Sample records for component failure probabilities

  1. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  2. Development of STS/Centaur failure probabilities liftoff to Centaur separation

    NASA Technical Reports Server (NTRS)

    Hudson, J. M.

    1982-01-01

    The results of an analysis to determine STS/Centaur catastrophic vehicle response probabilities for the phases of vehicle flight from STS liftoff to Centaur separation from the Orbiter are presented. The analysis considers only category one component failure modes as contributors to the vehicle response mode probabilities. The relevant component failure modes are grouped into one of fourteen categories of potential vehicle behavior. By assigning failure rates to each component, for each of its failure modes, the STS/Centaur vehicle response probabilities in each phase of flight can be calculated. The results of this study will be used in a DOE analysis to ascertain the hazard from carrying a nuclear payload on the STS.

  3. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  4. Game-Theoretic strategies for systems of components using product-form utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Ma, Cheng-Yu; Hausken, K.

    Many critical infrastructures are composed of multiple systems of components which are correlated so that disruptions to one may propagate to others. We consider such infrastructures with correlations characterized in two ways: (i) an aggregate failure correlation function specifies the conditional failure probability of the infrastructure given the failure of an individual system, and (ii) a pairwise correlation function between two systems specifies the failure probability of one system given the failure of the other. We formulate a game for ensuring the resilience of the infrastructure, wherein the utility functions of the provider and attacker are products of an infrastructuremore » survival probability term and a cost term, both expressed in terms of the numbers of system components attacked and reinforced. The survival probabilities of individual systems satisfy first-order differential conditions that lead to simple Nash Equilibrium conditions. We then derive sensitivity functions that highlight the dependence of infrastructure resilience on the cost terms, correlation functions, and individual system survival probabilities. We apply these results to simplified models of distributed cloud computing and energy grid infrastructures.« less

  5. Defense strategies for asymmetric networked systems under composite utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell

    We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively.more » They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure« less

  6. Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; He, Fei; Ma, Chris Y. T.

    In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resiliencemore » problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.« less

  7. Estimating earthquake-induced failure probability and downtime of critical facilities.

    PubMed

    Porter, Keith; Ramer, Kyle

    2012-01-01

    Fault trees have long been used to estimate failure risk in earthquakes, especially for nuclear power plants (NPPs). One interesting application is that one can assess and manage the probability that two facilities - a primary and backup - would be simultaneously rendered inoperative in a single earthquake. Another is that one can calculate the probabilistic time required to restore a facility to functionality, and the probability that, during any given planning period, the facility would be rendered inoperative for any specified duration. A large new peer-reviewed library of component damageability and repair-time data for the first time enables fault trees to be used to calculate the seismic risk of operational failure and downtime for a wide variety of buildings other than NPPs. With the new library, seismic risk of both the failure probability and probabilistic downtime can be assessed and managed, considering the facility's unique combination of structural and non-structural components, their seismic installation conditions, and the other systems on which the facility relies. An example is offered of real computer data centres operated by a California utility. The fault trees were created and tested in collaboration with utility operators, and the failure probability and downtime results validated in several ways.

  8. Analysis of Emergency Diesel Generators Failure Incidents in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Hunt, Ronderio LaDavis

    In early years of operation, emergency diesel generators have had a minimal rate of demand failures. Emergency diesel generators are designed to operate as a backup when the main source of electricity has been disrupted. As of late, EDGs (emergency diesel generators) have been failing at NPPs (nuclear power plants) around the United States causing either station blackouts or loss of onsite and offsite power. These failures occurred from a specific type called demand failures. This thesis evaluated the current problem that raised concern in the nuclear industry which was averaging 1 EDG demand failure/year in 1997 to having an excessive event of 4 EDG demand failure year which occurred in 2011. To determine the next occurrence of the extreme event and possible cause to an event of such happening, two analyses were conducted, the statistical and root cause analysis. Considering the statistical analysis in which an extreme event probability approach was applied to determine the next occurrence year of an excessive event as well as, the probability of that excessive event occurring. Using the root cause analysis in which the potential causes of the excessive event occurred by evaluating, the EDG manufacturers, aging, policy changes/ maintenance practices and failure components. The root cause analysis investigated the correlation between demand failure data and historical data. Final results from the statistical analysis showed expectations of an excessive event occurring in a fixed range of probability and a wider range of probability from the extreme event probability approach. The root-cause analysis of the demand failure data followed historical statistics for the EDG manufacturer, aging and policy changes/ maintenance practices but, indicated a possible cause regarding the excessive event with the failure components. Conclusions showed the next excessive demand failure year, prediction of the probability and the next occurrence year of such failures, with an acceptable confidence level, was difficult but, it was likely that this type of failure will not be a 100 year event. It was noticeable to see that the majority of the EDG demand failures occurred within the main components as of 2005. The overall analysis of this study provided from percentages, indicated that it would be appropriate to make the statement that the excessive event was caused by the overall age (wear and tear) of the Emergency Diesel Generators in Nuclear Power Plants. Future Work will be to better determine the return period of the excessive event once the occurrence has happened for a second time by implementing the extreme event probability approach.

  9. Defense Strategies for Asymmetric Networked Systems with Discrete Components.

    PubMed

    Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun

    2018-05-03

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  10. Defense Strategies for Asymmetric Networked Systems with Discrete Components

    PubMed Central

    Rao, Nageswara S. V.; Ma, Chris Y. T.; Hausken, Kjell; He, Fei; Yau, David K. Y.

    2018-01-01

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models. PMID:29751588

  11. Diverse Redundant Systems for Reliable Space Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    Reliable life support systems are required for deep space missions. The probability of a fatal life support failure should be less than one in a thousand in a multi-year mission. It is far too expensive to develop a single system with such high reliability. Using three redundant units would require only that each have a failure probability of one in ten over the mission. Since the system development cost is inverse to the failure probability, this would cut cost by a factor of one hundred. Using replaceable subsystems instead of full systems would further cut cost. Using full sets of replaceable components improves reliability more than using complete systems as spares, since a set of components could repair many different failures instead of just one. Replaceable components would require more tools, space, and planning than full systems or replaceable subsystems. However, identical system redundancy cannot be relied on in practice. Common cause failures can disable all the identical redundant systems. Typical levels of common cause failures will defeat redundancy greater than two. Diverse redundant systems are required for reliable space life support. Three, four, or five diverse redundant systems could be needed for sufficient reliability. One system with lower level repair could be substituted for two diverse systems to save cost.

  12. On defense strategies for system of systems using aggregated correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Imam, Neena; Ma, Chris Y. T.

    2017-04-01

    We consider a System of Systems (SoS) wherein each system Si, i = 1; 2; ... ;N, is composed of discrete cyber and physical components which can be attacked and reinforced. We characterize the disruptions using aggregate failure correlation functions given by the conditional failure probability of SoS given the failure of an individual system. We formulate the problem of ensuring the survival of SoS as a game between an attacker and a provider, each with a utility function composed of asurvival probability term and a cost term, both expressed in terms of the number of components attacked and reinforced.more » The survival probabilities of systems satisfy simple product-form, first-order differential conditions, which simplify the Nash Equilibrium (NE) conditions. We derive the sensitivity functions that highlight the dependence of SoS survival probability at NE on cost terms, correlation functions, and individual system survival probabilities.We apply these results to a simplified model of distributed cloud computing infrastructure.« less

  13. Design of high temperature ceramic components against fast fracture and time-dependent failure using cares/life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, O.M.; Powers, L.M.; Nemeth, N.N.

