Estimation and Identification of the Complier Average Causal Effect Parameter in Education RCTs
ERIC Educational Resources Information Center
Schochet, Peter Z.; Chiang, Hanley S.
2011-01-01
In randomized control trials (RCTs) in the education field, the complier average causal effect (CACE) parameter is often of policy interest, because it pertains to intervention effects for students who receive a meaningful dose of treatment services. This article uses a causal inference and instrumental variables framework to examine the…
ERIC Educational Resources Information Center
Nagengast, Benjamin; Brisson, Brigitte M.; Hulleman, Chris S.; Gaspard, Hanna; Häfner, Isabelle; Trautwein, Ulrich
2018-01-01
An emerging literature demonstrates that relevance interventions, which ask students to produce written reflections on how what they are learning relates to their lives, improve student learning outcomes. As part of a randomized evaluation of a relevance intervention (N = 1,978 students from 82 ninth-grade classes), we used Complier Average Causal…
Stanger, Catherine; Ryan, Stacy R.; Fu, Hongyun; Budney, Alan J.
2011-01-01
Background Children of substance abusers are at risk for behavioral/emotional problems. To improve outcomes for these children, we developed and tested an intervention that integrated a novel contingency management (CM) program designed to enhance compliance with an empirically-validated parent training curriculum. CM provided incentives for daily monitoring of parenting and child behavior, completion of home practice assignments, and session attendance. Methods Forty-seven mothers with substance abuse or dependence were randomly assigned to parent training + incentives (PTI) or parent training without incentives (PT). Children were 55% male, ages 2-7 years. Results Homework completion and session attendance did not differ between PTI and PT mothers, but PTI mothers had higher rates of daily monitoring. PTI children had larger reductions in child externalizing problems in all models. Complier Average Causal Effects (CACE) analyses showed additional significant effects of PTI on child internalizing problems, parent problems and parenting. These effects were not significant in standard Intent-to-Treat analyses. Conclusion Results suggest our incentive program may offer a method for boosting outcomes. PMID:21466925
Gruber, Joshua S; Arnold, Benjamin F; Reygadas, Fermin; Hubbard, Alan E; Colford, John M
2014-05-01
Complier average causal effects (CACE) estimate the impact of an intervention among treatment compliers in randomized trials. Methods used to estimate CACE have been outlined for parallel-arm trials (e.g., using an instrumental variables (IV) estimator) but not for other randomized study designs. Here, we propose a method for estimating CACE in randomized stepped wedge trials, where experimental units cross over from control conditions to intervention conditions in a randomized sequence. We illustrate the approach with a cluster-randomized drinking water trial conducted in rural Mexico from 2009 to 2011. Additionally, we evaluated the plausibility of assumptions required to estimate CACE using the IV approach, which are testable in stepped wedge trials but not in parallel-arm trials. We observed small increases in the magnitude of CACE risk differences compared with intention-to-treat estimates for drinking water contamination (risk difference (RD) = -22% (95% confidence interval (CI): -33, -11) vs. RD = -19% (95% CI: -26, -12)) and diarrhea (RD = -0.8% (95% CI: -2.1, 0.4) vs. RD = -0.1% (95% CI: -1.1, 0.9)). Assumptions required for IV analysis were probably violated. Stepped wedge trials allow investigators to estimate CACE with an approach that avoids the stronger assumptions required for CACE estimation in parallel-arm trials. Inclusion of CACE estimates in stepped wedge trials with imperfect compliance could enhance reporting and interpretation of the results of such trials.
A causal model for longitudinal randomised trials with time-dependent non-compliance
Becque, Taeko; White, Ian R; Haggard, Mark
2015-01-01
In the presence of non-compliance, conventional analysis by intention-to-treat provides an unbiased comparison of treatment policies but typically under-estimates treatment efficacy. With all-or-nothing compliance, efficacy may be specified as the complier-average causal effect (CACE), where compliers are those who receive intervention if and only if randomised to it. We extend the CACE approach to model longitudinal data with time-dependent non-compliance, focusing on the situation in which those randomised to control may receive treatment and allowing treatment effects to vary arbitrarily over time. Defining compliance type to be the time of surgical intervention if randomised to control, so that compliers are patients who would not have received treatment at all if they had been randomised to control, we construct a causal model for the multivariate outcome conditional on compliance type and randomised arm. This model is applied to the trial of alternative regimens for glue ear treatment evaluating surgical interventions in childhood ear disease, where outcomes are measured over five time points, and receipt of surgical intervention in the control arm may occur at any time. We fit the models using Markov chain Monte Carlo methods to obtain estimates of the CACE at successive times after receiving the intervention. In this trial, over a half of those randomised to control eventually receive intervention. We find that surgery is more beneficial than control at 6months, with a small but non-significant beneficial effect at 12months. © 2015 The Authors. Statistics in Medicine Published by JohnWiley & Sons Ltd. PMID:25778798
Fairhall, Nicola; Sherrington, Catherine; Cameron, Ian D; Kurrle, Susan E; Lord, Stephen R; Lockwood, Keri; Herbert, Robert D
2017-01-01
What is the effect of a multifactorial intervention on frailty and mobility in frail older people who comply with their allocated treatment? Secondary analysis of a randomised, controlled trial to derive an estimate of complier average causal effect (CACE) of treatment. A total of 241 frail community-dwelling people aged ≥ 70 years. Intervention participants received a 12-month multidisciplinary intervention targeting frailty, with home exercise as an important component. Control participants received usual care. Primary outcomes were frailty, assessed using the Cardiovascular Health Study criteria (range 0 to 5 criteria), and mobility measured using the 12-point Short Physical Performance Battery. Outcomes were assessed 12 months after randomisation. The treating physiotherapist evaluated the amount of treatment received on a 5-point scale. 216 participants (90%) completed the study. The median amount of treatment received was 25 to 50% (range 0 to 100). The CACE (ie, the effect of treatment in participants compliant with allocation) was to reduce frailty by 1.0 frailty criterion (95% CI 0.4 to 1.5) and increase mobility by 3.2 points (95% CI 1.8 to 4.6) at 12 months. The mean CACE was substantially larger than the intention-to-treat effect, which was to reduce frailty by 0.4 frailty criteria (95% CI 0.1 to 0.7) and increase mobility by 1.4 points (95% CI 0.8 to 2.1) at 12 months. Overall, compliance was low in this group of frail people. The effect of the treatment on participants who comply with allocated treatment was substantially greater than the effect of allocation on all trial participants. Australian and New Zealand Trial Registry ANZCTRN12608000250336. [Fairhall N, Sherrington C, Cameron ID, Kurrle SE, Lord SR, Lockwood K, Herbert RD (2016) A multifactorial intervention for frail older people is more than twice as effective among those who are compliant: complier average causal effect analysis of a randomised trial.Journal of Physiotherapy63: 40-44]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Tucker, Jalie A.; Roth, David L.; Huang, Jin; Scott Crawford, M.; Simpson, Cathy A.
2012-01-01
Objective: Most problem drinkers do not seek help, and many recover on their own. A randomized controlled trial evaluated whether supportive interactive voice response (IVR) self-monitoring facilitated such “natural” resolutions. Based on behavioral economics, effects on drinking outcomes were hypothesized to vary with drinkers’ baseline “time horizons,” reflecting preferences among commodities of different value available over different delays and with their IVR utilization. Method: Recently resolved untreated problem drinkers were randomized to a 24-week IVR self-monitoring program (n = 87) or an assessment-only control condition (n = 98). Baseline interviews assessed outcome predictors including behavioral economic measures of reward preferences (delay discounting, pre-resolution monetary allocation to alcohol vs. savings). Six-month outcomes were categorized as resolved abstinent, resolved nonabstinent, unresolved, or missing. Complier average causal effect (CACE) models examined IVR self-monitoring effects. Results: IVR self-monitoring compliers (≥70% scheduled calls completed) were older and had greater pre-resolution drinking control and lower discounting than noncompliers (<70%). A CACE model interaction showed that observed compliers in the IVR group with shorter time horizons (expressed by greater pre-resolution spending on alcohol than savings) were more likely to attain moderation than abstinent resolutions compared with predicted compliers in the control group with shorter time horizons and with all noncompliers. Intention-to-treat analytical models revealed no IVR-related effects. More balanced spending on savings versus alcohol predicted moderation in both approaches. Conclusions: IVR interventions should consider factors affecting IVR utilization and drinking outcomes, including person-specific behavioral economic variables. CACE models provide tools to evaluate interventions involving extended participation. PMID:22630807
Carmody, Thomas; Greer, Tracy L; Walker, Robrina; Rethorst, Chad D; Trivedi, Madhukar H
2018-06-01
Exercise is a promising treatment for substance use disorders, yet an intention-to-treat analysis of a large, multi-site study found no reduction in stimulant use for exercise versus health education. Exercise adherence was sub-optimal; therefore, secondary post-hoc complier average causal effects (CACE) analysis was conducted to determine the potential effectiveness of adequately dosed exercise. The STimulant use Reduction Intervention using Dosed Exercise study was a randomized controlled trial comparing a 12 kcal/kg/week (KKW) exercise dose versus a health education control conducted at nine residential substance use treatment settings across the U.S. that are affiliated with the National Drug Abuse Treatment Clinical Trials Network. Participants were sedentary but medically approved for exercise, used stimulants within 30 days prior to study entry, and received a DSM-IV stimulant abuse or dependence diagnosis within the past year. A CACE analysis adjusted to include only participants with a minimum threshold of adherence (at least 8.3 KKW) and using a negative-binomial hurdle model focused on 218 participants who were 36.2% female, mean age 39.4 years ( SD =11.1), and averaged 13.0 ( SD =9.2) stimulant use days in the 30 days before residential treatment. The outcome was days of stimulant use as assessed by the self-reported TimeLine Follow Back and urine drug screen results. The CACE-adjusted analysis found a significantly lower probability of relapse to stimulant use in the exercise group versus the health education group (41.0% vs. 55.7%, p <.01) and significantly lower days of stimulant use among those who relapsed (5.0 days vs. 9.9 days, p <.01). The CACE adjustment revealed significant, positive effects for exercise. Further research is warranted to develop strategies for exercise adherence that can ensure achievement of an exercise dose sufficient to produce a significant treatment effect.
McConnachie, Alex; Haig, Caroline; Sinclair, Lesley; Bauld, Linda; Tappin, David M
2017-07-20
The Cessation in Pregnancy Incentives Trial (CPIT), which offered financial incentives for smoking cessation during pregnancy showed a clinically and statistically significant improvement in cessation. However, infant birth weight was not seen to be affected. This study re-examines birth weight using an intuitive and a complier average causal effects (CACE) method to uncover important information missed by intention-to-treat analysis. CPIT offered financial incentives up to £400 to pregnant smokers to quit. With incentives, 68 women (23.1%) were confirmed non-smokers at primary outcome, compared to 25 (8.7%) without incentives, a difference of 14.3% (Fisher test, p < 0.0001). For this analysis, randomised groups were split into three theoretical sub-groups: independent quitters - quit without incentives, hardened smokers - could not quit even with incentives and potential quitters - required the addition of financial incentives to quit. Viewed in this way, the overall birth weight gain with incentives is attributable only to potential quitters. We compared an intuitive approach to a CACE analysis. Mean birth weight of potential quitters in the incentives intervention group (who therefore quit) was 3338 g compared with potential quitters in the control group (who did not quit) 3193 g. The difference attributable to incentives, was 3338 - 3193 = 145 g (95% CI -617, +803). The mean difference in birth weight between the intervention and control groups was 21 g, and the difference in the proportion who managed to quit was 14.3%. Since the intervention consisted of the offer of incentives to quit smoking, the intervention was received by all women in the intervention group. However, "compliance" was successfully quitting with incentives, and the CACE analysis yielded an identical result, causal birth weight increase 21 g ÷ 0.143 = 145 g. Policy makers have great difficulty giving pregnant women money to stop smoking. This study indicates that a small clinically insignificant improvement in average birth weight is likely to hide an important clinically significant increase in infants born to pregnant smokers who want to stop but cannot achieve smoking cessation without the addition of financial voucher incentives. ISRCTN Registry, ISRCTN87508788 . Registered on 1 September 2011.
Causal mediation analysis with multiple mediators in the presence of treatment noncompliance.
Park, Soojin; Kürüm, Esra
2018-05-20
Randomized experiments are often complicated because of treatment noncompliance. This challenge prevents researchers from identifying the mediated portion of the intention-to-treated (ITT) effect, which is the effect of the assigned treatment that is attributed to a mediator. One solution suggests identifying the mediated ITT effect on the basis of the average causal mediation effect among compliers when there is a single mediator. However, considering the complex nature of the mediating mechanisms, it is natural to assume that there are multiple variables that mediate through the causal path. Motivated by an empirical analysis of a data set collected in a randomized interventional study, we develop a method to estimate the mediated portion of the ITT effect when both multiple dependent mediators and treatment noncompliance exist. This enables researchers to make an informed decision on how to strengthen the intervention effect by identifying relevant mediators despite treatment noncompliance. We propose a nonparametric estimation procedure and provide a sensitivity analysis for key assumptions. We conduct a Monte Carlo simulation study to assess the finite sample performance of the proposed approach. The proposed method is illustrated by an empirical analysis of JOBS II data, in which a job training intervention was used to prevent mental health deterioration among unemployed individuals. Copyright © 2018 John Wiley & Sons, Ltd.
Corbett, Duane B; Fennell, Curtis; Peroutky, Kylene; Kingsley, J Derek; Glickman, Ellen L
2018-01-29
To determine the effectiveness of a low-cost 12-week worksite physical activity intervention targeting a goal of 10,000 steps per day on reducing anthropometric indices, blood pressure indices, and plasma biomarkers of cardiovascular disease (CVD) risk among the employees of a major university. Fifty university employees (n = 43 female, n = 7 male; mean age = 48 ± 10 years) participated in the 12-week physical activity intervention (60 min, 3 day/week). Each session included both aerobic (cardiorespiratory endurance) and muscle-strengthening (resistance) physical activity using existing university facilities and equipment. Anthropometric indices, blood pressure indices, and plasma biomarkers of CVD risk assessed included those for obesity (body mass index), hypertension (systolic blood pressure, SBP; diastolic blood pressure, DBP), dyslipidemia (high-density lipoprotein, HDL; low-density lipoprotein, LDL; total serum cholesterol), and prediabetes (impaired fasting glucose, IFG). Steps per day were assessed using a wrist-worn activity monitor. Participants were given the goal of 10,000 steps per day and categorized as either compliers (≥ 10,000 steps per day on average) or non-compliers (< 10,000 steps per day on average) based on their ability to achieve this goal. Overall, 34% of participants at baseline were already at an elevated risk of CVD due to age. On average, 28% of participants adhered to the goal of 10,000 steps per day. After 12-weeks, participants in both groups (compliers and non-compliers) had lower BMI scores (p < 0.001), lower HDL scores (p < 0.034), and higher IFG scores (p < 0.001). The non-compliers had a greater reduction of BMI scores than the compliers (p = 0.003). Participants at risk for CVD had greater reductions than those not at risk for several risk factors, including SBP (p = 0.020), DBP (p = 0.028), IFG (p = 0.002), LDL (p = 0.006), and total serum cholesterol (p = 0.009). While the physical activity intervention showed mixed results overall with both favorable changes in anthropometric indices yet unfavorable changes in plasma biomarkers, it was particularly beneficial in regards to both blood pressure indices and plasma biomarkers among those already at risk of CVD. Trial registration ClinicalTrials.gov NCT03385447; retrospectively registered.
Cogo-Moreira, Hugo; de Ávila, Clara Regina Brandão; Ploubidis, George B.; Mari, Jair de Jesus
2013-01-01
Introduction Difficulties in word-level reading skills are prevalent in Brazilian schools and may deter children from gaining the knowledge obtained through reading and academic achievement. Music education has emerged as a potential method to improve reading skills because due to a common neurobiological substratum. Objective To evaluate the effectiveness of music education for the improvement of reading skills and academic achievement among children (eight to 10 years of age) with reading difficulties. Method 235 children with reading difficulties in 10 schools participated in a five-month, randomized clinical trial in cluster (RCT) in an impoverished zone within the city of São Paulo to test the effects of music education intervention while assessing reading skills and academic achievement during the school year. Five schools were chosen randomly to incorporate music classes (n = 114), and five served as controls (n = 121). Two different methods of analysis were used to evaluate the effectiveness of the intervention: The standard method was intention-to-treat (ITT), and the other was the Complier Average Causal Effect (CACE) estimation method, which took compliance status into account. Results The ITT analyses were not very promising; only one marginal effect existed for the rate of correct real words read per minute. Indeed, considering ITT, improvements were observed in the secondary outcomes (slope of Portuguese = 0.21 [p<0.001] and slope of math = 0.25 [p<0.001]). As for CACE estimation (i.e., complier children versus non-complier children), more promising effects were observed in terms of the rate of correct words read per minute [β = 13.98, p<0.001] and phonological awareness [β = 19.72, p<0.001] as well as secondary outcomes (academic achievement in Portuguese [β = 0.77, p<0.0001] and math [β = 0.49, p<0.001] throughout the school year). Conclusion The results may be seen as promising, but they are not, in themselves, enough to make music lessons as public policy. PMID:23544117
Cogo-Moreira, Hugo; Brandão de Ávila, Clara Regina; Ploubidis, George B; Mari, Jair de Jesus
2013-01-01
Difficulties in word-level reading skills are prevalent in Brazilian schools and may deter children from gaining the knowledge obtained through reading and academic achievement. Music education has emerged as a potential method to improve reading skills because due to a common neurobiological substratum. To evaluate the effectiveness of music education for the improvement of reading skills and academic achievement among children (eight to 10 years of age) with reading difficulties. 235 children with reading difficulties in 10 schools participated in a five-month, randomized clinical trial in cluster (RCT) in an impoverished zone within the city of São Paulo to test the effects of music education intervention while assessing reading skills and academic achievement during the school year. Five schools were chosen randomly to incorporate music classes (n = 114), and five served as controls (n = 121). Two different methods of analysis were used to evaluate the effectiveness of the intervention: The standard method was intention-to-treat (ITT), and the other was the Complier Average Causal Effect (CACE) estimation method, which took compliance status into account. The ITT analyses were not very promising; only one marginal effect existed for the rate of correct real words read per minute. Indeed, considering ITT, improvements were observed in the secondary outcomes (slope of Portuguese = 0.21 [p<0.001] and slope of math = 0.25 [p<0.001]). As for CACE estimation (i.e., complier children versus non-complier children), more promising effects were observed in terms of the rate of correct words read per minute [β = 13.98, p<0.001] and phonological awareness [β = 19.72, p<0.001] as well as secondary outcomes (academic achievement in Portuguese [β = 0.77, p<0.0001] and math [β = 0.49, p<0.001] throughout the school year). The results may be seen as promising, but they are not, in themselves, enough to make music lessons as public policy.
Ghosh, Priyanka; Lazar, Ann A; Ryan, William R; Yom, Sue S
2017-08-01
This study aimed to evaluate the effects of warm-mist humidification during and after head and neck radiation therapy (HN RT) on quality of life (QOL), as measured by the M. D. Anderson Symptom Inventory-Head and Neck (MDASI-HN) HN score. A secondary aim was to compare QOL among compliers (≥60% of protocol-recommended usage) versus non-compliers. Twenty patients self-administered a hand-held, self-sterilizing humidification device for a recommended time of at least 15 min twice daily for 12 weeks. Patients completed the MDASI-HN instrument at RT start, after 6 weeks, and after 12 weeks. Compliance was reported weekly. The average HN score at baseline was 1.7 (SD = 1.8) and increased to 6.0 (SD = 1.6) after 6 weeks; this increase was much higher than anticipated and the primary endpoint could not be reached. However, compliers had an average of nearly two less HN symptoms (-1.8, 95% CI -4 to 0.2; p = 0.08) than non-compliers at 6 weeks and fewer symptoms at 12 weeks as well (-0.9, 95% CI -2.9 to 1.2; p = 0.39). The most common terms patients used to describe humidification were "helpful" and "soothing." Compliance with humidification during RT was associated with fewer reported HN symptoms and a strong trend to better QOL. Improvements were seen from compliance with occasional required use of a portable, inexpensive device. Our findings support continued efforts to reduce barriers to humidification, as an intervention that should be considered for standard HN RT clinical practice.
Myers, Nicholas D; Dietz, Samantha; Prilleltensky, Isaac; Prilleltensky, Ora; McMahon, Adam; Rubenstein, Carolyn L; Lee, Seungmin
2018-04-30
Fun For Wellness (FFW) is a new online intervention designed to promote growth in well-being by providing capability-enhancing learning opportunities (e.g., play an interactive game) to participants. The purpose of this study was to provide an initial evaluation of the efficacy of the FFW intervention to increase well-being actions. The study design was a secondary data analysis of a large-scale prospective, double-blind, parallel-group randomized controlled trial. Data were collected at baseline and 30 and 60 days postbaseline. A total of 479 adult employees at a major university in the southeast of the United States of America were enrolled. Participants who were randomly assigned to the FFW group were provided with 30 days of 24-hour access to the intervention. A two-class linear regression model with complier average causal effect estimation was fitted to well-being actions scores at 30 and 60 days. Intent-to-treat analysis provided evidence that the effect of being assigned to the FFW intervention, without considering actual participation in the FFW intervention, had a null effect on each dimension of well-being actions at 30 and 60 days. Participants who complied with the FFW intervention, however, had significantly higher well-being actions scores, compared to potential compliers in the Usual Care group, in the interpersonal dimension at 60 days, and the physical dimension at 30 days. Results from this secondary data analysis provide some supportive evidence for both the efficacy of and possible revisions to the FFW intervention in regard to promoting well-being actions.
Brennan, Alana T; Bor, Jacob; Davies, Mary-Ann; Wandeler, Gilles; Prozesky, Hans; Fatti, Geoffrey; Wood, Robin; Stinson, Kathryn; Tanser, Frank; Bärnighausen, Till; Boulle, Andrew; Sikazwe, Izukanji; Zanolini, Arianna; Fox, Matthew P
2018-05-15
Tenofovir is less toxic than other nucleoside reverse transcriptase inhibitors used in antiretroviral therapy (ART) and may improve retention of HIV-infected patients on ART. We assessed the impact of national guideline changes in South Africa (2010) and Zambia (2007) recommending tenofovir in first-line ART. We applied regression discontinuity in a prospective cohort of 52,294 HIV-infected adults initiating first-line ART within ±12-months of each guideline change. We compared outcomes in patients presenting just before/after the guideline changes using local linear regression and estimated intention-to-treat effects on initiation of tenofovir, retention in care, and other treatment outcomes at 24-months. We assessed complier causal effects among patients starting tenofovir. The new guidelines increased the percentage of patients initiating tenofovir in South Africa (risk difference (RD): 81%; 95% confidence interval (CI): 73, 89) and Zambia (RD: 42%; 95% CI: 38, 45). With the guideline change, single-drug substitutions decreased substantially in South Africa (RD: -15%; 95% CI:-18, -12). Starting tenofovir also reduced attrition in Zambia (intent-to-treat RD: -1.8%; 95% CI: -3.5, -0.1, complier relative risk = 0.74) but not in South Africa (RD: -0.9%; 95% CI: -5.9, 4.1, Complier Relative Risk = 0.94). These results highlight the importance of reducing side effects for increasing retention in care, as well as the differences in population impact of policies with heterogeneous treatment effects implemented in different contexts.
Myers, Nicholas D; Prilleltensky, Isaac; Prilleltensky, Ora; McMahon, Adam; Dietz, Samantha; Rubenstein, Carolyn L
2017-11-01
Subjective well-being refers to people's level of satisfaction with life as a whole and with multiple dimensions within it. Interventions that promote subjective well-being are important because there is evidence that physical health, mental health, substance use, and health care costs may be related to subjective well-being. Fun For Wellness (FFW) is a new online universal intervention designed to promote growth in multiple dimensions of subjective well-being. The purpose of this study was to provide an initial evaluation of the efficacy of FFW to increase subjective well-being in multiple dimensions in a universal sample. The study design was a prospective, double-blind, parallel group randomized controlled trial. Data were collected at baseline and 30 and 60 days-post baseline. A total of 479 adult employees at a major university in the southeast of the USA were enrolled. Recruitment, eligibility verification, and data collection were conducted online. Measures of interpersonal, community, occupational, physical, psychological, economic (i.e., I COPPE), and overall subjective well-being were constructed based on responses to the I COPPE Scale. A two-class linear regression model with complier average causal effect estimation was imposed for each dimension of subjective well-being. Participants who complied with the FFW intervention had significantly higher subjective well-being, as compared to potential compliers in the Usual Care group, in the following dimensions: interpersonal at 60 days, community at 30 and 60 days, psychological at 60 days, and economic at 30 and 60 days. Results from this study provide some initial evidence for both the efficacy of, and possible revisions to, the FFW intervention.
Jerosch-Herold, C.; Houghton, J.; Miller, L.; Shepstone, L.
2016-01-01
Despite surgery for carpal tunnel syndrome being effective in 80%–90% of cases, chronic numbness and hand disability can occur. The aim of this study was to investigate whether sensory relearning improves tactile discrimination and hand function after decompression. In a multi-centre, pragmatic, randomized, controlled trial, 104 patients were randomized to a sensory relearning (n = 52) or control (n = 52) group. A total of 93 patients completed a 12-week follow-up. Primary outcome was the shape-texture identification test at 6 weeks. Secondary outcomes were touch threshold, touch localization, dexterity and self-reported hand function. No significant group differences were seen for the primary outcome (Shape-Texture Identification) at 6 weeks or 12 weeks. Similarly, no significant group differences were observed on secondary outcomes, with the exception of self-reported hand function. A secondary complier-averaged-causal-effects analysis showed no statistically significant treatment effect on the primary outcome. Sensory relearning for tactile sensory and functional deficits after carpal tunnel decompression is not effective. Level of Evidence: II PMID:27402282
Latent class instrumental variables: A clinical and biostatistical perspective
Baker, Stuart G.; Kramer, Barnett S.; Lindeman, Karen S.
2015-01-01
In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. PMID:26239275
Telemedicine cardiovascular risk reduction in veterans: The CITIES trial.
Bosworth, Hayden B; Olsen, Maren K; McCant, Felicia; Stechuchak, Karen M; Danus, Susanne; Crowley, Matthew J; Goldstein, Karen M; Zullig, Leah L; Oddone, Eugene Z
2018-05-01
Comprehensive programs addressing tailored patient self-management and pharmacotherapy may reduce barriers to cardiovascular disease (CVD) risk reduction. This is a 2-arm (clinical pharmacist specialist-delivered, telehealth intervention and education control) randomized controlled trial including Veterans with poorly controlled hypertension and/or hypercholesterolemia. Primary outcome was Framingham CVD risk score at 6 and 12 months, with systolic blood pressure; diastolic blood pressure; total cholesterol; low-density lipoprotein; high-density lipoprotein; body mass index; and, for those with diabetes, HbA1c as secondary outcomes. Among 428 Veterans, 50% were African American, 85% were men, and 33% had limited health literacy. Relative to the education control group, the clinical pharmacist specialist-delivered intervention did not show a reduction in CVD risk score at 6 months (-1.8, 95% CI -3.9 to 0.3; P = .10) or 12 months (-0.3, 95% CI -2.4 to 1.7; P = .74). No differences were seen in systolic blood pressure, diastolic blood pressure, or low-density lipoprotein at 6 or 12 months. We did observe a significant decline in total cholesterol at 6 months (-7.0, 95% CI -13.4 to -0.6; P = .03) in the intervention relative to education control group. Among patients in the intervention group, 34% received at least 5 of the 12 planned intervention calls and were considered "compliers." A sensitivity analysis of the "complier average causal effect" of intervention compared to control showed a mean difference in CVD risk score reduction of 5.7 (95% CI -12.0 to 0.7) at 6 months and -1.7 (95% CI -7.6 to 4.8) at 12 months. Despite increased access to pharmacist resources, we did not observe significant improvements in CVD risk for patients randomized to the intervention compared to education control over 12 months. However, the intervention may have positive impact among those who actively participate, particularly in the short term. Copyright © 2018. Published by Elsevier Inc.
Latent class instrumental variables: a clinical and biostatistical perspective.
Baker, Stuart G; Kramer, Barnett S; Lindeman, Karen S
2016-01-15
In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. Copyright © 2015 John Wiley & Sons, Ltd.
Estimating intervention effects of prevention programs: Accounting for noncompliance
Stuart, Elizabeth A.; Perry, Deborah F.; Le, Huynh-Nhu; Ialongo, Nicholas S.
2010-01-01
Individuals not fully complying with their assigned treatments is a common problem encountered in randomized evaluations of behavioral interventions. Treatment group members rarely attend all sessions or do all “required” activities; control group members sometimes find ways to participate in aspects of the intervention. As a result, there is often interest in estimating both the effect of being assigned to participate in the intervention, as well as the impact of actually participating and doing all of the required activities. Methods known broadly as “complier average causal effects” (CACE) or “instrumental variables” (IV) methods have been developed to estimate this latter effect, but they are more commonly applied in medical and treatment research. Since the use of these statistical techniques in prevention trials has been less widespread, many prevention scientists may not be familiar with the underlying assumptions and limitations of CACE and IV approaches. This paper provides an introduction to these methods, described in the context of randomized controlled trials of two preventive interventions: one for perinatal depression among at-risk women and the other for aggressive disruptive behavior in children. Through these case studies, the underlying assumptions and limitations of these methods are highlighted. PMID:18843535
Cordovilla-Guardia, Sergio; Fernández-Mondéjar, Enrique; Vilar-López, Raquel; Navas, Juan F; Portillo-Santamaría, Mónica; Rico-Martín, Sergio; Lardelli-Claret, Pablo
2017-01-01
Estimate the effectiveness of brief interventions in reducing trauma recidivism in hospitalized trauma patients who screened positive for alcohol and/or illicit drug use. Dynamic cohort study based on registry data from 1818 patients included in a screening and brief intervention program for alcohol and illicit drug use for hospitalized trauma patients. Three subcohorts emerged from the data analysis: patients who screened negative, those who screened positive and were offered brief intervention, and those who screened positive and were not offered brief intervention. Follow-up lasted from 10 to 52 months. Trauma-free survival, adjusted hazard rate ratios (aHRR) and adjusted incidence rate ratios (aIRR) were calculated, and complier average causal effect (CACE) analysis was used. We found a higher cumulative risk of trauma recidivism in the subcohort who screened positive. In this subcohort, an aHRR of 0.63 (95% CI: 0.41-0.95) was obtained for the group offered brief intervention compared to the group not offered intervention. CACE analysis yielded an estimated 52% reduction in trauma recidivism associated with the brief intervention. The brief intervention offered during hospitalization in trauma patients positive for alcohol and/or illicit drug use can halve the incidence of trauma recidivism.
Fernández-Mondéjar, Enrique; Vilar-López, Raquel; Navas, Juan F.; Portillo-Santamaría, Mónica; Rico-Martín, Sergio; Lardelli-Claret, Pablo
2017-01-01
Objective Estimate the effectiveness of brief interventions in reducing trauma recidivism in hospitalized trauma patients who screened positive for alcohol and/or illicit drug use. Methods Dynamic cohort study based on registry data from 1818 patients included in a screening and brief intervention program for alcohol and illicit drug use for hospitalized trauma patients. Three subcohorts emerged from the data analysis: patients who screened negative, those who screened positive and were offered brief intervention, and those who screened positive and were not offered brief intervention. Follow-up lasted from 10 to 52 months. Trauma-free survival, adjusted hazard rate ratios (aHRR) and adjusted incidence rate ratios (aIRR) were calculated, and complier average causal effect (CACE) analysis was used. Results We found a higher cumulative risk of trauma recidivism in the subcohort who screened positive. In this subcohort, an aHRR of 0.63 (95% CI: 0.41–0.95) was obtained for the group offered brief intervention compared to the group not offered intervention. CACE analysis yielded an estimated 52% reduction in trauma recidivism associated with the brief intervention. Conclusion The brief intervention offered during hospitalization in trauma patients positive for alcohol and/or illicit drug use can halve the incidence of trauma recidivism. PMID:28813444
The efficacy of interpersonal psychotherapy for depression among economically disadvantaged mothers.
Toth, Sheree L; Rogosch, Fred A; Oshri, Assaf; Gravener-Davis, Julie; Sturm, Robin; Morgan-López, Antonio Alexander
2013-11-01
A randomized clinical trial was conducted to evaluate the efficacy of interpersonal psychotherapy (IPT) for ethnically and racially diverse, economically disadvantaged women with major depressive disorder. Non-treatment-seeking urban women (N = 128; M age = 25.40, SD = 4.98) with infants were recruited from the community. Participants were at or below the poverty level: 59.4% were Black and 21.1% were Hispanic. Women were screened for depressive symptoms using the Center for Epidemiologic Studies Depression Scale; the Diagnostic Interview Schedule was used to confirm major depressive disorder diagnosis. Participants were randomized to individual IPT or enhanced community standard. Depressive symptoms were assessed before, after, and 8 months posttreatment with the Beck Depression Inventory-II and the Revised Hamilton Rating Scale for Depression. The Social Support Behaviors Scale, the Social Adjustment Scale-Self-Report, and the Perceived Stress Scale were administered to examine mediators of outcome at follow-up. Treatment effects were evaluated with a growth mixture model for randomized trials using complier-average causal effect estimation. Depressive symptoms trajectories from baseline through postintervention to follow-up showed significant decreases among the IPT group compared to the enhanced community standard group. Changes on the Perceived Stress Scale and the Social Support Behaviors Scale mediated sustained treatment outcome.
Tanner, Elizabeth K.; Fried, Linda P.; Carlson, Michelle C.; Xue, Qian-Li; Parisi, Jeanine M.; Rebok, George W.; Yarnell, Lisa M.; Seeman, Teresa E.
2016-01-01
Objectives: Being and feeling generative, defined as exhibiting concern and behavior to benefit others, is an important developmental goal of midlife and beyond. Although a growing body of evidence suggests mental and physical health benefits of feeling generative in later life, little information exists as to the modifiability of generativity perceptions. The present study examines whether participation in the intergenerational civic engagement program, Experience Corps (EC), benefits older adults’ self-perceptions of generativity. Method: Levels of generativity were compared in older adults randomized to serve as EC volunteers or controls (usual volunteer opportunities) in the Baltimore Experience Corps Trial at 4-, 12-, and 24-month evaluation points over the 2-year trial. Analyses utilized intention-to-treat and complier average causal effects (CACE) analyses which incorporate degree of intervention exposure in analytic models. Results: Participants randomized to the EC group had significantly higher levels of generative desire and perceptions of generative achievement than controls at each follow-up point; CACE analyses indicate a dose–response effect with a greater magnitude of intervention effect with greater exposure to the EC program. Discussion: Results provide the first-ever, large-scale experimental demonstration that participation in an intergenerational civic engagement program can positively alter self-perceptions of generativity in older adulthood. PMID:25721053
Márquez-Contreras, Emilio; Martell-Claros, Nieves; Gil-Guillén, Vicente; De la Figuera-Von Wichmann, Mariano; Sánchez-López, Eugenio; Gil-Gil, Ines; Márquez-Rivero, Sara
2017-03-01
To assess the quality of life (QOL) with rivaroxaban in patients with non-valvular atrial fibrilation (NVAF) related to therapeutic compliance. Prospective, longitudinal, multicenter study was developed in 160 Spanish primary or specialized care centers. We included 412 patients treated with rivaroxaban, prescribed for stroke prevention. Three visits were conducted: baseline, 6 and 12 months. Compliance was measured by electronic monitoring systems. QOL was measured by a specific questionnaire. We calculated the percentage of compliance means, the percentage of daily compliers and the score of QOL. Three hundred and seventy patients finished the study (mean age 75.19 SD: 7.5 years). Daily compliance was 83.5% (CI 78.53-88.57%) (n = 309) and 80% (CI 74.65-85.35%) at 6 and 12 months, respectively. Average QOL rating was 112.85 (SD 29.31) in non-compliant and 111.80 (SD 29.31) in the compliant group (p = Not significant), and after 12 months of 124.67 (SD 30.78) and 83.47 (SD 26.44), respectively (p < 0.0001), with a decrease in the score compliers (p < 0.01) and an increase in non-compliant group (p < 0.05). A higher number of drugs consumed, as well as the number of diseases/conditions suffered, the older age of the patients and having been previously treated with VKA were associated with a higher overall score (worse QOL). QOL in NVAF patients treated with rivaroxaban improved significantly over the study group at the expense of compliers. A worse QOL was associated with pluripathology, polymedication, older patients and previous treatment with VKA.
Kogan, Steven M.; Yu, Tianyi; Brody, Gene H.; Chen, Yi-fu; DiClemente, Ralph J.; Wingood, Gina M.; Corso, Phaedra S.
2012-01-01
Purpose The Strong African American Families–Teen (SAAF–T) program, a family-centered preventive intervention that included an optional condom skills unit, was evaluated to determine whether it prevented unprotected intercourse and increased condom efficacy among rural African American adolescents. Ancillary analyses were conducted to identify factors that predicted youth attendance of the condom skills unit. Methods African American 16-year-olds (N = 502) and their primary caregivers were randomly assigned to SAAF–T (n = 252) or an attention control (n = 250) intervention. SAAF–T families participated in a 5-week family skills training program that included an optional condom skills unit. All families completed in-home pretest, posttest, and long-term follow-up interviews during which adolescents reported on their sexual behavior, condom use, and condom efficacy. Because condom use was addressed only in an optional unit that required caregiver consent, we analyzed efficacy using Complier Average Causal Effect (CACE) analyses. Results Attendance in both SAAF–T and the attention control intervention averaged 4 of 5 sessions; 70% of SAAF–T youth attended the condom skills unit. CACE models indicated that SAAF–T was efficacious in reducing unprotected intercourse and increasing condom efficacy among rural African American high school students. Exploratory analyses indicated that religious caregivers were more likely than nonreligious caregivers to have their youth attend the condom skills unit. Conclusions Results suggest that brief condom skills educational modules in the context of a family-centered program are feasible and reduce risk for sexually transmitted infections and unplanned pregnancies. PMID:22824447
Fosco, Gregory M.; Van Ryzin, Mark J.; Connell, Arin M.; Stormshak, Elizabeth A.
2015-01-01
Family-centered prevention programs are understudied for their effects on adolescent depression, despite considerable evidence that supports their effectiveness for preventing escalation in youth problem behavior and substance use. This study was conducted with 2 overarching goals: (a) replicate previous work that has implicated the Family Check-Up (FCU), a multilevel, gated intervention model embedded in public middle schools, as an effective strategy for preventing growth in adolescent depressive symptoms and (b) test whether changes in family conflict may be an explanatory mechanism for the long-term, protective effects of the FCU with respect to adolescent depression. This trial was conducted with 593 ethnically diverse families who were randomized to intervention (offered the FCU) or middle school as usual. Complier average causal effect (CACE) analysis revealed that engagers in the FCU evidenced less growth in depressive symptoms and family conflict from 6th through 9th grade and post-hoc analyses indicated that the FCU is related to lower rates of Major Depressive Disorder. The second set of analyses examined family conflict as a mechanism of change for families who participated in the FCU. Families who reported short-term intervention benefits had significantly less escalation in family conflict over the middle school years; in turn, growth in family conflict explained risk for adolescent depressive symptoms. PMID:26414418
Handley, Elizabeth D.; Michl-Petzing, Louisa C.; Rogosch, Fred A.; Cicchetti, Dante; Toth, Sheree L.
2016-01-01
Using a developmental cascades framework, the current study investigated whether treating maternal depression via interpersonal psychotherapy (IPT) may lead to more widespread positive adaptation for offspring and mothers including benefits to toddler attachment and temperament, and maternal parenting self-efficacy. The participants (N=125 mother-child dyads, mean mother age at baseline=25.43 years; 54.4% of mothers were African-American; mean offspring age at baseline=13.23 months) were from a randomized controlled trial (RCT) of IPT for a sample of racially and ethnically diverse, socioeconomically disadvantaged mothers of infants. Mothers were randomized to IPT (n=97) or an enhanced community standard (ECS) control group (n=28). Results of complier average causal effect (CACE) modeling showed that engagement with IPT led to significant decreases in maternal depressive symptoms at post-treatment. Moreover, reductions in maternal depression post-treatment were associated with less toddler disorganized attachment characteristics, more adaptive maternal perceptions of toddler temperament, and improved maternal parenting efficacy eight months following the completion of treatment. Our findings contribute to the emerging literature documenting the potential benefits to children of successfully treating maternal depression. Alleviating maternal depression appears to initiate a cascade of positive adaptation among both mothers and offspring, which may alter the well-documented risk trajectory for offspring of depressed mothers. PMID:28401849
Fosco, Gregory M; Van Ryzin, Mark J; Connell, Arin M; Stormshak, Elizabeth A
2016-02-01
Family-centered prevention programs are understudied for their effects on adolescent depression, despite considerable evidence that supports their effectiveness for preventing escalation in youth problem behavior and substance use. This study was conducted with 2 overarching goals: (a) replicate previous work that has implicated the Family Check-Up (FCU), a multilevel, gated intervention model embedded in public middle schools, as an effective strategy for preventing growth in adolescent depressive symptoms and (b) test whether changes in family conflict may be an explanatory mechanism for the long-term, protective effects of the FCU with respect to adolescent depression. This trial was conducted with 593 ethnically diverse families who were randomized to intervention (offered the FCU) or middle school as usual. Complier average causal effect (CACE) analysis revealed that engagers in the FCU evidenced less growth in depressive symptoms and family conflict from 6th through 9th grade, and post hoc analyses indicated that the FCU is related to lower rates of major depressive disorder. The second set of analyses examined family conflict as a mechanism of change for families who participated in the FCU. Families who reported short-term intervention benefits had significantly less escalation in family conflict over the middle school years; in turn, growth in family conflict explained risk for adolescent depressive symptoms. (c) 2016 APA, all rights reserved).
Aguilar, Francina; Cisternas, Ariel; Montserrat, Josep Maria; Àvila, Manuel; Torres-López, Marta; Iranzo, Alex; Berenguer, Joan; Vilaseca, Isabel
2016-10-01
To evaluate the effect of continuous positive airway pressure (CPAP) on the nostrils of patients with sleep apnea-hypopnea syndrome and its impact on quality of life, and to identify predictive factors for compliance. Longitudinal prospective study. Thirty-six consecutive patients evaluated before and 2 months after CPAP using the following variables: clinical (eye, nose and throat [ENT] symptoms, Epworth test, anxiety/depression scales, general and rhinoconjunctivitis-specific quality of life); anatomical (ENT examination, computed tomography); functional (auditive and Eustachian tube function, nasal flow, mucociliary transport); biological (nasal cytology); and polisomnographics. The sample was divided into compliers (≥4h/d) and non-compliers (<4h/d). A significant improvement was observed in daytime sleepiness (p=0.000), anxiety (P=.006), and depression (P=.023). Nasal dryness (P=.000), increased neutrophils in nasal cytology (P=.000), and deteriorating ciliary function were evidenced, particularly in compliers. No significant differences were observed in the other variables. Baseline sleepiness was the only factor predictive of compliance. CPAP in patients without previous nasal pathology leads to an improvement in a series of clinical parameters and causes rhinitis and airway dryness. Some ENT variables worsened in compliers. Sleepiness was the only prognostic factor for poor tolerance. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Van Ryzin, Mark J; Stormshak, Elizabeth A; Dishion, Thomas J
2012-06-01
Adolescence is a time of significant developmental change. During this period, levels of problem behavior that had been relatively innocuous may escalate in the company of peers, with simultaneous reductions in parental monitoring and involvement. In this article, we report the results of a randomized controlled trial of the Family Check-Up (FCU), a family-centered, school-based intervention designed to forestall the escalation of adolescent problem behavior by promoting and motivating skillful parenting through the transition to high school. In this study, 593 ethnically diverse families were randomized to be offered the FCU when their youth were in seventh and eighth grades of middle school. We used complier average causal effect analysis to examine change in family conflict, antisocial behavior, involvement with deviant peers, and alcohol use from sixth through ninth grades. Analyses revealed that when compared with a matched control group, youths whose parents had engaged in the FCU demonstrated significantly lower rates of growth in family conflict (p = .052), antisocial behavior, involvement with deviant peers, and alcohol use. Our results extend current research on the FCU and provide support for theory that links family conflict with a variety of youth problem behavior. These results and the extant research on the FCU suggest that traditional school-based service delivery models that focus on the individual child may benefit from a shift in perspective to engage parents and families. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Márquez Contreras, Emilio; Vegazo García, Onofre; Martel Claros, Nieves; Gil Guillén, Vicente; de la Figuera von Wichmann, Mariano; Casado Martínez, José Joaquín; Fernández, Raúl
2005-01-01
To study the efficacy of telephone and mail intervention in therapeutic compliance among patients with mild to moderate hypertension. A prospective controlled multicenter clinical trial. Eighty-five primary care centers in Spain, with a duration of 6 months. A total of 636 patients with newly diagnosed or uncontrolled hypertension were included. Interventions. The patients were randomized and distributed between the following groups: (i) control (CG) - under routine clinical management; (ii) mail intervention (MIG) - received a mailed message reinforcing compliance and reminding of the visits (15 days, 2 and 4 months); (iii) telephone intervention (TIG) - received a telephone call at 15 days, then at 7 and 15 weeks. Five visits were scheduled, with the measurement of blood pressure and counting of tablets. Compliers were defined as subjects showing 80-110% drug consumption. Calculations were made of mean percentage compliance (MPC) and compliers, mean blood pressure and percentage controlled subjects. Five hundred and thirty-eight patients completed the study (261 males); 85.5% were compliers (CI = 82.5-88.5; n = 460). The MPC was 95.1+/-19.6% (CI = 93.28-96.92). The CG consisted of 182 individuals, MIG = 172 and TIG = 184. Compliers represented 69.2% of the CG (CI 62.5-75.9%), 91.3% (CI = 87.1-95.5) of the MIG (p = 0.0001) and 96.2% of the TIG (CI 93.5-98.9%); the final MPC was 89.6%+/-15 in CG, 96.6%+/-12 in MIG and 99.1+/-26.8 in TIG (p = 0.0001). The percentage of controlled subjects was 47.2% in CG (CI = 40-54.4), 61.3% in MIG (CI = 54.1-68.5%) and 63.3% in TIG (CI = 56.4-70.2%) (p<0.05). TIG and MIG are effective measures for improving patient compliance in hypertension.
Véronneau, Marie-Hélène; Dishion, Thomas J; Connell, Arin M; Kavanagh, Kathryn
2016-06-01
Substance use in adulthood compromises work, relationships, and health. Prevention strategies in early adolescence are designed to reduce substance use and progressions to problematic use by adulthood. This report examines the long-term effects of offering Family Check-up (FCU) at multiple time points in secondary education on the progression of substance use from age 11 to 23 years. Participants (N = 998; 472 females) were randomly assigned individuals to intervention or control in Grade 6 and offered a multilevel intervention that included a classroom-based intervention (universal), the FCU (selected), and tailored family management treatment (indicated). Among intervention families, 23% engaged in the selected and indicated levels during middle school. Intention to treat analyses revealed that randomization to the FCU was associated with reduced growth in marijuana use (p < .05), but not alcohol and tobacco use. We also examined whether engagement in the voluntary FCU services moderated the effect of the intervention on substance use progressions using complier average causal effect (CACE) modeling, and found that engagement in the FCU services predicted reductions in alcohol, tobacco, and marijuana use by age 23. In comparing engagers with nonengagers: 70% versus 95% showed signs of alcohol abuse or dependence, 28% versus 61% showed signs of tobacco dependence, and 59% versus 84% showed signs of marijuana abuse or dependence. Family interventions that are embedded within public school systems can reach high-risk students and families and prevent progressions from exploration to problematic substance use through early adulthood. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Jago, Russell; Edwards, Mark J; Sebire, Simon J; Tomkinson, Keeley; Bird, Emma L; Banfield, Kathryn; May, Thomas; Kesten, Joanna M; Cooper, Ashley R; Powell, Jane E; Blair, Peter S
2015-10-06
The aim of this study was to examine the effectiveness and cost of an after-school dance intervention at increasing the physical activity levels of Year 7 girls (age 11-12). A cluster randomised controlled trial was conducted in 18 secondary schools. Participants were Year 7 girls attending a study school. The Bristol Girls Dance Project (BGDP) intervention consisted of up to forty, 75-minute dance sessions delivered in the period immediately after school by experienced dance instructors over 20-weeks. The pre-specified primary outcome was accelerometer assessed mean minutes of weekday moderate to vigorous physical activity (MVPA) at time 2 (52 weeks are T0 baseline assessments). Secondary outcomes included accelerometer assessed mean minutes of weekday MVPA at time 1 (while the intervention was still running) and psychosocial outcomes. Intervention costs were assessed. 571 girls participated. Valid accelerometer data were collected from 549 girls at baseline with 508 girls providing valid accelerometer data at baseline and time 2. There were no differences between the intervention and control group for accelerometer assessed physical activity at either time 1 or time 2. Only one third of the girls in the intervention arm met the pre-set adherence criteria of attending two thirds of the dance sessions that were available to them. Instrumental variable regression analyses using complier average causal effects provided no evidence of a difference between girls who attended the sessions and the control group. The average cost of the intervention was £73 per girl, which was reduced to £63 when dance instructor travel expenses were excluded. This trial showed no evidence that an after-school dance programme can increase the physical activity of Year 7 girls. The trial highlighted the difficulty encountered in maintaining attendance in physical activity programmes delivered in secondary schools. There is a need to find new ways to help adolescent girls to be physically active via identifying ways to support and encourage sustained engagement in physical activity over the life course. ISRCTN52882523.
2012-01-01
Introduction Indigenous Australians suffer markedly higher rates of end-stage kidney disease (ESKD) but are less likely than their non-Indigenous counterparts to receive a transplant. This difference is not fully explained by measurable clinical differences. Previous work suggests that Indigenous Australian patients may be regarded by treating specialists as 'non-compliers', which may negatively impact on referral for a transplant. However, this decision-making is not well understood. The objectives of this study were to investigate: whether Indigenous patients are commonly characterised as 'non-compliers'; how estimations of patient compliance factor into Australian nephrologists' decision-making about transplant referral; and whether this may pose a particular barrier for Indigenous patients accessing transplants. Methods Nineteen nephrologists, from eight renal units treating the majority of Indigenous Australian renal patients, were interviewed in 2005-06 as part of a larger study. Thematic analysis was undertaken to investigate how compliance factors in specialists' decision-making, and its implications for Indigenous patients' likelihood of obtaining transplants. Results Specialists commonly identified Indigenous patients as both non-compliers and high-risk transplant candidates. Definition and assessment of 'compliance' was neither formal nor systematic. There was uncertainty about the value of compliance status in predicting post-transplant outcomes and the issue of organ scarcity permeated participants' responses. Overall, there was marked variation in how specialists weighed perceptions of compliance and risk in their decision-making. Conclusion Reliance on notions of patient 'compliance' in decision-making for transplant referral is likely to result in continuing disadvantage for Indigenous Australian ESKD patients. In the absence of robust evidence on predictors of post-transplant outcomes, referral decision-making processes require attention and debate. PMID:22513223
Anderson, Kate; Devitt, Jeannie; Cunningham, Joan; Preece, Cilla; Jardine, Meg; Cass, Alan
2012-04-18
Indigenous Australians suffer markedly higher rates of end-stage kidney disease (ESKD) but are less likely than their non-Indigenous counterparts to receive a transplant. This difference is not fully explained by measurable clinical differences. Previous work suggests that Indigenous Australian patients may be regarded by treating specialists as 'non-compliers', which may negatively impact on referral for a transplant. However, this decision-making is not well understood. The objectives of this study were to investigate: whether Indigenous patients are commonly characterised as 'non-compliers'; how estimations of patient compliance factor into Australian nephrologists' decision-making about transplant referral; and whether this may pose a particular barrier for Indigenous patients accessing transplants. Nineteen nephrologists, from eight renal units treating the majority of Indigenous Australian renal patients, were interviewed in 2005-06 as part of a larger study. Thematic analysis was undertaken to investigate how compliance factors in specialists' decision-making, and its implications for Indigenous patients' likelihood of obtaining transplants. Specialists commonly identified Indigenous patients as both non-compliers and high-risk transplant candidates. Definition and assessment of 'compliance' was neither formal nor systematic. There was uncertainty about the value of compliance status in predicting post-transplant outcomes and the issue of organ scarcity permeated participants' responses. Overall, there was marked variation in how specialists weighed perceptions of compliance and risk in their decision-making. Reliance on notions of patient 'compliance' in decision-making for transplant referral is likely to result in continuing disadvantage for Indigenous Australian ESKD patients. In the absence of robust evidence on predictors of post-transplant outcomes, referral decision-making processes require attention and debate.
