01

    Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a

  18. Computer program for analysis of coupled-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Omalley, T. A.

    1977-01-01

    A flexible, accurate, large signal computer program was developed for the design of coupled cavity traveling wave tubes. The program is written in FORTRAN IV for an IBM 360/67 time sharing system. The beam is described by a disk model and the slow wave structure by a sequence of cavities, or cells. The computational approach is arranged so that each cavity may have geometrical or electrical parameters different from those of its neighbors. This allows the program user to simulate a tube of almost arbitrary complexity. Input and output couplers, severs, complicated velocity tapers, and other features peculiar to one or a few cavities may be modeled by a correct choice of input data. The beam-wave interaction is handled by an approach in which the radio frequency fields are expanded in solutions to the transverse magnetic wave equation. All significant space harmonics are retained. The program was used to perform a design study of the traveling-wave tube developed for the Communications Technology Satellite. Good agreement was obtained between the predictions of the program and the measured performance of the flight tube.

  19. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network

    NASA Astrophysics Data System (ADS)

    Su, Zhongqing; Ye, Lin

    2004-08-01

    The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.

  20. Breakdown simulations in a focused microwave beam within the simplified model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.

    2016-07-15

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less

  1. TSA - A Two Scale Approximation for Wind-Generated Ocean Surface Waves

    DTIC Science & Technology

    2012-09-30

    broad-scale version of TSA, or ‘ dTSA ’. In this manner dTSA is able to respond to changing wind situations. Results were shown to compare well with ‘exact...We also implemented the revised version of TSA, denoted ‘ dTSA ’, in WW3 for tests with a storm case, hurricane Juan, which made landfall as a...manner in which the broad-scale of TSA was defined, developing ‘ dTSA ’ as described above, so that in complicated rapidly changing wave spectra cases, a

  2. Guided wave crack detection and size estimation in stiffened structures

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor

    2018-03-01

    Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.

  3. The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.

    2017-12-01

    Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.

  4. Diode-pumped continuous wave and passively Q-switched Tm, Mg: LiTaO₃ lasers.

    PubMed

    Feng, T; Li, T; Zhao, S; Li, Q; Yang, K; Zhao, J; Qiao, W; Hang, Y; Zhang, P; Wang, Y; Xu, J

    2014-02-24

    We have demonstrated the continuous wave and passively Q-switched Tm, Mg: LiTaO3 lasers for the first time. In continuous wave (CW) regime, a maximum CW output power of 1.03 W at 1952 nm was obtained, giving a slope efficiency of 9.5% and a beam quality M2 = 2.2. In passive Q-switching regime, a single walled carbon nanotube (SWCNT) was employed as saturable absorber (SA). The Tm,Mg:LiTaO3 laser has yielded a pulse of 560 ns under repetition rate of 34.2 kHz at 1926 nm, corresponding to a single pulse energy of 10.1 μJ. The results indicate a promising potential of nonlinear crystals in the applications for laser host materials.

  5. Discrete rational and breather solution in the spatial discrete complex modified Korteweg-de Vries equation and continuous counterparts.

    PubMed

    Zhao, Hai-Qiong; Yu, Guo-Fu

    2017-04-01

    In this paper, a spatial discrete complex modified Korteweg-de Vries equation is investigated. The Lax pair, conservation laws, Darboux transformations, and breather and rational wave solutions to the semi-discrete system are presented. The distinguished feature of the model is that the discrete rational solution can possess new W-shape rational periodic-solitary waves that were not reported before. In addition, the first-order rogue waves reach peak amplitudes which are at least three times of the background amplitude, whereas their continuous counterparts are exactly three times the constant background. Finally, the integrability of the discrete system, including Lax pair, conservation laws, Darboux transformations, and explicit solutions, yields the counterparts of the continuous system in the continuum limit.

  6. Venous Lake of the Lips Treated Using Photocoagulation with High-Intensity Diode Laser

    PubMed Central

    Galletta, Vivian C.; de Paula Eduardo, Carlos; Migliari, Dante A.

    2010-01-01

    Abstract Objective: To evaluate the effectiveness of photocoagulation with high-intensity diode laser in the treatment of venous lake (VL) lesions. Background Data: VL is a common vascular lesion characterized by elevated, usually dome-shaped papules, ranging in color from dark blue to dark purple, seen more frequently in elderly patients. They often occur as single lesions on the ears, face, lips, or neck. Once formed, lesions persist throughout life. Although these lesions are usually asymptomatic, they can bleed if injured. Methods: Seventeen patients (7 men and 10 women) with VL on the lip were treated using a noncontact diode laser (wavelength 808 nm, power output 2–3 W in continuous wave). Results: After only one irradiation exposure, all lesions were successfully treated. Healing was completed in approximately 2 to 3 weeks, and none of the patients experienced complications. Postoperative discomfort and scarring were not present or were minimal. Conclusion: Photocoagulation with high-intensity diode laser is an effective, bloodless procedure for the treatment of VL. PMID:19811083

  7. Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms

    PubMed Central

    Kashter, Yuval; Rivenson, Yair; Stern, Adrian; Rosen, Joseph

    2015-01-01

    Creating a large-scale synthetic aperture makes it possible to break the resolution boundaries dictated by the wave nature of light of common optical systems. However, their implementation is challenging, since the generation of a large size continuous mosaic synthetic aperture composed of many patterns is complicated in terms of both phase matching and time-multiplexing duration. In this study we present an advanced configuration for an incoherent holographic imaging system with super resolution qualities that creates a partial synthetic aperture. The new system, termed sparse synthetic aperture with Fresnel elements (S-SAFE), enables significantly decreasing the number of the recorded elements, and it is free from positional constrains on their location. Additionally, in order to obtain the best image quality we propose an optimal mosaicking structure derived on the basis of physical and numerical considerations, and introduce three reconstruction approaches which are compared and discussed. The super-resolution capabilities of the proposed scheme and its limitations are analyzed, numerically simulated and experimentally demonstrated. PMID:26367947

  8. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less

  9. Grief and mourning gone awry: pathway and course of complicated grief.

    PubMed

    Shear, M Katherine

    2012-06-01

    Complicated grief is a recently recognized condition that occurs in about 7% of bereaved people. People with this condition are caught up in rumination about the circumstances of the death, worry about its consequences, or excessive avoidance of reminders of the loss. Unable to comprehend the finality and consequences of the loss, they resort to excessive avoidance of reminders of the loss as they are tossed helplessly on waves of intense emotion. People with complicated grief need help, and clinicians need to know how to recognize the symptoms and how to provide help. This paper provides a framework to help clinicans understand bereavement, grief, and mourning. Evidence-based diagnostic criteria are provided to help clinicians recognize complicated grief, and differentiate it from depression as well as anxiety disorder. We provide an overview of risk factors and basic assumptions and principles that can guide treatment.

  10. Grief and mourning gone awry: pathway and course of complicated grief

    PubMed Central

    Shear, M. Katherine

    2012-01-01

    Complicated grief is a recently recognized condition that occurs in about 7% of bereaved people. People with this condition are caught up in rumination about the circumstances of the death, worry about its consequences, or excessive avoidance of reminders of the loss. Unable to comprehend the finality and consequences of the loss, they resort to excessive avoidance of reminders of the loss as they are tossed helplessly on waves of intense emotion. People with complicated grief need help, and clinicians need to know how to recognize the symptoms and how to provide help. This paper provides a framework to help clinicans understand bereavement, grief, and mourning. Evidence-based diagnostic criteria are provided to help clinicians recognize complicated grief, and differentiate it from depression as well as anxiety disorder. We provide an overview of risk factors and basic assumptions and principles that can guide treatment. PMID:22754284

  11. Design of a New Water Load for S-band 750 kW Continuous Wave High Power Klystron Used in EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Liu, Fukun; Shan, Jiafang; Kuang, Guangli

    2007-04-01

    In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 oC at the highest power level.

  12. Continuous wave operation of quantum cascade lasers with frequency-shifted feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu; NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826; College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826

    2016-01-15

    Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.

  13. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    PubMed

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  14. Robust Likelihoods for Inflationary Gravitational Waves from Maps of Cosmic Microwave Background Polarization

    NASA Technical Reports Server (NTRS)

    Switzer, Eric Ryan; Watts, Duncan J.

    2016-01-01

    The B-mode polarization of the cosmic microwave background provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance or be removed through reprocessing the data.

  15. Mammalian Pathogenesis and Transmission of H7N9 Influenza Viruses from Three Waves, 2013-2015

    PubMed Central

    Belser, Jessica A.; Creager, Hannah M.; Sun, Xiangjie; Gustin, Kortney M.; Jones, Tara; Shieh, Wun-Ju; Maines, Taronna R.

    2016-01-01

    ABSTRACT Three waves of human infection with H7N9 influenza viruses have concluded to date, but only viruses within the first wave (isolated between March and September 2013) have been extensively studied in mammalian models. While second- and third-wave viruses remain closely linked phylogenetically and antigenically, even subtle molecular changes can impart critical shifts in mammalian virulence. To determine if H7N9 viruses isolated from humans during 2013 to 2015 have maintained the phenotype first identified among 2013 isolates, we assessed the ability of first-, second-, and third-wave H7N9 viruses isolated from humans to cause disease in mice and ferrets and to transmit among ferrets. Similar to first-wave viruses, H7N9 viruses from 2013 to 2015 were highly infectious in mice, with lethality comparable to that of the well-studied A/Anhui/1/2013 virus. Second- and third-wave viruses caused moderate disease in ferrets, transmitted efficiently to cohoused, naive contact animals, and demonstrated limited transmissibility by respiratory droplets. All H7N9 viruses replicated efficiently in human bronchial epithelial cells, with subtle changes in pH fusion threshold identified between H7N9 viruses examined. Our results indicate that despite increased genetic diversity and geographical distribution since their initial detection in 2013, H7N9 viruses have maintained a pathogenic phenotype in mammals and continue to represent an immediate threat to public health. IMPORTANCE H7N9 influenza viruses, first isolated in 2013, continue to cause human infection and represent an ongoing public health threat. Now entering the fourth wave of human infection, H7N9 viruses continue to exhibit genetic diversity in avian hosts, necessitating continuous efforts to monitor their pandemic potential. However, viruses isolated post-2013 have not been extensively studied, limiting our understanding of potential changes in virus-host adaptation. In order to ensure that current research with first-wave H7N9 viruses still pertains to more recently isolated strains, we compared the relative virulence and transmissibility of H7N9 viruses isolated during the second and third waves, through 2015, in the mouse and ferret models. Our finding that second- and third-wave viruses generally exhibit disease in mammals comparable to that of first-wave viruses strengthens our ability to extrapolate research from the 2013 viruses to current public health efforts. These data further contribute to our understanding of molecular determinants of pathogenicity, transmissibility, and tropism. PMID:26912620

  16. ELF/VLF Waves Generated by an Artificially-Modulated Auroral Electrojet Above the HAARP HF Transmitter

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Inan, U. S.; Bell, T. F.

    2004-12-01

    Naturally-forming, global-scale currents, such as the polar electrojet current and the mid-latitude dynamo, have been used as current sources to generate electromagnetic waves in the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands since the 1970's. While many short-duration experiments have been performed, no continuous multi-week campaign data sets have been published providing reliable statistics for ELF/VLF wave generation. In this paper, we summarize the experimental data resulting from multiple ELF/VLF wave generation campaigns conducted at the High-frequency Active Auroral Research Project (HAARP) HF transmitter in Gakona, Alaska. For one 14-day period in March, 2002, and one 24-day period in November, 2002, the HAARP HF transmitter broadcast ELF/VLF wave generation sequences for 10 hours per day, between 0400 and 1400 UT. Five different modulation frequencies broadcast separately using two HF carrier frequencies are examined at receivers located 36, 44, 147, and 155 km from the HAARP facility. Additionally, a continuous 24-hour transmission period is analyzed to compare day-time wave generation to night-time wave generation. Lastly, a power-ramping scheme was employed to investigate possible thresholding effects at the wave-generating altitude. Wave generation statistics are presented along with source-region property calculations performed using a simple model.

  17. Use of ureteral stent in extracorporeal shock wave lithotripsy for upper urinary calculi: a systematic review and meta-analysis.

    PubMed

    Shen, Pengfei; Jiang, Min; Yang, Jie; Li, Xiong; Li, Yutao; Wei, Wuran; Dai, Yi; Zeng, Hao; Wang, Jia

    2011-10-01

    This systematic review was performed to assess the necessity and complications of stenting before extracorporeal shock wave lithotripsy in the management of upper urinary stones. A systematic research of PubMed®, EMBASE® and the Cochrane Library was performed to identify all randomized controlled trials. The comparisons were about the outcomes and complications of extracorporeal shock wave lithotripsy in the management of upper urinary stones with or without Double-J stenting before extracorporeal shock wave lithotripsy, including stone-free rate, Steinstrasse, lower urinary tract symptoms, hematuria, fever, urinary tract infection, pain and analgesia, auxiliary treatment, and nausea and vomiting. We used the Cochrane Collaboration's Review Manager (RevMan) 5.0.2 software for statistical analysis. Eight randomized controlled trials were included in analysis that reported 876 patients in total, divided into the stented group of 453 and the stentless group of 423. All studies recorded the stone-free rate and the results of the meta-analysis showed no difference between the groups (RR 0.97, 95% CI 0.91-1.03, p = 0.27). The total incidence of Steinstrasse in the stented group was similar to that of the stentless group with the exception of 1 study. However, the incidence of lower urinary tract symptoms was significantly higher in the stented group than in the stentless group (RR 4.10, 95% CI 2.21-7.61, p <0.00001). Significant differences could not be found in hematuria, fever, urinary tract infection, pain and analgesia, auxiliary treatment, or nausea and vomiting between the groups. The systematic review suggested significant advantages of stenting before extracorporeal shock wave lithotripsy compared to in situ extracorporeal shock wave lithotripsy in terms of Steinstrasse. However, stenting did not benefit stone-free rate and auxiliary treatment after extracorporeal shock wave lithotripsy, and it induced more lower urinary tract symptoms. More high quality, randomized controlled trials are needed to address this issue. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.

    PubMed

    Suh, D M; Kim, W W; Chung, J G

    1999-01-01

    Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.

  19. Jet formation of SF6 bubble induced by incident and reflected shock waves

    NASA Astrophysics Data System (ADS)

    Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang

    2017-12-01

    The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.

  20. Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.

    PubMed

    Petrov, E Yu; Kudrin, A V

    2010-05-14

    The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.

  1. A study on pseudo interface wave technique for CRDM weld defects in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Lee, Jaesun; Park, Junpil; Cho, Younho; Huh, Hyung; Park, Keun-Bae; Kim, Dong-Ok

    2015-03-01

    The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundary conditions and the experimental result shows a possibility of the defect detection on J-groove weld.

  2. Comparison of the first three waves of avian influenza A(H7N9) virus circulation in the mainland of the People's Republic of China.

    PubMed

    Xiang, Nijuan; Iuliano, A Danielle; Zhang, Yanping; Ren, Ruiqi; Geng, Xingyi; Ye, Bili; Tu, Wenxiao; Li, Ch Ao; Lv, Yong; Yang, Ming; Zhao, Jian; Wang, Yali; Yang, Fuqiang; Zhou, Lei; Liu, Bo; Shu, Yuelong; Ni, Daxin; Feng, Zijian; Li, Qun

    2016-12-05

    H7N9 human cases were first detected in mainland China in March 2013. Circulation of this virus has continued each year shifting to typical winter months. We compared the clinical and epidemiologic characteristics for the first three waves of virus circulation. The first wave was defined as reported cases with onset dates between March 31-September 30, 2013, the second wave was defined as October 1, 2013-September 30, 2014 and the third wave was defined as October 1, 2014-September 30, 2015. We used simple descriptive statistics to compare characteristics of the three distinct waves of virus circulation. In mainland China, 134 cases, 306 cases and 219 cases were detected and reported in first three waves, respectively. The median age of cases was statistically significantly older in the first wave (61 years vs. 56 years, 56 years, p < 0.001) compared to the following two waves. Most reported cases were among men in all three waves. There was no statistically significant difference between case fatality proportions (33, 42 and 45%, respectively, p = 0.08). There were no significant statistical differences for time from illness onset to first seeking healthcare, hospitalization, lab confirmation, initiation antiviral treatment and death between the three waves. A similar percentage of cases in all waves reported exposure to poultry or live poultry markets (87%, 88%, 90%, respectively). There was no statistically significant difference in the occurrence of severe disease between the each of the first three waves of virus circulation. Twenty-one clusters were reported during these three waves (4, 11 and 6 clusters, respectively), of which, 14 were considered to be possible human-to-human transmission. Though our case investigation for the first three waves found few differences between the epidemiologic and clinical characteristics, there is continued international concern about the pandemic potential of this virus. Since the virus continues to circulate, causes more severe disease, has the ability to mutate and become transmissible from human-to-human, and there is limited natural protection from infection in communities, it is critical that surveillance systems in China and elsewhere are alert to the influenza H7N9 virus.

  3. Application of ANNs approach for wave-like and heat-like equations

    NASA Astrophysics Data System (ADS)

    Jafarian, Ahmad; Baleanu, Dumitru

    2017-12-01

    Artificial neural networks are data processing systems which originate from human brain tissue studies. The remarkable abilities of these networks help us to derive desired results from complicated raw data. In this study, we intend to duplicate an efficient iterative method to the numerical solution of two famous partial differential equations, namely the wave-like and heat-like problems. It should be noted that many physical phenomena such as coupling currents in a flat multi-strand two-layer super conducting cable, non-homogeneous elastic waves in soils and earthquake stresses, are described by initial-boundary value wave and heat partial differential equations with variable coefficients. To the numerical solution of these equations, a combination of the power series method and artificial neural networks approach, is used to seek an appropriate bivariate polynomial solution of the mentioned initial-boundary value problem. Finally, several computer simulations confirmed the theoretical results and demonstrating applicability of the method.

  4. A new fifth parameter for transverse isotropy III: reflection and transmission coefficients

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi

    2018-04-01

    The effect of the newly defined fifth parameter, ηκ, of transverse anisotropy to the reflection and transmission coefficients, especially for P-to-S and S-to-P conversion coefficients, is examined. While ηκ systematically affects the P-to-S and S-to-P conversions, in the incidence angle range of the practical interest of receiver function studies, the effect may be asymmetric in a sense that P-wave receiver function is affected more than S-receiver function in terms of amplitude. This asymmetry may help resolving ηκ via extensive receiver function analysis. It is also found that P-wave anisotropy significantly influences P-to-S and S-to-P conversion coefficients that complicates the interpretation of receiver functions, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes but not to P-wave changes.

  5. Diagonal Born-Oppenheimer correction for coupled-cluster wave-functions

    NASA Astrophysics Data System (ADS)

    Shamasundar, K. R.

    2018-06-01

    We examine how geometry-dependent normalisation freedom of electronic wave-functions affects extraction of a meaningful diagonal Born-Oppenheimer correction (DBOC) to the ground-state Born-Oppenheimer potential energy surface (PES). By viewing this freedom as a kind of gauge-freedom, it is shown that DBOC and the resulting associated mass-dependent adiabatic PES are gauge-invariant quantities. A sum-over-states (SOS) formula for DBOC which explicitly exhibits this invariance is derived. A biorthogonal formulation suitable for DBOC computations using standard unnormalised coupled-cluster (CC) wave-functions is presented. This is shown to lead to a biorthogonal version of SOS formula with similar properties. On this basis, different computational schemes for evaluating DBOC using approximate CC wave-functions are derived. One of this agrees with the formula used in the current literature. The connection to adiabatic-to-diabatic transformations in non-adiabatic dynamics is explored and complications arising from biorthogonal nature of CC theory are identified.

  6. Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Guo, Zhengru; Zhang, Qingshan

    Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less

  7. Excitation of high-frequency surface waves with long duration in the Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Iida, Masahiro

    1999-04-01

    During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed zone of Mexico City. We interpret high-frequency seismic wave fields in the three geotechnical zones (the hill, the transition, and the lake bed zones) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of wave types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the wave field incident into surficial layers in the Valley of Mexico. We interpret recorded surface waves as fundamental-mode Love waves excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface waves. In the lake bed zone, while early portions are noisy body waves, late portions are mostly surface waves. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-wave propagation in the lake bed zone. The wave propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-wave portions from lake bed seismograms. Surface waves are dominant and are recognized even in the early time section. Thus high-frequency surface waves with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.

  8. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-09-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

  9. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.

    PubMed

    Bölsterli Heinzle, Bigna Katrin; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard

    2017-02-01

    Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed. We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1–13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, “hyper-synchronized slow waves” may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization. Georg Thieme Verlag KG Stuttgart · New York.

  10. High-efficiency tri-band quasi-continuous phase gradient metamaterials based on spoof surface plasmon polaritons

    PubMed Central

    Li, Yongfeng; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zheng, Qiqi; Chen, Hongya; Han, Yajuan; Zhang, Jieqiu; Qu, Shaobo

    2017-01-01

    A high-efficiency tri-band quasi-continuous phase gradient metamaterial is designed and demonstrated based on spoof surface plasmon polaritons (SSPPs). High-efficiency polarizaiton conversion transmission is firstly achieved via tailoring phase differece between the transmisive SSPP and the space wave in orthogonal directions. As an example, a tri-band circular-to-circular (CTC) polarization conversion metamateiral (PCM) was designed by a nonlinearly dispersive phase difference. Using such PCM unit cell, a tri-band quasi-continuous phase gradient metamaterial (PGM) was then realized by virtue of the Pancharatnam-Berry phase. The distribution of the cross-polarization transmission phase along the x-direction is continuous except for two infinitely small intervals near the phases 0° and 360°, and thus the phase gradient has definition at any point along the x-direction. The simulated normalized polarization conversion transmission spectrums together with the electric field distributions for circularly polarized wave and linearly polarized wave demonstrated the high-efficiency anomalous refraction of the quasi-continuous PGM. The experimental verification for the linearly polarized incidence was also provided. PMID:28079185

  11. Psychopathology in Young People With Intellectual Disability

    PubMed Central

    Einfeld, Stewart L.; Piccinin, Andrea M.; Mackinnon, Andrew; Hofer, Scott M.; Taffe, John; Gray, Kylie M.; Bontempo, Daniel E.; Hoffman, Lesa R.; Parmenter, Trevor; Tonge, Bruce J.