    1995-08-01

    A probabilistic design methodology which predicts the fast fracture and time-dependent failure behavior of thermomechanically loaded ceramic components is discussed using the CARES/LIFE integrated design computer program. Slow crack growth (SCG) is assumed to be the mechanism responsible for delayed failure behavior. Inert strength and dynamic fatigue data obtained from testing coupon specimens (O-ring and C-ring specimens) are initially used to calculate the fast fracture and SCG material parameters as a function of temperature using the parameter estimation techniques available with the CARES/LIFE code. Finite element analysis (FEA) is used to compute the stress distributions for the tube as amore » function of applied pressure. Knowing the stress and temperature distributions and the fast fracture and SCG material parameters, the life time for a given tube can be computed. A stress-failure probability-time to failure (SPT) diagram is subsequently constructed for these tubes. Such a diagram can be used by design engineers to estimate the time to failure at a given failure probability level for a component subjected to a given thermomechanical load.« less

  14. Game-theoretic strategies for asymmetric networked systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell

    Abstract—We consider an infrastructure consisting of a network of systems each composed of discrete components that can be reinforced at a certain cost to guard against attacks. The network provides the vital connectivity between systems, and hence plays a critical, asymmetric role in the infrastructure operations. We characterize the system-level correlations using the aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual system or network. The survival probabilities of systems and network satisfy first-order differential conditions that capture the component-level correlations. We formulate the problem of ensuring the infrastructure survival as a gamemore » between anattacker and a provider, using the sum-form and product-form utility functions, each composed of a survival probability term and a cost term. We derive Nash Equilibrium conditions which provide expressions for individual system survival probabilities, and also the expected capacity specified by the total number of operational components. These expressions differ only in a single term for the sum-form and product-form utilities, despite their significant differences.We apply these results to simplified models of distributed cloud computing infrastructures.« less

  15. Common-Cause Failure Treatment in Event Assessment: Basis for a Proposed New Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Kelly; Song-Hua Shen; Gary DeMoss

    2010-06-01

    Event assessment is an application of probabilistic risk assessment in which observed equipment failures and outages are mapped into the risk model to obtain a numerical estimate of the event’s risk significance. In this paper, we focus on retrospective assessments to estimate the risk significance of degraded conditions such as equipment failure accompanied by a deficiency in a process such as maintenance practices. In modeling such events, the basic events in the risk model that are associated with observed failures and other off-normal situations are typically configured to be failed, while those associated with observed successes and unchallenged components aremore » assumed capable of failing, typically with their baseline probabilities. This is referred to as the failure memory approach to event assessment. The conditioning of common-cause failure probabilities for the common cause component group associated with the observed component failure is particularly important, as it is insufficient to simply leave these probabilities at their baseline values, and doing so may result in a significant underestimate of risk significance for the event. Past work in this area has focused on the mathematics of the adjustment. In this paper, we review the Basic Parameter Model for common-cause failure, which underlies most current risk modelling, discuss the limitations of this model with respect to event assessment, and introduce a proposed new framework for common-cause failure, which uses a Bayesian network to model underlying causes of failure, and which has the potential to overcome the limitations of the Basic Parameter Model with respect to event assessment.« less

  16. Improving online risk assessment with equipment prognostics and health monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Liu, Xiaotong; Briere, Chris

    The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less

  17. A simplified fragility analysis of fan type cable stayed bridges

    NASA Astrophysics Data System (ADS)

    Khan, R. A.; Datta, T. K.; Ahmad, S.

    2005-06-01

    A simplified fragility analysis of fan type cable stayed bridges using Probabilistic Risk Analysis (PRA) procedure is presented for determining their failure probability under random ground motion. Seismic input to the bridge support is considered to be a risk consistent response spectrum which is obtained from a separate analysis. For the response analysis, the bridge deck is modeles as a beam supported on spring at different points. The stiffnesses of the springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysis provides a coupled stiffness matrix for the spring system. A continuum method of analysis using dynamic stiffness is used to determine the dynamic properties of the bridges. The response of the bridge deck is obtained by the response spectrum method of analysis as applied to multidegree of freedom system which duly takes into account the quasi-static component of bridge deck vibration. The fragility analysis includes uncertainties arising due to the variation in ground motion, material property, modeling, method of analysis, ductility factor and damage concentration effect. Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM) method of reliability. A three span double plane symmetrical fan type cable stayed bridge of total span 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure are obtained under a number of parametric variations. Some of the important conclusions of the study indicate that (i) not only vertical component but also the horizontal component of ground motion has considerable effect on the probability of failure; (ii) ground motion with no time lag between support excitations provides a smaller probability of failure as compared to ground motion with very large time lag between support excitation; and (iii) probability of failure may considerably increase soft soil condition.

  18. Sensitivity analysis by approximation formulas - Illustrative examples. [reliability analysis of six-component architectures

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1983-01-01

    This paper examines the reliability of three architectures for six components. For each architecture, the probabilities of the failure states are given by algebraic formulas involving the component fault rate, the system recovery rate, and the operating time. The dominant failure modes are identified, and the change in reliability is considered with respect to changes in fault rate, recovery rate, and operating time. The major conclusions concern the influence of system architecture on failure modes and parameter requirements. Without this knowledge, a system designer may pick an inappropriate structure.

  19. Pitfalls and Precautions When Using Predicted Failure Data for Quantitative Analysis of Safety Risk for Human Rated Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hatfield, Glen S.; Hark, Frank; Stott, James

    2016-01-01

    Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account risks attributable to manufacturing, assembly, and process controls. These sources often dominate component level reliability or risk of failure probability. While consequences of failure is often understood in assessing risk, using predicted values in a risk model to estimate the probability of occurrence will likely underestimate the risk. Managers and decision makers often use the probability of occurrence in determining whether to accept the risk or require a design modification. Due to the absence of system level test and operational data inherent in aerospace applications, the actual risk threshold for acceptance may not be appropriately characterized for decision making purposes. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.

  20. Defense strategies for cloud computing multi-site server infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; He, Fei

    We consider cloud computing server infrastructures for big data applications, which consist of multiple server sites connected over a wide-area network. The sites house a number of servers, network elements and local-area connections, and the wide-area network plays a critical, asymmetric role of providing vital connectivity between them. We model this infrastructure as a system of systems, wherein the sites and wide-area network are represented by their cyber and physical components. These components can be disabled by cyber and physical attacks, and also can be protected against them using component reinforcements. The effects of attacks propagate within the systems, andmore » also beyond them via the wide-area network.We characterize these effects using correlations at two levels using: (a) aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual site or network, and (b) first-order differential conditions on system survival probabilities that characterize the component-level correlations within individual systems. We formulate a game between an attacker and a provider using utility functions composed of survival probability and cost terms. At Nash Equilibrium, we derive expressions for the expected capacity of the infrastructure given by the number of operational servers connected to the network for sum-form, product-form and composite utility functions.« less

  1. Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig

    2004-12-01

    Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail to function as intended in a fire environment are investigated. In the systems under study, failure of the WL system before failure of the SL system is intended to render the overall system inoperational and thus prevent the possible occurrence of accidents with potentially serious consequences. Formal developments of the probability that the WL system fails to deactivate the overall system before failure of the SL system (i.e., the probability of loss of assured safety, PLOAS) are presented for several WWSL configurations: (i) onemore » WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which the individual components of this system fail and are formally defined as multidimensional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson's rule) and also on Monte Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence theory are presented.« less

  2. CARES/Life Software for Designing More Reliable Ceramic Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Baker, Eric H.

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion, and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CAPES/Life software eases this task by providing a tool to optimize the design and manufacture of brittle material components using probabilistic reliability analysis techniques. Probabilistic component design involves predicting the probability of failure for a thermomechanically loaded component from specimen rupture data. Typically, these experiments are performed using many simple geometry flexural or tensile test specimens. A static, dynamic, or cyclic load is applied to each specimen until fracture. Statistical strength and SCG (fatigue) parameters are then determined from these data. Using these parameters and the results obtained from a finite element analysis, the time-dependent reliability for a complex component geometry and loading is then predicted. Appropriate design changes are made until an acceptable probability of failure has been reached.

  3. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  4. Determining Component Probability using Problem Report Data for Ground Systems used in Manned Space Flight

    NASA Technical Reports Server (NTRS)

    Monaghan, Mark W.; Gillespie, Amanda M.

    2013-01-01

    During the shuttle era NASA utilized a failure reporting system called the Problem Reporting and Corrective Action (PRACA) it purpose was to identify and track system non-conformance. The PRACA system over the years evolved from a relatively nominal way to identify system problems to a very complex tracking and report generating data base. The PRACA system became the primary method to categorize any and all anomalies from corrosion to catastrophic failure. The systems documented in the PRACA system range from flight hardware to ground or facility support equipment. While the PRACA system is complex, it does possess all the failure modes, times of occurrence, length of system delay, parts repaired or replaced, and corrective action performed. The difficulty is mining the data then to utilize that data in order to estimate component, Line Replaceable Unit (LRU), and system reliability analysis metrics. In this paper, we identify a methodology to categorize qualitative data from the ground system PRACA data base for common ground or facility support equipment. Then utilizing a heuristic developed for review of the PRACA data determine what reports identify a credible failure. These data are the used to determine inter-arrival times to perform an estimation of a metric for repairable component-or LRU reliability. This analysis is used to determine failure modes of the equipment, determine the probability of the component failure mode, and support various quantitative differing techniques for performing repairable system analysis. The result is that an effective and concise estimate of components used in manned space flight operations. The advantage is the components or LRU's are evaluated in the same environment and condition that occurs during the launch process.

  5. Probabilistic framework for product design optimization and risk management

    NASA Astrophysics Data System (ADS)

    Keski-Rahkonen, J. K.

    2018-05-01

    Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.

  6. NESTEM-QRAS: A Tool for Estimating Probability of Failure

    NASA Technical Reports Server (NTRS)

    Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.

    2002-01-01

    An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.

  7. NESTEM-QRAS: A Tool for Estimating Probability of Failure

    NASA Astrophysics Data System (ADS)

    Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.

    2002-10-01

    An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.