Emotional Disturbance and Chronic Low Back Pain.
ERIC Educational Resources Information Center
McCreary, Charles P.; And Others
1980-01-01
Patients high in alientation and distrust may be poor compliers. Because only the somatic concern dimension predicted outcome, a single scale that measures this characteristic may be sufficient for effective identification of the potential good v poor responders to conservative treatment of low back pain. (Author)
Schaub, Michael P; Tiburcio, Marcela; Martinez, Nora; Ambekar, Atul; Balhara, Yatan Pal Singh; Wenger, Andreas; Monezi Andrade, André Luiz; Padruchny, Dzianis; Osipchik, Sergey; Gehring, Elise; Poznyak, Vladimir; Rekve, Dag; Souza-Formigoni, Maria Lucia Oliveira
2018-02-01
Given the scarcity of alcohol prevention and alcohol use disorder treatments in many low and middle-income countries, the World Health Organization launched an e-health portal on alcohol and health that includes a Web-based self-help program. This paper presents the protocol for a multicentre randomized controlled trial (RCT) to test the efficacy of the internet-based self-help intervention to reduce alcohol use. Two-arm randomized controlled trial (RCT) with follow-up 6 months after randomization. Community samples in middle-income countries. People aged 18+, with Alcohol Use Disorders Identification Test (AUDIT) scores of 8+ indicating hazardous alcohol consumption. Offer of an internet-based self-help intervention, 'Alcohol e-Health', compared with a 'waiting list' control group. The intervention, adapted from a previous program with evidence of effectiveness in a high-income country, consists of modules to reduce or entirely stop drinking. The primary outcome measure is change in the Alcohol Use Disorders Identification Test (AUDIT) score assessed at 6-month follow-up. Secondary outcomes include self-reported the numbers of standard drinks and alcohol-free days in a typical week during the past 6 months, and cessation of harmful or hazardous drinking (AUDIT < 8). Data analysis will be by intention-to-treat, using analysis of covariance to test if program participants will experience a greater reduction in their AUDIT score than controls at follow-up. Secondary outcomes will be analysed by (generalized) linear mixed models. Complier average causal effect and baseline observations carried forward will be used in sensitivity analyses. If the Alcohol e-Health program is found to be effective, the potential public health impact of its expansion into countries with underdeveloped alcohol prevention and alcohol use disorder treatment systems world-wide is considerable. © 2017 Society for the Study of Addiction.
White, Peter A
2009-06-01
Contingency information is information about empirical associations between possible causes and outcomes. In the present research, it is shown that, under some circumstances, there is a tendency for negative contingencies to lead to positive causal judgments and for positive contingencies to lead to negative causal judgments. If there is a high proportion of instances in which a candidate cause (CC) being judged is present, these tendencies are predicted by weighted averaging models of causal judgment. If the proportion of such instances is low, the predictions of weighted averaging models break down. It is argued that one of the main aims of causal judgment is to account for occurrences of the outcome. Thus, a CC is not given a high causal judgment if there are few or no occurrences of it, regardless of the objective contingency. This argument predicts that, if there is a low proportion of instances in which a CC is present, causal judgments are determined mainly by the number of Cell A instances (i.e., CC present, outcome occurs), and that this explains why weighted averaging models fail to predict judgmental tendencies under these circumstances. Experimental results support this argument.
The causal meaning of Fisher’s average effect
LEE, JAMES J.; CHOW, CARSON C.
2013-01-01
Summary In order to formulate the Fundamental Theorem of Natural Selection, Fisher defined the average excess and average effect of a gene substitution. Finding these notions to be somewhat opaque, some authors have recommended reformulating Fisher’s ideas in terms of covariance and regression, which are classical concepts of statistics. We argue that Fisher intended his two averages to express a distinction between correlation and causation. On this view, the average effect is a specific weighted average of the actual phenotypic changes that result from physically changing the allelic states of homologous genes. We show that the statistical and causal conceptions of the average effect, perceived as inconsistent by Falconer, can be reconciled if certain relationships between the genotype frequencies and non-additive residuals are conserved. There are certain theory-internal considerations favouring Fisher’s original formulation in terms of causality; for example, the frequency-weighted mean of the average effects equaling zero at each locus becomes a derivable consequence rather than an arbitrary constraint. More broadly, Fisher’s distinction between correlation and causation is of critical importance to gene-trait mapping studies and the foundations of evolutionary biology. PMID:23938113
Under What Assumptions Do Site-by-Treatment Instruments Identify Average Causal Effects?
ERIC Educational Resources Information Center
Reardon, Sean F.; Raudenbush, Stephen W.
2011-01-01
The purpose of this paper is to clarify the assumptions that must be met if this--multiple site, multiple mediator--strategy, hereafter referred to as "MSMM," is to identify the average causal effects (ATE) in the populations of interest. The authors' investigation of the assumptions of the multiple-mediator, multiple-site IV model demonstrates…
Park, Soojin; Steiner, Peter M; Kaplan, David
2018-06-01
Considering that causal mechanisms unfold over time, it is important to investigate the mechanisms over time, taking into account the time-varying features of treatments and mediators. However, identification of the average causal mediation effect in the presence of time-varying treatments and mediators is often complicated by time-varying confounding. This article aims to provide a novel approach to uncovering causal mechanisms in time-varying treatments and mediators in the presence of time-varying confounding. We provide different strategies for identification and sensitivity analysis under homogeneous and heterogeneous effects. Homogeneous effects are those in which each individual experiences the same effect, and heterogeneous effects are those in which the effects vary over individuals. Most importantly, we provide an alternative definition of average causal mediation effects that evaluates a partial mediation effect; the effect that is mediated by paths other than through an intermediate confounding variable. We argue that this alternative definition allows us to better assess at least a part of the mediated effect and provides meaningful and unique interpretations. A case study using ECLS-K data that evaluates kindergarten retention policy is offered to illustrate our proposed approach.
Instrumental Variable Analysis with a Nonlinear Exposure–Outcome Relationship
Davies, Neil M.; Thompson, Simon G.
2014-01-01
Background: Instrumental variable methods can estimate the causal effect of an exposure on an outcome using observational data. Many instrumental variable methods assume that the exposure–outcome relation is linear, but in practice this assumption is often in doubt, or perhaps the shape of the relation is a target for investigation. We investigate this issue in the context of Mendelian randomization, the use of genetic variants as instrumental variables. Methods: Using simulations, we demonstrate the performance of a simple linear instrumental variable method when the true shape of the exposure–outcome relation is not linear. We also present a novel method for estimating the effect of the exposure on the outcome within strata of the exposure distribution. This enables the estimation of localized average causal effects within quantile groups of the exposure or as a continuous function of the exposure using a sliding window approach. Results: Our simulations suggest that linear instrumental variable estimates approximate a population-averaged causal effect. This is the average difference in the outcome if the exposure for every individual in the population is increased by a fixed amount. Estimates of localized average causal effects reveal the shape of the exposure–outcome relation for a variety of models. These methods are used to investigate the relations between body mass index and a range of cardiovascular risk factors. Conclusions: Nonlinear exposure–outcome relations should not be a barrier to instrumental variable analyses. When the exposure–outcome relation is not linear, either a population-averaged causal effect or the shape of the exposure–outcome relation can be estimated. PMID:25166881
Granger causality for state-space models
NASA Astrophysics Data System (ADS)
Barnett, Lionel; Seth, Anil K.
2015-04-01
Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.
Heart-rate monitoring by air pressure and causal analysis
NASA Astrophysics Data System (ADS)
Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka
2011-06-01
Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.
Català, Raquel; Villoro, Renata; Merino, María; Sangenís, Sandra; Colomés, Lluís; Hernández Flix, Salvador; Pérez de Llano, Luis A
2016-09-01
The socioeconomic impact of obstructive sleep apnea-hypopnea syndrome (OSAHS) is considerable. The aim of this study was to evaluate the cost-effectiveness of treating OSAHS with continuous positive airway pressure (CPAP) and the impact of CPAP compliance. This was a retrospective, case-crossover study of 373 patients with OSAHS receiving CPAP. We compared changes in costs, Epworth score and health-related quality of life (EQ-5D questionnaires) between the year before treatment and the year after treatment. The incremental cost-effectiveness ratio (ICER) for the first year of treatment was estimated, and projections were made for the second year, using different effectiveness and cost scenarios. The visual analog scale score for the EQ-5D questionnaire increased by 5 points and the Epworth score fell by 10 points during the year of CPAP treatment. Mean gain in quality-adjusted life years (QALY) was 0.05 per patient per year (P<.001): 0.07 among compliers and -0.04 among non-compliers. ICER was €51,147/QALY during the first year of CPAP treatment and €1,544/QALY during the second year. CPAP treatment in patients with moderate-severe OSAHS improves the quality of life of compliant patients, and is cost-effective as of the second year. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Causal inference in survival analysis using pseudo-observations.
Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T
2017-07-30
Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs to address right-censoring, and often, special techniques are required for that purpose. We will show how censoring can be dealt with 'once and for all' by means of so-called pseudo-observations when doing causal inference in survival analysis. The pseudo-observations can be used as a replacement of the outcomes without censoring when applying 'standard' causal inference methods, such as (1) or (2) earlier. We study this idea for estimating the average causal effect of a binary treatment on the survival probability, the restricted mean lifetime, and the cumulative incidence in a competing risks situation. The methods will be illustrated in a small simulation study and via a study of patients with acute myeloid leukemia who received either myeloablative or non-myeloablative conditioning before allogeneic hematopoetic cell transplantation. We will estimate the average causal effect of the conditioning regime on outcomes such as the 3-year overall survival probability and the 3-year risk of chronic graft-versus-host disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Pairwise measures of causal direction in the epidemiology of sleep problems and depression.
Rosenström, Tom; Jokela, Markus; Puttonen, Sampsa; Hintsanen, Mirka; Pulkki-Råback, Laura; Viikari, Jorma S; Raitakari, Olli T; Keltikangas-Järvinen, Liisa
2012-01-01
Depressive mood is often preceded by sleep problems, suggesting that they increase the risk of depression. Sleep problems can also reflect prodromal symptom of depression, thus temporal precedence alone is insufficient to confirm causality. The authors applied recently introduced statistical causal-discovery algorithms that can estimate causality from cross-sectional samples in order to infer the direction of causality between the two sets of symptoms from a novel perspective. Two common-population samples were used; one from the Young Finns study (690 men and 997 women, average age 37.7 years, range 30-45), and another from the Wisconsin Longitudinal study (3101 men and 3539 women, average age 53.1 years, range 52-55). These included three depression questionnaires (two in Young Finns data) and two sleep problem questionnaires. Three different causality estimates were constructed for each data set, tested in a benchmark data with a (practically) known causality, and tested for assumption violations using simulated data. Causality algorithms performed well in the benchmark data and simulations, and a prediction was drawn for future empirical studies to confirm: for minor depression/dysphoria, sleep problems cause significantly more dysphoria than dysphoria causes sleep problems. The situation may change as depression becomes more severe, or more severe levels of symptoms are evaluated; also, artefacts due to severe depression being less well presented in the population data than minor depression may intervene the estimation for depression scales that emphasize severe symptoms. The findings are consistent with other emerging epidemiological and biological evidence.
The topology of a causal network for the Chinese financial system
NASA Astrophysics Data System (ADS)
Gao, Bo; Ren, Ruo-en
2013-07-01
The paper builds a causal network for the Chinese financial system based on the Granger causality of company risks, studies its different topologies in crisis and bull period, and applies the centrality to explain individual risk and prevent systemic risk. The results show that this causal network possesses both small-world phenomenon and scale-free property, and has a little different average distance, clustering coefficient, and degree distribution in different periods, and financial institutions with high centrality not only have large individual risk, but also are important for systemic risk immunization.
Pairwise Measures of Causal Direction in the Epidemiology of Sleep Problems and Depression
Rosenström, Tom; Jokela, Markus; Puttonen, Sampsa; Hintsanen, Mirka; Pulkki-Råback, Laura; Viikari, Jorma S.; Raitakari, Olli T.; Keltikangas-Järvinen, Liisa
2012-01-01
Depressive mood is often preceded by sleep problems, suggesting that they increase the risk of depression. Sleep problems can also reflect prodromal symptom of depression, thus temporal precedence alone is insufficient to confirm causality. The authors applied recently introduced statistical causal-discovery algorithms that can estimate causality from cross-sectional samples in order to infer the direction of causality between the two sets of symptoms from a novel perspective. Two common-population samples were used; one from the Young Finns study (690 men and 997 women, average age 37.7 years, range 30–45), and another from the Wisconsin Longitudinal study (3101 men and 3539 women, average age 53.1 years, range 52–55). These included three depression questionnaires (two in Young Finns data) and two sleep problem questionnaires. Three different causality estimates were constructed for each data set, tested in a benchmark data with a (practically) known causality, and tested for assumption violations using simulated data. Causality algorithms performed well in the benchmark data and simulations, and a prediction was drawn for future empirical studies to confirm: for minor depression/dysphoria, sleep problems cause significantly more dysphoria than dysphoria causes sleep problems. The situation may change as depression becomes more severe, or more severe levels of symptoms are evaluated; also, artefacts due to severe depression being less well presented in the population data than minor depression may intervene the estimation for depression scales that emphasize severe symptoms. The findings are consistent with other emerging epidemiological and biological evidence. PMID:23226400
Financial networks based on Granger causality: A case study
NASA Astrophysics Data System (ADS)
Papana, Angeliki; Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees
2017-09-01
Connectivity analysis is performed on a long financial record of 21 international stock indices employing a linear and a nonlinear causality measure, the conditional Granger causality index (CGCI) and the partial mutual information on mixed embedding (PMIME), respectively. Both measures aim to specify the direction of the interrelationships among the international stock indexes and portray the links of the resulting networks, by the presence of direct couplings between variables exploiting all available information. However, their differences are assessed due to the presence of nonlinearity. The weighted networks formed with respect to the causality measures are transformed to binary ones using a significance test. The financial networks are formed on sliding windows in order to examine the network characteristics and trace changes in the connectivity structure. Subsequently, two statistical network quantities are calculated; the average degree and the average shortest path length. The empirical findings reveal interesting time-varying properties of the constructed network, which are clearly dependent on the nature of the financial cycle.
Data-driven confounder selection via Markov and Bayesian networks.
Häggström, Jenny
2018-06-01
To unbiasedly estimate a causal effect on an outcome unconfoundedness is often assumed. If there is sufficient knowledge on the underlying causal structure then existing confounder selection criteria can be used to select subsets of the observed pretreatment covariates, X, sufficient for unconfoundedness, if such subsets exist. Here, estimation of these target subsets is considered when the underlying causal structure is unknown. The proposed method is to model the causal structure by a probabilistic graphical model, for example, a Markov or Bayesian network, estimate this graph from observed data and select the target subsets given the estimated graph. The approach is evaluated by simulation both in a high-dimensional setting where unconfoundedness holds given X and in a setting where unconfoundedness only holds given subsets of X. Several common target subsets are investigated and the selected subsets are compared with respect to accuracy in estimating the average causal effect. The proposed method is implemented with existing software that can easily handle high-dimensional data, in terms of large samples and large number of covariates. The results from the simulation study show that, if unconfoundedness holds given X, this approach is very successful in selecting the target subsets, outperforming alternative approaches based on random forests and LASSO, and that the subset estimating the target subset containing all causes of outcome yields smallest MSE in the average causal effect estimation. © 2017, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Kamrowski, Ruth L.; Sutton, Stephen G.; Tobin, Renae C.; Hamann, Mark
2014-09-01
Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents ( n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R 2 = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model ( R 2 = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to "increased protection of local turtles" ( P < 0.01) and/or "benefits to the local economy" ( P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.
Kamrowski, Ruth L; Sutton, Stephen G; Tobin, Renae C; Hamann, Mark
2014-09-01
Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents (n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R (2) = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model (R (2) = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to "increased protection of local turtles" (P < 0.01) and/or "benefits to the local economy" (P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.
Sobel, Michael E; Lindquist, Martin A
2014-07-01
Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.
THE RELATION BETWEEN DIFFERENT DIMENSIONS OF ALCOHOL CONSUMPTION AND BURDEN OF DISEASE - AN OVERVIEW
Rehm, Jürgen; Baliunas, Dolly; Borges, Guilherme L. G.; Graham, Kathryn; lrving, Hyacinth; Kehoe, Tara; Parry, Charles D.; Patra, Jayadeep; Popova, Svetlana; Poznyak, Vladimir; Roerecke, Michael; Room, Robin; Samokhvalov, Andriy V.; Taylor, Benjamin
2012-01-01
AIMS As part of a larger study to estimate the global burden of disease and injury attributable to alcohol: To evaluate the evidence for a causal impact of average volume of alcohol consumption and pattern of drinking on diseases and injuries;To quantify relationships identified as causal based on published meta-analyses;To separate the impact on mortality vs. morbidity where possible; andTo assess the impact of the quality of alcohol on burden of disease. METHODS Systematic literature reviews were used to identify alcohol-related diseases, birth complications and injuries using standard epidemiologic criteria to determine causality. The extent of the risk relations was taken from meta-analyses. RESULTS Evidence of a causal impact of average volume of alcohol consumption was found for the following major diseases: tuberculosis, mouth, nasopharynx, other pharynx and oropharynx cancer, oesophageal cancer, colon and rectum cancer, liver cancer, female breast cancer, diabetes mellitus, alcohol use disorders, unipolar depressive disorders, epilepsy, hypertensive heart disease, ischaemic heart disease (IHD), ischaemic and haemorrhagic stroke, conduction disorders and other dysrhythmias, lower respiratory infections (pneumonia), cirrhosis of the liver, preterm birth complications, foetal alcohol syndrome. Dose-response relationships could be quantified for all disease categories except for depressive disorders, with the relative risk increasing with increased level of alcohol consumption for most diseases. Both average volume and drinking pattern were causally linked to IHD, foetal alcohol syndrome, and unintentional and intentional injuries. For IHD, ischaemic stroke and diabetes mellitus beneficial effects were observed for patterns of light to moderate drinking without heavy drinking occasions (as defined by 60+ grams pure alcohol per day). For several disease and injury categories, the effects were stronger on mortality compared to morbidity. There was insufficient evidence to establish whether quality of alcohol had a major impact on disease burden. CONCLUSIONS Overall, these findings indicate that alcohol causally impacts many disease outcomes, both chronic and acute, and injuries. In addition, a pattern of heavy episodic drinking increases risk for some disease and all injury outcomes. Future studies need to address a number of methodological issues, especially the differential role of average volume versus drinking pattern, in order to obtain more accurate risk estimates and to better understand the nature of alcohol-disease relationships. PMID:20331573
ERIC Educational Resources Information Center
Park, Soojin
2015-01-01
Identifying the causal mechanisms is becoming more essential in social and medical sciences. In the presence of treatment non-compliance, the Intent-To-Treated effect (hereafter, ITT effect) is identified as long as the treatment is randomized (Angrist et al., 1996). However, the mediated portion of effect is not identified without additional…
Saxon, David; Ashley, Kate; Bishop-Edwards, Lindsey; Connell, Janice; Harrison, Phillippa; Ohlsen, Sally; Hardy, Gillian E; Kellett, Stephen; Mukuria, Clara; Mank, Toni; Bower, Peter; Bradburn, Mike; Brazier, John; Elliott, Robert; Gabriel, Lynne; King, Michael; Pilling, Stephen; Shaw, Sue; Waller, Glenn; Barkham, Michael
2017-03-01
NICE guidelines state cognitive behavioural therapy (CBT) is a front-line psychological treatment for people presenting with depression in primary care. Counselling for Depression (CfD), a form of Person-Centred Experiential therapy, is also offered within Improving Access to Psychological Therapies (IAPT) services for moderate depression but its effectiveness for severe depression has not been investigated. A full-scale randomised controlled trial to determine the efficacy and cost-effectiveness of CfD is required. PRaCTICED is a two-arm, parallel group, non-inferiority randomised controlled trial comparing CfD against CBT. It is embedded within the local IAPT service using a stepped care service delivery model where CBT and CfD are routinely offered at step 3. Trial inclusion criteria comprise patients aged 18 years or over, wishing to work on their depression, judged to require a step 3 intervention, and meeting an ICD-10 diagnosis of moderate or severe depression. Patients are randomised using a centralised, web-based system to CfD or CBT with each treatment being delivered up to a maximum 20 sessions. Both interventions are manualised with treatment fidelity tested via supervision and random sampling of sessions using adherence/competency scales. The primary outcome measure is the Patient Health Questionnaire-9 collected at baseline, 6 and 12 months. Secondary outcome measures tap depression, generic psychological distress, anxiety, functioning and quality of life. Cost-effectiveness is determined by a patient service receipt questionnaire. Exit interviews are conducted with patients by research assessors blind to treatment allocation. The trial requires 500 patients (250 per arm) to test the non-inferiority hypothesis of -2 PHQ-9 points at the one-sided, 2.5% significance level with 90% power, assuming no underlying difference and a standard deviation of 6.9. The primary analysis will be undertaken on all patients randomised (intent to treat) alongside per-protocol and complier-average causal effect analyses as recommended by the extension to the CONSORT statement for non-inferiority trials. This large-scale trial utilises routinely collected outcome data as well as specific trial data to provide evidence of the comparative efficacy and cost-effectiveness of Counselling for Depression compared with Cognitive Behaviour Therapy as delivered within the UK government's Improving Access to Psychological Therapies initiative. Controlled Trials ISRCTN Registry, ISRCTN06461651 . Registered on 14 September 2014.
Costa, Fernando Oliveira; Vieira, Thaís Riberal; Cortelli, Sheila Cavalca; Cota, Luís Otávio Miranda; Costa, José Eustáquio; Aguiar, Maria Cássia Ferreira; Cortelli, José Roberto
2018-05-01
It is well established that regular compliance during periodontal maintenance therapy (PMT) maintains the stability of periodontal clinical parameters obtained after active periodontal therapy (APT). However, compliance during PMT has not yet been related to subgingival bacterial levels. Thus, this study followed individuals in PMT over 6 years and longitudinally evaluated the effects of compliance on periodontitis-associated bacterial levels and its relation to periodontal status. From a 6-year prospective cohort study with 212 individuals in PMT, 91 were determined to be eligible. From this total, 28 regular compliers (RC) were randomly selected and matched for age and sex with 28 irregular compliers (IC). Complete periodontal examination and microbiological samples were obtained 5 times: T1 (prior to APT), T2 (after APT), T3 (2 years), T4 (4 years), and T5 (6 years). Total bacteria counts and levels of Actinomyces naeslundii, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were evaluated through quantitative polymerase chain reaction. RC had less tooth loss and better clinical and microbiological conditions over time when compared with IC. IC had higher total bacterial counts and higher levels of T. denticola. Moreover, among IC, total bacterial counts were positively associated with plaque index and bleeding on probing, while levels of A. naeslundii, T. forsythia, and T. denticola were negatively associated with clinical attachment loss (4 to 5 mm) among RC. Compliance positively influenced subgingival microbiota and contributed to stability of periodontal clinical status. Regular visits during PMT sustained microbiological benefits provided by APT over a 6-year period. © 2018 American Academy of Periodontology.
A general, multivariate definition of causal effects in epidemiology.
Flanders, W Dana; Klein, Mitchel
2015-07-01
Population causal effects are often defined as contrasts of average individual-level counterfactual outcomes, comparing different exposure levels. Common examples include causal risk difference and risk ratios. These and most other examples emphasize effects on disease onset, a reflection of the usual epidemiological interest in disease occurrence. Exposure effects on other health characteristics, such as prevalence or conditional risk of a particular disability, can be important as well, but contrasts involving these other measures may often be dismissed as non-causal. For example, an observed prevalence ratio might often viewed as an estimator of a causal incidence ratio and hence subject to bias. In this manuscript, we provide and evaluate a definition of causal effects that generalizes those previously available. A key part of the generalization is that contrasts used in the definition can involve multivariate, counterfactual outcomes, rather than only univariate outcomes. An important consequence of our generalization is that, using it, one can properly define causal effects based on a wide variety of additional measures. Examples include causal prevalence ratios and differences and causal conditional risk ratios and differences. We illustrate how these additional measures can be useful, natural, easily estimated, and of public health importance. Furthermore, we discuss conditions for valid estimation of each type of causal effect, and how improper interpretation or inferences for the wrong target population can be sources of bias.
Vadillo, Miguel A; Ortega-Castro, Nerea; Barberia, Itxaso; Baker, A G
2014-01-01
Many theories of causal learning and causal induction differ in their assumptions about how people combine the causal impact of several causes presented in compound. Some theories propose that when several causes are present, their joint causal impact is equal to the linear sum of the individual impact of each cause. However, some recent theories propose that the causal impact of several causes needs to be combined by means of a noisy-OR integration rule. In other words, the probability of the effect given several causes would be equal to the sum of the probability of the effect given each cause in isolation minus the overlap between those probabilities. In the present series of experiments, participants were given information about the causal impact of several causes and then they were asked what compounds of those causes they would prefer to use if they wanted to produce the effect. The results of these experiments suggest that participants actually use a variety of strategies, including not only the linear and the noisy-OR integration rules, but also averaging the impact of several causes.
NASA Astrophysics Data System (ADS)
Ding, Lin
2014-12-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.
Universal behavior of generalized causal set d’Alembertians in curved spacetime
NASA Astrophysics Data System (ADS)
Belenchia, Alessio
2016-07-01
Causal set non-local wave operators allow both for the definition of an action for causal set theory and the study of deviations from local physics that may have interesting phenomenological consequences. It was previously shown that, in all dimensions, the (unique) minimal discrete operators give averaged continuum non-local operators that reduce to \\square -R/2 in the local limit. Recently, dropping the constraint of minimality, it was shown that there exist an infinite number of discrete operators satisfying basic physical requirements and with the right local limit in flat spacetime. In this work, we consider this entire class of generalized causal set d’Alembertins in curved spacetimes and extend to them the result about the universality of the -R/2 factor. Finally, we comment on the relation of this result to the Einstein equivalence principle.
Page, Lindsay C
2012-04-01
Results from MDRC's longitudinal, random-assignment evaluation of career-academy high schools reveal that several years after high-school completion, those randomized to receive the academy opportunity realized a $175 (11%) increase in monthly earnings, on average. In this paper, I investigate the impact of duration of actual academy enrollment, as nearly half of treatment group students either never enrolled or participated for only a portion of high school. I capitalize on data from this experimental evaluation and utilize a principal stratification framework and Bayesian inference to investigate the causal impact of academy participation. This analysis focuses on a sample of 1,306 students across seven sites in the MDRC evaluation. Participation is measured by number of years of academy enrollment, and the outcome of interest is average monthly earnings in the period of four to eight years after high school graduation. I estimate an average causal effect of treatment assignment on subsequent monthly earnings of approximately $588 among males who remained enrolled in an academy throughout high school and more modest impacts among those who participated only partially. Different from an instrumental variables approach to treatment non-compliance, which allows for the estimation of linear returns to treatment take-up, the more general framework of principal stratification allows for the consideration of non-linear returns, although at the expense of additional model-based assumptions.
Causal Analysis of Self-tracked Time Series Data Using a Counterfactual Framework for N-of-1 Trials.
Daza, Eric J
2018-02-01
Many of an individual's historically recorded personal measurements vary over time, thereby forming a time series (e.g., wearable-device data, self-tracked fitness or nutrition measurements, regularly monitored clinical events or chronic conditions). Statistical analyses of such n-of-1 (i.e., single-subject) observational studies (N1OSs) can be used to discover possible cause-effect relationships to then self-test in an n-of-1 randomized trial (N1RT). However, a principled way of determining how and when to interpret an N1OS association as a causal effect (e.g., as if randomization had occurred) is needed.Our goal in this paper is to help bridge the methodological gap between risk-factor discovery and N1RT testing by introducing a basic counterfactual framework for N1OS design and personalized causal analysis.We introduce and characterize what we call the average period treatment effect (APTE), i.e., the estimand of interest in an N1RT, and build an analytical framework around it that can accommodate autocorrelation and time trends in the outcome, effect carryover from previous treatment periods, and slow onset or decay of the effect. The APTE is loosely defined as a contrast (e.g., difference, ratio) of averages of potential outcomes the individual can theoretically experience under different treatment levels during a given treatment period. To illustrate the utility of our framework for APTE discovery and estimation, two common causal inference methods are specified within the N1OS context. We then apply the framework and methods to search for estimable and interpretable APTEs using six years of the author's self-tracked weight and exercise data, and report both the preliminary findings and the challenges we faced in conducting N1OS causal discovery.Causal analysis of an individual's time series data can be facilitated by an N1RT counterfactual framework. However, for inference to be valid, the veracity of certain key assumptions must be assessed critically, and the hypothesized causal models must be interpretable and meaningful. Schattauer GmbH.
["Karoshi" and causal relationships].
Hamajima, N
1992-08-01
This paper aims to introduce a measure for use by physicians for stating the degree of probable causal relationship for "Karoshi", ie, a sudden death from cerebrovascular diseases or ischemic heart diseases under occupational stresses, as well as to give a brief description for legal procedures associated with worker's compensation and civil trial in Japan. It is a well-used measure in epidemiology, "attributable risk percent (AR%)", which can be applied to describe the extent of contribution to "Karoshi" of the excess occupational burdens the deceased worker was forced to bear. Although several standards such as average occupational burdens for the worker, average occupational burdens for an ordinary worker, burdens in a nonoccupational life, and a complete rest, might be considered for the AR% estimation, the average occupational burdens for an ordinary worker should normally be utilized as a standard for worker's compensation. The adoption of AR% could be helpful for courts to make a consistent judgement whether "Karoshi" cases are compensatable or not.
Cox, Tony; Popken, Douglas; Ricci, Paolo F
2013-01-01
Exposures to fine particulate matter (PM2.5) in air (C) have been suspected of contributing causally to increased acute (e.g., same-day or next-day) human mortality rates (R). We tested this causal hypothesis in 100 United States cities using the publicly available NMMAPS database. Although a significant, approximately linear, statistical C-R association exists in simple statistical models, closer analysis suggests that it is not causal. Surprisingly, conditioning on other variables that have been extensively considered in previous analyses (usually using splines or other smoothers to approximate their effects), such as month of the year and mean daily temperature, suggests that they create strong, nonlinear confounding that explains the statistical association between PM2.5 and mortality rates in this data set. As this finding disagrees with conventional wisdom, we apply several different techniques to examine it. Conditional independence tests for potential causation, non-parametric classification tree analysis, Bayesian Model Averaging (BMA), and Granger-Sims causality testing, show no evidence that PM2.5 concentrations have any causal impact on increasing mortality rates. This apparent absence of a causal C-R relation, despite their statistical association, has potentially important implications for managing and communicating the uncertain health risks associated with, but not necessarily caused by, PM2.5 exposures. PMID:23983662
Sex differences in the inference and perception of causal relations within a video game
Young, Michael E.
2014-01-01
The learning of immediate causation within a dynamic environment was examined. Participants encountered seven decision points in which they needed to choose, which of three possible candidates was the cause of explosions in the environment. Each candidate was firing a weapon at random every few seconds, but only one of them produced an immediate effect. Some participants showed little learning, but most demonstrated increases in accuracy across time. On average, men showed higher accuracy and shorter latencies that were not explained by differences in self-reported prior video game experience. This result suggests that prior reports of sex differences in causal choice in the game are not specific to situations involving delayed or probabilistic causal relations. PMID:25202293
Sex differences in the inference and perception of causal relations within a video game.
Young, Michael E
2014-01-01
The learning of immediate causation within a dynamic environment was examined. Participants encountered seven decision points in which they needed to choose, which of three possible candidates was the cause of explosions in the environment. Each candidate was firing a weapon at random every few seconds, but only one of them produced an immediate effect. Some participants showed little learning, but most demonstrated increases in accuracy across time. On average, men showed higher accuracy and shorter latencies that were not explained by differences in self-reported prior video game experience. This result suggests that prior reports of sex differences in causal choice in the game are not specific to situations involving delayed or probabilistic causal relations.
White, Benjamin P; Willmott, Lindy; Williams, Gail; Cartwright, Colleen; Parker, Malcolm
2017-05-01
To determine the role played by law in medical specialists' decision-making about withholding and withdrawing life-sustaining treatment from adults who lack capacity, and the extent to which legal knowledge affects whether law is followed. Cross-sectional postal survey of medical specialists. The two largest Australian states by population. 649 medical specialists from seven specialties most likely to be involved in end-of-life decision-making in the acute setting. Compliance with law and the impact of legal knowledge on compliance. 649 medical specialists (of 2104 potential participants) completed the survey (response rate 31%). Responses to a hypothetical scenario found a potential low rate of legal compliance, 32% (95% CI 28% to 36%). Knowledge of the law and legal compliance were associated: within compliers, 86% (95% CI 83% to 91%) had specific knowledge of the relevant aspect of the law, compared with 60% (95% CI 55% to 65%) within non-compliers. However, the reasons medical specialists gave for making decisions did not vary according to legal knowledge. Medical specialists prioritise patient-related clinical factors over law when confronted with a scenario where legal compliance is inconsistent with what they believe is clinically indicated. Although legally knowledgeable specialists were more likely to comply with the law, compliance in the scenario was not motivated by an intention to follow law. Ethical considerations (which are different from, but often align with, law) are suggested as a more important influence in clinical decision-making. More education and training of doctors is needed to demonstrate the role, relevance and utility of law in end-of-life care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
'Hesitant compliers': Qualitative analysis of concerned fully-vaccinating parents.
Enkel, Stephanie L; Attwell, Katie; Snelling, Thomas L; Christian, Hayley E
2017-10-11
Some parents are hesitant about vaccines and yet still vaccinate their children. Vaccine behaviours are not fixed and parents who are concerned but nonetheless adherent to standard schedules could switch to an unconventional schedule, delaying or cherry-picking vaccines. There is a need to better understand vaccine hesitancy in specific contexts, acknowledging cultural and geographical variation, to ensure interventions targeting hesitancy are well directed and received. To identify the behaviours, knowledge and attitudes of 'hesitant compliers' in Perth, Western Australia, nine one-on-one in-depth interviews were conducted with vaccinating parents of children (<5 years) who were identified as being hesitant. Interview transcripts were analysed qualitatively and themes developed inductively, following a constructivist paradigm. Parents saw vaccination as important for themselves and their community, despite their limited knowledge of vaccine preventable diseases. Parents reported concerns about potential side effects, and worried about the safety of the measles-mumps-rubella (MMR) and seasonal influenza vaccines. Concerned about the role of anti-vaccination information in the community, some sought to isolate themselves from parents who did not vaccinate, although others were concerned that this could entrench non-vaccinators' behaviours. Parents' views were all underlaid by two pivotal 'vaccine-related events' that had occurred in the community: the severe injury of a baby from seasonal influenza vaccination in 2010, and the death of a baby from whooping cough in 2015. Parents interpreted pivotal vaccine-related events in the community as requiring them to take personal responsibility for vaccine decisions. Their reports of continued vaccine fears (evident in international studies in recent decades) demonstrate that vaccine scares have long lasting effects. With vaccine rates high and stable, current strategies appear to be have little impact on addressing parental vaccine concerns. Further research is required to determine the prevalence of hesitancy amongst vaccinating parents and identify critical points for intervention. Copyright © 2017. Published by Elsevier Ltd.
Baadjou, Vera A E; Verbunt, Jeanine A M C F; van Eijsden-Besseling, Marjon D F; Huysmans, Stephanie M D; Smeets, Rob J E M
2015-12-01
Musicians are often compared to athletes because of the physical exertion required to play music. The aim of this study was to explore the physical activity level of music students and to study its relationship with musculoskeletal complaints. A second goal was to assess associations between physical activity and pain, quality of life, and disability. This cross-sectional study among third- and fourth-year music students used an electronic survey including measures for physical activity (SQUASH-Short Questionnaire to Assess Health-enhancing physical activity), musculoskeletal complaints (DMQ-Dutch Musculoskeletal Questionnaire), disability (DASH-Disability Arm, Shoulder, Hand questionnaire) and quality of life (Short Form-12). Students were classified as compliers or non-compliers with moderate- and vigorous-intensity physical activity recommendations. Statistical analysis was done using (non)parametric tests (t-test, Pearson chi-square test, Mann-Whitney U-test) and correlational testing. Participants were 132 students, 63.6% female, with a median age of 23 yrs (range 21.3-25.0). 67% reported musculoskeletal complaints in the past 7 days. Their median physical activity level was 6,390 MET-min/wk, and 62% and 10% of the students accomplished recommendations for moderate-intensity and vigorous-intensity physical activity levels, respectively. No significant differences were found in prevalence of musculoskeletal complaints between students who met moderate- or vigorous-intensity physical activity recommendations and students who did not. Physical activity level was not associated with musculoskeletal complaints (r=0.12, p=0.26). Higher pain intensity was associated with a lower quality of life (r=-0.53 p<0.01) and higher disability (r=0.43, p<0.01). Music students are mainly involved in light- to moderate-intensity physical activities and rarely in vigorous-intensity activities. No correlation was found between physical activity level in the past months and musculoskeletal complaints in music students.
[Burns in childhood. Social implications in the eve of the year 2000].
Abad, P; Acosta, D; Martínez Ibáñez, V; Lloret, J; Patiño, B; Gubern, L; Carol, J; Boix Ochoa, J
2000-07-01
The thermic wounds in childhood are the third cause of morbility at hospital in our ambiance. The knowledge about incidence, the causal agents more frequent, and the detailed analysis of different variants about the subject are the unique manner to try to establish precautions against. The aim of this project is to analyse the factors and situations associated with thermic wound, through the retrospective study about the patients admitted. During three years, 362 patients were admitted at hospital, between 0 and 14 years old, following the criterion: barge burn size more than 10%, critical location (hands, face, neck), causal agent (electricity, chemical) or social situation. Different facts were analyzed about provenance, place, causal agent, burned part of the body, degree of lesion and the average stay at hospital. There were 59.6% males, and 40.3% females. Children between 1 and 5 years old, represented the largest group of patients, 205 cases. The 66% were from other hospital were they receive the first aid. The 98.7% were burned at home, and the place more frequent was kitchen, 51%. The causal agent was liquid in 65.4%, specially scald with water about 104 cases. The zones more affected were the face (39.2%), and the superior extremities, about 81% second degree superficial or deep. The size was 10 to 20% in 19% of patients, and more than 40% in 0.2% of children. The average stay was 17.47 days at hospital.
Kim, Hyuncheol Bryant; Lee, Sun-Mi
2017-05-01
This study investigates the impact of and behavioral responses to cost sharing in Korea's National Cancer Screening Program, which provides free stomach and breast cancer screenings to those with an income below a certain cutoff. Free cancer screening substantially increases the screening take up rate, yielding more cancer detections. However, the increase in cancer detection is quickly crowded out by cancer detection through other channels such as diagnostic testing and private cancer screening. Further, compliers are much less likely to have cancer than never takers. Crowd-out and selection help explain why the program has been unable to reduce cancer mortality. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of the NASA/JSC Health Related Fitness Program
NASA Technical Reports Server (NTRS)
Wier, Larry T.; Jackson, A. S.; Pinkerton, Mary B.
1989-01-01
The effects of the NASA Health Related Fitness Program (HRFP), which includes a 12-week educational component (EC) and quarterly fitness retests (RT), on the results of periodic testing of fitness, body composition, and blood lipids were evaluated in three goups of pilots. These included the group of compliers (those who completed EC and not less than 75 percent RT), the noncompliers (completed EC and lesss than 75 percent RT), and the dropouts from EC. Results show that beneficial changes in physical activity found two years after the completion of the HRFP were related to both the completion of the EC and the periodic fitness reevaluations. These changes were associated with maximal oxygen consumption, percent body fat, body weight, and blood lipids.
Predictors of long-term compliance in attending a worksite hypertension programme.
Landers, R; Riccobene, A; Beyreuther, M; Neusy, A J
1993-12-01
Variables such as patient's anxiety, knowledge, number of medication changes, medication-induced side-effects and programme-derived benefits and conveniences have been reported or theorised to be important determinants of patient's attendance at worksite hypertension programmes. This study investigates whether these variables have predictive value in differentiating compliers from noncompliers attending a union-sponsored worksite hypertension programme for at least five years. Scores were created from a questionnaire distributed to 243 patients with a response rate of 98%. Compliance was defined as missing < or = 25% of scheduled clinic appointments. By discriminant statistical analysis scores for patient's anxiety, knowledge, number of medication changes, medication side-effects, perceived benefits and conveniences failed to show any predictive value for patient's compliance with appointment keeping.
Dose response and structural injury in the disability of spinal injury.
Patel, Mohammed Shakil; Sell, Philip
2013-03-01
In traumatic injury there is a clear relationship between the dose of energy involved, structural tissue damage and resultant disability after recovery. This relationship is often absent in cases of non-specific chronic low back pain that is perceived by patients as attributed to a workplace injury. There are many studies assessing risk factors for non-specific low back pain. However, studies addressing causality of back pain are deficient. To establish whether there exists a causal relationship between structural injury, low back pain and spinal disability. Retrospective analysis of prospectively gathered validated spinal outcome measures [Oswestry disability index (ODI), low back outcome score (LBO), modified somatic perception (MSP), modified Zung depression index (MZD)] between patients with healed high energy thoracolumbar spinal fractures and patients with self-perceived work-related low back pain. Causality was established according to two of Bradford Hill's criteria of medical causality, temporal and dose-response relationships. Twenty-three patients with spinal fractures (group 1) of average age 44 years were compared to 19 patients with self-reported back pain in the workplace pursuing claims for compensation (group 2) of average age 48 years. Both groups were comparable in terms of age and sex. The average ODI in group 1 was 28 % (SD 19) compared to 42 % (SD 19) in group 2 (P < 0.05). Similarly, LBOS was 39.7 versus 24.3 (P < 0.05), MSP 4.3 versus 9.3 (P < 0.05) and MZD 20.2 versus 34.8 (P < 0.05) in groups 1 and 2, respectively. Despite high-energy trauma and significant structural damage to the spine, patients with the high energy injuries had better spinal outcome scores in all measures. There is no 'dose-response' relationship between structural injury, low back pain and spinal disability. This is the reverse of what would be anticipated if structural injury was the cause of disability in workplace reported onset of low back pain.
The mutual causality analysis between the stock and futures markets
NASA Astrophysics Data System (ADS)
Yao, Can-Zhong; Lin, Qing-Wen
2017-07-01
In this paper we employ the conditional Granger causality model to estimate the information flow, and find that the improved model outperforms the Granger causality model in revealing the asymmetric correlation between stocks and futures in the Chinese market. First, we find that information flows estimated by Granger causality tests from futures to stocks are greater than those from stocks to futures. Additionally, average correlation coefficients capture some important characteristics between stock prices and information flows over time. Further, we find that direct information flows estimated by conditional Granger causality tests from stocks to futures are greater than those from futures to stocks. Besides, the substantial increases of information flows and direct information flows exhibit a certain degree of synchronism with the occurrences of important events. Finally, the comparative analysis with the asymmetric ratio and the bootstrap technique demonstrates the slight asymmetry of information flows and the significant asymmetry of direct information flows. It reveals that the information flows from futures to stocks are slightly greater than those in the reverse direction, while the direct information flows from stocks to futures are significantly greater than those in the reverse direction.
Averaged null energy condition from causality
Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
2017-07-14
Unitary, Lorentz-invariant quantum field theories in at spacetime obey mi-crocausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy,more » $$\\int$$duT uu, must be non-negative. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to n-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form RduX uuu∙∙∙u ≥ 0. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment on the relation to the recent derivation of the averaged null energy condition from relative entropy, and suggest a more general connection between causality and information-theoretic inequalities in QFT.« less
Averaged null energy condition from causality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
Unitary, Lorentz-invariant quantum field theories in at spacetime obey mi-crocausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy,more » $$\\int$$duT uu, must be non-negative. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to n-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form RduX uuu∙∙∙u ≥ 0. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment on the relation to the recent derivation of the averaged null energy condition from relative entropy, and suggest a more general connection between causality and information-theoretic inequalities in QFT.« less
Averaged null energy condition from causality
NASA Astrophysics Data System (ADS)
Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
2017-07-01
Unitary, Lorentz-invariant quantum field theories in flat spacetime obey mi-crocausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy, ∫ duT uu , must be non-negative. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to n-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form ∫ duX uuu··· u ≥ 0. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment on the relation to the recent derivation of the averaged null energy condition from relative entropy, and suggest a more general connection between causality and information-theoretic inequalities in QFT.
Bayesian Cue Integration as a Developmental Outcome of Reward Mediated Learning
Weisswange, Thomas H.; Rothkopf, Constantin A.; Rodemann, Tobias; Triesch, Jochen
2011-01-01
Average human behavior in cue combination tasks is well predicted by Bayesian inference models. As this capability is acquired over developmental timescales, the question arises, how it is learned. Here we investigated whether reward dependent learning, that is well established at the computational, behavioral, and neuronal levels, could contribute to this development. It is shown that a model free reinforcement learning algorithm can indeed learn to do cue integration, i.e. weight uncertain cues according to their respective reliabilities and even do so if reliabilities are changing. We also consider the case of causal inference where multimodal signals can originate from one or multiple separate objects and should not always be integrated. In this case, the learner is shown to develop a behavior that is closest to Bayesian model averaging. We conclude that reward mediated learning could be a driving force for the development of cue integration and causal inference. PMID:21750717
Arco-Tirado, J L; Fernández-Martín, F; Ramos-García, A M; Littvay, L; Villoria, J; Naranjo, J A
2018-06-01
This observational study intends to estimate the causal effects of an English as a Medium of Instruction (EMI) program (as predictor) on students Grade Point Average (GPA) (as outcome) at a particular University in Spain by using a Counterfactual Impact Evaluation (CIE). The need to address the crucial question of causal inferences in EMI programs to produce credible evidences of successful interventions contrasts, however, with the absence of experimental or quasi-experimental research and evaluation designs in the field. CIE approach is emerging as a methodologically viable solution to bridge that gap. The program evaluated here consisted in delivering an EMI program in a Primary Education Teacher Training Degree group. After achieving balance on the observed covariates and recreating a situation that would have been expected in a randomized experiment, three matching approaches such as genetic matching, nearest neighbor matching and Coarsened Exact Matching were used to analyze observational data from a total of 1288 undergraduate students, including both treatment and control group. Results show unfavorable effects of the bilingual group treatment condition. Potential interpretations and recommendations are provided in order to strengthen future causal evidences of bilingual education programs' effectiveness in Higher Education. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
The balanced survivor average causal effect.
Greene, Tom; Joffe, Marshall; Hu, Bo; Li, Liang; Boucher, Ken
2013-05-07
Statistical analysis of longitudinal outcomes is often complicated by the absence of observable values in patients who die prior to their scheduled measurement. In such cases, the longitudinal data are said to be "truncated by death" to emphasize that the longitudinal measurements are not simply missing, but are undefined after death. Recently, the truncation by death problem has been investigated using the framework of principal stratification to define the target estimand as the survivor average causal effect (SACE), which in the context of a two-group randomized clinical trial is the mean difference in the longitudinal outcome between the treatment and control groups for the principal stratum of always-survivors. The SACE is not identified without untestable assumptions. These assumptions have often been formulated in terms of a monotonicity constraint requiring that the treatment does not reduce survival in any patient, in conjunction with assumed values for mean differences in the longitudinal outcome between certain principal strata. In this paper, we introduce an alternative estimand, the balanced-SACE, which is defined as the average causal effect on the longitudinal outcome in a particular subset of the always-survivors that is balanced with respect to the potential survival times under the treatment and control. We propose a simple estimator of the balanced-SACE that compares the longitudinal outcomes between equivalent fractions of the longest surviving patients between the treatment and control groups and does not require a monotonicity assumption. We provide expressions for the large sample bias of the estimator, along with sensitivity analyses and strategies to minimize this bias. We consider statistical inference under a bootstrap resampling procedure.
Sleep, serotonin, and suicide in Japan.
Kohyama, Jun
2011-01-01
This article reviews evidence supporting the hypothesis that suicide rates in Japan could be reduced by elevating serotonin levels via increasing the average duration of sleep. Seven major relevant findings were apparent in the literature: 1) Sleep loss is associated with suicide, but the direction of causality is equivocal. 2) Decreased serotonergic activity may be involved in suicidal behavior. 3) Sleep debt may decrease serotonergic activity. 4) The suicide rate in Japan has remained at a heightened level for the past 12 years. 5) The average sleep duration in Japan has decreased over the past 40 years. 6) The average sleep duration in Japan is among the lowest in the world. 7) The average sleep duration in Japan plateaued in 1995 and has been relatively stable since. From the research reviewed, two major problematic issues were apparent: 1) Most people in Japan receive inadequate sleep. 2) Individuals whose sleep is inadequate are unlikely to be sufficiently physically active to stimulate serotonergic systems to a desirable level. I propose that public health initiatives encouraging a longer duration of sleep may provide a relatively simple way of addressing the disturbing current trend in Japan. The combination of actigraph and brain serotonin level measurement could allow large population-based cohort studies to be designed, to elucidate the causal links between sleep duration, serotonin levels, and suicide rates.
Zhang, Xinyu; Hou, Jie
2017-01-01
Background In October 2013, the International Agency for Research on Cancer classified the particulate matter from outdoor air pollution as a group 1 carcinogen and declared that particulate matter can cause lung cancer. Fine particular matter (PM2.5) pollution is becoming a serious public health concern in urban areas of China. It is essential to emphasize the importance of the public’s awareness and knowledge of modifiable risk factors of lung cancer for prevention. Objective The objective of our study was to explore the public’s awareness of the association of PM2.5 with lung cancer risk in China by analyzing the relationship between the daily PM2.5 concentration and searches for the term “lung cancer” on an Internet big data platform, Baidu. Methods We collected daily PM2.5 concentration data and daily Baidu Index data in 31 Chinese capital cities from January 1, 2014 to December 31, 2016. We used Spearman correlation analysis to explore correlations between the daily Baidu Index for lung cancer searches and the daily average PM2.5 concentration. Granger causality test was used to analyze the causal relationship between the 2 time-series variables. Results In 23 of the 31 cities, the pairwise correlation coefficients (Spearman rho) between the daily Baidu Index for lung cancer searches and the daily average PM2.5 concentration were positive and statistically significant (P<.05). However, the correlation between the daily Baidu Index for lung cancer searches and the daily average PM2.5 concentration was poor (all r2s<.1). Results of Granger causality testing illustrated that there was no unidirectional causality from the daily PM2.5 concentration to the daily Baidu Index for lung cancer searches, which was statistically significant at the 5% level for each city. Conclusions The daily average PM2.5 concentration had a weak positive impact on the daily search interest for lung cancer on the Baidu search engine. Well-designed awareness campaigns are needed to enhance the general public’s awareness of the association of PM2.5 with lung cancer risk, to lead the public to seek more information about PM2.5 and its hazards, and to cope with their environment and its risks appropriately. PMID:28974484
Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.
Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong
2016-08-01
The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.
Causal Methods for Observational Research: A Primer.