    2008-01-01

    Context Comorbid severe mental health problems complicating intellectual disability are a common and costly public health problem. Although these problems are known to begin in early childhood, little is known of how they evolve over time or whether they continue into adulthood. Objective To study the course of psychopathology in a representative population of children and adolescents with intellectual disability. Design, Setting, and Participants The participants of the Australian Child to Adult Development Study, an epidemiological cohort of 578 children and adolescents recruited in 1991 from health, education, and family agencies that provided services to children with intellectual disability aged 5 to 19.5 years in 6 rural and urban census regions in Australia, were followed up for 14 years with 4 time waves of data collection. Data were obtained from 507 participants, with 84% of wave 1 (1991-1992) participants being followed up at wave 4 (2002-2003). Main Outcome Measures The Developmental Behaviour Checklist (DBC), a validated measure of psychopathology in young people with intellectual disability, completed by parents or other caregivers. Changes over time in the Total Behaviour Problem Score and 5 subscale scores of the DBC scores were modeled using growth curve analysis. Results High initial levels of behavioral and emotional disturbance decreased only slowly over time, remaining high into young adulthood, declining by 1.05 per year on the DBC Total Behaviour Problem Score. Overall severity of psychopathology was similar across mild to severe ranges of intellectual disability (with mean Total Behaviour Problem Scores of approximately 44). Psychopathology decreased more in boys than girls over time (boys starting with scores 2.61 points higher at baseline and ending with scores 2.57 points lower at wave 4), and more so in participants with mild intellectual disability compared with those with severe or profound intellectual disability who diverged from having scores 0.53 points lower at study commencement increasing to a difference of 6.98 points below severely affected children by wave 4. This trend was observed in each of the subscales, except the social-relating disturbance subscale, which increased over time. Prevalence of participants meeting criteria for major psychopathology or definite psychiatric disorder decreased from 41% at wave 1 to 31% at wave 4. Few of the participants (10%) with psychopathology received mental health interventions during the study period. Conclusion These results provide evidence that the problem of psychopathology comorbid with intellectual disability is both substantial and persistent and suggest the need for effective mental health interventions. PMID:17062861

  12. Spinal Cord Injuries in Wave-Riding Sports: The Influence of Environmental and Sport-Specific Factors.

    PubMed

    Falconi, Audrey; Flick, David; Ferguson, Jason; Glorioso, John E

    2016-01-01

    Spinal cord injury is a nonfatal, catastrophic consequence of wave-riding sports. With surfing at the core, a multitude of activities have evolved that attempt to harness the power of ocean waves. The unique qualities of each wave-riding sport, in combination with the environmental factors of the ocean, define the risk for potential injuries. As wave-riding sports have become more advanced, athletes continue to push physical barriers. Taller waves are attempted while incorporating aerial maneuvers, all without protective equipment.

  13. Mechanical Parametric Oscillations and Waves

    ERIC Educational Resources Information Center

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  14. Nonlinear Localized Dissipative Structures for Long-Time Solution of Wave Equation

    DTIC Science & Technology

    2009-07-01

    are described in this chapter. These details are required to compute interference. WC can be used to generate constant arrival time ( Eikonal phase...complicated using Eikonal schemes. Some recent developments in Eikonal methods [2] can treat multiple arrival times but, these methods require extra

  15. Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi

    2018-04-01

    Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.

  16. A Coupled Model of Langmuir Circulations and Ramp-like Structures in the Upper Ocean Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.; Lukas, R.; Donelan, M. A.; Terray, E. A.

    2016-12-01

    Surface-wave breaking is a powerful mechanism producing significant energy flux to small scale turbulence. Most of the turbulent energy produced by breaking waves dissipates within one significant wave height, while the turbulent diffusion layer extends to approximately ten significant wave heights. Notably, the near-surface shear may practically vanish within the wave-stirred layer due to small-scale turbulent mixing. The surface ocean temperature-salinity structure, circulation, and mass exchanges (including greenhouse gases and pollutants) substantially depend on turbulent mixing and non-local transport in the near-surface layer of the ocean. Spatially coherent organized motions have been recognized as an important part of non-local transport. Langmuir circulation (LC) and ramp-like structures are believed to vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and other substances in the upper layer of the ocean. Free surface significantly complicates the analysis of turbulent exchanges at the air-sea interface and the coherent structures are not yet completely understood. In particular, there is growing observational evidence that in the case of developing seas when the wind direction may not coincide with the direction of the energy containing waves, the Langmuir lines are oriented in the wind rather than the wave direction. In addition, the vortex force due to Stokes drift in traditional models is altered in the breaking-wave-stirred layer. Another complication is that the ramp-like structures in the upper ocean turbulent boundary layer have axes perpendicular to the axes of LC. The ramp-like structures are not considered in the traditional model. We have developed a new model, which treats the LC and ramp-like structures in the near-surface layer of the ocean as a coupled system. Using computational fluid dynamics tools (LES), we have been able to reproduce both LC and ramp-like structures coexisting in space though intermittent in time. In the model, helicity isosurfaces appear to be tilted and, in general, coordinated with the tilted velocity isosurfaces produced by ramp-like structures. This is an indication of coupling between the LC and ramp-like structures. Remarkably, the new model is able to explain observations of LC under developing seas.

  17. P-Wave Indices and Risk of Ischemic Stroke: A Systematic Review and Meta-Analysis.

    PubMed

    He, Jinli; Tse, Gary; Korantzopoulos, Panagiotis; Letsas, Konstantinos P; Ali-Hasan-Al-Saegh, Sadeq; Kamel, Hooman; Li, Guangping; Lip, Gregory Y H; Liu, Tong

    2017-08-01

    Atrial cardiomyopathy is associated with an increased risk of ischemic stroke. P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area are electrocardiographic parameters that have been used to assess left atrial abnormalities related to developing atrial fibrillation. The aim of this systematic review and meta-analysis was to examine their values for predicting ischemic stroke risk. PubMed and EMBASE databases were searched until December 2016 for studies that evaluated the association between P-wave indices and stroke risk. Both fixed- and random-effects models were used to calculate the overall effect estimates. Ten studies examining P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area were included. P-wave terminal force in lead V 1 was found to be an independent predictor of stroke as both a continuous variable (odds ratio [OR] per 1 SD change, 1.18; 95% confidence interval [CI], 1.12-1.25; P <0.0001) and categorical variable (OR, 1.59; 95% CI, 1.10-2.28; P =0.01). P-wave duration was a significant predictor of incident ischemic stroke when analyzed as a categorical variable (OR, 1.86; 95% CI, 1.37-2.52; P <0.0001) but not when analyzed as a continuous variable (OR, 1.05; 95% CI, 0.98-1.13; P =0.15). Maximum P-wave area also predicted the risk of incident ischemic stroke (OR per 1 SD change, 1.10; 95% CI, 1.04-1.17). P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area are useful electrocardiographic markers that can be used to stratify the risk of incident ischemic stroke. © 2017 American Heart Association, Inc.

  18. In situ observations of wave pumping of sediments in the Yellow River Delta with a newly developed benthic chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Shaotong; Jia, Yonggang; Zhang, Yaqi; Liu, Xiaolei; Shan, Hongxian

    2018-03-01

    A specially designed benthic chamber for the field observation of sediment resuspension that is caused by the wave-induced oscillatory seepage effect (i.e., the wave pumping of sediments) is newly developed. Observational results from the first sea trial prove that the geometry design and skillful instrumentation of the chamber well realize the goal of monitoring the wave pumping of sediments (WPS) continuously. Based on this field dataset, the quantitative contribution of the WPS to the total sediment resuspension is estimated to be 20-60% merely under the continuous action of normal waves (Hs ≤ 1.5 m) in the subaqueous Yellow River Delta (YRD). Such a large contribution invalidates a commonly held opinion that sediments are purely eroded from the seabed surface by the horizontal "shearing effect" from the wave orbital or current velocities. In fact, a considerable amount of sediments could originate from the shallow subsurface of seabed driven by the vertical "pumping effect" of the wave-generated seepage flows during wavy periods. According to the new findings, an improved conceptual model for the resuspension mechanisms of silty sediments under various hydrodynamics is proposed for the first time.

  19. Room Temperature Erbium-Doped Yttrium Vanadate (Er:YVO4) Laser and Amplifier

    DTIC Science & Technology

    2016-09-01

    perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi -continuous wave regime...laser, amplifier, quasi -continuous wave 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...distribution unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Laser Experimental Setup and Results 2 3. Laser Amplifier Setup 6 4

  20. Characterization of a Continuous Wave Laser for Resonance Ionization Mass Spectroscopy Analysis in Nuclear Forensics

    DTIC Science & Technology

    2015-06-01

    OF A CONTINUOUS WAVE LASER FOR RESONANCE IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS by Sunny G. Lau June 2015 Thesis...IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS 5. FUNDING NUMBERS 6. AUTHOR(S) Sunny G. Lau 7. PERFORMING ORGANIZATION NAME(S) AND...200 words) The application of resonance ionization mass spectroscopy (RIMS) to nuclear forensics involves the use of lasers to selectively ionize

  1. Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering

    DTIC Science & Technology

    2016-09-01

    Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy...Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy Sensors and Electron Devices...08/2016 4. TITLE AND SUBTITLE Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering 5a

  2. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    NASA Astrophysics Data System (ADS)

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  3. CdS thin films prepared by continuous wave Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.

    1995-08-01

    We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.

  4. Frequency-Modulated Continuous-Wave Fm-Cw Radar for Evaluation of Refractory Structures Used in Glass Manufacturing Furnaces

    NASA Astrophysics Data System (ADS)

    Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.

    2009-03-01

    A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.

  5. Millimeter wave front-end figure of merit, part 2

    NASA Astrophysics Data System (ADS)

    Silberman, Gabriel G.

    1995-09-01

    This report presents a practical approach for defining and calculating a meaningful figure of merit for frequency modulated continuous wave radar systems with separate receive and transmit (bistatic) antennas.

  6. Rapid Assessment of Wave Height Transformation through a Tidal Inlet via Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Díaz Méndez, G.; Haller, M. C.; Raubenheimer, B.; Elgar, S.; Honegger, D.

    2014-12-01

    Radar has the potential to enable temporally and spatially dense, continuous monitoring of waves and currents in nearshore environments. If quantitative relationships between the remote sensing signals and the hydrodynamic parameters of interest can be found, remote sensing techniques can mitigate the challenges of continuous in situ sampling and possibly enable a better understanding of wave transformation in areas with strongly inhomogeneous along and across-shore bathymetry, currents, and dissipation. As part of the DARLA experiment (New River Inlet, NC), the accuracy of a rapid assessment of wave height transformation via radar remote sensing is tested. Wave breaking events are identified in the radar image time series (Catalán et al. 2011). Once the total number of breaking waves (per radar collection) is mapped throughout the imaging domain, radar-derived bathymetry and wave frequency are used to compute wave breaking dissipation (Janssen and Battjes 2007). Given the wave breaking dissipation, the wave height transformation is calculated by finding an inverse solution to the 1D cross-shore energy flux equation (including the effect of refraction). The predicted wave height transformation is consistent (correlation R > 0.9 and rmse as low as 0.1 m) with the transformation observed with in situ sensors in an area of complex morphology and strong (> 1 m/s) tidal currents over a nine-day period. The wave forcing (i.e., radiation stress gradients) determined from the remote sensing methodology will be compared with values estimated with in situ sensors. Funded by ONR and ASD(R&E)

  7. Nonlinear Internal Waves on the Inner Shelf: Observations Using a Distributed Temperature Sensing (DTS) System.

    NASA Astrophysics Data System (ADS)

    Davis, K. A.; Reid, E. C.; Cohen, A. L.

    2016-02-01

    Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.

  8. Interferometric millimeter wave and THz wave doppler radar

    DOEpatents

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  9. Rural Youth Education Project: Third Wave

    ERIC Educational Resources Information Center

    Center for Rural Pennsylvania, 2010

    2010-01-01

    This study is designed to include four waves of data collection, conducted approximately every other year, beginning in 2004 and continuing through 2011. This report briefly describes the procedures used for the third wave of data collection, completed in 2008-2009, and the results from a sample of Pennsylvania's rural 11th grade youth and youth…

  10. Spherical-wave expansions of piston-radiator fields.

    PubMed

    Wittmann, R C; Yaghjian, A D

    1991-09-01

    Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.

  11. Characterization of Electrocardiogram Changes Throughout a Marathon

    PubMed Central

    Callaway, Clifton; Salcido, David; McEntire, Serina; Roth, Ronald; Hostler, David

    2014-01-01

    Purpose There are few data examining cardiovascular physiology throughout a marathon. This study was devised to characterize electrocardiographic activity continuously throughout a marathon. Methods Cardiac activity was recorded from 19 subjects wearing a Holter monitor during a marathon. The 19 subjects (14 men and 5 women) were aged 39 ± 16 years (mean ± SD) and completed a marathon in 4:32:16 ± 1:23:35. Heart rate (HR), heart rate variability (HRV), T-wave amplitude, T-wave amplitude variability, and T-wave alternans (TWA) were evaluated continuously throughout the marathon. Results Averaged across all subjects, HRV, T-wave amplitude variability, and TWA increased throughout the marathon. Increased variability in T-wave amplitude occurred in 86% of subjects, characterized by complex oscillatory patterns and TWA. Three minutes after the marathon, HR was elevated and HRV was suppressed relative to the pre-marathon state. Conclusion HRV and T-wave amplitude variability, especially in the form of TWA, increase throughout a marathon. Increasing TWA as a marathon progresses likely represents a physiologic process as no arrhythmias or cardiac events were observed. PMID:24832192

  12. On enigmatic properties of the main belt asteroids

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Two properties of the main belt asteroids still bother planetologists: why they are mainly of an oblong shape and why the larger bodies rotate faster than the smaller ones. According to the excepted impact theory constantly produced fragments should be rather more or less of equal dimensions. Larger bodies are more difficult to make rotating by hits than the smaller ones. The comparative wave planetology states that "orbits make structures". It means that as all celestial bodies move in non-round keplerian elliptic (and parabolic) orbits with periodically changing accelerations they are subjected to an action of inertia-gravity waves causing body warpings. These warpings in rotating bodies (but all celestial bodies rotate!) acquire stationary character and 4 ortho- and diagonal directions. An interference of these waves produces uprising (+), subsiding (-) and neutral (0) tectonic blocks size of which depends on the warping wavelengths. The fundamental wave 1 long 2πR makes one hemisphere to rise (bulge) and the opposite one to fall (press in) - this two-segment construction is the ubiquitous tectonic dichotomy. The first overtone wave 2 long πR is responsible for tectonic sectoring complicating the dichotomic segments. This already rather complicated structural picture is further complicated by a warping action of individual waves lengths of which are inversely proportional to orbital frequencies : higher frequency - smaller wave and , vice versa, lower frequency - larger waves. These waves produce tectonic granulation, granule size being a half of a wavelength. All terrestrial planets and the belt asteroids according to their orb. fr. are strictly arranged in the following row of granule sizes: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. The waves lengths and amplitudes increase with the solar distance, their warping action accordingly increases. If Mercury, Venus and Earth are more or less globular, Mars is already elliptical because two warping waves cannot be inscribed in a sphere otherwise than to stretch a body in one direction and to press it in the perpendicular one. Thus, an enigmatic shape of Mars is explained by this way. Asteroids are subjected to a warping action of the wave that bulges one hemisphere and presses the opposite one making convexo-concave bean shape [1]. This wave resonate (1 to 1) with the fundamental wave causing dichotomy of all celestial bodies . This very strong resonance enhances a warping action. That is why asteroids are flat, oblong and bean-shaped. The bulging hemisphere is always cracked, and this cracking sometimes is so strong that "saddles" appear sometimes cutting body into two or more pieces (binaries, satellites). Eros and the small Trojan satellite of Saturn Calypso (PIA07633) are very similar in this typical shape (convexo-concave shape and a "saddle") though they have different compositions, sizes and strengths. It was 1 shown earlier that degassing and rotations of terrestrial planets may be tied by redistribution of their angular momentum between a solid body and its gaseous envelope [2]. Bodies with higher orb. fr. and thus more finely granulated (Mercury, Venus) are more thoroughly wiped out of its volatiles and rotate slower because a significant part of their momenta gone with atmosphere (The Mercury's atmosphere was destroyed by the solar wind). The main asteroid belt rather stretched (2.2-3.2 a.u.) is composed of metallic, stone and carbonaceous bodies (judging by spectra and meteorites) , the first two dominating its inner part, the third -the outer one (similarity with the inner planets in respect of volatiles distribution). Less degassed asteroids keeping their original mass and "original" momentum (i.e.,the larger bodies) differ from the smaller ones having lost their original mass by degassing and spalling and shared their momenta with gone off parts. That is why the larger bodies are fast, the smaller ones slow rotating. References: [1] Kochemasov G.G. (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22; [2] Kochemasov G.G. (2003) Structures of the wave planetology and their projection onto the solar photosphere: why solar supergranules are 30000 km across. // Vernadsky-Brown microsymp. 38, Vernadsky Inst.,Moscow, Russia, Oct. 27-29, 2003, Abstr. (CD-ROM). 2

  13. Polish Americans. Second, Revised Edition.

    ERIC Educational Resources Information Center

    Lopata, Helen Znaniecka

    This book examines Polonia, the Polish ethnic community in America created by three giant waves of immigration between 1880 and 1990. The complicated history of this ethnic group is reflected in the lives of increasing numbers of Polish Americans, including recent immigrants brought by political and economic changes, as they achieve middle class…

  14. Precision ephemerides for gravitational-wave searches - III. Revised system parameters of Sco X-1

    NASA Astrophysics Data System (ADS)

    Wang, L.; Steeghs, D.; Galloway, D. K.; Marsh, T.; Casares, J.

    2018-06-01

    Neutron stars in low-mass X-ray binaries are considered promising candidate sources of continuous gravitational-waves. These neutron stars are typically rotating many hundreds of times a second. The process of accretion can potentially generate and support non-axisymmetric distortions to the compact object, resulting in persistent emission of gravitational-waves. We present a study of existing optical spectroscopic data for Sco X-1, a prime target for continuous gravitational-wave searches, with the aim of providing revised constraints on key orbital parameters required for a directed search with advanced-LIGO data. From a circular orbit fit to an improved radial velocity curve of the Bowen emission components, we derived an updated orbital period and ephemeris. Centre of symmetry measurements from the Bowen Doppler tomogram yield a centre of the disc component of 90 km s-1, which we interpret as a revised upper limit to the projected orbital velocity of the NS K1. By implementing Monte Carlo binary parameter calculations, and imposing new limits on K1 and the rotational broadening, we obtained a complete set of dynamical system parameter constraints including a new range for K1 of 40-90 km s-1. Finally, we discussed the implications of the updated orbital parameters for future continuous-waves searches.

  15. Early complications with the holmium laser

    NASA Astrophysics Data System (ADS)

    Beaghler, Marc A.; Stewart, Steven C.; Ruckle, Herbert C.; Poon, Michael W.

    1997-05-01

    The purpose of this study is to report early complications in our initial experience with the holmium laser in 133 patients. A retrospective study of patients undergoing endourological procedures with the holmium laser was performed. Complications included urinary tract infection (3), post-operative bradycardia (1), inverted T-waves (1), intractable flank pain (1), urinary retention (1), inability to access a lower pole calyx with a 365 micron fiber (9), stone migration (5), termination of procedure due to poor visualization (2). No ureteral perforations or strictures occurred. The holmium laser was capable of fragmenting all urinary calculi in this study. In our initial experience, the holmium laser is safe and effective in the treatment of genitourinary pathology. Use of laser fibers larger than 200 microns occasionally limit deflection into a lower pole or dependent calyx.

  16. Multi-scale mantle structure underneath the Americas from a new tomographic model of seismic shear velocity

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Becker, T. W.; Auer, L.; Boschi, L.

    2017-12-01

    We present a whole-mantle, variable resolution, shear-wave tomography model based on newly available and existing seismological datasets including regional body-wave delay times and multi-mode Rayleigh and Love wave phase delays. Our body wave dataset includes 160,000 S wave delays used in the DNA13 regional tomographic model focused on the western and central US, 86,000 S and SKS delays measured on stations in western South America (Porritt et al., in prep), and 3,900,000 S+ phases measured by correlation between data observed at stations in the IRIS global networks (IU, II) and stations in the continuous US, against synthetic data generated with IRIS Syngine. The surface wave dataset includes fundamental mode and overtone Rayleigh wave data from Schaeffer and Levedev (2014), ambient noise derived Rayleigh wave and Love wave measurements from Ekstrom (2013), newly computed fundamental mode ambient noise Rayleigh wave phase delays for the continuous US up to July 2017, and other, previously published, measurements. These datasets, along with a data-adaptive parameterization utilized for the SAVANI model (Auer et al., 2014), should allow significantly finer-scale imaging than previous global models, rivaling that of regional-scale approaches, under the USArray footprint in the continuous US, while seamlessly integrating into a global model. We parameterize the model for both vertically (vSV) and horizontally (vSH) polarized shear velocities by accounting for the different sensitivities of the various phases and wave types. The resulting, radially anisotropic model should allow for a range of new geodynamic analysis, including estimates of mantle flow induced topography or seismic anisotropy, without generating artifacts due to edge effects, or requiring assumptions about the structure of the region outside the well resolved model space. Our model shows a number of features, including indications of the effects of edge-driven convection in the Cordillera and along the eastern margin and larger-scale convection due to the subduction of the Farallon slab and along the edge of the Laurentia cratonic margin.