  8. Enhanced Component Performance Study: Emergency Diesel Generators 1998–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2015-11-01

    This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using (1) Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2014 and (2) maintenance unavailability (UA) performance data from Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2014. The objective is to show estimates of current failure probabilities and rates related to EDGs, trend these data on an annual basis, determine if the current data are consistent with the probability distributions currently recommended for use inmore » NRC probabilistic risk assessments, show how the reliability data differ for different EDG manufacturers and for EDGs with different ratings; and summarize the subcomponents, causes, detection methods, and recovery associated with each EDG failure mode. Engineering analyses were performed with respect to time period and failure mode without regard to the actual number of EDGs at each plant. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating. Six trends with varying degrees of statistical significance were identified in the data.« less

  9. Fatigue analysis of composite materials using the fail-safe concept

    NASA Technical Reports Server (NTRS)

    Stievenard, G.

    1982-01-01

    If R1 is the probability of having a crack on a flight component and R2 is the probability of seeing this crack propagate between two scheduled inspections, the global failure regulation states that this product must not exceed 0.0000001.

  10. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.

  11. An Evidence Theoretic Approach to Design of Reliable Low-Cost UAVs

    DTIC Science & Technology

    2009-07-28

    given period. For complex systems with various stages of missions, “ success ” becomes hard to define. For a UAV, for example, is success defined as...For this reason, the proposed methods in this thesis investigate probability of failure (PoF ) rather than probability of success . Further, failure will...reduction in system PoF . Figure 25 illustrates this; a single component 43 (A) from the original system (Figure 25a) is modified to act in a subsystem with

  12. Estimating distributions with increasing failure rate in an imperfect repair model.

    PubMed

    Kvam, Paul H; Singh, Harshinder; Whitaker, Lyn R

    2002-03-01

    A failed system is repaired minimally if after failure, it is restored to the working condition of an identical system of the same age. We extend the nonparametric maximum likelihood estimator (MLE) of a system's lifetime distribution function to test units that are known to have an increasing failure rate. Such items comprise a significant portion of working components in industry. The order-restricted MLE is shown to be consistent. Similar results hold for the Brown-Proschan imperfect repair model, which dictates that a failed component is repaired perfectly with some unknown probability, and is otherwise repaired minimally. The estimators derived are motivated and illustrated by failure data in the nuclear industry. Failure times for groups of emergency diesel generators and motor-driven pumps are analyzed using the order-restricted methods. The order-restricted estimators are consistent and show distinct differences from the ordinary MLEs. Simulation results suggest significant improvement in reliability estimation is available in many cases when component failure data exhibit the IFR property.

  13. Pitfalls and Precautions When Using Predicted Failure Data for Quantitative Analysis of Safety Risk for Human Rated Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hatfield, Glen S.; Hark, Frank; Stott, James

    2016-01-01

    Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account system integration risks such as those attributable to manufacturing and assembly. These sources often dominate component level risk. While consequence of failure is often understood, using predicted values in a risk model to estimate the probability of occurrence may underestimate the actual risk. Managers and decision makers use the probability of occurrence to influence the determination whether to accept the risk or require a design modification. The actual risk threshold for acceptance may not be fully understood due to the absence of system level test data or operational data. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.

  14. Fuzzy-information-based robustness of interconnected networks against attacks and failures

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai

    2016-09-01

    Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.

  15. Space shuttle solid rocket booster recovery system definition, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The performance requirements, preliminary designs, and development program plans for an airborne recovery system for the space shuttle solid rocket booster are discussed. The analyses performed during the study phase of the program are presented. The basic considerations which established the system configuration are defined. A Monte Carlo statistical technique using random sampling of the probability distribution for the critical water impact parameters was used to determine the failure probability of each solid rocket booster component as functions of impact velocity and component strength capability.

  16. An approximation formula for a class of fault-tolerant computers

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1986-01-01

    An approximation formula is derived for the probability of failure for fault-tolerant process-control computers. These computers use redundancy and reconfiguration to achieve high reliability. Finite-state Markov models capture the dynamic behavior of component failure and system recovery, and the approximation formula permits an estimation of system reliability by an easy examination of the model.

  17. Closed-form solution of decomposable stochastic models

    NASA Technical Reports Server (NTRS)

    Sjogren, Jon A.

    1990-01-01

    Markov and semi-Markov processes are increasingly being used in the modeling of complex reconfigurable systems (fault tolerant computers). The estimation of the reliability (or some measure of performance) of the system reduces to solving the process for its state probabilities. Such a model may exhibit numerous states and complicated transition distributions, contributing to an expensive and numerically delicate solution procedure. Thus, when a system exhibits a decomposition property, either structurally (autonomous subsystems), or behaviorally (component failure versus reconfiguration), it is desirable to exploit this decomposition in the reliability calculation. In interesting cases there can be failure states which arise from non-failure states of the subsystems. Equations are presented which allow the computation of failure probabilities of the total (combined) model without requiring a complete solution of the combined model. This material is presented within the context of closed-form functional representation of probabilities as utilized in the Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) tool. The techniques adopted enable one to compute such probability functions for a much wider class of systems at a reduced computational cost. Several examples show how the method is used, especially in enhancing the versatility of the SHARPE tool.

  18. Recent advances in computational structural reliability analysis methods

    NASA Astrophysics Data System (ADS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  19. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  20. Analysis of whisker-toughened CMC structural components using an interactive reliability model

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Palko, Joseph L.

    1992-01-01

    Realizing wider utilization of ceramic matrix composites (CMC) requires the development of advanced structural analysis technologies. This article focuses on the use of interactive reliability models to predict component probability of failure. The deterministic William-Warnke failure criterion serves as theoretical basis for the reliability model presented here. The model has been implemented into a test-bed software program. This computer program has been coupled to a general-purpose finite element program. A simple structural problem is presented to illustrate the reliability model and the computer algorithm.

  1. The GRASP 3: Graphical Reliability Analysis Simulation Program. Version 3: A users' manual and modelling guide

    NASA Technical Reports Server (NTRS)

    Phillips, D. T.; Manseur, B.; Foster, J. W.

    1982-01-01

    Alternate definitions of system failure create complex analysis for which analytic solutions are available only for simple, special cases. The GRASP methodology is a computer simulation approach for solving all classes of problems in which both failure and repair events are modeled according to the probability laws of the individual components of the system.

  2. Probabilistic analysis on the failure of reactivity control for the PWR

    NASA Astrophysics Data System (ADS)

    Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.

  3. Data Applicability of Heritage and New Hardware For Launch Vehicle Reliability Models

    NASA Technical Reports Server (NTRS)

    Al Hassan, Mohammad; Novack, Steven

    2015-01-01

    Bayesian reliability requires the development of a prior distribution to represent degree of belief about the value of a parameter (such as a component's failure rate) before system specific data become available from testing or operations. Generic failure data are often provided in reliability databases as point estimates (mean or median). A component's failure rate is considered a random variable where all possible values are represented by a probability distribution. The applicability of the generic data source is a significant source of uncertainty that affects the spread of the distribution. This presentation discusses heuristic guidelines for quantifying uncertainty due to generic data applicability when developing prior distributions mainly from reliability predictions.

  4. Probabilistic finite elements for fracture and fatigue analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.

    1989-01-01

    The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.

  5. Estimation of probability of failure for damage-tolerant aerospace structures

    NASA Astrophysics Data System (ADS)