Almasi-Hashiani, Amir; Nedjat, Saharnaz; Mansournia, Mohammad Ali
2018-04-01
The goal of many observational studies is to estimate the causal effect of an exposure on an outcome after adjustment for confounders, but there are still some serious errors in adjusting confounders in clinical journals. Standard regression modeling (e.g., ordinary logistic regression) fails to estimate the average effect of exposure in total population in the presence of interaction between exposure and covariates, and also cannot adjust for time-varying confounding appropriately. Moreover, stepwise algorithms of the selection of confounders based on P values may miss important confounders and lead to bias in effect estimates. Causal methods overcome these limitations. We illustrate three causal methods including inverse-probability-of-treatment-weighting (IPTW) and parametric g-formula, with an emphasis on a clever combination of these 2 methods: targeted maximum likelihood estimation (TMLE) which enjoys a double-robust property against bias. © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Identification of causal genes for complex traits
Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar
2015-01-01
Motivation: Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider ‘causal variants’ as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. Results: In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Availability and implementation: Software is freely available for download at genetics.cs.ucla.edu/caviar. Contact: eeskin@cs.ucla.edu PMID:26072484
Identification of causal genes for complex traits.
Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar
2015-06-15
Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider 'causal variants' as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Software is freely available for download at genetics.cs.ucla.edu/caviar. © The Author 2015. Published by Oxford University Press.
Covariate selection with group lasso and doubly robust estimation of causal effects
Koch, Brandon; Vock, David M.; Wolfson, Julian
2017-01-01
Summary The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this paper, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. PMID:28636276
Covariate selection with group lasso and doubly robust estimation of causal effects.
Koch, Brandon; Vock, David M; Wolfson, Julian
2018-03-01
The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this article, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. © 2017, The International Biometric Society.
Comparing Families of Dynamic Causal Models
Penny, Will D.; Stephan, Klaas E.; Daunizeau, Jean; Rosa, Maria J.; Friston, Karl J.; Schofield, Thomas M.; Leff, Alex P.
2010-01-01
Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data. PMID:20300649
Estimating short-run and long-run interaction mechanisms in interictal state.
Ozkaya, Ata; Korürek, Mehmet
2010-04-01
We address the issue of analyzing electroencephalogram (EEG) from seizure patients in order to test, model and determine the statistical properties that distinguish between EEG states (interictal, pre-ictal, ictal) by introducing a new class of time series analysis methods. In the present study: firstly, we employ statistical methods to determine the non-stationary behavior of focal interictal epileptiform series within very short time intervals; secondly, for such intervals that are deemed non-stationary we suggest the concept of Autoregressive Integrated Moving Average (ARIMA) process modelling, well known in time series analysis. We finally address the queries of causal relationships between epileptic states and between brain areas during epileptiform activity. We estimate the interaction between different EEG series (channels) in short time intervals by performing Granger-causality analysis and also estimate such interaction in long time intervals by employing Cointegration analysis, both analysis methods are well-known in econometrics. Here we find: first, that the causal relationship between neuronal assemblies can be identified according to the duration and the direction of their possible mutual influences; second, that although the estimated bidirectional causality in short time intervals yields that the neuronal ensembles positively affect each other, in long time intervals neither of them is affected (increasing amplitudes) from this relationship. Moreover, Cointegration analysis of the EEG series enables us to identify whether there is a causal link from the interictal state to ictal state.
Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis
NASA Astrophysics Data System (ADS)
Cermak, Vladimir; Bodri, Louise
2018-01-01
This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, Δ T(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of Δ T(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.
Interpreting findings from Mendelian randomization using the MR-Egger method.
Burgess, Stephen; Thompson, Simon G
2017-05-01
Mendelian randomization-Egger (MR-Egger) is an analysis method for Mendelian randomization using summarized genetic data. MR-Egger consists of three parts: (1) a test for directional pleiotropy, (2) a test for a causal effect, and (3) an estimate of the causal effect. While conventional analysis methods for Mendelian randomization assume that all genetic variants satisfy the instrumental variable assumptions, the MR-Egger method is able to assess whether genetic variants have pleiotropic effects on the outcome that differ on average from zero (directional pleiotropy), as well as to provide a consistent estimate of the causal effect, under a weaker assumption-the InSIDE (INstrument Strength Independent of Direct Effect) assumption. In this paper, we provide a critical assessment of the MR-Egger method with regard to its implementation and interpretation. While the MR-Egger method is a worthwhile sensitivity analysis for detecting violations of the instrumental variable assumptions, there are several reasons why causal estimates from the MR-Egger method may be biased and have inflated Type 1 error rates in practice, including violations of the InSIDE assumption and the influence of outlying variants. The issues raised in this paper have potentially serious consequences for causal inferences from the MR-Egger approach. We give examples of scenarios in which the estimates from conventional Mendelian randomization methods and MR-Egger differ, and discuss how to interpret findings in such cases.
Cox, Louis Anthony Tony
2017-08-01
Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.
Yang, Hongxi; Li, Shu; Sun, Li; Zhang, Xinyu; Hou, Jie; Wang, Yaogang
2017-10-03
In October 2013, the International Agency for Research on Cancer classified the particulate matter from outdoor air pollution as a group 1 carcinogen and declared that particulate matter can cause lung cancer. Fine particular matter (PM 2.5 ) pollution is becoming a serious public health concern in urban areas of China. It is essential to emphasize the importance of the public's awareness and knowledge of modifiable risk factors of lung cancer for prevention. The objective of our study was to explore the public's awareness of the association of PM 2.5 with lung cancer risk in China by analyzing the relationship between the daily PM 2.5 concentration and searches for the term "lung cancer" on an Internet big data platform, Baidu. We collected daily PM 2.5 concentration data and daily Baidu Index data in 31 Chinese capital cities from January 1, 2014 to December 31, 2016. We used Spearman correlation analysis to explore correlations between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration. Granger causality test was used to analyze the causal relationship between the 2 time-series variables. In 23 of the 31 cities, the pairwise correlation coefficients (Spearman rho) between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration were positive and statistically significant (P<.05). However, the correlation between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration was poor (all r 2 s <.1). Results of Granger causality testing illustrated that there was no unidirectional causality from the daily PM 2.5 concentration to the daily Baidu Index for lung cancer searches, which was statistically significant at the 5% level for each city. The daily average PM 2.5 concentration had a weak positive impact on the daily search interest for lung cancer on the Baidu search engine. Well-designed awareness campaigns are needed to enhance the general public's awareness of the association of PM 2.5 with lung cancer risk, to lead the public to seek more information about PM 2.5 and its hazards, and to cope with their environment and its risks appropriately. ©Hongxi Yang, Shu Li, Li Sun, Xinyu Zhang, Jie Hou, Yaogang Wang. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 03.10.2017.
The Implications of "Contamination" for Experimental Design in Education
ERIC Educational Resources Information Center
Rhoads, Christopher H.
2011-01-01
Experimental designs that randomly assign entire clusters of individuals (e.g., schools and classrooms) to treatments are frequently advocated as a way of guarding against contamination of the estimated average causal effect of treatment. However, in the absence of contamination, experimental designs that randomly assign intact clusters to…
Cross-Lagged Relationships between Career Aspirations and Goal Orientation in Early Adolescents
ERIC Educational Resources Information Center
Creed, Peter; Tilbury, Clare; Buys, Nick; Crawford, Meegan
2011-01-01
We surveyed 217 students (145 girls; average age = 14.6 years) on two occasions, twelve months apart, on measures of career aspirations (job aspirations, job expectations, educational aspirations) and goal orientation (learning, performance-prove, performance-avoid), and tested the causal relationship between goal orientation and aspirations. We…
Does energy consumption contribute to environmental pollutants? Evidence from SAARC countries.
Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Irfan, Danish; Khan, Muhammad Mushtaq
2014-05-01
The objective of the study is to examine the causal relationship between energy consumption and environmental pollutants in selected South Asian Association for Regional Cooperation (SAARC) countries, namely, Bangladesh, India, Nepal, Pakistan, and Srilanka, over the period of 1975-2011. The results indicate that energy consumption acts as an important driver to increase environmental pollutants in SAARC countries. Granger causality runs from energy consumption to environmental pollutants, but not vice versa, except carbon dioxide (CO2) emissions in Nepal where there exists a bidirectional causality between CO2 and energy consumption. Methane emissions in Bangladesh, Pakistan, and Srilanka and extreme temperature in India and Srilanka do not Granger cause energy consumption via both routes, which holds neutrality hypothesis. Variance decomposition analysis shows that among all the environmental indicators, CO2 in Bangladesh and Nepal exerts the largest contribution to changes in electric power consumption. Average precipitation in India, methane emissions in Pakistan, and extreme temperature in Srilanka exert the largest contribution.
Egleston, Brian L.; Scharfstein, Daniel O.; MacKenzie, Ellen
2008-01-01
We focus on estimation of the causal effect of treatment on the functional status of individuals at a fixed point in time t* after they have experienced a catastrophic event, from observational data with the following features: (1) treatment is imposed shortly after the event and is non-randomized, (2) individuals who survive to t* are scheduled to be interviewed, (3) there is interview non-response, (4) individuals who die prior to t* are missing information on pre-event confounders, (5) medical records are abstracted on all individuals to obtain information on post-event, pre-treatment confounding factors. To address the issue of survivor bias, we seek to estimate the survivor average causal effect (SACE), the effect of treatment on functional status among the cohort of individuals who would survive to t* regardless of whether or not assigned to treatment. To estimate this effect from observational data, we need to impose untestable assumptions, which depend on the collection of all confounding factors. Since pre-event information is missing on those who die prior to t*, it is unlikely that these data are missing at random (MAR). We introduce a sensitivity analysis methodology to evaluate the robustness of SACE inferences to deviations from the MAR assumption. We apply our methodology to the evaluation of the effect of trauma center care on vitality outcomes using data from the National Study on Costs and Outcomes of Trauma Care. PMID:18759833
Hart, R; Okál, F; Komzák, M
2010-10-01
The aim of this presentation is to inform the medical community about causal therapy (transhumeral head plasty or massive osteochondral allograft transplantation) for large Hill-Sachs lesions which frequently cause failure of anterior stabilisation following ventral shoulder dislocations. Seven men with an average age of 26 years (19 to 33 years) undergoing surgery in 2006 and 2007 were evaluated. The minimum follow-up was 18 months (41 to 18 months). Impressions on more than 30 % of the articular surface, or those whose critical size was larger than one-eighth of the humeral diameter (on CT scan) were taken as indications for surgery. Four patients had had previous surgery for anterior instability and three had a primary procedure. Four men underwent acute surgery and three had elective operations.Trans- humeral head plasty was used in five and massive osteochondral allograft in two patients. In the patients with large lesions in the anterior aspect of the shoulder joint, transhumeral head plasty involving repair of the ventral structures from the anterior approach was indicatedúúú in those with an isolated posterior bony defect, a massive osteochondral allograft was transplanted through the posterior approach. The Constant-Murley score was used to assess clinical status before (not in acute conditions) and after surgery. All patients reported improved clinical status. The average Constant-Murley score at final follow-up was 95.9 points (83-100 points). In the patients not having an acute procedure in whom pre-operative Constant-Murley scores were obtained, the average improvement was by 22.7 points (8 - 37 points). No general surgical complications were recorded. All patients reported subjective satisfaction and willingness to undergo surgery under the same conditions again. A Hill-Sachs lesion is a frequent injury to the humeral head resulting from anterior shoulder dislocation. To distinguish between major and minor defects in terms of clinical significance is essential for the choice of appropriate shoulder treatment. Up to now large lesions have mostly been managed by non-causal techniques affecting shoulder biomechanics. Transhumeral head plasty or transplantation of a massive osteochondral allograft, on the other hand, offers a causal treatment. However, these two methods have rarely been mentioned in the international literature, and usually only as case reports. Transhumeral head plasty and transplantation of a massive osteochondral allograft offer a causal therapy for the management of Hill-Sachs lesions that does not alter shoulder biomechanics. They are not associated with a higher percentage of post-operative complications. Neither technique is more demanding than non-causal procedures. Operations carried out as primary and not as "salvage" procedures restored the function of the shoulder joint to normal. After secondary surgery, occasional shoulder pain may persist as well as its restricted range of motion.
NASA Astrophysics Data System (ADS)
Huang, Yan; Wang, Zhihui
2015-12-01
With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.
Challenges and solutions to pre- and post-randomization subgroup analyses.
Desai, Manisha; Pieper, Karen S; Mahaffey, Ken
2014-01-01
Subgroup analyses are commonly performed in the clinical trial setting with the purpose of illustrating that the treatment effect was consistent across different patient characteristics or identifying characteristics that should be targeted for treatment. There are statistical issues involved in performing subgroup analyses, however. These have been given considerable attention in the literature for analyses where subgroups are defined by a pre-randomization feature. Although subgroup analyses are often performed with subgroups defined by a post-randomization feature--including analyses that estimate the treatment effect among compliers--discussion of these analyses has been neglected in the clinical literature. Such analyses pose a high risk of presenting biased descriptions of treatment effects. We summarize the challenges of doing all types of subgroup analyses described in the literature. In particular, we emphasize issues with post-randomization subgroup analyses. Finally, we provide guidelines on how to proceed across the spectrum of subgroup analyses.
NASA Astrophysics Data System (ADS)
Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.
2018-04-01
Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.
Student Mobility, Dosage, and Principal Stratification in Clustered RCTs of Education Interventions
ERIC Educational Resources Information Center
Schochet, Peter Z.
2012-01-01
This article introduces an alternative impact parameter for group-based RCTs with student mobility--the survivor average causal effect ("SACE")--that pertains to the subpopulation of original cohort students who would remain in their baseline study schools in either the treatment or control condition. The "SACE" parameter has a clear…
Forecasting Techniques and Library Circulation Operations: Implications for Management.
ERIC Educational Resources Information Center
Ahiakwo, Okechukwu N.
1988-01-01
Causal regression and time series models were developed using six years of data for home borrowing, average readership, and books consulted at a university library. The models were tested for efficacy in producing short-term planning and control data. Combined models were tested in establishing evaluation measures. (10 references) (Author/MES)
Under What Assumptions Do Site-by-Treatment Instruments Identify Average Causal Effects?
ERIC Educational Resources Information Center
Reardon, Sean F.; Raudenbush, Stephen W.
2013-01-01
The increasing availability of data from multi-site randomized trials provides a potential opportunity to use instrumental variables methods to study the effects of multiple hypothesized mediators of the effect of a treatment. We derive nine assumptions needed to identify the effects of multiple mediators when using site-by-treatment interactions…
A Quantitative Study: Enhancing the Productivity of the Emotionally Challenged High School Students
ERIC Educational Resources Information Center
Mammen, John
2013-01-01
This quantitative, causal-comparative study examined the degree of influence the parent teacher relationship can make on the grade point averages and graduation rates of students in an alternative school setting. Findings of this study revealed that the active parent teacher communication had direct relationship with the success rate of…
Cross-Correlation Asymmetries and Causal Relationships between Stock and Market Risk
Borysov, Stanislav S.; Balatsky, Alexander V.
2014-01-01
We study historical correlations and lead-lag relationships between individual stock risk (volatility of daily stock returns) and market risk (volatility of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-correlation functions averaged over all stocks, using 71 stock prices from the Standard & Poor's 500 index for 1994–2013. We focus on the behavior of the cross-correlations at the times of financial crises with significant jumps of market volatility. The observed historical dynamics showed that the dependence between the risks was almost linear during the US stock market downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated response functions suggest the presence of characteristic regimes near financial crashes, when the volatility of an individual stock follows the market volatility and vice versa. PMID:25162697
Cross-correlation asymmetries and causal relationships between stock and market risk.
Borysov, Stanislav S; Balatsky, Alexander V
2014-01-01
We study historical correlations and lead-lag relationships between individual stock risk (volatility of daily stock returns) and market risk (volatility of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-correlation functions averaged over all stocks, using 71 stock prices from the Standard & Poor's 500 index for 1994-2013. We focus on the behavior of the cross-correlations at the times of financial crises with significant jumps of market volatility. The observed historical dynamics showed that the dependence between the risks was almost linear during the US stock market downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated response functions suggest the presence of characteristic regimes near financial crashes, when the volatility of an individual stock follows the market volatility and vice versa.
Light propagation in the averaged universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagheri, Samae; Schwarz, Dominik J., E-mail: s_bagheri@physik.uni-bielefeld.de, E-mail: dschwarz@physik.uni-bielefeld.de
Cosmic structures determine how light propagates through the Universe and consequently must be taken into account in the interpretation of observations. In the standard cosmological model at the largest scales, such structures are either ignored or treated as small perturbations to an isotropic and homogeneous Universe. This isotropic and homogeneous model is commonly assumed to emerge from some averaging process at the largest scales. We assume that there exists an averaging procedure that preserves the causal structure of space-time. Based on that assumption, we study the effects of averaging the geometry of space-time and derive an averaged version of themore » null geodesic equation of motion. For the averaged geometry we then assume a flat Friedmann-Lemaître (FL) model and find that light propagation in this averaged FL model is not given by null geodesics of that model, but rather by a modified light propagation equation that contains an effective Hubble expansion rate, which differs from the Hubble rate of the averaged space-time.« less
ERIC Educational Resources Information Center
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P.
2014-01-01
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
An Empirical Comparison of Randomized Control Trials and Regression Discontinuity Estimations
ERIC Educational Resources Information Center
Barrera-Osorio, Felipe; Filmer, Deon; McIntyre, Joe
2014-01-01
Randomized controlled trials (RCTs) and regression discontinuity (RD) studies both provide estimates of causal effects. A major difference between the two is that RD only estimates local average treatment effects (LATE) near the cutoff point of the forcing variable. This has been cited as a drawback to RD designs (Cook & Wong, 2008).…
ERIC Educational Resources Information Center
Kranzler, John H.; Floyd, Randy G.; Benson, Nicholas; Zaboski, Brian; Thibodaux, Lia
2016-01-01
The Cross-Battery Assessment (XBA) approach to identifying a specific learning disorder (SLD) is based on the postulate that deficits in cognitive abilities in the presence of otherwise average general intelligence are causally related to academic achievement weaknesses. To examine this postulate, we conducted a classification agreement analysis…
ERIC Educational Resources Information Center
Huber, Martin
2012-01-01
As any empirical method used for causal analysis, social experiments are prone to attrition which may flaw the validity of the results. This article considers the problem of partially missing outcomes in experiments. First, it systematically reveals under which forms of attrition--in terms of its relation to observable and/or unobservable…
ERIC Educational Resources Information Center
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Cimpian, Joseph R.
2017-01-01
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
How Generalizable Is Your Experiment? An Index for Comparing Experimental Samples and Populations
ERIC Educational Resources Information Center
Tipton, Elizabeth
2014-01-01
Although a large-scale experiment can provide an estimate of the average causal impact for a program, the sample of sites included in the experiment is often not drawn randomly from the inference population of interest. In this article, we provide a generalizability index that can be used to assess the degree of similarity between the sample of…
ERIC Educational Resources Information Center
Blaum, Dylan; Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne
2017-01-01
We examined students' understanding of the causes of a scientific phenomenon from a multiple-document-inquiry unit. Students read several documents that each described causal factors that could be integrated to address the given writing task of explaining the causes of change in average global temperature. We manipulated whether the document set…
Financial Aid and First-Year Collegiate GPA: A Regression Discontinuity Approach
ERIC Educational Resources Information Center
Curs, Bradley R.; Harper, Casandra E.
2012-01-01
Using a regression discontinuity design, we investigate whether a merit-based financial aid program has a causal effect on the first-year grade point average of first-time out-of-state freshmen at the University of Oregon. Our results indicate that merit-based financial aid has a positive and significant effect on first-year collegiate grade point…
Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System
BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia
2015-01-01
Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157
NASA Astrophysics Data System (ADS)
Gu, Rongbao; Shao, Yanmin
2016-07-01
In this paper, a new concept of multi-scales singular value decomposition entropy based on DCCA cross correlation analysis is proposed and its predictive power for the Dow Jones Industrial Average Index is studied. Using Granger causality analysis with different time scales, it is found that, the singular value decomposition entropy has predictive power for the Dow Jones Industrial Average Index for period less than one month, but not for more than one month. This shows how long the singular value decomposition entropy predicts the stock market that extends Caraiani's result obtained in Caraiani (2014). On the other hand, the result also shows an essential characteristic of stock market as a chaotic dynamic system.
Wendling, T; Jung, K; Callahan, A; Schuler, A; Shah, N H; Gallego, B
2018-06-03
There is growing interest in using routinely collected data from health care databases to study the safety and effectiveness of therapies in "real-world" conditions, as it can provide complementary evidence to that of randomized controlled trials. Causal inference from health care databases is challenging because the data are typically noisy, high dimensional, and most importantly, observational. It requires methods that can estimate heterogeneous treatment effects while controlling for confounding in high dimensions. Bayesian additive regression trees, causal forests, causal boosting, and causal multivariate adaptive regression splines are off-the-shelf methods that have shown good performance for estimation of heterogeneous treatment effects in observational studies of continuous outcomes. However, it is not clear how these methods would perform in health care database studies where outcomes are often binary and rare and data structures are complex. In this study, we evaluate these methods in simulation studies that recapitulate key characteristics of comparative effectiveness studies. We focus on the conditional average effect of a binary treatment on a binary outcome using the conditional risk difference as an estimand. To emulate health care database studies, we propose a simulation design where real covariate and treatment assignment data are used and only outcomes are simulated based on nonparametric models of the real outcomes. We apply this design to 4 published observational studies that used records from 2 major health care databases in the United States. Our results suggest that Bayesian additive regression trees and causal boosting consistently provide low bias in conditional risk difference estimates in the context of health care database studies. Copyright © 2018 John Wiley & Sons, Ltd.
Global mortality consequences of climate change accounting for adaptation costs and benefits
NASA Astrophysics Data System (ADS)
Rising, J. A.; Jina, A.; Carleton, T.; Hsiang, S. M.; Greenstone, M.
2017-12-01
Empirically-based and plausibly causal estimates of the damages of climate change are greatly needed to inform rapidly developing global and local climate policies. To accurately reflect the costs of climate change, it is essential to estimate how much populations will adapt to a changing climate, yet adaptation remains one of the least understood aspects of social responses to climate. In this paper, we develop and implement a novel methodology to estimate climate impacts on mortality rates. We assemble comprehensive sub-national panel data in 41 countries that account for 56% of the world's population, and combine them with high resolution daily climate data to flexibly estimate the causal effect of temperature on mortality. We find the impacts of temperature on mortality have a U-shaped response; both hot days and cold days cause excess mortality. However, this average response obscures substantial heterogeneity, as populations are differentially adapted to extreme temperatures. Our empirical model allows us to extrapolate response functions across the entire globe, as well as across time, using a range of economic, population, and climate change scenarios. We also develop a methodology to capture not only the benefits of adaptation, but also its costs. We combine these innovations to produce the first causal, micro-founded, global, empirically-derived climate damage function for human health. We project that by 2100, business-as-usual climate change is likely to incur mortality-only costs that amount to approximately 5% of global GDP for 5°C degrees of warming above pre-industrial levels. On average across model runs, we estimate that the upper bound on adaptation costs amounts to 55% of the total damages.
Depression and Genetic Causal Attribution of Epilepsy in Multiplex Epilepsy Families
Sorge, Shawn T.; Hesdorffer, Dale C.; Phelan, Jo C.; Winawer, Melodie R.; Shostak, Sara; Goldsmith, Jeff; Chung, Wendy K.; Ottman, Ruth
2016-01-01
Summary Objectives Rapid advances in genetic research and increased use of genetic testing have increased the emphasis on genetic causes of epilepsy in patient encounters. Research in other disorders suggests that genetic causal attributions can influence patients’ psychological responses and coping strategies, but little is currently known about how epilepsy patients and their relatives will respond to genetic attributions of epilepsy. We investigated the possibility that depression, the most frequent psychiatric comorbidity in the epilepsies, might be related to the perception that epilepsy has a genetic cause among members of families containing multiple individuals with epilepsy. Methods A self-administered survey was completed by 417 individuals in 104 families averaging four individuals with epilepsy per family. Current depression was measured with the PHQ-9. Genetic causal attribution was assessed by three questions addressing: perceived likelihood of having an epilepsy-related mutation, perceived role of genetics in causing epilepsy in the family, and (in individuals with epilepsy) perceived influence of genetics in causing the individual’s epilepsy. Relatives without epilepsy were asked about their perceived chance of developing epilepsy in the future, compared with the average person. Results Prevalence of current depression was 14.8% in 182 individuals with epilepsy, 6.5% in 184 biological relatives without epilepsy, and 3.9% in 51 married-in individuals. Among individuals with epilepsy, depression was unrelated to genetic attribution. Among biological relatives without epilepsy, however, prevalence of depression increased with increasing perceived chance of having an epilepsy-related mutation (p=0.02). This association was not mediated by perceived future epilepsy risk among relatives without epilepsy. Significance Depression is associated with perceived likelihood of carrying an epilepsy-related mutation among individuals without epilepsy in families containing multiple affected individuals. This association should be considered when addressing mental health issues in such families. PMID:27558297
ERIC Educational Resources Information Center
Garces, Liliana M.
2012-01-01
This study uses data from the CGS/GRE Survey of Graduate Enrollment and Degrees and a methodology that supports causal inference to examine the effects of affirmative action bans in Texas, California, Washington, and Florida on graduate student of color enrollment. The findings show that the bans have reduced by 12.2% the average proportion of…
Descriptive features and causal attributions of headache in an Australian community.
Fernandez, E; Sheffield, J
1996-04-01
The reported characteristics and causes of headache differ across individuals and between groups. Such differences are of interest from an epidemiological point of view. This study set out to identify the main descriptive features and causal attributions of headache within an Australian urban community. A sample of 261 subjects reporting headache volunteered to participate in the survey. Subjects completed a self-report questionnaire for assessing demographic variables, headache parameters (intensity, duration, etc), headache medication habits, and perceived causes of one's headache (as in the UK headache survey by Blau, 1990). Results revealed that the typical headache sufferer was a middle-aged employed individual. Migraine versus tension headache were equivalent in number, and on the average, subjects experienced moderate intensity, day-long headaches that recurred about nine times per month. With regard to causal attributions, the prevalence of headaches due to mental stress was higher than that due to any other single stimulus (eg, noise, exercise), and alcohol was the most frequent dietary cause of headache. These findings are generally consistent with those from previous surveys, although some interesting departures emerge which may be accounted for by demographic differences in the populations studied.
Overcoming confirmation bias in causal attribution: a case study of antibiotic resistance risks.
Cox, Louis Anthony Tony; Popken, Douglas A
2008-10-01
When they do not use formal quantitative risk assessment methods, many scientists (like other people) make mistakes and exhibit biases in reasoning about causation, if-then relations, and evidence. Decision-related conclusions or causal explanations are reached prematurely based on narrative plausibility rather than adequate factual evidence. Then, confirming evidence is sought and emphasized, but disconfirming evidence is ignored or discounted. This tendency has serious implications for health-related public policy discussions and decisions. We provide examples occurring in antimicrobial health risk assessments, including a case study of a recently reported positive relation between virginiamycin (VM) use in poultry and risk of resistance to VM-like (streptogramin) antibiotics in humans. This finding has been used to argue that poultry consumption causes increased resistance risks, that serious health impacts may result, and therefore use of VM in poultry should be restricted. However, the original study compared healthy vegetarians to hospitalized poultry consumers. Our examination of the same data using conditional independence tests for potential causality reveals that poultry consumption acted as a surrogate for hospitalization in this study. After accounting for current hospitalization status, no evidence remains supporting a causal relationship between poultry consumption and increased streptogramin resistance. This example emphasizes both the importance and the practical possibility of analyzing and presenting quantitative risk information using data analysis techniques (such as Bayesian model averaging (BMA) and conditional independence tests) that are as free as possible from potential selection, confirmation, and modeling biases.
Gibb, B E; Alloy, L B; Abramson, L Y; Rose, D T; Whitehouse, W G; Hogan, M E
2001-01-01
Few studies have examined the relation between childhood maltreatment and adult suicidality within the context of a coherent theoretical model. The current study evaluates the ability of the hopelessness theory of depression's (Abramson, Metalsky, & Alloy, 1989) etiological chain to account for this relation in a sample of 297 undergraduates. Supporting the model, emotional, but not physical or sexual, maltreatment was uniquely related to average levels of suicidal ideation across a 2.5-year follow-up. Further, students' cognitive styles and average levels of hopelessness partially mediated this relation. Although these results cannot speak to causality, they support the developmental model evaluated.
Advancing understanding of affect labeling with dynamic causal modeling
Torrisi, Salvatore J.; Lieberman, Matthew D.; Bookheimer, Susan Y.; Altshuler, Lori L.
2013-01-01
Mechanistic understandings of forms of incidental emotion regulation have implications for basic and translational research in the affective sciences. In this study we applied Dynamic Causal Modeling (DCM) for fMRI to a common paradigm of labeling facial affect to elucidate prefrontal to subcortical influences. Four brain regions were used to model affect labeling, including right ventrolateral prefrontal cortex (vlPFC), amygdala and Broca’s area. 64 models were compared, for each of 45 healthy subjects. Family level inference split the model space to a likely driving input and Bayesian Model Selection within the winning family of 32 models revealed a strong pattern of endogenous network connectivity. Modulatory effects of labeling were most prominently observed following Bayesian Model Averaging, with the dampening influence on amygdala originating from Broca’s area but much more strongly from right vlPFC. These results solidify and extend previous correlation and regression-based estimations of negative corticolimbic coupling. PMID:23774393
The predictive power of local properties of financial networks
NASA Astrophysics Data System (ADS)
Caraiani, Petre
2017-01-01
The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.
Has reducing fine particulate matter and ozone caused reduced mortality rates in the United States?
Cox, Louis Anthony Tony; Popken, Douglas A
2015-03-01
Between 2000 and 2010, air pollutant levels in counties throughout the United States changed significantly, with fine particulate matter (PM2.5) declining over 30% in some counties and ozone (O3) exhibiting large variations from year to year. This history provides an opportunity to compare county-level changes in average annual ambient pollutant levels to corresponding changes in all-cause (AC) and cardiovascular disease (CVD) mortality rates over the course of a decade. Past studies have demonstrated associations and subsequently either interpreted associations causally or relied on subjective judgments to infer causation. This article applies more quantitative methods to assess causality. This article examines data from these "natural experiments" of changing pollutant levels for 483 counties in the 15 most populated US states using quantitative methods for causal hypothesis testing, such as conditional independence and Granger causality tests. We assessed whether changes in historical pollution levels helped to predict and explain changes in CVD and AC mortality rates. A causal relation between pollutant concentrations and AC or CVD mortality rates cannot be inferred from these historical data, although a statistical association between them is well supported. There were no significant positive associations between changes in PM2.5 or O3 levels and corresponding changes in disease mortality rates between 2000 and 2010, nor for shorter time intervals of 1 to 3 years. These findings suggest that predicted substantial human longevity benefits resulting from reducing PM2.5 and O3 may not occur or may be smaller than previously estimated. Our results highlight the potential for heterogeneity in air pollution health effects across regions, and the high potential value of accountability research comparing model-based predictions of health benefits from reducing air pollutants to historical records of what actually occurred. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Waters, Jiajia
KIVA-hpFE is a high performance computer software for solving the physics of multi-species and multiphase turbulent reactive flow in complex geometries having immersed moving parts. The code is written in Fortran 90/95 and can be used on any computer platform with any popular complier. The code is in two versions, a serial version and a parallel version utilizing MPICH2 type Message Passing Interface (MPI or Intel MPI) for solving distributed domains. The parallel version is at least 30x faster than the serial version and much faster than our previous generation of parallel engine modeling software, by many factors. The 5thmore » generation algorithm construction is a Galerkin type Finite Element Method (FEM) solving conservative momentum, species, and energy transport equations along with two-equation turbulent model k-ω Reynolds Averaged Navier-Stokes (RANS) model and a Vreman type dynamic Large Eddy Simulation (LES) method. The LES method is capable modeling transitional flow from laminar to fully turbulent; therefore, this LES method does not require special hybrid or blending to walls. The FEM projection method also uses a Petrov-Galerkin (P-G) stabilization along with pressure stabilization. We employ hierarchical basis sets, constructed on the fly with enrichment in areas associated with relatively larger error as determined by error estimation methods. In addition, when not using the hp-adaptive module, the code employs Lagrangian basis or shape functions. The shape functions are constructed for hexahedral, prismatic and tetrahedral elements. The software is designed to solve many types of reactive flow problems, from burners to internal combustion engines and turbines. In addition, the formulation allows for direct integration of solid bodies (conjugate heat transfer), as in heat transfer through housings, parts, cylinders. It can also easily be extended to stress modeling of solids, used in fluid structure interactions problems, solidification, porous media modeling and magneto hydrodynamics.« less
Spertus, Jacob V; Normand, Sharon-Lise T
2018-04-23
High-dimensional data provide many potential confounders that may bolster the plausibility of the ignorability assumption in causal inference problems. Propensity score methods are powerful causal inference tools, which are popular in health care research and are particularly useful for high-dimensional data. Recent interest has surrounded a Bayesian treatment of propensity scores in order to flexibly model the treatment assignment mechanism and summarize posterior quantities while incorporating variance from the treatment model. We discuss methods for Bayesian propensity score analysis of binary treatments, focusing on modern methods for high-dimensional Bayesian regression and the propagation of uncertainty. We introduce a novel and simple estimator for the average treatment effect that capitalizes on conjugacy of the beta and binomial distributions. Through simulations, we show the utility of horseshoe priors and Bayesian additive regression trees paired with our new estimator, while demonstrating the importance of including variance from the treatment regression model. An application to cardiac stent data with almost 500 confounders and 9000 patients illustrates approaches and facilitates comparison with existing alternatives. As measured by a falsifiability endpoint, we improved confounder adjustment compared with past observational research of the same problem. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robust Nonlinear Causality Analysis of Nonstationary Multivariate Physiological Time Series.
Schack, Tim; Muma, Michael; Feng, Mengling; Guan, Cuntai; Zoubir, Abdelhak M
2018-06-01
An important research area in biomedical signal processing is that of quantifying the relationship between simultaneously observed time series and to reveal interactions between the signals. Since biomedical signals are potentially nonstationary and the measurements may contain outliers and artifacts, we introduce a robust time-varying generalized partial directed coherence (rTV-gPDC) function. The proposed method, which is based on a robust estimator of the time-varying autoregressive (TVAR) parameters, is capable of revealing directed interactions between signals. By definition, the rTV-gPDC only displays the linear relationships between the signals. We therefore suggest to approximate the residuals of the TVAR process, which potentially carry information about the nonlinear causality by a piece-wise linear time-varying moving-average model. The performance of the proposed method is assessed via extensive simulations. To illustrate the method's applicability to real-world problems, it is applied to a neurophysiological study that involves intracranial pressure, arterial blood pressure, and brain tissue oxygenation level (PtiO2) measurements. The rTV-gPDC reveals causal patterns that are in accordance with expected cardiosudoral meachanisms and potentially provides new insights regarding traumatic brain injuries. The rTV-gPDC is not restricted to the above problem but can be useful in revealing interactions in a broad range of applications.
Accounting for occurrences: a new view of the use of contingency information in causal judgment.
White, Peter A
2008-01-01
When people make causal judgments from contingency information, a principal aim is to account for occurrences of the outcome. When 2 causes are under consideration, the capacity of either to account for occurrences is judged from how likely the cause is to be present when the outcome occurs and from the rate at which the outcome occurs when that cause alone is present, which gives an estimate of the strength of the cause. These propositions are formalized in a weighted averaging model, which successfully predicted several judgmental phenomena not predicted by other models of causal judgment. These include a tendency for judgment of one cause (A) to be reduced as the number of occurrences of when only the other one (B) increases and a tendency for A to receive higher judgments than B if A is better able to account for occurrences than B is even if B has a higher contingency with the outcome than A does. Overshadowing, a tendency for judgments of B to be depressed if A has a higher contingency, is weak or absent when B is better able to account for occurrences than A. Results of several experiments support these and related predictions derived from the accounting for occurrences hypothesis. PsycINFO Database Record (c) 2008 APA, all rights reserved.
Black, Maureen M; Bentley, Margaret E; Papas, Mia A; Oberlander, Sarah; Teti, Laureen O; McNary, Scot; Le, Katherine; O'Connell, Melissa
2006-10-01
Rates of rapid second births among low-income black adolescent mothers range from 20% to 50%. Most efforts to prevent rapid second births have been unsuccessful. There were 4 objectives: (1) to examine whether a home-based mentoring intervention was effective in preventing second births within 2 years of the adolescent mother's first delivery; (2) to examine whether greater intervention participation increased the likelihood of preventing a second birth; (3) to examine whether second births were better predicted from a risk practice perspective or a family formation perspective, based on information collected at delivery; and (4) to examine how risk practices or family formation over the first 2 years of parenthood were related to a second birth. We conducted a randomized, controlled trial of a home-based intervention curriculum, based on social cognitive theory, and focused on interpersonal negotiation skills, adolescent development, and parenting. The curriculum was delivered biweekly until the infant's first birthday by college-educated, black, single mothers who served as mentors, presenting themselves as "big sisters." The control group received usual care. Follow-up evaluations were conducted in the homes 6, 13, and 24 months after recruitment. Participants were recruited from urban hospitals at delivery and were 181 first time, black adolescent mothers (< 18 years of age); 82% (149 of 181) completed the 24-month evaluation. Intent-to-treat analyses revealed that control mothers were more likely than intervention mothers to have a second infant. The complier average causal effect was used to account for variability in intervention participation. Having > or = 2 intervention visits increased the odds of not having a second infant more than threefold. Only 1 mother who completed > or = 6 visits had a second infant. At delivery of their first infant, mothers who had a second infant were slightly older (16.7 vs 16.2 years) and were more likely to have been arrested (30% vs 14%). There were no differences in baseline contraceptive use or other measures of risk or family formation. At 24 months, mothers who had a second infant reported high self-esteem, positive life events, and romantic involvement and residence with the first infant's father. At 24 months, there were no differences in marital rates (2%), risk practices, or contraceptive use between mothers who did and did not have a second infant. Mothers who did not have a second infant were marginally more likely to report no plans for contraception in their next sexual contact compared with mothers who had a second infant (22% vs 8%, respectively). A home-based intervention founded on a mentorship model and targeted toward adolescent development, including negotiation skills, was effective in preventing rapid repeat births among low-income, black adolescent mothers. The effectiveness of the intervention could be seen after only 2 visits and increased over time. There were no second births among mothers who attended > or = 8 sessions. There was no evidence that risk behavior or contraceptive use was related to rapid second births. There was some evidence that rapid second births among adolescent mothers were regarded as desirable and as part of a move toward increasing autonomy and family formation, thereby undermining intervention programs that focus on risk avoidance. Findings suggest the merits of a mentoring program for low-income, black adolescent mothers, based on a relatively brief (6-8 sessions) curriculum targeted toward adolescent development and interpersonal negotiation skills.
Depression and genetic causal attribution of epilepsy in multiplex epilepsy families.
Sorge, Shawn T; Hesdorffer, Dale C; Phelan, Jo C; Winawer, Melodie R; Shostak, Sara; Goldsmith, Jeff; Chung, Wendy K; Ottman, Ruth
2016-10-01
Rapid advances in genetic research and increased use of genetic testing have increased the emphasis on genetic causes of epilepsy in patient encounters. Research in other disorders suggests that genetic causal attributions can influence patients' psychological responses and coping strategies, but little is known about how epilepsy patients and their relatives will respond to genetic attributions of epilepsy. We investigated the possibility that among members of families containing multiple individuals with epilepsy, depression, the most frequent psychiatric comorbidity in the epilepsies, might be related to the perception that epilepsy has a genetic cause. A self-administered survey was completed by 417 individuals in 104 families averaging 4 individuals with epilepsy per family. Current depression was measured with the Patient Health Questionnaire. Genetic causal attribution was assessed by three questions addressing the following: perceived likelihood of having an epilepsy-related mutation, perceived role of genetics in causing epilepsy in the family, and (in individuals with epilepsy) perceived influence of genetics in causing the individual's epilepsy. Relatives without epilepsy were asked about their perceived chance of developing epilepsy in the future, compared with the average person. Prevalence of current depression was 14.8% in 182 individuals with epilepsy, 6.5% in 184 biologic relatives without epilepsy, and 3.9% in 51 individuals married into the families. Among individuals with epilepsy, depression was unrelated to genetic attribution. Among biologic relatives without epilepsy, however, prevalence of depression increased with increasing perceived chance of having an epilepsy-related mutation (p = 0.02). This association was not mediated by perceived future epilepsy risk among relatives without epilepsy. Depression is associated with perceived likelihood of carrying an epilepsy-related mutation among individuals without epilepsy in families containing multiple affected individuals. This association should be considered when addressing mental health issues in such families. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Chu, Filmer; Ohinmaa, Arto; Klarenbach, Scott; Wong, Zing-Wae; Veugelers, Paul
2017-10-13
The main function of vitamin D is calcium homeostasis. However, emerging evidence has correlated adequate serum 25-hydroxyvitamin D (25(OH)D) concentrations with better mental health. The objective of this study is to investigate the association of serum 25(OH)D concentrations with indicators of mental health such as depression, anxiety, and stress. Associations of serum 25(OH)D concentrations with four indicators of mental health were examined using ordered logistic regression models with increasing specificity that account for demographics, socio-economic status, and health. Margin effects are used to determine the probability of the average adult Canadian being in the best mental health state by groupings of serum 25(OH)D concentrations. A robust association between serum 25(OH)D concentrations and the indicators of mental health were observed. In the fully adjusted ordered logistic model, an average Canadian appeared more likely to experience better mental health when serum 25(OH)D concentrations were higher. This study adds to the weight of the existence of an association between vitamin D status and mental health, but, as this study is cross sectional, it does not establish causality. Due to the low risk of harm from toxicity and the relative modest costs of vitamin D supplements, more research to establish the effectiveness and causality of this relationship is recommended.
Pattanayak, Subhrendu K; Poulos, Christine; Yang, Jui-Chen; Patil, Sumeet
2010-07-01
To evaluate and quantify the economic benefits attributable to improvements in water supply and sanitation in rural India. We combined propensity-score "pre-matching" and rich pre-post panel data on 9500 households in 242 villages located in four geographically different districts to estimate the economic benefits of a large-scale community demand-driven water supply programme in Maharashtra, India. We calculated coping costs and cost of illness by adding across several elements of coping and illness and then estimated causal impacts using a difference-in-difference strategy on the pre-matched sample. The pre-post design allowed us to use a difference-in-difference estimator to measure "treatment effect" by comparing treatment and control villages during both periods. We compared average household costs with respect to out-of-pocket medical expenses, patients' lost income, caregiving costs, time spent on collecting water, time spent on sanitation, and water treatment costs due to filtration, boiling, chemical use and storage. Three years after programme initiation, the number of households using piped water and private pit latrines had increased by 10% on average, but no changes in hygiene-related behaviour had occurred. The behavioural changes observed suggest that the average household in a programme community could save as much as 7 United States dollars per month (or 5% of monthly household cash expenditures) in coping costs, but would not reduce illness costs. Poorer, socially marginalized households benefited more, in alignment with programme objectives. Given the renewed interest in water, sanitation and hygiene outcomes, evaluating the economic benefits of environmental interventions by means of causal research is important for understanding the true value of such interventions.
Poulos, Christine; Yang, Jui-Chen; Patil, Sumeet
2010-01-01
Abstract Objective To evaluate and quantify the economic benefits attributable to improvements in water supply and sanitation in rural India. Methods We combined propensity-score “pre-matching” and rich pre–post panel data on 9500 households in 242 villages located in four geographically different districts to estimate the economic benefits of a large-scale community demand-driven water supply programme in Maharashtra, India. We calculated coping costs and cost of illness by adding across several elements of coping and illness and then estimated causal impacts using a difference-in-difference strategy on the pre-matched sample. The pre–post design allowed us to use a difference-in-difference estimator to measure “treatment effect” by comparing treatment and control villages during both periods. We compared average household costs with respect to out-of-pocket medical expenses, patients' lost income, caregiving costs, time spent on collecting water, time spent on sanitation, and water treatment costs due to filtration, boiling, chemical use and storage. Findings Three years after programme initiation, the number of households using piped water and private pit latrines had increased by 10% on average, but no changes in hygiene-related behaviour had occurred. The behavioural changes observed suggest that the average household in a programme community could save as much as 7 United States dollars per month (or 5% of monthly household cash expenditures) in coping costs, but would not reduce illness costs. Poorer, socially marginalized households benefited more, in alignment with programme objectives. Conclusion Given the renewed interest in water, sanitation and hygiene outcomes, evaluating the economic benefits of environmental interventions by means of causal research is important for understanding the true value of such interventions. PMID:20616973
Gross Motor Skills and Cardiometabolic Risk in Children: A Mediation Analysis.
Burns, Ryan D; Brusseau, Timothy A; Fu, You; Hannon, James C
2017-04-01
The purpose of this study was to examine the linear relationship between gross motor skills and cardiometabolic risk, with aerobic fitness as a mediator variable, in low-income children from the United States. Participants were a convenience sample of 224 children (mean ± SD age = 9.1 ± 1.1 yr; 129 girls and 95 boys) recruited from five low-income elementary schools from the Mountain West Region of the United States. Gross motor skills were assessed using the Test for Gross Motor Development, 3rd Edition. Gross motor skills were analyzed using a locomotor skill, a ball skill, and a total gross motor skill score. Aerobic fitness was assessed using the Progressive Aerobic Cardiovascular Endurance Run that was administered during physical education class. A continuous and age- and sex-adjusted metabolic syndrome score (MetS) was calculated from health and blood marker measurements collected in a fasted state before school hours. Total effects, average direct effects, and indirect effects (average causal mediation effect) were calculated using a bootstrap mediation analysis method via a linear regression algorithm. The average causal mediation effect of gross locomotor skills on MetS scores, using aerobic fitness as the mediator variable, was statistically significant (β = -0.055, 95% confidence interval = -0.097 to -0.021, P = 0.003). The model explained approximately 17.5% of the total variance in MetS with approximately 43.7% of the relationship between locomotor skills and MetS mediated through aerobic fitness. Ball skills did not significantly relate with cardiometabolic risk. There is a significant relationship between gross locomotor skills and cardiometabolic risk that is partially mediated through aerobic fitness in a sample of low-income children from the United States.
The ARIA guidelines in specialist practice: a nationwide survey.
Van Hoecke, H; Van Cauwenberge, P; Thas, O; Watelet, J B
2010-03-01
In 2001, the ARIA guidelines were published to assist healthcare practitioners in managing allergic rhinitis (AR) according to the best evidence. Very limited information, however, is avail-able on the impact of these guidelines on clinical practice. All Belgian Otorhinolaryngologists were invited to complete a questionnaire, covering demographic and professional characteristics, knowledge, use and perception of the ARIA guidelines and 4 clinical case scenarios of AR. Of the 258 (44%) Belgian Otorhinolaryngologists who participated, almost 90% had ever heard about ARIA and 64% had followed a lecture specifically dedicated to the ARIA guidelines. Furthermore, 62% stated to always or mostly follow the ARIA treatment algorithms in the daily management of AR patients. In the clinical case section, adherence to the ARIA guidelines raised with increased self-reported knowledge and use of the ARIA guidelines and among participants that considered the guidelines more userfriendly. Of the respondents, 51% were considered as good com-pliers. Younger age was a significant predictor for good compliance. More efforts are required to improve the translation of scientific knowledge into clinical practice and to further identify which factors may influence guideline compliance.
Inside the black box of food safety: a qualitative study of 'non-compliance' among food businesses.
Brough, Mark; Davies, Belinda; Johnstone, Eleesa
2016-04-01
Issue addressed This paper examines the meaning of food safety among food businesses deemed non-compliant and considers the need for an insider perspective to inform a more nuanced health promotion practice. Methods In-depth interviews were conducted with 29 food business operators who had recently been deemed 'non-compliant' through Council inspection. Results Paradoxically, these 'non-compliers' revealed a strong belief in the importance of food safety as well as a desire to comply with the regulations as communicated to them by Environmental Health Officers. Conclusions The evidence base of food safety is largely informed by the science of food hazards, yet there is a very important need to consider the practical daily application of food safety practices. This requires a more socially nuanced appreciation of food businesses beyond the simple dichotomy of compliant/ non-compliant. So what? Armed with a deeper understanding of the social context surrounding food safety practice, it is anticipated that a more balanced, collaborative mode of food safety health promotion could develop, which could add to the current model of regulation.
Gain a child, lose a tooth? Using natural experiments to distinguish between fact and fiction.
Gabel, Frank; Jürges, Hendrik; Kruk, Kai E; Listl, Stefan
2018-06-01
Dental diseases are among the most frequent diseases globally and tooth loss imposes a substantial burden on peoples' quality of life. Non-experimental evidence suggests that individuals with more children have more missing teeth than individuals with fewer children, but until now there is no causal evidence for or against this. Using a Two-Stage Least Squares (2SLS) instrumental variables approach and large-scale cross-sectional data from the Survey of Health, Ageing, and Retirement in Europe (study sample: 34 843 non-institutionalised individuals aged 50+ from 14 European countries and Israel; data were collected in 2013), we investigated the causal relationship between the number of biological children and their parents' number of missing natural teeth. Thereby, we exploited random natural variation in family size resulting from (i) the birth of multiples vs singletons, and (ii) the sex composition of the two first-born children (increased likelihood of a third child if the two first-born children have the same sex). 2SLS regressions detected a strong causal relationship between the number of children and teeth for women but not for men when an additional birth occurred after the first two children had the same sex. Women then had an average of 4.27 (95% CI: 1.08 to 7.46) fewer teeth than women without an additional birth whose first two children had different sexes. This study provides novel evidence for causal links between the number of children and the number of missing teeth. An additional birth might be detrimental to the mother's but not the father's oral health. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills
NASA Astrophysics Data System (ADS)
Amida, N.; Supriyanti, F. M. T.; Liliasari
2017-02-01
This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of
Sarma, Sisira; Devlin, Rose Anne; Gilliland, Jason; Campbell, M Karen; Zaric, Gregory S
2015-12-01
Although studies have looked at the effect of physical activity on obesity and other health outcomes, the causal nature of this relationship remains unclear. We fill this gap by investigating the impact of leisure-time physical activity (LTPA) and work-related physical activity (WRPA) on obesity and chronic conditions in Canadians aged 18-75 using instrumental variable and recursive bivariate probit approaches. Average local temperatures surrounding the respondents' interview month are used as a novel instrument to help identify the causal relationship between LTPA and health outcomes. We find that an active level of LTPA (i.e., walking ≥1 h/day) reduces the probability of obesity by five percentage points, which increases to 11 percentage points if also combined with some WRPA. WRPA exhibits a negative effect on the probability of obesity and chronic conditions. Copyright © 2014 John Wiley & Sons, Ltd.
Park, Hyunjoon; Behrman, Jere R.; Choi, Jaesung
2012-01-01
Despite the voluminous literature on the potentials of single-sex schools, there is no consensus on the effects of single-sex schools because of student selection of school types. We exploit a unique feature of schooling in Seoul—the random assignment of students into single-sex versus coeducational high schools—to assess causal effects of single-sex schools on college entrance exam scores and college attendance. Our validation of the random assignment shows comparable socioeconomic backgrounds and prior academic achievement of students attending single-sex schools and coeducational schools, which increases the credibility of our causal estimates of single-sex school effects. The three-level hierarchical model shows that attending all-boys schools or all-girls schools, rather than coeducational schools, is significantly associated with higher average scores on Korean and English test scores. Applying the school district fixed-effects models, we find that single-sex schools produce a higher percentage of graduates who attended four-year colleges and a lower percentage of graduates who attended two-year junior colleges than do coeducational schools. The positive effects of single-sex schools remain substantial, even after we take into account various school-level variables, such as teacher quality, the student-teacher ratio, the proportion of students receiving lunch support, and whether the schools are public or private. PMID:23073751
Revisiting the child health-wealth nexus.