  17. Generation of realistic tsunami waves using a bottom-tilting wave maker

    NASA Astrophysics Data System (ADS)

    Park, Yong Sung; Hwang, Jin Hwan

    2016-11-01

    Tsunamis have caused more than 260,000 human losses and 250 billion in damage worldwide in the last ten years. Observations made during 2011 Japan Tohoku Tsunami revealed that the commonly used waves (solitary waves) to model tsunamis are at least an order-of-magnitude shorter than the real tsunamis, which calls for re-evaluation of the current understanding of tsunamis. To prompt the required paradigm shift, a new wave generator, namely the bottom-tilting wave generator, has been developed at the University of Dundee. The wave tank is fitted with an adjustable slope and a bottom flap hinged at the beginning of the slope. By moving the bottom flap up and down, we can generate very long waves. Here we will report characteristics of waves generated by simple bottom motions, either moving it upward or downward from an initial displacement ending it being horizontal. Two parameters, namely the initial displacement of the bottom and the speed of the motion, determine characteristics of the generated waves. Wave amplitudes scale well with the volume flux of the displaced water. On the other hand, due to combined effects of nonlinearity and dispersion, wavelengths show more complicated relationship with the two bottom motion parameters. We will also demonstrate that by combining simple up and down motions, it is possible to generate waves resembling the one measured during 2011 tsunami. YSP acknowledges financial support from the Royal Society of Edinburgh through the Royal Society of Edinburgh and Scottish Government Personal Research Fellowship Co-Funded by the Marie-Curie Actions.

  18. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun

    2009-08-03

    We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

  19. Targeted vs. systematic early antiviral treatment against A(H1N1)v influenza with neuraminidase inhibitors in patients with influenza-like symptoms: Clinical and economic impact

    PubMed Central

    Deuffic-Burban, Sylvie; Lenne, Xavier; Dervaux, Benoit; Julien Poissy; Lemaire, Xavier; Sloan, Caroline; Carrat, Fabrice; Desenclos, Jean-Claude; Delfraissy, Jean-Francois; Yazdanpanah, Yazdan

    2009-01-01

    Capitalizing on available data, we used a decision model to estimate the clinical and economic outcomes associated with early initiation of treatment with neuraminidase inhibitors in all patients with influenza-like illnesses ( ILI ) (systematic strategy) vs. only those at high risk of complications (targeted strategy). Systematic treatment of ILI during an A(H1N1)v influenza epidemic wave is both effective and cost-effective. Patients who present to care with ILI during an A(H1N1)v influenza epidemic wave should initiate treatment with neuraminidase inhibitors, regardless of risk status. Administering neuraminidase inhibitors between epidemic waves, when the probability of influenza is low, is less effective and cost-effective. PMID:20029659

  20. Computation of Feedback Aeroacoustic System by the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    It is well known that due to vortex shedding in high speed flow over cutouts, cavities, and gaps, intense noise may be generated. Strong tonal oscillations occur in a feedback cycle in which the vortices shed from the upstream edge of the cavity convect downstream and impinge on the cavity lip, generating acoustic waves that propagate upstream to excite new vortices. Numerical simulation of such a complicated process requires a scheme that can: (1) resolve acoustic waves with low dispersion and numerical dissipation, (2) handle nonlinear and discontinuous waves (e.g. shocks), and (3) have an effective (near field) nonreflecting boundary condition (NRBC). The new space time conservation element and solution element method, or CE/SE for short, is a numerical method that meets the above requirements.

  1. Hook Region Represented in a Cochlear Model

    NASA Astrophysics Data System (ADS)

    Steele, Charles R.; Kim, Namkeun; Puria, Sunil

    2009-02-01

    The present interest is in discontinuities. Particularly the geometry of the hook region, with the flexible round window nearly parallel with the basilar membrane, is not represented by a standard box model, in which both stapes and round window are placed at the end. A better model represents the round window by a soft membrane in the wall of scala tympani, with the end closed. This complicates the analysis considerably. Features are that the significant compression wave, i.e., the fast wave, is of negligible magnitude in this region, and that significant evanescent waves occur because of the discontinuities at the beginning and end of the simulated round window. The effect of this on both high frequency, with maximum basilar membrane response in the hook region, and lower frequencies are determined.

  2. An extreme ultraviolet wave associated with a failed eruption observed by the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Zheng, R.; Jiang, Y.; Yang, J.; Bi, Y.; Hong, J.; Yang, B.; Yang, D.

    2012-05-01

    Aims: Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present an extreme ultraviolet (EUV) wave associated with a failed filament eruption that generated no coronal mass ejection (CME) on 2011 March 1. We aim at understanding the nature and origin of this EUV wave. Methods: Combining the high-quality observations in the photosphere, the chromosphere, and the corona, we studied the characteristics of the wave and its relations to the associated eruption. Results: The event occurred at an ephemeral region near a small active region. The continuous magnetic flux cancelation in the ephemeral region produced pre-eruption brightenings and two EUV jets, and excited the filament eruption, accompanying it with a microflare. After the eruption, the filament material appeared far from the eruption center, and the ambient loops seemed to be intact. It was evident that the filament eruption had failed and was not associated with a CME. The wave happened just after the north jet arrived, and apparently emanated ahead of the north jet, far from the eruption center. The wave propagated at nearly constant velocities in the range of 260-350 km s-1, with a slight negative acceleration in the last phase. Remarkably, the wave continued to propagate, and a loop in its passage was intact when wave and loop met. Conclusions: Our analysis confirms that the EUV wave is a true wave, which we interpret as a fast-mode wave. In addition, the close temporal and spatial relationship between the wave and the jet provides evidence that the wave was likely triggered by the jet when the CME failed to happen. Three movies are available in electronic form at http://www.aanda.org

  3. Towards a quantification of ocean wave heights off the west coast of Ireland using land based seismic data

    NASA Astrophysics Data System (ADS)

    Donne, S.; Bean, C. J.; Lokmer, I.; Lambkin, K.; Creamer, C.

    2012-12-01

    Ocean gravity waves are driven by atmospheric pressure systems. Their interactions with one another and reflection off coastlines generate pressure changes at the sea floor. These pressure fluctuations are the cause of continuous background seismic noise known as microseisms. The levels of microseism activity vary as a function of the sea state and increase during periods of intensive ocean wave activity. In 2011 a seismic network was deployed along the west coast of Ireland to continuously record microseisms generated in the Atlantic Ocean, as part of the Wave Observation (WaveObs) project based in University College Dublin. This project aims to determine the characteristics of the causative ocean gravity waves through calibration of the microseism data with ocean buoy data. In initial tests we are using a Backpropagation Feed-forward Artificial Neural Network (BP ANN) to establish the underlying relationships between microseisms and ocean waves. ANNs were originally inspired by studies of the mammalian brain and nervous system and are designed to learn by example. If successful these tools could then be used to estimate ocean wave heights and wave periods using a land-based seismic network and complement current wave observations being made offshore by marine buoys. Preliminary ANN results are promising with the network successfully able to reconstruct trends in ocean wave heights and periods. Microseisms can provide significant information about oceanic processes. With a deeper understanding of how these processes work there is potential for 1) locating and tracking the evolution of the largest waves in the Atlantic and 2) reconstructing the wave climate off the west coast of Ireland using legacy seismic data on a longer time scale than is currently available using marine based observations.

  4. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  5. A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979-2012). Present wave climate and energy resource assessment

    NASA Astrophysics Data System (ADS)

    Gallagher, Sarah; Tiron, Roxana; Dias, Frédéric

    2014-08-01

    The Northeast Atlantic possesses some of the highest wave energy levels in the world. The recent years have witnessed a renewed interest in harnessing this vast energy potential. Due to the complicated geomorphology of the Irish coast, there can be a significant variation in both the wave and wind climate. Long-term hindcasts with high spatial resolution, properly calibrated against available measurements, provide vital information for future deployments of ocean renewable energy installations. These can aid in the selection of adequate locations for potential deployment and for the planning and design of those marine operations. A 34-year (from 1979 to 2012), high-resolution wave hindcast was performed for Ireland including both the Atlantic and Irish Sea coasts, with a particular focus on the wave energy resource. The wave climate was estimated using the third-generation spectral wave model WAVEWATCH III®; version 4.11, the unstructured grid formulation. The wave model was forced with directional wave spectral data and 10-m winds from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, which is available from 1979 to the present. The model was validated against available observed satellite altimeter and buoy data, particularly in the nearshore, and was found to be excellent. A strong spatial and seasonal variability was found for both significant wave heights, and the wave energy flux, particularly on the north and west coasts. A strong correlation between the North Atlantic Oscillation (NAO) teleconnection pattern and wave heights, wave periods, and peak direction in winter and also, to a lesser extent, in spring was identified.

  6. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms.

    PubMed

    Zhang, Bei; Sodickson, Daniel K; Lattanzi, Riccardo; Duan, Qi; Stoeckel, Bernd; Wiggins, Graham C

    2012-04-01

    In 7 T traveling wave imaging, waveguide modes supported by the scanner radiofrequency shield are used to excite an MR signal in samples or tissue which may be several meters away from the antenna used to drive radiofrequency power into the system. To explore the potential merits of traveling wave excitation for whole-body imaging at 7 T, we compare numerical simulations of traveling wave and TEM systems, and juxtapose full-wave electrodynamic simulations using a human body model with in vivo human traveling wave imaging at multiple stations covering the entire body. The simulated and in vivo traveling wave results correspond well, with strong signal at the periphery of the body and weak signal deep in the torso. These numerical results also illustrate the complicated wave behavior that emerges when a body is present. The TEM resonator simulation allowed comparison of traveling wave excitation with standard quadrature excitation, showing that while the traveling wave B +1 per unit drive voltage is much less than that of the TEM system, the square of the average B +1 compared to peak specific absorption rate (SAR) values can be comparable in certain imaging planes. Both systems produce highly inhomogeneous excitation of MR signal in the torso, suggesting that B(1) shimming or other parallel transmission methods are necessary for 7 T whole body imaging. Copyright © 2011 Wiley-Liss, Inc.

  7. 21 CFR 892.1540 - Nonfetal ultrasonic monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A nonfetal ultrasonic monitor is a device that projects a continuous high-frequency sound wave... wave and is intended for use in the investigation of nonfetal blood flow and other nonfetal body...

  8. 21 CFR 892.1540 - Nonfetal ultrasonic monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A nonfetal ultrasonic monitor is a device that projects a continuous high-frequency sound wave... wave and is intended for use in the investigation of nonfetal blood flow and other nonfetal body...

  9. [Surgical complications of colostomies].

    PubMed

    Ben Ameur, Hazem; Affes, Nejmeddine; Rejab, Haitham; Abid, Bassem; Boujelbene, Salah; Mzali, Rafik; Beyrouti, Mohamed Issam

    2014-07-01

    The colostomy may be terminal or lateral, temporary or permanent. It may have psychological, medical or surgical complications. reporting the incidence of surgical complications of colostomies, their therapeutic management and trying to identify risk factors for their occurrence. A retrospective study for a period of 5 years in general surgery department, Habib Bourguiba hospital, Sfax, including all patients operated with confection of a colostomy. Were then studied patients reoperated for stoma complication. Among the 268 patients who have had a colostomy, 19 patients (7%) developed surgical stoma complications. They had a mean age of 59 years, a sex ratio of 5.3 and a 1-ASA score in 42% of cases. It was a prolapse in 9 cases (reconfection of the colostomy: 6 cases, restoration of digestive continuity: 3 cases), a necrosis in 5 cases (reconfection of the colostomy), a plicature in 2 cases (reconfection of the colostomy) a peristomal abscess in 2 cases (reconfection of the colostomy: 1 case, restoration of digestive continuity: 1 case) and a strangulated parastomal hernia in 1 case (herniorrhaphy). The elective incision and the perineal disease were risk factors for the occurrence of prolapse stomial. Surgical complications of colostomies remain a rare event. Prolapse is the most common complication, and it is mainly related to elective approach. Reoperation is often required especially in cases of early complications, with usually uneventful postoperative course.

  10. Lagrangian methods in the analysis of nonlinear wave interactions in plasma

    NASA Technical Reports Server (NTRS)

    Galloway, J. J.

    1972-01-01

    An averaged-Lagrangian method is developed for obtaining the equations which describe the nonlinear interactions of the wave (oscillatory) and background (nonoscillatory) components which comprise a continuous medium. The method applies to monochromatic waves in any continuous medium that can be described by a Lagrangian density, but is demonstrated in the context of plasma physics. The theory is presented in a more general and unified form by way of a new averaged-Lagrangian formalism which simplifies the perturbation ordering procedure. Earlier theory is extended to deal with a medium distributed in velocity space and to account for the interaction of the background with the waves. The analytic steps are systematized, so as to maximize calculational efficiency. An assessment of the applicability and limitations of the method shows that it has some definite advantages over other approaches in efficiency and versatility.

  11. Bound states of moving potential wells in discrete wave mechanics

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2017-10-01

    Discrete wave mechanics describes the evolution of classical or matter waves on a lattice, which is governed by a discretized version of the Schrödinger equation. While for a vanishing lattice spacing wave evolution of the continuous Schrödinger equation is retrieved, spatial discretization and lattice effects can deeply modify wave dynamics. Here we discuss implications of breakdown of exact Galilean invariance of the discrete Schrödinger equation on the bound states sustained by a smooth potential well which is uniformly moving on the lattice with a drift velocity v. While in the continuous limit the number of bound states does not depend on the drift velocity v, as one expects from the covariance of ordinary Schrödinger equation for a Galilean boost, lattice effects can lead to a larger number of bound states for the moving potential well as compared to the potential well at rest. Moreover, for a moving potential bound states on a lattice become rather generally quasi-bound (resonance) states.

  12. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun

    2011-07-21

    Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.

  13. Dynamics of Laser-Driven Shock Waves in Solid Targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  14. The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*

    NASA Astrophysics Data System (ADS)

    Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok

    2017-09-01

    Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.

  15. Millimeter-wave generation and characterization of a GaAs FET by optical mixing

    NASA Technical Reports Server (NTRS)

    Ni, David C.; Fetterman, Harold R.; Chew, Wilbert

    1990-01-01

    Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.

  16. High frequencies of dermatological complications in children using insulin pumps or sensors.

    PubMed

    Berg, Anna Korsgaard; Olsen, Birthe Susanne; Thyssen, Jacob P; Zachariae, Claus; Simonsen, Anne Birgitte; Pilgaard, Kasper; Svensson, Jannet

    2018-06-01

    Dermatological complications in children and adolescents that are related to continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) have not been well-characterized. This study examined the prevalence and characteristics of different types of dermatological complications. Online questionnaires regarding dermatological complications related to CSII and/or CGM were returned from a total of 144 children and adolescents, aged 2 to 20 years. Both previous and current skin problems were reported along with their clinical characteristics. Descriptive statistics, χ 2 tests, and multivariate analyses were used to evaluate the data. Of 143 patients using CSII, 90% had previous and 63% reported current dermatological complications. Non-specific eczema was most frequently reported and was currently present in 25.7% of the patients. These results were independent of age and current CGM use. Among the 76 patients using CGM, 46% reported current dermatological complications. A history of atopy was associated with dermatological complications in individuals using CSII, but not CGM. The patients rated CGM-related dermal issues as significantly worse than those associated with CSII (P < .05). Dermatological complications can be a serious problem in treating pediatric and adolescent patients of all ages with CSII and/or CGM. Only a few clinical characteristics associated with these complications were identified in this study, highlighting the need for prospective studies that might lead to improvements in the prevention and treatment of dermatological problems. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Shear wave mapping of skeletal muscle using shear wave wavefront reconstruction based on ultrasound color flow imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-07-01

    We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.

  18. Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror.

    PubMed

    Siltanen, Mikael; Leinonen, Tomi; Halonen, Lauri

    2011-09-26

    We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability. © 2011 Optical Society of America

  19. Self-organized micro-holes on titania based sol-gel films under continuous direct writing with a continuous wave ultraviolet laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhti, S.; Destouches, N.; Gamet, E.

    The microstructuring of titania based sol-gel films is investigated by direct writing with a continuous wave ultraviolet laser beam emitting at 244 nm. Depending on the exposure conditions, the films exhibit a volume expansion, a volume shrinkage, a self-shaped delamination, or are damaged. This paper is mainly focused on the regime where spontaneous local delamination occurs, which corresponds to a narrow range of laser irradiances and writing speeds. In this regime, self-organized round-shape micro-holes opened on the substrate are generated.

  20. No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families.

    PubMed

    Reintjes, Moritz; Temple, Blake

    2015-05-08

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C 0,1 to C 1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C 1,1 , cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein-Euler equations remains open.

  1. No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families

    PubMed Central

    Reintjes, Moritz; Temple, Blake

    2015-01-01

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C0,1 to C1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C1,1, cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein–Euler equations remains open. PMID:27547092

  2. Low frequency events on Montserrat

    NASA Astrophysics Data System (ADS)

    Visser, K.; Neuberg, J.

    2003-04-01

    Earthquake swarms observed on volcanoes consist generally of low frequency events. The low frequency content of these events indicates the presence of interface waves at the boundary of the magma filled conduit and the surrounding country rock. The observed seismic signal at the surface shows therefore a complicated interference pattern of waves originating at various parts of the magma filled conduit, interacting with the free surface and interfaces in the volcanic edifice. This research investigates the applicability of conventional seismic tools on these low frequency events, focusing on hypocenter location analysis using arrival times and particle motion analysis for the Soufrière Hills Volcano on Montserrat. Both single low frequency events and swarms are observed on this volcano. Synthetic low frequency events are used for comparison. Results show that reliable hypocenter locations and particle motions can only be obtained if the low frequency events are single events with an identifiable P wave onset, for example the single events preceding swarms on Montserrat or the first low frequency event of a swarm. Consecutive events of the same swarm are dominated by interface waves which are converted at the top of the conduit into weak secondary P waves and surface waves. Conventional seismic tools fail to correctly analyse these events.

  3. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    PubMed Central

    Qiu, Gongzhe

    2017-01-01

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790

  4. A phase-plane analysis of localized frictional waves

    NASA Astrophysics Data System (ADS)

    Putelat, T.; Dawes, J. H. P.; Champneys, A. R.

    2017-07-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.

  5. A phase-plane analysis of localized frictional waves

    PubMed Central

    Dawes, J. H. P.; Champneys, A. R.

    2017-01-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick–slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types. PMID:28804255

  6. A phase-plane analysis of localized frictional waves.

    PubMed

    Putelat, T; Dawes, J H P; Champneys, A R

    2017-07-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.

  7. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    PubMed

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  8. Regional Climate Variability Under Model Simulations of Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dagon, Katherine; Schrag, Daniel P.

    2017-11-01

    Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.

  9. Epidural catheterization with a subcutaneous injection port for the long-term administration of opioids and local anesthetics to treat zoster-associated pain -a report of two cases-

    PubMed Central

    Min, Bo Mi

    2013-01-01

    Continuous epidural analgesia has been used for decades to treat acute herpes zoster pain and to prevent postherpetic neuralgia. However, many technical problems can arise during chronic treatment with epidural medications. These complications include catheter dislodgement, infection, injection pain, leakage, and occlusion. Epidural catheter placement utilizing subcutaneous injection port implantation has gained widespread acceptance as a method to overcome such complications. The technique reduces the risk of infection, the most feared complication, compared to the use of a percutaneous epidural catheter. Herein, we present 2 cases in which the continuous thoracic epidural administration of opioids and local anesthetics through an implantable subcutaneous injection port for over 2 months successfully treated zoster-associated pain without any technique- or medication-related complications in patients with risk factors for epidural abscess. PMID:24363852

  10. Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu; Rozov, N. Kh

    2017-12-01

    Proposed is a mathematical model of a continuous annular chain of unidirectionally coupled generators given by certain nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. It is shown that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.

  11. Longevity of microwave-treated (2. 45 GHz continuous wave) honey bees in observation hives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, N.E.; Westerdahl, B.B.

    1981-12-15

    Adult honey bees were exposed for 30 min to 2.45 GHz of continuous wave microwave radiation at power densities ranging from 3 to 50 mW/cm/sup 2/. After exposure, bees were returned to glass-walled observation hives, and their longevity was compared with that of control bees. No significant differences were found between microwave- and sham-treated bees at any of the power densities tested.

  12. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.

    PubMed

    Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P

    2014-09-01

    Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

  13. Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector

    PubMed Central

    2017-01-01

    Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 μm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength. PMID:28540324

  14. Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Han, Yu; Li, Qiang; Zhu, Si; Ng, Kar Wei; Lau, Kei May

    2017-11-01

    We report continuous-wave lasing from InP/InGaAs nanoridges grown on a patterned (001) Si substrate by aspect ratio trapping. Multi-InGaAs ridge quantum wells inside InP nanoridges are designed as active gain materials for emission in the 1500 nm band. The good crystalline quality and optical property of the InGaAs quantum wells are attested by transmission electron microscopy and microphotoluminescence measurements. After transfer of the InP/InGaAs nanoridges onto a SiO2/Si substrate, amplified Fabry-Perot resonant modes at room temperature and multi-mode lasing behavior in the 1400 nm band under continuous-wave optical pumping at 4.5 K are observed. This result thus marks an important step towards integrating InP/InGaAs nanolasers directly grown on microelectronic standard (001) Si substrates.

  15. Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shang-Hua; Jarrahi, Mona; Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095

    2015-09-28

    We present frequency-tunable, continuous-wave terahertz sources based on GaAs plasmonic photomixers, which offer high terahertz radiation power levels at 50% radiation duty cycle. The use of plasmonic contact electrodes enhances photomixer quantum efficiency while maintaining its ultrafast operation by concentrating a large number of photocarriers in close proximity to the device contact electrodes. Additionally, the relatively high thermal conductivity and high resistivity of GaAs allow operation under high optical pump power levels and long duty cycles without reaching the thermal breakdown limit of the photomixer. We experimentally demonstrate continuous-wave terahertz radiation with a radiation frequency tuning range of more thanmore » 2 THz and a record-high radiation power of 17 μW at 1 THz through plasmonic photomixers fabricated on a low temperature grown GaAs substrate at 50% radiation duty cycle.« less

  16. Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion

    PubMed Central

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang

    2016-01-01

    The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation. PMID:27439474

  17. Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion

    NASA Astrophysics Data System (ADS)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang

    2016-07-01

    The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.