    Halbert, Keith

    The majority of aircraft structures are designed to be damage-tolerant such that safe operation can continue in the presence of minor damage. It is necessary to schedule inspections so that minor damage can be found and repaired. It is generally not possible to perform structural inspections prior to every flight. The scheduling is traditionally accomplished through a deterministic set of methods referred to as Damage Tolerance Analysis (DTA). DTA has proven to produce safe aircraft but does not provide estimates of the probability of failure of future flights or the probability of repair of future inspections. Without these estimates maintenance costs cannot be accurately predicted. Also, estimation of failure probabilities is now a regulatory requirement for some aircraft. The set of methods concerned with the probabilistic formulation of this problem are collectively referred to as Probabilistic Damage Tolerance Analysis (PDTA). The goal of PDTA is to control the failure probability while holding maintenance costs to a reasonable level. This work focuses specifically on PDTA for fatigue cracking of metallic aircraft structures. The growth of a crack (or cracks) must be modeled using all available data and engineering knowledge. The length of a crack can be assessed only indirectly through evidence such as non-destructive inspection results, failures or lack of failures, and the observed severity of usage of the structure. The current set of industry PDTA tools are lacking in several ways: they may in some cases yield poor estimates of failure probabilities, they cannot realistically represent the variety of possible failure and maintenance scenarios, and they do not allow for model updates which incorporate observed evidence. A PDTA modeling methodology must be flexible enough to estimate accurately the failure and repair probabilities under a variety of maintenance scenarios, and be capable of incorporating observed evidence as it becomes available. This dissertation describes and develops new PDTA methodologies that directly address the deficiencies of the currently used tools. The new methods are implemented as a free, publicly licensed and open source R software package that can be downloaded from the Comprehensive R Archive Network. The tools consist of two main components. First, an explicit (and expensive) Monte Carlo approach is presented which simulates the life of an aircraft structural component flight-by-flight. This straightforward MC routine can be used to provide defensible estimates of the failure probabilities for future flights and repair probabilities for future inspections under a variety of failure and maintenance scenarios. This routine is intended to provide baseline estimates against which to compare the results of other, more efficient approaches. Second, an original approach is described which models the fatigue process and future scheduled inspections as a hidden Markov model. This model is solved using a particle-based approximation and the sequential importance sampling algorithm, which provides an efficient solution to the PDTA problem. Sequential importance sampling is an extension of importance sampling to a Markov process, allowing for efficient Bayesian updating of model parameters. This model updating capability, the benefit of which is demonstrated, is lacking in other PDTA approaches. The results of this approach are shown to agree with the results of the explicit Monte Carlo routine for a number of PDTA problems. Extensions to the typical PDTA problem, which cannot be solved using currently available tools, are presented and solved in this work. These extensions include incorporating observed evidence (such as non-destructive inspection results), more realistic treatment of possible future repairs, and the modeling of failure involving more than one crack (the so-called continuing damage problem). The described hidden Markov model / sequential importance sampling approach to PDTA has the potential to improve aerospace structural safety and reduce maintenance costs by providing a more accurate assessment of the risk of failure and the likelihood of repairs throughout the life of an aircraft.

  6. Enhanced Component Performance Study. Emergency Diesel Generators 1998–2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2014-11-01

    This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2013 and maintenance unavailability (UA) performance data using Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2013. The objective is to present an analysis of factors that could influence the system and component trends in addition to annual performance trends of failure rates and probabilities. The factors analyzed for the EDG component are the differences in failuresmore » between all demands and actual unplanned engineered safety feature (ESF) demands, differences among manufacturers, and differences among EDG ratings. Statistical analyses of these differences are performed and results showing whether pooling is acceptable across these factors. In addition, engineering analyses were performed with respect to time period and failure mode. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating.« less

  7. Of pacemakers and statistics: the actuarial method extended.

    PubMed

    Dussel, J; Wolbarst, A B; Scott-Millar, R N; Obel, I W

    1980-01-01

    Pacemakers cease functioning because of either natural battery exhaustion (nbe) or component failure (cf). A study of four series of pacemakers shows that a simple extension of the actuarial method, so as to incorporate Normal statistics, makes possible a quantitative differentiation between the two modes of failure. This involves the separation of the overall failure probability density function PDF(t) into constituent parts pdfnbe(t) and pdfcf(t). The approach should allow a meaningful comparison of the characteristics of different pacemaker types.

  8. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    NASA Technical Reports Server (NTRS)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor

    2014-01-01

    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service life and increases at the end when the design service life ends and wear-out phase begins. However, the component failure rates do not remain constant over the entire cycle life. The failure rate depends on various factors such as design complexity, current age of the component, operating conditions, severity of environmental stress factors, etc. Development, qualification and acceptance test processes provide rigorous screening of components to weed out imperfections that might otherwise cause infant mortality failures. If sufficient samples are tested to failure, the failure time versus failure quantity can be analyzed statistically to develop a failure probability distribution function (PDF), a statistical model of the probability of failure versus time. Driven by cost and schedule constraints however, spacecraft components are generally not tested in large numbers. Uncertainties in failure rate and remaining life estimates increase when fewer units are tested. To account for this, spacecraft operators prefer to limit useful operations to a period shorter than the maximum demonstrated service life of the weakest component. Running each component to its failure to determine the maximum possible service life of a system can become overly expensive and impractical. Spacecraft operators therefore, specify the required service life and an acceptable factor of safety (FOS). The designers use these requirements to limit the life test duration. Midway through the design life, when benefits justify additional investments, supplementary life test may be performed to demonstrate the capability to safely extend the service life of the system. An innovative approach is required to evaluate the entire system, without having to go through an elaborate test program of propulsion system elements. Evaluating every component through a brute force test program would be a cost prohibitive and time consuming endeavor. ISS propulsion system components were designed and built decades ago. There are no representative ground test articles for some of the components. A 'test everything' approach would require manufacturing new test articles. The paper outlines some of the techniques used for selective testing, by way of cherry picking candidate components based on failure mode effects analysis, system level impacts, hazard analysis, etc. The type of testing required for extending the service life depends on the design and criticality of the component, failure modes and failure mechanisms, life cycle margin provided by the original certification, operational and environmental stresses encountered, etc. When specific failure mechanism being considered and the underlying relationship of that mode to the stresses provided in the test can be correlated by supporting analysis, time and effort required for conducting life extension testing can be significantly reduced. Exposure to corrosive propellants over long periods of time, for instance, lead to specific failure mechanisms in several components used in the propulsion system. Using Arrhenius model, which is tied to chemically dependent failure mechanisms such as corrosion or chemical reactions, it is possible to subject carefully selected test articles to accelerated life test. Arrhenius model reflects the proportional relationship between time to failure of a component and the exponential of the inverse of absolute temperature acting on the component. The acceleration factor is used to perform tests at higher stresses that allow direct correlation between the times to failure at a high test temperature to the temperatures to be expected in actual use. As long as the temperatures are such that new failure mechanisms are not introduced, this becomes a very useful method for testing to failure a relatively small sample of items for a much shorter amount of time. In this article, based on the example of the propulsion system of the first ISS module Zarya, theoretical approaches and practical activities of extending the service life of the propulsion system are reviewed with the goal of determining the maximum duration of its safe operation.

  9. Sequential experimental design based generalised ANOVA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Chowdhury, Rajib

    2016-07-01

    Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.

  10. Sequential experimental design based generalised ANOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Souvik, E-mail: csouvik41@gmail.com; Chowdhury, Rajib, E-mail: rajibfce@iitr.ac.in

    Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover,more » generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.« less

  11. Transient Reliability of Ceramic Structures For Heat Engine Applications

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama M.

    2002-01-01

    The objectives of this report was to develop a methodology to predict the time-dependent reliability (probability of failure) of brittle material components subjected to transient thermomechanical loading, taking into account the change in material response with time. This methodology for computing the transient reliability in ceramic components subjected to fluctuation thermomechanical loading was developed, assuming SCG (Slow Crack Growth) as the delayed mode of failure. It takes into account the effect of varying Weibull modulus and materials with time. It was also coded into a beta version of NASA's CARES/Life code, and an example demonstrating its viability was presented.

  12. A Methodology for Modeling Nuclear Power Plant Passive Component Aging in Probabilistic Risk Assessment under the Impact of Operating Conditions, Surveillance and Maintenance Activities

    NASA Astrophysics Data System (ADS)

    Guler Yigitoglu, Askin

    In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.

  13. Probabilistic evaluation of uncertainties and risks in aerospace components

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.

    1992-01-01

    This paper summarizes a methodology developed at NASA Lewis Research Center which computationally simulates the structural, material, and load uncertainties associated with Space Shuttle Main Engine (SSME) components. The methodology was applied to evaluate the scatter in static, buckling, dynamic, fatigue, and damage behavior of the SSME turbo pump blade. Also calculated are the probability densities of typical critical blade responses, such as effective stress, natural frequency, damage initiation, most probable damage path, etc. Risk assessments were performed for different failure modes, and the effect of material degradation on the fatigue and damage behaviors of a blade were calculated using a multi-factor interaction equation. Failure probabilities for different fatigue cycles were computed and the uncertainties associated with damage initiation and damage propagation due to different load cycle were quantified. Evaluations on the effects of mistuned blades on a rotor were made; uncertainties in the excitation frequency were found to significantly amplify the blade responses of a mistuned rotor. The effects of the number of blades on a rotor were studied. The autocorrelation function of displacements and the probability density function of the first passage time for deterministic and random barriers for structures subjected to random processes also were computed. A brief discussion was included on the future direction of probabilistic structural analysis.

  14. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  15. Mitigating Thermal Runaway Risk in Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Jeevarajan, Judy; Russell, Samuel

    2014-01-01

    The JSC/NESC team has successfully demonstrated Thermal Runaway (TR) risk reduction in a lithium ion battery for human space flight by developing and implementing verifiable design features which interrupt energy transfer between adjacent electrochemical cells. Conventional lithium ion (li-Ion) batteries can fail catastrophically as a result of a single cell going into thermal runaway. Thermal runaway results when an internal component fails to separate electrode materials leading to localized heating and complete combustion of the lithium ion cell. Previously, the greatest control to minimize the probability of cell failure was individual cell screening. Combining thermal runaway propagation mitigation design features with a comprehensive screening program reduces both the probability, and the severity, of a single cell failure.