Fakir, Adnan M S
2016-12-01
The causal link between a household's economic standing and child health is known to suffer from endogeneity. While past studies have exemplified the causal link to be small, albeit statistically significant, this paper aims to estimate the causal effect to investigate whether the effect of income after controlling for the endogeneity remains small in the long run. By correcting for the bias, and knowing the bias direction, one can also infer about the underlying backward effect. This paper uses an instrument variables two-stage-least-squares estimation on the Young Lives 2009 cross-sectional dataset from Andhra Pradesh, India, to understand the aforementioned relationship. The selected measure of household economic standing differentially affects the estimation. There is significant positive effect of both short-run household expenditure and long-run household wealth on child stunting, with the latter having a larger impact. The backward link running from child health to household income is likely an inverse association in our sample with lower child health inducing higher earnings. While higher average community education improved child health, increased community entertainment expenditure is found to have a negative effect. While policies catered towards improving household wealth will decrease child stunting in the long run, maternal education and the community play an equally reinforcing role in improving child health and are perhaps faster routes to achieving the goal of better child health in the short run.
Staley, James R; Burgess, Stephen
2017-05-01
Mendelian randomization, the use of genetic variants as instrumental variables (IV), can test for and estimate the causal effect of an exposure on an outcome. Most IV methods assume that the function relating the exposure to the expected value of the outcome (the exposure-outcome relationship) is linear. However, in practice, this assumption may not hold. Indeed, often the primary question of interest is to assess the shape of this relationship. We present two novel IV methods for investigating the shape of the exposure-outcome relationship: a fractional polynomial method and a piecewise linear method. We divide the population into strata using the exposure distribution, and estimate a causal effect, referred to as a localized average causal effect (LACE), in each stratum of population. The fractional polynomial method performs metaregression on these LACE estimates. The piecewise linear method estimates a continuous piecewise linear function, the gradient of which is the LACE estimate in each stratum. Both methods were demonstrated in a simulation study to estimate the true exposure-outcome relationship well, particularly when the relationship was a fractional polynomial (for the fractional polynomial method) or was piecewise linear (for the piecewise linear method). The methods were used to investigate the shape of relationship of body mass index with systolic blood pressure and diastolic blood pressure. © 2017 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.
Staley, James R.
2017-01-01
ABSTRACT Mendelian randomization, the use of genetic variants as instrumental variables (IV), can test for and estimate the causal effect of an exposure on an outcome. Most IV methods assume that the function relating the exposure to the expected value of the outcome (the exposure‐outcome relationship) is linear. However, in practice, this assumption may not hold. Indeed, often the primary question of interest is to assess the shape of this relationship. We present two novel IV methods for investigating the shape of the exposure‐outcome relationship: a fractional polynomial method and a piecewise linear method. We divide the population into strata using the exposure distribution, and estimate a causal effect, referred to as a localized average causal effect (LACE), in each stratum of population. The fractional polynomial method performs metaregression on these LACE estimates. The piecewise linear method estimates a continuous piecewise linear function, the gradient of which is the LACE estimate in each stratum. Both methods were demonstrated in a simulation study to estimate the true exposure‐outcome relationship well, particularly when the relationship was a fractional polynomial (for the fractional polynomial method) or was piecewise linear (for the piecewise linear method). The methods were used to investigate the shape of relationship of body mass index with systolic blood pressure and diastolic blood pressure. PMID:28317167
Causality and correlations between BSE and NYSE indexes: A Janus faced relationship
NASA Astrophysics Data System (ADS)
Neeraj; Panigrahi, Prasanta K.
2017-09-01
We study the multi-scale temporal correlations and causality connections between the New York Stock Exchange (NYSE) and Bombay Stock Exchange (BSE) monthly average closing price indexes for a period of 300 months, encompassing the time period of the liberalisation of the Indian economy and its gradual global exposure. In multi-scale analysis; clearly identifiable 1, 2 and 3 year non-stationary periodic modulations in NYSE and BSE have been observed, with NYSE commensurating changes in BSE at 3 years scale. Interestingly, at one year time scale, the two exchanges are phase locked only during the turbulent times, while at the scale of three year, in-phase nature is observed for a much longer time frame. The two year time period, having characteristics of both one and three year variations, acts as the transition regime. The normalised NYSE's stock value is found to Granger cause those of BSE, with a time lag of 9 months. Surprisingly, observed Granger causality of high frequency variations reveals BSE behaviour getting reflected in the NYSE index fluctuations, after a smaller time lag. This Janus faced relationship, shows that smaller stock exchanges may provide a natural setting for simulating market fluctuations of much bigger exchanges. This possibly arises due to the fact that high frequency fluctuations form an universal part of the financial time series, and are expected to exhibit similar characteristics in open market economies.
Park, Hyunjoon; Behrman, Jere R; Choi, Jaesung
2013-04-01
Despite the voluminous literature on the potentials of single-sex schools, there is no consensus on the effects of single-sex schools because of student selection of school types. We exploit a unique feature of schooling in Seoul-the random assignment of students into single-sex versus coeducational high schools-to assess causal effects of single-sex schools on college entrance exam scores and college attendance. Our validation of the random assignment shows comparable socioeconomic backgrounds and prior academic achievement of students attending single-sex schools and coeducational schools, which increases the credibility of our causal estimates of single-sex school effects. The three-level hierarchical model shows that attending all-boys schools or all-girls schools, rather than coeducational schools, is significantly associated with higher average scores on Korean and English test scores. Applying the school district fixed-effects models, we find that single-sex schools produce a higher percentage of graduates who attended four-year colleges and a lower percentage of graduates who attended two-year junior colleges than do coeducational schools. The positive effects of single-sex schools remain substantial, even after we take into account various school-level variables, such as teacher quality, the student-teacher ratio, the proportion of students receiving lunch support, and whether the schools are public or private.
ERIC Educational Resources Information Center
Johnson, Samuel G. B.; Ahn, Woo-kyoung
2015-01-01
Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge--an interconnected causal "network," where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms--causal "islands"--such that events in different…
Applying Propensity Score Methods in Medical Research: Pitfalls and Prospects
Luo, Zhehui; Gardiner, Joseph C.; Bradley, Cathy J.
2012-01-01
The authors review experimental and nonexperimental causal inference methods, focusing on assumptions for the validity of instrumental variables and propensity score (PS) methods. They provide guidance in four areas for the analysis and reporting of PS methods in medical research and selectively evaluate mainstream medical journal articles from 2000 to 2005 in the four areas, namely, examination of balance, overlapping support description, use of estimated PS for evaluation of treatment effect, and sensitivity analyses. In spite of the many pitfalls, when appropriately evaluated and applied, PS methods can be powerful tools in assessing average treatment effects in observational studies. Appropriate PS applications can create experimental conditions using observational data when randomized controlled trials are not feasible and, thus, lead researchers to an efficient estimator of the average treatment effect. PMID:20442340
Identification and estimation of survivor average causal effects.
Tchetgen Tchetgen, Eric J
2014-09-20
In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals who die prior to the follow-up visit. In such settings, outcomes are said to be truncated by death and inference about the effects of a point treatment or exposure, restricted to individuals alive at the follow-up visit, could be biased even if as in experimental studies, treatment assignment were randomized. To account for truncation by death, the survivor average causal effect (SACE) defines the effect of treatment on the outcome for the subset of individuals who would have survived regardless of exposure status. In this paper, the author nonparametrically identifies SACE by leveraging post-exposure longitudinal correlates of survival and outcome that may also mediate the exposure effects on survival and outcome. Nonparametric identification is achieved by supposing that the longitudinal data arise from a certain nonparametric structural equations model and by making the monotonicity assumption that the effect of exposure on survival agrees in its direction across individuals. A novel weighted analysis involving a consistent estimate of the survival process is shown to produce consistent estimates of SACE. A data illustration is given, and the methods are extended to the context of time-varying exposures. We discuss a sensitivity analysis framework that relaxes assumptions about independent errors in the nonparametric structural equations model and may be used to assess the extent to which inference may be altered by a violation of key identifying assumptions. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.
Identification and estimation of survivor average causal effects
Tchetgen, Eric J Tchetgen
2014-01-01
In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals who die prior to the follow-up visit. In such settings, outcomes are said to be truncated by death and inference about the effects of a point treatment or exposure, restricted to individuals alive at the follow-up visit, could be biased even if as in experimental studies, treatment assignment were randomized. To account for truncation by death, the survivor average causal effect (SACE) defines the effect of treatment on the outcome for the subset of individuals who would have survived regardless of exposure status. In this paper, the author nonparametrically identifies SACE by leveraging post-exposure longitudinal correlates of survival and outcome that may also mediate the exposure effects on survival and outcome. Nonparametric identification is achieved by supposing that the longitudinal data arise from a certain nonparametric structural equations model and by making the monotonicity assumption that the effect of exposure on survival agrees in its direction across individuals. A novel weighted analysis involving a consistent estimate of the survival process is shown to produce consistent estimates of SACE. A data illustration is given, and the methods are extended to the context of time-varying exposures. We discuss a sensitivity analysis framework that relaxes assumptions about independent errors in the nonparametric structural equations model and may be used to assess the extent to which inference may be altered by a violation of key identifying assumptions. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24889022
Johnson, Samuel G B; Ahn, Woo-kyoung
2015-09-01
Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge—an interconnected causal network, where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms—causal islands—such that events in different mechanisms are not thought to be related even when they belong to the same causal chain. To distinguish these possibilities, we tested whether people make transitive judgments about causal chains by inferring, given A causes B and B causes C, that A causes C. Specifically, causal chains schematized as one chunk or mechanism in semantic memory (e.g., exercising, becoming thirsty, drinking water) led to transitive causal judgments. On the other hand, chains schematized as multiple chunks (e.g., having sex, becoming pregnant, becoming nauseous) led to intransitive judgments despite strong intermediate links ((Experiments 1-3). Normative accounts of causal intransitivity could not explain these intransitive judgments (Experiments 4 and 5). Copyright © 2015 Cognitive Science Society, Inc.
Wolff, Phillip; Barbey, Aron K.
2015-01-01
Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611
Causal knowledge and the development of inductive reasoning.
Bright, Aimée K; Feeney, Aidan
2014-06-01
We explored the development of sensitivity to causal relations in children's inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey→predator) or diagnostic (predator→prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children's inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning. Copyright © 2013 Elsevier Inc. All rights reserved.
Optimal causal inference: estimating stored information and approximating causal architecture.
Still, Susanne; Crutchfield, James P; Ellison, Christopher J
2010-09-01
We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.
Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition.
Gilbert, Peter B; Gabriel, Erin E; Huang, Ying; Chan, Ivan S F
2015-09-01
A common problem of interest within a randomized clinical trial is the evaluation of an inexpensive response endpoint as a valid surrogate endpoint for a clinical endpoint, where a chief purpose of a valid surrogate is to provide a way to make correct inferences on clinical treatment effects in future studies without needing to collect the clinical endpoint data. Within the principal stratification framework for addressing this problem based on data from a single randomized clinical efficacy trial, a variety of definitions and criteria for a good surrogate endpoint have been proposed, all based on or closely related to the "principal effects" or "causal effect predictiveness (CEP)" surface. We discuss CEP-based criteria for a useful surrogate endpoint, including (1) the meaning and relative importance of proposed criteria including average causal necessity (ACN), average causal sufficiency (ACS), and large clinical effect modification; (2) the relationship between these criteria and the Prentice definition of a valid surrogate endpoint; and (3) the relationship between these criteria and the consistency criterion (i.e., assurance against the "surrogate paradox"). This includes the result that ACN plus a strong version of ACS generally do not imply the Prentice definition nor the consistency criterion, but they do have these implications in special cases. Moreover, the converse does not hold except in a special case with a binary candidate surrogate. The results highlight that assumptions about the treatment effect on the clinical endpoint before the candidate surrogate is measured are influential for the ability to draw conclusions about the Prentice definition or consistency. In addition, we emphasize that in some scenarios that occur commonly in practice, the principal strata sub-populations for inference are identifiable from the observable data, in which cases the principal stratification framework has relatively high utility for the purpose of effect modification analysis, and is closely connected to the treatment marker selection problem. The results are illustrated with application to a vaccine efficacy trial, where ACN and ACS for an antibody marker are found to be consistent with the data and hence support the Prentice definition and consistency.
Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition
Gilbert, Peter B.; Gabriel, Erin E.; Huang, Ying; Chan, Ivan S.F.
2015-01-01
A common problem of interest within a randomized clinical trial is the evaluation of an inexpensive response endpoint as a valid surrogate endpoint for a clinical endpoint, where a chief purpose of a valid surrogate is to provide a way to make correct inferences on clinical treatment effects in future studies without needing to collect the clinical endpoint data. Within the principal stratification framework for addressing this problem based on data from a single randomized clinical efficacy trial, a variety of definitions and criteria for a good surrogate endpoint have been proposed, all based on or closely related to the “principal effects” or “causal effect predictiveness (CEP)” surface. We discuss CEP-based criteria for a useful surrogate endpoint, including (1) the meaning and relative importance of proposed criteria including average causal necessity (ACN), average causal sufficiency (ACS), and large clinical effect modification; (2) the relationship between these criteria and the Prentice definition of a valid surrogate endpoint; and (3) the relationship between these criteria and the consistency criterion (i.e., assurance against the “surrogate paradox”). This includes the result that ACN plus a strong version of ACS generally do not imply the Prentice definition nor the consistency criterion, but they do have these implications in special cases. Moreover, the converse does not hold except in a special case with a binary candidate surrogate. The results highlight that assumptions about the treatment effect on the clinical endpoint before the candidate surrogate is measured are influential for the ability to draw conclusions about the Prentice definition or consistency. In addition, we emphasize that in some scenarios that occur commonly in practice, the principal strata sub-populations for inference are identifiable from the observable data, in which cases the principal stratification framework has relatively high utility for the purpose of effect modification analysis, and is closely connected to the treatment marker selection problem. The results are illustrated with application to a vaccine efficacy trial, where ACN and ACS for an antibody marker are found to be consistent with the data and hence support the Prentice definition and consistency. PMID:26722639
The selective power of causality on memory errors.
Marsh, Jessecae K; Kulkofsky, Sarah
2015-01-01
We tested the influence of causal links on the production of memory errors in a misinformation paradigm. Participants studied a set of statements about a person, which were presented as either individual statements or pairs of causally linked statements. Participants were then provided with causally plausible and causally implausible misinformation. We hypothesised that studying information connected with causal links would promote representing information in a more abstract manner. As such, we predicted that causal information would not provide an overall protection against memory errors, but rather would preferentially help in the rejection of misinformation that was causally implausible, given the learned causal links. In two experiments, we measured whether the causal linkage of information would be generally protective against all memory errors or only selectively protective against certain types of memory errors. Causal links helped participants reject implausible memory lures, but did not protect against plausible lures. Our results suggest that causal information may promote an abstract storage of information that helps prevent only specific types of memory errors.
Learning to learn causal models.
Kemp, Charles; Goodman, Noah D; Tenenbaum, Joshua B
2010-09-01
Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. Copyright © 2010 Cognitive Science Society, Inc.
Experimental verification of an indefinite causal order
Rubino, Giulia; Rozema, Lee A.; Feix, Adrien; Araújo, Mateus; Zeuner, Jonas M.; Procopio, Lorenzo M.; Brukner, Časlav; Walther, Philip
2017-01-01
Investigating the role of causal order in quantum mechanics has recently revealed that the causal relations of events may not be a priori well defined in quantum theory. Although this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. We report the first decisive demonstration of a process with an indefinite causal order. To do this, we quantify how incompatible our setup is with a definite causal order by measuring a “causal witness.” This mathematical object incorporates a series of measurements that are designed to yield a certain outcome only if the process under examination is not consistent with any well-defined causal order. In our experiment, we perform a measurement in a superposition of causal orders—without destroying the coherence—to acquire information both inside and outside of a “causally nonordered process.” Using this information, we experimentally determine a causal witness, demonstrating by almost 7 SDs that the experimentally implemented process does not have a definite causal order. PMID:28378018
Does higher education protect against obesity? Evidence using Mendelian randomization.
Böckerman, Petri; Viinikainen, Jutta; Pulkki-Råback, Laura; Hakulinen, Christian; Pitkänen, Niina; Lehtimäki, Terho; Pehkonen, Jaakko; Raitakari, Olli T
2017-08-01
The aim of this explorative study was to examine the effect of education on obesity using Mendelian randomization. Participants (N=2011) were from the on-going nationally representative Young Finns Study (YFS) that began in 1980 when six cohorts (aged 30, 33, 36, 39, 42 and 45 in 2007) were recruited. The average value of BMI (kg/m 2 ) measurements in 2007 and 2011 and genetic information were linked to comprehensive register-based information on the years of education in 2007. We first used a linear regression (Ordinary Least Squares, OLS) to estimate the relationship between education and BMI. To identify a causal relationship, we exploited Mendelian randomization and used a genetic score as an instrument for education. The genetic score was based on 74 genetic variants that genome-wide association studies (GWASs) have found to be associated with the years of education. Because the genotypes are randomly assigned at conception, the instrument causes exogenous variation in the years of education and thus enables identification of causal effects. The years of education in 2007 were associated with lower BMI in 2007/2011 (regression coefficient (b)=-0.22; 95% Confidence Intervals [CI]=-0.29, -0.14) according to the linear regression results. The results based on Mendelian randomization suggests that there may be a negative causal effect of education on BMI (b=-0.84; 95% CI=-1.77, 0.09). The findings indicate that education could be a protective factor against obesity in advanced countries. Copyright © 2017 Elsevier Inc. All rights reserved.
A quantum causal discovery algorithm
NASA Astrophysics Data System (ADS)
Giarmatzi, Christina; Costa, Fabio
2018-03-01
Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.
Snowden, Jonathan M; Tilden, Ellen L; Odden, Michelle C
2018-06-08
In this article, we conclude our 3-part series by focusing on several concepts that have proven useful for formulating causal questions and inferring causal effects. The process of causal inference is of key importance for physiologic childbirth science, so each concept is grounded in content related to women at low risk for perinatal complications. A prerequisite to causal inference is determining that the question of interest is causal rather than descriptive or predictive. Another critical step in defining a high-impact causal question is assessing the state of existing research for evidence of causality. We introduce 2 causal frameworks that are useful for this undertaking, Hill's causal considerations and the sufficient-component cause model. We then provide 3 steps to aid perinatal researchers in inferring causal effects in a given study. First, the researcher should formulate a rigorous and clear causal question. We introduce an example of epidural analgesia and labor progression to demonstrate this process, including the central role of temporality. Next, the researcher should assess the suitability of the given data set to answer this causal question. In randomized controlled trials, data are collected with the express purpose of answering the causal question. Investigators using observational data should also ensure that their chosen causal question is answerable with the available data. Finally, investigators should design an analysis plan that targets the causal question of interest. Some data structures (eg, time-dependent confounding by labor progress when estimating the effect of epidural analgesia on postpartum hemorrhage) require specific analytical tools to control for bias and estimate causal effects. The assumptions of consistency, exchangeability, and positivity may be especially useful in carrying out these steps. Drawing on appropriate causal concepts and considering relevant assumptions strengthens our confidence that research has reduced the likelihood of alternative explanations (eg bias, chance) and estimated a causal effect. © 2018 by the American College of Nurse-Midwives.
Structure and Strength in Causal Induction
ERIC Educational Resources Information Center
Griffiths, Thomas L.; Tenenbaum, Joshua B.
2005-01-01
We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…
Exploratory Causal Analysis in Bivariate Time Series Data
NASA Astrophysics Data System (ADS)
McCracken, James M.
Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data sets, but little research exists of how these tools compare to each other in practice. This work introduces and defines exploratory causal analysis (ECA) to address this issue along with the concept of data causality in the taxonomy of causal studies introduced in this work. The motivation is to provide a framework for exploring potential causal structures in time series data sets. ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.
Vergara-Moragues, Esperanza; Verdejo-García, Antonio; Lozano, Oscar M; Santiago-Ramajo, Sandra; González-Saiz, Francisco; Betanzos Espinosa, Patricia; Pérez García, Miguel
2017-07-01
The aim of this study was to examine the association between baseline executive functioning and outcome measure of treatment in 226 cocaine dependent individuals who initiated treatment in therapeutic communities TCs. The study was conducted across six TCs located in the region of Andalusia (southern Spain). Neuropsychological testing included tests of working memory, reasoning, inhibition, switching, attention interference and decision making. The outcome measures were type of discharge (treatment dropout vs. therapeutic discharge) and clinical impression of the TC outcome (clinically significant vs. non-significant changes). In the present study a prospective comparative design was used. We found significant performance differences on selective executive components which account for the type of discharge: treatment quitters had poorer attention response inhibition and attention switching than non-quitters, and the individuals who failed to achieve therapeutic objectives had poorer attention interference and inhibitory control than compliers. No significant differences were found between the outcome measure and the neuropsychological performance score on the other tasks. The results provide important information about the impact of executive components on in-treatment follow-up outcomes among dependence disorders in TC. Copyright © 2017 Elsevier Inc. All rights reserved.
Ball, E M.; Banks, M B.
2001-05-01
Objectives: To assess determinants of nasal continuous positive airway pressure (CPAP) compliance when applied in a community setting.Background: One-third of obstructive sleep apnea patients eventually refuse CPAP therapy. Treatment outcomes may be improved by identifying predictors of CPAP failure, including whether management by primary care physicians without sleep consultation affects results.Methods: Polysomnogram, chart review, and questionnaire results for regular CPAP users (n=123) were compared with those returning the CPAP machine (n=26).Results: Polysomnographic data and the presence of multiple sleep disorders were only modestly predictive of CPAP compliance. Striking differences in questionnaire responses separated CPAP users from non-users, who reported less satisfaction with all phases of their diagnosis and management. Rates of CPAP use were not significantly different between patients managed solely by their primary care physician or by a sleep consultant.Conclusions: Polysomnographic findings are unlikely to identify eventual CPAP non-compliers in a cost-effective fashion. Improvements in sleep apnea management may result from addressing the role of personality factors and multiple sleep disorders in determining compliance. In this practice setting, management by primary care physicians did not significantly degrade CPAP compliance.
Rochon, James; Protiva, Petr; Seeff, Leonard B.; Fontana, Robert J.; Liangpunsakul, Suthat; Watkins, Paul B.; Davern, Timothy; McHutchison, John G.
2013-01-01
The Roussel Uclaf Causality Assessment Method (RUCAM) was developed to quantify the strength of association between a liver injury and the medication implicated as causing the injury. However, its reliability in a research setting has never been fully explored. The aim of this study was to determine test-retest and interrater reliabilities of RUCAM in retrospectively-identified cases of drug induced liver injury. The Drug-Induced Liver Injury Network is enrolling well-defined cases of hepatotoxicity caused by isoniazid, phenytoin, clavulanate/amoxicillin, or valproate occurring since 1994. Each case was adjudicated by three reviewers working independently; after an interval of at least 5 months, cases were readjudicated by the same reviewers. A total of 40 drug-induced liver injury cases were enrolled including individuals treated with isoniazid (nine), phenytoin (five), clavulanate/amoxicillin (15), and valproate (11). Mean ± standard deviation age at protocol-defined onset was 44.8 ± 19.5 years; patients were 68% female and 78% Caucasian. Cases were classified as hepatocellular (44%), mixed (28%), or cholestatic (28%). Test-retest differences ranged from −7 to +8 with complete agreement in only 26% of cases. On average, the maximum absolute difference among the three reviewers was 3.1 on the first adjudication and 2.7 on the second, although much of this variability could be attributed to differences between the enrolling investigator and the external reviewers. The test-retest reliability by the same assessors was 0.54 (upper 95% confidence limit = 0.77); the interrater reliability was 0.45 (upper 95% confidence limit = 0.58). Categorizing the RUCAM to a five-category scale improved these reliabilities but only marginally. Conclusion The mediocre reliability of the RUCAM is problematic for future studies of drug-induced liver injury. Alternative methods, including modifying the RUCAM, developing drug-specific instruments, or causality assessment based on expert opinion, may be more appropriate. PMID:18798340
In Support of Clinical Case Reports: A System of Causality Assessment
Hamre, Harald J.; Kienle, Gunver S.
2013-01-01
The usefulness of clinical research depends on an assessment of causality. This assessment determines what constitutes clinical evidence. Case reports are an example of evidence that is frequently overlooked because it is believed they cannot address causal links between treatment and outcomes. This may be a mistake. Clarity on the topic of causality and its assessment will be of benefit for researchers and clinicians. This article outlines an overall system of causality and causality assessment. The system proposed involves two dimensions: horizontal and vertical; each of these dimensions consists of three different types of causality and three corresponding types of causality assessment. Included in this system are diverse forms of case causality illustrated with examples from everyday life and clinical medicine. Assessing case causality can complement conventional clinical research in an era of personalized medicine. PMID:24416665
Attiaoui, Imed; Toumi, Hassen; Ammouri, Bilel; Gargouri, Ilhem
2017-05-01
This research examines the causality (For the remainder of the paper, the notion of causality refers to Granger causality.) links among renewable energy consumption (REC), CO 2 emissions (CE), non-renewable energy consumption (NREC), and economic growth (GDP) using an autoregressive distributed lag model based on the pooled mean group estimation (ARDL-PMG) and applying Granger causality tests for a panel consisting of 22 African countries for the period between 1990 and 2011. There is unidirectional and irreversible short-run causality from CE to GDP. The causal direction between CE and REC is unobservable over the short-term. Moreover, we find unidirectional, short-run causality from REC to GDP. When testing per pair of variables, there are short-run bidirectional causalities among REC, CE, and GDP. However, if we add CE to the variables REC and NREC, the causality to GDP is observable, and causality from the pair REC and NREC to economic growth is neutral. Likewise, if we add NREC to the variables GDP and REC, there is causality. There are bidirectional long-run causalities among REC, CE, and GDP, which supports the feedback assumption. Causality from GDP to REC is not strong for the panel. If we test per pair of variables, the strong causality from GDP and CE to REC is neutral. The long-run PMG estimates show that NREC and gross domestic product increase CE, whereas REC decreases CE.
Heinesen, Eskil; Kolodziejczyk, Christophe
2013-12-01
We estimate causal effects of breast and colorectal cancer on labour market outcomes 1-3 years after the diagnosis. Based on Danish administrative data we estimate average treatment effects on the treated by propensity score weighting methods using persons with no cancer diagnosis as control group. We conduct robustness checks using matching, difference-in-differences methods and an alternative control group of later cancer patients. The different methods give approximately the same results. Cancer increases the risks of leaving the labour force and receiving disability pension, and the effects are larger for the less educated. Effects on income are small and mostly insignificant. We investigate some of the mechanisms which may be important in explaining the educational gradient in effects of cancer on labour market attachment. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of education on cognition at older ages: evidence from China's Great Famine.
Huang, Wei; Zhou, Yi
2013-12-01
This paper explores whether educational attainment has a cognitive reserve capacity in elder life. Using pilot data from the China Health and Retirement Longitudinal Study (CHARLS), we examined the impact of education on cognitive abilities at old ages. OLS results showed that respondents who completed primary school obtained 18.2 percent higher scores on cognitive tests than those who did not. We then constructed an instrumental variable (IV) by leveraging China's Great Famine of 1959-1961 as a natural experiment to estimate the causal effect of education on cognition. Two-stage least squares (2SLS) results provided sound evidence that completing primary school significantly increases cognition scores, especially in episode memory, by almost 20 percent on average. Moreover, Regression Discontinuity (RD) analysis provides further evidence for the causal interpretation, and shows that the effects are different for the different measures of cognition we explored. Our results also show that the Great Famine can result in long-term health consequences through the pathway of losing educational opportunities other than through the pathway of nutrition deprivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Minozzi, William; Neblo, Michael A; Esterling, Kevin M; Lazer, David M J
2015-03-31
Do leaders persuade? Social scientists have long studied the relationship between elite behavior and mass opinion. However, there is surprisingly little evidence regarding direct persuasion by leaders. Here we show that political leaders can persuade their constituents directly on three dimensions: substantive attitudes regarding policy issues, attributions regarding the leaders' qualities, and subsequent voting behavior. We ran two randomized controlled field experiments testing the causal effects of directly interacting with a sitting politician. Our experiments consist of 20 online town hall meetings with members of Congress conducted in 2006 and 2008. Study 1 examined 19 small meetings with members of the House of Representatives (average 20 participants per town hall). Study 2 examined a large (175 participants) town hall with a senator. In both experiments we find that participating has significant and substantively important causal effects on all three dimensions of persuasion but no such effects on issues that were not discussed extensively in the sessions. Further, persuasion was not driven solely by changes in copartisans' attitudes; the effects were consistent across groups.
An alternative empirical likelihood method in missing response problems and causal inference.
Ren, Kaili; Drummond, Christopher A; Brewster, Pamela S; Haller, Steven T; Tian, Jiang; Cooper, Christopher J; Zhang, Biao
2016-11-30
Missing responses are common problems in medical, social, and economic studies. When responses are missing at random, a complete case data analysis may result in biases. A popular debias method is inverse probability weighting proposed by Horvitz and Thompson. To improve efficiency, Robins et al. proposed an augmented inverse probability weighting method. The augmented inverse probability weighting estimator has a double-robustness property and achieves the semiparametric efficiency lower bound when the regression model and propensity score model are both correctly specified. In this paper, we introduce an empirical likelihood-based estimator as an alternative to Qin and Zhang (2007). Our proposed estimator is also doubly robust and locally efficient. Simulation results show that the proposed estimator has better performance when the propensity score is correctly modeled. Moreover, the proposed method can be applied in the estimation of average treatment effect in observational causal inferences. Finally, we apply our method to an observational study of smoking, using data from the Cardiovascular Outcomes in Renal Atherosclerotic Lesions clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Dynamical signatures of bound states in waveguide QED
NASA Astrophysics Data System (ADS)
Sánchez-Burillo, E.; Zueco, D.; Martín-Moreno, L.; García-Ripoll, J. J.
2017-08-01
We study the spontaneous decay of an impurity coupled to a linear array of bosonic cavities forming a single-band photonic waveguide. The average frequency of the emitted photon is different from the frequency for single-photon resonant scattering, which perfectly matches the bare frequency of the excited state of the impurity. We study how the energy of the excited state of the impurity influences the spatial profile of the emitted photon. The farther the energy is from the middle of the photonic band, the farther the wave packet is from the causal limit. In particular, if the energy lies in the middle of the band, the wave packet is localized around the causal limit. Besides, the occupation of the excited state of the impurity presents a rich dynamics: it shows an exponential decay up to intermediate times, this is followed by a power-law tail in the long-time regime, and it finally reaches an oscillatory stationary regime. Finally, we show that this phenomenology is robust under the presence of losses, both in the impurity and in the cavities.
Minozzi, William; Neblo, Michael A.; Esterling, Kevin M.; Lazer, David M. J.
2015-01-01
Do leaders persuade? Social scientists have long studied the relationship between elite behavior and mass opinion. However, there is surprisingly little evidence regarding direct persuasion by leaders. Here we show that political leaders can persuade their constituents directly on three dimensions: substantive attitudes regarding policy issues, attributions regarding the leaders’ qualities, and subsequent voting behavior. We ran two randomized controlled field experiments testing the causal effects of directly interacting with a sitting politician. Our experiments consist of 20 online town hall meetings with members of Congress conducted in 2006 and 2008. Study 1 examined 19 small meetings with members of the House of Representatives (average 20 participants per town hall). Study 2 examined a large (175 participants) town hall with a senator. In both experiments we find that participating has significant and substantively important causal effects on all three dimensions of persuasion but no such effects on issues that were not discussed extensively in the sessions. Further, persuasion was not driven solely by changes in copartisans’ attitudes; the effects were consistent across groups. PMID:25775516
Causal learning and inference as a rational process: the new synthesis.
Holyoak, Keith J; Cheng, Patricia W
2011-01-01
Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.
CADDIS Volume 1. Stressor Identification: About Causal Assessment
An introduction to the history of our approach to causal assessment, A chronology of causal history and philosophy, An introduction to causal history and philosophy, References for the Causal Assessment Background section of Stressor Identification
Stable Causal Relationships Are Better Causal Relationships.
Vasilyeva, Nadya; Blanchard, Thomas; Lombrozo, Tania
2018-05-01
We report three experiments investigating whether people's judgments about causal relationships are sensitive to the robustness or stability of such relationships across a range of background circumstances. In Experiment 1, we demonstrate that people are more willing to endorse causal and explanatory claims based on stable (as opposed to unstable) relationships, even when the overall causal strength of the relationship is held constant. In Experiment 2, we show that this effect is not driven by a causal generalization's actual scope of application. In Experiment 3, we offer evidence that stable causal relationships may be seen as better guides to action. Collectively, these experiments document a previously underappreciated factor that shapes people's causal reasoning: the stability of the causal relationship. Copyright © 2018 Cognitive Science Society, Inc.
Hu, Sanqing; Dai, Guojun; Worrell, Gregory A.; Dai, Qionghai; Liang, Hualou
2012-01-01
Granger causality (GC) is one of the most popular measures to reveal causality influence of time series and has been widely applied in economics and neuroscience. Especially, its counterpart in frequency domain, spectral GC, as well as other Granger-like causality measures have recently been applied to study causal interactions between brain areas in different frequency ranges during cognitive and perceptual tasks. In this paper, we show that: 1) GC in time domain cannot correctly determine how strongly one time series influences the other when there is directional causality between two time series, and 2) spectral GC and other Granger-like causality measures have inherent shortcomings and/or limitations because of the use of the transfer function (or its inverse matrix) and partial information of the linear regression model. On the other hand, we propose two novel causality measures (in time and frequency domains) for the linear regression model, called new causality and new spectral causality, respectively, which are more reasonable and understandable than GC or Granger-like measures. Especially, from one simple example, we point out that, in time domain, both new causality and GC adopt the concept of proportion, but they are defined on two different equations where one equation (for GC) is only part of the other (for new causality), thus the new causality is a natural extension of GC and has a sound conceptual/theoretical basis, and GC is not the desired causal influence at all. By several examples, we confirm that new causality measures have distinct advantages over GC or Granger-like measures. Finally, we conduct event-related potential causality analysis for a subject with intracranial depth electrodes undergoing evaluation for epilepsy surgery, and show that, in the frequency domain, all measures reveal significant directional event-related causality, but the result from new spectral causality is consistent with event-related time–frequency power spectrum activity. The spectral GC as well as other Granger-like measures are shown to generate misleading results. The proposed new causality measures may have wide potential applications in economics and neuroscience. PMID:21511564
Magaard, Julia Luise; Schulz, Holger; Brütt, Anna Levke
2017-01-01
Patients' causal beliefs about their mental disorders are important for treatment because they affect illness-related behaviours. However, there are few studies exploring patients' causal beliefs about their mental disorder. (a) To qualitatively explore patients' causal beliefs of their mental disorder, (b) to explore frequencies of patients stating causal beliefs, and (c) to investigate differences of causal beliefs according to patients' primary diagnoses. Inpatients in psychosomatic rehabilitation were asked an open-ended question about their three most important causal beliefs about their mental illness. Answers were obtained from 678 patients, with primary diagnoses of depression (N = 341), adjustment disorder (N = 75), reaction to severe stress (N = 57) and anxiety disorders (N = 40). Two researchers developed a category system inductively and categorised the reported causal beliefs. Qualitative analysis has been supplemented by logistic regression analyses. The causal beliefs were organized into twelve content-related categories. Causal beliefs referring to "problems at work" (47%) and "problems in social environment" (46%) were most frequently mentioned by patients with mental disorders. 35% of patients indicate causal beliefs related to "self/internal states". Patients with depression and patients with anxiety disorders stated similar causal beliefs, whereas patients with reactions to severe stress and adjustment disorders stated different causal beliefs in comparison to patients with depression. There was no opportunity for further exploration, because we analysed written documents. These results add a detailed insight to mentally ill patients' causal beliefs to illness perception literature. Additionally, evidence about differences in frequencies of causal beliefs between different illness groups complement previous findings. For future research it is important to clarify the relation between patients' causal beliefs and the chosen treatment.
Magaard, Julia Luise; Schulz, Holger; Brütt, Anna Levke
2017-01-01
Background Patients’ causal beliefs about their mental disorders are important for treatment because they affect illness-related behaviours. However, there are few studies exploring patients’ causal beliefs about their mental disorder. Objectives (a) To qualitatively explore patients’ causal beliefs of their mental disorder, (b) to explore frequencies of patients stating causal beliefs, and (c) to investigate differences of causal beliefs according to patients’ primary diagnoses. Method Inpatients in psychosomatic rehabilitation were asked an open-ended question about their three most important causal beliefs about their mental illness. Answers were obtained from 678 patients, with primary diagnoses of depression (N = 341), adjustment disorder (N = 75), reaction to severe stress (N = 57) and anxiety disorders (N = 40). Two researchers developed a category system inductively and categorised the reported causal beliefs. Qualitative analysis has been supplemented by logistic regression analyses. Results The causal beliefs were organized into twelve content-related categories. Causal beliefs referring to “problems at work” (47%) and “problems in social environment” (46%) were most frequently mentioned by patients with mental disorders. 35% of patients indicate causal beliefs related to “self/internal states”. Patients with depression and patients with anxiety disorders stated similar causal beliefs, whereas patients with reactions to severe stress and adjustment disorders stated different causal beliefs in comparison to patients with depression. Limitations There was no opportunity for further exploration, because we analysed written documents. Conclusions These results add a detailed insight to mentally ill patients’ causal beliefs to illness perception literature. Additionally, evidence about differences in frequencies of causal beliefs between different illness groups complement previous findings. For future research it is important to clarify the relation between patients’ causal beliefs and the chosen treatment. PMID:28056066
A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.
Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L
2016-03-01
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015 Cognitive Science Society, Inc.
Causal discovery and inference: concepts and recent methodological advances.
Spirtes, Peter; Zhang, Kun
This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.
Causal and causally separable processes
NASA Astrophysics Data System (ADS)
Oreshkov, Ognyan; Giarmatzi, Christina
2016-09-01
The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and outcomes for each party, these correlations form a polytope whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by the process matrix formalism. We investigate the link between causality and the closely related notion of causal separability of quantum processes, which we here define rigorously in analogy with the link between Bell locality and separability of quantum states. We show that causality and causal separability are not equivalent in general by giving an example of a physically admissible tripartite quantum process that is causal but not causally separable. We also show that there are causally separable quantum processes that become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite case via simple conditions on the form of the process matrix. We show that the processes realizable by classically controlled quantum circuits are ECS and conjecture that the reverse also holds.
Cox, Louis A; Popken, Douglas A; Ricci, Paolo F
2013-08-01
Recent studies have indicated that reducing particulate pollution would substantially reduce average daily mortality rates, prolonging lives, especially among the elderly (age ≥ 75). These benefits are projected by statistical models of significant positive associations between levels of fine particulate matter (PM2.5) levels and daily mortality rates. We examine the empirical correspondence between changes in average PM2.5 levels and temperatures from 1999 to 2000, and corresponding changes in average daily mortality rates, in each of 100 U.S. cities in the National Mortality and Morbidity Air Pollution Study (NMMAPS) data base, which has extensive PM2.5, temperature, and mortality data for those 2 years. Increases in average daily temperatures appear to significantly reduce average daily mortality rates, as expected from previous research. Unexpectedly, reductions in PM2.5 do not appear to cause any reductions in mortality rates. PM2.5 and mortality rates are both elevated on cold winter days, creating a significant positive statistical relation between their levels, but we find no evidence that reductions in PM2.5 concentrations cause reductions in mortality rates. For all concerned, it is crucial to use causal relations, rather than statistical associations, to project the changes in human health risks due to interventions such as reductions in particulate air pollution. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Knoepke, Julia; Richter, Tobias; Isberner, Maj-Britt; Naumann, Johannes; Neeb, Yvonne; Weinert, Sabine
2017-01-01
Establishing local coherence relations is central to text comprehension. Positive-causal coherence relations link a cause and its consequence, whereas negative-causal coherence relations add a contrastive meaning (negation) to the causal link. According to the cumulative cognitive complexity approach, negative-causal coherence relations are…
Does Causal Action Facilitate Causal Perception in Infants Younger than 6 Months of Age?
ERIC Educational Resources Information Center
Rakison, David H.; Krogh, Lauren
2012-01-01
Previous research has established that infants are unable to perceive causality until 6 1/4 months of age. The current experiments examined whether infants' ability to engage in causal action could facilitate causal perception prior to this age. In Experiment 1, 4 1/2-month-olds were randomly assigned to engage in causal action experience via…
Causal capture effects in chimpanzees (Pan troglodytes).
Matsuno, Toyomi; Tomonaga, Masaki
2017-01-01
Extracting a cause-and-effect structure from the physical world is an important demand for animals living in dynamically changing environments. Human perceptual and cognitive mechanisms are known to be sensitive and tuned to detect and interpret such causal structures. In contrast to rigorous investigations of human causal perception, the phylogenetic roots of this perception are not well understood. In the present study, we aimed to investigate the susceptibility of nonhuman animals to mechanical causality by testing whether chimpanzees perceived an illusion called causal capture (Scholl & Nakayama, 2002). Causal capture is a phenomenon in which a type of bistable visual motion of objects is perceived as causal collision due to a bias from a co-occurring causal event. In our experiments, we assessed the susceptibility of perception of a bistable stream/bounce motion event to a co-occurring causal event in chimpanzees. The results show that, similar to in humans, causal "bounce" percepts were significantly increased in chimpanzees with the addition of a task-irrelevant causal bounce event that was synchronously presented. These outcomes suggest that the perceptual mechanisms behind the visual interpretation of causal structures in the environment are evolutionarily shared between human and nonhuman animals. Copyright © 2016 Elsevier B.V. All rights reserved.
Mental health care and average happiness: strong effect in developed nations.
Touburg, Giorgio; Veenhoven, Ruut
2015-07-01
Mental disorder is a main cause of unhappiness in modern society and investment in mental health care is therefore likely to add to average happiness. This prediction was checked in a comparison of 143 nations around 2005. Absolute investment in mental health care was measured using the per capita number of psychiatrists and psychologists working in mental health care. Relative investment was measured using the share of mental health care in the total health budget. Average happiness in nations was measured with responses to survey questions about life-satisfaction. Average happiness appeared to be higher in countries that invest more in mental health care, both absolutely and relative to investment in somatic medicine. A data split by level of development shows that this difference exists only among developed nations. Among these nations the link between mental health care and happiness is quite strong, both in an absolute sense and compared to other known societal determinants of happiness. The correlation between happiness and share of mental health care in the total health budget is twice as strong as the correlation between happiness and size of the health budget. A causal effect is likely, but cannot be proved in this cross-sectional analysis.
Land Use Change Increases Streamflow Across the Arc of Deforestation in Brazil
NASA Astrophysics Data System (ADS)
Levy, M. C.; Lopes, A. V.; Cohn, A.; Larsen, L. G.; Thompson, S. E.
2018-04-01
Nearly half of recent decades' global forest loss occurred in the Amazon and Cerrado (tropical savanna) biomes of Brazil, known as the arc of deforestation. Despite prior analysis in individual river basins, a generalizable empirical understanding of the effect of deforestation on streamflow across this region is lacking. We frame land use change in Brazil as a natural experiment and draw on in situ and remote sensing evidence in 324 river basins covering more than 3 × 106 km2 to estimate streamflow changes caused by deforestation and agricultural development between 1950 and 2013. Deforestation increased dry season low flow by between 4 and 10 percentage points (relative to the forested condition), corresponding to a regional- and time-averaged rate of increase in specific streamflow of 1.29 mm/year2, equivalent to a 4.08 km3/year2 increase, assuming a stationary climate. In conjunction with rainfall and temperature variations, the net (observed) average increase in streamflow over the same period was 0.76 mm/year2, or 2.41 km3/year2. Thus, net increases in regional streamflow in the past half century are 58% of those that would have been experienced with deforestation given a stationary climate. This study uses a causal empirical analysis approach novel to the water sciences to verify the regional applicability of prior basin-scale studies, provides a proof of concept for the use of observational causal identification methods in the water sciences, and demonstrates that deforestation masks the streamflow-reducing effects of climate change in this region.
Broers, C; Tack, J; Pauwels, A
2018-01-01
When gastro-oesophageal reflux is causing symptoms or lesions in the oesophagus, this is referred to as gastro-oesophageal reflux disease (GERD). GERD can manifest itself through typical symptoms (heartburn, regurgitation) or may lead to extra-oesophageal symptoms. Extra-oesophageal manifestations of GERD gained increasing attention over the last decade, especially respiratory disorders, because of the prevalent co-occurrence with GERD. The role of GERD in the pathogenesis of respiratory disorders has become a topic of intense discussion. To provide an overview of the current knowledge on the role of GERD in asthma and chronic obstructive pulmonary disease (COPD). PubMed was searched for relevant articles using the keywords: GERD, asthma, COPD, prevalence, treatment. Case reports were excluded, only English language articles were considered. Estimates for the prevalence of GERD in asthma range from 30% to 90%, compared to an average of 24% in controls. In COPD patients, the prevalence of GERD ranges from 19% to 78% compared to an average of 18% in controls. These data indicate an increased prevalence of GERD in patients with asthma and COPD, although causality is not established and GERD treatment yielded inconsistent effects. Literature supports GERD as a risk factor for COPD-exacerbations and a predictor of the 'frequent-exacerbator'-phenotype. Despite the high prevalence of GERD in asthma and COPD, a causal link is lacking. The results of anti-reflux therapy on pulmonary outcome are inconsistent and contradictory. Future studies will need to identify subgroups of asthmatics and COPD patients that may benefit from anti-reflux therapy (nocturnal or silent reflux). © 2017 John Wiley & Sons Ltd.
Ferraro, Paul J; Hanauer, Merlin M
2014-03-18
To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare.
Ferraro, Paul J.; Hanauer, Merlin M.
2014-01-01
To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare. PMID:24567397
Measuring causal perception: connections to representational momentum?
Choi, Hoon; Scholl, Brian J
2006-01-01
In a collision between two objects, we can perceive not only low-level properties, such as color and motion, but also the seemingly high-level property of causality. It has proven difficult, however, to measure causal perception in a quantitatively rigorous way which goes beyond perceptual reports. Here we focus on the possibility of measuring perceived causality using the phenomenon of representational momentum (RM). Recent studies suggest a relationship between causal perception and RM, based on the fact that RM appears to be attenuated for causally 'launched' objects. This is explained by appeal to the visual expectation that a 'launched' object is inert and thus should eventually cease its movement after a collision, without a source of self-propulsion. We first replicated these demonstrations, and then evaluated this alleged connection by exploring RM for different types of displays, including the contrast between causal launching and non-causal 'passing'. These experiments suggest that the RM-attenuation effect is not a pure measure of causal perception, but rather may reflect lower-level spatiotemporal correlates of only some causal displays. We conclude by discussing the strengths and pitfalls of various methods of measuring causal perception.
When a checklist is not enough: How to improve them and what else is needed.
Raman, Jaishankar; Leveson, Nancy; Samost, Aubrey Lynn; Dobrilovic, Nikola; Oldham, Maggie; Dekker, Sidney; Finkelstein, Stan
2016-08-01
Checklists are being introduced to enhance patient safety, but the results have been mixed. The goal of this research is to understand why time-outs and checklists are sometimes not effective in preventing surgical adverse events and to identify additional measures needed to reduce these events. A total of 380 consecutive patients underwent complex cardiac surgery over a 24-month period between November 2011 and November 2013 at an academic medical center, out of a total of 529 cardiac cases. Elective isolated aortic valve replacements, mitral valve repairs, and coronary artery bypass graft surgical procedures (N = 149) were excluded. A time-out was conducted in a standard fashion in all patients in accordance with the World Health Organization surgical checklist protocol. Adverse events were classified as anything that resulted in an operative delay, nonavailability of equipment, failure of drug administration, or unexpected adverse clinical outcome. These events and their details were collected every week and analyzed using a systemic causal analysis technique using a technique called CAST (causal analysis based on systems theory). This analytic technique evaluated the sociotechnical system to identify the set of causal factors involved in the adverse events and the causal factors explored to identify reasons. Recommendations were made for the improvement of checklists and the use of system design changes that could prevent such events in the future. Thirty events were identified. The causal analysis of these 30 adverse events was carried out and actionable events classified. There were important limitations in the use of standard checklists as a stand-alone patient safety measure in the operating room setting, because of multiple factors. Major categories included miscommunication between staff, medication errors, missing instrumentation, missing implants, and improper handling of equipment or instruments. An average of 3.9 recommendations were generated for each adverse event scenario. Time-outs and checklists can prevent some types of adverse events, but they need to be carefully designed. Additional interventions aimed at improving safety controls in the system design are needed to augment the use of checklists. Customization of checklists for specialized surgical procedures may reduce adverse events. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Pantic, Igor; Damjanovic, Aleksandar; Todorovic, Jovana; Topalovic, Dubravka; Bojovic-Jovic, Dragana; Ristic, Sinisa; Pantic, Senka
2012-03-01
Frequent use of Facebook and other social networks is thought to be associated with certain behavioral changes, and some authors have expressed concerns about its possible detrimental effect on mental health. In this work, we investigated the relationship between social networking and depression indicators in adolescent population. Total of 160 high school students were interviewed using an anonymous, structured questionnaire and Back Depression Inventory - second edition (BDI-II-II). Apart from BDI-II-II, students were asked to provide the data for height and weight, gender, average daily time spent on social networking sites, average time spent watching TV, and sleep duration in a 24-hour period. Average BDI-II-II score was 8.19 (SD=5.86). Average daily time spent on social networking was 1.86 h (SD=2.08 h), and average time spent watching TV was 2.44 h (SD=1.74 h). Average body mass index of participants was 21.84 (SD=3.55) and average sleep duration was 7.37 (SD=1.82). BDI-II-II score indicated minimal depression in 104 students, mild depression in 46 students, and moderate depression in 10 students. Statistically significant positive correlation (p<0.05, R=0.15) was found between BDI-II-II score and the time spent on social networking. Our results indicate that online social networking is related to depression. Additional research is required to determine the possible causal nature of this relationship.
Knoepke, Julia; Richter, Tobias; Isberner, Maj-Britt; Naumann, Johannes; Neeb, Yvonne; Weinert, Sabine
2017-03-01
Establishing local coherence relations is central to text comprehension. Positive-causal coherence relations link a cause and its consequence, whereas negative-causal coherence relations add a contrastive meaning (negation) to the causal link. According to the cumulative cognitive complexity approach, negative-causal coherence relations are cognitively more complex than positive-causal ones. Therefore, they require greater cognitive effort during text comprehension and are acquired later in language development. The present cross-sectional study tested these predictions for German primary school children from Grades 1 to 4 and adults in reading and listening comprehension. Accuracy data in a semantic verification task support the predictions of the cumulative cognitive complexity approach. Negative-causal coherence relations are cognitively more demanding than positive-causal ones. Moreover, our findings indicate that children's comprehension of negative-causal coherence relations continues to develop throughout the course of primary school. Findings are discussed with respect to the generalizability of the cumulative cognitive complexity approach to German.
Lee, Dong-Gi; Shin, Hyunjung
2017-05-18
Recently, research on human disease network has succeeded and has become an aid in figuring out the relationship between various diseases. In most disease networks, however, the relationship between diseases has been simply represented as an association. This representation results in the difficulty of identifying prior diseases and their influence on posterior diseases. In this paper, we propose a causal disease network that implements disease causality through text mining on biomedical literature. To identify the causality between diseases, the proposed method includes two schemes: the first is the lexicon-based causality term strength, which provides the causal strength on a variety of causality terms based on lexicon analysis. The second is the frequency-based causality strength, which determines the direction and strength of causality based on document and clause frequencies in the literature. We applied the proposed method to 6,617,833 PubMed literature, and chose 195 diseases to construct a causal disease network. From all possible pairs of disease nodes in the network, 1011 causal pairs of 149 diseases were extracted. The resulting network was compared with that of a previous study. In terms of both coverage and quality, the proposed method showed outperforming results; it determined 2.7 times more causalities and showed higher correlation with associated diseases than the existing method. This research has novelty in which the proposed method circumvents the limitations of time and cost in applying all possible causalities in biological experiments and it is a more advanced text mining technique by defining the concepts of causality term strength.
Category transfer in sequential causal learning: the unbroken mechanism hypothesis.