  18. Exactly Solvable Models in Many-Body Theory

    NASA Astrophysics Data System (ADS)

    March, N. H.; Angilella, G. G. N.

    2016-06-01

    This book is an introduction to wave dynamics as they apply to earthquakes, among the scariest, most unpredictable, and deadliest natural phenomena on Earth. Since studying seismic activity is essentially a study of wave dynamics, this text starts with a discussion of types and representations, including wave-generation mechanics, superposition, and spectral analysis. Simple harmonic motion is used to analyze the mechanisms of wave propagation, and driven and damped systems are used to model the decay rates of various modal frequencies in different media. Direct correlation to earthquakes in California, Mexico, and Japan is used to illustrate key issues, and actual data from an event in California is presented and analyzed. Our Earth is a dynamic and changing planet, and seismic activity is the result. Hundreds of waves at different frequencies, modes, and amplitudes travel through a variety of different media, from solid rock to molten metals. Each media responds differently to each mode; consequently the result is an enormously complicated dynamic behavior. Earthquakes should serve well as a complimentary text for an upper-school course covering waves and wave mechanics, including sound and acoustics and basic geology. The mathematical requirement includes trigonometry and series summations, which should be accessible to most upper-school and college students. Animation, sound files, and videos help illustrate major topics.

  19. Multiple scattering and stop band characteristics of flexural waves on a thin plate with circular holes

    NASA Astrophysics Data System (ADS)

    Wang, Zuowei; Biwa, Shiro

    2018-03-01

    A numerical procedure is proposed for the multiple scattering analysis of flexural waves on a thin plate with circular holes based on the Kirchhoff plate theory. The numerical procedure utilizes the wave function expansion of the exciting as well as scattered fields, and the boundary conditions at the periphery of holes are incorporated as the relations between the expansion coefficients of exciting and scattered fields. A set of linear algebraic equations with respect to the wave expansion coefficients of the exciting field alone is established by the numerical collocation method. To demonstrate the applicability of the procedure, the stop band characteristics of flexural waves are analyzed for different arrangements and concentrations of circular holes on a steel plate. The energy transmission spectra of flexural waves are shown to capture the detailed features of the stop band formation of regular and random arrangements of holes. The increase of the concentration of holes is found to shift the dips of the energy transmission spectra toward higher frequencies as well as deepen them. The hexagonal hole arrangement can form a much broader stop band than the square hole arrangement for flexural wave transmission. It is also demonstrated that random arrangements of holes make the transmission spectrum more complicated.

  20. Ion cyclotron waves near comet C/2013 A1 (Siding Spring) and Mars

    NASA Astrophysics Data System (ADS)

    Crary, F. J.; Dols, V. J.; Connerney, J. E. P.; Espley, J. R.

    2014-12-01

    On October 19, 2014, comet C/2013 A1 (Siding Spring) passed approximately 135,000 km from Mars. Previously,we predicted the amplitude of ion cyclotron waves which might be observed during the Siding Spring encounter. Ioncyclotron waves have been observed both in the vicinity of comets and of Mars. These waves are generated by theionization of neutrals in the flowing solar wind, which produces an unstable ring-beam velocity distribution. We estimated that, for a production rate of 2x1028 s-1, ion cyclotron wave with amplitudes over 0.1 nT would be present within ‡5 hours (1.2 million km) of closest approach. We will compare the actual observations made by the MAVEN spacecraft with these predictions. The spacecraft was close to or downstream of the martian bow shock, which complicates the interpretation of the data. Taking thisinto account, we will describe the observations and their implications for wave activity and cometary neutral production. We also present updated hybrid simulations of ion cyclotron wave generation. The simulations use our best estimate of solar wind conditions at the time of the encounter and a variable injection of 18 AMU pickup ions, at a rates consistent a model of the cometary neutrals.

  1. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing.

    PubMed

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2008-05-01

    The drive to attain cosmetic facial enhancement with minimal risk and rapid recovery has inspired the field of nonsurgical skin rejuvenation. Laser resurfacing was introduced in the 1980s with continuous wave carbon dioxide (CO(2)) lasers; however, because of a high rate of side effects, including scarring, short-pulse, high-peak power, and rapidly scanned, focused-beam CO(2) lasers and normal-mode erbium-doped yttrium aluminium garnet lasers were developed, which remove skin in a precisely controlled manner. The prolonged 2-week recovery time and small but significant complication risk prompted the development of non-ablative and, more recently, fractional resurfacing in order to minimize risk and shorten recovery times. Nonablative resurfacing produces dermal thermal injury to improve rhytides and photodamage while preserving the epidermis. Fractional resurfacing thermally ablates microscopic columns of epidermal and dermal tissue in regularly spaced arrays over a fraction of the skin surface. This intermediate approach increases efficacy as compared to nonablative resurfacing, but with faster recovery as compared to ablative resurfacing. Neither nonablative nor fractional resurfacing produces results comparable to ablative laser skin resurfacing, but both have become much more popular than the latter because the risks of treatment are limited in the face of acceptable improvement. At the completion of this learning activity, participants should be familiar with the spectrum of lasers and light technologies available for skin resurfacing, published studies of safety and efficacy, indications, methodologies, side effects, complications, and management.

  2. Diode Laser-Assisted Surgical Therapy for Early Treatment of Oral Mucocele in a Newborn Patient: Case Report and Procedures Checklist

    PubMed Central

    Vitale, Marina Consuelo; Croci, Giorgio Alberto; Paulli, Marco; Carbone, Lorenzo; Gandini, Paola

    2018-01-01

    Mucocele (also known as ranula or salivary gland mucous cyst) of the newborn is a lesion present on the intraoral cavity, with the potential to interfere with respiration and feeding. In the present report, a case of mucocele in a 4-month female patient has been described. As conventional surgery can be followed by several complications such as intraoperative bleeding, difficulties in wound healing, and maintenance of sterility during surgery, in the present case, the use of diode laser has been planned. A topic anesthesia with lidocaine gel was performed. A diode laser (810 nm wavelength, continuous wave mode, power output of 3 watt, and 0.4 mm diameter fiber optic) was set for excising the lesion. The tip was directed at an angle of 10 to 15°, moving around the base of the lesion with a circular motion. The procedure was completed in 3 minutes. The patient was visited with a follow-up of 2 weeks and 4 months after excision. The intraoral wound healed without complications, and no signs of infection or mass recurrence were noted. The histopathological examination confirmed the diagnosis of mucocele. On the basis of the results of the present case report, the use of diode laser can be easily performed also in a noncompliant newborn patient for successful excision of mucocele lesions, and checklist of clinical procedures has been described. PMID:29854481

  3. Medical malpractice in endourology: analysis of closed cases from the State of New York.

    PubMed

    Duty, Brian; Okhunov, Zhamshid; Okeke, Zeph; Smith, Arthur

    2012-02-01

    Medical malpractice indemnity payments continue to rise, resulting in increased insurance premiums. We reviewed closed malpractice claims pertaining to endourological procedures with the goal of helping urologists mitigate their risk of lawsuit. All closed malpractice claims from 2005 to 2010 pertaining to endourological procedures filed against urologists insured by the Medical Liability Mutual Insurance Company of New York were examined. Claims were reviewed for plaintiff demographics, medical history, operative details, alleged complication, clinical outcome and lawsuit disposition. A total of 25 closed claims involved endourological operations and of these cases 10 were closed with an indemnity payment. The average payout was $346,722 (range $25,000 to $995,000). Of the plaintiffs 16 were women and mean plaintiff age was 51.4 years. Cystoscopy with ureteral stent placement/exchange resulted in 13 lawsuits, ureteroscopic lithotripsy 8, percutaneous stone extraction 2 and shock wave lithotripsy 2. There were 17 malpractice suits brought for alleged operative complications. Failure to arrange adequate followup was implicated in 4 cases. Error in diagnosis and delay in treatment was alleged in 3 claims. Urologists are not immune to the current medical malpractice crisis. Endourology and urological oncology generate the greatest number of lawsuits against urologists. Most malpractice claims involving endourological procedures result from urolithiasis and alleged technical errors. Therefore, careful attention to surgical technique is essential during stone procedures to reduce the risk of malpractice litigation. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Visualizing substructure of Ca2+ waves by total internal reflection fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Yongqiang; Tang, Aihui; Wang, Shiqiang; Zhu, Xing

    2005-02-01

    Total internal reflection fluorescence microscope is a new optical microscopic system based on near-field optical theory. Its character of illumination by evanescent wave, together with the great signal-to-noise ratio and temporal resolution achieved by high quality CCD, allows us to analyze the spatiotemporal details of local Ca2+ dynamics within the nanoscale microdomain surrounding different Ca2+ channels. We have recently constructed a versatile objective TIRFM equipped with a high numerical aperture (NA=1.45) objective. Using fluo-4 as the Ca2+ indicator, we visualized the near-membrane profiles of Ca2+ waves and elementary Ca2+ sparks generated by Ca2+ release channels in rat ventricular myocytes. Different from those detected using conventional and confocal microscopy, Ca2+ waves observed with TIRFM exhibited fine inhomogenous substructures composed of fluctuating Ca2+ sparks. The anfractuous routes of spark recruitment suggested that the propagation of Ca2+ waves is much more complicated than previously imagined. We believe that TIRFM will provide a unique tool for dissecting the microscopic mechanisms of intracellular Ca2+ signaling.

  5. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    NASA Astrophysics Data System (ADS)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  6. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1988-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  7. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully-developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1986-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  8. Lee waves, benign and malignant

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Datta, A.

    1992-01-01

    The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.

  9. Focusing optical waves with a rotationally symmetric sharp-edge aperture

    NASA Astrophysics Data System (ADS)

    Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang

    2018-04-01

    While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.

  10. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  11. In the hot seat : Insolation and ENSO controls on vegetation productivity in tropical Africa inferred from NDVI

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. L.; Cohen, A. S.

    2010-12-01

    Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.

  12. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    PubMed

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  13. Structure in the lowermost mantle from seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.

    2017-12-01

    Anisotropy is well established in D'' and places important constraints on the nature and dynamics of this elusive region. We present the results of a recent study probing anisotropy in D'', over a large area, using shear wave splitting on core-reflected ScS phases. Our dataset contains laterally continuous coverage beneath a large swath of east Asia - extending about 3000 km along the CMB - from south-east Asia to the north-east Pacific. The centre of this area represents a large down-welling core for subduction that has occurred over several super-continent cycles. In the centre of this region we observe a clear VSV}>V{SH fabric, in direct conflict with the prevailing view that fast, `cold', regions are associated with VSH}>V{SV fabric. Furthermore, systematic rotation of the fast axis traces out an apparent dome-like feature extending over thousands of km, albeit complicated by some short-scale variability. The dataset also samples regions where slab material may be actively impinging on the CMB; and a region corresponding to the edge of the Pacific LLSVP. We interpret our results in light of a combined computational geodynamic-petrofabric-seismic study designed to test the possibility that anisotropy is caused by the lattice preferred orientation of post-perovskite. We take into account the important finite-frequency effects of wave propagation in our synthetics by using the SPECFEM3D_GLOBE code; this can lead to drastically different results when compared to the less accurate ray theory.

  14. Coherent electromagnetic waves in the presence of a half space of randomly distributed scatterers

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    The present investigation of coherent field propagation notes, upon solving the Foldy-Twersky integral equation for a half-space of small spherical scatterers illuminated by a plane wave at oblique incidence, that the coherent field for a horizontally-polarized incident wave exhibits reflectivity and transmissivity consistent with the Fresnel formula for an equivalent continuous effective medium. In the case of a vertically polarized incident wave, both the vertical and longitudinal waves obtained for the coherent field have reflectivities and transmissivities that do not agree with the Fresnel formula.

  15. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  16. ­­New Finite-Frequency Teleseismic P-wave Tomography of the Anatolian Sub-continent and the Fate of the Subducted Cyprean Slab

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Biryol, C. B.; Delph, J. R.; Beck, S. L.; Zandt, G.; Özacar, A.; Sandvol, E. A.; Turkelli, N.

    2016-12-01

    The eastern Mediterranean region is characterized by active subduction of Tethyan lithosphere beneath the Anatolian sub-continent at the Aegean and Cyprean trenches. The subduction system is historically characterized by slab roll-back, detachment, and slab settling in the mantle transition zone. Prior mantle tomography studies reveal segmentation of the subducted Tethyan lithosphere, which is thought to have a strong control on surface volcanism and uplift across Anatolia. However, tomographic resolution, particularly in central Anatolia, has been limited, thus making detailed delineations of the subducted slab segments difficult. To improve resolution, we combine two years of seismic data from the recent Continental Dynamics - Central Anatolia Tectonics (CD-CAT) seismic deployment and Turkey's national seismic network ( 33,000 residuals) to 33,000 travel time residuals from Biryol et al. (2011, GJI) in a new finite-frequency teleseismic P-wave tomographic inversion. Our new images reveal with detail a complicated geometry of fast velocity anomalies associated with subducted Tethyan lithosphere. At shallow depths, slow velocities separate the fast anomalies connected to the Aegean and Cyprean trenches. The fast anomaly connected to the Cyprean trench has an arcuate shape in map view, following the trace of the Central Taurus Mountains. This anomaly is separated from a high-amplitude block to the north that appears to dip sub-vertically throughout the upper mantle (200-660 km depth). Other blocks of fast material that may represent subducted Tethyan lithosphere appear down-dip of the vertical block. Additionally, our images indicate that some of the fast velocity anomalies previously seen to flatten in the mantle transition zone may continue into the lower mantle. Thus, our new images provide a more detailed picture of the fate of the Cyprean slab and suggest that some of the fast anomalies associated with the slab continue into the lower mantle, bringing to question the traditional view of a slab graveyard in the mantle transition zone in this region.

  17. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system.

    PubMed

    Jones, Susan M; Quarry, Jill L; Caldwell-McMillan, Molly; Mauger, David T; Gabbay, Robert A

    2005-04-01

    We attempted to identify an optimal insulin pump meal bolus by comparing postprandial sensor glucose values following three methods of insulin pump meal bolusing for a consistent pizza meal. Twenty-four patients with type 1 diabetes participated in a study to compare postprandial glucose values following three meal bolus regimens for a consistent evening pizza meal. Each participant utilized the following insulin lispro regimens on consecutive evenings, and glucose values were tracked by the Continuous Glucose Monitoring System (CGMS, Medtronic MiniMed, Northridge, CA): (a) single-wave bolus (100% of insulin given immediately); (b) 4-h dual-wave bolus (50% of insulin given immediately and 50% given over a 4-h period); and (c) 8-h dual-wave bolus (50% of insulin given immediately and 50% given over a 8-h period). Total insulin bolus amount was kept constant for each pizza meal. Divergence in blood glucose among the regimens was greatest at 8-12 h. The 8-h dual-wave bolus provided the best glycemic control and lowest mean glucose values (singlewave bolus, 133 mg/dL; 4-h dual-wave bolus, 145 mg/dL; 8-h dual-wave bolus, 104 mg/dL), leading to a difference in mean glucose of 29 mg/dL for the single-wave bolus versus the 8-h dual-wave bolus and 42 mg/dL for the 4-h dual-wave bolus versus the 8-h dual-wave bolus. The lower mean glucose in the 8-h dual-wave bolus was not associated with any increased incidence of hypoglycemia. Use of a dual-wave bolus extended over an 8-h period following a pizza meal provided significantly less postprandial hyperglycemia in the late postprandial period (8-12 h) with no increased risk of hypoglycemia.

  18. Comparison of Continuous Femoral Nerve Block with and Without Combined Sciatic Nerve Block after Total Hip Arthroplasty: A Prospective Randomized Study.

    PubMed

    Nishio, Shoji; Fukunishi, Shigeo; Fukui, Tomokazu; Fujihara, Yuki; Okahisa, Shohei; Takeda, Yu; Yoshiya, Shinichi

    2017-06-23

    In association with the growing interests in pain management, several modalities to control postoperative pain have been proposed and examined for the efficacy in the recent studies. Various modes of peripheral nerve block have been proposed and the effectiveness and safety have been examined for each of those techniques. We have described our clinical experiences, showing that continuous femoral nerve block could provide a satisfactory analgesic effect after total hip arthroplasty (THA) procedure. In this study, we compared the effectiveness and safety of continuous femoral nerve block with and without sciatic nerve blockade on pain control after THA. Forty patients scheduled for THA were included in the study and randomly divided into 2 groups. Postoperative analgesic measure was continuous femoral nerve block alone, while the identical regimen of continuous femoral nerve block was combined with sciatic nerve block. The amount of postoperative pain was evaluated in the immediate postoperative period, 6 hours, and 12 hours after surgery. Moreover, postoperative complications as well as requirement of supplemental analgesics during the initial 12 hours after surgery were reviewed in the patient record. The obtained study results showed that the supplemental sciatic nerve blockade provided no significant effect on arrival at the postoperative recovery room, while the NRS pain score was significantly reduced by the combined application of sciatic nerve blockade at 6 and 12 hours after surgery. In the investigation of postoperative analgesiarelated complications, no major complication was encountered without significant difference in complication rate between the groups.

  19. 2-D or not 2-D, that is the question: A Northern California test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayeda, K; Malagnini, L; Phillips, W S

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions ofmore » approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2-D direct wave-based measures.« less

  20. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  1. Direct-current nanogenerator driven by ultrasonic waves.

    PubMed

    Wang, Xudong; Song, Jinhui; Liu, Jin; Wang, Zhong Lin

    2007-04-06

    We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.

  2. VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Poornima; Taylor, David K.; Smith, Charles W.

    We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H{sup +} and He{sup +} during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H{sup +} is right-hand polarized in the spacecraft frame, butmore » similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.« less

  3. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  4. A generalized invariant imbedding for wave propagation

    NASA Astrophysics Data System (ADS)

    Ayoubi, I. S.; Nelson, P.

    1984-04-01

    The initial-value problems for reflection and transmission coefficients (imbeddings) obtained by Bellman and Wing are critically reviewed. It is shown in detail how the two reduce to a common form when both are valid. A simultaneous generalization of these two imbeddings is obtained. The generalized imbedding involves incidence onto an intermediate region of continuous wave number, from a region of smooth wave number, but with no requirement concerning the manner in which the wave numbers join at the interface.

  5. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  6. Continuous two-wave lasing in microchip Nd : YAG lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ievlev, Ivan V; Koryukin, Igor' V; Lebedeva, Yu S

    2011-08-31

    Simultaneous two-wave lasing was obtained in microchip end-pumped Nd:YAG lasers at the wavelengths of 1061.5 and 1064.17 nm at room temperature. Laser wave intensities were studied as functions of crystal temperature and pump power. The ranges of parameters were determined in which the two-wave lasing occurs and the reasons for such lasing were established. A model is suggested, which adequately describes the experimental results obtained. (control of radiation parameters)

  7. Optical Kerr spatiotemporal dark extreme waves

    NASA Astrophysics Data System (ADS)

    Wabnitz, Stefan; Kodama, Yuji; Baronio, Fabio

    2018-02-01

    We study the existence and propagation of multidimensional dark non-diffractive and non-dispersive spatiotemporal optical wave-packets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark lines, X solitary waves and lump solutions of the (2 + 1)D nonlinear Schr odinger equation (NLSE). Dark lines, X waves and lumps represent holes of light on a continuous wave background. These solitary waves are derived by exploiting the connection between the (2 + 1)D NLSE and a well-known equation of hydrodynamics, namely the (2+1)D Kadomtsev-Petviashvili (KP) equation. This finding opens a novel path for the excitation and control of spatiotemporal optical solitary and rogue waves, of hydrodynamic nature.

  8. Nonlinear coseismic infrasound waves in the upper atmosphere and ionosphere

    NASA Astrophysics Data System (ADS)

    Chum, J.; Liu, J. Y.; Cabrera, M. A.

    2017-12-01

    Vertical motion of the ground surface caused by seismic waves generates acoustic waves that propagate nearly vertically upward because of supersonic speed of seismic waves. As the air density decreases with height, the amplitude of acoustic waves increases to conserve the energy flux. If the initial perturbation is large enough (larger than 10 mm/s) and the period of waves is long (>10 s), then the amplitude reaches significant values in the upper atmosphere (e.g. oscillation velocities of the air particles become comparable with sound speed) and the nonlinear phenomena start to play an important role before the wave is dissipated. The nonlinear phenomena lead to changes of spectral content of the wave packet. The energy is transferred to lower frequencies, which can cause the formation of roughly bipolar N-shaped pulse in the vicinity of the epicenters (up to distance about 1000-1500 km) of strong, M>7, earthquakes. The nonlinear propagation is studied on the basis of numerical solution of continuity, momentum and heat equations in 1D (along vertical axis) for viscous compressible atmosphere. Boundary conditions on the ground are determined by real measurements of the vertical motion of the ground surface. The results of numerical simulations are in a good agreement with atmospheric fluctuations observed by continuous Doppler sounding at heights of about 200 km and epicenter distance around 800 km. In addition, the expected fluctuations of GSP-TEC are calculated.

  9. Trajectory description of the quantum–classical transition for wave packet interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-08-15

    The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less

  10. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2007-01-01

    Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.

  11. [Pulse wave velocity as an early marker of diastolic heart failure in patients with hypertension].