  16. A framework for conducting mechanistic based reliability assessments of components operating in complex systems

    NASA Astrophysics Data System (ADS)

    Wallace, Jon Michael

    2003-10-01

    Reliability prediction of components operating in complex systems has historically been conducted in a statistically isolated manner. Current physics-based, i.e. mechanistic, component reliability approaches focus more on component-specific attributes and mathematical algorithms and not enough on the influence of the system. The result is that significant error can be introduced into the component reliability assessment process. The objective of this study is the development of a framework that infuses the needs and influence of the system into the process of conducting mechanistic-based component reliability assessments. The formulated framework consists of six primary steps. The first three steps, identification, decomposition, and synthesis, are primarily qualitative in nature and employ system reliability and safety engineering principles to construct an appropriate starting point for the component reliability assessment. The following two steps are the most unique. They involve a step to efficiently characterize and quantify the system-driven local parameter space and a subsequent step using this information to guide the reduction of the component parameter space. The local statistical space quantification step is accomplished using two proposed multivariate probability models: Multi-Response First Order Second Moment and Taylor-Based Inverse Transformation. Where existing joint probability models require preliminary distribution and correlation information of the responses, these models combine statistical information of the input parameters with an efficient sampling of the response analyses to produce the multi-response joint probability distribution. Parameter space reduction is accomplished using Approximate Canonical Correlation Analysis (ACCA) employed as a multi-response screening technique. The novelty of this approach is that each individual local parameter and even subsets of parameters representing entire contributing analyses can now be rank ordered with respect to their contribution to not just one response, but the entire vector of component responses simultaneously. The final step of the framework is the actual probabilistic assessment of the component. Although the same multivariate probability tools employed in the characterization step can be used for the component probability assessment, variations of this final step are given to allow for the utilization of existing probabilistic methods such as response surface Monte Carlo and Fast Probability Integration. The overall framework developed in this study is implemented to assess the finite-element based reliability prediction of a gas turbine airfoil involving several failure responses. Results of this implementation are compared to results generated using the conventional 'isolated' approach as well as a validation approach conducted through large sample Monte Carlo simulations. The framework resulted in a considerable improvement to the accuracy of the part reliability assessment and an improved understanding of the component failure behavior. Considerable statistical complexity in the form of joint non-normal behavior was found and accounted for using the framework. Future applications of the framework elements are discussed.

  17. Guest Editor's Introduction: Special section on dependable distributed systems

    NASA Astrophysics Data System (ADS)

    Fetzer, Christof

    1999-09-01

    We rely more and more on computers. For example, the Internet reshapes the way we do business. A `computer outage' can cost a company a substantial amount of money. Not only with respect to the business lost during an outage, but also with respect to the negative publicity the company receives. This is especially true for Internet companies. After recent computer outages of Internet companies, we have seen a drastic fall of the shares of the affected companies. There are multiple causes for computer outages. Although computer hardware becomes more reliable, hardware related outages remain an important issue. For example, some of the recent computer outages of companies were caused by failed memory and system boards, and even by crashed disks - a failure type which can easily be masked using disk mirroring. Transient hardware failures might also look like software failures and, hence, might be incorrectly classified as such. However, many outages are software related. Faulty system software, middleware, and application software can crash a system. Dependable computing systems are systems we can rely on. Dependable systems are, by definition, reliable, available, safe and secure [3]. This special section focuses on issues related to dependable distributed systems. Distributed systems have the potential to be more dependable than a single computer because the probability that all computers in a distributed system fail is smaller than the probability that a single computer fails. However, if a distributed system is not built well, it is potentially less dependable than a single computer since the probability that at least one computer in a distributed system fails is higher than the probability that one computer fails. For example, if the crash of any computer in a distributed system can bring the complete system to a halt, the system is less dependable than a single-computer system. Building dependable distributed systems is an extremely difficult task. There is no silver bullet solution. Instead one has to apply a variety of engineering techniques [2]: fault-avoidance (minimize the occurrence of faults, e.g. by using a proper design process), fault-removal (remove faults before they occur, e.g. by testing), fault-evasion (predict faults by monitoring and reconfigure the system before failures occur), and fault-tolerance (mask and/or contain failures). Building a system from scratch is an expensive and time consuming effort. To reduce the cost of building dependable distributed systems, one would choose to use commercial off-the-shelf (COTS) components whenever possible. The usage of COTS components has several potential advantages beyond minimizing costs. For example, through the widespread usage of a COTS component, design failures might be detected and fixed before the component is used in a dependable system. Custom-designed components have to mature without the widespread in-field testing of COTS components. COTS components have various potential disadvantages when used in dependable systems. For example, minimizing the time to market might lead to the release of components with inherent design faults (e.g. use of `shortcuts' that only work most of the time). In addition, the components might be more complex than needed and, hence, potentially have more design faults than simpler components. However, given economic constraints and the ability to cope with some of the problems using fault-evasion and fault-tolerance, only for a small percentage of systems can one justify not using COTS components. Distributed systems built from current COTS components are asynchronous systems in the sense that there exists no a priori known bound on the transmission delay of messages or the execution time of processes. When designing a distributed algorithm, one would like to make sure (e.g. by testing or verification) that it is correct, i.e. satisfies its specification. Many distributed algorithms make use of consensus (eventually all non-crashed processes have to agree on a value), leader election (a crashed leader is eventually replaced by a new leader, but at any time there is at most one leader) or a group membership detection service (a crashed process is eventually suspected to have crashed but only crashed processes are suspected). From a theoretical point of view, the service specifications given for such services are not implementable in asynchronous systems. In particular, for each implementation one can derive a counter example in which the service violates its specification. From a practical point of view, the consensus, the leader election, and the membership detection problem are solvable in asynchronous distributed systems. In this special section, Raynal and Tronel show how to bridge this difference by showing how to implement the group membership detection problem with a negligible probability [1] to fail in an asynchronous system. The group membership detection problem is specified by a liveness condition (L) and a safety property (S): (L) if a process p crashes, then eventually every non-crashed process q has to suspect that p has crashed; and (S) if a process q suspects p, then p has indeed crashed. One can show that either (L) or (S) is implementable, but one cannot implement both (L) and (S) at the same time in an asynchronous system. In practice, one only needs to implement (L) and (S) such that the probability that (L) or (S) is violated becomes negligible. Raynal and Tronel propose and analyse a protocol that implements (L) with certainty and that can be tuned such that the probability that (S) is violated becomes negligible. Designing and implementing distributed fault-tolerant protocols for asynchronous systems is a difficult but not an impossible task. A fault-tolerant protocol has to detect and mask certain failure classes, e.g. crash failures and message omission failures. There is a trade-off between the performance of a fault-tolerant protocol and the failure classes the protocol can tolerate. One wants to tolerate as many failure classes as needed to satisfy the stochastic requirements of the protocol [1] while still maintaining a sufficient performance. Since clients of a protocol have different requirements with respect to the performance/fault-tolerance trade-off, one would like to be able to customize protocols such that one can select an appropriate performance/fault-tolerance trade-off. In this special section Hiltunen et al describe how one can compose protocols from micro-protocols in their Cactus system. They show how a group RPC system can be tailored to the needs of a client. In particular, they show how considering additional failure classes affects the performance of a group RPC system. References [1] Cristian F 1991 Understanding fault-tolerant distributed systems Communications of ACM 34 (2) 56-78 [2] Heimerdinger W L and Weinstock C B 1992 A conceptual framework for system fault tolerance Technical Report 92-TR-33, CMU/SEI [3] Laprie J C (ed) 1992 Dependability: Basic Concepts and Terminology (Vienna: Springer)

  18. Probabilistic structural analysis of aerospace components using NESSUS

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.

    1988-01-01

    Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.

  19. Reliability Quantification of Advanced Stirling Convertor (ASC) Components

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Zampino, Edward

    2010-01-01

    The Advanced Stirling Convertor, is intended to provide power for an unmanned planetary spacecraft and has an operational life requirement of 17 years. Over this 17 year mission, the ASC must provide power with desired performance and efficiency and require no corrective maintenance. Reliability demonstration testing for the ASC was found to be very limited due to schedule and resource constraints. Reliability demonstration must involve the application of analysis, system and component level testing, and simulation models, taken collectively. Therefore, computer simulation with limited test data verification is a viable approach to assess the reliability of ASC components. This approach is based on physics-of-failure mechanisms and involves the relationship among the design variables based on physics, mechanics, material behavior models, interaction of different components and their respective disciplines such as structures, materials, fluid, thermal, mechanical, electrical, etc. In addition, these models are based on the available test data, which can be updated, and analysis refined as more data and information becomes available. The failure mechanisms and causes of failure are included in the analysis, especially in light of the new information, in order to develop guidelines to improve design reliability and better operating controls to reduce the probability of failure. Quantified reliability assessment based on fundamental physical behavior of components and their relationship with other components has demonstrated itself to be a superior technique to conventional reliability approaches based on utilizing failure rates derived from similar equipment or simply expert judgment.