Hagmayer, York; Meder, Björn; von Sydow, Momme; Waldmann, Michael R
2011-07-01
The goal of the present set of studies is to explore the boundary conditions of category transfer in causal learning. Previous research has shown that people are capable of inducing categories based on causal learning input, and they often transfer these categories to new causal learning tasks. However, occasionally learners abandon the learned categories and induce new ones. Whereas previously it has been argued that transfer is only observed with essentialist categories in which the hidden properties are causally relevant for the target effect in the transfer relation, we here propose an alternative explanation, the unbroken mechanism hypothesis. This hypothesis claims that categories are transferred from a previously learned causal relation to a new causal relation when learners assume a causal mechanism linking the two relations that is continuous and unbroken. The findings of two causal learning experiments support the unbroken mechanism hypothesis. Copyright © 2011 Cognitive Science Society, Inc.
Study on localization of epileptic focus based on causality analysis
NASA Astrophysics Data System (ADS)
Shan, Shaojie; Li, Hanjun; Tang, Xiaoying
2018-05-01
In this paper, we considered that the ECoG signal contain abundant pathological information, which can be used for the localization of epileptic focus before epileptic seizures in 1-2 mins. In order to validate this hypothesis, cutting the ECoG into three stages: before seizure, seizure and after seizure, then through using Granger causality algorithm, PSI causality algorithm, Transfer Entropy causality algorithm at different stages of epilepsy ECoG, we were able to do the causality analysis of ECoG data. The results have shown that there is significant difference with the causality value of the epileptic focus area in before seizure, seizure and after seizure. An increase is in the causality value of each channel during epileptic seizure. After epileptic seizure, the causality between the channels showed a downward trend, but the difference was not obvious. The difference of the causality provides a reliable technical method to assist the clinical diagnosis of epileptic focus.
Children's Counterfactual Reasoning About Causally Overdetermined Events.
Nyhout, Angela; Henke, Lena; Ganea, Patricia A
2017-08-07
In two experiments, one hundred and sixty-two 6- to 8-year-olds were asked to reason counterfactually about events with different causal structures. All events involved overdetermined outcomes in which two different causal events led to the same outcome. In Experiment 1, children heard stories with either an ambiguous causal relation between events or causally unrelated events. Children in the causally unrelated version performed better than chance and better than those in the ambiguous condition. In Experiment 2, children heard stories in which antecedent events were causally connected or causally disconnected. Eight-year-olds performed above chance in both conditions, whereas 6-year-olds performed above chance only in the connected condition. This work provides the first evidence that children can reason counterfactually in causally overdetermined contexts by age 8. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Rehder, Bob; Waldmann, Michael R
2017-02-01
Causal Bayes nets capture many aspects of causal thinking that set them apart from purely associative reasoning. However, some central properties of this normative theory routinely violated. In tasks requiring an understanding of explaining away and screening off, subjects often deviate from these principles and manifest the operation of an associative bias that we refer to as the rich-get-richer principle. This research focuses on these two failures comparing tasks in which causal scenarios are merely described (via verbal statements of the causal relations) versus experienced (via samples of data that manifest the intervariable correlations implied by the causal relations). Our key finding is that we obtained stronger deviations from normative predictions in the described conditions that highlight the instructed causal model compared to those that presented data. This counterintuitive finding indicate that a theory of causal reasoning and learning needs to integrate normative principles with biases people hold about causal relations.
Exploring individual differences in preschoolers' causal stance.
Alvarez, Aubry; Booth, Amy E
2016-03-01
Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In this study, we explored the coherence and short-term stability of individual differences in children's causal stance. We also began to investigate the origins of this variability, focusing particularly on the potential role of mothers' explanatory talk in shaping the causal stance of their children. Two measures of causal stance correlated with each other, as well as themselves across time. Both also revealed internal consistency of response. The strength of children's causal stance also correlated with mother's responses on the same tasks and the frequency with which mothers emphasized causality during naturalistic joint activities with their children. Implications for theory and practice are discussed. (c) 2016 APA, all rights reserved).
Repeated causal decision making.
Hagmayer, York; Meder, Björn
2013-01-01
Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in such situations and how they use their knowledge to adapt to changes in the decision context. Our studies show that decision makers' behavior is strongly contingent on their causal beliefs and that people exploit their causal knowledge to assess the consequences of changes in the decision problem. A high consistency between hypotheses about causal structure, causally expected values, and actual choices was observed. The experiments show that (a) existing causal hypotheses guide the interpretation of decision feedback, (b) consequences of decisions are used to revise existing causal beliefs, and (c) decision makers use the experienced feedback to induce a causal model of the choice situation even when they have no initial causal hypotheses, which (d) enables them to adapt their choices to changes of the decision problem. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Cao, Ying; Maran, Selva K.; Dhamala, Mukesh; Jaeger, Dieter; Heck, Detlef H.
2012-01-01
Purkinje cells (PCs) in the mammalian cerebellum express high frequency spontaneous activity with average spike rates between 30 and 200 Hz. Cerebellar nuclear (CN) neurons receive converging input from many PCs resulting in a continuous barrage of inhibitory inputs. It has been hypothesized that pauses in PC activity trigger increases in CN spiking activity. A prediction derived from this hypothesis is that pauses in PC simple spike activity represent relevant behavioral or sensory events. Here we asked whether pauses in the simple spike activity of PCs related to either fluid licking or respiration, play a special role in representing information about behavior. Both behaviors are widely represented in cerebellar PC simple spike activity. We recorded PC activity in the vermis and lobus simplex of head fixed mice while monitoring licking and respiratory behavior. Using cross correlation and Granger causality analysis we examined whether short ISIs had a different temporal relation to behavior than long ISIs or pauses. Behavior related simple spike pauses occurred during low-rate simple spike activity in both licking and breathing related PCs. Granger causality analysis revealed causal relationships between simple spike pauses and behavior. However, the same results were obtained from an analysis of surrogate spike trains with gamma ISI distributions constructed to match rate modulations of behavior related Purkinje cells. Our results therefore suggest that the occurrence of pauses in simple spike activity does not represent additional information about behavioral or sensory events that goes beyond the simple spike rate modulations. PMID:22723707
Detectability of Granger causality for subsampled continuous-time neurophysiological processes.
Barnett, Lionel; Seth, Anil K
2017-01-01
Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity from neurophysiological recordings. Copyright © 2016 Elsevier B.V. All rights reserved.
Interactions of information transfer along separable causal paths
NASA Astrophysics Data System (ADS)
Jiang, Peishi; Kumar, Praveen
2018-04-01
Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.
Sufficiency and Necessity Assumptions in Causal Structure Induction
ERIC Educational Resources Information Center
Mayrhofer, Ralf; Waldmann, Michael R.
2016-01-01
Research on human causal induction has shown that people have general prior assumptions about causal strength and about how causes interact with the background. We propose that these prior assumptions about the parameters of causal systems do not only manifest themselves in estimations of causal strength or the selection of causes but also when…
Different Kinds of Causality in Event Cognition
ERIC Educational Resources Information Center
Radvansky, Gabriel A.; Tamplin, Andrea K.; Armendarez, Joseph; Thompson, Alexis N.
2014-01-01
Narrative memory is better for information that is more causally connected and occurs at event boundaries, such as a causal break. However, it is unclear whether there are common or distinct influences of causality. For the event boundaries that arise as a result of causal breaks, the events that follow may subsequently become more causally…
A Theory of Causal Learning in Children: Causal Maps and Bayes Nets
ERIC Educational Resources Information Center
Gopnik, Alison; Glymour, Clark; Sobel, David M.; Schulz, Laura E.; Kushnir, Tamar; Danks, David
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously…
Foundational perspectives on causality in large-scale brain networks
NASA Astrophysics Data System (ADS)
Mannino, Michael; Bressler, Steven L.
2015-12-01
A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain.
Foundational perspectives on causality in large-scale brain networks.
Mannino, Michael; Bressler, Steven L
2015-12-01
A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Drew, R; Sapir, S
1995-06-01
Nineteen trained soprano singers aged 18-30 years vocalized tasks designed to assess average speaking fundamental frequency (SFF) during spontaneous speaking and reading. Vocal range and perceptual characteristics while singing with low intensity and high frequency were also assessed, and subjects completed a survey of vocal habits/symptoms. Recorded signals were digitized prior to being analyzed for SFF using the Kay Computerized Speech Lab program. Subjects were assigned to a normal voice or impaired voice group based on ratings of perceptual tasks and survey results. Data analysis showed group differences in mean SFF, no differences in vocal range, higher mean SFF values for reading than speaking, and 58% ability to perceive speaking in low pitch. The role of speaking in too low pitch as causal for vocal symptoms and need for voice classification differentiation in vocal performance studies are discussed.
Panzone, I; Carra, G; Melosi, A; Rappazzo, G; Innocenti, A
1996-01-01
In order to assess the prevalence of work-related musculo-skeletal disorders of the upper limbs, a total population of 29 female workers in an industrial vegetable preserving plant were examined. The average age of the workers was 41.3 years (SD = 9.2), and their average length of service was 16.7 years (SD = 7.2). Only 20% of the workers were anamnestically negative, whilst 80% had one or more disorders attributable to repetitive trauma of the upper limbs. The disorders showed no prevalence for the right side, a finding in line with the risk analysis which indicated that both limbs were equally used. The results of the risk analysis and clinical assessment confirm that high-frequency actions, combined with improper posture and a shortage of suitable recovery times, play a causal role in determining the onset of the disorders studied.
Hicks, Andrew L; Handcock, Mark S; Sastry, Narayan; Pebley, Anne R
2018-02-01
Prior research has suggested that children living in a disadvantaged neighborhood have lower achievement test scores, but these studies typically have not estimated causal effects that account for neighborhood choice. Recent studies used propensity score methods to account for the endogeneity of neighborhood exposures, comparing disadvantaged and nondisadvantaged neighborhoods. We develop an alternative propensity function approach in which cumulative neighborhood effects are modeled as a continuous treatment variable. This approach offers several advantages. We use our approach to examine the cumulative effects of neighborhood disadvantage on reading and math test scores in Los Angeles. Our substantive results indicate that recency of exposure to disadvantaged neighborhoods may be more important than average exposure for children's test scores. We conclude that studies of child development should consider both average cumulative neighborhood exposure and the timing of this exposure.
Hicks, Andrew L.; Handcock, Mark S.; Sastry, Narayan
2018-01-01
Prior research has suggested that children living in a disadvantaged neighborhood have lower achievement test scores, but these studies typically have not estimated causal effects that account for neighborhood choice. Recent studies used propensity score methods to account for the endogeneity of neighborhood exposures, comparing disadvantaged and nondisadvantaged neighborhoods. We develop an alternative propensity function approach in which cumulative neighborhood effects are modeled as a continuous treatment variable. This approach offers several advantages. We use our approach to examine the cumulative effects of neighborhood disadvantage on reading and math test scores in Los Angeles. Our substantive results indicate that recency of exposure to disadvantaged neighborhoods may be more important than average exposure for children's test scores. We conclude that studies of child development should consider both average cumulative neighborhood exposure and the timing of this exposure. PMID:29192386
Accuracy of AFM force distance curves via direct solution of the Euler-Bernoulli equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppell, Steven J., E-mail: steven.eppell@case.edu; Liu, Yehe; Zypman, Fredy R.
2016-03-15
In an effort to improve the accuracy of force-separation curves obtained from atomic force microscope data, we compare force-separation curves computed using two methods to solve the Euler-Bernoulli equation. A recently introduced method using a direct sequential forward solution, Causal Time-Domain Analysis, is compared against a previously introduced Tikhonov Regularization method. Using the direct solution as a benchmark, it is found that the regularization technique is unable to reproduce accurate curve shapes. Using L-curve analysis and adjusting the regularization parameter, λ, to match either the depth or the full width at half maximum of the force curves, the two techniquesmore » are contrasted. Matched depths result in full width at half maxima that are off by an average of 27% and matched full width at half maxima produce depths that are off by an average of 109%.« less
Entropy bounds in terms of the w parameter
NASA Astrophysics Data System (ADS)
Abreu, Gabriel; Barceló, Carlos; Visser, Matt
2011-12-01
In a pair of recent articles [PRL 105 (2010) 041302; JHEP 1103 (2011) 056] two of the current authors have developed an entropy bound for equilibrium uncollapsed matter using only classical general relativity, basic thermodynamics, and the Unruh effect. An odd feature of that bound, [InlineMediaObject not available: see fulltext.], was that the proportionality constant, 1/2 , was weaker than that expected from black hole thermodynamics, 1/4 . In the current article we strengthen the previous results by obtaining a bound involving the (suitably averaged) w parameter. Simple causality arguments restrict this averaged < w> parameter to be ≤ 1. When equality holds, the entropy bound saturates at the value expected based on black hole thermodynamics. We also add some clarifying comments regarding the (net) positivity of the chemical potential. Overall, we find that even in the absence of any black hole region, we can nevertheless get arbitrarily close to the Bekenstein entropy.
Climate and Conflict: A Comment on Hsiang et al.’s Reply to Buhaug et al
2014-01-01
Jonas Nordkvelle 106011 c . THIS PAGE The public reporting burden for this collection of information is estimated to average 1 hour per response, including...conflict relationship. D e sign : M e d icin eh e ad s.co m E d ito r: A gn e te Sch jø n sb y C o ve r p h o to P atrick Sicco li / G am m a-R...odds with the assumption of causal homogeneity. c ) For reasons explained in b), we believe a meta-analysis of the empirical climate- conflict
Causality networks from multivariate time series and application to epilepsy.
Siggiridou, Elsa; Koutlis, Christos; Tsimpiris, Alkiviadis; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2015-08-01
Granger causality and variants of this concept allow the study of complex dynamical systems as networks constructed from multivariate time series. In this work, a large number of Granger causality measures used to form causality networks from multivariate time series are assessed. For this, realizations on high dimensional coupled dynamical systems are considered and the performance of the Granger causality measures is evaluated, seeking for the measures that form networks closest to the true network of the dynamical system. In particular, the comparison focuses on Granger causality measures that reduce the state space dimension when many variables are observed. Further, the linear and nonlinear Granger causality measures of dimension reduction are compared to a standard Granger causality measure on electroencephalographic (EEG) recordings containing episodes of epileptiform discharges.
Zhao, Yifan; Billings, Steve A; Wei, Hualiang; Sarrigiannis, Ptolemaios G
2012-11-01
This paper introduces an error reduction ratio-causality (ERR-causality) test that can be used to detect and track causal relationships between two signals. In comparison to the traditional Granger method, one significant advantage of the new ERR-causality test is that it can effectively detect the time-varying direction of linear or nonlinear causality between two signals without fitting a complete model. Another important advantage is that the ERR-causality test can detect both the direction of interactions and estimate the relative time shift between the two signals. Numerical examples are provided to illustrate the effectiveness of the new method together with the determination of the causality between electroencephalograph signals from different cortical sites for patients during an epileptic seizure.
Buchsbaum, Daphna; Seiver, Elizabeth; Bridgers, Sophie; Gopnik, Alison
2012-01-01
A major challenge children face is uncovering the causal structure of the world around them. Previous research on children's causal inference has demonstrated their ability to learn about causal relationships in the physical environment using probabilistic evidence. However, children must also learn about causal relationships in the social environment, including discovering the causes of other people's behavior, and understanding the causal relationships between others' goal-directed actions and the outcomes of those actions. In this chapter, we argue that social reasoning and causal reasoning are deeply linked, both in the real world and in children's minds. Children use both types of information together and in fact reason about both physical and social causation in fundamentally similar ways. We suggest that children jointly construct and update causal theories about their social and physical environment and that this process is best captured by probabilistic models of cognition. We first present studies showing that adults are able to jointly infer causal structure and human action structure from videos of unsegmented human motion. Next, we describe how children use social information to make inferences about physical causes. We show that the pedagogical nature of a demonstrator influences children's choices of which actions to imitate from within a causal sequence and that this social information interacts with statistical causal evidence. We then discuss how children combine evidence from an informant's testimony and expressed confidence with evidence from their own causal observations to infer the efficacy of different potential causes. We also discuss how children use these same causal observations to make inferences about the knowledge state of the social informant. Finally, we suggest that psychological causation and attribution are part of the same causal system as physical causation. We present evidence that just as children use covariation between physical causes and their effects to learn physical causal relationships, they also use covaration between people's actions and the environment to make inferences about the causes of human behavior.
The development of causal reasoning.
Kuhn, Deanna
2012-05-01
How do inference rules for causal learning themselves change developmentally? A model of the development of causal reasoning must address this question, as well as specify the inference rules. Here, the evidence for developmental changes in processes of causal reasoning is reviewed, with the distinction made between diagnostic causal inference and causal prediction. Also addressed is the paradox of a causal reasoning literature that highlights the competencies of young children and the proneness to error among adults. WIREs Cogn Sci 2012, 3:327-335. doi: 10.1002/wcs.1160 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.
Koornneef, Arnout; Dotlačil, Jakub; van den Broek, Paul; Sanders, Ted
2016-01-01
In three eye-tracking experiments the influence of the Dutch causal connective "want" (because) and the working memory capacity of readers on the usage of verb-based implicit causality was examined. Experiments 1 and 2 showed that although a causal connective is not required to activate implicit causality information during reading, effects of implicit causality surfaced more rapidly and were more pronounced when a connective was present in the discourse than when it was absent. In addition, Experiment 3 revealed that-in contrast to previous claims-the activation of implicit causality is not a resource-consuming mental operation. Moreover, readers with higher and lower working memory capacities behaved differently in a dual-task situation. Higher span readers were more likely to use implicit causality when they had all their working memory resources at their disposal. Lower span readers showed the opposite pattern as they were more likely to use the implicit causality cue in the case of an additional working memory load. The results emphasize that both linguistic and cognitive factors mediate the impact of implicit causality on text comprehension. The implications of these results are discussed in terms of the ongoing controversies in the literature-that is, the focusing-integration debate and the debates on the source of implicit causality.
Learning a theory of causality.
Goodman, Noah D; Ullman, Tomer D; Tenenbaum, Joshua B
2011-01-01
The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be learned from co-occurrence of events. We begin by phrasing the causal Bayes nets theory of causality and a range of alternatives in a logical language for relational theories. This allows us to explore simultaneous inductive learning of an abstract theory of causality and a causal model for each of several causal systems. We find that the correct theory of causality can be learned relatively quickly, often becoming available before specific causal theories have been learned--an effect we term the blessing of abstraction. We then explore the effect of providing a variety of auxiliary evidence and find that a collection of simple perceptual input analyzers can help to bootstrap abstract knowledge. Together, these results suggest that the most efficient route to causal knowledge may be to build in not an abstract notion of causality but a powerful inductive learning mechanism and a variety of perceptual supports. While these results are purely computational, they have implications for cognitive development, which we explore in the conclusion.
Knowing Who Dunnit: Infants Identify the Causal Agent in an Unseen Causal Interaction
ERIC Educational Resources Information Center
Saxe, Rebecca; Tzelnic, Tania; Carey, Susan
2007-01-01
Preverbal infants can represent the causal structure of events, including distinguishing the agentive and receptive roles and categorizing entities according to stable causal dispositions. This study investigated how infants combine these 2 kinds of causal inference. In Experiments 1 and 2, 9.5-month-olds used the position of a human hand or a…
Causal Systems Categories: Differences in Novice and Expert Categorization of Causal Phenomena
ERIC Educational Resources Information Center
Rottman, Benjamin M.; Gentner, Dedre; Goldwater, Micah B.
2012-01-01
We investigated the understanding of causal systems categories--categories defined by common causal structure rather than by common domain content--among college students. We asked students who were either novices or experts in the physical sciences to sort descriptions of real-world phenomena that varied in their causal structure (e.g., negative…
They Work Together to Roar: Kindergartners' Understanding of an Interactive Causal Task
ERIC Educational Resources Information Center
Solis, S. Lynneth; Grotzer, Tina A.
2016-01-01
The aim of this study was to investigate kindergartners' exploration of interactive causality during their play with a pair of toy sound blocks. Interactive causality refers to a type of causal pattern in which two entities interact to produce a causal force, as in particle attraction and symbiotic relationships. Despite being prevalent in nature,…
Learning About Causes From People: Observational Causal Learning in 24-Month-Old Infants
Meltzoff, Andrew N.; Waismeyer, Anna; Gopnik, Alison
2013-01-01
How do infants and young children learn about the causal structure of the world around them? In 4 experiments we investigate whether young children initially give special weight to the outcomes of goal-directed interventions they see others perform and use this to distinguish correlations from genuine causal relations—observational causal learning. In a new 2-choice procedure, 2- to 4-year-old children saw 2 identical objects (potential causes). Activation of 1 but not the other triggered a spatially remote effect. Children systematically intervened on the causal object and predictively looked to the effect. Results fell to chance when the cause and effect were temporally reversed, so that the events were merely associated but not causally related. The youngest children (24- to 36-month-olds) were more likely to make causal inferences when covariations were the outcome of human interventions than when they were not. Observational causal learning may be a fundamental learning mechanism that enables infants to abstract the causal structure of the world. PMID:22369335
Context and Time in Causal Learning: Contingency and Mood Dependent Effects
Msetfi, Rachel M.; Wade, Caroline; Murphy, Robin A.
2013-01-01
Defining cues for instrumental causality are the temporal, spatial and contingency relationships between actions and their effects. In this study, we carried out a series of causal learning experiments that systematically manipulated time and context in positive and negative contingency conditions. In addition, we tested participants categorized as non-dysphoric and mildly dysphoric because depressed mood has been shown to affect the processing of all these causal cues. Findings showed that causal judgements made by non-dysphoric participants were contextualized at baseline and were affected by the temporal spacing of actions and effects only with generative, but not preventative, contingency relationships. Participants categorized as dysphoric made less contextualized causal ratings at baseline but were more sensitive than others to temporal manipulations across the contingencies. These effects were consistent with depression affecting causal learning through the effects of slowed time experience on accrued exposure to the context in which causal events took place. Taken together, these findings are consistent with associative approaches to causal judgement. PMID:23691147
How multiple causes combine: independence constraints on causal inference.
Liljeholm, Mimi
2015-01-01
According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.
Identifying Causal Variants at Loci with Multiple Signals of Association
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar
2014-01-01
Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515
Identifying causal variants at loci with multiple signals of association.
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar
2014-10-01
Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.
Opening the Black Box and Searching for Smoking Guns: Process Causality in Qualitative Research
ERIC Educational Resources Information Center
Bennett, Elisabeth E.; McWhorter, Rochell R.
2016-01-01
Purpose: The purpose of this paper is to explore the role of qualitative research in causality, with particular emphasis on process causality. In one paper, it is not possible to discuss all the issues of causality, but the aim is to provide useful ways of thinking about causality and qualitative research. Specifically, a brief overview of the…
ERIC Educational Resources Information Center
Jeong, Allan; Lee, Woon Jee
2012-01-01
This study examined some of the methodological approaches used by students to construct causal maps in order to determine which approaches help students understand the underlying causes and causal mechanisms in a complex system. This study tested the relationship between causal understanding (ratio of root causes correctly/incorrectly identified,…
Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir
2014-01-01
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817
Establishing causal coherence across sentences: an ERP study
Kuperberg, Gina R.; Paczynski, Martin; Ditman, Tali
2011-01-01
This study examined neural activity associated with establishing causal relationships across sentences during online comprehension. ERPs were measured while participants read and judged the relatedness of three-sentence scenarios in which the final sentence was highly causally related, intermediately related and causally unrelated to its context. Lexico-semantic co-occurrence was matched across the three conditions using a Latent Semantic Analysis. Critical words in causally unrelated scenarios evoked a larger N400 than words in both highly causally related and intermediately related scenarios, regardless of whether they appeared before or at the sentence-final position. At midline sites, the N400 to intermediately related sentence-final words was attenuated to the same degree as to highly causally related words, but otherwise the N400 to intermediately related words fell in between that evoked by highly causally related and intermediately related words. No modulation of the Late Positivity/P600 component was observed across conditions. These results indicate that both simple and complex causal inferences can influence the earliest stages of semantically processing an incoming word. Further, they suggest that causal coherence, at the situation level, can influence incremental word-by-word discourse comprehension, even when semantic relationships between individual words are matched. PMID:20175676
Amodal causal capture in the tunnel effect.
Bae, Gi Yeul; Flombaum, Jonathan I
2011-01-01
In addition to identifying individual objects in the world, the visual system must also characterize the relationships between objects, for instance when objects occlude one another or cause one another to move. Here we explored the relationship between perceived causality and occlusion. Can one perceive causality in an occluded location? In several experiments, observers judged whether a centrally presented event involved a single object passing behind an occluder, or one object causally launching another (out of view and behind the occluder). With no additional context, the centrally presented event was typically judged as a non-causal pass, even when the occluding and disoccluding objects were different colors--an illusion known as the 'tunnel effect' that results from spatiotemporal continuity. However, when a synchronized context event involved an unambiguous causal launch, participants perceived a causal launch behind the occluder. This percept of an occluded causal interaction could also be driven by grouping and synchrony cues in the absence of any explicitly causal interaction. These results reinforce the hypothesis that causality is an aspect of perception. It is among the interpretations of the world that are independently available to vision when resolving ambiguity, and that the visual system can 'fill in' amodally.
Meng, Xiang-He; Shen, Hui; Chen, Xiang-Ding; Xiao, Hong-Mei; Deng, Hong-Wen
2018-03-01
Genome-wide association studies (GWAS) have successfully identified numerous genetic variants associated with diverse complex phenotypes and diseases, and provided tremendous opportunities for further analyses using summary association statistics. Recently, Pickrell et al. developed a robust method for causal inference using independent putative causal SNPs. However, this method may fail to infer the causal relationship between two phenotypes when only a limited number of independent putative causal SNPs identified. Here, we extended Pickrell's method to make it more applicable for the general situations. We extended the causal inference method by replacing the putative causal SNPs with the lead SNPs (the set of the most significant SNPs in each independent locus) and tested the performance of our extended method using both simulation and empirical data. Simulations suggested that when the same number of genetic variants is used, our extended method had similar distribution of test statistic under the null model as well as comparable power under the causal model compared with the original method by Pickrell et al. But in practice, our extended method would generally be more powerful because the number of independent lead SNPs was often larger than the number of independent putative causal SNPs. And including more SNPs, on the other hand, would not cause more false positives. By applying our extended method to summary statistics from GWAS for blood metabolites and femoral neck bone mineral density (FN-BMD), we successfully identified ten blood metabolites that may causally influence FN-BMD. We extended a causal inference method for inferring putative causal relationship between two phenotypes using summary statistics from GWAS, and identified a number of potential causal metabolites for FN-BMD, which may provide novel insights into the pathophysiological mechanisms underlying osteoporosis.
The role of causal criteria in causal inferences: Bradford Hill's "aspects of association".
Ward, Andrew C
2009-06-17
As noted by Wesley Salmon and many others, causal concepts are ubiquitous in every branch of theoretical science, in the practical disciplines and in everyday life. In the theoretical and practical sciences especially, people often base claims about causal relations on applications of statistical methods to data. However, the source and type of data place important constraints on the choice of statistical methods as well as on the warrant attributed to the causal claims based on the use of such methods. For example, much of the data used by people interested in making causal claims come from non-experimental, observational studies in which random allocations to treatment and control groups are not present. Thus, one of the most important problems in the social and health sciences concerns making justified causal inferences using non-experimental, observational data. In this paper, I examine one method of justifying such inferences that is especially widespread in epidemiology and the health sciences generally - the use of causal criteria. I argue that while the use of causal criteria is not appropriate for either deductive or inductive inferences, they do have an important role to play in inferences to the best explanation. As such, causal criteria, exemplified by what Bradford Hill referred to as "aspects of [statistical] associations", have an indispensible part to play in the goal of making justified causal claims.
The role of causal criteria in causal inferences: Bradford Hill's "aspects of association"
Ward, Andrew C
2009-01-01
As noted by Wesley Salmon and many others, causal concepts are ubiquitous in every branch of theoretical science, in the practical disciplines and in everyday life. In the theoretical and practical sciences especially, people often base claims about causal relations on applications of statistical methods to data. However, the source and type of data place important constraints on the choice of statistical methods as well as on the warrant attributed to the causal claims based on the use of such methods. For example, much of the data used by people interested in making causal claims come from non-experimental, observational studies in which random allocations to treatment and control groups are not present. Thus, one of the most important problems in the social and health sciences concerns making justified causal inferences using non-experimental, observational data. In this paper, I examine one method of justifying such inferences that is especially widespread in epidemiology and the health sciences generally – the use of causal criteria. I argue that while the use of causal criteria is not appropriate for either deductive or inductive inferences, they do have an important role to play in inferences to the best explanation. As such, causal criteria, exemplified by what Bradford Hill referred to as "aspects of [statistical] associations", have an indispensible part to play in the goal of making justified causal claims. PMID:19534788
Situation models and memory: the effects of temporal and causal information on recall sequence.
Brownstein, Aaron L; Read, Stephen J
2007-10-01
Participants watched an episode of the television show Cheers on video and then reported free recall. Recall sequence followed the sequence of events in the story; if one concept was observed immediately after another, it was recalled immediately after it. We also made a causal network of the show's story and found that recall sequence followed causal links; effects were recalled immediately after their causes. Recall sequence was more likely to follow causal links than temporal sequence, and most likely to follow causal links that were temporally sequential. Results were similar at 10-minute and 1-week delayed recall. This is the most direct and detailed evidence reported on sequential effects in recall. The causal network also predicted probability of recall; concepts with more links and concepts on the main causal chain were most likely to be recalled. This extends the causal network model to more complex materials than previous research.
NASA Astrophysics Data System (ADS)
Dhamala, Mukesh
2015-12-01
Understanding cause-and-effect (causal) relations from observations concerns all sciences including neuroscience. Appropriately defining causality and its nature, though, has been a topic of active discussion for philosophers and scientists for centuries. Although brain research, particularly functional neuroimaging research, is now moving rapidly beyond identification of brain regional activations towards uncovering causal relations between regions, the nature of causality has not be been thoroughly described and resolved. In the current review article [1], Mannino and Bressler take us on a beautiful journey into the history of the work on causality and make a well-reasoned argument that the causality in the brain is inherently probabilistic. This notion is consistent with brain anatomy and functions, and is also inclusive of deterministic cases of inputs leading to outputs in the brain.
An Efficient Two-Tier Causal Protocol for Mobile Distributed Systems
Dominguez, Eduardo Lopez; Pomares Hernandez, Saul E.; Gomez, Gustavo Rodriguez; Medina, Maria Auxilio
2013-01-01
Causal ordering is a useful tool for mobile distributed systems (MDS) to reduce the non-determinism induced by three main aspects: host mobility, asynchronous execution, and unpredictable communication delays. Several causal protocols for MDS exist. Most of them, in order to reduce the overhead and the computational cost over wireless channels and mobile hosts (MH), ensure causal ordering at and according to the causal view of the Base Stations. Nevertheless, these protocols introduce certain disadvantage, such as unnecessary inhibition at the delivery of messages. In this paper, we present an efficient causal protocol for groupware that satisfies the MDS's constraints, avoiding unnecessary inhibitions and ensuring the causal delivery based on the view of the MHs. One interesting aspect of our protocol is that it dynamically adapts the causal information attached to each message based on the number of messages with immediate dependency relation, and this is not directly proportional to the number of MHs. PMID:23585828
Causal relations and feature similarity in children's inductive reasoning.
Hayes, Brett K; Thompson, Susan P
2007-08-01
Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations as a basis for property induction, although the proportion of causal inferences increased with age. Subsequent experiments pitted causal relations against featural similarity in induction. It was found that adults and 8-year-olds, but not 5-year-olds, preferred shared causal relations over strong featural similarity as a basis for induction. The implications for models of inductive reasoning and development are discussed.
Bugge, Ingrid; Dyb, Grete; Stensland, Synne Øien; Ekeberg, Øivind; Wentzel-Larsen, Tore; Diseth, Trond H
2017-06-01
Physically injured trauma survivors have particularly high risk for later somatic complaints and posttraumatic stress symptoms (PTSS). However, the potential mediating role of PTSS linking injury to later somatic complaints has been poorly investigated. In this study, survivors (N = 255) were interviewed longitudinally at 2 timepoints after the terror attack on Utøya Island, Norway, in 2011. Assessments included injury sustained during the attack, PTSS (after 4-5 months), somatic complaints (after 14-15 months), and background factors. Causal mediation analysis was conducted to evaluate the potential mediating role of PTSS in linking injury to somatic complaints comparing 2 groups of injured survivors with noninjured survivors. For the nonhospitalized injured versus the noninjured survivors, the mediated pathway was significant (average causal mediation effect; ACME = 0.09, p = .028, proportion = 55.8%). For the hospitalized versus the noninjured survivors, the mediated pathway was not significant (ACME = 0.04, p = .453, proportion = 11.6%). PTSS may play a significant mediating role in the development of somatic complaints among nonhospitalized injured trauma survivors. Intervening health professionals should be aware of this possible pathway to somatic complaints. Copyright © 2017 International Society for Traumatic Stress Studies.
Connecting Atlantic temperature variability and biological cycling in two earth system models
NASA Astrophysics Data System (ADS)
Gnanadesikan, Anand; Dunne, John P.; Msadek, Rym
2014-05-01
Connections between the interdecadal variability in North Atlantic temperatures and biological cycling have been widely hypothesized. However, it is unclear whether such connections are due to small changes in basin-averaged temperatures indicated by the Atlantic Multidecadal Oscillation (AMO) Index, or whether both biological cycling and the AMO index are causally linked to changes in the Atlantic Meridional Overturning Circulation (AMOC). We examine interdecadal variability in the annual and month-by-month diatom biomass in two Earth System Models with the same formulations of atmospheric, land, sea ice and ocean biogeochemical dynamics but different formulations of ocean physics and thus different AMOC structures and variability. In the isopycnal-layered ESM2G, strong interdecadal changes in surface salinity associated with changes in AMOC produce spatially heterogeneous variability in convection, nutrient supply and thus diatom biomass. These changes also produce changes in ice cover, shortwave absorption and temperature and hence the AMO Index. Off West Greenland, these changes are consistent with observed changes in fisheries and support climate as a causal driver. In the level-coordinate ESM2M, nutrient supply is much higher and interdecadal changes in diatom biomass are much smaller in amplitude and not strongly linked to the AMO index.
Past observable dynamics of a continuously monitored qubit
NASA Astrophysics Data System (ADS)
García-Pintos, Luis Pedro; Dressel, Justin
2017-12-01
Monitoring a quantum observable continuously in time produces a stochastic measurement record that noisily tracks the observable. For a classical process, such noise may be reduced to recover an average signal by minimizing the mean squared error between the noisy record and a smooth dynamical estimate. We show that for a monitored qubit, this usual procedure returns unusual results. While the record seems centered on the expectation value of the observable during causal generation, examining the collected past record reveals that it better approximates a moving-mean Gaussian stochastic process centered at a distinct (smoothed) observable estimate. We show that this shifted mean converges to the real part of a generalized weak value in the time-continuous limit without additional postselection. We verify that this smoothed estimate minimizes the mean squared error even for individual measurement realizations. We go on to show that if a second observable is weakly monitored concurrently, then that second record is consistent with the smoothed estimate of the second observable based solely on the information contained in the first observable record. Moreover, we show that such a smoothed estimate made from incomplete information can still outperform estimates made using full knowledge of the causal quantum state.
Oportunidades to reduce overweight and obesity in Mexico?
Andalón, Mabel
2011-09-01
This paper investigates the causal effect of Oportunidades, a conditional cash-transfer program in Mexico, on overweight and obesity of adolescents living in poor rural areas. Affecting youth weight was not a goal of this program. However, health economics research suggests that the provision of schooling, health information sessions and sizable cash transfers to Oportunidades participants could have substantially changed their overweight and obesity rates. Exploiting an exogenous jump in program participation by means of a fuzzy Regression Discontinuity (RD) design, the evidence of this paper suggests that Oportunidades decreased obesity among participant women. The identified local average treatment effect (LATE) at the threshold for program eligibility suggests that female obesity would decrease if the program was expanded to cover slightly better-off households. The design of the program does not allow disentangling the causal pathways that contributed to the lower prevalence of obesity among women, but the effect likely resulted from increased access to information and schooling, improved dietary quality, increased monitoring of health outcomes and (possibly) increased physical activity. Suggestive evidence shows that teen pregnancy rates were higher among non-participants. Therefore, weight gain after childbirth might also explain higher obesity rates among non-participant females. Copyright © 2011 John Wiley & Sons, Ltd.
Causal inference in biology networks with integrated belief propagation.
Chang, Rui; Karr, Jonathan R; Schadt, Eric E
2015-01-01
Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.
Causal Analysis After Haavelmo
Heckman, James; Pinto, Rodrigo
2014-01-01
Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123
Tzeremes, Panayiotis
2018-02-01
This study is the first attempt to investigate the relationship between CO 2 emissions, energy consumption, and economic growth at a state level, for the 50 US states, through a time-varying causality approach using annual data over the periods 1960-2010. The time-varying causality test facilitates the better understanding of the causal relationship between the covariates owing to the fact that it might identify causalities when the time-constant hypothesis is rejected. Our findings indicate the existence of a time-varying causality at the state level. Specifically, the results probe eight bidirectional time-varying causalities between energy consumption and CO 2 emission, six cases of two-way time-varying causalities between economic growth and energy consumption, and five bidirectional time-varying causalities between economic growth and CO 2 emission. Moreover, we examine the traditional environmental Kuznets curve hypothesis for the states. Notably, our results do not endorse the validity of the EKC, albeit the majority of states support an inverted N-shaped relationship. Lastly, we can identify multiple policy implications based on the empirical results.
Gates, Simon; Lall, Ranjit; Quinn, Tom; Deakin, Charles D; Cooke, Matthew W; Horton, Jessica; Lamb, Sarah E; Slowther, Anne-Marie; Woollard, Malcolm; Carson, Andy; Smyth, Mike; Wilson, Kate; Parcell, Garry; Rosser, Andrew; Whitfield, Richard; Williams, Amanda; Jones, Rebecca; Pocock, Helen; Brock, Nicola; Black, John Jm; Wright, John; Han, Kyee; Shaw, Gary; Blair, Laura; Marti, Joachim; Hulme, Claire; McCabe, Christopher; Nikolova, Silviya; Ferreira, Zenia; Perkins, Gavin D
2017-03-01
Mechanical chest compression devices may help to maintain high-quality cardiopulmonary resuscitation (CPR), but little evidence exists for their effectiveness. We evaluated whether or not the introduction of Lund University Cardiopulmonary Assistance System-2 (LUCAS-2; Jolife AB, Lund, Sweden) mechanical CPR into front-line emergency response vehicles would improve survival from out-of-hospital cardiac arrest (OHCA). Evaluation of the LUCAS-2 device as a routine ambulance service treatment for OHCA. Pragmatic, cluster randomised trial including adults with non-traumatic OHCA. Ambulance dispatch staff and those collecting the primary outcome were blind to treatment allocation. Blinding of the ambulance staff who delivered the interventions and reported initial response to treatment was not possible. We also conducted a health economic evaluation and a systematic review of all trials of out-of-hospital mechanical chest compression. Four UK ambulance services (West Midlands, North East England, Wales and South Central), comprising 91 urban and semiurban ambulance stations. Clusters were ambulance service vehicles, which were randomly assigned (approximately 1 : 2) to the LUCAS-2 device or manual CPR. Patients were included if they were in cardiac arrest in the out-of-hospital environment. Exclusions were patients with cardiac arrest as a result of trauma, with known or clinically apparent pregnancy, or aged < 18 years. Patients received LUCAS-2 mechanical chest compression or manual chest compressions according to the first trial vehicle to arrive on scene. Survival at 30 days following cardiac arrest; survival without significant neurological impairment [Cerebral Performance Category (CPC) score of 1 or 2]. We enrolled 4471 eligible patients (1652 assigned to the LUCAS-2 device and 2819 assigned to control) between 15 April 2010 and 10 June 2013. A total of 985 (60%) patients in the LUCAS-2 group received mechanical chest compression and 11 (< 1%) patients in the control group received LUCAS-2. In the intention-to-treat analysis, 30-day survival was similar in the LUCAS-2 (104/1652, 6.3%) and manual CPR groups [193/2819, 6.8%; adjusted odds ratio (OR) 0.86, 95% confidence interval (CI) 0.64 to 1.15]. Survival with a CPC score of 1 or 2 may have been worse in the LUCAS-2 group (adjusted OR 0.72, 95% CI 0.52 to 0.99). No serious adverse events were noted. The systematic review found no evidence of a survival advantage if mechanical chest compression was used. The health economic analysis showed that LUCAS-2 was dominated by manual chest compression. There was substantial non-compliance in the LUCAS-2 arm. For 272 out of 1652 patients (16.5%), mechanical chest compression was not used for reasons that would not occur in clinical practice. We addressed this issue by using complier average causal effect analyses. We attempted to measure CPR quality during the resuscitation attempts of trial participants, but were unable to do so. There was no evidence of improvement in 30-day survival with LUCAS-2 compared with manual compressions. Our systematic review of recent randomised trials did not suggest that survival or survival without significant disability may be improved by the use of mechanical chest compression. The use of mechanical chest compression for in-hospital cardiac arrest, and in specific circumstances (e.g. transport), has not yet been evaluated. Current Controlled Trials ISRCTN08233942. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 21, No. 11. See the NIHR Journals Library website for further project information.
Conjectures on the relations of linking and causality in causally simple spacetimes
NASA Astrophysics Data System (ADS)
Chernov, Vladimir
2018-05-01
We formulate the generalization of the Legendrian Low conjecture of Natario and Tod (proved by Nemirovski and myself before) to the case of causally simple spacetimes. We prove a weakened version of the corresponding statement. In all known examples, a causally simple spacetime can be conformally embedded as an open subset into some globally hyperbolic and the space of light rays in is an open submanifold of the space of light rays in . If this is always the case, this provides an approach to solving the conjectures relating causality and linking in causally simple spacetimes.
Hagmayer, York; Engelmann, Neele
2014-01-01
Cognitive psychological research focuses on causal learning and reasoning while cognitive anthropological and social science research tend to focus on systems of beliefs. Our aim was to explore how these two types of research can inform each other. Cognitive psychological theories (causal model theory and causal Bayes nets) were used to derive predictions for systems of causal beliefs. These predictions were then applied to lay theories of depression as a specific test case. A systematic literature review on causal beliefs about depression was conducted, including original, quantitative research. Thirty-six studies investigating 13 non-Western and 32 Western cultural groups were analyzed by classifying assumed causes and preferred forms of treatment into common categories. Relations between beliefs and treatment preferences were assessed. Substantial agreement between cultural groups was found with respect to the impact of observable causes. Stress was generally rated as most important. Less agreement resulted for hidden, especially supernatural causes. Causal beliefs were clearly related to treatment preferences in Western groups, while evidence was mostly lacking for non-Western groups. Overall predictions were supported, but there were considerable methodological limitations. Pointers to future research, which may combine studies on causal beliefs with experimental paradigms on causal reasoning, are given. PMID:25505432
Nandha, B; Krishnamoorthy, K; Jambulingam, P
2013-08-01
India is a signatory to World Health Assembly resolution for elimination of lymphatic filariasis (LF) and National Health Policy has set the goal of LF elimination by 2015. Annual mass drug administration (MDA) is ongoing in endemic districts since 1996-97. Compliance rate is a crucial factor in achieving elimination and was assessed in three districts of Tamil Nadu for 10th and 11th treatment rounds (TRs). An in-depth study assessed the impact of social mobilization by drug distributors (DDs) in two areas from each of the three districts. Overall coverage and compliance for assessed TRs were 76.3 and 67.7% which is below the optimum level to achieve LF elimination. Modifiable determinants continue to be the reason for non-consumption even in the 11th TR and 20.8% were systematic non-compliers. In 76.4% of the cases, DDs failed to adhere to three mandatory visits as per the guidelines. Number of visits by DDs in relation to low and high MDA coverage areas showed a significant relationship (P ≤ 0.000). MDA is limited to drug distribution alone and efforts by DDs in preparing the community were inadequate. Probable means to meet the challenges in preparation of the community is discussed.
Olsson, C; Hörnell, A; Ivarsson, A; Sydner, Y M
2008-08-01
Noncompliance with the gluten-free diet is often reported among adolescents with coeliac disease. However, knowledge is limited regarding their own perspectives and experiences of managing the disease and the prescription of a gluten-free diet. The aim of this study was to explore how adolescents with coeliac disease perceive and manage their everyday lives in relation to a gluten-free diet. In total, 47 adolescents with coeliac disease, divided into 10 focus groups, were interviewed. In the qualitative analysis, themes emerged to illustrate and explain the adolescents' own perspectives on life with a gluten-free diet. The probability of compliance with the gluten-free diet was comprised by insufficient knowledge of significant others, problems with the availability and sensory acceptance of gluten-free food, insufficient social support and their perceived dietary deviance. Three different approaches to the gluten-free diet emerged: compliers, occasional noncompliers, and noncompliers. Each approach, as a coping strategy, was rational in the sense that it represented the adolescents' differing views of everyday life with coeliac disease and a prescription of a gluten-free diet. dolescents with coeliac disease experience various dilemmas related to the gluten-free diet. The study demonstrated unmet needs and implies empowerment strategies for optimum clinical outcomes.
Weber, Ann M; van der Laan, Mark J; Petersen, Maya L
2015-03-01
Failure (or success) in finding a statistically significant effect of a large-scale intervention may be due to choices made in the evaluation. To highlight the potential limitations and pitfalls of some common identification strategies used for estimating causal effects of community-level interventions, we apply a roadmap for causal inference to a pre-post evaluation of a national nutrition program in Madagascar. Selection into the program was non-random and strongly associated with the pre-treatment (lagged) outcome. Using structural causal models (SCM), directed acyclic graphs (DAGs) and simulated data, we illustrate that an estimand with the outcome defined as the post-treatment outcome controls for confounding by the lagged outcome but not by possible unmeasured confounders. Two separate differencing estimands (of the pre- and post-treatment outcome) have the potential to adjust for a certain type of unmeasured confounding, but introduce bias if the additional identification assumptions they rely on are not met. In order to illustrate the practical impact of choice between three common identification strategies and their corresponding estimands, we used observational data from the community nutrition program in Madagascar to estimate each of these three estimands. Specifically, we estimated the average treatment effect of the program on the community mean nutritional status of children 5 years and under and found that the estimate based on the post-treatment estimand was about a quarter of the magnitude of either of the differencing estimands (0.066 SD vs. 0.26-0.27 SD increase in mean weight-for-age z-score). Choice of estimand clearly has important implications for the interpretation of the success of the program to improve nutritional status of young children. A careful appraisal of the assumptions underlying the causal model is imperative before committing to a statistical model and progressing to estimation. However, knowledge about the data-generating process must be sufficient in order to choose the identification strategy that gets us closest to the truth.
A self-agency bias in preschoolers' causal inferences
Kushnir, Tamar; Wellman, Henry M.; Gelman, Susan A.
2013-01-01
Preschoolers' causal learning from intentional actions – causal interventions – is subject to a self-agency bias. We propose that this bias is evidence-based; it is responsive to causal uncertainty. In the current studies, two causes (one child-controlled, one experimenter-controlled) were associated with one or two effects, first independently, then simultaneously. When initial independent effects were probabilistic, and thus subsequent simultaneous actions were causally ambiguous, children showed a self-agency bias. Children showed no bias when initial effects were deterministic. Further controls establish that children's self-agency bias is not a wholesale preference but rather is influenced by uncertainty in causal evidence. These results demonstrate that children's own experience of action influences their causal learning, and suggest possible benefits in uncertain and ambiguous everyday learning contexts. PMID:19271843
Redundant variables and Granger causality
NASA Astrophysics Data System (ADS)
Angelini, L.; de Tommaso, M.; Marinazzo, D.; Nitti, L.; Pellicoro, M.; Stramaglia, S.
2010-03-01
We discuss the use of multivariate Granger causality in presence of redundant variables: the application of the standard analysis, in this case, leads to under estimation of causalities. Using the un-normalized version of the causality index, we quantitatively develop the notions of redundancy and synergy in the frame of causality and propose two approaches to group redundant variables: (i) for a given target, the remaining variables are grouped so as to maximize the total causality and (ii) the whole set of variables is partitioned to maximize the sum of the causalities between subsets. We show the application to a real neurological experiment, aiming to a deeper understanding of the physiological basis of abnormal neuronal oscillations in the migraine brain. The outcome by our approach reveals the change in the informational pattern due to repetitive transcranial magnetic stimulations.
The causal pie model: an epidemiological method applied to evolutionary biology and ecology
Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette
2014-01-01
A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a “causal pie” of “component causes”. Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made. PMID:24963386
Schlottmann, Anne; Cole, Katy; Watts, Rhianna; White, Marina
2013-01-01
Humans, even babies, perceive causality when one shape moves briefly and linearly after another. Motion timing is crucial in this and causal impressions disappear with short delays between motions. However, the role of temporal information is more complex: it is both a cue to causality and a factor that constrains processing. It affects ability to distinguish causality from non-causality, and social from mechanical causality. Here we study both issues with 3- to 7-year-olds and adults who saw two computer-animated squares and chose if a picture of mechanical, social or non-causality fit each event best. Prior work fit with the standard view that early in development, the distinction between the social and physical domains depends mainly on whether or not the agents make contact, and that this reflects concern with domain-specific motion onset, in particular, whether the motion is self-initiated or not. The present experiments challenge both parts of this position. In Experiments 1 and 2, we showed that not just spatial, but also animacy and temporal information affect how children distinguish between physical and social causality. In Experiments 3 and 4 we showed that children do not seem to use spatio-temporal information in perceptual causality to make inferences about self- or other-initiated motion onset. Overall, spatial contact may be developmentally primary in domain-specific perceptual causality in that it is processed easily and is dominant over competing cues, but it is not the only cue used early on and it is not used to infer motion onset. Instead, domain-specific causal impressions may be automatic reactions to specific perceptual configurations, with a complex role for temporal information. PMID:23874308
The causal pie model: an epidemiological method applied to evolutionary biology and ecology.
Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette
2014-05-01
A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.
Evolution of Religious Beliefs
None
2018-05-11
Humans may be distinguished from all other animals in having beliefs about the causal interaction of physical objects. Causal beliefs are a developmental primitive in human children; animals, by contrast, have very few causal beliefs. The origin of human causal beliefs comes from the evolutionary advantage it gave in relation to complex tool making and use. Causal beliefs gave rise religion and mystical thinking as our ancestors wanted to know the causes of events that affected their lives.
Evolution of Religious Beliefs
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Humans may be distinguished from all other animals in having beliefs about the causal interaction of physical objects. Causal beliefs are a developmental primitive in human children; animals, by contrast, have very few causal beliefs. The origin of human causal beliefs comes from the evolutionary advantage it gave in relation to complex tool making and use. Causal beliefs gave rise religion and mystical thinking as our ancestors wanted to know the causes of events that affected their lives.
Designing Effective Supports for Causal Reasoning
ERIC Educational Resources Information Center
Jonassen, David H.; Ionas, Ioan Gelu
2008-01-01
Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and…
CAUSAL ANALYSIS AND PROBABILITY DATA: EXAMPLES FOR IMPAIRED AQUATIC CONDITION
Causal analysis is plausible reasoning applied to diagnosing observed effect(s), for example, diagnosing
cause of biological impairment in a stream. Sir Bradford Hill basically defined the application of causal
analysis when he enumerated the elements of causality f...
Interpretational Confounding or Confounded Interpretations of Causal Indicators?
ERIC Educational Resources Information Center
Bainter, Sierra A.; Bollen, Kenneth A.
2014-01-01
In measurement theory, causal indicators are controversial and little understood. Methodological disagreement concerning causal indicators has centered on the question of whether causal indicators are inherently sensitive to interpretational confounding, which occurs when the empirical meaning of a latent construct departs from the meaning…
Causal Discovery of Dynamic Systems
ERIC Educational Resources Information Center
Voortman, Mark
2010-01-01
Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…
Quantum correlations with no causal order
Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav
2012-01-01
The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068
Causal learning is collaborative: Examining explanation and exploration in social contexts.