    PubMed

    Moczulska, Beata; Kubiak, Monika; Bryczkowska, Anna; Malinowska, Ewa

    2017-04-21

    According to the WHO, hypertension is one of the major causes of death worldwide. It leads to a number of severe complications. Diastolic heart failure, that is heart failure with preserved ejection fraction (HFPEF), is especially common. New, but simple, indices for the early detection of patients who have not yet developed complications or are in their early developmental stages are still searched for. The aim of this study is to examine the correlation between pulse wave velocity (PWV) and markers of diastolic heart failure (DHF) assessed in echocardiography in patients with hypertension and no symptoms of heart failure. The study was comprised of 65 patients with treated hypertension. Patients with symptoms of heart failure, those with diabetes and smokers were excluded. Arterial stiffness was measured with the Mobil-O-Graph NG PWA. Pulse wave velocity (PWV) was estimated. The following markers of diastolic heart failure were assessed in the echocardiographic examination: E/A ratio - the ratio of the early (E) to late (A) ventricular filling velocities, DT - decceleration time, E/E' - the ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity E' in tissue Doppler echocardiography. PWV was statistically significantly higher in the DHF group. In the group of patients with heart failure, the average E/A ratio was significantly lower as compared to the group with no heart failure. Oscillometric measurement of pulse wave velocity is non-invasive, lasts a few minutes and does not require the presence of a specialist. It allows for an early detection of patients at risk of diastolic heart failure even within the conditions of primary health care.

  12. Accelerationism: A Timely Provocation for the Critical Sociology of Education

    ERIC Educational Resources Information Center

    Sellar, Sam; Cole, David R.

    2017-01-01

    Accelerationism is a theoretical movement that seeks to mobilise reason and technological development as a strategy for moving beyond capitalism. The first wave of accelerationism took the effects of capitalism at their most pernicious and suggested that they have not gone far enough. More recent work has complicated this project and explored…

  13. The Computer in Second Semester Introductory Physics.

    ERIC Educational Resources Information Center

    Merrill, John R.

    This supplementary text material is meant to suggest ways in which the computer can increase students' intuitive understanding of fields and waves. The first way allows the student to produce a number of examples of the physics discussed in the text. For example, more complicated field and potential maps, or intensity patterns, can be drawn from…

  14. Race and Place in the Adaptation of Mariel Exiles.

    ERIC Educational Resources Information Center

    Skop, Emily H.

    2001-01-01

    The influx of lower class Cuban emigres during the 1980 Mariel Boatlift complicates the success story image of previous waves of Cuban exiles. Argues that place of incorporation should be a necessary ingredient in illuminating diverse adjustment experiences among immigrants and refugees to the United States. Concludes by discussing the Cuban…

  15. A Graphical Presentation to Teach the Concept of the Fourier Transform

    ERIC Educational Resources Information Center

    Besalu, E.

    2006-01-01

    A study was conducted to visualize the reason why the Fourier transform technique is useful to detect the originating frequencies of a complicated superposition of waves. The findings reveal that students respond well when instructors adapt pictorial presentation to show how the time-domain function is transformed into the frequency domain.

  16. Morphodynamics of a tidal ridge system in the southwestern Yellow Sea: HF radar study

    NASA Astrophysics Data System (ADS)

    Zhong, Yao-Zhao; Li, Yan; Wu, Xiong-Bin; Gao, Shu; Zhou, Tao; Wang, Ya Ping; Gao, Jian-Hua

    2018-06-01

    A radial tidal ridge system is present throughout the coastal waters of the southwestern Yellow Sea (China) with varied and complicated ridges and channels between them. A newly designed ground-wave high-frequency (HF radar), with full-coverage and high spatial-temporal resolution, was employed in this study to measure the surface currents and bathymetric features correlated wave celerity in the study area from July 17 to August 6, 2011. We found that the spatial distribution pattern of the tidal channels is generally stable with periodic adjustments during a spring-neap tidal cycle and with higher degree of spatial orderliness from neap to spring tides than from spring to neap tides; the nearshore part of the channels is most stable in lateral, the middle part is relatively lateral unstable, and the offshore part changes complicatedly; flood-dominated channels and ebb-dominated ridges are identified using HF radar signals. The horizontal Kelvin number (Keh) is workable in lateral stability evaluation. This study reveals the potential of HF radar in morphodynamic studies on shallow coastal waters.

  17. Are perfectionistic concerns an antecedent of or a consequence of binge eating, or both? A short-term four-wave longitudinal study of undergraduate women.

    PubMed

    Smith, Martin M; Sherry, Simon B; Gautreau, Chantal M; Stewart, Sherry H; Saklofske, Donald H; Mushquash, Aislin R

    2017-08-01

    The perfectionism model of binge eating (PMOBE) posits perfectionistic concerns are a vulnerability factor for binge eating. And evidence indicates perfectionistic concerns and binge eating correlate positively. However, the direction of this relationship is seldom studied. Accordingly, it is unclear whether perfectionistic concerns represent an antecedent of binge eating (a vulnerability effect with perfectionistic concerns predicting increases in binge eating), a consequence of binge eating (a complication effect with binge eating predicting increases in perfectionistic concerns), or both (reciprocal relations with perfectionistic concerns predicting increases in binge eating and vice versa). To address these questions, we studied 200 undergraduate women using a 4-week, 4-wave cross-lagged longitudinal design. Consistent with the PMOBE, perfectionistic concerns predicted increased binge eating (vulnerability effect). But, binge eating did not predict increased perfectionistic concerns (complication effect). Findings support the long-held theory that perfectionistic concerns are part of the premorbid personality of women vulnerable to binge eating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Goldstein, C. I.; Turkel, E.

    1984-01-01

    The Helmholtz Equation (-delta-K(2)n(2))u=0 with a variable index of refraction, n, and a suitable radiation condition at infinity serves as a model for a wide variety of wave propagation problems. A numerical algorithm was developed and a computer code implemented that can effectively solve this equation in the intermediate frequency range. The equation is discretized using the finite element method, thus allowing for the modeling of complicated geometrices (including interfaces) and complicated boundary conditions. A global radiation boundary condition is imposed at the far field boundary that is exact for an arbitrary number of propagating modes. The resulting large, non-selfadjoint system of linear equations with indefinite symmetric part is solved using the preconditioned conjugate gradient method applied to the normal equations. A new preconditioner is developed based on the multigrid method. This preconditioner is vectorizable and is extremely effective over a wide range of frequencies provided the number of grid levels is reduced for large frequencies. A heuristic argument is given that indicates the superior convergence properties of this preconditioner.

  19. The Vetter-Sturtevant Shock Tube Problem in KULL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulitsky, M S

    2005-10-06

    The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on an example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) with the additional complication of reshock. The experiment by Vetter & Sturtevant (VS) [1], involving a Mach 1.50 incident shock striking an air/SF{sub 6} interface, is a good one to model, now that we understand how the model performs for the Benjamin shock tube [2] and a prototypical incompressible Rayleigh-Taylormore » problem [3]. The x-t diagram for the VS shock tube is quite complicated, since the transmitted shock hits the far wall at {approx}2 millisec, reshocks the mixing zone slightly after 3 millisec (which sets up a release wave that hits the wall at {approx}4 millisec), and then the interface is hit with this expansion wave around 5 millisec. Needless to say, this problem is much more difficult to model than the Bejamin shock tube.« less

  20. Continuous Beam Steering Through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas.

    PubMed

    Tang, Xiao-Lan; Zhang, Qingfeng; Hu, Sanming; Zhuang, Yaqiang; Kandwal, Abhishek; Zhang, Ge; Chen, Yifan

    2017-09-15

    Goubau line is a single-conductor transmission line, featuring easy integration and low-loss transmission properties. Here, we propose a periodic leaky-wave antenna (LWA) based on planar Goubau transmission line on a thin dielectric substrate. The leaky-wave radiations are generated by introducing periodic modulations along the Goubau line. In this way, the surface wave, which is slow-wave mode supported by the Goubau line, achieves an additional momentum and hence enters the fast-wave region for radiations. By employing the periodic modulations, the proposed Goubau line LWAs are able to continuously steer the main beam from backward to forward within the operational frequency range. However, the LWAs usually suffer from a low radiation efficiency at the broadside direction. To overcome this drawback, we explore both transversally and longitudinally asymmetrical modulations to the Goubau line. Theoretical analysis, numerical simulations and experimental results are given in comparison with the symmetrical LWAs. It is demonstrated that the asymmetrical modulations significantly improve the radiation efficiency of LWAs at the broadside. Furthermore, the measurement results agree well with the numerical ones, which experimentally validates the proposed LWA structures. These novel Goubau line LWAs, experimentally demonstrated and validated at microwave frequencies, show also great potential for millimeter-wave and terahertz systems.

  1. Intractable Polyuria Mimicking Diabetes Insipidus-Source Traced to Vecuronium Infusion.

    PubMed

    Haldar, Rudrashish; Samanta, Sukhen; Singla, Ankush

    2016-01-01

    Continuous infusion of vecuronium is a commonly used technique for patients requiring prolonged neuromuscular blockade for mechanical ventilation. As compared with older neuromuscular blocking agents, it confers the advantages of rapid excretion and intermediate duration of action. Prolongation of neuromuscular blockade and muscle weakness are the known complications of continuous vecuronium infusion. This report attempts to describe polyuria, as a hitherto unknown complication of vecuronium infusion, which can occur due to the mannitol present in commercially available preparation of vecuronium bromide.

  2. The 25 mA continuous-wave surface-plasma source of H{sup −} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Gorbovsky, A.; Sanin, A.

    The ion source with the Penning geometry of electrodes producing continuous-wave beam of H{sup −} ions with current up to 25 mA was developed. Several improvements were introduced to increase source intensity, reliability, and lifetime. The collar around the emission aperture increases the electrons filtering. The apertures’ diameters of the ion-optical system electrodes were increased to generate the beam with higher intensity. An optimization of electrodes’ temperature was performed.

  3. Compact near-IR and mid-IR cavity ring down spectroscopy device

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.

  4. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  5. High-sensitivity detection of TNT

    PubMed Central

    Pushkarsky, Michael B.; Dunayevskiy, Ilya G.; Prasanna, Manu; Tsekoun, Alexei G.; Go, Rowel; Patel, C. Kumar N.

    2006-01-01

    We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over ≈400 nm around 7.3 μm and produces a maximum continuous-wave power of ≈200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-μm region to demonstrate continuous tunability of the IR source. PMID:17164325

  6. Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Covas, P. B.; Effler, A.; Goetz, E.; Meyers, P. M.; Neunzert, A.; Oliver, M.; Pearlstone, B. L.; Roma, V. J.; Schofield, R. M. S.; Adya, V. B.; Astone, P.; Biscoveanu, S.; Callister, T. A.; Christensen, N.; Colla, A.; Coughlin, E.; Coughlin, M. W.; Crowder, S. G.; Dwyer, S. E.; Eggenstein, H.-B.; Hourihane, S.; Kandhasamy, S.; Liu, W.; Lundgren, A. P.; Matas, A.; McCarthy, R.; McIver, J.; Mendell, G.; Ormiston, R.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Rao, K.; Riles, K.; Sammut, L.; Schlassa, S.; Sigg, D.; Strauss, N.; Tao, D.; Thorne, K. A.; Thrane, E.; Trembath-Reichert, S.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Austin, C.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bejger, M.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Blair, R. M.; Bork, R.; Brooks, A. F.; Cao, H.; Ciani, G.; Clara, F.; Clearwater, P.; Cooper, S. J.; Corban, P.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Edo, T. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Galiana, A. Fernández; Ferreira, E. C.; Fisher, R. P.; Fong, H.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gateley, B.; Giaime, J. A.; Giardina, K. D.; Goetz, R.; Goncharov, B.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Inta, R.; Izumi, K.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kennedy, R.; Kijbunchoo, N.; Kim, W.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Laxen, M.; Liu, J.; Lockerbie, N. A.; Lormand, M.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Marsh, P.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McClelland, D. E.; McCormick, S.; McCuller, L.; McIntyre, G.; McRae, T.; Merilh, E. L.; Miller, J.; Mittleman, R.; Mo, G.; Mogushi, K.; Moraru, D.; Moreno, G.; Mueller, G.; Mukund, N.; Mullavey, A.; Munch, J.; Nelson, T. J. N.; Nguyen, P.; Nuttall, L. K.; Oberling, J.; Oktavia, O.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Parker, W.; Pele, A.; Penn, S.; Perez, C. J.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Radkins, H.; Raffai, P.; Ramirez, K. E.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Romel, C. L.; Romie, J. H.; Ross, M. P.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sanchez, L. E.; Sandberg, V.; Savage, R. L.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shoemaker, D. H.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Spencer, A. P.; Staley, A.; Strain, K. A.; Sun, L.; Tanner, D. B.; Tasson, J. D.; Taylor, R.; Thomas, M.; Thomas, P.; Toland, K.; Torrie, C. I.; Traylor, G.; Tse, M.; Tuyenbayev, D.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Wade, M.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Wofford, J.; Worden, J.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zhu, S.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2018-04-01

    Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning.

  7. Resonant optical pulses on a continuous-wave background in two-level active media

    NASA Astrophysics Data System (ADS)

    Li, Sitai; Biondini, Gino; Kovačič, Gregor; Gabitov, Ildar

    2018-01-01

    We present exact N-soliton optical pulses riding on a continuous-wave (c.w.) beam that propagate through and interact with a two-level active optical medium. Their representation is derived via an appropriate generalization of the inverse scattering transform for the corresponding Maxwell-Bloch equations. We describe the single-soliton solutions in detail and classify them into several distinct families. In addition to the analogues of traveling-wave soliton pulses that arise in the absence of a c.w. beam, we obtain breather-like structures, periodic pulse-trains and rogue-wave-type (i.e., rational) pulses, whose existence is directly due to the presence of the c.w. beam. These soliton solutions are the analogues for Maxwell-Bloch systems of the four classical solution types of the focusing nonlinear Schrödinger equation with non-zero background, although the physical behavior of the corresponding solutions is quite different.

  8. Progress in high-power continuous-wave quantum cascade lasers [Invited].

    PubMed

    Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy

    2017-11-01

    Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

  9. Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.

    1995-01-01

    The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.

  10. Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.

    2017-12-01

    In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.

  11. 2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayeda, K M; Malagnini, L; Phillips, W S

    2005-07-13

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regionsmore » of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2-D direct wave-based measures.« less

  12. Arterial catheter complications and management problems: observations from AACN's Thunder Project.

    PubMed

    1993-09-01

    Arterial cannulation, while common in critical care, is a procedure with attendant risks of complications. Anecdotal data from the American Association of Critical Care Nurses' Thunder Project provided evidence that catheters, insertion sites, and monitoring systems continue to be sources of complications. The problems have not changed since arterial cannulation began. Line management issues cannot be resolved until low-maintenance systems are developed.

  13. Continuous arteriovenous haemofiltration to regulate hyperkalaemia during renal transplantation: a case report.

    PubMed

    Tripathi, Mukesh; Kaushik, Soma; Pandey, Rajesh

    2006-11-01

    Progressive hyperkalaemia is common in end stage renal disease patients waiting for renal transplantation. Ventricular tachycardia and ventricular fibrillation due to hyperkalaemia are life-threatening complications in these patients. In live and related renal transplant, after induction and anaesthesia, ventricular fibrillation and pulmonary oedema occurred. After immediate resuscitation by defibrillation and intravenous injection of adrenaline, the patient was put on continuous femoral arteriovenous haemofiltration (CAVH). This improved his pulmonary oedema, controlled hyperkalaemia and surgery could be completed uninterruptedly. After anaesthetising live and related kidney donor for nephrectomy, since it is not prudent to stop recipient surgery because of unforeseen complication, the authors wish to recommend CAVH as an alternative method to prevent life threatening cardiac complication of hyperkalaemia.

  14. Complications of Uterine Fibroids and Their Management, Surgical Management of Fibroids, Laparoscopy and Hysteroscopy versus Hysterectomy, Haemorrhage, Adhesions, and Complications

    PubMed Central

    Mettler, Liselotte; Schollmeyer, Thoralf; Tinelli, Andrea; Malvasi, Antonio; Alkatout, Ibrahim

    2012-01-01

    A critical analysis of the surgical treatment of fibroids compares all available techniques of myomectomy. Different statistical analyses reveal the advantages of the laparoscopic and hysteroscopic approach. Complications can arise from the location of the fibroids. They range from intermittent bleedings to continuous bleedings over several weeks, from single pain episodes to severe pain, from dysuria and constipation to chronic bladder and bowel spasms. Very seldom does peritonitis occur. Infertility may result from continuous metro and menorrhagia. The difficulty of the laparoscopic and hysteroscopic myomectomy lies in achieving satisfactory haemostasis using the appropriate sutures. The hysteroscopic myomectomy requires an operative hysteroscope and a well-experienced gynaecologic surgeon. PMID:22619681

  15. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.

    PubMed

    Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  16. Investigation into influence factors of wave velocity anisotropy for TCDP borehole

    NASA Astrophysics Data System (ADS)

    Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.

    2015-12-01

    The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.

  17. History of shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Delius, Michael

    2000-07-01

    The first reports on the fragmentation of human calculi with ultrasound appeared in the fifties. Initial positive results with an extracorporeal approach with continuous wave ultrasound could, however, not be reproduced. A more promising result was found by generating the acoustic energy either in pulsed or continuous form directly at the stone surface. The method was applied clinically with success. Extracorporeal shock-wave generators unite the principle of using single ultrasonic pulses with the principle of generating the acoustic energy outside the body and focusing it through the skin and body wall onto the stone. Häusler and Kiefer reported the first successful contact-free kidney stone destruction by shock waves. They had put the stone in a water filled cylinder and generated a shock wave with a high speed water drop which was fired onto the water surface. To apply the new principle in medicine, both Häusler and Hoff's group at Dornier company constructed different shock wave generators for the stone destruction; the former used a torus-shaped reflector around an explosion wire, the latter the electrode-ellipsoid system. The former required open surgery to access the kidney stone, the latter did not. It was introduced into clinical practice after a series of experiments in Munich.

  18. Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo

    2016-06-01

    A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.

  19. Directed searches for continuous gravitational waves from spinning neutron stars in binary systems

    NASA Astrophysics Data System (ADS)

    Meadors, Grant David

    2014-09-01

    Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these thesis will benefit both the instrumental and analytical sides of observation.

  20. Rapid magnitude estimation from time-dependent displacement amplitude measured with seismogeodetic instrumentation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2017-12-01

    Earthquake magnitude is a concise metric that illuminates the destructive potential of a seismic event. Rapid determination of earthquake magnitude is currently the main prerequisite for dissemination of a tsunami early warning, thus timely and automated calculation is of high importance. Seismic instrumentation experiences well-documented complications at long periods, making the accurate measurement of ground displacement in the near field unreliable. As a result, the relation between ground motion measured with seismic instrumentation and magnitude saturates, causing underestimation of the size of very large events. In the case of tsunamigenic earthquakes, magnitude underestimation in turn leads to a flawed tsunami inundation assessment, which limits the effectiveness of an early warning, in particular for local tsunamis. Global Navigation Satellite System (GNSS) instrumentation measures the displacement field directly, leading to more accurate magnitude estimates with near-field data. Unlike seismic-only instrumentation, near-field GNSS has been shown to provide an accurate magnitude estimate using the peak ground displacement (PGD) after just 2 minutes [Melgar et al., 2015]. However, GNSS alone is too noisy to detect the first seismic wave arrivals (P-waves), thus it cannot be as timely as a seismic system on its own. Using collocated seismic and geodetic instrumentation, we refine magnitude scaling relations by incorporating a large dataset of earthquakes in Japan. We demonstrate that consideration of the time-dependence of displacement amplitude with respect to P-wave arrival time reduces the time to convergence of the magnitude estimate. We present findings on the growth of events of large magnitude, and demonstrate time-dependent scaling relations that adapt to the amount of recorded data, starting with the P-wave arrival and continuing through PGD. We illustrate real-time, automated implementation of this method, and consider network improvements to advance rapid characterization of large events. Improvement of initial magnitude estimates through integration of geodetic and seismogeodetic observations is a top priority of an ongoing collaboration with NASA and NOAA's National and Pacific Tsunami Warning Centers (NOAA/NASA GNSS Tsunami Team).

  1. Development of Active Control Method for Supercooling Releasing of Water

    NASA Astrophysics Data System (ADS)

    Mito, Daisuke; Kozawa, Yoshiyuki; Tanino, Masayuki; Inada, Takaaki

    We have tested the prototype ice-slurry generator that enables both production of supercooled water (-2°C) and releasing of its supercooling simultaneously and continuously in a closed piping system. In the experiment, we adopted the irradiation of ultrasonic wave as an active control method of triggering for supercooling releasing, and evaluated the reliability for a practical use compared with the seed ice-crystal trigger. As the results, it has been confirmed that the ultrasonic wave trigger acts assuredly at the same level of degree of supercooling as that by using the seed ice-crystal Trigger. Moreover, it can be found that the ultrasonic wave trigger has the advantage of removing the growing ice-crystals on the pipe wall at the same time. Finally, we have specified the bombardment condition of ultrasonic wave enough to make continuously the ice-slurry in a closed system as the output surface power density > 31.4kW/m2 and the superficial bombardment time > 4.1sec. We have also demonstrated the continuous ice-slurry making for more than 6hours by using the refrigerator system with the practical scale of 88kW.

  2. Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen; Ellis, Justin; Gair, Jonathan

    2014-11-01

    We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar-timing arrays. These techniques mitigate the problematic increase of search dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational wave as it propagates past each pulsar so that we can coherently include the pulsar term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates and conclude that these techniques make excellent first-cut tools for detection and characterization of continuous gravitational-wave signals with pulsar-timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be ≳100 , permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.

  3. High-dose, single-bolus eptifibatide: a safe and cost-effective alternative to conventional glycoprotein IIb/IIIa inhibitor use for elective coronary interventions.