  20. Program For Evaluation Of Reliability Of Ceramic Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, N.; Janosik, L. A.; Gyekenyesi, J. P.; Powers, Lynn M.

    1996-01-01

    CARES/LIFE predicts probability of failure of monolithic ceramic component as function of service time. Assesses risk that component fractures prematurely as result of subcritical crack growth (SCG). Effect of proof testing of components prior to service also considered. Coupled to such commercially available finite-element programs as ANSYS, ABAQUS, MARC, MSC/NASTRAN, and COSMOS/M. Also retains all capabilities of previous CARES code, which includes estimation of fast-fracture component reliability and Weibull parameters from inert strength (without SCG contributing to failure) specimen data. Estimates parameters that characterize SCG from specimen data as well. Written in ANSI FORTRAN 77 to be machine-independent. Program runs on any computer in which sufficient addressable memory (at least 8MB) and FORTRAN 77 compiler available. For IBM-compatible personal computer with minimum 640K memory, limited program available (CARES/PC, COSMIC number LEW-15248).

  1. Failure detection system risk reduction assessment

    NASA Technical Reports Server (NTRS)

    Aguilar, Robert B. (Inventor); Huang, Zhaofeng (Inventor)

    2012-01-01

    A process includes determining a probability of a failure mode of a system being analyzed reaching a failure limit as a function of time to failure limit, determining a probability of a mitigation of the failure mode as a function of a time to failure limit, and quantifying a risk reduction based on the probability of the failure mode reaching the failure limit and the probability of the mitigation.

  2. Probabilistic risk analysis of building contamination.

    PubMed

    Bolster, D T; Tartakovsky, D M

    2008-10-01

    We present a general framework for probabilistic risk assessment (PRA) of building contamination. PRA provides a powerful tool for the rigorous quantification of risk in contamination of building spaces. A typical PRA starts by identifying relevant components of a system (e.g. ventilation system components, potential sources of contaminants, remediation methods) and proceeds by using available information and statistical inference to estimate the probabilities of their failure. These probabilities are then combined by means of fault-tree analyses to yield probabilistic estimates of the risk of system failure (e.g. building contamination). A sensitivity study of PRAs can identify features and potential problems that need to be addressed with the most urgency. Often PRAs are amenable to approximations, which can significantly simplify the approach. All these features of PRA are presented in this paper via a simple illustrative example, which can be built upon in further studies. The tool presented here can be used to design and maintain adequate ventilation systems to minimize exposure of occupants to contaminants.

  3. Failure Analysis of a Missile Locking Hook from the F-14 Jet

    DTIC Science & Technology

    1989-09-01

    MTL) to determine the probable cause of failure. The component is one of two launcher housing support points for the Spar- row Missile and is located...reference Raytheon Draw- ing No. 685029, Figure 3). Atomic absorpticn and inductively coupled argon plasma emission spectroscopy were used to determine ...microscopy, while Figure 16 is a SEM fractograph taken of the same region. The crack initiation site was determined by tracing the radial marks indicative of

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incorporation of real-time component information using equipment condition assessment (ECA) through the developmentof enhanced risk monitors (ERM) for active components in advanced reactor (AR) and advanced small modular reactor (SMR) designs. We incorporate time-dependent failure probabilities from prognostic health management (PHM) systems to dynamically update the risk metric of interest. This information is used to augment data used for supervisory control and plant-wide coordination of multiple modules by providing the incremental risk incurred due to aging and demands placed on components that support mission requirements.

  5. Fault Tree Based Diagnosis with Optimal Test Sequencing for Field Service Engineers

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; George, Laurence L.; Patterson-Hine, F. A.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    When field service engineers go to customer sites to service equipment, they want to diagnose and repair failures quickly and cost effectively. Symptoms exhibited by failed equipment frequently suggest several possible causes which require different approaches to diagnosis. This can lead the engineer to follow several fruitless paths in the diagnostic process before they find the actual failure. To assist in this situation, we have developed the Fault Tree Diagnosis and Optimal Test Sequence (FTDOTS) software system that performs automated diagnosis and ranks diagnostic hypotheses based on failure probability and the time or cost required to isolate and repair each failure. FTDOTS first finds a set of possible failures that explain exhibited symptoms by using a fault tree reliability model as a diagnostic knowledge to rank the hypothesized failures based on how likely they are and how long it would take or how much it would cost to isolate and repair them. This ordering suggests an optimal sequence for the field service engineer to investigate the hypothesized failures in order to minimize the time or cost required to accomplish the repair task. Previously, field service personnel would arrive at the customer site and choose which components to investigate based on past experience and service manuals. Using FTDOTS running on a portable computer, they can now enter a set of symptoms and get a list of possible failures ordered in an optimal test sequence to help them in their decisions. If facilities are available, the field engineer can connect the portable computer to the malfunctioning device for automated data gathering. FTDOTS is currently being applied to field service of medical test equipment. The techniques are flexible enough to use for many different types of devices. If a fault tree model of the equipment and information about component failure probabilities and isolation times or costs are available, a diagnostic knowledge base for that device can be developed easily.

  6. Effectiveness of back-to-back testing

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.; Eckhardt, David E.; Caglayan, Alper; Kelly, John P. J.

    1987-01-01

    Three models of back-to-back testing processes are described. Two models treat the case where there is no intercomponent failure dependence. The third model describes the more realistic case where there is correlation among the failure probabilities of the functionally equivalent components. The theory indicates that back-to-back testing can, under the right conditions, provide a considerable gain in software reliability. The models are used to analyze the data obtained in a fault-tolerant software experiment. It is shown that the expected gain is indeed achieved, and exceeded, provided the intercomponent failure dependence is sufficiently small. However, even with the relatively high correlation the use of several functionally equivalent components coupled with back-to-back testing may provide a considerable reliability gain. Implications of this finding are that the multiversion software development is a feasible and cost effective approach to providing highly reliable software components intended for fault-tolerant software systems, on condition that special attention is directed at early detection and elimination of correlated faults.

  7. Probabilistic structural analysis methods for space transportation propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.

    1991-01-01

    Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom Elicson; Bentley Harwood; Jim Bouchard

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. Themore » fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: • Development of time-dependent fire heat release rate profiles (required as input to CFAST), • Calculation of fire severity factors based on CFAST detailed fire modeling, and • Calculation of fire non-suppression probabilities.« less

  9. Probabilistic Prediction of Lifetimes of Ceramic Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Gyekenyesi, John P.; Jadaan, Osama M.; Palfi, Tamas; Powers, Lynn; Reh, Stefan; Baker, Eric H.

    2006-01-01

    ANSYS/CARES/PDS is a software system that combines the ANSYS Probabilistic Design System (PDS) software with a modified version of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) Version 6.0 software. [A prior version of CARES/Life was reported in Program for Evaluation of Reliability of Ceramic Parts (LEW-16018), NASA Tech Briefs, Vol. 20, No. 3 (March 1996), page 28.] CARES/Life models effects of stochastic strength, slow crack growth, and stress distribution on the overall reliability of a ceramic component. The essence of the enhancement in CARES/Life 6.0 is the capability to predict the probability of failure using results from transient finite-element analysis. ANSYS PDS models the effects of uncertainty in material properties, dimensions, and loading on the stress distribution and deformation. ANSYS/CARES/PDS accounts for the effects of probabilistic strength, probabilistic loads, probabilistic material properties, and probabilistic tolerances on the lifetime and reliability of the component. Even failure probability becomes a stochastic quantity that can be tracked as a response variable. ANSYS/CARES/PDS enables tracking of all stochastic quantities in the design space, thereby enabling more precise probabilistic prediction of lifetimes of ceramic components.

  10. Methods, apparatus and system for notification of predictable memory failure

    DOEpatents

    Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2017-01-03

    A method for providing notification of a predictable memory failure includes the steps of: obtaining information regarding at least one condition associated with a memory; calculating a memory failure probability as a function of the obtained information; calculating a failure probability threshold; and generating a signal when the memory failure probability exceeds the failure probability threshold, the signal being indicative of a predicted future memory failure.