Legare, Cristine H; Sobel, David M; Callanan, Maureen
2017-10-01
Causal learning in childhood is a dynamic and collaborative process of explanation and exploration within complex physical and social environments. Understanding how children learn causal knowledge requires examining how they update beliefs about the world given novel information and studying the processes by which children learn in collaboration with caregivers, educators, and peers. The objective of this article is to review evidence for how children learn causal knowledge by explaining and exploring in collaboration with others. We review three examples of causal learning in social contexts, which elucidate how interaction with others influences causal learning. First, we consider children's explanation-seeking behaviors in the form of "why" questions. Second, we examine parents' elaboration of meaning about causal relations. Finally, we consider parents' interactive styles with children during free play, which constrains how children explore. We propose that the best way to understand children's causal learning in social context is to combine results from laboratory and natural interactive informal learning environments.
Manu, Patrick A; Ankrah, Nii A; Proverbs, David G; Suresh, Subashini
2012-09-01
Construction project features (CPFs) are organisational, physical and operational attributes that characterise construction projects. Although previous studies have examined the accident causal influence of CPFs, the multi-causal attribute of this causal phenomenon still remain elusive and thus requires further investigation. Aiming to shed light on this facet of the accident causal phenomenon of CPFs, this study examines relevant literature and crystallises the attained insight of the multi-causal attribute by a graphical model which is subsequently operationalised by a derived mathematical risk expression that offers a systematic approach for evaluating the potential of CPFs to cause harm and consequently their health and safety (H&S) risk implications. The graphical model and the risk expression put forth by the study thus advance current understanding of the accident causal phenomenon of CPFs and they present an opportunity for project participants to manage the H&S risk associated with CPFs from the early stages of project procurement. Copyright © 2011 Elsevier Ltd. All rights reserved.
Paradis, Angela D; Shenassa, Edmond D; Papandonatos, George D; Rogers, Michelle L; Buka, Stephen L
2017-09-01
Although many observational studies have found a strong association between maternal smoking during pregnancy (MSP) and offspring antisocial behaviour, the likelihood that this relationship is causal remains unclear. To comment on the potential causality of this association, the current investigation used a between-within decomposition approach to examine the association between MSP and multiple indices of adolescent and adult antisocial behaviour. Study participants were offspring of women enrolled in the Providence and Boston sites of the Collaborative Perinatal Project. Information on MSP was collected prospectively. Antisocial behaviour was assessed via self-report and through official records searches. A subset of the adult offspring (average age: 39.6 years) were enrolled in a follow-up study oversampling families with multiple siblings. Participants in this follow-up study self-reported on juvenile and adult antisocial behaviours during a structured interview (n=1684). Official records of juvenile (n=3447) and adult (n=3433) criminal behaviour were obtained for participants in the Providence cohort. Statistical models allowed between-family effects of MSP exposure to differ from within-family effects. In the absence of heterogeneity in between-family versus within-family estimates, a combined estimate was calculated. MSP was associated with a range of antisocial behaviours, measured by self-report and official records. For example, MSP was associated with increased odds of elevated levels of antisocial behaviours during adolescence and adulthood, as well as violent and non-violent outcomes during both developmental periods. Findings are consistent with a small-to-moderate causal effect of MSP on adolescent and adult antisocial behaviour. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Comparing Methods for Estimating Direct Costs of Adverse Drug Events.
Gyllensten, Hanna; Jönsson, Anna K; Hakkarainen, Katja M; Svensson, Staffan; Hägg, Staffan; Rehnberg, Clas
2017-12-01
To estimate how direct health care costs resulting from adverse drug events (ADEs) and cost distribution are affected by methodological decisions regarding identification of ADEs, assigning relevant resource use to ADEs, and estimating costs for the assigned resources. ADEs were identified from medical records and diagnostic codes for a random sample of 4970 Swedish adults during a 3-month study period in 2008 and were assessed for causality. Results were compared for five cost evaluation methods, including different methods for identifying ADEs, assigning resource use to ADEs, and for estimating costs for the assigned resources (resource use method, proportion of registered cost method, unit cost method, diagnostic code method, and main diagnosis method). Different levels of causality for ADEs and ADEs' contribution to health care resource use were considered. Using the five methods, the maximum estimated overall direct health care costs resulting from ADEs ranged from Sk10,000 (Sk = Swedish krona; ~€1,500 in 2016 values) using the diagnostic code method to more than Sk3,000,000 (~€414,000) using the unit cost method in our study population. The most conservative definitions for ADEs' contribution to health care resource use and the causality of ADEs resulted in average costs per patient ranging from Sk0 using the diagnostic code method to Sk4066 (~€500) using the unit cost method. The estimated costs resulting from ADEs varied considerably depending on the methodological choices. The results indicate that costs for ADEs need to be identified through medical record review and by using detailed unit cost data. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Greenwood, G. B.
2014-12-01
Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.
Lee, Jeong-Won; Kang, Ji-Hyoun; Lee, Kyung-Eun; Park, Dong-Jin; Kang, Seong Wook; Kwok, Seung-Ki; Kim, Seong-Kyu; Choe, Jung-Yoon; Kim, Hyoun-Ah; Sung, Yoon-Kyoung; Shin, Kichul; Lee, Sang-Il; Lee, Chang Hoon; Choi, Sung Jae; Lee, Shin-Seok
2018-01-01
This study assessed the relationships among the risk factors for and components of metabolic syndrome (MetS) and health-related quality of life (HRQOL) in a hypothesized causal model using structural equation modeling (SEM) in patients with systemic lupus erythematosus (SLE). Of the 505 SLE patients enrolled in the Korean Lupus Network (KORNET registry), 244 had sufficient data to assess the components of MetS at enrollment. Education level, monthly income, corticosteroid dose, Systemic Lupus Erythematosus Disease Activity Index, Physicians' Global Assessment, Beck Depression Inventory, MetS components, and the Short Form-36 at the time of cohort entry were determined. SEM was used to test the causal relationship based on the Analysis of Moment Structure. The average age of the 244 patients was 40.7 ± 11.8 years. The SEM results supported the good fit of the model (χ 2 = 71.629, p = 0.078, RMSEA 0.034, CFI 0.972). The final model showed a direct negative effect of higher socioeconomic status and a positive indirect effect of higher disease activity on MetS, the latter through corticosteroid dose. MetS did not directly impact HRQOL but had an indirect negative impact on it, through depression. In our causal model, MetS risk factors were related to MetS components. The latter had a negative indirect impact on HRQOL, through depression. Clinicians should consider socioeconomic status and medication and seek to modify disease activity, MetS, and depression to improve the HRQOL of SLE patients.
Education and myopia: assessing the direction of causality by mendelian randomisation.
Mountjoy, Edward; Davies, Neil M; Plotnikov, Denis; Smith, George Davey; Rodriguez, Santiago; Williams, Cathy E; Guggenheim, Jeremy A; Atan, Denize
2018-06-06
To determine whether more years spent in education is a causal risk factor for myopia, or whether myopia is a causal risk factor for more years in education. Bidirectional, two sample mendelian randomisation study. Publically available genetic data from two consortiums applied to a large, independent population cohort. Genetic variants used as proxies for myopia and years of education were derived from two large genome wide association studies: 23andMe and Social Science Genetic Association Consortium (SSGAC), respectively. 67 798 men and women from England, Scotland, and Wales in the UK Biobank cohort with available information for years of completed education and refractive error. Mendelian randomisation analyses were performed in two directions: the first exposure was the genetic predisposition to myopia, measured with 44 genetic variants strongly associated with myopia in 23andMe, and the outcome was years in education; and the second exposure was the genetic predisposition to higher levels of education, measured with 69 genetic variants from SSGAC, and the outcome was refractive error. Conventional regression analyses of the observational data suggested that every additional year of education was associated with a more myopic refractive error of -0.18 dioptres/y (95% confidence interval -0.19 to -0.17; P<2e-16). Mendelian randomisation analyses suggested the true causal effect was even stronger: -0.27 dioptres/y (-0.37 to -0.17; P=4e-8). By contrast, there was little evidence to suggest myopia affected education (years in education per dioptre of refractive error -0.008 y/dioptre, 95% confidence interval -0.041 to 0.025, P=0.6). Thus, the cumulative effect of more years in education on refractive error means that a university graduate from the United Kingdom with 17 years of education would, on average, be at least -1 dioptre more myopic than someone who left school at age 16 (with 12 years of education). Myopia of this magnitude would be sufficient to necessitate the use of glasses for driving. Sensitivity analyses showed minimal evidence for genetic confounding that could have biased the causal effect estimates. This study shows that exposure to more years in education contributes to the rising prevalence of myopia. Increasing the length of time spent in education may inadvertently increase the prevalence of myopia and potential future visual disability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Education and myopia: assessing the direction of causality by mendelian randomisation
Mountjoy, Edward; Davies, Neil M; Plotnikov, Denis; Smith, George Davey; Rodriguez, Santiago; Williams, Cathy E; Guggenheim, Jeremy A
2018-01-01
Abstract Objectives To determine whether more years spent in education is a causal risk factor for myopia, or whether myopia is a causal risk factor for more years in education. Design Bidirectional, two sample mendelian randomisation study. Setting Publically available genetic data from two consortiums applied to a large, independent population cohort. Genetic variants used as proxies for myopia and years of education were derived from two large genome wide association studies: 23andMe and Social Science Genetic Association Consortium (SSGAC), respectively. Participants 67 798 men and women from England, Scotland, and Wales in the UK Biobank cohort with available information for years of completed education and refractive error. Main outcome measures Mendelian randomisation analyses were performed in two directions: the first exposure was the genetic predisposition to myopia, measured with 44 genetic variants strongly associated with myopia in 23andMe, and the outcome was years in education; and the second exposure was the genetic predisposition to higher levels of education, measured with 69 genetic variants from SSGAC, and the outcome was refractive error. Results Conventional regression analyses of the observational data suggested that every additional year of education was associated with a more myopic refractive error of −0.18 dioptres/y (95% confidence interval −0.19 to −0.17; P<2e-16). Mendelian randomisation analyses suggested the true causal effect was even stronger: −0.27 dioptres/y (−0.37 to −0.17; P=4e-8). By contrast, there was little evidence to suggest myopia affected education (years in education per dioptre of refractive error −0.008 y/dioptre, 95% confidence interval −0.041 to 0.025, P=0.6). Thus, the cumulative effect of more years in education on refractive error means that a university graduate from the United Kingdom with 17 years of education would, on average, be at least −1 dioptre more myopic than someone who left school at age 16 (with 12 years of education). Myopia of this magnitude would be sufficient to necessitate the use of glasses for driving. Sensitivity analyses showed minimal evidence for genetic confounding that could have biased the causal effect estimates. Conclusions This study shows that exposure to more years in education contributes to the rising prevalence of myopia. Increasing the length of time spent in education may inadvertently increase the prevalence of myopia and potential future visual disability. PMID:29875094
Hung-Pin, Lin
2014-01-01
The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries-United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain.
Hung-Pin, Lin
2014-01-01
The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries—United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain. PMID:24558343
Exploring Individual Differences in Preschoolers' Causal Stance
ERIC Educational Resources Information Center
Alvarez, Aubry; Booth, Amy E.
2016-01-01
Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…
Constraints on Children's Judgments of Magical Causality
ERIC Educational Resources Information Center
Woolley, Jacqueline D.; Browne, Cheryl A.; Boerger, Elizabeth A.
2006-01-01
In 3 studies we addressed the operation of constraints on children's causal judgments. Our primary focus was whether children's beliefs about magical causality, specifically wishing, are constrained by features that govern the attribution of ordinary causality. In Experiment 1, children witnessed situations in which a confederate's wish appeared…
Structural Equations and Causal Explanations: Some Challenges for Causal SEM
ERIC Educational Resources Information Center
Markus, Keith A.
2010-01-01
One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…
The cradle of causal reasoning: newborns' preference for physical causality.
Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio; Simion, Francesca
2013-05-01
Perception of mechanical (i.e. physical) causality, in terms of a cause-effect relationship between two motion events, appears to be a powerful mechanism in our daily experience. In spite of a growing interest in the earliest causal representations, the role of experience in the origin of this sensitivity is still a matter of dispute. Here, we asked the question about the innate origin of causal perception, never tested before at birth. Three experiments were carried out to investigate sensitivity at birth to some visual spatiotemporal cues present in a launching event. Newborn babies, only a few hours old, showed that they significantly preferred a physical causality event (i.e. Michotte's Launching effect) when matched to a delay event (i.e. a delayed launching; Experiment 1) or to a non-causal event completely identical to the causal one except for the order of the displacements of the two objects involved which was swapped temporally (Experiment 3). This preference for the launching event, moreover, also depended on the continuity of the trajectory between the objects involved in the event (Experiment 2). These results support the hypothesis that the human system possesses an early available, possibly innate basic mechanism to compute causality, such a mechanism being sensitive to the additive effect of certain well-defined spatiotemporal cues present in the causal event independently of any prior visual experience. © 2013 Blackwell Publishing Ltd.
Bouwman, Aniek C; Veerkamp, Roel F
2014-10-03
The aim of this study was to determine the consequences of splitting sequencing effort over multiple breeds for imputation accuracy from a high-density SNP chip towards whole-genome sequence. Such information would assist for instance numerical smaller cattle breeds, but also pig and chicken breeders, who have to choose wisely how to spend their sequencing efforts over all the breeds or lines they evaluate. Sequence data from cattle breeds was used, because there are currently relatively many individuals from several breeds sequenced within the 1,000 Bull Genomes project. The advantage of whole-genome sequence data is that it carries the causal mutations, but the question is whether it is possible to impute the causal variants accurately. This study therefore focussed on imputation accuracy of variants with low minor allele frequency and breed specific variants. Imputation accuracy was assessed for chromosome 1 and 29 as the correlation between observed and imputed genotypes. For chromosome 1, the average imputation accuracy was 0.70 with a reference population of 20 Holstein, and increased to 0.83 when the reference population was increased by including 3 other dairy breeds with 20 animals each. When the same amount of animals from the Holstein breed were added the accuracy improved to 0.88, while adding the 3 other breeds to the reference population of 80 Holstein improved the average imputation accuracy marginally to 0.89. For chromosome 29, the average imputation accuracy was lower. Some variants benefitted from the inclusion of other breeds in the reference population, initially determined by the MAF of the variant in each breed, but even Holstein specific variants did gain imputation accuracy from the multi-breed reference population. This study shows that splitting sequencing effort over multiple breeds and combining the reference populations is a good strategy for imputation from high-density SNP panels towards whole-genome sequence when reference populations are small and sequencing effort is limiting. When sequencing effort is limiting and interest lays in multiple breeds or lines this provides imputation of each breed.
Compulsory schooling reforms, education and mortality in twentieth century Europe.
Gathmann, Christina; Jürges, Hendrik; Reinhold, Steffen
2015-02-01
Education yields substantial non-monetary benefits, but the size of these gains is still debated. Previous studies report causal effects of education and compulsory schooling on mortality ranging anywhere from zero to large and negative. Using data from 18 compulsory schooling reforms implemented in Europe during the twentieth century, we quantify the average mortality gain and explore its dispersion across gender, time and countries. We find that more education yields small mortality reductions in the short- and long-run for men. In contrast, women seem to experience no mortality reductions from compulsory schooling reforms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Perceived Causalities of Physical Events Are Influenced by Social Cues
ERIC Educational Resources Information Center
Zhou, Jifan; Huang, Xiang; Jin, Xinyi; Liang, Junying; Shui, Rende; Shen, Mowei
2012-01-01
In simple mechanical events, we can directly perceive causal interactions of the physical objects. Physical cues (especially spatiotemporal features of the display) are found to associate with causal perception. Here, we demonstrate that cues of a completely different domain--"social cues"--also impact the causal perception of…
Learning by Self-Explaining Causal Diagrams in High-School Biology
ERIC Educational Resources Information Center
Cho, Young Hoan; Jonassen, David H.
2012-01-01
Understanding scientific phenomena requires comprehension and application of the underlying causal relationships that describe those phenomena (Carey 2002). The current study examined the roles of self-explanation and meta-level feedback for understanding causal relationships described in a causal diagram. In this study, 63 Korean high-school…
Assessing Understanding of Complex Causal Networks Using an Interactive Game
ERIC Educational Resources Information Center
Ross, Joel
2013-01-01
Assessing people's understanding of the causal relationships found in large-scale complex systems may be necessary for addressing many critical social concerns, such as environmental sustainability. Existing methods for assessing systems thinking and causal understanding frequently use the technique of cognitive causal mapping. However, the…
Expectations and Interpretations during Causal Learning
ERIC Educational Resources Information Center
Luhmann, Christian C.; Ahn, Woo-kyoung
2011-01-01
In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…
ERIC Educational Resources Information Center
Rehder, Bob
2017-01-01
This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…
Representing Personal Determinants in Causal Structures.
ERIC Educational Resources Information Center
Bandura, Albert
1984-01-01
Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…
Preschool Children Learn about Causal Structure from Conditional Interventions
ERIC Educational Resources Information Center
Schulz, Laura E.; Gopnik, Alison; Glymour, Clark
2007-01-01
The conditional intervention principle is a formal principle that relates patterns of interventions and outcomes to causal structure. It is a central assumption of experimental design and the causal Bayes net formalism. Two studies suggest that preschoolers can use the conditional intervention principle to distinguish causal chains, common cause…
Translating context to causality in cardiovascular disparities research.
Benn, Emma K T; Goldfeld, Keith S
2016-04-01
Moving from a descriptive focus to a comprehensive analysis grounded in causal inference can be particularly daunting for disparities researchers. However, even a simple model supported by the theoretical underpinnings of causality gives researchers a better chance to make correct inferences about possible interventions that can benefit our most vulnerable populations. This commentary provides a brief description of how race/ethnicity and context relate to questions of causality, and uses a hypothetical scenario to explore how different researchers might analyze the data to estimate causal effects of interest. Perhaps although not entirely removed of bias, these causal estimates will move us a step closer to understanding how to intervene. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Lo, Graciete; Tu, Ming; Wu, Olivia; Anglin, Deidre; Saw, Anne; Chen, Fang-pei
2016-01-01
Encounters with Western psychiatric treatment and acculturation may influence causal beliefs of psychiatric illness endorsed by Chinese immigrant relatives, thus affecting help-seeking. We examined causal beliefs held by forty-six Chinese immigrant relatives and found that greater acculturation was associated with an increased number of causal beliefs. Further, as Western psychiatric treatment and acculturation increased, causal models expanded to incorporate biological/physical causes. However, frequency of Chinese immigrant relatives' endorsing spiritual beliefs did not appear to change with acculturation. Clinicians might thus account for spiritual beliefs in treatment even after acculturation increases and biological causal models proliferate. PMID:27127454
Earthquake prediction: the interaction of public policy and science.
Jones, L M
1996-01-01
Earthquake prediction research has searched for both informational phenomena, those that provide information about earthquake hazards useful to the public, and causal phenomena, causally related to the physical processes governing failure on a fault, to improve our understanding of those processes. Neither informational nor causal phenomena are a subset of the other. I propose a classification of potential earthquake predictors of informational, causal, and predictive phenomena, where predictors are causal phenomena that provide more accurate assessments of the earthquake hazard than can be gotten from assuming a random distribution. Achieving higher, more accurate probabilities than a random distribution requires much more information about the precursor than just that it is causally related to the earthquake. PMID:11607656
Using genetic data to strengthen causal inference in observational research.
Pingault, Jean-Baptiste; O'Reilly, Paul F; Schoeler, Tabea; Ploubidis, George B; Rijsdijk, Frühling; Dudbridge, Frank
2018-06-05
Causal inference is essential across the biomedical, behavioural and social sciences.By progressing from confounded statistical associations to evidence of causal relationships, causal inference can reveal complex pathways underlying traits and diseases and help to prioritize targets for intervention. Recent progress in genetic epidemiology - including statistical innovation, massive genotyped data sets and novel computational tools for deep data mining - has fostered the intense development of methods exploiting genetic data and relatedness to strengthen causal inference in observational research. In this Review, we describe how such genetically informed methods differ in their rationale, applicability and inherent limitations and outline how they should be integrated in the future to offer a rich causal inference toolbox.
The role of counterfactual theory in causal reasoning.
Maldonado, George
2016-10-01
In this commentary I review the fundamentals of counterfactual theory and its role in causal reasoning in epidemiology. I consider if counterfactual theory dictates that causal questions must be framed in terms of well-defined interventions. I conclude that it does not. I hypothesize that the interventionist approach to causal inference in epidemiology stems from elevating the randomized trial design to the gold standard for thinking about causal inference. I suggest that instead the gold standard we should use for thinking about causal inference in epidemiology is the thought experiment that, for example, compares an actual disease frequency under one exposure level with a counterfactual disease frequency under a different exposure level (as discussed in Greenland and Robins (1986) and Maldonado and Greenland (2002)). I also remind us that no method should be termed "causal" unless it addresses the effect of other biases in addition to the problem of confounding. Copyright © 2016 Elsevier Inc. All rights reserved.
Inferring action structure and causal relationships in continuous sequences of human action.
Buchsbaum, Daphna; Griffiths, Thomas L; Plunkett, Dillon; Gopnik, Alison; Baldwin, Dare
2015-02-01
In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a sequence of observed behavior into meaningful actions, and determining which of those actions lead to effects in the world. Here we present a Bayesian analysis of how statistical and causal cues to segmentation should optimally be combined, as well as four experiments investigating human action segmentation and causal inference. We find that both people and our model are sensitive to statistical regularities and causal structure in continuous action, and are able to combine these sources of information in order to correctly infer both causal relationships and segmentation boundaries. Copyright © 2014. Published by Elsevier Inc.
Experimental test of nonlocal causality
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro
2016-01-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.
Causal inference in public health.
Glass, Thomas A; Goodman, Steven N; Hernán, Miguel A; Samet, Jonathan M
2013-01-01
Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action's consequences rather than the less precise notion of a risk factor's causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world.
A Causality Analysis of the Link between Higher Education and Economic Development.
ERIC Educational Resources Information Center
De Meulemeester, Jean-Luc; Rochat, Denis
1995-01-01
Summarizes a study exploring the relationship between higher education and economic development, using cointegration and Granger-causality tests. Results show a significant causality from higher education efforts in Sweden, United Kingdom, Japan, and France. However, a similar causality link has not been found for Italy or Australia. (68…
ERIC Educational Resources Information Center
Frewen, Paul A.; Allen, Samantha L.; Lanius, Ruth A.; Neufeld, Richard W. J.
2012-01-01
Researchers have argued that the investigation of causal interrelationships between symptoms may help explain the high comorbidity rate between certain psychiatric disorders. Clients' own attributions concerning the causal interrelationships linking the co-occurrence of their symptoms represent data that may inform their clinical case…
The Specification of Causal Models with Tetrad IV: A Review
ERIC Educational Resources Information Center
Landsheer, J. A.
2010-01-01
Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…
A Bayesian Theory of Sequential Causal Learning and Abstract Transfer
ERIC Educational Resources Information Center
Lu, Hongjing; Rojas, Randall R.; Beckers, Tom; Yuille, Alan L.
2016-01-01
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about…
Causal Mediation in Educational Research: An Illustration Using International Assessment Data
ERIC Educational Resources Information Center
Caro, Daniel H.
2015-01-01
This paper applies the causal mediation framework proposed by Kosuke Imai and colleagues (Imai, Keele, & Tingley, 2010) to educational research by examining the causal mediating role of early literacy activities in parental education influences on reading performance. The paper argues that the study of causal mediation is particularly relevant…
A Study of Causal Thinking in Elementary School Children. Final Report.
ERIC Educational Resources Information Center
Ward, Edna M.
This study, which is a partial replication and validation of the 1962 Laurendeau and Pinard study of causal thinking, investigates cross-cultural differences among three age levels of Canadian and American school children in the development of causal thinking. Also studied is the relationship between level of development of causal thinking and…
Mind and Meaning: Piaget and Vygotsky on Causal Explanation.
ERIC Educational Resources Information Center
Beilin, Harry
1996-01-01
Piaget's theory has been characterized as descriptive and not explanatory, not qualifying as causal explanation. Piaget was consistent in showing how his theory was both explanatory and causal. Vygotsky also endorsed causal-genetic explanation but, on the basis of knowledge of only Piaget's earliest works, he claimed that Piaget's theory was not…
Pathway Analysis and the Search for Causal Mechanisms
ERIC Educational Resources Information Center
Weller, Nicholas; Barnes, Jeb
2016-01-01
The study of causal mechanisms interests scholars across the social sciences. Case studies can be a valuable tool in developing knowledge and hypotheses about how causal mechanisms function. The usefulness of case studies in the search for causal mechanisms depends on effective case selection, and there are few existing guidelines for selecting…
Causal Imprinting in Causal Structure Learning
Taylor, Eric G.; Ahn, Woo-kyoung
2012-01-01
Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures “causal imprinting.” Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. PMID:22859019
Causal inference, probability theory, and graphical insights.
Baker, Stuart G
2013-11-10
Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.
Nguyen, Anh B; Oh, April; Moser, Richard P; Patrick, Heather
2015-01-01
The aims of the present study were to (i) examine the prevalence of perceived behavioural and genetic causal beliefs for four chronic conditions (i.e. obesity, heart disease, diabetes and cancer); (ii) to examine the association between these causal beliefs and attempts at behaviour change (i.e. physical activity, weight management, fruit intake, vegetable intake and soda intake). The data come from the Health Information National Trends Survey, a nationally representative population-based survey of adults (N = 3407). Results indicated that participants held both behavioural and genetic causal beliefs for all four chronic conditions. Multivariate analyses indicated that behavioural causal beliefs were significantly associated with attempts to increase physical activity and vegetable intake and to decrease weight. Genetic causal beliefs for cancer were significantly associated with reported attempts to maintain weight. Behaviour and genetic causal beliefs were not associated with changes in either fruit or soda intake. In conclusion, while behavioural causal beliefs are associated with behavioural change, measurement must capture disease-specific behavioural causal beliefs as they are associated with different health behaviours.
New Insights into Signed Path Coefficient Granger Causality Analysis.
Zhang, Jian; Li, Chong; Jiang, Tianzi
2016-01-01
Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.
The power of possibility: causal learning, counterfactual reasoning, and pretend play
Buchsbaum, Daphna; Bridgers, Sophie; Skolnick Weisberg, Deena; Gopnik, Alison
2012-01-01
We argue for a theoretical link between the development of an extended period of immaturity in human evolution and the emergence of powerful and wide-ranging causal learning mechanisms, specifically the use of causal models and Bayesian learning. We suggest that exploratory childhood learning, childhood play in particular, and causal cognition are closely connected. We report an empirical study demonstrating one such connection—a link between pretend play and counterfactual causal reasoning. Preschool children given new information about a causal system made very similar inferences both when they considered counterfactuals about the system and when they engaged in pretend play about it. Counterfactual cognition and causally coherent pretence were also significantly correlated even when age, general cognitive development and executive function were controlled for. These findings link a distinctive human form of childhood play and an equally distinctive human form of causal inference. We speculate that, during human evolution, computations that were initially reserved for solving particularly important ecological problems came to be used much more widely and extensively during the long period of protected immaturity. PMID:22734063
The power of possibility: causal learning, counterfactual reasoning, and pretend play.
Buchsbaum, Daphna; Bridgers, Sophie; Skolnick Weisberg, Deena; Gopnik, Alison
2012-08-05
We argue for a theoretical link between the development of an extended period of immaturity in human evolution and the emergence of powerful and wide-ranging causal learning mechanisms, specifically the use of causal models and Bayesian learning. We suggest that exploratory childhood learning, childhood play in particular, and causal cognition are closely connected. We report an empirical study demonstrating one such connection--a link between pretend play and counterfactual causal reasoning. Preschool children given new information about a causal system made very similar inferences both when they considered counterfactuals about the system and when they engaged in pretend play about it. Counterfactual cognition and causally coherent pretence were also significantly correlated even when age, general cognitive development and executive function were controlled for. These findings link a distinctive human form of childhood play and an equally distinctive human form of causal inference. We speculate that, during human evolution, computations that were initially reserved for solving particularly important ecological problems came to be used much more widely and extensively during the long period of protected immaturity.
Non-Gaussian Methods for Causal Structure Learning.
Shimizu, Shohei
2018-05-22
Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.
Waismeyer, Anna; Meltzoff, Andrew N
2017-10-01
Infants learn about cause and effect through hands-on experience; however, they also can learn about causality simply from observation. Such observational causal learning is a central mechanism by which infants learn from and about other people. Across three experiments, we tested infants' observational causal learning of both social and physical causal events. Experiment 1 assessed infants' learning of a physical event in the absence of visible spatial contact between the causes and effects. Experiment 2 developed a novel paradigm to assess whether infants could learn about a social causal event from third-party observation of a social interaction between two people. Experiment 3 compared learning of physical and social events when the outcomes occurred probabilistically (happening some, but not all, of the time). Infants demonstrated significant learning in all three experiments, although learning about probabilistic cause-effect relations was most difficult. These findings about infant observational causal learning have implications for children's rapid nonverbal learning about people, things, and their causal relations. Copyright © 2017 Elsevier Inc. All rights reserved.
Drawing causal inferences using propensity scores: a practical guide for community psychologists.
Lanza, Stephanie T; Moore, Julia E; Butera, Nicole M
2013-12-01
Confounding present in observational data impede community psychologists' ability to draw causal inferences. This paper describes propensity score methods as a conceptually straightforward approach to drawing causal inferences from observational data. A step-by-step demonstration of three propensity score methods-weighting, matching, and subclassification-is presented in the context of an empirical examination of the causal effect of preschool experiences (Head Start vs. parental care) on reading development in kindergarten. Although the unadjusted population estimate indicated that children with parental care had substantially higher reading scores than children who attended Head Start, all propensity score adjustments reduce the size of this overall causal effect by more than half. The causal effect was also defined and estimated among children who attended Head Start. Results provide no evidence for improved reading if those children had instead received parental care. We carefully define different causal effects and discuss their respective policy implications, summarize advantages and limitations of each propensity score method, and provide SAS and R syntax so that community psychologists may conduct causal inference in their own research.
Drawing Causal Inferences Using Propensity Scores: A Practical Guide for Community Psychologists
Lanza, Stephanie T.; Moore, Julia E.; Butera, Nicole M.
2014-01-01
Confounding present in observational data impede community psychologists’ ability to draw causal inferences. This paper describes propensity score methods as a conceptually straightforward approach to drawing causal inferences from observational data. A step-by-step demonstration of three propensity score methods – weighting, matching, and subclassification – is presented in the context of an empirical examination of the causal effect of preschool experiences (Head Start vs. parental care) on reading development in kindergarten. Although the unadjusted population estimate indicated that children with parental care had substantially higher reading scores than children who attended Head Start, all propensity score adjustments reduce the size of this overall causal effect by more than half. The causal effect was also defined and estimated among children who attended Head Start. Results provide no evidence for improved reading if those children had instead received parental care. We carefully define different causal effects and discuss their respective policy implications, summarize advantages and limitations of each propensity score method, and provide SAS and R syntax so that community psychologists may conduct causal inference in their own research. PMID:24185755
Chen, Qingfei; Liang, Xiuling; Lei, Yi; Li, Hong
2015-05-01
Causally related concepts like "virus" and "epidemic" and general associatively related concepts like "ring" and "emerald" are represented and accessed separately. The Evoked Response Potential (ERP) procedure was used to examine the representations of causal judgment and associative judgment in semantic memory. Participants were required to remember a task cue (causal or associative) presented at the beginning of each trial, and assess whether the relationship between subsequently presented words matched the initial task cue. The ERP data showed that an N400 effect (250-450 ms) was more negative for unrelated words than for all related words. Furthermore, the N400 effect elicited by causal relations was more positive than for associative relations in causal cue condition, whereas no significant difference was found in the associative cue condition. The centrally distributed late ERP component (650-750 ms) elicited by the causal cue condition was more positive than for the associative cue condition. These results suggested that the processing of causal judgment and associative judgment in semantic memory recruited different degrees of attentional and executive resources. Copyright © 2015 Elsevier B.V. All rights reserved.
Normative and descriptive accounts of the influence of power and contingency on causal judgement.
Perales, José C; Shanks, David R
2003-08-01
The power PC theory (Cheng, 1997) is a normative account of causal inference, which predicts that causal judgements are based on the power p of a potential cause, where p is the cause-effect contingency normalized by the base rate of the effect. In three experiments we demonstrate that both cause-effect contingency and effect base-rate independently affect estimates in causal learning tasks. In Experiment 1, causal strength judgements were directly related to power p in a task in which the effect base-rate was manipulated across two positive and two negative contingency conditions. In Experiments 2 and 3 contingency manipulations affected causal estimates in several situations in which power p was held constant, contrary to the power PC theory's predictions. This latter effect cannot be explained by participants' conflation of reliability and causal strength, as Experiment 3 demonstrated independence of causal judgements and confidence. From a descriptive point of view, the data are compatible with Pearce's (1987) model, as well as with several other judgement rules, but not with the Rescorla-Wagner (Rescorla & Wagner, 1972) or power PC models.
Dynamics of Quantum Causal Structures
NASA Astrophysics Data System (ADS)
Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2018-01-01
It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Classical Causal Models for Bell and Kochen-Specker Inequality Violations Require Fine-Tuning
NASA Astrophysics Data System (ADS)
Cavalcanti, Eric G.
2018-04-01
Nonlocality and contextuality are at the root of conceptual puzzles in quantum mechanics, and they are key resources for quantum advantage in information-processing tasks. Bell nonlocality is best understood as the incompatibility between quantum correlations and the classical theory of causality, applied to relativistic causal structure. Contextuality, on the other hand, is on a more controversial foundation. In this work, I provide a common conceptual ground between nonlocality and contextuality as violations of classical causality. First, I show that Bell inequalities can be derived solely from the assumptions of no signaling and no fine-tuning of the causal model. This removes two extra assumptions from a recent result from Wood and Spekkens and, remarkably, does not require any assumption related to independence of measurement settings—unlike all other derivations of Bell inequalities. I then introduce a formalism to represent contextuality scenarios within causal models and show that all classical causal models for violations of a Kochen-Specker inequality require fine-tuning. Thus, the quantum violation of classical causality goes beyond the case of spacelike-separated systems and already manifests in scenarios involving single systems.
Flores, Amanda; Cobos, Pedro L; López, Francisco J; Godoy, Antonio; González-Martín, Estrella
2014-09-01
An experiment conducted with students and experienced clinicians demonstrated very fast and online causal reasoning in the diagnosis of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) mental disorders. The experiment also demonstrated that clinicians' causal reasoning is triggered by information that is directly related to the causal structure that explains the symptoms, such as their temporal sequence. The use of causal theories was measured through explicit, verbal diagnostic judgments and through the online registration of participants' reading times of clinical reports. To detect both online and offline causal reasoning, the consistency of clinical reports was manipulated. This manipulation was made by varying the temporal order in which different symptoms developed in hypothetical clients, and by providing explicit information about causal connections between symptoms. The temporal order of symptoms affected the clinicians' but not the students' reading times. However, offline diagnostic judgments in both groups were influenced by the consistency manipulation. Overall, our results suggest that clinicians engage in fast and online causal reasoning processes when dealing with diagnostic information concerning mental disorders, and that both clinicians and students engage in causal reasoning in diagnostic judgment tasks. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander
2016-01-01
Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894
The psychophysical law of speed estimation in Michotte's causal events.
Parovel, Giulia; Casco, Clara
2006-11-01
Observers saw an event in which a computer-animated square moved up to and made contact with another, which after a short delay moved off, its motion appearing to be caused by launch by the first square. Observers chose whether the second (launched) square was faster in this causal event than when presented following a long delay (non-causal event). The speed of the second object in causal events was overestimated for a wide range of speeds of the first object (launcher), but accurately assessed in non-causal events. Experiments 2 and 3 showed that overestimation occurred also in other causal displays in which the trajectories were overlapping, successive, spatially separated or inverted but did not occurred with consecutive speeds that did not produce causal percepts. We also found that if the first object in a causal event was faster, then Weber's law holds and overestimation of the launched object speed was proportional to the speed of the launcher. In contrast, if the second object was faster, overestimation was constant, i.e. independent of the launcher. We propose that the particular speed integration of causal display results in overestimation and that the way overestimation depends on V1 phenomenally affects the attribution of the source of V2 motion: either in V1 (in launching) or in V2 (in triggering).
Analogy in causal inference: rethinking Austin Bradford Hill's neglected consideration.
Weed, Douglas L
2018-05-01
The purpose of this article was to rethink and resurrect Austin Bradford Hill's "criterion" of analogy as an important consideration in causal inference. In epidemiology today, analogy is either completely ignored (e.g., in many textbooks), or equated with biologic plausibility or coherence, or aligned with the scientist's imagination. None of these examples, however, captures Hill's description of analogy. His words suggest that there may be something gained by contrasting two bodies of evidence, one from an established causal relationship, the other not. Coupled with developments in the methods of systematic assessments of evidence-including but not limited to meta-analysis-analogy can be restructured as a key component in causal inference. This new approach will require that a collection-a library-of known cases of causal inference (i.e., bodies of evidence involving established causal relationships) be developed. This library would likely include causal assessments by organizations such as the International Agency for Research on Cancer, the National Toxicology Program, and the United States Environmental Protection Agency. In addition, a process for describing key features of a causal relationship would need to be developed along with what will be considered paradigm cases of causation. Finally, it will be important to develop ways to objectively compare a "new" body of evidence with the relevant paradigm case of causation. Analogy, along with all other existing methods and causal considerations, may improve our ability to identify causal relationships. Copyright © 2018 Elsevier Inc. All rights reserved.
Causality analysis in business performance measurement system using system dynamics methodology
NASA Astrophysics Data System (ADS)
Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah
2014-07-01
One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.
Causal uncertainty, claimed and behavioural self-handicapping.
Thompson, Ted; Hepburn, Jonathan
2003-06-01
Causal uncertainty beliefs involve doubts about the causes of events, and arise as a consequence of non-contingent evaluative feedback: feedback that leaves the individual uncertain about the causes of his or her achievement outcomes. Individuals high in causal uncertainty are frequently unable to confidently attribute their achievement outcomes, experience anxiety in achievement situations and as a consequence are likely to engage in self-handicapping behaviour. Accordingly, we sought to establish links between trait causal uncertainty, claimed and behavioural self-handicapping. Participants were N=72 undergraduate students divided equally between high and low causally uncertain groups. We used a 2 (causal uncertainty status: high, low) x 3 (performance feedback condition: success, non-contingent success, non-contingent failure) between-subjects factorial design to examine the effects of causal uncertainty on achievement behaviour. Following performance feedback, participants completed 20 single-solution anagrams and 12 remote associate tasks serving as performance measures, and 16 unicursal tasks to assess practice effort. Participants also completed measures of claimed handicaps, state anxiety and attributions. Relative to low causally uncertain participants, high causally uncertain participants claimed more handicaps prior to performance on the anagrams and remote associates, reported higher anxiety, attributed their failure to internal, stable factors, and reduced practice effort on the unicursal tasks, evident in fewer unicursal tasks solved. These findings confirm links between trait causal uncertainty and claimed and behavioural self-handicapping, highlighting the need for educators to facilitate means by which students can achieve surety in the manner in which they attribute the causes of their achievement outcomes.
Roelstraete, Bjorn; Rosseel, Yves
2012-04-30
Partial Granger causality was introduced by Guo et al. (2008) who showed that it could better eliminate the influence of latent variables and exogenous inputs than conditional G-causality. In the recent literature we can find some reviews and applications of this type of Granger causality (e.g. Smith et al., 2011; Bressler and Seth, 2010; Barrett et al., 2010). These articles apparently do not take into account a serious flaw in the original work on partial G-causality, being the negative F values that were reported and even proven to be plausible. In our opinion, this undermines the credibility of the obtained results and thus the validity of the approach. Our study is aimed to further validate partial G-causality and to find an answer why negative partial Granger causality estimates were reported. Time series were simulated from the same toy model as used in the original paper and partial and conditional causal measures were compared in the presence of confounding variables. Inference was done parametrically and using non-parametric block bootstrapping. We counter the proof that partial Granger F values can be negative, but the main conclusion of the original article remains. In the presence of unknown latent and exogenous influences, it appears that partial G-causality will better eliminate their influence than conditional G-causality, at least when non-parametric inference is used. Copyright © 2012 Elsevier B.V. All rights reserved.
Causality Analysis of fMRI Data Based on the Directed Information Theory Framework.
Wang, Zhe; Alahmadi, Ahmed; Zhu, David C; Li, Tongtong
2016-05-01
This paper aims to conduct fMRI-based causality analysis in brain connectivity by exploiting the directed information (DI) theory framework. Unlike the well-known Granger causality (GC) analysis, which relies on the linear prediction technique, the DI theory framework does not have any modeling constraints on the sequences to be evaluated and ensures estimation convergence. Moreover, it can be used to generate the GC graphs. In this paper, first, we introduce the core concepts in the DI framework. Second, we present how to conduct causality analysis using DI measures between two time series. We provide the detailed procedure on how to calculate the DI for two finite-time series. The two major steps involved here are optimal bin size selection for data digitization and probability estimation. Finally, we demonstrate the applicability of DI-based causality analysis using both the simulated data and experimental fMRI data, and compare the results with that of the GC analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly linear causal relationship, but may have difficulty in capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is more effective in capturing both linear and nonlinear causal relationships. Moreover, it is observed that brain connectivity among different regions generally involves dynamic two-way information transmissions between them. Our results show that when bidirectional information flow is present, DI is more effective than GC to quantify the overall causal relationship.
Global effects of income and income inequality on adult height and sexual dimorphism in height.
Bogin, Barry; Scheffler, Christiane; Hermanussen, Michael
2017-03-01
Average adult height of a population is considered a biomarker of the quality of the health environment and economic conditions. The causal relationships between height and income inequality are not well understood. We analyze data from 169 countries for national average heights of men and women and national-level economic factors to test two hypotheses: (1) income inequality has a greater association with average adult height than does absolute income; and (2) neither income nor income inequality has an effect on sexual dimorphism in height. Average height data come from the NCD-RisC health risk factor collaboration. Economic indicators are derived from the World Bank data archive and include gross domestic product (GDP), Gross National Income per capita adjusted for personal purchasing power (GNI_PPP), and income equality assessed by the Gini coefficient calculated by the Wagstaff method. Hypothesis 1 is supported. Greater income equality is most predictive of average height for both sexes. GNI_PPP explains a significant, but smaller, amount of the variation. National GDP has no association with height. Hypothesis 2 is rejected. With greater average adult height there is greater sexual dimorphism. Findings support a growing literature on the pernicious effects of inequality on growth in height and, by extension, on health. Gradients in height reflect gradients in social disadvantage. Inequality should be considered a pollutant that disempowers people from the resources needed for their own healthy growth and development and for the health and good growth of their children. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Minguzzi, E.
2010-09-01
Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K + relation (Seifert’s relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg’s and Levin’s theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K + (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin’s theorem and smoothing techniques.
Chung, Younshik; Chang, IlJoon
2015-11-01
Recently, the introduction of vehicle black box systems or in-vehicle video event data recorders enables the driver to use the system to collect more accurate crash information such as location, time, and situation at the pre-crash and crash moment, which can be analyzed to find the crash causal factors more accurately. This study presents the vehicle black box system in brief and its application status in Korea. Based on the crash data obtained from the vehicle black box system, this study analyzes the accuracy of the crash data collected from existing road crash data recording method, which has been recorded by police officers based on accident parties' statements or eyewitness's account. The analysis results show that the crash data observed by the existing method have an average of 84.48m of spatial difference and standard deviation of 157.75m as well as average 29.05min of temporal error and standard deviation of 19.24min. Additionally, the average and standard deviation of crash speed errors were found to be 9.03km/h and 7.21km/h, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new approach for embedding causal sets into Minkowski space
NASA Astrophysics Data System (ADS)
Liu, He; Reid, David D.
2018-06-01
This paper reports on recent work toward an approach for embedding causal sets into two-dimensional Minkowski space. The main new feature of the present scheme is its use of the spacelike distance measure to construct an ordering of causal set elements within anti-chains of a causal set as an aid to the embedding procedure.
Omission of Causal Indicators: Consequences and Implications for Measurement
ERIC Educational Resources Information Center
Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Marakas, George M.
2016-01-01
One of the central assumptions of the causal-indicator literature is that all causal indicators must be included in the research model and that the exclusion of one or more relevant causal indicators would have severe negative consequences by altering the meaning of the latent variable. In this research we show that the omission of a relevant…
ERIC Educational Resources Information Center
Bramley, Neil R.; Lagnado, David A.; Speekenbrink, Maarten
2015-01-01
Interacting with a system is key to uncovering its causal structure. A computational framework for interventional causal learning has been developed over the last decade, but how real causal learners might achieve or approximate the computations entailed by this framework is still poorly understood. Here we describe an interactive computer task in…
Change, Self-Organization and the Search for Causality in Educational Research and Practice
ERIC Educational Resources Information Center
Koopmans, Matthijs
2014-01-01
Causality is an inextricable part of the educational process, as our understanding of what works in education depends on our ability to make causal attributions. Yet, the research and policy literature in education tends to define causality narrowly as the attribution of educational outcomes to intervention effects in a randomized control trial…
Finding the Cause: Verbal Framing Helps Children Extract Causal Evidence Embedded in a Complex Scene
ERIC Educational Resources Information Center
Butler, Lucas P.; Markman, Ellen M.
2012-01-01
In making causal inferences, children must both identify a causal problem and selectively attend to meaningful evidence. Four experiments demonstrate that verbally framing an event ("Which animals make Lion laugh?") helps 4-year-olds extract evidence from a complex scene to make accurate causal inferences. Whereas framing was unnecessary when…
Using Propensity Score Analysis for Making Causal Claims in Research Articles
ERIC Educational Resources Information Center
Bai, Haiyan
2011-01-01
The central role of the propensity score analysis (PSA) in observational studies is for causal inference; as such, PSA is often used for making causal claims in research articles. However, there are still some issues for researchers to consider when making claims of causality using PSA results. This summary first briefly reviews PSA, followed by…
ERIC Educational Resources Information Center
White, Peter A.
2009-01-01
Many kinds of common and easily observed causal relations exhibit property transmission, which is a tendency for the causal object to impose its own properties on the effect object. It is proposed that property transmission becomes a general and readily available hypothesis used to make interpretations and judgments about causal questions under…
How to Be Causal: Time, Spacetime and Spectra
ERIC Educational Resources Information Center
Kinsler, Paul
2011-01-01
I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…
Evaluating Social Causality and Responsibility Models: An Initial Report
2005-01-01
ICT Technical Report ICT-TR-03-2005 Evaluating Social Causality and Responsibility ... social intelligent agents. In this report, we present a general computational model of social causality and responsibility , and empirical results of...2005 to 00-00-2005 4. TITLE AND SUBTITLE Evaluating Social Causality and Responsibility Models: An Initial Report 5a. CONTRACT NUMBER 5b. GRANT
Subjective spacetime derived from a causal histories approach
NASA Astrophysics Data System (ADS)
Gunji, Yukio-Pegio; Haruna, Taichi; Uragami, Daisuke; Nishikawa, Asaki
2009-10-01
The internal description of spacetime can reveal ambiguity regarding an observer’s perception of the present, where an observer can refer to the present as if he were outside spacetime while actually existing in the present. This ambiguity can be expressed as the compatibility between an element and a set, and is here called a/{a}-compatibility. We describe a causal set as a lattice and a causal history as a quotient lattice, and implement the a/{a}-compatibility in the framework of a causal histories approach. This leads to a perpetual change of a pair of causal set and causal history, and can be used to describe subjective spacetime including the déjà vu experience and/or schizophrenic time.
Widlok, Thomas
2014-01-01
Cognitive Scientists interested in causal cognition increasingly search for evidence from non-Western Educational Industrial Rich Democratic people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition. PMID:25414683
Lead-lag relationships between stock and market risk within linear response theory
NASA Astrophysics Data System (ADS)
Borysov, Stanislav; Balatsky, Alexander
2015-03-01
We study historical correlations and lead-lag relationships between individual stock risks (standard deviation of daily stock returns) and market risk (standard deviation of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-correlation functions averaged over stocks, using historical stock prices from the Standard & Poor's 500 index for 1994-2013. The observed historical dynamics suggests that the dependence between the risks was almost linear during the US stock market downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated response functions suggest the presence of characteristic regimes near financial crashes, when individual stock risks affect market risk and vice versa. This work was supported by VR 621-2012-2983.
High time resolution observations of the drivers of Forbush decreases
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.
2008-12-01
The drivers of Forbush decreases in galactic cosmic ray (GCR) fluxes are thought to be magnetic turbulence in the sheath of an interplanetary coronal mass ejection (ICME) and the closed magnetic field lines in the ICME itself. This model, however, is the result of studies utilizing hourly or longer time averaging. Such averaging can smooth over important correlations between variabilities in the GCR flux and those in the interplanetary medium. To test the validity of the current model of Forbush decreases, we analyze a number of Forbush decreases using high time resolution GCR data from the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the onset of the decrease and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. We find evidence that planar magnetic structures in the sheath preceding the ICME may be a factor in driving the decrease in at least one event.
Imputation of adverse drug reactions: Causality assessment in hospitals
Mastroianni, Patricia de Carvalho
2017-01-01
Background & objectives Different algorithms have been developed to standardize the causality assessment of adverse drug reactions (ADR). Although most share common characteristics, the results of the causality assessment are variable depending on the algorithm used. Therefore, using 10 different algorithms, the study aimed to compare inter-rater and multi-rater agreement for ADR causality assessment and identify the most consistent to hospitals. Methods Using ten causality algorithms, four judges independently assessed the first 44 cases of ADRs reported during the first year of implementation of a risk management service in a medium complexity hospital in the state of Sao Paulo (Brazil). Owing to variations in the terminology used for causality, the equivalent imputation terms were grouped into four categories: definite, probable, possible and unlikely. Inter-rater and multi-rater agreement analysis was performed by calculating the Cohen´s and Light´s kappa coefficients, respectively. Results None of the algorithms showed 100% reproducibility in the causal imputation. Fair inter-rater and multi-rater agreement was found. Emanuele (1984) and WHO-UMC (2010) algorithms showed a fair rate of agreement between the judges (k = 0.36). Interpretation & conclusions Although the ADR causality assessment algorithms were poorly reproducible, our data suggest that WHO-UMC algorithm is the most consistent for imputation in hospitals, since it allows evaluating the quality of the report. However, to improve the ability of assessing the causality using algorithms, it is necessary to include criteria for the evaluation of drug-related problems, which may be related to confounding variables that underestimate the causal association. PMID:28166274
Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.
2015-01-01
The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318
Verweij, Karin J H; Treur, Jorien L; Vink, Jacqueline M
2018-07-01
Epidemiological studies consistently show co-occurrence of use of different addictive substances. Whether these associations are causal or due to overlapping underlying influences remains an important question in addiction research. Methodological advances have made it possible to use published genetic associations to infer causal relationships between phenotypes. In this exploratory study, we used Mendelian randomization (MR) to examine the causality of well-established associations between nicotine, alcohol, caffeine and cannabis use. Two-sample MR was employed to estimate bidirectional causal effects between four addictive substances: nicotine (smoking initiation and cigarettes smoked per day), caffeine (cups of coffee per day), alcohol (units per week) and cannabis (initiation). Based on existing genome-wide association results we selected genetic variants associated with the exposure measure as an instrument to estimate causal effects. Where possible we applied sensitivity analyses (MR-Egger and weighted median) more robust to horizontal pleiotropy. Most MR tests did not reveal causal associations. There was some weak evidence for a causal positive effect of genetically instrumented alcohol use on smoking initiation and of cigarettes per day on caffeine use, but these were not supported by the sensitivity analyses. There was also some suggestive evidence for a positive effect of alcohol use on caffeine use (only with MR-Egger) and smoking initiation on cannabis initiation (only with weighted median). None of the suggestive causal associations survived corrections for multiple testing. Two-sample Mendelian randomization analyses found little evidence for causal relationships between nicotine, alcohol, caffeine and cannabis use. © 2018 Society for the Study of Addiction.