    PubMed

    Fischell, Tim A; Attia, Tamer; Rane, Santosh; Salman, Waddah

    2006-10-01

    Adjunctive pharmacotherapy with eptifibatide, a glycoprotein (GP) IIb/IIIa inhibitor, as an intravenous bolus followed by infusion has been shown to improve outcomes in elective coronary interventions (PCI). However, bleeding complications and costs have limited the routine adoption of this regimen. The goal of this study was to examine the safety, efficacy and cost-effectiveness of high-dose, single-bolus eptifibatide, without post-intervention infusion, in "real-world" patients undergoing elective PCI. We studied 401 patients with stable and unstable angina who were treated with a high-dose (20 mg), single bolus of eptifibatide plus heparin prior to the start of elective PCI. Exclusion criteria included recent MI, stenting of bypass graft(s), rotational atherectomy and/or brachytherapy. The primary study endpoints were major adverse clinical events (MACE), defined as the in-hospital and 30-day incidence of death from any cause, Q-wave or non-Q-wave MI, repeat target vessel revascularization and/or major bleeding complications. Relevant demographic and procedural characteristics included mean age: 66.4 +/- 11.2; male gender: 242/401 (61%); number of vessels treated per patient: 1.46 +/- 0.42; and number of stents deployed per patient: 1.82 +/- 0.65. In-hospital non-Q-wave MI (CPK and/or CPK-MB > 3 times the upper limit of normal) occurred in 7/401 patients (1.75%) and MACE was 2.25%. Major bleeding complications were seen in 2/401 patients (0.49%). There were 4 additional MACE events at 30-day follow up (total MACE and bleeding = 3.25%). The average anticoagulation cost was 66 dollars/patient. Intravenous eptifibatide, administered as a high-dose (20 mg) single-vial bolus, is a safe, effective and highly cost-effective alternative to the conventional regimens of bolus plus prolonged intravenous GP IIb/IIIa inhibitor infusion for patients undergoing elective PCI.

  4. Seismic anisotropy across the east African plateau from shear wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Bagley, B. C.; Nyblade, A.; Mulibo, G.; Tugume, F.

    2011-12-01

    Previous studies of the east African plateau reveal complicated patterns of seismic anisotropy that are not easily explained by a single mechanism. The pattern is defined by rift-parallel fast directions for stations within or near Cenozoic rift valleys, and near-null results in Precambrian terrains away from the rift. Data from 65 temporary Africa Array stations deployed between 2007 and 2011 are being used to make new shear wave splitting measurements. The stations span the east African plateau and cover both the eastern and western branches of the east African rift system, as well as unrifted Proterozoic and Archean terrains in Uganda, Kenya, Tanzania, and Zambia. Through analysis of shear wave splitting we will better constrain the distribution of seismic anisotropy, and and from it gain new insight into the tectonic evolution of east Africa.

  5. Reproducing continuous radio blackout using glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai; Li, Xiaoping; Liu, Donglin

    2013-10-15

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 × 10{sup 11} cm{sup −3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  6. The relationship of major depressive disorder and gender to changes in smoking for current and former smokers: Longitudinal evaluation in the U.S. population

    PubMed Central

    Weinberger, Andrea H.; Pilver, Corey E.; Desai, Rani A.; Mazure, Carolyn M.; McKee, Sherry A.

    2012-01-01

    Aims Although depression and smoking are highly correlated, the relationship of Major Depressive Disorder (MDD) to smoking cessation and relapse remains unclear. This study compared changes in smoking for current and former smokers with and without Current and Lifetime MDD over a three year period. Design Analysis of two waves of longitudinal data from the National Institute on Alcohol Abuse and Alcoholism’s National Epidemiologic Survey on Alcohol and Related Conditions (Wave 1, 2001–2002; Wave 2, 2004–2005). Setting Data were collected through face-to-face interviews from non-institutionalized United States civilians, 18 years and older, in 50 states and the District of Columbia. Participants 11,973 adults (46% female) classified as Current or Former Daily Smokers at Wave 1 and completed Wave 2. Measurements Classification as Current or Former Smokers at Wave 1 and Wave 2. Findings Smoking status remained stable for most participants. Wave 1 Current Daily Smokers with Current MDD (OR=1.38, 95% CI=1.03, 1.85) and Lifetime MDD (OR=1.48, 95% CI=1.18, 1.85) were more likely than those without the respective diagnosis to report continued smoking at Wave 2. Wave 1 Former Daily Smokers with Current MDD (OR=0.44, 95% CI=0.26, 0.76) were less likely to report continued abstinence at Wave 2. None of the gender by MDD diagnosis interactions were significant. Patterns of results remained similar when analyses were limited to smokers with nicotine dependence. Conclusions Current and Lifetime Major Depressive Disorder are associated with a lower likelihood of quitting smoking and Current Major Depressive Disorder is associated with greater likelihood of smoking relapse. PMID:22429388

  7. 3D shear wave velocity structure revealed with ambient noise tomography on a DAS array

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.

    2017-12-01

    An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and sediment thicknesses in the near surface. Shear wave velocities in the northeast corner of the tested area is high whereas loose soil reduces shear wave velocities in the central part of the tested area. This spatial variation pattern is very similar to the results obtained with the ambient noise tomography using the 238-geophone array used the experiment.

  8. Thermal responses in a coronal loop maintained by wave heating mechanisms

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2018-05-01

    A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.

  9. L wave in echo Doppler.

    PubMed

    Kumar, Vipin; Jose, John; Jose, V Jacob

    2014-01-01

    62-year-old female presented with progressive dyspnea NYHA class III for six months. Echocardiography showed normal left ventricular (LV) systolic function, mild biatrial enlargement, an L wave in pulse wave Doppler at mitral inflow and in M mode echocardiography across mitral valve. Tissue Doppler imaging at medial mitral annulus showed an L' wave in mid diastole in addition to E' and A' wave. An L wave in pulse wave Doppler and M mode echocardiography represents continued pulmonary vein mid diastolic flow through the left atrium in to LV across mitral valve after early rapid filling. Presence of an L' wave in these patients associated with higher E/E' is indicative of advance diastolic dysfunction with elevated filling pressures. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  10. Dual-laser-beam-induced breakdown spectroscopy of copper using simultaneous continuous wave CO(2) and Q-switched Nd:YAG lasers.

    PubMed

    Shoursheini, S Z; Parvin, P; Sajad, B; Bassam, M A

    2009-04-01

    In this work, we investigate the enhancement of Cu emission lines of a micro-plasma induced by a Nd:YAG laser due to the thermal effect of simultaneous irradiation by a continuous wave (CW) CO(2) laser. The enhancement of the emission lines was achieved at a higher temperature with minimal distortion of the target when the focal point of the Nd:YAG laser was located approximately 1 mm away from the sample surface.

  11. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.

    PubMed

    Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A

    2010-01-10

    As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

  12. Continuous opacity from Ne^-

    NASA Astrophysics Data System (ADS)

    John, T. L.

    1996-04-01

    Free-free absorption coefficients of the negative neon ion are calculated by the phase-shift approximation based on multiconfiguration Hartree-Fock continuum wave functions. These wave functions accurately account for electron-neon correlation and polarization, and yield scattering cross-sections in excellent agreement with the latest experimental values. The coefficients are expected to give the best current estimates of Ne^- continuous absorption. We find that Ne^- makes only a small contribution (less than 0.3 per cent) to stellar opacities, including hydrogen-deficient stars with enhanced Ne abundances.

  13. Maximum-Likelihood Estimation for Frequency-Modulated Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    DTIC Science & Technology

    2013-01-01

    are calculated from coherently -detected fields, e.g., coherent Doppler lidar . Our CRB results reveal that the best-case mean-square error scales as 1...1088 (2001). 7. K. Asaka, Y. Hirano, K. Tatsumi, K. Kasahara, and T. Tajime, “A pseudo-random frequency modulation continuous wave coherent lidar using...multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007). 11. T. J. Karr, “Atmospheric phase error in coherent laser radar

  14. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    PubMed

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  15. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

    PubMed

    Reed, George H; Poyner, Russell R

    2015-01-01

    An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

  16. Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing.

    PubMed

    Ren, Yingying; Dong, Ningning; Macdonald, John; Chen, Feng; Zhang, Huaijin; Kar, Ajoy K

    2012-01-30

    Buried channel waveguides in Nd:LuVO<4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.

  17. Millimeter wave imaging: a historical review

    NASA Astrophysics Data System (ADS)

    Appleby, Roger; Robertson, Duncan A.; Wikner, David

    2017-05-01

    The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.

  18. Progress and Prospects toward a Space-based Gravitational-Wave Observatory

    NASA Technical Reports Server (NTRS)

    Baker, John

    2012-01-01

    Over the last few years there has been much activity in the effort to produce a space-based gravitational-wave observatory. These efforts have enriched the understanding of the scientific capabilities of such an observatory leading to broad recognition of its value as an astronomical instrument. At the same time, rapidly developing events in the US and Europe have lead to a more complicated outlook than the baseline Laser Interferometer Space Antenna (LISA) project plan of a few years ago. I will discuss recent progress and developments resulting from the European eLISA study and the SGO study in the US and prospects looking forward.

  19. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  20. Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logani, M.K.; Ziskin, M.C.

    1996-02-01

    The effect of millimeter waves on lipid peroxidation was studied in the presence and absence of melanin. Irradiation of liposomes with continuous millimeter electromagnetic waves at frequencies of 53.6, 61.2 and 78.2 GHz and incident power densities of 10, 1 and 500 mW/cm{sup 2}, respectively, did not show an enhancement in the formation of lipid peroxides compared to unirradiated samples. Liposomes exposed to 254 nm UVC radiation at 0.32 mW/cm{sup 2} and 302 nm UVB radiation at 1.12 mW/cm{sup 2} served as positive controls. No increment in the formation of lipid peroxides was observed when irradiation of liposomes was carriedmore » out in the presence of ADP-Fe{sup +3} and EDTA-Fe{sup +3}. Direct irradiation of melanin with millimeter waves did not exhibit an increased formation of superoxide or hydrogen peroxide. The present results indicate that millimeter waves of the above frequencies and intensities do not cause lipid peroxidation in liposomal membranes. 19 refs., 2 figs., 1 tab.« less

  1. Ambient Seismic Noise Monitoring of Time-lapse Velocity Changes During CO2 Injection at Otway, South Australia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Lumley, D. E.

    2017-12-01

    We use continuous seismic data recorded with an array of 909 buried geophones at Otway, South Australia, to investigate the potential of using ambient seismic noise for time-lapse monitoring of the subsurface. The array was installed prior to a 15,000 ton CO2 injection in 2016-17, in order to detect and monitor the evolution of the injected CO2 plume, and any associated microseismic activity. Continuously recorded data from the vertical components of the geophone array were cross-correlated to retrieve the inter-station Green's functions. The dense collection of Green's functions contains diving body waves and surface Rayleigh waves. Green's Functions were then compared with each other at different time frames including the pre-injection period to track subtle changes in the travel times due to the CO2 injection. Our results show a clear change in the velocities of Green's functions at the start of injection for both body waves and surface waves for wave paths traversing the injection area, whereas the observed changes are much smaller for areas which are far from the injection well.

  2. Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Hoppe, M. M.

    1983-01-01

    The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.

  3. The role of high fat diet in the development of complications of chronic pancreatitis.

    PubMed

    Castiñeira-Alvariño, M; Lindkvist, B; Luaces-Regueira, M; Iglesias-García, J; Lariño-Noia, J; Nieto-García, L; Domínguez-Muñoz, J E

    2013-10-01

    Little is known about risk factors for complications in chronic pancreatitis (CP). High fat diet (HFD) has been demonstrated to aggravate pancreatic injury in animal models. The aim of this study was to investigate the role of HFD in age at diagnosis of CP and probability of CP related complications. A cross-sectional case-case study was performed within a prospectively collected cohort of patients with CP. Diagnosis and morphological severity of CP was established by endoscopic ultrasound. Pancreatic exocrine insufficiency (PEI) was diagnosed by ¹³C mixed triglyceride breath test. Fat intake was assessed by a specific nutritional questionnaire. Odds ratios (OR) for CP related complications were estimated by multivariate logistic regression analysis. 168 patients were included (128 (76.2%) men, mean age 44 years (SD 13.5)). Etiology of CP was alcohol abuse in 89 patients (53.0%), other causes in 30 (17.9%) and idiopathic in the remaining 49 subjects (29.2%). 24 patients (14.3%) had a HFD. 68 patients (40.5%) had continuous abdominal pain, 39 (23.2%) PEI and 43 (25.7%) morphologically severe CP. HFD was associated with an increased probability for continuous abdominal pain (OR = 2.84 (95% CI, 1.06-7.61)), and a younger age at diagnosis (37.0 ± 13.9 versus 45.8 ± 13.0 years, p = 0.03) but not with CP related complications after adjusting for sex, years of follow-up, alcohol and tobacco consumption, etiology and body mass index. Compared with a normal fat diet, HFD is associated with a younger age at diagnosis of CP and continuous abdominal pain, but not with severity and complications of the disease. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Rapid calculation of acoustic fields from arbitrary continuous-wave sources.

    PubMed

    Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T

    2018-01-01

    A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.

  5. [Continuous subcutaneous morphine to patients with terminal cancer. Analgesia at home].

    PubMed

    Laursen, J O

    1994-04-04

    Since 1992 it has been possible for cancer patients in the county of Southern Jutland to receive terminal care in their own homes. An essential part of this management is effective pain relief; more than 60% of cancer patients have chronic pain. In cases where oral medication or epidural administration of morphine is insufficient or complicated by side-effects continuous subcutaneous morphine administration may be suitable. The patient may be treated in this latter manner for long periods of time. A case story is described where a cancer patient was treated with continuous subcutaneous morphine in his home for more than 257 days without complications or major side-effects.

  6. Risk of aspirin continuation in spinal surgery: a systematic review and meta-analysis.

    PubMed

    Goes, Rik; Muskens, Ivo S; Smith, Timothy R; Mekary, Rania A; Broekman, Marike L D; Moojen, Wouter A

    2017-12-01

    Aspirin is typically discontinued in spinal surgery because of increased risk of hemorrhagic complications. The risk of perioperative continuation of aspirin in neurosurgery needed to be evaluated. This study aimed to evaluate all available evidence about continuation of aspirin and to compare peri- and postoperative blood loss and complication rates between patients that continued aspirin and those who discontinued aspirin perioperatively in spinal surgery. Systematic review and meta-analysis were carried out. A meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies comparing aspirin continuation with discontinuation were included. Studies using a combination of anticlotting agents or non-spinal procedures were excluded. Operative outcomes (blood loss and operative length) and different complications (surgical site infection [SSI]), stroke, myocardial infarction within 30 days postoperatively) were extracted. Overall prevalence and means were calculated for the reported outcomes in fixed-effects models with heterogeneity (I-squared [I 2 ]) and effect modification (P-interaction) assessment. Out of 1,339 studies, three case series were included in the meta-analysis. No significant differences in mean operating time were seen between the aspirin-continuing group (mean=201.8 minutes, 95% confidence interval [CI]=193.3; 210.3; I 2 =95.4%; 170 patients) and the aspirin-discontinuing group (mean=178.4 minutes, 95% CI=119.1; 237.6; I 2 =93.5%; 200 patients); (P-interaction=0.78). No significant differences in mean perioperative blood loss were seen between the aspirin-continuing group (mean=553.9 milliliters, 95% CI=468.0; 639.9; I 2 =83.4%; 170 patients) and the aspirin-discontinuing group (mean=538.7 milliliters, 95% CI=427.6; 649.8; I 2 =985.5%; 200 patients); (P-interaction=0.96). Similar non-significant differences between the two groups were found for cardiac events, stroke, and surgical site infections. This meta-analysis showed an absence of significant differences in perioperative complications between aspirin continuation and discontinuation. Because of the paucity of included studies, further well-designed prospective trials are imperative to demonstrate potential benefit and safety. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Pre-stack separation of PP and split PS waves in HTI media

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wang, Yun; Yang, Yuyong; Chen, Jingyi

    2017-07-01

    Separation of PP and split PS waves in transversely isotropic media with a horizontal axis of symmetry is crucial for imaging subsurface targets and for fracture prediction in a multicomponent seismic survey using P-wave sources. In conventional multicomponent processing, when a low velocity zone is present near the surface, it is often assumed that the vertical Z-component mainly records P modes and that the horizontal X- and Y-components record S modes, including split PS waves. However, this assumption does not hold when the ubiquitous presence of azimuthal anisotropy makes near surface velocity structures more complicated. Seismic wavefields recorded in each component therefore generally represent a complex waveform formed by PP and split PS waves, seriously distorting velocity analysis and seismic imaging. Most previous studies on wave separation have tended to separate P and S modes using pre-stack data and to separate split S modes using post-stack sections, under the assumption of orthogonal polarization. However, split S modes can hardly maintain their original orthogonal polarizations during propagation to the surface due to stratigraphic heterogeneity. Here, without assuming orthogonal polarization, we present a method for pre-stack separation of PP, PS1 and PS2 waves using all three components. The core of our method is the rotation of wave vectors from the Cartesian coordinate system established by Z-, R- and T-axes to a coordinate system established by the true PP-, PS1- and PS2-wave vector directions. Further, we propose a three-component superposition approach to obtain base wave vectors for the coordinate system transformation. Synthetic data testing results confirm that the performance of our wave separation method is stable under different noise levels. Application to field data from Southwest China reveals the potential of our proposed method.

  8. Path planning on cellular nonlinear network using active wave computing technique

    NASA Astrophysics Data System (ADS)

    Yeniçeri, Ramazan; Yalçın, Müstak E.

    2009-05-01

    This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.

  9. Transplant Pulmonary Interventions: Translating Lung Transplant Interventions to Nontransplant Patients.

    PubMed

    Sinha, Neeraj

    2016-01-01

    Roughly 10% of lung transplant recipients experience airway complications. Although the incidence has decreased dramatically since the first lung transplants were performed in the 1960s, airway complications have continued to adversely affect outcomes. Bronchoscopic interventions such as balloon dilation, airway stenting, and endobronchial electrocautery play an important role in ameliorating the morbidity and mortality associated with these complications. This review describes the array of bronchoscopic interventions used to treat airway complications after lung transplant and how these techniques can be used in nontransplant settings as well.

  10. The energy-water nexus: are there tradeoffs between residential energy and water consumption in arid cities?

    PubMed

    Ruddell, Darren M; Dixon, P Grady

    2014-09-01

    Water scarcity, energy consumption, and air temperature regulation are three critical resource and environmental challenges linked to urban population growth. While appliance efficiency continues to increase, today's homes are larger and residents are using more energy-consuming devices. Recent research has often described the energy-water nexus as a "tradeoff" between energy and water due to reduced temperatures resulting from irrigated vegetation. Accordingly, some arid cities have implemented landscape-conversion programs that encourage homeowners to convert their yards from grass (mesic) to drought-tolerant (xeric) landscapes to help conserve water resources. We investigated these relationships in Phoenix, Arizona by examining energy and water data for the summer months of June-September 2005 while temperature variability was analyzed from a local heat wave. Results show parallel consumption patterns with energy and water use strongly correlated and newer homes using more of both. The counterintuitive findings show that "drought-resistant" models may not be beneficial for community health, environment, or economics and that this issue is further complicated by socio-economic variables.

  11. Modal element method for scattering of sound by absorbing bodies

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1992-01-01

    The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.

  12. Diode Laser Excision of Oral Benign Lesions.

    PubMed

    Mathur, Ena; Sareen, Mohit; Dhaka, Payal; Baghla, Pallavi

    2015-01-01

    Lasers have made tremendous progress in the field of dentistry and have turned out to be crucial in oral surgery as collateral approach for soft tissue surgery. This rapid progress can be attributed to the fact that lasers allow efficient execution of soft tissue procedures with excellent hemostasis and field visibility. When matched to scalpel, electrocautery or high frequency devices, lasers offer maximum postoperative patient comfort. Four patients agreed to undergo surgical removal of benign lesions of the oral cavity. 810 nm diode lasers were used in continuous wave mode for excisional biopsy. The specimens were sent for histopathological examination and patients were assessed on intraoperative and postoperative complications. Diode laser surgery was rapid, bloodless and well accepted by patients and led to complete resolution of the lesions. The excised specimen proved adequate for histopathological examination. Hemostasis was achieved immediately after the procedure with minimal postoperative problems, discomfort and scarring. We conclude that diode lasers are rapidly becoming the standard of care in contemporary dental practice and can be employed in procedures requiring excisional biopsy of oral soft tissue lesions with minimal problems in histopathological diagnosis.

  13. Human papilloma virus lesions of the oral cavity: healing and relapse after treatment with 810-980 nm diode laser.

    PubMed

    Angiero, Francesca; Buccianti, Alberto; Parma, Luisa; Crippa, Rolando

    2015-02-01

    This study evaluated the therapeutic efficacy of laser therapy in treating oral human papilloma virus (HPV) lesions. In particular, mode of action, healing, postoperative patient compliance, visual numeric scale (VNS) pain index, and recurrence were analyzed. During 2001-2012, in 170 patients (80 women and 90 men), 174 intraoral and lip HPV lesions were detected and excised by diode laser of different wavelengths (810-980 nm), with an average power of 2.1 W, in continuous wave mode, using 300 to 320 μm optical fibers. In most cases (95.4%), complete healing occurred in the first 30 days. There were no adverse effects and all patients were carefully followed up until complete healing occurred, documenting any complications. There was only one recurrence, which was later treated successfully; the mean VNS pain score was below one. In treating HPV lesions, the diode laser is not only a valuable tool for their eradication but especially it reduces relapses, thanks to the characteristics of the laser light.

  14. The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite

    NASA Astrophysics Data System (ADS)

    Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ozaki, Mitsunori; Matsuda, Shoya; Imachi, Tomohiko; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Katoh, Yuto; Ota, Mamoru; Shoji, Masafumi; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    The Exploration of energization and Radiation in Geospace (ERG) project aims to study acceleration and loss mechanisms of relativistic electrons around the Earth. The Arase (ERG) satellite was launched on December 20, 2016, to explore in the heart of the Earth's radiation belt. In the present paper, we introduce the specifications of the Plasma Wave Experiment (PWE) on board the Arase satellite. In the inner magnetosphere, plasma waves, such as the whistler-mode chorus, electromagnetic ion cyclotron wave, and magnetosonic wave, are expected to interact with particles over a wide energy range and contribute to high-energy particle loss and/or acceleration processes. Thermal plasma density is another key parameter because it controls the dispersion relation of plasma waves, which affects wave-particle interaction conditions and wave propagation characteristics. The DC electric field also plays an important role in controlling the global dynamics of the inner magnetosphere. The PWE, which consists of an orthogonal electric field sensor (WPT; wire probe antenna), a triaxial magnetic sensor (MSC; magnetic search coil), and receivers named electric field detector (EFD), waveform capture and onboard frequency analyzer (WFC/OFA), and high-frequency analyzer (HFA), was developed to measure the DC electric field and plasma waves in the inner magnetosphere. Using these sensors and receivers, the PWE covers a wide frequency range from DC to 10 MHz for electric fields and from a few Hz to 100 kHz for magnetic fields. We produce continuous ELF/VLF/HF range wave spectra and ELF range waveforms for 24 h each day. We also produce spectral matrices as continuous data for wave direction finding. In addition, we intermittently produce two types of waveform burst data, "chorus burst" and "EMIC burst." We also input raw waveform data into the software-type wave-particle interaction analyzer (S-WPIA), which derives direct correlation between waves and particles. Finally, we introduce our PWE observation strategy and provide some initial results.[Figure not available: see fulltext.