  11. Importance Sampling in the Evaluation and Optimization of Buffered Failure Probability

    DTIC Science & Technology

    2015-07-01

    12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 Vancouver, Canada, July 12-15, 2015...Importance Sampling in the Evaluation and Optimization of Buffered Failure Probability Marwan M. Harajli Graduate Student, Dept. of Civil and Environ...criterion is usually the failure probability . In this paper, we examine the buffered failure probability as an attractive alternative to the failure

  12. Effect of Surge Current Testing on Reliability of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Tantalum capacitors manufactured per military specifications are established reliability components and have less than 0.001% of failures per 1000 hours for grades D or S, thus positioning these parts among electronic components with the highest reliability characteristics. Still, failures of tantalum capacitors do happen and when it occurs it might have catastrophic consequences for the system. To reduce this risk, further development of a screening and qualification system with special attention to the possible deficiencies in the existing procedures is necessary. The purpose of this work is evaluation of the effect of surge current stress testing on reliability of the parts at both steady-state and multiple surge current stress conditions. In order to reveal possible degradation and precipitate more failures, various part types were tested and stressed in the range of voltage and temperature conditions exceeding the specified limits. A model to estimate the probability of post-surge current testing-screening failures and measures to improve the effectiveness of the screening process has been suggested.

  13. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component; 99 percent probability... would result in applied loads being safely distributed to other load carrying members; 90 percent...

  14. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component; 99 percent probability... would result in applied loads being safely distributed to other load carrying members; 90 percent...

  15. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component; 99 percent probability... would result in applied loads being safely distributed to other load carrying members; 90 percent...

  16. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  17. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  18. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component; 99 percent probability... would result in applied loads being safely distributed to other load carrying members; 90 percent...

  19. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  20. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  1. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  2. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  3. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  4. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  5. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  6. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  7. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  8. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component; 99 percent probability... would result in applied loads being safely distributed to other load carrying members; 90 percent...

  9. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  10. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  11. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  12. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with... elements would result in applied loads being safely distributed to other load-carrying members, 90 percent...

  13. INTEGRATION OF RELIABILITY WITH MECHANISTIC THERMALHYDRAULICS: REPORT ON APPROACH AND TEST PROBLEM RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. S. Schroeder; R. W. Youngblood

    The Risk-Informed Safety Margin Characterization (RISMC) pathway of the Light Water Reactor Sustainability Program is developing simulation-based methods and tools for analyzing safety margin from a modern perspective. [1] There are multiple definitions of 'margin.' One class of definitions defines margin in terms of the distance between a point estimate of a given performance parameter (such as peak clad temperature), and a point-value acceptance criterion defined for that parameter (such as 2200 F). The present perspective on margin is that it relates to the probability of failure, and not just the distance between a nominal operating point and a criterion.more » In this work, margin is characterized through a probabilistic analysis of the 'loads' imposed on systems, structures, and components, and their 'capacity' to resist those loads without failing. Given the probabilistic load and capacity spectra, one can assess the probability that load exceeds capacity, leading to component failure. Within the project, we refer to a plot of these probabilistic spectra as 'the logo.' Refer to Figure 1 for a notional illustration. The implications of referring to 'the logo' are (1) RISMC is focused on being able to analyze loads and spectra probabilistically, and (2) calling it 'the logo' tacitly acknowledges that it is a highly simplified picture: meaningful analysis of a given component failure mode may require development of probabilistic spectra for multiple physical parameters, and in many practical cases, 'load' and 'capacity' will not vary independently.« less

  14. Shuttle payload vibroacoustic test plan evaluation. Free flyer payload applications and sortie payload parametric variations

    NASA Technical Reports Server (NTRS)

    Stahle, C. V.; Gongloff, H. R.

    1977-01-01

    A preliminary assessment of vibroacoustic test plan optimization for free flyer STS payloads is presented and the effects on alternate test plans for Spacelab sortie payloads number of missions are also examined. The component vibration failure probability and the number of components in the housekeeping subassemblies are provided. Decision models are used to evaluate the cost effectiveness of seven alternate test plans using protoflight hardware.

  15. A probabilistic analysis of the implications of instrument failures on ESA's Swarm mission for its individual satellite orbit deployments

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew

    2015-07-01

    On launch, one of Swarm's absolute scalar magnetometers (ASMs) failed to function, leaving an asymmetrical arrangement of redundant spares on different spacecrafts. A decision was required concerning the deployment of individual satellites into the low-orbit pair or the higher "lonely" orbit. I analyse the probabilities for successful operation of two of the science components of the Swarm mission in terms of a classical probabilistic failure analysis, with a view to concluding a favourable assignment for the satellite with the single working ASM. I concentrate on the following two science aspects: the east-west gradiometer aspect of the lower pair of satellites and the constellation aspect, which requires a working ASM in each of the two orbital planes. I use the so-called "expert solicitation" probabilities for instrument failure solicited from Mission Advisory Group (MAG) members. My conclusion from the analysis is that it is better to have redundancy of ASMs in the lonely satellite orbit. Although the opposite scenario, having redundancy (and thus four ASMs) in the lower orbit, increases the chance of a working gradiometer late in the mission; it does so at the expense of a likely constellation. Although the results are presented based on actual MAG members' probabilities, the results are rather generic, excepting the case when the probability of individual ASM failure is very small; in this case, any arrangement will ensure a successful mission since there is essentially no failure expected at all. Since the very design of the lower pair is to enable common mode rejection of external signals, it is likely that its work can be successfully achieved during the first 5 years of the mission.

  16. Reliability considerations in the placement of control system components

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.

    1983-01-01

    This paper presents a methodology, along with applications to a grid type structure, for incorporating reliability considerations in the decision for actuator placement on large space structures. The method involves the minimization of a criterion that considers mission life and the reliability of the system components. It is assumed that the actuator gains are to be readjusted following failures, but their locations cannot be changed. The goal of the design is to suppress vibrations of the grid and the integral square of the grid modal amplitudes is used as a measure of performance of the control system. When reliability of the actuators is considered, a more pertinent measure is the expected value of the integral; that is, the sum of the squares of the modal amplitudes for each possible failure state considered, multiplied by the probability that the failure state will occur. For a given set of actuator locations, the optimal criterion may be graphed as a function of the ratio of the mean time to failure of the components and the design mission life or reservicing interval. The best location of the actuators is typically different for a short mission life than for a long one.

  17. A probabilisitic based failure model for components fabricated from anisotropic graphite

    NASA Astrophysics Data System (ADS)

    Xiao, Chengfeng

    The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of invariants, known as an integrity basis, was developed for a non-linear elastic constitutive model. This integrity basis allowed the non-linear constitutive model to exhibit different behavior in tension and compression and moreover, the integrity basis was amenable to being augmented and extended to anisotropic behavior. This integrity basis served as the starting point in developing both an isotropic reliability model and a reliability model for transversely isotropic materials. At the heart of the reliability models is a failure function very similar in nature to the yield functions found in classic plasticity theory. The failure function is derived and presented in the context of a multiaxial stress space. States of stress inside the failure envelope denote safe operating states. States of stress on or outside the failure envelope denote failure. The phenomenological strength parameters associated with the failure function are treated as random variables. There is a wealth of failure data in the literature that supports this notion. The mathematical integration of a joint probability density function that is dependent on the random strength variables over the safe operating domain defined by the failure function provides a way to compute the reliability of a state of stress in a graphite core component fabricated from graphite. The evaluation of the integral providing the reliability associated with an operational stress state can only be carried out using a numerical method. Monte Carlo simulation with importance sampling was selected to make these calculations. The derivation of the isotropic reliability model and the extension of the reliability model to anisotropy are provided in full detail. Model parameters are cast in terms of strength parameters that can (and have been) characterized by multiaxial failure tests. Comparisons of model predictions with failure data is made and a brief comparison is made to reliability predictions called for in the ASME Boiler and Pressure Vessel Code. Future work is identified that would provide further verification and augmentation of the numerical methods used to evaluate model predictions.

  18. Component Repair Times Obtained from MSPI Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, Steven A.; Cadwallader, Lee

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performancemore » Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only unplanned outages associated with failures of the component of interest, and only unplanned outages associated with PRA failures of the component of interest. The paper will describe how component repair times can be generated from each set and which approach is most applicable. Repair time information will be summarized for MSPI pumps and diesel generators using data over 2003 – 2007. Also, trend information over 2003 – 2012 will be presented to indicate whether the 2003 – 2007 repair time information is still considered applicable. For certain types of pumps, mean repair times are significantly higher than the typically assumed 24 h duration.« less

  19. Vibroacoustic test plan evaluation: Parameter variation study

    NASA Technical Reports Server (NTRS)

    Stahle, C. V.; Gongloef, H. R.

    1976-01-01

    Statistical decision models are shown to provide a viable method of evaluating the cost effectiveness of alternate vibroacoustic test plans and the associated test levels. The methodology developed provides a major step toward the development of a realistic tool to quantitatively tailor test programs to specific payloads. Testing is considered at the no test, component, subassembly, or system level of assembly. Component redundancy and partial loss of flight data are considered. Most and probabilistic costs are considered, and incipient failures resulting from ground tests are treated. Optimums defining both component and assembly test levels are indicated for the modified test plans considered. modeling simplifications must be considered in interpreting the results relative to a particular payload. New parameters introduced were a no test option, flight by flight failure probabilities, and a cost to design components for higher vibration requirements. Parameters varied were the shuttle payload bay internal acoustic environment, the STS launch cost, the component retest/repair cost, and the amount of redundancy in the housekeeping section of the payload reliability model.