Dumalaon-Canaria, J A; Prichard, I; Hutchinson, A D; Wilson, C
2018-01-01
This study aims to examine the association between cancer causal attributions, fear of cancer recurrence (FCR) and psychological well-being and the possible moderating effect of optimism among women with a previous diagnosis of breast cancer. Participants (N = 314) completed an online self-report assessment of causal attributions for their own breast cancer, FCR, psychological well-being and optimism. Simultaneous multiple regression analyses were conducted to explore the overall contribution of causal attributions to FCR and psychological well-being separately. Hierarchical multiple regression analyses were also utilised to examine the potential moderating influence of dispositional optimism on the relationship between causal attributions and FCR and psychological well-being. Causal attributions of environmental exposures, family history and stress were significantly associated with higher FCR. The attribution of stress was also significantly associated with lower psychological well-being. Optimism did not moderate the relationship between causal attributions and FCR or well-being. The observed relationships between causal attributions for breast cancer and FCR and psychological well-being suggest that the inclusion of causal attributions in screening for FCR is potentially important. Health professionals may need to provide greater psychological support to women who attribute their cancer to non-modifiable causes and consequently continue to experience distress. © 2016 John Wiley & Sons Ltd.
Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals
NASA Astrophysics Data System (ADS)
Jiang, P.; Kumar, P.
2017-12-01
Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.
Causal inference in economics and marketing.
Varian, Hal R
2016-07-05
This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.
Causal Relations and Feature Similarity in Children's Inductive Reasoning
ERIC Educational Resources Information Center
Hayes, Brett K.; Thompson, Susan P.
2007-01-01
Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations…
Causal inference in economics and marketing
Varian, Hal R.
2016-01-01
This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. PMID:27382144
Causal imprinting in causal structure learning.
Taylor, Eric G; Ahn, Woo-Kyoung
2012-11-01
Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures "causal imprinting." Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. Copyright © 2012 Elsevier Inc. All rights reserved.
Bollen, Kenneth A
2007-06-01
R. D. Howell, E. Breivik, and J. B. Wilcox (2007) have argued that causal (formative) indicators are inherently subject to interpretational confounding. That is, they have argued that using causal (formative) indicators leads the empirical meaning of a latent variable to be other than that assigned to it by a researcher. Their critique of causal (formative) indicators rests on several claims: (a) A latent variable exists apart from the model when there are effect (reflective) indicators but not when there are causal (formative) indicators, (b) causal (formative) indicators need not have the same consequences, (c) causal (formative) indicators are inherently subject to interpretational confounding, and (d) a researcher cannot detect interpretational confounding when using causal (formative) indicators. This article shows that each claim is false. Rather, interpretational confounding is more a problem of structural misspecification of a model combined with an underidentified model that leaves these misspecifications undetected. Interpretational confounding does not occur if the model is correctly specified whether a researcher has causal (formative) or effect (reflective) indicators. It is the validity of a model not the type of indicator that determines the potential for interpretational confounding. Copyright 2007 APA, all rights reserved.
Nonlinear parametric model for Granger causality of time series
NASA Astrophysics Data System (ADS)
Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano
2006-06-01
The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.
When Work is Related to Disease, What Establishes Evidence for a Causal Relation?
Verbeek, Jos
2012-06-01
Establishing a causal relationship between factors at work and disease is difficult for occupational physicians and researchers. This paper seeks to provide arguments for the judgement of evidence of causality in observational studies that relate work factors to disease. I derived criteria for the judgement of evidence of causality from the following sources: the criteria list of Hill, the approach by Rothman, the methods used by International Agency for Research on Cancer (IARC), and methods used by epidemiologists. The criteria are applied to two cases of putative occupational diseases; breast cancer caused by shift work and aerotoxic syndrome. Only three of the Hill criteria can be applied to an actual study. Rothman stresses the importance of confounding and alternative explanations than the putative cause. IARC closely follows Hill, but they also incorporate other than epidemiological evidence. Applied to shift work and breast cancer, these results have found moderate evidence for a causal relationship, but applied to the aerotoxic syndrome, there is an absence of evidence of causality. There are no ready to use algorithms for judgement of evidence of causality. Criteria from different sources lead to similar results and can make a conclusion of causality more or less likely.
When Work is Related to Disease, What Establishes Evidence for a Causal Relation?
2012-01-01
Establishing a causal relationship between factors at work and disease is difficult for occupational physicians and researchers. This paper seeks to provide arguments for the judgement of evidence of causality in observational studies that relate work factors to disease. I derived criteria for the judgement of evidence of causality from the following sources: the criteria list of Hill, the approach by Rothman, the methods used by International Agency for Research on Cancer (IARC), and methods used by epidemiologists. The criteria are applied to two cases of putative occupational diseases; breast cancer caused by shift work and aerotoxic syndrome. Only three of the Hill criteria can be applied to an actual study. Rothman stresses the importance of confounding and alternative explanations than the putative cause. IARC closely follows Hill, but they also incorporate other than epidemiological evidence. Applied to shift work and breast cancer, these results have found moderate evidence for a causal relationship, but applied to the aerotoxic syndrome, there is an absence of evidence of causality. There are no ready to use algorithms for judgement of evidence of causality. Criteria from different sources lead to similar results and can make a conclusion of causality more or less likely. PMID:22993715
He, Yunfeng; Zhou, Xinlin; Shi, Dexin; Song, Hairong; Zhang, Hui; Shi, Jiannong
2016-01-01
Approximate number system (ANS) acuity and mathematical ability have been found to be closely associated in recent studies. However, whether and how these two measures are causally related still remain less addressed. There are two hypotheses about the possible causal relationship: ANS acuity influences mathematical performances, or access to math education sharpens ANS acuity. Evidences in support of both hypotheses have been reported, but these two hypotheses have never been tested simultaneously. Therefore, questions still remain whether only one-direction or reciprocal causal relationships existed in the association. In this work, we provided a new evidence on the causal relationship between ANS acuity and arithmetic ability. ANS acuity and mathematical ability of elementary-school students were measured sequentially at three time points within one year, and all possible causal directions were evaluated simultaneously using cross-lagged regression analysis. The results show that ANS acuity influences later arithmetic ability while the reverse causal direction was not supported. Our finding adds a strong evidence to the causal association between ANS acuity and mathematical ability, and also has important implications for educational intervention designed to train ANS acuity and thereby promote mathematical ability.
He, Yunfeng; Zhou, Xinlin; Shi, Dexin; Song, Hairong; Zhang, Hui; Shi, Jiannong
2016-01-01
Approximate number system (ANS) acuity and mathematical ability have been found to be closely associated in recent studies. However, whether and how these two measures are causally related still remain less addressed. There are two hypotheses about the possible causal relationship: ANS acuity influences mathematical performances, or access to math education sharpens ANS acuity. Evidences in support of both hypotheses have been reported, but these two hypotheses have never been tested simultaneously. Therefore, questions still remain whether only one-direction or reciprocal causal relationships existed in the association. In this work, we provided a new evidence on the causal relationship between ANS acuity and arithmetic ability. ANS acuity and mathematical ability of elementary-school students were measured sequentially at three time points within one year, and all possible causal directions were evaluated simultaneously using cross-lagged regression analysis. The results show that ANS acuity influences later arithmetic ability while the reverse causal direction was not supported. Our finding adds a strong evidence to the causal association between ANS acuity and mathematical ability, and also has important implications for educational intervention designed to train ANS acuity and thereby promote mathematical ability. PMID:27462291
New Insights into Signed Path Coefficient Granger Causality Analysis
Zhang, Jian; Li, Chong; Jiang, Tianzi
2016-01-01
Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an “excitatory” or “inhibitory” influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation. PMID:27833547
Porta, Alberto; Bassani, Tito; Bari, Vlasta; Pinna, Gian D; Maestri, Roberto; Guzzetti, Stefano
2012-03-01
This study was designed to demonstrate the need of accounting for respiration (R) when causality between heart period (HP) and systolic arterial pressure (SAP) is under scrutiny. Simulations generated according to a bivariate autoregressive closed-loop model were utilized to assess how causality changes as a function of the model parameters. An exogenous (X) signal was added to the bivariate autoregressive closed-loop model to evaluate the bias on causality induced when the X source was disregarded. Causality was assessed in the time domain according to a predictability improvement approach (i.e., Granger causality). HP and SAP variability series were recorded with R in 19 healthy subjects during spontaneous and controlled breathing at 10, 15, and 20 breaths/min. Simulations proved the importance of accounting for X signals. During spontaneous breathing, assessing causality without taking into consideration R leads to a significantly larger percentage of closed-loop interactions and a smaller fraction of unidirectional causality from HP to SAP. This finding was confirmed during paced breathing and it was independent of the breathing rate. These results suggest that the role of baroreflex cannot be correctly assessed without accounting for R.
Bayes and blickets: Effects of knowledge on causal induction in children and adults
Griffiths, Thomas L.; Sobel, David M.; Tenenbaum, Joshua B.; Gopnik, Alison
2011-01-01
People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayesian inference. Five studies explored the predictions of this account with adults and 4-year-olds, using tasks in which participants learned about the causal properties of a set of objects. The studies varied the two factors that our Bayesian approach predicted should be relevant to causal induction: the prior probability with which causal relations exist, and the assumption of a deterministic or a probabilistic relation between cause and effect. Adults’ judgments (Experiments 1, 2, and 4) were in close correspondence with the quantitative predictions of the model, and children’s judgments (Experiments 3 and 5) agreed qualitatively with this account. PMID:21972897
Boundary causality versus hyperbolicity for spherical black holes in Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Cáceres, Elena; Keeler, Cynthia
2017-07-01
We explore the constraints boundary causality places on the allowable Gauss-Bonnet gravitational couplings in asymptotically AdS spaces, specifically considering spherical black hole solutions. We additionally consider the hyperbolicity properties of these solutions, positing that hyperbolicity-violating solutions are sick solutions whose causality properties provide no information about the theory they reside in. For both signs of the Gauss-Bonnet coupling, spherical black holes violate boundary causality at smaller absolute values of the coupling than planar black holes do. For negative coupling, as we tune the Gauss-Bonnet coupling away from zero, both spherical and planar black holes violate hyperbolicity before they violate boundary causality. For positive coupling, the only hyperbolicity-respecting spherical black holes which violate boundary causality do not do so appreciably far from the planar bound. Consequently, eliminating hyperbolicity-violating solutions means the bound on Gauss-Bonnet couplings from the boundary causality of spherical black holes is no tighter than that from planar black holes.
Partial Granger causality--eliminating exogenous inputs and latent variables.
Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng
2008-07-15
Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.
MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data.
Sella, Nadir; Verny, Louis; Uguzzoni, Guido; Affeldt, Séverine; Isambert, Hervé
2018-07-01
We present a web server running the MIIC algorithm, a network learning method combining constraint-based and information-theoretic frameworks to reconstruct causal, non-causal or mixed networks from non-perturbative data, without the need for an a priori choice on the class of reconstructed network. Starting from a fully connected network, the algorithm first removes dispensable edges by iteratively subtracting the most significant information contributions from indirect paths between each pair of variables. The remaining edges are then filtered based on their confidence assessment or oriented based on the signature of causality in observational data. MIIC online server can be used for a broad range of biological data, including possible unobserved (latent) variables, from single-cell gene expression data to protein sequence evolution and outperforms or matches state-of-the-art methods for either causal or non-causal network reconstruction. MIIC online can be freely accessed at https://miic.curie.fr. Supplementary data are available at Bioinformatics online.
Whose statistical reasoning is facilitated by a causal structure intervention?
McNair, Simon; Feeney, Aidan
2015-02-01
People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430-450, 2007) proposed that a causal Bayesian framework accounts for peoples' errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.
A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.
Hu, Shoubo; Chen, Zhitang; Chan, Laiwan
2018-05-01
Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.
Bor, Jacob; Tanser, Frank; Bärnighausen, Till
2017-01-01
Background Loss to follow-up is high among HIV patients not yet receiving antiretroviral therapy (ART). Clinical trials have demonstrated the clinical efficacy of early ART; however, these trials may miss an important real-world consequence of providing ART at diagnosis: its impact on retention in care. Methods and findings We examined the effect of immediate (versus deferred) ART on retention in care using a regression discontinuity design. The analysis included all patients (N = 11,306) entering clinical HIV care with a first CD4 count between 12 August 2011 and 31 December 2012 in a public-sector HIV care and treatment program in rural South Africa. Patients were assigned to immediate versus deferred ART eligibility, as determined by a CD4 count < 350 cells/μl, per South African national guidelines. Patients referred to pre-ART care were instructed to return every 6 months for CD4 monitoring. Patients initiated on ART were instructed to return at 6 and 12 months post-initiation and annually thereafter for CD4 and viral load monitoring. We assessed retention in HIV care at 12 months, as measured by the presence of a clinic visit, lab test, or ART initiation 6 to 18 months after initial CD4 test. Differences in retention between patients presenting with CD4 counts just above versus just below the 350-cells/μl threshold were estimated using local linear regression models with a data-driven bandwidth and with the algorithm for selecting the bandwidth chosen ex ante. Among patients with CD4 counts close to the 350-cells/μl threshold, having an ART-eligible CD4 count (<350 cells/μl) was associated with higher 12-month retention than not having an ART-eligible CD4 count (50% versus 32%), an intention-to-treat risk difference of 18 percentage points (95% CI 11 to 23; p < 0.001). The decision to start ART was determined by CD4 count for one in four patients (25%) presenting close to the eligibility threshold (95% CI 20% to 31%; p < 0.001). In this subpopulation, having an ART-eligible CD4 count was associated with higher 12-month retention than not having an ART-eligible CD4 count (91% versus 21%), a complier causal risk difference of 70 percentage points (95% CI 42 to 98; p < 0.001). The major limitations of the study are the potential for limited generalizability, the potential for outcome misclassification, and the absence of data on longer-term health outcomes. Conclusions Patients who were eligible for immediate ART had dramatically higher retention in HIV care than patients who just missed the CD4-count eligibility cutoff. The clinical and population health benefits of offering immediate ART regardless of CD4 count may be larger than suggested by clinical trials. PMID:29182641
Paradoxical Behavior of Granger Causality
NASA Astrophysics Data System (ADS)
Witt, Annette; Battaglia, Demian; Gail, Alexander
2013-03-01
Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen
Complex Causal Process Diagrams for Analyzing the Health Impacts of Policy Interventions
Joffe, Michael; Mindell, Jennifer
2006-01-01
Causal diagrams are rigorous tools for controlling confounding. They also can be used to describe complex causal systems, which is done routinely in communicable disease epidemiology. The use of change diagrams has advantages over static diagrams, because change diagrams are more tractable, relate better to interventions, and have clearer interpretations. Causal diagrams are a useful basis for modeling. They make assumptions explicit, provide a framework for analysis, generate testable predictions, explore the effects of interventions, and identify data gaps. Causal diagrams can be used to integrate different types of information and to facilitate communication both among public health experts and between public health experts and experts in other fields. Causal diagrams allow the use of instrumental variables, which can help control confounding and reverse causation. PMID:16449586
Clark, Matthew M; Bradley, Karleah L; Jenkins, Sarah M; Mettler, Emily A; Larson, Brent G; Preston, Heather R; Liesinger, Juliette T; Werneburg, Brooke L; Hagen, Philip T; Harris, Ann M; Riley, Beth A; Olsen, Kerry D; Vickers Douglas, Kristin S
2016-07-01
Purpose . This project examined potential changes in health behaviors following wellness coaching. Design . In a single cohort study design, wellness coaching participants were recruited in 2011, data were collected through July 2012, and were analyzed through December 2013. Items in the study questionnaire used requested information about 11 health behaviors, self-efficacy for eating, and goal-setting skills. Setting . Worksite wellness center. Participants . One-hundred employee wellness center members with an average age of 42 years; 90% were female and most were overweight or obese. Intervention . Twelve weeks of in-person, one-on-one wellness coaching. Method . Participants completed study questionnaires when they started wellness coaching (baseline), after 12 weeks of wellness coaching, and at a 3-month follow-up. Results . From baseline to week 12, these 100 wellness coaching participants improved their self-reported health behaviors (11 domains, 0- to 10-point scale) from an average of 6.4 to 7.7 (p < .001), eating self-efficacy from an average of 112 to 142 (on a 0- to 180-point scale; p < .001), and goal-setting skills from an average of 49 to 55 (on a 16- to 80-point scale; p < .001). Conclusion . These results suggest that participants improved their current health behaviors and learned skills for continued healthy living. Future studies that use randomized controlled trials are needed to establish causality for wellness coaching.
Early adolescent Body Mass Index and the constructed environment.
Jones, Randall M; Vaterlaus, J Mitchell
2014-07-01
Previous research has shown that macro-level environmental features such as access to walking trails and recreational facilities are correlated with adolescent weight. Additionally, a handful of studies have documented relationships between micro-level environmental features, such as the presence (or absence) of a television in the bedroom, and adolescent weight. In this exploratory study we focus exclusively on features of the micro-level environment by examining objects that are found within adolescent personal bedrooms in relation to the adolescent occupant's Body Mass Index score (BMI). Participants were 234 early adolescents (eighth graders and ninth graders) who lived with both biological parents and who had their own private bedroom. Discriminant analyses were used to identify the bedrooms belonging to adolescents with below and above average BMI using objects contained within the micro-level environment as discriminating variables. Bedrooms belonging to adolescents with above average BMI were more likely to contain objects associated with sedentary behavior (e.g., magazines, electronic games, dolls), whereas the bedrooms belonging to the average and below average BMI adolescents were more likely to contain objects that reflect past physical activity (e.g., trophies, souvenirs, pictures of places that they had visited). If causal connections between micro-environmental variables and adolescent BMI can be established in future longitudinal research, environmental manipulations may affect adolescent BMI. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Fantini, Bernardino
2006-01-01
From its first proposal, the Central Dogma had a graphical form, complete with arrows of different types, and this form quickly became its standard presentation. In different scientific contexts, arrows have different meanings and in this particular case the arrows indicated the flow of information among different macromolecules. A deeper analysis illustrates that the arrows also imply a causal statement, directly connected to the causal role of genetic information. The author suggests a distinction between two different kinds of causal links, defined as 'physical causality' and 'biological determination', both implied in the production of biological specificity.
Modeling of Turbulence Generated Noise in Jets
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2004-01-01
A numerically calculated Green's function is used to predict jet noise spectrum and its far-field directivity. A linearized form of Lilley's equation governs the non-causal Green s function of interest, with the non-linear terms on the right hand side identified as the source. In this paper, contributions from the so-called self- and shear-noise source terms will be discussed. A Reynolds-averaged Navier-Stokes solution yields the required mean flow as well as time- and length scales of a noise-generating turbulent eddy. A non-compact source, with exponential temporal and spatial functions, is used to describe the turbulence velocity correlation tensors. It is shown that while an exact non-causal Green's function accurately predicts the observed shift in the location of the spectrum peak with angle as well as the angularity of sound at moderate Mach numbers, at high subsonic and supersonic acoustic Mach numbers the polar directivity of radiated sound is not entirely captured by this Green's function. Results presented for Mach 0.5 and 0.9 isothermal jets, as well as a Mach 0.8 hot jet conclude that near the peak radiation angle a different source/Green's function convolution integral may be required in order to capture the peak observed directivity of jet noise.
Zhang, L; Price, R; Aweeka, F; Bellibas, S E; Sheiner, L B
2001-02-01
A small-scale clinical investigation was done to quantify the penetration of stavudine (D4T) into cerebrospinal fluid (CSF). A model-based analysis estimates the steady-state ratio of AUCs of CSF and plasma concentrations (R(AUC)) to be 0.270, and the mean residence time of drug in the CSF to be 7.04 h. The analysis illustrates the advantages of a causal (scientific, predictive) model-based approach to analysis over a noncausal (empirical, descriptive) approach when the data, as here, demonstrate certain problematic features commonly encountered in clinical data, namely (i) few subjects, (ii) sparse sampling, (iii) repeated measures, (iv) imbalance, and (v) individual design variation. These features generally require special attention in data analysis. The causal-model-based analysis deals with features (i) and (ii), both of which reduce efficiency, by combining data from different studies and adding subject-matter prior information. It deals with features (iii)--(v), all of which prevent 'averaging' individual data points directly, first, by adjusting in the model for interindividual data differences due to design differences, secondly, by explicitly differentiating between interpatient, interoccasion, and measurement error variation, and lastly, by defining a scientifically meaningful estimand (R(AUC)) that is independent of design.
What has driven the decline of infant mortality in Kenya in the 2000s?
Demombynes, Gabriel; Trommlerová, Sofia Karina
2016-05-01
Substantial declines in early childhood mortality have taken place in many countries in Sub-Saharan Africa. Kenya's infant mortality rate fell by 7.6 percent per year between 2003 and 2008, the fastest rate of decline among the 20 countries in the region for which recent Demographic and Health Survey (DHS) data are available. The average rate of decline across all 20 countries was 3.6 percent per year. Among the possible causes of the observed decline in Kenya is a large-scale campaign to distribute insecticide-treated bednets (ITN) which started in 2004. A Oaxaca-Blinder decomposition using DHS data shows that the increased ownership of bednets in endemic malaria zones explains 79 percent of the decline in infant mortality. Although the Oaxaca-Blinder method cannot identify causal effects, given the wide evidence basis showing that ITN usage can reduce malaria prevalence and the huge surge in ITN ownership in Kenya, it is likely that the decomposition results reflect at least in part a causal effect. The widespread ownership of ITNs in areas of Kenya where malaria is rare suggests that better targeting of ITN provision could improve the cost-effectiveness of such programs. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuya J.; Sughiyama, Yuki
2017-07-01
Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.
NASA Astrophysics Data System (ADS)
Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele
2017-10-01
In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.
Racial Segregation and the American Foreclosure Crisis
Rugh, Jacob S.; Massey, Douglas S.
2013-01-01
Although the rise in subprime lending and the ensuing wave of foreclosures was partly a result of market forces that have been well-identified in the literature, in the United States it was also a highly racialized process. We argue that residential segregation created a unique niche of poor minority clients who were differentially marketed risky subprime loans that were in great demand for use in mortgage-backed securities that could be sold on secondary markets. We test this argument by regressing foreclosure actions in the top 100 U.S. metropolitan areas on measures of black, Hispanic, and Asian segregation while controlling for a variety of housing market conditions, including average creditworthiness, the extent of coverage under the Community Reinvestment Act, the degree of zoning regulation, and the overall rate of subprime lending. We find that black residential dissimilarity and spatial isolation are powerful predictors of foreclosures across U.S. metropolitan areas. In order to isolate subprime lending as the causal mechanism whereby segregation influences foreclosures, we estimate a two-stage least squares model that confirms the causal effect of black segregation on the number and rate of foreclosures across metropolitan areas. In the United States segregation was an important contributing cause of the foreclosure crisis, along with overbuilding, risky lending practices, lax regulation, and the bursting of the housing price bubble. PMID:25308973
Inference in the Wild: A Framework for Human Situation Assessment and a Case Study of Air Combat.
McAnally, Ken; Davey, Catherine; White, Daniel; Stimson, Murray; Mascaro, Steven; Korb, Kevin
2018-06-24
Situation awareness is a key construct in human factors and arises from a process of situation assessment (SA). SA comprises the perception of information, its integration with existing knowledge, the search for new information, and the prediction of the future state of the world, including the consequences of planned actions. Causal models implemented as Bayesian networks (BNs) are attractive for modeling all of these processes within a single, unified framework. We elicited declarative knowledge from two Royal Australian Air Force (RAAF) fighter pilots about the information sources used in the identification (ID) of airborne entities and the causal relationships between these sources. This knowledge was represented in a BN (the declarative model) that was evaluated against the performance of 19 RAAF fighter pilots in a low-fidelity simulation. Pilot behavior was well predicted by a simple associative model (the behavioral model) with only three attributes of ID. Search for information by pilots was largely compensatory and was near-optimal with respect to the behavioral model. The average revision of beliefs in response to evidence was close to Bayesian, but there was substantial variability. Together, these results demonstrate the value of BNs for modeling human SA. Copyright © 2018 Cognitive Science Society, Inc.
CADDIS Volume 5. Causal Databases: Home page (Duplicate?)
The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.
ERIC Educational Resources Information Center
Grotzer, Tina A.; Tutwiler, M. Shane
2014-01-01
This article considers a set of well-researched default assumptions that people make in reasoning about complex causality and argues that, in part, they result from the forms of causal induction that we engage in and the type of information available in complex environments. It considers how information often falls outside our attentional frame…
Beyond Markov: Accounting for independence violations in causal reasoning.
Rehder, Bob
2018-06-01
Although many theories of causal cognition are based on causal graphical models, a key property of such models-the independence relations stipulated by the Markov condition-is routinely violated by human reasoners. This article presents three new accounts of those independence violations, accounts that share the assumption that people's understanding of the correlational structure of data generated from a causal graph differs from that stipulated by causal graphical model framework. To distinguish these models, experiments assessed how people reason with causal graphs that are larger than those tested in previous studies. A traditional common cause network (Y 1 ←X→Y 2 ) was extended so that the effects themselves had effects (Z 1 ←Y 1 ←X→Y 2 →Z 2 ). A traditional common effect network (Y 1 →X←Y 2 ) was extended so that the causes themselves had causes (Z 1 →Y 1 →X←Y 2 ←Z 2 ). Subjects' inferences were most consistent with the beta-Q model in which consistent states of the world-those in which variables are either mostly all present or mostly all absent-are viewed as more probable than stipulated by the causal graphical model framework. Substantial variability in subjects' inferences was also observed, with the result that substantial minorities of subjects were best fit by one of the other models (the dual prototype or a leaky gate models). The discrepancy between normative and human causal cognition stipulated by these models is foundational in the sense that they locate the error not in people's causal reasoning but rather in their causal representations. As a result, they are applicable to any cognitive theory grounded in causal graphical models, including theories of analogy, learning, explanation, categorization, decision-making, and counterfactual reasoning. Preliminary evidence that independence violations indeed generalize to other judgment types is presented. Copyright © 2018 Elsevier Inc. All rights reserved.
Boerebach, Benjamin C. M.; Lombarts, Kiki M. J. M. H.; Scherpbier, Albert J. J.; Arah, Onyebuchi A.
2013-01-01
Background In fledgling areas of research, evidence supporting causal assumptions is often scarce due to the small number of empirical studies conducted. In many studies it remains unclear what impact explicit and implicit causal assumptions have on the research findings; only the primary assumptions of the researchers are often presented. This is particularly true for research on the effect of faculty’s teaching performance on their role modeling. Therefore, there is a need for robust frameworks and methods for transparent formal presentation of the underlying causal assumptions used in assessing the causal effects of teaching performance on role modeling. This study explores the effects of different (plausible) causal assumptions on research outcomes. Methods This study revisits a previously published study about the influence of faculty’s teaching performance on their role modeling (as teacher-supervisor, physician and person). We drew eight directed acyclic graphs (DAGs) to visually represent different plausible causal relationships between the variables under study. These DAGs were subsequently translated into corresponding statistical models, and regression analyses were performed to estimate the associations between teaching performance and role modeling. Results The different causal models were compatible with major differences in the magnitude of the relationship between faculty’s teaching performance and their role modeling. Odds ratios for the associations between teaching performance and the three role model types ranged from 31.1 to 73.6 for the teacher-supervisor role, from 3.7 to 15.5 for the physician role, and from 2.8 to 13.8 for the person role. Conclusions Different sets of assumptions about causal relationships in role modeling research can be visually depicted using DAGs, which are then used to guide both statistical analysis and interpretation of results. Since study conclusions can be sensitive to different causal assumptions, results should be interpreted in the light of causal assumptions made in each study. PMID:23936020
Shi, Ning-ning; Shen, Guo-quan; He, Shui-yong; Guo, Ru-bao
2016-05-01
To study the biomechanical relationship between iliac rotation displacement and L(4,5) disc degeneration, and to provide clinical evidences for the prevention and treatment of L(4,5) disc degeneration and herniation. From March 2012 to February 2014,68 patients with lumbar disc herniation combined with sacroiliac joint disorders were selected. Among them, 42 patients with L(4,5) disc herniation combined with sacroiliac joint disorders included 22 males and 20 females, ranging in age from 19 to 63 years old, with an average of (51.78 +/- 20.18) years old, and the duration of the disease ranged from 1 to 126 months with an average of (11.18 +/- 9.23) months. Twenty-six patients with L5S1 disc herniation combined with sacroiliac joint disorders included 11 males and 15 females, ranging in age from18 to 65 years old with an average of (45.53 +/- 27.23) years old, and the duration of the disease ranged from 0.5 to 103 months with an average of (11.99 +/- 12.56) months. Sixty-eight anteroposterior lumbar radiographs, 68 lateral lumbar radiographs,and 68 pelvic plain films were taken. The degree of lumbar scoliosis, pelvic tilt,and disc thickness were measured. The correlation between pelvic tilt and lumbar scoliosis ,lumbar scoliosis and disc thickness were studied by using linear and regression methods. The hiomechanical analysis was performed. There was a positive correlation between pelvic tilt and lumbar scoliosis in patients with L(4,5) disk herniation (R=0.49, P=0.00). There was a causal relationship and good linear proportional relationship (Y=3.05+1.07X, P=0.00) in the two variables. There was a negative correlation between lumbar scoliosis and intervertebral space in male patients with L (4,5) disk herniation (R = -0.50, P=0.01). There was a causal relationship and good linear proportional relationship in the two variables (Y=13.09-0.27X, P=0.02). But there was a positive correlation between lumbar scoliosis and intervertebral space in male patients with L5S1 disk herniation (R=0.46, P=0.04). Iliac rotational displacement are closely related with L(4,5) disc degeneration and herniation in biomechanics. A new concepts and therapeutic approach is provided for clinical treatment of chronic and refractory herniation of L(4,5) disc in patients
D'Ariano, Giacomo Mauro
2018-07-13
Causality has never gained the status of a 'law' or 'principle' in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of 'determinism', and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the 'block Universe' and the connected 'past hypothesis' are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of 'super-determinism'.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
A Complex Systems Approach to Causal Discovery in Psychiatry.
Saxe, Glenn N; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C; Aliferis, Constantin
2016-01-01
Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry.
CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs) User Guide
The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.
Congiu, Sara; Schlottmann, Anne; Ray, Elizabeth
2010-01-01
We investigated perception of social and physical causality and animacy in simple motion events, for high-functioning children with autism (CA = 13, VMA = 9.6). Children matched 14 different animations to pictures showing physical, social or non-causality. In contrast to previous work, children with autism performed at a high level similar to VMA-matched controls, recognizing physical causality in launch and social causality in reaction events. The launch deficit previously found in younger children with autism, possibly related to attentional/verbal difficulties, is apparently overcome with age. Some events involved squares moving non-rigidly, like animals. Children with autism had difficulties recognizing this, extending the biological motion literature. However, animacy prompts amplified their attributions of social causality. Thus children with autism may overcome their animacy perception deficit strategically.
Three Cs in measurement models: causal indicators, composite indicators, and covariates.
Bollen, Kenneth A; Bauldry, Shawn
2011-09-01
In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.
Decline in sea snake abundance on a protected coral reef system in the New Caledonian Lagoon
NASA Astrophysics Data System (ADS)
Goiran, C.; Shine, R.
2013-03-01
Monitoring results from a small reef (Ile aux Canards) near Noumea in the New Caledonian Lagoon reveal that numbers of turtle-headed sea snakes ( Emydocephalus annulatus) have been in consistent decline over a 9-year period, with average daily counts of snakes decreasing from >6 to <2 over this period. Causal factors for the decline are unclear, because the site is a protected area used only for tourism. Our results suggest that wildlife management authorities should carefully monitor sea snake populations to check whether the declines now documented for New Caledonia and in nearby Australian waters also occur around the islands of the Indo-Pacific.
The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation
2015-02-20
being integrated within MAT, including Granger causality. Granger causality tests whether a data series helps when predicting future values of another...relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438. Granger, C. W. (1980). Testing ... testing dataset. This effort is described in Section 3.2. 3.1. Improvements in Granger Causality User Interface Various metrics of causality are
Who Is the Dynamic Duo? How Infants Learn about the Identity of Objects in a Causal Chain
ERIC Educational Resources Information Center
Rakison, David H.; Smith, Gabriel Tobin; Ali, Areej
2016-01-01
Four experiments investigated infants' and adults' knowledge of the identity of objects in a causal sequence of events. In Experiments 1 and 2, 18- and 22-month-olds in the visual habituation procedure were shown a 3-step causal chain event in which the relation between an object's part (dynamic or static) and its causal role was either consistent…
The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation
2013-11-20
Granger causality F-test validation 3.1.2. Dynamic time warping for uneven temporal relationships Many causal relationships are imperfectly...mapping for dynamic feedback models Granger causality and DTW can identify causal relationships and consider complex temporal factors. However, many ...variant of the tf-idf algorithm (Manning, Raghavan, Schutze et al., 2008), typically used in search engines, to “score” features. The (-log tf) in
Unified framework for information integration based on information geometry
Oizumi, Masafumi; Amari, Shun-ichi
2016-01-01
Assessment of causal influences is a ubiquitous and important subject across diverse research fields. Drawn from consciousness studies, integrated information is a measure that defines integration as the degree of causal influences among elements. Whereas pairwise causal influences between elements can be quantified with existing methods, quantifying multiple influences among many elements poses two major mathematical difficulties. First, overestimation occurs due to interdependence among influences if each influence is separately quantified in a part-based manner and then simply summed over. Second, it is difficult to isolate causal influences while avoiding noncausal confounding influences. To resolve these difficulties, we propose a theoretical framework based on information geometry for the quantification of multiple causal influences with a holistic approach. We derive a measure of integrated information, which is geometrically interpreted as the divergence between the actual probability distribution of a system and an approximated probability distribution where causal influences among elements are statistically disconnected. This framework provides intuitive geometric interpretations harmonizing various information theoretic measures in a unified manner, including mutual information, transfer entropy, stochastic interaction, and integrated information, each of which is characterized by how causal influences are disconnected. In addition to the mathematical assessment of consciousness, our framework should help to analyze causal relationships in complex systems in a complete and hierarchical manner. PMID:27930289
Adapting to an Uncertain World: Cognitive Capacity and Causal Reasoning with Ambiguous Observations
Shou, Yiyun; Smithson, Michael
2015-01-01
Ambiguous causal evidence in which the covariance of the cause and effect is partially known is pervasive in real life situations. Little is known about how people reason about causal associations with ambiguous information and the underlying cognitive mechanisms. This paper presents three experiments exploring the cognitive mechanisms of causal reasoning with ambiguous observations. Results revealed that the influence of ambiguous observations manifested by missing information on causal reasoning depended on the availability of cognitive resources, suggesting that processing ambiguous information may involve deliberative cognitive processes. Experiment 1 demonstrated that subjects did not ignore the ambiguous observations in causal reasoning. They also had a general tendency to treat the ambiguous observations as negative evidence against the causal association. Experiment 2 and Experiment 3 included a causal learning task requiring a high cognitive demand in which paired stimuli were presented to subjects sequentially. Both experiments revealed that processing ambiguous or missing observations can depend on the availability of cognitive resources. Experiment 2 suggested that the contribution of working memory capacity to the comprehensiveness of evidence retention was reduced when there were ambiguous or missing observations. Experiment 3 demonstrated that an increase in cognitive demand due to a change in the task format reduced subjects’ tendency to treat ambiguous-missing observations as negative cues. PMID:26468653
Spatio-temporal Granger causality: a new framework
Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng
2015-01-01
That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924
Scior, Katrina; Furnham, Adrian
2016-09-30
Evidence on mental illness stigma abounds yet little is known about public perceptions of intellectual disability. This study examined causal beliefs about intellectual disability and schizophrenia and how these relate to awareness of the condition and social distance. UK lay people aged 16+(N=1752), in response to vignettes depicting intellectual disability and schizophrenia, noted their interpretation of the difficulties, and rated their agreement with 22 causal and four social distance items. They were most likely to endorse environmental causes for intellectual disability, and biomedical factors, trauma and early disadvantage for schizophrenia. Accurate identification of both vignettes was associated with stronger endorsement of biomedical causes, alongside weaker endorsement of adversity, environmental and supernatural causes. Biomedical causal beliefs and social distance were negatively correlated for intellectual disability, but not for schizophrenia. Causal beliefs mediated the relationship between identification of the condition and social distance for both conditions. While all four types of causal beliefs acted as mediators for intellectual disability, for schizophrenia only supernatural causal beliefs did. Educating the public and promoting certain causal beliefs may be of benefit in tackling intellectual disability stigma, but for schizophrenia, other than tackling supernatural attributions, may be of little benefit in reducing stigma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[Causality link in criminal law: role of epidemiology].
Zocchetti, C; Riboldi, L
2003-01-01
This paper focusses on the role of epidemiology in demonstrating causality in criminal trials of toxic tort litigation. First of all, consideration is given of the specificity of the criminal trial and of the role of the epidemiologist as expert witness. As a second step the concept of causality is examined separating general from specific (individual level) causality. As regards general causality, strategies based on some criteria (example: Bradford-Hill criteria) are contrasted with approaches that do not consider causality a matter of science but one of health policy; and specific methods frequently used (meta-analysis, risk assessment, International Boards evaluation,....) are discussed, with special reference to the adoption of high-level standards and to the context of cross-examination. As regards individual level causality the difficulties of the epidemiologic approach to such evaluation are stressed, with special reference to topics like expected value, attributable risk, and probability of causation. All examples are taken from Italian court trials. A general comment on the difficulties of using the criminal trial (dominated by the "but for" rule) for toxic tort litigation and on the opportunity to switch to trials (civil, administrative) with less stringent causal rules ("more probable than not") is offered, with a consideration also of what are called "class actions".
Causal Learning in Gambling Disorder: Beyond the Illusion of Control.
Perales, José C; Navas, Juan F; Ruiz de Lara, Cristian M; Maldonado, Antonio; Catena, Andrés
2017-06-01
Causal learning is the ability to progressively incorporate raw information about dependencies between events, or between one's behavior and its outcomes, into beliefs of the causal structure of the world. In spite of the fact that some cognitive biases in gambling disorder can be described as alterations of causal learning involving gambling-relevant cues, behaviors, and outcomes, general causal learning mechanisms in gamblers have not been systematically investigated. In the present study, we compared gambling disorder patients against controls in an instrumental causal learning task. Evidence of illusion of control, namely, overestimation of the relationship between one's behavior and an uncorrelated outcome, showed up only in gamblers with strong current symptoms. Interestingly, this effect was part of a more complex pattern, in which gambling disorder patients manifested a poorer ability to discriminate between null and positive contingencies. Additionally, anomalies were related to gambling severity and current gambling disorder symptoms. Gambling-related biases, as measured by a standard psychometric tool, correlated with performance in the causal learning task, but not in the expected direction. Indeed, performance of gamblers with stronger biases tended to resemble the one of controls, which could imply that anomalies of causal learning processes play a role in gambling disorder, but do not seem to underlie gambling-specific biases, at least in a simple, direct way.
Spot the difference: Causal contrasts in scientific diagrams.
Scholl, Raphael
2016-12-01
An important function of scientific diagrams is to identify causal relationships. This commonly relies on contrasts that highlight the effects of specific difference-makers. However, causal contrast diagrams are not an obvious and easy to recognize category because they appear in many guises. In this paper, four case studies are presented to examine how causal contrast diagrams appear in a wide range of scientific reports, from experimental to observational and even purely theoretical studies. It is shown that causal contrasts can be expressed in starkly different formats, including photographs of complexly visualized macromolecules as well as line graphs, bar graphs, or plots of state spaces. Despite surface differences, however, there is a measure of conceptual unity among such diagrams. In empirical studies they often serve not only to infer and communicate specific causal claims, but also as evidence for them. The key data of some studies is given nowhere except in the diagrams. Many diagrams show multiple causal contrasts in order to demonstrate both that an effect exists and that the effect is specific - that is, to narrowly circumscribe the phenomenon to be explained. In a large range of scientific reports, causal contrast diagrams reflect the core epistemic claims of the researchers. Copyright © 2016. Published by Elsevier Ltd.
The good, the bad, and the timely: how temporal order and moral judgment influence causal selection
Reuter, Kevin; Kirfel, Lara; van Riel, Raphael; Barlassina, Luca
2014-01-01
Causal selection is the cognitive process through which one or more elements in a complex causal structure are singled out as actual causes of a certain effect. In this paper, we report on an experiment in which we investigated the role of moral and temporal factors in causal selection. Our results are as follows. First, when presented with a temporal chain in which two human agents perform the same action one after the other, subjects tend to judge the later agent to be the actual cause. Second, the impact of temporal location on causal selection is almost canceled out if the later agent did not violate a norm while the former did. We argue that this is due to the impact that judgments of norm violation have on causal selection—even if the violated norm has nothing to do with the obtaining effect. Third, moral judgments about the effect influence causal selection even in the case in which agents could not have foreseen the effect and did not intend to bring it about. We discuss our findings in connection to recent theories of the role of moral judgment in causal reasoning, on the one hand, and to probabilistic models of temporal location, on the other. PMID:25477851
Functional brain networks and white matter underlying theory-of-mind in autism.
Kana, Rajesh K; Libero, Lauren E; Hu, Christi P; Deshpande, Hrishikesh D; Colburn, Jeffrey S
2014-01-01
Human beings constantly engage in attributing causal explanations to one's own and to others' actions, and theory-of-mind (ToM) is critical in making such inferences. Although children learn causal attribution early in development, children with autism spectrum disorders (ASDs) are known to have impairments in the development of intentional causality. This functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study investigated the neural correlates of physical and intentional causal attribution in people with ASDs. In the fMRI scanner, 15 adolescents and adults with ASDs and 15 age- and IQ-matched typically developing peers made causal judgments about comic strips presented randomly in an event-related design. All participants showed robust activation in bilateral posterior superior temporal sulcus at the temporo-parietal junction (TPJ) in response to intentional causality. Participants with ASDs showed lower activation in TPJ, right inferior frontal gyrus and left premotor cortex. Significantly weaker functional connectivity was also found in the ASD group between TPJ and motor areas during intentional causality. DTI data revealed significantly reduced fractional anisotropy in ASD participants in white matter underlying the temporal lobe. In addition to underscoring the role of TPJ in ToM, this study found an interaction between motor simulation and mentalizing systems in intentional causal attribution and its possible discord in autism.
Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables
NASA Astrophysics Data System (ADS)
Barnett, Lionel; Barrett, Adam B.; Seth, Anil K.
2009-12-01
Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. Developed originally in the field of econometrics, it has since found application in a broader arena, particularly in neuroscience. More recently transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes, has gained traction in a similarly wide field. While it has been recognized that the two concepts must be related, the exact relationship has until now not been formally described. Here we show that for Gaussian variables, Granger causality and transfer entropy are entirely equivalent, thus bridging autoregressive and information-theoretic approaches to data-driven causal inference.
Tools for Detecting Causality in Space Systems
NASA Astrophysics Data System (ADS)
Johnson, J.; Wing, S.
2017-12-01
Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.
Explaining quantum correlations through evolution of causal models
NASA Astrophysics Data System (ADS)
Harper, Robin; Chapman, Robert J.; Ferrie, Christopher; Granade, Christopher; Kueng, Richard; Naoumenko, Daniel; Flammia, Steven T.; Peruzzo, Alberto
2017-04-01
We propose a framework for the systematic and quantitative generalization of Bell's theorem using causal networks. We first consider the multiobjective optimization problem of matching observed data while minimizing the causal effect of nonlocal variables and prove an inequality for the optimal region that both strengthens and generalizes Bell's theorem. To solve the optimization problem (rather than simply bound it), we develop a genetic algorithm treating as individuals causal networks. By applying our algorithm to a photonic Bell experiment, we demonstrate the trade-off between the quantitative relaxation of one or more local causality assumptions and the ability of data to match quantum correlations.
CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs) Quick Start Instructions
The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.
Causal Analysis/Diagnosis Decision Information System (CADDIS)
The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems to determine the cause of contamination.
Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information
NASA Astrophysics Data System (ADS)
Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam
2016-10-01
In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.
Markovits, Henry
2014-12-01
Understanding the development of conditional (if-then) reasoning is critical for theoretical and educational reasons. Here we examined the hypothesis that there is a developmental transition between reasoning with true and contrary-to-fact (CF) causal conditionals. A total of 535 students between 11 and 14 years of age received priming conditions designed to encourage use of either a true or CF alternatives generation strategy and reasoning problems with true causal and CF causal premises (with counterbalanced order). Results show that priming had no effect on reasoning with true causal premises. By contrast, priming with CF alternatives significantly improved logical reasoning with CF premises. Analysis of the effect of order showed that reasoning with CF premises reduced logical responding among younger students but had no effect among older students. Results support the idea that there is a transition in the reasoning processes in this age range associated with the nature of the alternatives generation process required for logical reasoning with true and CF causal conditionals. Copyright © 2014 Elsevier Inc. All rights reserved.
Inferring causal molecular networks: empirical assessment through a community-based effort
Hill, Steven M.; Heiser, Laura M.; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K.; Carlin, Daniel E.; Zhang, Yang; Sokolov, Artem; Paull, Evan O.; Wong, Chris K.; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V.; Favorov, Alexander V.; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W.; Long, Byron L.; Noren, David P.; Bisberg, Alexander J.; Mills, Gordon B.; Gray, Joe W.; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A.; Fertig, Elana J.; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M.; Spellman, Paul T.; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach
2016-01-01
Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks. PMID:26901648
NASA Astrophysics Data System (ADS)
Pearl, Judea
2000-03-01
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.
Kant on causal laws and powers.
Henschen, Tobias
2014-12-01
The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.
Aging and Integration of Contingency Evidence in Causal Judgment
Mutter, Sharon A.; Plumlee, Leslie F.
2009-01-01
Age differences in causal judgment are consistently greater for preventative/negative relationships than for generative/positive relationships. We used a feature analytic procedure (Mandel & Lehman, 1998) to determine whether this effect might be due to differences in young and older adults’ integration of contingency evidence during causal induction. To reduce the impact of age-related changes in learning/memory we presented contingency evidence for preventative, non-contingent, and generative relationships in summary form and to induce participants to integrate greater or lesser amounts of this evidence, we varied the meaningfulness of the causal context. Young adults showed greater flexibility in their integration processes than older adults. In an abstract causal context, there were no age differences in causal judgment or integration, but in meaningful contexts, young adults’ judgments for preventative relationships were more accurate than older adults’ and they assigned more weight to the contingency evidence confirming these relationships. These differences were mediated by age-related changes in processing speed. The decline in this basic cognitive resource may place boundaries on the amount or the type of evidence that older adults can integrate for causal judgment. PMID:20025406
Updating during reading comprehension: why causality matters.
Kendeou, Panayiota; Smith, Emily R; O'Brien, Edward J
2013-05-01
The present set of 7 experiments systematically examined the effectiveness of adding causal explanations to simple refutations in reducing or eliminating the impact of outdated information on subsequent comprehension. The addition of a single causal-explanation sentence to a refutation was sufficient to eliminate any measurable disruption in comprehension caused by the outdated information (Experiment 1) but was not sufficient to eliminate its reactivation (Experiment 2). However, a 3 sentence causal-explanation addition to a refutation eliminated both any measurable disruption in comprehension (Experiment 3) and the reactivation of the outdated information (Experiment 4). A direct comparison between the 1 and 3 causal-explanation conditions provided converging evidence for these findings (Experiment 5). Furthermore, a comparison of the 3 sentence causal-explanation condition with a 3 sentence qualified-elaboration condition demonstrated that even though both conditions were sufficient to eliminate any measurable disruption in comprehension (Experiment 6), only the causal-explanation condition was sufficient to eliminate the reactivation of the outdated information (Experiment 7). These results establish a boundary condition under which outdated information will influence comprehension; they also have broader implications for both the updating process and knowledge revision in general.
Price, T. Ryan; De Pablo-Fernandez, Eduardo; Haycock, Philip C.; Schrag, Anette; Lees, Andrew J.; Hardy, John; Singleton, Andrew; Nalls, Mike A.; Pearce, Neil; Wood, Nicholas W.
2017-01-01
Background Both positive and negative associations between higher body mass index (BMI) and Parkinson disease (PD) have been reported in observational studies, but it has been difficult to establish causality because of the possibility of residual confounding or reverse causation. To our knowledge, Mendelian randomisation (MR)—the use of genetic instrumental variables (IVs) to explore causal effects—has not previously been used to test the effect of BMI on PD. Methods and findings Two-sample MR was undertaken using genome-wide association (GWA) study data. The associations between the genetic instruments and BMI were obtained from the GIANT consortium and consisted of the per-allele difference in mean BMI for 77 independent variants that reached genome-wide significance. The per-allele difference in log-odds of PD for each of these variants was estimated from a recent meta-analysis, which included 13,708 cases of PD and 95,282 controls. The inverse-variance weighted method was used to estimate a pooled odds ratio (OR) for the effect of a 5-kg/m2 higher BMI on PD. Evidence of directional pleiotropy averaged across all variants was sought using MR–Egger regression. Frailty simulations were used to assess whether causal associations were affected by mortality selection. A combined genetic IV expected to confer a lifetime exposure of 5-kg/m2 higher BMI was associated with a lower risk of PD (OR 0.82, 95% CI 0.69–0.98). MR–Egger regression gave similar results, suggesting that directional pleiotropy was unlikely to be biasing the result (intercept 0.002; p = 0.654). However, the apparent protective influence of higher BMI could be at least partially induced by survival bias in the PD GWA study, as demonstrated by frailty simulations. Other important limitations of this application of MR include the inability to analyse non-linear associations, to undertake subgroup analyses, and to gain mechanistic insights. Conclusions In this large study using two-sample MR, we found that variants known to influence BMI had effects on PD in a manner consistent with higher BMI leading to lower risk of PD. The mechanism underlying this apparent protective effect warrants further study. PMID:28609445
Is there a relation between the 2D Causal Set action and the Lorentzian Gauss-Bonnet theorem?
NASA Astrophysics Data System (ADS)
Benincasa, Dionigi M. T.
2011-07-01
We investigate the relation between the two dimensional Causal Set action, Script S, and the Lorentzian Gauss-Bonnet theorem (LGBT). We give compelling reasons why the answer to the title's question is no. In support of this point of view we calculate the causal set inspired action of causal intervals in some two dimensional spacetimes: Minkowski, the flat cylinder and the flat trousers.
2010-09-01
achieved; the causal reasoning involved in understanding diseases such as AIDS, yellow fever, and cholera , and the causal reasoning in understanding a...and malaria, we could start to implement prevention strategies. Once we determined that contaminated water led to cholera , we could impose...sanitation measures to prevent further outbreaks . However, when dealing with indeterminate, multi-causal situations, the picture is not so easy. We may
Illusions of causality: how they bias our everyday thinking and how they could be reduced.
Matute, Helena; Blanco, Fernando; Yarritu, Ion; Díaz-Lago, Marcos; Vadillo, Miguel A; Barberia, Itxaso
2015-01-01
Illusions of causality occur when people develop the belief that there is a causal connection between two events that are actually unrelated. Such illusions have been proposed to underlie pseudoscience and superstitious thinking, sometimes leading to disastrous consequences in relation to critical life areas, such as health, finances, and wellbeing. Like optical illusions, they can occur for anyone under well-known conditions. Scientific thinking is the best possible safeguard against them, but it does not come intuitively and needs to be taught. Teaching how to think scientifically should benefit from better understanding of the illusion of causality. In this article, we review experiments that our group has conducted on the illusion of causality during the last 20 years. We discuss how research on the illusion of causality can contribute to the teaching of scientific thinking and how scientific thinking can reduce illusion.
Quantum-coherent mixtures of causal relations
NASA Astrophysics Data System (ADS)
Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.
2017-05-01
Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.
Quantum-coherent mixtures of causal relations
MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.
2017-01-01
Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394
Inferring causal molecular networks: empirical assessment through a community-based effort.
Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach
2016-04-01
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.
Quantum-coherent mixtures of causal relations.
MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J
2017-05-09
Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.
Does Causality Matter More Now? Increase in the Proportion of Causal Language in English Texts.
Iliev, Rumen; Axelrod, Robert
2016-05-01
The vast majority of the work on culture and cognition has focused on cross-cultural comparisons, largely ignoring the dynamic aspects of culture. In this article, we provide a diachronic analysis of causal cognition over time. We hypothesized that the increased role of education, science, and technology in Western societies should be accompanied by greater attention to causal connections. To test this hypothesis, we compared word frequencies in English texts from different time periods and found an increase in the use of causal language of about 40% over the past two centuries. The observed increase was not attributable to general language effects or to changing semantics of causal words. We also found that there was a consistent difference between the 19th and the 20th centuries, and that the increase happened mainly in the 20th century. © The Author(s) 2016.