  15. EMIC waves covering wide L shells: MMS and Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei

    2017-07-01

    During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.

  16. Clinical presentations of pandemic 2009 influenza A (H1N1) virus infection in hospitalized Thai children.

    PubMed

    Lochindarat, Sorasak; Bunnag, Thanyanat

    2011-08-01

    A novel influenza A (H1N1) virus of swine origin caused human infection and acute respiratory illness in Mexico during the spring of 2009. After that, the virus spread globally, resulting in the influenza pandemic. To observe the clinical manifestations of the 2009 pandemic influenza A (H1N1) and the epidemic waves of hospitalized children for a period of one year. A prospective observational study of children under eighteen years old, confirmed having the 2009 pandemic influenza (H1N1) infection by real-time reverse-transcription-polymerase-chain-reaction (RT-PCR), admitted at Queen Sirikit National Institute of Child Health, Bangkok, Thailand during one year, from 1st June 2009 to 31st May 2010. A total of 83 pandemic influenza infected children were admitted during a one-year period. There were two waves of epidemic outbreak, the first wave from June to August 2009 and the second wave from January to February 2010. There were 47 cases of males (56.6%), with the highest attack rates among children 1-5 years of age (48.2%). The youngest case was a 29-day old girl. The correct provisional diagnosis of pandemic influenza infection are 39.5%, the other initial diagnosis are pneumonia, bronchiolitis, tonsillitis, encephalitis, and dengue infection. Most patients coming for care had typical, influenza-like symptoms with fever (98.8%), cough (92.6%) and rhinorrhea (74.1%). Systemic symptoms are frequent. Gastrointestinal symptoms (including vomiting (46.9%) and diarrhea (24.7%)) occur more commonly than seasonal influenza. Pneumonia is the most common complication (43.2%); other complications include bronchiolitis, hemoptysis, acute respiratory distress syndrome (ARDS) and encephalitis. In one case, a seven year old girl suffered from ARDS, sepsis, multi-organ dysfunction syndrome and ventilator associated pneumonia, but survived with some neurological sequelae. Radiographic findings included diffuse interstitial, alveolar infiltrates and some in lobar distributions. Apart from oseltamivir the other antibiotics included ceftriaxone, cefotaxime, amplicillin and azithromycin, were added for pneumonia. All patients in the present study survived. The burden and character of pandemic influenza infection in developing countries are still incompletely understood. Early therapy with oseltamivir in severely ill patients, without waiting for laboratory confirmation for diagnosis, will save patients from severe complications.

  17. BIVARIATE MODELLING OF CLUSTERED CONTINUOUS AND ORDERED CATEGORICAL OUTCOMES. (R824757)

    EPA Science Inventory

    Simultaneous observation of continuous and ordered categorical outcomes for each subject is common in biomedical research but multivariate analysis of the data is complicated by the multiple data types. Here we construct a model for the joint distribution of bivariate continuous ...

  18. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    PubMed

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  19. Effects of salt-related mode conversions on subsalt prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogilvie, J.S.; Purnell, G.W.

    1996-03-01

    Mode conversion of waves during seismic reflection surveys has generally been considered a small phenomenon that could be neglected in data processing and interpretation. However, in subsalt prospecting, the contrast in material properties at the salt/sediment interface is often great enough that significant P-to-S and/or S-to-P conversion occurs. The resulting converted waves can be both a help and a hindrance for subsalt prospecting. A case history from the Mississippi Canyon area of the Gulf of Mexico demonstrates strong converted-wave reflections from the base-of-salt that complicate the evaluation of a subsalt prospect using 3-D seismic data. Before and after stack, themore » converted-wave reflections are evident in 2-D and 3-D surveys across the prospect. Ray-tracing synthetic common midpoint (CMP) gathers provides some useful insights about the occurrence of these waves, but elastic-wave-equation modeling is even more useful. While the latter is more time-consuming, even in 2-D, it also provides a more realistic simulated seismic survey across the prospect, which helps to reveal how some converted waves survive the processes of CMP stack and migration, and thereby present possible pitfalls to an unwary interpreter. The insights gained from the synthetic-data suggest some simple techniques that can assist an interpreter in the 3-D interpretation of subsalt events.« less

  20. Measurements of wind-waves under transient wind conditions.

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Zavadsky, Andrey

    2015-11-01

    Wind forcing in nature is always unsteady, resulting in a complicated evolution pattern that involves numerous time and space scales. In the present work, wind waves in a laboratory wind-wave flume are studied under unsteady forcing`. The variation of the surface elevation is measured by capacitance wave gauges, while the components of the instantaneous surface slope in across-wind and along-wind directions are determined by a regular or scanning laser slope gauge. The locations of the wave gauge and of the laser slope gauge are separated by few centimeters in across-wind direction. Instantaneous wind velocity was recorded simultaneously using Pitot tube. Measurements are performed at a number of fetches and for different patterns of wind velocity variation. For each case, at least 100 independent realizations were recorded for a given wind velocity variation pattern. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters. Significant differences between the evolution patterns of the surface elevation and of the slope components were found. Wavelet analysis was applied to determine dominant wave frequency of the surface elevation and of the slope variation at each instant. Corresponding ensemble-averaged values acquired by different sensors were computed and compared. Analysis of the measured ensemble-averaged quantities at different fetches makes it possible to identify different stages in the wind-wave evolution and to estimate the appropriate time and length scales.

  1. Percutaneous nephrolithotomy for the treatment of radiolucent renal stones in children: is it different opaque stone treatment?

    PubMed

    Adanur, Şenol; Ziypak, Tevfik; Sancaktutar, Ahmet Ali; Tepeler, Abdülkadir; Reşorlu, Berkan; Söylemez, Haluk; Dağgülli, Mansur; Özbey, İsa; Unsal, Ali

    2014-02-01

    We aimed to evaluate the effectiveness of percutaneous nephrolithotomy (PNL), stone-free rates, and related complications in children with radiolucent renal stones. A total of 56 patients aged <16 years from four institutions were enrolled in our study. Asymptomatic, clinically insignificant residual fragments measuring <4 mm or a complete stone-free status was accepted as the criterion for clinical success. Complications were evaluated according to the modified Clavien classification. The mean age of the patients was 7.8 ± 4.5 years. The mean stone size was calculated as 24.07 ± 10.4 mm. The median operative and fluoroscopy times were 53.2 min (15-170 min) and 172.4 s (5-520 s), respectively. The success rate after PNL monotherapy was 87.4%; the total success rate with shock wave lithotripsy used as an auxillary treatment method was detected as 94.6%. The total complication rate was 19.6% (11 patients). No adjacent organ injury was observed. All of the complications that occurred were minor according to the Clavien classification (Clavien Grades I-II). PNL can be applied to radiolucent pediatric renal stones in children with similar success, and complication rates as noted for radiopaque stones.

  2. Local Wave Propagation and Crustal Structure Tomography in Northern Mississippi Embayment

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Langston, C. A.

    2016-12-01

    Several datasets in the vicinity of the New Madrid Seismic Zone (NMSZ) are used to study local wave propagation and crustal structure in this region, including data collected for the Northern Embayment Lithosphere Experiment (NELE) project, Transportable Array, New Madrid Cooperative Network and Embayment Seismic Excitation Experiment (ESEE). Focal mechanisms and focal depths are determined with the help of synthetic seismograms for earthquakes with magnitude larger than 3. The thick unconsolidated sediment complicates waveforms inside the Mississippi Embayment by producing large converted PS, SP phases and reverberations that mask important near-source depth phases. Modeling events with well-constrained focal mechanisms using synthetic seismograms reveals a variety of waveguide propagation effects including P and S sediment reverberations as well as leaky mode P wave trains. Substantial differences in the travel time of the mid-crustal reflection are observed for waves traveling in different directions. The travel time of the mid-crustal reflection waves and direct waves are then used in a tomography for the crustal structure. The result reveals that there is a significant southwest dip to the top of the mid-crust in the vicinity of the NMSZ. Resulting image and the determined source parameters are essential for full waveform inversion to determine high-resolution crustal structure of the Northern Mississippi Embayment.

  3. Single-station 6C beamforming

    NASA Astrophysics Data System (ADS)

    Nakata, N.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.

  4. Extracorporeal shock wave lithotripsy (ESWL) of a renal calculus in a liver transplant recipient: report of a severe complication--a case report.

    PubMed

    Friedersdorff, F; Buckendahl, J; Fuller, T F; Cash, H

    2010-11-01

    Extracorporeal shock wave lithotripsy (ESWL) has evolved as a standard treatment modality for calculi of the upper urinary tract. Noninvasive ESWL shows rare life-threatening complications. Herein we have reported the case of a liver transplant recipient who developed severe renal hemorrhage after ESWL of a renal calculus. Transfusion of erythrocytes and platelets led to anaphylactic shock with acute renal failure requiring intensive care. The patient fully recovered shortly thereafter and was discharged home with a residual left kidney stone measuring 8 mm. A 55-year-old man with a single left kidney underwent ESWL due to symptomatic left nephrolithiasis. He had undergone successful liver transplantation 11 years earlier. At the time of ESWL his liver functions were normal and his serum creatinine level was 1.3 mg/dL. Two weeks before the treatment a double pigtail ureteral stent was inserted because of a symptomatic left hydronephrosis. Several hours after ESWL treatment the patient complained of left-sided flank pain. An ultrasound revealed a large subcapsular hematoma of the left kidney, which was confirmed using abdominal computed tomography (CT). With the patient being hemodynamically stable, we opted for conservative management. Despite postinterventional complications, the patient made a fast recovery. ESWL is a noninvasive, safe, and efficient method to treat renal calculi. Patients who are at risk for hemorrhage should undergo close postinterventional monitoring, including red blood cell count and renal ultrasound. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. A microwave method for measuring moisture content, density, and grain angle of wood

    Treesearch

    W. L. James; Y.-H. Yen; R. J. King

    1985-01-01

    The attenuation, phase shift and depolarization of a polarized 4.81-gigahertz wave as it is transmitted through a wood specimen can provide estimates of the moisture content (MC), density, and grain angle of the specimen. Calibrations are empirical, and computations are complicated, with considerable interaction between parameters. Measured dielectric parameters,...

  6. Study on acceleration processes of the radiation belt electrons through interaction with sub-packet chorus waves in parallel propagation

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2017-12-01

    By recent observations, chorus waves include fine structures such as amplitude fluctuations (i.e. sub-packet structure), and it has not been verified in detail yet how energetic electrons are efficiently accelerated under the wave features. In this study, we firstly focus on the acceleration process of a single electron: how it experiences the efficient energy increase by interaction with sub-packet chorus waves in parallel propagation along the Earth's magnetic field. In order to reproduce the chorus waves as seen by the latest observations by Van Allen Probes (Foster et al. 2017), the wave model amplitude in our simulation is structured such that when the wave amplitude nonlinearly grows to reach the optimum amplitude, it starts decreasing until crossing the threshold. Once it crosses the threshold, the wave dissipates and a new wave rises to repeat the nonlinear growth and damping in the same manner. The multiple occurrence of this growth-damping cycle forms a saw tooth-like amplitude variation called sub-packet. This amplitude variation also affects the wave frequency behavior which is derived by the chorus wave equations as a function of the wave amplitude (Omura et al. 2009). It is also reasonable to assume that when a wave packet diminishes and the next wave rises, it has a random phase independent of the previous wave. This randomness (discontinuity) in phase variation is included in the simulation. Through interaction with such waves, dynamics of energetic electrons were tracked. As a result, some electrons underwent an efficient acceleration process defined as successive entrapping, in which an electron successfully continues to surf the trapping potential generated by consecutive wave packets. When successive entrapping occurs, an electron trapped and de-trapped (escape the trapping potential) by a single wave packet falls into another trapping potential generated by the next wave sub-packet and continuously accelerated. The occurrence of successive entrapping is influenced by some factors such as the magnitude of wave amplitude or inhomogeneity of the Earth's dipole magnetic field. In addition, an energy range of electrons is also a major factor. In this way, it has been examined in detail how and under which conditions electrons are efficiently accelerated in the formation process of the radiation belts.

  7. Extra-Pulmonary Tuberculosis and Its Surgical Treatment.

    PubMed

    Fry, Donald E

    2016-08-01

    Tuberculous infection has declined in the United States but remains a major infectious disease with morbidity and death for millions of people. Although the primary therapy is drugs, complications of the disease require surgical interventions. The published literature on tuberculosis was reviewed to provide a current understanding of the medical treatment of the disease and to define those areas where surgical intervention continues to be necessary. Multi-drug therapy for tuberculosis has become the standard and has reduced the complications of the disease necessitating surgical intervention. However, multi-drug resistance and extensively drug-resistant tuberculosis continue to be major problems and require effective initial therapy with surveillance to define resistant infections. The roles of surgery in tuberculosis are in establishing the diagnosis in extra-pulmonary infection and in the management of complications of disseminated disease. Tuberculosis remains an occupational risk for surgeons and surgical personnel. Tuberculosis is still a global problem, mandating recognition and treatment. Surgeons should have an understanding of the diverse presentation and complications of the disease.

  8. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    PubMed

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  9. Optical trapping of nanoparticles by ultrashort laser pulses.

    PubMed

    Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi

    2013-01-01

    Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.

  10. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  11. Damage detection and locating using tone burst and continuous excitation modulation method

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  12. Continuous-wave EPR at 275 GHz: Application to high-spin Fe 3+ systems

    NASA Astrophysics Data System (ADS)

    Mathies, G.; Blok, H.; Disselhorst, J. A. J. M.; Gast, P.; van der Meer, H.; Miedema, D. M.; Almeida, R. M.; Moura, J. J. G.; Hagen, W. R.; Groenen, E. J. J.

    2011-05-01

    The 275 GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275 GHz continuous-wave spectra of a 1 mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10 mM frozen solutions of the protein rubredoxin, which contains Fe 3+ in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5 GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.

  13. On the relationship between wave based control, absolute vibration suppression and input shaping

    NASA Astrophysics Data System (ADS)

    Peled, I.; O'Connor, W. J.; Halevi, Y.

    2013-08-01

    The modeling and control of continuous flexible structures is one of the most challenging problems in control theory. This topic gains more interest with the development of slender space structures, light weight aeronautical components or even traditional gears and drive shafts with flexible properties. Several control schemes are based on the traveling wave approach, rather than the more common modal methods. In this work we investigate the relationships between two of these methods. The Absolute Vibration Suppression (AVS) controller, which was developed for infinite dimension systems, is compared to Wave Based Control (WBC) which was designed primarily for lumped systems. The WBC was first adjusted to continuous systems and then the two controllers, whose algorithms seem different, are compared. The investigation shows that for the flexible shaft these two control laws are actually the same. Furthermore, when converted into an equivalent open loop controller they appear as an extension to continuous systems of the Input Shaping (IS) methodology.

  14. Contributions of poroelastic-wave potentials to seismoelectromagnetic wavefields and validity of the quasi-static calculation: a view from a borehole model

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Shi, Peng; Hu, Hengshan

    2018-01-01

    In this study, we theoretically analyse the contributions of the four poroelastic-wave potentials to seismoelectromagnetic (SEM) wavefields, verify the validity of the quasi-static calculation of the electric field and provide a method to calculate the magnetic field by using the curl-free electric field. Calculations show that both the fast and slow P waves and the SH and SV waves have non-negligible contributions to the SEM fields. The S waves have indirect contribution to the electric field through the EM conversion from the magnetic field, although the direct contribution due to streaming current is negligible if EM wavenumbers are much smaller than those of the S waves. The P waves have indirect contribution to the magnetic field through EM conversion from the electric field, although the direct contribution is absent. The quasi-static calculation of the electric field is practicable since it is normally satisfied in reality that the EM wavenumbers are much smaller than those of poroelastic waves. While the direct contribution of the S waves and the higher-order EM conversions are ignored, the first-order EM conversion from the S-wave-induced magnetic field is reserved through the continuity of the electric-current density. To calculate the magnetic field on this basis, we separate the quasi-static electric field into a rotational and an irrotational part. The magnetic-field solutions are derived through Hertz vectors in which the coefficients of the magnetic Hertz vector are determined from the magnetic-field continuities and those of the electric Hertz vector originate from the irrotational part of the quasi-static electric field.

  15. Direct Calculation of the Scattering Amplitude Without Partial Wave Decomposition. III; Inclusion of Correlation Effects

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2007-01-01

    In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.

  16. Prediction of major complications after hepatectomy using liver stiffness values determined by magnetic resonance elastography.

    PubMed

    Sato, N; Kenjo, A; Kimura, T; Okada, R; Ishigame, T; Kofunato, Y; Shimura, T; Abe, K; Ohira, H; Marubashi, S

    2018-04-23

    Liver fibrosis is a risk factor for hepatectomy but cannot be determined accurately before hepatectomy because diagnostic procedures are too invasive. Magnetic resonance elastography (MRE) can determine liver stiffness (LS), a surrogate marker for assessing liver fibrosis, non-invasively. The aim of this study was to investigate whether the LS value determined by MRE is predictive of major complications after hepatectomy. This prospective study enrolled consecutive patients who underwent hepatic resection between April 2013 and August 2016. LS values were measured by imaging shear waves by MRE in the liver before hepatectomy. The primary endpoint was major complications, defined as Clavien-Dindo grade IIIa or above. Logistic regression analysis identified independent predictive factors, from which a logistic model to estimate the probability of major complications was constructed. A total of 96 patients were included in the study. Major complications were observed in 15 patients (16 per cent). Multivariable logistic analysis confirmed that higher LS value (P = 0·021) and serum albumin level (P = 0·009) were independent predictive factors for major complications after hepatectomy. Receiver operating characteristic (ROC) analysis showed that the best LS cut-off value was 4·3 kPa for detecting major complications, comparable to liver fibrosis grade F4, with a sensitivity of 80 per cent and specificity of 82 per cent. A logistic model using the LS value and serum albumin level to estimate the probability of major complications was constructed; the area under the ROC curve for predicting major complications was 0·84. The LS value determined by MRE in patients undergoing hepatectomy was an independent predictive factor for major complications. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.

  17. Electromagnetic pulse propagation in dispersive planar dielectrics.

    PubMed

    Moten, K; Durney, C H; Stockham, T G

    1989-01-01

    The responses of a plane-wave pulse train irradiating a lossy dispersive dielectric half-space are investigated. The incident pulse train is expressed as a Fourier series with summing done by the inverse fast Fourier transform. The Fourier series technique is adopted to avoid the many difficulties often encountered in finding the inverse Fourier transform when transform analyses are used. Calculations are made for propagation in pure water, and typical waveforms inside the dielectric half-space are presented. Higher harmonics are strongly attenuated, resulting in a single continuous sinusoidal waveform at the frequency of the fundamental depth in the material. The time-averaged specific absorption rate (SAR) for pulse-train propagation is shown to be the sum of the time-averaged SARs of the individual harmonic components of the pulse train. For the same average power, calculated SARs reveal that pulse trains generally penetrate deeper than carrier-frequency continuous waves but not deeper than continuous waves at frequencies approaching the fundamental of the pulse train. The effects of rise time on the propagating pulse train in the dielectrics are shown and explained. Since most practical pulsed systems are very limited in bandwidth, no pronounced differences between their response and continuous wave (CW) response would be expected. Typical results for pulse-train propagation in arrays of dispersive planar dielectric slabs are presented. Expressing the pulse train as a Fourier series provides a practical way of interpreting the dispersion characteristics from the spectral point of view.

  18. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    NASA Astrophysics Data System (ADS)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  19. Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris

    NASA Astrophysics Data System (ADS)

    Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.

    2016-09-01

    The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.

  20. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations.

    PubMed

    Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi

    2016-08-10

    A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8  mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.

  1. Long-Time Asymptotics of a Box-Type Initial Condition in a Viscous Fluid Conduit

    NASA Astrophysics Data System (ADS)

    Franco, Nevil; Webb, Emily; Maiden, Michelle; Hoefer, Mark; El, Gennady

    2017-11-01

    The initial value problem for a localized hump disturbance is fundamental to dispersive nonlinear waves, beginning with studies of the celebrated, completely integrable Korteweg-de Vries equation. However, understanding responses to similar disturbances in many realistic dispersive wave systems is more complicated because they lack the mathematical property of complete integrability. This project applies Whitham nonlinear wave modulation theory to estimate how a viscous fluid conduit evolves this classic initial value problem. Comparisons between theory, numerical simulations, and experiments are presented. The conduit system consists of a viscous fluid column (glycerol) and a diluted, dyed version of the same fluid introduced to the column through a nozzle at the bottom. Steady injection and the buoyancy of the injected fluid leads to the eventual formation of a stable fluid conduit. Within this structure, a one hump disturbance is introduced and is observed to break up into a quantifiable number of solitons. This structure's experimental evolution is to Whitham theory and numerical simulations of a long-wave interfacial model equation. The method presented is general and can be applied to other dispersive nonlinear wave systems. Please email me, as I am the submitter.