Illusions of causality: how they bias our everyday thinking and how they could be reduced
Matute, Helena; Blanco, Fernando; Yarritu, Ion; Díaz-Lago, Marcos; Vadillo, Miguel A.; Barberia, Itxaso
2015-01-01
Illusions of causality occur when people develop the belief that there is a causal connection between two events that are actually unrelated. Such illusions have been proposed to underlie pseudoscience and superstitious thinking, sometimes leading to disastrous consequences in relation to critical life areas, such as health, finances, and wellbeing. Like optical illusions, they can occur for anyone under well-known conditions. Scientific thinking is the best possible safeguard against them, but it does not come intuitively and needs to be taught. Teaching how to think scientifically should benefit from better understanding of the illusion of causality. In this article, we review experiments that our group has conducted on the illusion of causality during the last 20 years. We discuss how research on the illusion of causality can contribute to the teaching of scientific thinking and how scientific thinking can reduce illusion. PMID:26191014
Effects of causality on the fluidity and viscous horizon of quark-gluon plasma
NASA Astrophysics Data System (ADS)
Rahaman, Mahfuzur; Alam, Jan-e.
2018-05-01
The second-order Israel-Stewart-M u ̈ller relativistic hydrodynamics was applied to study the effects of causality on the acoustic oscillation in relativistic fluid. Causal dispersion relations have been derived with nonvanishing shear viscosity, bulk viscosity, and thermal conductivity at nonzero temperature and baryonic chemical potential. These relations have been used to investigate the fluidity of quark-gluon plasma (QGP) at finite temperature (T ). Results of the first-order dissipative hydrodynamics have been obtained as a limiting case of the second-order theory. The effects of the causality on the fluidity near the transition point and on the viscous horizon are found to be significant. We observe that the inclusion of causality increases the value of fluidity measure of QGP near Tc and hence makes the flow strenuous. It was also shown that the inclusion of the large magnetic field in the causal hydrodynamics alters the fluidity of QGP.
Reinforcing marginality? Maternal health interventions in rural Nicaragua.
Kvernflaten, Birgit
2017-06-23
To achieve Millennium Development Goal 5 on maternal health, many countries have focused on marginalized women who lack access to care. Promoting facility-based deliveries to ensure skilled birth attendance and emergency obstetric care has become a main measure for preventing maternal deaths, so women who opt for home births are often considered 'marginal' and in need of targeted intervention. Drawing upon ethnographic data from Nicaragua, this paper critically examines the concept of marginality in the context of official efforts to increase institutional delivery amongst the rural poor, and discusses lack of access to health services among women living in peripheral areas as a process of marginalization. The promotion of facility birth as the new norm, in turn, generates a process of 're-marginalization', whereby public health officials morally disapprove of women who give birth at home, viewing them as non-compliers and a problem to the system. In rural Nicaragua, there is a discrepancy between the public health norm and women's own preferences and desires for home birth. These women live at the margins also in spatial and societal terms, and must relate to a health system they find incapable of providing good, appropriate care. Strong public pressure for institutional delivery makes them feel distressed and pressured. Paradoxically then, the aim of including marginal groups in maternal health programmes engenders resistance to facility birth.
Wanke, Kay; Albert, Paul S.; Kahle, Lisa; Schatzkin, Arthur; Lanza, Elaine
2009-01-01
Individual differences in dietary intake are thought to account for substantial variation in cancer incidence. However, there has been a consistent lack of effect for low-fat, high-fiber dietary interventions and risk of colorectal cancer. These inconsistencies may reflect the multistage process of cancer as well as the range and timing of dietary change. Another potential reason for the lack of effect is poor dietary adherence among participants in these trials. The authors examined the effect of strict adherence to a low-fat, high-fiber, high-fruit and -vegetable intervention over 4 years among participants (n = 1,905) in the US Polyp Prevention Trial (1991–1998) on colorectal adenoma recurrence. There was a wide range of individual variation in the level of compliance among intervention participants. The most adherent participants, defined as “super compliers” (n = 210), consistently reported that they met or exceeded each of the 3 dietary goals at all 4 annual visits. Multivariate logistic regression models were used to estimate the association between dietary adherence and adenoma recurrence. The authors observed a 35% reduced odds of adenoma recurrence among super compliers compared with controls (odds ratio = 0.65, 95% confidence interval: 0.47, 0.92). Findings suggest that high compliance with a low-fat, high-fiber diet is associated with reduced risk of adenoma recurrence. PMID:19643809
Using a motivational paradigm to improve handwashing compliance.
Cole, Mark
2006-05-01
The education and training of staff is frequently cited as essential to the development and maintenance of hand hygiene compliance, which is often quoted as the single most effective measure to prevent Hospital Acquired Infection. Despite much time, effort and cost, there is a growing frustration within infection control that training programmes do not appear to have a lasting effect on behaviour or produce consistently good hand hygiene compliers. This paper intends to encourage debate by suggesting that handwashing needs to be considered within a wider educational context and the motivational factors that impact upon performance acknowledged and addressed. A critique of learning theories in relation to hand hygiene will discuss why the use of traditional programmes in isolation may be unsuccessful, and how models and theories based in other disciplines could be adapted to help produce sustainable changes in practice. This paper recognises the contribution of contemporary training methods but argues that models such as [Prochaska, J., DiClemente, C., 1984. The Transtheoretical Approach; Crossing Traditional Boundaries of Therapy. Dow Jones Irwin, Homewood] stages of change transtheoretical model (TTM) and the interventionist paradigm of motivational interviewing could be borrowed and adapted from health promotion and applied to hand hygiene as their function, to increase understanding and enhance motivation in order to achieve sustainable behavioural change, are attributes which have resonance for a challenging problem like hand hygiene compliance.
Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates
Bollen, Kenneth A.; Bauldry, Shawn
2013-01-01
In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021
Chiba, Yasutaka
2017-09-01
Fisher's exact test is commonly used to compare two groups when the outcome is binary in randomized trials. In the context of causal inference, this test explores the sharp causal null hypothesis (i.e. the causal effect of treatment is the same for all subjects), but not the weak causal null hypothesis (i.e. the causal risks are the same in the two groups). Therefore, in general, rejection of the null hypothesis by Fisher's exact test does not mean that the causal risk difference is not zero. Recently, Chiba (Journal of Biometrics and Biostatistics 2015; 6: 244) developed a new exact test for the weak causal null hypothesis when the outcome is binary in randomized trials; the new test is not based on any large sample theory and does not require any assumption. In this paper, we extend the new test; we create a version of the test applicable to a stratified analysis. The stratified exact test that we propose is general in nature and can be used in several approaches toward the estimation of treatment effects after adjusting for stratification factors. The stratified Fisher's exact test of Jung (Biometrical Journal 2014; 56: 129-140) tests the sharp causal null hypothesis. This test applies a crude estimator of the treatment effect and can be regarded as a special case of our proposed exact test. Our proposed stratified exact test can be straightforwardly extended to analysis of noninferiority trials and to construct the associated confidence interval. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deconstructing events: The neural bases for space, time, and causality
Kranjec, Alexander; Cardillo, Eileen R.; Lehet, Matthew; Chatterjee, Anjan
2013-01-01
Space, time, and causality provide a natural structure for organizing our experience. These abstract categories allow us to think relationally in the most basic sense; understanding simple events require one to represent the spatial relations among objects, the relative durations of actions or movements, and links between causes and effects. The present fMRI study investigates the extent to which the brain distinguishes between these fundamental conceptual domains. Participants performed a one-back task with three conditions of interest (SPACE, TIME and CAUSALITY). Each condition required comparing relations between events in a simple verbal narrative. Depending on the condition, participants were instructed to either attend to the spatial, temporal, or causal characteristics of events, but between participants, each particular event relation appeared in all three conditions. Contrasts compared neural activity during each condition against the remaining two and revealed how thinking about events is deconstructed neurally. Space trials recruited neural areas traditionally associated with visuospatial processing, primarily bilateral frontal and occipitoparietal networks. Causality trials activated areas previously found to underlie causal thinking and thematic role assignment, such as left medial frontal, and left middle temporal gyri, respectively. Causality trials also produced activations in SMA, caudate, and cerebellum; cortical and subcortical regions associated with the perception of time at different timescales. The TIME contrast however, produced no significant effects. This pattern, indicating negative results for TIME trials, but positive effects for CAUSALITY trials in areas important for time perception, motivated additional overlap analyses to further probe relations between domains. The results of these analyses suggest a closer correspondence between time and causality than between time and space. PMID:21861674
Causality and complexity: the myth of objectivity in science.
Mikulecky, Donald C
2007-10-01
Two distinctly different worldviews dominate today's thinking in science and in the world of ideas outside of science. Using the approach advocated by Robert M. Hutchins, it is possible to see a pattern of interaction between ideas in science and in other spheres such as philosophy, religion, and politics. Instead of compartmentalizing these intellectual activities, it is worthwhile to look for common threads of mutual influence. Robert Rosen has created an approach to scientific epistemology that might seem radical to some. However, it has characteristics that resemble ideas in other fields, in particular in the writings of George Lakoff, Leo Strauss, and George Soros. Historically, the atmosphere at the University of Chicago during Hutchins' presidency gave rise to Rashevsky's relational biology, which Rosen carried forward. Strauss was writing his political philosophy there at the same time. One idea is paramount in all this, and it is Lakoff who gives us the most insight into how the worldviews differ using this idea. The central difference has to do with causality, the fundamental concept that we use to build a worldview. Causal entailment has two distinct forms in Lakoff 's analysis: direct causality and complex causality. Rosen's writings on complexity create a picture of complex causality that is extremely useful in its detail, grounding in the ideas of Aristotle. Strauss asks for a return to the ancients to put philosophy back on track. Lakoff sees the weaknesses in Western philosophy in a similar way, and Rosen provides tools for dealing with the problem. This introduction to the relationships between the thinking of these authors is meant to stimulate further discourse on the role of complex causal entailment in all areas of thought, and how it brings them together in a holistic worldview. The worldview built on complex causality is clearly distinct from that built around simple, direct causality. One important difference is that the impoverished causal entailment that accompanies the machine metaphor in science is unable to give us a clear way to distinguish living organisms from machines. Complex causality finds a dichotomy between organisms, which are closed to efficient cause, and machines, which require entailment from outside. An argument can be made that confusing living organisms with machines, as is done in the worldview using direct cause, makes religion a necessity to supply the missing causal entailment.
El Montasser, Ghassen; Ajmi, Ahdi Noomen; Nguyen, Duc Khuong
2018-01-01
This article revisits the carbon dioxide (CO 2 ) emissions-GDP causal relationships in the Middle Eastern and North African (MENA) countries by employing the Rossi (Economet Theor 21:962-990, 2005) instability-robust causality test. We show evidence of significant causality relationships for all considered countries within the instability context, whereas the standard Granger causality test fails to detect causal links in any direction, except for Egypt, Iran, and Morocco. An important policy implication resulting from this robust analysis is that the income is not affected by the cuts in the CO 2 emissions for only two MENA countries, the UAE and Syria.
Unveiling causal activity of complex networks
NASA Astrophysics Data System (ADS)
Williams-García, Rashid V.; Beggs, John M.; Ortiz, Gerardo
2017-07-01
We introduce a novel tool for analyzing complex network dynamics, allowing for cascades of causally-related events, which we call causal webs (c-webs), to be separated from other non-causally-related events. This tool shows that traditionally-conceived avalanches may contain mixtures of spatially-distinct but temporally-overlapping cascades of events, and dynamical disorder or noise. In contrast, c-webs separate these components, unveiling previously hidden features of the network and dynamics. We apply our method to mouse cortical data with resulting statistics which demonstrate for the first time that neuronal avalanches are not merely composed of causally-related events. The original version of this article was uploaded to the arXiv on March 17th, 2016 [1].
NASA Astrophysics Data System (ADS)
Esfeld, Michael
2010-10-01
The paper makes a case for there being causation in the form of causal properties or causal structures in the domain of fundamental physics. That case is built in the first place on an interpretation of quantum theory in terms of state reductions so that there really are both entangled states and classical properties, GRW being the most elaborate physical proposal for such an interpretation. I then argue that the interpretation that goes back to Everett can also be read in a causal manner, the splitting of the world being conceivable as a causal process. Finally, I mention that the way in which general relativity theory conceives the metrical field opens up the way for a causal conception of the metrical properties as well.
Causal localizations in relativistic quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de
2015-07-15
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a meremore » consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.« less
Cortical Hierarchies Perform Bayesian Causal Inference in Multisensory Perception
Rohe, Tim; Noppeney, Uta
2015-01-01
To form a veridical percept of the environment, the brain needs to integrate sensory signals from a common source but segregate those from independent sources. Thus, perception inherently relies on solving the “causal inference problem.” Behaviorally, humans solve this problem optimally as predicted by Bayesian Causal Inference; yet, the underlying neural mechanisms are unexplored. Combining psychophysics, Bayesian modeling, functional magnetic resonance imaging (fMRI), and multivariate decoding in an audiovisual spatial localization task, we demonstrate that Bayesian Causal Inference is performed by a hierarchy of multisensory processes in the human brain. At the bottom of the hierarchy, in auditory and visual areas, location is represented on the basis that the two signals are generated by independent sources (= segregation). At the next stage, in posterior intraparietal sulcus, location is estimated under the assumption that the two signals are from a common source (= forced fusion). Only at the top of the hierarchy, in anterior intraparietal sulcus, the uncertainty about the causal structure of the world is taken into account and sensory signals are combined as predicted by Bayesian Causal Inference. Characterizing the computational operations of signal interactions reveals the hierarchical nature of multisensory perception in human neocortex. It unravels how the brain accomplishes Bayesian Causal Inference, a statistical computation fundamental for perception and cognition. Our results demonstrate how the brain combines information in the face of uncertainty about the underlying causal structure of the world. PMID:25710328
Vicovaro, Michele
2018-05-01
Everyday causal reports appear to be based on a blend of perceptual and cognitive processes. Causality can sometimes be perceived automatically through low-level visual processing of stimuli, but it can also be inferred on the basis of an intuitive understanding of the physical mechanism that underlies an observable event. We investigated how visual impressions of launching and the intuitive physics of collisions contribute to the formation of explicit causal responses. In Experiment 1, participants observed collisions between realistic objects differing in apparent material and hence implied mass, whereas in Experiment 2, participants observed collisions between abstract, non-material objects. The results of Experiment 1 showed that ratings of causality were mainly driven by the intuitive physics of collisions, whereas the results of Experiment 2 provide some support to the hypothesis that ratings of causality were mainly driven by visual impressions of launching. These results suggest that stimulus factors and experimental design factors - such as the realism of the stimuli and the variation in the implied mass of the colliding objects - may determine the relative contributions of perceptual and post-perceptual cognitive processes to explicit causal responses. A revised version of the impetus transmission heuristic provides a satisfactory explanation for these results, whereas the hypothesis that causal responses and intuitive physics are based on the internalization of physical laws does not. Copyright © 2018 Elsevier B.V. All rights reserved.
Causality and headache triggers
Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.
2013-01-01
Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872
Investigating causality in the association between 25(OH)D and schizophrenia.
Taylor, Amy E; Burgess, Stephen; Ware, Jennifer J; Gage, Suzanne H; Richards, J Brent; Davey Smith, George; Munafò, Marcus R
2016-05-24
Vitamin D deficiency is associated with increased risk of schizophrenia. However, it is not known whether this association is causal or what the direction of causality is. We performed two sample bidirectional Mendelian randomization analysis using single nucleotide polymorphisms (SNPs) robustly associated with serum 25(OH)D to investigate the causal effect of 25(OH)D on risk of schizophrenia, and SNPs robustly associated with schizophrenia to investigate the causal effect of schizophrenia on 25(OH)D. We used summary data from genome-wide association studies and meta-analyses of schizophrenia and 25(OH)D to obtain betas and standard errors for the SNP-exposure and SNP-outcome associations. These were combined using inverse variance weighted fixed effects meta-analyses. In 34,241 schizophrenia cases and 45,604 controls, there was no clear evidence for a causal effect of 25(OH)D on schizophrenia risk. The odds ratio for schizophrenia per 10% increase in 25(OH)D conferred by the four 25(OH)D increasing SNPs was 0.992 (95% CI: 0.969 to 1.015). In up to 16,125 individuals with measured serum 25(OH)D, there was no clear evidence that genetic risk for schizophrenia causally lowers serum 25(OH)D. These findings suggest that associations between schizophrenia and serum 25(OH)D may not be causal. Therefore, vitamin D supplementation may not prevent schizophrenia.
Functional Brain Networks and White Matter Underlying Theory-of-Mind in Autism
Kana, Rajesh K.; Libero, Lauren E.; Hu, Christi P.; Deshpande, Hrishikesh D.; Colburn, Jeffrey S.
2014-01-01
Human beings constantly engage in attributing causal explanations to one’s own and to others’ actions, and theory-of-mind (ToM) is critical in making such inferences. Although children learn causal attribution early in development, children with autism spectrum disorders (ASDs) are known to have impairments in the development of intentional causality. This functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study investigated the neural correlates of physical and intentional causal attribution in people with ASDs. In the fMRI scanner, 15 adolescents and adults with ASDs and 15 age- and IQ-matched typically developing peers made causal judgments about comic strips presented randomly in an event-related design. All participants showed robust activation in bilateral posterior superior temporal sulcus at the temporo-parietal junction (TPJ) in response to intentional causality. Participants with ASDs showed lower activation in TPJ, right inferior frontal gyrus and left premotor cortex. Significantly weaker functional connectivity was also found in the ASD group between TPJ and motor areas during intentional causality. DTI data revealed significantly reduced fractional anisotropy in ASD participants in white matter underlying the temporal lobe. In addition to underscoring the role of TPJ in ToM, this study found an interaction between motor simulation and mentalizing systems in intentional causal attribution and its possible discord in autism. PMID:22977198
Causal localizations in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Castrigiano, Domenico P. L.; Leiseifer, Andreas D.
2015-07-01
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
The diversity effect in diagnostic reasoning.
Rebitschek, Felix G; Krems, Josef F; Jahn, Georg
2016-07-01
Diagnostic reasoning draws on knowledge about effects and their potential causes. The causal-diversity effect in diagnostic reasoning normatively depends on the distribution of effects in causal structures, and thus, a psychological diversity effect could indicate whether causally structured knowledge is used in evaluating the probability of a diagnosis, if the effect were to covary with manipulations of causal structures. In four experiments, participants dealt with a quasi-medical scenario presenting symptom sets (effects) that consistently suggested a specified diagnosis (cause). The probability that the diagnosis was correct had to be rated for two opposed symptom sets that differed with regard to the symptoms' positions (proximal or diverse) in the causal structure that was initially acquired. The causal structure linking the diagnosis to the symptoms and the base rate of the diagnosis were manipulated to explore whether the diagnosis was rated as more probable for diverse than for proximal symptoms when alternative causations were more plausible (e.g., because of a lower base rate of the diagnosis in question). The results replicated the causal diversity effect in diagnostic reasoning across these conditions, but no consistent effects of structure and base rate variations were observed. Diversity effects computed in causal Bayesian networks are presented, illustrating the consequences of the structure manipulations and corroborating that a diversity effect across the different experimental manipulations is normatively justified. The observed diversity effects presumably resulted from shortcut reasoning about the possibilities of alternative causation.
Teschke, Rolf; Wolff, Albrecht; Frenzel, Christian; Schwarzenboeck, Alexander; Schulze, Johannes; Eickhoff, Axel
2014-01-01
Causality assessment of suspected drug induced liver injury (DILI) and herb induced liver injury (HILI) is hampered by the lack of a standardized approach to be used by attending physicians and at various subsequent evaluating levels. The aim of this review was to analyze the suitability of the liver specific Council for International Organizations of Medical Sciences (CIOMS) scale as a standard tool for causality assessment in DILI and HILI cases. PubMed database was searched for the following terms: drug induced liver injury; herb induced liver injury; DILI causality assessment; and HILI causality assessment. The strength of the CIOMS lies in its potential as a standardized scale for DILI and HILI causality assessment. Other advantages include its liver specificity and its validation for hepatotoxicity with excellent sensitivity, specificity and predictive validity, based on cases with a positive reexposure test. This scale allows prospective collection of all relevant data required for a valid causality assessment. It does not require expert knowledge in hepatotoxicity and its results may subsequently be refined. Weaknesses of the CIOMS scale include the limited exclusion of alternative causes and qualitatively graded risk factors. In conclusion, CIOMS appears to be suitable as a standard scale for attending physicians, regulatory agencies, expert panels and other scientists to provide a standardized, reproducible causality assessment in suspected DILI and HILI cases, applicable primarily at all assessing levels involved. PMID:24653791
Griffiths, K R; Lagopoulos, J; Hermens, D F; Hickie, I B; Balleine, B W
2015-01-01
Cognitive impairment is a functionally disabling feature of depression contributing to maladaptive decision-making, a loss of behavioral control and an increased disease burden. The ability to calculate the causal efficacy of ones actions in achieving specific goals is critical to normal decision-making and, in this study, we combined voxel-based morphometry (VBM), shape analysis and diffusion tensor tractography to investigate the relationship between cortical–basal ganglia structural integrity and such causal awareness in 43 young subjects with depression and 21 demographically similar healthy controls. Volumetric analysis determined a relationship between right pallidal size and sensitivity to the causal status of specific actions. More specifically, shape analysis identified dorsolateral surface vertices where an inward location was correlated with reduced levels of causal awareness. Probabilistic tractography revealed that affected parts of the pallidum were primarily connected with the striatum, dorsal thalamus and hippocampus. VBM did not reveal any whole-brain gray matter regions that correlated with causal awareness. We conclude that volumetric reduction within the indirect pathway involving the right dorsolateral pallidum is associated with reduced awareness of the causal efficacy of goal-directed actions in young depressed individuals. This causal awareness task allows for the identification of a functionally and biologically relevant subgroup to which more targeted cognitive interventions could be applied, potentially enhancing the long-term outcomes for these individuals. PMID:26440541
Principal stratification in causal inference.
Frangakis, Constantine E; Rubin, Donald B
2002-03-01
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.
Evaluation of the causal framework used for setting national ambient air quality standards.
Goodman, Julie E; Prueitt, Robyn L; Sax, Sonja N; Bailey, Lisa A; Rhomberg, Lorenz R
2013-11-01
Abstract A scientifically sound assessment of the potential hazards associated with a substance requires a systematic, objective and transparent evaluation of the weight of evidence (WoE) for causality of health effects. We critically evaluated the current WoE framework for causal determination used in the United States Environmental Protection Agency's (EPA's) assessments of the scientific data on air pollutants for the National Ambient Air Quality Standards (NAAQS) review process, including its methods for literature searches; study selection, evaluation and integration; and causal judgments. The causal framework used in recent NAAQS evaluations has many valuable features, but it could be more explicit in some cases, and some features are missing that should be included in every WoE evaluation. Because of this, it has not always been applied consistently in evaluations of causality, leading to conclusions that are not always supported by the overall WoE, as we demonstrate using EPA's ozone Integrated Science Assessment as a case study. We propose additions to the NAAQS causal framework based on best practices gleaned from a previously conducted survey of available WoE frameworks. A revision of the NAAQS causal framework so that it more closely aligns with these best practices and the full and consistent application of the framework will improve future assessments of the potential health effects of criteria air pollutants by making the assessments more thorough, transparent, and scientifically sound.
ERIC Educational Resources Information Center
Szilagyi, Andrew D.
1977-01-01
Attempts to empirically verify the causal source and direction of causal influence between role ambiguity, role conflict and job satisfaction and performance for three organizational levels in a hospital environment. (Author/RK)
Quasi-Experimental Designs for Causal Inference
ERIC Educational Resources Information Center
Kim, Yongnam; Steiner, Peter
2016-01-01
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Towards graphical causal structures
NASA Astrophysics Data System (ADS)
Paulsson, K. Johan
2012-12-01
Folowing recent work by R. Spekkens, M. Leifer and B. Coecke we investigate causal settings in a limited categorical version of the conditional density operator formalism. We particularly show how the compact structure for causal and acausal settings apply on the measurements of stabiliser theory.
Passamonti, Luca; Wald, Lawrence L.; Barbieri, Riccardo
2016-01-01
The causal, directed interactions between brain regions at rest (brain–brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain–heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain–brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain–brain and brain–heart interactions reflecting central modulation of ANS outflow. PMID:27044985
Supporting shared hypothesis testing in the biomedical domain.
Agibetov, Asan; Jiménez-Ruiz, Ernesto; Ondrésik, Marta; Solimando, Alessandro; Banerjee, Imon; Guerrini, Giovanna; Catalano, Chiara E; Oliveira, Joaquim M; Patanè, Giuseppe; Reis, Rui L; Spagnuolo, Michela
2018-02-08
Pathogenesis of inflammatory diseases can be tracked by studying the causality relationships among the factors contributing to its development. We could, for instance, hypothesize on the connections of the pathogenesis outcomes to the observed conditions. And to prove such causal hypotheses we would need to have the full understanding of the causal relationships, and we would have to provide all the necessary evidences to support our claims. In practice, however, we might not possess all the background knowledge on the causality relationships, and we might be unable to collect all the evidence to prove our hypotheses. In this work we propose a methodology for the translation of biological knowledge on causality relationships of biological processes and their effects on conditions to a computational framework for hypothesis testing. The methodology consists of two main points: hypothesis graph construction from the formalization of the background knowledge on causality relationships, and confidence measurement in a causality hypothesis as a normalized weighted path computation in the hypothesis graph. In this framework, we can simulate collection of evidences and assess confidence in a causality hypothesis by measuring it proportionally to the amount of available knowledge and collected evidences. We evaluate our methodology on a hypothesis graph that represents both contributing factors which may cause cartilage degradation and the factors which might be caused by the cartilage degradation during osteoarthritis. Hypothesis graph construction has proven to be robust to the addition of potentially contradictory information on the simultaneously positive and negative effects. The obtained confidence measures for the specific causality hypotheses have been validated by our domain experts, and, correspond closely to their subjective assessments of confidences in investigated hypotheses. Overall, our methodology for a shared hypothesis testing framework exhibits important properties that researchers will find useful in literature review for their experimental studies, planning and prioritizing evidence collection acquisition procedures, and testing their hypotheses with different depths of knowledge on causal dependencies of biological processes and their effects on the observed conditions.
Natural selection. VII. History and interpretation of kin selection theory.
Frank, S A
2013-06-01
Kin selection theory is a kind of causal analysis. The initial form of kin selection ascribed cause to costs, benefits and genetic relatedness. The theory then slowly developed a deeper and more sophisticated approach to partitioning the causes of social evolution. Controversy followed because causal analysis inevitably attracts opposing views. It is always possible to separate total effects into different component causes. Alternative causal schemes emphasize different aspects of a problem, reflecting the distinct goals, interests and biases of different perspectives. For example, group selection is a particular causal scheme with certain advantages and significant limitations. Ultimately, to use kin selection theory to analyse natural patterns and to understand the history of debates over different approaches, one must follow the underlying history of causal analysis. This article describes the history of kin selection theory, with emphasis on how the causal perspective improved through the study of key patterns of natural history, such as dispersal and sex ratio, and through a unified approach to demographic and social processes. Independent historical developments in the multivariate analysis of quantitative traits merged with the causal analysis of social evolution by kin selection. © 2013 The Author. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Causal Superlearning Arising from Interactions Among Cues
Urushihara, Kouji; Miller, Ralph R.
2017-01-01
Superconditioning refers to supernormal responding to a conditioned stimulus (CS) that sometimes occurs in classical conditioning when the CS is paired with an unconditioned stimulus (US) in the presence of a conditioned inhibitor for that US. In the present research, we conducted four experiments to investigate causal superlearning, a phenomenon in human causal learning analogous to superconditioning. Experiment 1 demonstrated superlearning relative to appropriate control conditions. Experiment 2 showed that superlearning wanes when the number of cues used in an experiment is relatively large. Experiment 3 determined that even when relatively many cues are used, superlearning can be observed provided testing is conducted immediately after training, which is problematic for explanations by most contemporary learning theories. Experiment 4 found that ratings of a superlearning cue are weaker than those to the training excitor which gives basis to the conditioned inhibitor-like causal preventor used during causal superlearning training. This is inconsistent with the prediction by propositional reasoning accounts of causal cue competition, but is readily explained by associative learning models. In sum, the current experiments revealed some weaknesses of both the associative and propositional reasoning models with respect to causal superlearning. PMID:28383940
NASA Astrophysics Data System (ADS)
Borjigin, Sumuya; Yang, Yating; Yang, Xiaoguang; Sun, Leilei
2018-03-01
Many researchers have realized that there is a strong correlation between stock prices and macroeconomy. In order to make this relationship clear, a lot of studies have been done. However, the causal relationship between stock prices and macroeconomy has still not been well explained. A key point is that, most of the existing research adopts linear and stable models to investigate the correlation of stock prices and macroeconomy, while the real causality of that may be nonlinear and dynamic. To fill this research gap, we investigate the nonlinear and dynamic causal relationships between stock prices and macroeconomy. Based on the case of China's stock prices and acroeconomy measures from January 1992 to March 2017, we compare the linear Granger causality test models with nonlinear ones. Results demonstrate that the nonlinear dynamic Granger causality is much stronger than linear Granger causality. From the perspective of nonlinear dynamic Granger causality, China's stock prices can be viewed as "national economic barometer". On the one hand, this study will encourage researchers to take nonlinearity and dynamics into account when they investigate the correlation of stock prices and macroeconomy; on the other hand, our research can guide regulators and investors to make better decisions.
Baumrind, D
1983-12-01
The claims based on causal models employing either statistical or experimental controls are examined and found to be excessive when applied to social or behavioral science data. An exemplary case, in which strong causal claims are made on the basis of a weak version of the regularity model of cause, is critiqued. O'Donnell and Clayton claim that in order to establish that marijuana use is a cause of heroin use (their "reformulated stepping-stone" hypothesis), it is necessary and sufficient to demonstrate that marijuana use precedes heroin use and that the statistically significant association between the two does not vanish when the effects of other variables deemed to be prior to both of them are removed. I argue that O'Donnell and Clayton's version of the regularity model is not sufficient to establish cause and that the planning of social interventions both presumes and requires a generative rather than a regularity causal model. Causal modeling using statistical controls is of value when it compels the investigator to make explicit and to justify a causal explanation but not when it is offered as a substitute for a generative analysis of causal connection.
Boamah, Kofi Baah; Du, Jianguo; Boamah, Angela Jacinta; Appiah, Kingsley
2018-02-01
This study seeks to contribute to the recent literature by empirically investigating the causal effect of urban population growth and international trade on environmental pollution of China, for the period 1980-2014. The Johansen cointegration confirmed a long-run cointegration association among the utilised variables for the case of China. The direction of causality among the variables was, consequently, investigated using the recent bootstrapped Granger causality test. This bootstrapped Granger causality approach is preferred as it provides robust and accurate critical values for statistical inferences. The findings from the causality analysis revealed the existence of a bi-directional causality between import and urban population. The three most paramount variables that explain the environmental pollution in China, according to the impulse response function, are imports, urbanisation and energy consumption. Our study further established the presence of an N-shaped environmental Kuznets curve relationship between economic growth and environmental pollution of China. Hence, our study recommends that China should adhere to stricter environmental regulations in international trade, as well as enforce policies that promote energy efficiency in the urban residential and commercial sector, in the quest to mitigate environmental pollution issues as the economy advances.
Lombrozo, Tania
2010-12-01
Both philosophers and psychologists have argued for the existence of distinct kinds of explanations, including teleological explanations that cite functions or goals, and mechanistic explanations that cite causal mechanisms. Theories of causation, in contrast, have generally been unitary, with dominant theories focusing either on counterfactual dependence or on physical connections. This paper argues that both approaches to causation are psychologically real, with different modes of explanation promoting judgments more or less consistent with each approach. Two sets of experiments isolate the contributions of counterfactual dependence and physical connections in causal ascriptions involving events with people, artifacts, or biological traits, and manipulate whether the events are construed teleologically or mechanistically. The findings suggest that when events are construed teleologically, causal ascriptions are sensitive to counterfactual dependence and relatively insensitive to the presence of physical connections, but when events are construed mechanistically, causal ascriptions are sensitive to both counterfactual dependence and physical connections. The conclusion introduces an account of causation, an "exportable dependence theory," that provides a way to understand the contributions of physical connections and teleology in terms of the functions of causal ascriptions. Copyright © 2010 Elsevier Inc. All rights reserved.
Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A
2009-06-01
In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.
Essays on Causal Inference for Public Policy
ERIC Educational Resources Information Center
Zajonc, Tristan
2012-01-01
Effective policymaking requires understanding the causal effects of competing proposals. Relevant causal quantities include proposals' expected effect on different groups of recipients, the impact of policies over time, the potential trade-offs between competing objectives, and, ultimately, the optimal policy. This dissertation studies causal…
Expert Causal Reasoning and Explanation.
ERIC Educational Resources Information Center
Kuipers, Benjamin
The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…
Bayesian networks improve causal environmental assessments for evidence-based policy
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the p...
Causal Learning with Local Computations
ERIC Educational Resources Information Center
Fernbach, Philip M.; Sloman, Steven A.
2009-01-01
The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require…
On the origin of Hill's causal criteria.
Morabia, A
1991-09-01
The rules to assess causation formulated by the eighteenth century Scottish philosopher David Hume are compared to Sir Austin Bradford Hill's causal criteria. The strength of the analogy between Hume's rules and Hill's causal criteria suggests that, irrespective of whether Hume's work was known to Hill or Hill's predecessors, Hume's thinking expresses a point of view still widely shared by contemporary epidemiologists. The lack of systematic experimental proof to causal inferences in epidemiology may explain the analogy of Hume's and Hill's, as opposed to Popper's, logic.
2013-06-01
simulation of complex systems (Sterman 2000, Meadows 2008): a) Causal Loop Diagrams. A Causal Loop Diagram ( CLD ) is used to represent the feedback...structure of the dynamic system. CLDs consist of variables in the system being connected by arrows to show their causal influences and relationships. It is...distribution of orders will be included in the model. 6.4.2 Causal Loop Diagrams The CLD , as seen in Figure 5, is derived from the WDA constructs for the
Multiple Causality: Consequences for Medical Practice
Nydegger, Corinne N.
1983-01-01
When a scientifically trained health professional is called upon to deal with patients holding differing causal views of illness, the resulting lack of communication is frustrating to both. This discussion traces some implications for medical practice of significant cultural differences in two aspects of causal paradigms of illness: (1) terms accepted and (2) dimension or level of causality typically sought. The second is the more pervasive and intractable problem, having distinctive consequences for the role of curer, symptomatology, diagnosis and treatment. PMID:6858133
Dual Causality and the Autonomy of Biology.
Bock, Walter J
2017-03-01
Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.
Can chance cause cancer? A causal consideration.
Stensrud, Mats Julius; Strohmaier, Susanne; Valberg, Morten; Aalen, Odd Olai
2017-04-01
The role of randomness, environment and genetics in cancer development is debated. We approach the discussion by using the potential outcomes framework for causal inference. By briefly considering the underlying assumptions, we suggest that the antagonising views arise due to estimation of substantially different causal effects. These effects may be hard to interpret, and the results cannot be immediately compared. Indeed, it is not clear whether it is possible to define a causal effect of chance at all. Copyright © 2017 Elsevier Ltd. All rights reserved.
Faes, L; Porta, A; Cucino, R; Cerutti, S; Antolini, R; Nollo, G
2004-06-01
Although the concept of transfer function is intrinsically related to an input-output relationship, the traditional and widely used estimation method merges both feedback and feedforward interactions between the two analyzed signals. This limitation may endanger the reliability of transfer function analysis in biological systems characterized by closed loop interactions. In this study, a method for estimating the transfer function between closed loop interacting signals was proposed and validated in the field of cardiovascular and cardiorespiratory variability. The two analyzed signals x and y were described by a bivariate autoregressive model, and the causal transfer function from x to y was estimated after imposing causality by setting to zero the model coefficients representative of the reverse effects from y to x. The method was tested in simulations reproducing linear open and closed loop interactions, showing a better adherence of the causal transfer function to the theoretical curves with respect to the traditional approach in presence of non-negligible reverse effects. It was then applied in ten healthy young subjects to characterize the transfer functions from respiration to heart period (RR interval) and to systolic arterial pressure (SAP), and from SAP to RR interval. In the first two cases, the causal and non-causal transfer function estimates were comparable, indicating that respiration, acting as exogenous signal, sets an open loop relationship upon SAP and RR interval. On the contrary, causal and traditional transfer functions from SAP to RR were significantly different, suggesting the presence of a considerable influence on the opposite causal direction. Thus, the proposed causal approach seems to be appropriate for the estimation of parameters, like the gain and the phase lag from SAP to RR interval, which have a large clinical and physiological relevance.
Making sense of (exceptional) causal relations. A cross-cultural and cross-linguistic study.
Le Guen, Olivier; Samland, Jana; Friedrich, Thomas; Hanus, Daniel; Brown, Penelope
2015-01-01
In order to make sense of the world, humans tend to see causation almost everywhere. Although most causal relations may seem straightforward, they are not always construed in the same way cross-culturally. In this study, we investigate concepts of "chance," "coincidence," or "randomness" that refer to assumed relations between intention, action, and outcome in situations, and we ask how people from different cultures make sense of such non-law-like connections. Based on a framework proposed by Alicke (2000), we administered a task that aims to be a neutral tool for investigating causal construals cross-culturally and cross-linguistically. Members of four different cultural groups, rural Mayan Yucatec and Tseltal speakers from Mexico and urban students from Mexico and Germany, were presented with a set of scenarios involving various types of causal and non-causal relations and were asked to explain the described events. Three links varied as to whether they were present or not in the scenarios: Intention-to-Action, Action-to-Outcome, and Intention-to-Outcome. Our results show that causality is recognized in all four cultural groups. However, how causality and especially non-law-like relations are interpreted depends on the type of links, the cultural background and the language used. In all three groups, Action-to-Outcome is the decisive link for recognizing causality. Despite the fact that the two Mayan groups share similar cultural backgrounds, they display different ideologies regarding concepts of non-law-like relations. The data suggests that the concept of "chance" is not universal, but seems to be an explanation that only some cultural groups draw on to make sense of specific situations. Of particular importance is the existence of linguistic concepts in each language that trigger ideas of causality in the responses from each cultural group.
Causality and causal inference in epidemiology: the need for a pluralistic approach
Vandenbroucke, Jan P; Broadbent, Alex; Pearce, Neil
2016-01-01
Abstract Causal inference based on a restricted version of the potential outcomes approach reasoning is assuming an increasingly prominent place in the teaching and practice of epidemiology. The proposed concepts and methods are useful for particular problems, but it would be of concern if the theory and practice of the complete field of epidemiology were to become restricted to this single approach to causal inference. Our concerns are that this theory restricts the questions that epidemiologists may ask and the study designs that they may consider. It also restricts the evidence that may be considered acceptable to assess causality, and thereby the evidence that may be considered acceptable for scientific and public health decision making. These restrictions are based on a particular conceptual framework for thinking about causality. In Section 1, we describe the characteristics of the restricted potential outcomes approach (RPOA) and show that there is a methodological movement which advocates these principles, not just for solving particular problems, but as ideals for which epidemiology as a whole should strive. In Section 2, we seek to show that the limitation of epidemiology to one particular view of the nature of causality is problematic. In Section 3, we argue that the RPOA is also problematic with regard to the assessment of causality. We argue that it threatens to restrict study design choice, to wrongly discredit the results of types of observational studies that have been very useful in the past and to damage the teaching of epidemiological reasoning. Finally, in Section 4 we set out what we regard as a more reasonable ‘working hypothesis’ as to the nature of causality and its assessment: pragmatic pluralism. PMID:26800751
Singh, Awnish Kumar; Wagner, Abram L; Joshi, Jyoti; Carlson, Bradley F; Aneja, Satinder; Boulton, Matthew L
2017-07-24
In 2013, the World Health Organization (WHO) and CIOMS introduced a revised Causality Assessment Protocol (CAP) for Adverse Events following Immunization (AEFI). India is one of the first countries to adopt the revised CAP. This study describes the application of the revised CAP in India. We describe use of CAP by India's AEFI surveillance program to assess reported AEFIs. Using publicly available results of causality assessment for reported AEFIs, we describe the results by demographic characteristics and review the trends for the results of the causality assessment. A total of 771 reports of AEFI between January 2012 and January 2015, completed causality review by August 2016. The cases were reported as belonging to a cluster (54%; n=302), hospitalized or requiring hospitalization (41%; n=270), death (25%; n=195), or resulting in disability (0.4%; n=3). The most common combinations of vaccines leading to report of an AEFI were DTwP, Hepatitis B, and OPV (14%; n=106), followed by Pentavalent and OPV (13%; n=103), and JE vaccine (13%; n=101). Using the WHO Algorithm, most AEFI reports (89%, n=683) were classifiable. Classifiable AEFI reports included those with a consistent causal association (53%; n=407), an inconsistent causal association (29%; n=226) or were indeterminate causal association with implicated vaccine(s) or vaccination process (6.5%; n=50) (Fig. 1); 88 reports remained unclassifiable. The revised CAP was informative and useful in classifying most of the reviewed AEFIs in India. Unclassifiable reports could be minimized with more complete information from health records. Improvements in causality assessment, and standardization in reporting between countries, can improve public confidence in vaccine system performance and identify important vaccine safety signals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Causality and causal inference in epidemiology: the need for a pluralistic approach.
Vandenbroucke, Jan P; Broadbent, Alex; Pearce, Neil
2016-12-01
Causal inference based on a restricted version of the potential outcomes approach reasoning is assuming an increasingly prominent place in the teaching and practice of epidemiology. The proposed concepts and methods are useful for particular problems, but it would be of concern if the theory and practice of the complete field of epidemiology were to become restricted to this single approach to causal inference. Our concerns are that this theory restricts the questions that epidemiologists may ask and the study designs that they may consider. It also restricts the evidence that may be considered acceptable to assess causality, and thereby the evidence that may be considered acceptable for scientific and public health decision making. These restrictions are based on a particular conceptual framework for thinking about causality. In Section 1, we describe the characteristics of the restricted potential outcomes approach (RPOA) and show that there is a methodological movement which advocates these principles, not just for solving particular problems, but as ideals for which epidemiology as a whole should strive. In Section 2, we seek to show that the limitation of epidemiology to one particular view of the nature of causality is problematic. In Section 3, we argue that the RPOA is also problematic with regard to the assessment of causality. We argue that it threatens to restrict study design choice, to wrongly discredit the results of types of observational studies that have been very useful in the past and to damage the teaching of epidemiological reasoning. Finally, in Section 4 we set out what we regard as a more reasonable 'working hypothesis' as to the nature of causality and its assessment: pragmatic pluralism. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.
Causal modelling applied to the risk assessment of a wastewater discharge.
Paul, Warren L; Rokahr, Pat A; Webb, Jeff M; Rees, Gavin N; Clune, Tim S
2016-03-01
Bayesian networks (BNs), or causal Bayesian networks, have become quite popular in ecological risk assessment and natural resource management because of their utility as a communication and decision-support tool. Since their development in the field of artificial intelligence in the 1980s, however, Bayesian networks have evolved and merged with structural equation modelling (SEM). Unlike BNs, which are constrained to encode causal knowledge in conditional probability tables, SEMs encode this knowledge in structural equations, which is thought to be a more natural language for expressing causal information. This merger has clarified the causal content of SEMs and generalised the method such that it can now be performed using standard statistical techniques. As it was with BNs, the utility of this new generation of SEM in ecological risk assessment will need to be demonstrated with examples to foster an understanding and acceptance of the method. Here, we applied SEM to the risk assessment of a wastewater discharge to a stream, with a particular focus on the process of translating a causal diagram (conceptual model) into a statistical model which might then be used in the decision-making and evaluation stages of the risk assessment. The process of building and testing a spatial causal model is demonstrated using data from a spatial sampling design, and the implications of the resulting model are discussed in terms of the risk assessment. It is argued that a spatiotemporal causal model would have greater external validity than the spatial model, enabling broader generalisations to be made regarding the impact of a discharge, and greater value as a tool for evaluating the effects of potential treatment plant upgrades. Suggestions are made on how the causal model could be augmented to include temporal as well as spatial information, including suggestions for appropriate statistical models and analyses.
Eickhoff, Axel; Schulze, Johannes
2013-01-01
Drug-induced liver injury (DILI) and herb-induced liver injury (HILI) are typical diseases of clinical and translational hepatology. Their diagnosis is complex and requires an experienced clinician to translate basic science into clinical judgment and identify a valid causality algorithm. To prospectively assess causality starting on the day DILI or HILI is suspected, the best approach for physicians is to use the Council for International Organizations of Medical Sciences (CIOMS) scale in its original or preferably its updated version. The CIOMS scale is validated, liver-specific, structured, and quantitative, providing final causality grades based on scores of specific items for individual patients. These items include latency period, decline in liver values after treatment cessation, risk factors, co-medication, alternative diagnoses, hepatotoxicity track record of the suspected product, and unintentional re-exposure. Provided causality is established as probable or highly probable, data of the CIOMS scale with all individual items, a short clinical report, and complete raw data should be transmitted to the regulatory agencies, manufacturers, expert panels, and possibly to the scientific community for further refinement of the causality evaluation in a setting of retrospective expert opinion. Good-quality case data combined with thorough CIOMS-based assessment as a standardized approach should avert subsequent necessity for other complex causality assessment methods that may have inter-rater problems because of poor-quality data. In the future, the CIOMS scale will continue to be the preferred tool to assess causality of DILI and HILI cases and should be used consistently, both prospectively by physicians, and retrospectively for subsequent expert opinion if needed. For comparability and international harmonization, all parties assessing causality in DILI and HILI cases should attempt this standardized approach using the updated CIOMS scale. PMID:26357608
Causality, mediation and time: a dynamic viewpoint
Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno
2012-01-01
Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356
Effective connectivity: Influence, causality and biophysical modeling
Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl
2011-01-01
This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655
Granger-causality maps of diffusion processes.
Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A
2016-02-01
Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.
Distinguishing the roles of dorsolateral and anterior PFC in visual metacognition.
Shekhar, Medha; Rahnev, Dobromir
2018-05-02
Visual metacognition depends on regions within the prefrontal cortex. Two areas in particular have been repeatedly implicated: the dorsolateral prefrontal cortex (DLPFC) and the anterior prefrontal cortex (aPFC). However, it is still unclear what the function of each of these areas is and how they differ from each other. To establish the specific roles of DLPFC and aPFC in metacognition, we employed online transcranial magnetic stimulation (TMS) to causally interfere with their functioning during confidence generation. Human subjects from both sexes performed a perceptual decision-making task and provided confidence ratings. We found a clear dissociation between the two areas: DLPFC TMS lowered confidence ratings, whereas aPFC TMS increased metacognitive ability but only for the second half of the experimental blocks. These results support a functional architecture where DLPFC reads out the strength of the sensory evidence and relays it to aPFC, which makes the confidence judgement by potentially incorporating additional, non-perceptual information. Indeed, simulations from a model that incorporates these putative DLPFC and aPFC functions reproduced our behavioral results. These findings establish DLPFC and aPFC as distinct nodes in a metacognitive network and suggest specific contributions from each of these regions to confidence generation. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) is known to be critical for metacognition. Two of its sub-regions - dorsolateral PFC (DLPFC) and anterior PFC (aPFC) - have specifically been implicated in confidence generation. However, it is unclear if these regions have distinct functions related to the underlying metacognitive computation. Using a causal intervention with transcranial magnetic stimulation (TMS), we demonstrate that DLPFC and aPFC have dissociable contributions: targeting DLPFC decreased average confidence ratings, while targeting aPFC specifically affected metacognitive scores. Based on these results, we postulated specific functions for DLPFC and aPFC in metacognitive computation and corroborated them using a computational model that reproduced our results. Our causal results reveal the existence of a specialized modular organization in PFC for confidence generation. Copyright © 2018 the authors.
Trongnetrpunya, Amy; Nandi, Bijurika; Kang, Daesung; Kocsis, Bernat; Schroeder, Charles E; Ding, Mingzhou
2015-01-01
Multielectrode voltage data are usually recorded against a common reference. Such data are frequently used without further treatment to assess patterns of functional connectivity between neuronal populations and between brain areas. It is important to note from the outset that such an approach is valid only when the reference electrode is nearly electrically silent. In practice, however, the reference electrode is generally not electrically silent, thereby adding a common signal to the recorded data. Volume conduction further complicates the problem. In this study we demonstrate the adverse effects of common signals on the estimation of Granger causality, which is a statistical measure used to infer synaptic transmission and information flow in neural circuits from multielectrode data. We further test the hypothesis that the problem can be overcome by utilizing bipolar derivations where the difference between two nearby electrodes is taken and treated as a representation of local neural activity. Simulated data generated by a neuronal network model where the connectivity pattern is known were considered first. This was followed by analyzing data from three experimental preparations where a priori predictions regarding the patterns of causal interactions can be made: (1) laminar recordings from the hippocampus of an anesthetized rat during theta rhythm, (2) laminar recordings from V4 of an awake-behaving macaque monkey during alpha rhythm, and (3) ECoG recordings from electrode arrays implanted in the middle temporal lobe and prefrontal cortex of an epilepsy patient during fixation. For both simulation and experimental analysis the results show that bipolar derivations yield the expected connectivity patterns whereas the untreated data (referred to as unipolar signals) do not. In addition, current source density signals, where applicable, yield results that are close to the expected connectivity patterns, whereas the commonly practiced average re-reference method leads to erroneous results.
A Causal Model of Faculty Research Productivity.
ERIC Educational Resources Information Center
Bean, John P.
A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…
75 FR 35457 - Draft of the 2010 Causal Analysis/Diagnosis Decision Information System (CADDIS)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
... Causal Analysis/Diagnosis Decision Information System (CADDIS) AGENCY: Environmental Protection Agency... site, ``2010 release of the Causal Analysis/Diagnosis Decision Information System (CADDIS).'' The... analyses, downloadable software tools, and links to outside information sources. II. How to Submit Comments...
Causal Inference in Retrospective Studies.
ERIC Educational Resources Information Center
Holland, Paul W.; Rubin, Donald B.
1988-01-01
The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…
An assessment of predominant causal factors of pilot deviations that contribute to runway incursions
NASA Astrophysics Data System (ADS)
Campbell, Denado M.
The aim of this study was to identify predominant causal factors of pilot deviations in runway incursions over a two-year period. Runway incursion reports were obtained from NASA's Aviation Safety Reporting System (ASRS), and a qualitative method was used by classifying and coding each report to a specific causal factor(s). The causal factors that were used were substantiated by research from the Aircraft Owner's and Pilot's Association that found that these causal factors were the most common in runway incursion incidents and accidents. An additional causal factor was also utilized to determine the significance of pilot training in relation to runway incursions. From the reports examined, it was found that miscommunication and situational awareness have the greatest impact on pilots and are most often the major causes of runway incursions. This data can be used to assist airports, airlines, and the FAA to understand trends in pilot deviations, and to find solutions for specific problem areas in runway incursion incidents.
White, Peter A
2009-09-01
Many kinds of common and easily observed causal relations exhibit property transmission, which is a tendency for the causal object to impose its own properties on the effect object. It is proposed that property transmission becomes a general and readily available hypothesis used to make interpretations and judgments about causal questions under conditions of uncertainty, in which property transmission functions as a heuristic. The property transmission hypothesis explains why and when similarity information is used in causal inference. It can account for magical contagion beliefs, some cases of illusory correlation, the correspondence bias, overestimation of cross-situational consistency in behavior, nonregressive tendencies in prediction, the belief that acts of will are causes of behavior, and a range of other phenomena. People learn that property transmission is often moderated by other factors, but under conditions of uncertainty in which the operation of relevant other factors is unknown, it tends to exhibit a pervasive influence on thinking about causality. (c) 2009 APA, all rights reserved.