  2. Molecular modeling of transmembrane delivery of paclitaxel by shock waves with nanobubbles

    NASA Astrophysics Data System (ADS)

    Lu, Xue-mei; Yuan, Bing; Zhang, Xian-ren; Yang, Kai; Ma, Yu-qiang

    2017-01-01

    The development of advanced delivery strategies for anticancer drugs that can permeate through cellular membranes is urgently required for biomedical applications. In this work, we investigated the dynamic transmembrane behavior of paclitaxel (PTX), a powerful anticancer drug, under the combined impact of shock waves and nanobubbles, by using atomistic molecular dynamics simulations. Our simulations show that the PTX molecule experiences complicated motion modes during the action process with the membrane, as a consequence of its interplay with the lipid bilayer and water, under the joint effect of the shock wave and nanobubble. Moreover, it was found that the transmembrane movement of PTX is closely associated with the conformation changes of PTX, as well as the structural changes of the membrane (e.g., compression and poration in membrane). The nanobubble collapse induced by the shock wave, the proper PTX location with respect to the nanobubble, and a suitable nanobubble size and shock impulse are all necessary for the delivery of PTX into the cell. This work provides a molecular understanding of the interaction mechanism between drug molecules and cell membranes under the influence of shock waves and nanobubbles, and paves the way for exploiting targeted drug delivery systems that combine nanobubbles and ultrasound.

  3. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft ormore » to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.« less

  4. Optical negative refraction by four-wave mixing in thin metallic nanostructures.

    PubMed

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2011-10-30

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  5. Imaging of underground karst water channels using an improved multichannel transient Rayleigh wave detecting method

    PubMed Central

    Zheng, Xuhui; Liu, Lei; Li, Gao; Zhou, Fubiao; Xu, Jiemin

    2018-01-01

    Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan’an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit. PMID:29883492

  6. Imaging of underground karst water channels using an improved multichannel transient Rayleigh wave detecting method.

    PubMed

    Zheng, Xuhui; Liu, Lei; Sun, Jinzhong; Li, Gao; Zhou, Fubiao; Xu, Jiemin

    2018-01-01

    Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan'an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit.

  7. Negative group velocity Lamb waves on plates and applications to the scattering of sound by shells

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2003-05-01

    Symmetric Lamb waves on plates exhibit anomalies for certain regions of frequency. The phase velocity appears to be double-valued [M. F. Werby and H. Überall, J. Acoust. Soc. Am. 111, 2686-2691 (2002)] with one of the branches having a negative group velocity relative to the corresponding phase velocity. The classification of the symmetric plate modes for frequencies appearing to have a double-valued phase velocity is reviewed here. The complication of a double-valued velocity is avoided by examining mode orthogonality and the complex wave-number spectra. Various authors have noted an enhancement in the backscattering of sound by elastic shells in water that occurs for frequencies where symmetric leaky Lamb waves (generalized to case of a shell) have contra-directed group and phase velocities. The ray diagram for negative group velocity contributions to the scattering by shells [G. Kaduchak, D. H. Hughes, and P. L. Marston, J. Acoust. Soc. Am. 96, 3704-3714 (1994)] is unusual since for this type of mode the energy on the shell flows in the opposite direction of the wave vector. Circumnavigation of the shell is not required for the leaky ray to be backward directed.

  8. Numerical model of two-dimensional heterogeneous combustion in porous media under natural convection or forced filtration

    NASA Astrophysics Data System (ADS)

    Lutsenko, Nickolay A.

    2018-03-01

    A novel mathematical model and original numerical method for investigating the two-dimensional waves of heterogeneous combustion in porous media are proposed and described in detail. The mathematical model is constructed within the framework of the model of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for solid and gas phases. Combustion, considered in the paper, is due to the exothermic reaction between fuel in the porous solid medium and oxidiser contained in the gas flowing through the porous object. The original numerical method is based on a combination of explicit and implicit finite-difference schemes. A distinctive feature of the proposed model is that the gas velocity at the open boundaries (inlet and outlet) of the porous object is unknown and has to be found from the solution of the problem, i.e. the flow rate of the gas regulates itself. This approach allows processes to be modelled not only under forced filtration, but also under free convection, when there is no forced gas input in porous objects, which is typical for many natural or anthropogenic disasters (burning of peatlands, coal dumps, landfills, grain elevators). Some two-dimensional time-dependent problems of heterogeneous combustion in porous objects have been solved using the proposed numerical method. It is shown that two-dimensional waves of heterogeneous combustion in porous media can propagate in two modes with different characteristics, as in the case of one-dimensional combustion, but the combustion front can move in a complex manner, and gas dynamics within the porous objects can be complicated. When natural convection takes place, self-sustaining combustion waves can go through the all parts of the object regardless of where an ignition zone was located, so the all combustible material in each part of the object is burned out, in contrast to forced filtration.

  9. Study of the Seismic Source in the Jalisco Block

    NASA Astrophysics Data System (ADS)

    Gutierrez, Q. J.; Escudero, C. R.; Nunez-Cornu, F. J.; Ochoa, J.; Cruz, L. H.

    2013-05-01

    The direct measure of the earthquake fault dimension and the orientation, as well as the direction of slip represent a complicated task nevertheless a better approach is using the seismic waves spectrum and the direction of P-first motions observed at each station. With these methods we can estimate the seismic source parameters like the stress drop, the corner frequency which is linked to the rupture duration time, the fault radius (For the particular case of a circular fault), the rupture area, the seismic moment , the moment magnitude and the focal mechanisms. The study area where were estimated the source parameters comprises the complex tectonic configuration of Jalisco block, that is delimited by the mesoamerican trench at the west, the Colima grabben to the south, and the Tepic-Zacoalco to the north The data was recorded by the MARS network (Mapping the Riviera Subduction Zone) and the RESAJ network. MARS had 50 stations and settled in the Jalisco block; for a period of time, of January 1, 2006 until June, 2007, the magnitude range of these was between 3 to 6.5 MB. RESJAL has 10 stations and is within the state of Jalisco, began to record since October 2011 and continues to record. Before of apply the method we firs remove the trend, the mean and the instrument response and we corrected for attenuation; then manually chosen the S wave, the multitaper method was used to obtain the spectrum of this wave and so estimate the corner frequency and the spectra level. We substitute the obtained in the equations of the Brune model to calculate the source parameters. To calculate focal mechanisms HASH software was used which determines the most likely mechanism. The main propose of this study is estimate earthquake seismic source parameters with the objective of that helps to understand the physics of earthquake rupture mechanism in the area.

  10. Wideband Timing of Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy; Demorest, Paul; Ransom, Scott M.; North American Nanohertz ObservatoryGravitational Waves (NANOGRAV)

    2015-01-01

    The use of backend instrumentation capable of real-time coherent dedispersion of relatively large fractional bandwidths has become commonplace in pulsar astronomy. However, along with the desired increase in sensitivity to pulsars' broadband signals, a larger instantaneous bandwidth brings a number of potentially aggravating effects that can lead to degraded timing precision. In the case of high-precision timing experiments, such as the one being carried out by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), subtle effects such as unmodeled intrinsic profile evolution with frequency, interstellar scattering, and dispersion measure variation are potentially capable of reducing the experiment's sensitivity to a gravitational wave signal. In order to account for some of these complications associated with wideband observations, we augmented the traditional algorithm by which the fundamental timing quantities are measured. Our new measurement algorithm accommodates an arbitrary two-dimensional model ``portrait'' of a pulsar's total intensity as a function of observing frequency and rotational phase, and simultaneously determines the time-of-arrival (TOA), the dispersion measure (DM), and per-frequency-channel amplitudes that account for interstellar scintillation. Our publicly available python code incorporates a Gaussian-component modeling routine that allows for independent component evolution with frequency, a ``fiducial component'', and the inclusion of scattering. Here, we will present results from the application of our wideband measurement scheme to the suite of NANOGrav millisecond pulsars, which aimed to determine the level at which the experiment is being harmed by unmodeled profile evolution. We have found thus far, and expect to continue to find, that our new measurements are at least as good as those from traditional techniques. At a minimum, by largely reducing the volume of TOAs we will decrease the computational demand associated with probing posterior distributions in the search for gravitational waves. The development of this algorithm is well-motivated by the promise of even larger fractional bandwidth receiver systems in the future of pulsar astronomy.

  11. Formation of Ion Beam from High Density Plasma of ECR Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izotov, I.; Razin, S.; Sidorov, A.

    2005-03-15

    One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less

  12. Small range and distinct distribution in a satellite breeding colony of the critically endangered Waved Albatross

    EPA Science Inventory

    To determine the proximate consequences of the limited breeding distribution of the critically endangered Waved Albatross (Phoebastria irrorata), we present continuous breeding season GPS tracks highlighting differences in behaviour, destinations, and distances travelled between ...

  13. Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.

    PubMed

    Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-10-01

    A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.

  14. Whistler mode waves observed by MGF search coil magnetometer -Polarization and wave normal features of upstream waves near the bow-shock

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.

    1994-12-01

    Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.

  15. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.

    1992-01-01

    The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.

  16. Solitary-wave solutions of the Benjamin equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, J.P.; Bona, J.L.; Restrepo, J.M.

    1999-10-01

    Considered here is a model equation put forward by Benjamin that governs approximately the evolution of waves on the interface of a two-fluid system in which surface-tension effects cannot be ignored. The principal focus is the traveling-wave solutions called solitary waves, and three aspects will be investigated. A constructive proof of the existence of these waves together with a proof of their stability is developed. Continuation methods are used to generate a scheme capable of numerically approximating these solitary waves. The computer-generated approximations reveal detailed aspects of the structure of these waves. They are symmetric about their crests, but unlikemore » the classical Korteqeg-de Vries solitary waves, they feature a finite number of oscillations. The derivation of the equation is also revisited to get an idea of whether or not these oscillatory waves might actually occur in a natural setting.« less

  17. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.

  18. Reflection-refraction of attenuated waves at the interface between a thermo-poroelastic medium and a thermoelastic medium

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2018-07-01

    Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.

  19. Generation of ultrasound in materials using continuous-wave lasers.

    PubMed

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  20. Searches for continuous gravitational waves from Scorpius X-1 and XTE J1751-305 in LIGO's sixth science run

    NASA Astrophysics Data System (ADS)

    Meadors, G. D.; Goetz, E.; Riles, K.; Creighton, T.; Robinet, F.

    2017-02-01

    Scorpius X-1 (Sco X-1) and x-ray transient XTE J1751-305 are low-mass x-ray binaries (LMXBs) that may emit continuous gravitational waves detectable in the band of ground-based interferometric observatories. Neutron stars in LMXBs could reach a torque-balance steady-state equilibrium in which angular momentum addition from infalling matter from the binary companion is balanced by angular momentum loss, conceivably due to gravitational-wave emission. Torque balance predicts a scale for detectable gravitational-wave strain based on observed x-ray flux. This paper describes a search for Sco X-1 and XTE J1751-305 in LIGO science run 6 data using the TwoSpect algorithm, based on searching for orbital modulations in the frequency domain. While no detections are claimed, upper limits on continuous gravitational-wave emission from Sco X-1 are obtained, spanning gravitational-wave frequencies from 40 to 2040 Hz and projected semimajor axes from 0.90 to 1.98 light-seconds. These upper limits are injection validated, equal any previous set in initial LIGO data, and extend over a broader parameter range. At optimal strain sensitivity, achieved at 165 Hz, the 95% confidence level random-polarization upper limit on dimensionless strain h0 is approximately 1.8 ×10-24. The closest approach to the torque-balance limit, within a factor of 27, is also at 165 Hz. Upper limits are set in particular narrow frequency bands of interest for J1751-305. These are the first upper limits known to date on r -mode emission from this XTE source. The TwoSpect method will be used in upcoming searches of Advanced LIGO and Virgo data.

  1. The mythology of anticoagulation therapy interruption for dental surgery.

    PubMed

    Wahl, Michael J

    2018-01-01

    Continuous anticoagulation therapy is used to prevent heart attacks, strokes, and other embolic complications. When patients receiving anticoagulation therapy undergo dental surgery, a decision must be made about whether to continue anticoagulation therapy and risk bleeding complications or briefly interrupt anticoagulation therapy and increase the risk of developing embolic complications. Results from decades of studies of thousands of dental patients receiving anticoagulation therapy reveal that bleeding complications requiring more than local measures for hemostasis have been rare and never fatal. However, embolic complications (some of which were fatal and others possibly permanently debilitating) sometimes have occurred in patients whose anticoagulation therapy was interrupted for dental procedures. Although there is now virtually universal consensus among national medical and dental groups and other experts that anticoagulation therapy should not be interrupted for most dental surgery, there are still some arguments made supporting anticoagulation therapy interruption. An analysis of these arguments shows them to be based on a collection of myths and half-truths rather than on logical scientific conclusions. The time has come to stop anticoagulation therapy interruption for dental procedures. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  2. An update on the prone position: Continuing Professional Development.

    PubMed

    Chui, Jason; Craen, Rosemary Ann

    2016-06-01

    The purpose of this Continuing Professional Development module is to provide information needed to prepare for and clinically manage a patient in the prone position. Prone positioning is required for surgical procedures that involve the posterior aspect of a patient. We searched MEDLINE(®) and EMBASE™ from January 2000 to January 2015 for literature related to the prone position and retrieved only original articles in English. We reviewed the advantages and disadvantages of various equipment used in prone positioning, the physiological changes associated with prone positioning, and the complications that can occur. We also reviewed strategies for the safe conduct and management of position-related complications. Increased age, elevated body mass index, the presence of comorbidities, and long duration of surgery appear to be the most important risk factors for complications associated with prone positioning. We recommend a structured team approach and careful selection of equipment tailored to the patient and surgery. The systematic use of checklists is recommended to guide operating room teams and to reduce prone position-related complications. Anesthesiologists should be prepared to manage major intraoperative emergencies (e.g., accidental extubation) and anticipate postoperative complications (e.g., airway edema and visual loss).

  3. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  4. Visualization and analysis of flow structures in an open cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng

    2018-05-01

    A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.

  5. A Kosloff/Basal method, 3D migration program implemented on the CYBER 205 supercomputer

    NASA Technical Reports Server (NTRS)

    Pyle, L. D.; Wheat, S. R.

    1984-01-01

    Conventional finite difference migration has relied on approximations to the acoustic wave equation which allow energy to propagate only downwards. Although generally reliable, such approaches usually do not yield an accurate migration for geological structures with strong lateral velocity variations or with steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal (Migration with the Full Acoustic Wave Equation) examined an alternative approach based on the full acoustic wave equation. The 2D, Fourier type algorithm which was developed was tested by Kosloff and Baysal against synthetic data and against physical model data. The results indicated that such a scheme gives accurate migration for complicated structures. This paper describes the development and testing of a vectorized, 3D migration program for the CYBER 205 using the Kosloff/Baysal method. The program can accept as many as 65,536 zero offset (stacked) traces.

  6. Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere

    DOE PAGES

    Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun

    2015-01-01

    By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH wavesmore » can be localized in different locations along the field line.« less

  7. Severe hypertriglyceridaemia in Type 2 diabetes mellitus: beneficial effect of continuous insulin infusion.

    PubMed

    Henderson, S R; Maitland, R; Mustafa, O G; Miell, J; Crook, M A; Kottegoda, S R

    2013-04-01

    Severe hypertriglyceridaemia is a recognized complication of Type 2 diabetes mellitus (T2DM); however, there is no consensus on acute management despite the significant risk of developing associated complications such as acute pancreatitis and hyperviscosity syndrome. To identify the association between hyperglycaemia and severe hypertriglyceridaemia in patients with T2DM and assess the effect of continuous insulin infusion therapy on serum triglyceride (TG) concentrations and report any adverse events associated with this therapeutic approach. Retrospective review of case records. Patients with uncontrolled hyperglycaemia and severe hypertriglyceridaemia (serum TG > 15 mmol/l) treated with continuous intravenous insulin infusion between October 2008 and September 2009 were retrospectively evaluated (n = 15). Details recorded included demographics, admission details, lipid profiles, glycaemic control, serum amylase and adverse events. Patients receiving treatment-dose unfractionated heparin infusion were excluded. Severe hypertriglyceridaemia is associated with hyperglycaemia in our heterogeneous group of patients with T2DM presenting with new-onset diabetes or established disease on pre-existing insulin or oral hypoglycaemic agents. Administration of continuous exogenous insulin not only achieved normoglycaemia but also dramatically corrected severe hypertriglyceridaemia in all patients (P = 0.001). The administration of continuous insulin in patients with T2DM with severe hypertriglyceridaemia is a simple and safe method of significantly reducing the immediate risk associated with this metabolic complication and should be considered in any T2DM patient presenting with severe hypertriglyceridaemia and hyperglycaemia.

  8. Schrödinger propagation of initial discontinuities leads to divergence of moments

    NASA Astrophysics Data System (ADS)

    Marchewka, A.; Schuss, Z.

    2009-09-01

    We show that the large phase expansion of the Schrödinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.

  9. Scalar wave-optical reconstruction of plenoptic camera images.

    PubMed

    Junker, André; Stenau, Tim; Brenner, Karl-Heinz

    2014-09-01

    We investigate the reconstruction of plenoptic camera images in a scalar wave-optical framework. Previous publications relating to this topic numerically simulate light propagation on the basis of ray tracing. However, due to continuing miniaturization of hardware components it can be assumed that in combination with low-aperture optical systems this technique may not be generally valid. Therefore, we study the differences between ray- and wave-optical object reconstructions of true plenoptic camera images. For this purpose we present a wave-optical reconstruction algorithm, which can be run on a regular computer. Our findings show that a wave-optical treatment is capable of increasing the detail resolution of reconstructed objects.

  10. Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, George I.; Hameiri, Eliezer

    Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less

  11. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China.

    PubMed

    Su, Shuo; Gu, Min; Liu, Di; Cui, Jie; Gao, George F; Zhou, Jiyong; Liu, Xiufan

    2017-09-01

    H7N9 influenza viruses were first isolated in 2013 and continue to cause human infections. H7N9 infections represent an ongoing public health threat that has resulted in 1344 cases with 511 deaths as of April 9, 2017. This highlights the continued threat posed by the current poultry trade and live poultry market system in China. Until now, there have been five H7N9 influenza epidemic waves in China; however, the steep increase in the number of humans infected with H7N9 viruses observed in the fifth wave, beginning in October 2016, the spread into western provinces, and the emergence of highly pathogenic (HP) H7N9 influenza outbreaks in chickens and infection in humans have caused domestic and international concern. In this review, we summarize and compare the different waves of H7N9 regarding their epidemiology, pathogenesis, evolution, and characteristic features, and speculate on factors behind the recent increase in the number of human cases and sudden outbreaks in chickens. The continuous evolution of the virus poses a long-term threat to public health and the poultry industry, and thus it is imperative to strengthen prevention and control strategies. Copyright © 2017. Published by Elsevier Ltd.

  12. Gravitational waves produced by compressible MHD turbulence from cosmological phase transitions

    NASA Astrophysics Data System (ADS)

    Peter, Niksa; Martin, Schlederer; Günter, Sigl

    2018-07-01

    We calculate the gravitational wave spectrum produced by magneto-hydrodynamic turbulence in a first order phase transitions. We focus in particular on the role of decorrelation of incompressible (solenoidal) homogeneous isotropic turbulence, which is dominated by the sweeping effect. The sweeping effect describes that turbulent decorrelation is primarily due to the small scale eddies being swept with by large scale eddies in a stochastic manner. This effect reduces the gravitational wave signal produced by incompressible MHD turbulence by around an order of magnitude compared to previous studies. Additionally, we find a more complicated dependence for the spectral shape of the gravitational wave spectrum on the energy density sourced by solenoidal modes (magnetic and kinetic). The high frequency tail follows either a k ‑5/3 or a k ‑8/3 power law for large and small solenoidal turbulence density parameter, respectively. Further, magnetic helicity tends to increase the gravitational wave energy at low frequencies. Moreover, we show how solenoidal modes might impact the gravitational wave spectrum from dilatational modes e.g. sound waves. We find that solenoidal modes greatly affect the shape of the gravitational wave spectrum due to the sweeping effect on the dilatational modes. For a high velocity flow, one expects a k ‑2 high frequency tail, due to sweeping. In contrast, for a low velocity flow and a sound wave dominated flow, we expect a k ‑3 high frequency tail. If neither of these limiting cases is realized, the gravitational wave spectrum may be a broken power law with index between  ‑2 and  ‑3, extending up to the frequency at which the source is damped by viscous dissipation.

  13. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  14. Jason Celebrates 5th Anniversary as El Niño Builds, Warm Kelvin Wave Surges Toward South America

    NASA Image and Video Library

    2006-12-07

    Recent sea-level height data from NASA Jason-1 altimetric satellite show that continuing weaker-than-normal trade winds in the western and central equatorial Pacific have triggered another strong, eastward moving, warm Kelvin wave.

  15. A new method for blood velocity measurements using ultrasound FMCW signals.

    PubMed

    Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro

    2010-05-01

    The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.

  16. Hardness variation of welded boron steel using continuous wave (CW) and pulse wave (PW) mode of fiber laser

    NASA Astrophysics Data System (ADS)

    Yaakob, K. I.; Ishak, M.; Idris, S. R. A.; Aiman, M. H.; Khalil, N. Z.

    2017-09-01

    Recent car manufacturer requirement in lightweight and optimum safety lead to utilization of boron steel with tailor welded blank approach. Laser welding process in tailor welded blank (TWB) production can be applied in continuous wave (CW) of pulse wave (PW) which produce different thermal experience in welded area. Instead of microstructure identification, hardness properties also can determine the behavior of weld area. In this paper, hardness variation of welded boron steel using PW and CW mode is investigated. Welding process is conducted using similar average power for both welding mode. Hardness variation across weld area is observed. The result shows similar hardness pattern across weld area for both welding mode. Hardness degradation at fusion zone (FZ) is due to ferrite formation existence from high heat input applied. With additional slower cooling rate for CW mode, the hardness degradation is become obvious. The normal variation of hardness behavior with PW mode might lead to good strength.

  17. An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System

    NASA Astrophysics Data System (ADS)

    Vincent, Alan

    1996-10-01

    All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.

  18. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-02-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.

  19. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  20. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

Top