  20. Interactive Reliability Model for Whisker-toughened Ceramics

    NASA Technical Reports Server (NTRS)

    Palko, Joseph L.

    1993-01-01

    Wider use of ceramic matrix composites (CMC) will require the development of advanced structural analysis technologies. The use of an interactive model to predict the time-independent reliability of a component subjected to multiaxial loads is discussed. The deterministic, three-parameter Willam-Warnke failure criterion serves as the theoretical basis for the reliability model. The strength parameters defining the model are assumed to be random variables, thereby transforming the deterministic failure criterion into a probabilistic criterion. The ability of the model to account for multiaxial stress states with the same unified theory is an improvement over existing models. The new model was coupled with a public-domain finite element program through an integrated design program. This allows a design engineer to predict the probability of failure of a component. A simple structural problem is analyzed using the new model, and the results are compared to existing models.

  1. Model-OA wind turbine generator - Failure modes and effects analysis

    NASA Technical Reports Server (NTRS)

    Klein, William E.; Lali, Vincent R.

    1990-01-01

    The results failure modes and effects analysis (FMEA) conducted for wind-turbine generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems, which are also reflected in this FMEA.

  2. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  3. Computing Reliabilities Of Ceramic Components Subject To Fracture

    NASA Technical Reports Server (NTRS)

    Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.

    1992-01-01

    CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.

  4. Ultra Reliable Closed Loop Life Support for Long Space Missions

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  5. Principle of maximum entropy for reliability analysis in the design of machine components

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    2018-03-01

    We studied the reliability of machine components with parameters that follow an arbitrary statistical distribution using the principle of maximum entropy (PME). We used PME to select the statistical distribution that best fits the available information. We also established a probability density function (PDF) and a failure probability model for the parameters of mechanical components using the concept of entropy and the PME. We obtained the first four moments of the state function for reliability analysis and design. Furthermore, we attained an estimate of the PDF with the fewest human bias factors using the PME. This function was used to calculate the reliability of the machine components, including a connecting rod, a vehicle half-shaft, a front axle, a rear axle housing, and a leaf spring, which have parameters that typically follow a non-normal distribution. Simulations were conducted for comparison. This study provides a design methodology for the reliability of mechanical components for practical engineering projects.

  6. Stacking Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1991-01-01

    Simplified configuration and procedure developed for assembly of stacks of solid-electrolyte cells separating oxygen from air electrochemically. Reduces number of components and thus reduces probability of such failures as gas leaks, breakdown of sensitive parts, and electrical open or short circuits. Previous, more complicated version of cell described in "Improved Zirconia Oxygen-Separation Cell" (NPO-16161).

  7. Reliability and Confidence Interval Analysis of a CMC Turbine Stator Vane

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Gyekenyesi, John P.; Mital, Subodh K.

    2008-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight, enable higher operating temperatures requiring less cooling and thus leading to increased engine efficiencies. However, these materials are brittle and show degradation with time at high operating temperatures due to creep as well as cyclic mechanical and thermal loads. In addition, these materials are heterogeneous in their make-up and various factors affect their properties in a specific design environment. Most of these advanced composites involve two- and three-dimensional fiber architectures and require a complex multi-step high temperature processing. Since there are uncertainties associated with each of these in addition to the variability in the constituent material properties, the observed behavior of composite materials exhibits scatter. Traditional material failure analyses employing a deterministic approach, where failure is assumed to occur when some allowable stress level or equivalent stress is exceeded, are not adequate for brittle material component design. Such phenomenological failure theories are reasonably successful when applied to ductile materials such as metals. Analysis of failure in structural components is governed by the observed scatter in strength, stiffness and loading conditions. In such situations, statistical design approaches must be used. Accounting for these phenomena requires a change in philosophy on the design engineer s part that leads to a reduced focus on the use of safety factors in favor of reliability analyses. The reliability approach demands that the design engineer must tolerate a finite risk of unacceptable performance. This risk of unacceptable performance is identified as a component's probability of failure (or alternatively, component reliability). The primary concern of the engineer is minimizing this risk in an economical manner. The methods to accurately determine the service life of an engine component with associated variability have become increasingly difficult. This results, in part, from the complex missions which are now routinely considered during the design process. These missions include large variations of multi-axial stresses and temperatures experienced by critical engine parts. There is a need for a convenient design tool that can accommodate various loading conditions induced by engine operating environments, and material data with their associated uncertainties to estimate the minimum predicted life of a structural component. A probabilistic composite micromechanics technique in combination with woven composite micromechanics, structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Furthermore, input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Since the measured data for the ceramic matrix composite properties is very limited, obtaining a probabilistic distribution with their corresponding parameters is difficult. In case of limited data, confidence bounds are essential to quantify the uncertainty associated with the distribution. Usually 90 and 95% confidence intervals are computed for material properties. Failure properties are then computed with the confidence bounds. Best estimates and the confidence bounds on the best estimate of the cumulative probability function for R-S (strength - stress) are plotted. The methodologies and the results from these analyses will be discussed in the presentation.

  8. Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, John L.

    2011-05-01

    As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if furthermore » action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.« less

  9. Assessing performance and validating finite element simulations using probabilistic knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolin, Ronald M.; Rodriguez, E. A.

    Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrencemore » results are used to validate finite element predictions.« less

  10. Reducing the Risk of Human Space Missions with INTEGRITY

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.

    2003-01-01

    The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.

  11. Link importance incorporated failure probability measuring solution for multicast light-trees in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhang, Lu; Tang, Ying; Huang, Shanguo

    2018-03-01

    The light-tree-based optical multicasting (LT-OM) scheme provides a spectrum- and energy-efficient method to accommodate emerging multicast services. Some studies focus on the survivability technologies for LTs against a fixed number of link failures, such as single-link failure. However, a few studies involve failure probability constraints when building LTs. It is worth noting that each link of an LT plays different important roles under failure scenarios. When calculating the failure probability of an LT, the importance of its every link should be considered. We design a link importance incorporated failure probability measuring solution (LIFPMS) for multicast LTs under independent failure model and shared risk link group failure model. Based on the LIFPMS, we put forward the minimum failure probability (MFP) problem for the LT-OM scheme. Heuristic approaches are developed to address the MFP problem in elastic optical networks. Numerical results show that the LIFPMS provides an accurate metric for calculating the failure probability of multicast LTs and enhances the reliability of the LT-OM scheme while accommodating multicast services.

  12. A theoretical basis for the analysis of redundant software subject to coincident errors

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.; Lee, L. D.

    1985-01-01

    Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists.

  13. Failure probability under parameter uncertainty.

    PubMed

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.

  14. Functional Safety of Hybrid Laser Safety Systems - How can a Combination between Passive and Active Components Prevent Accidents?

    NASA Astrophysics Data System (ADS)

    Lugauer, F. P.; Stiehl, T. H.; Zaeh, M. F.

    Modern laser systems are widely used in industry due to their excellent flexibility and high beam intensities. This leads to an increased hazard potential, because conventional laser safety barriers only offer a short protection time when illuminated with high laser powers. For that reason active systems are used more and more to prevent accidents with laser machines. These systems must fulfil the requirements of functional safety, e.g. according to IEC 61508, which causes high costs. The safety provided by common passive barriers is usually unconsidered in this context. In the presented approach, active and passive systems are evaluated from a holistic perspective. To assess the functional safety of hybrid safety systems, the failure probability of passive barriers is analysed and added to the failure probability of the active system.

  15. Simulation-driven machine learning: Bearing fault classification

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Freitas, Carina; Nicolai, Mike

    2018-01-01

    Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.

  16. Anomaly Monitoring Method for Key Components of Satellite

    PubMed Central

    Fan, Linjun; Xiao, Weidong; Tang, Jun

    2014-01-01

    This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703

  17. Approximation of Failure Probability Using Conditional Sampling

    NASA Technical Reports Server (NTRS)

    Giesy. Daniel P.; Crespo, Luis G.; Kenney, Sean P.

    2008-01-01

    In analyzing systems which depend on uncertain parameters, one technique is to partition the uncertain parameter domain into a failure set and its complement, and judge the quality of the system by estimating the probability of failure. If this is done by a sampling technique such as Monte Carlo and the probability of failure is small, accurate approximation can require so many sample points that the computational expense is prohibitive. Previous work of the authors has shown how to bound the failure event by sets of such simple geometry that their probabilities can be calculated analytically. In this paper, it is shown how to make use of these failure bounding sets and conditional sampling within them to substantially reduce the computational burden of approximating failure probability. It is also shown how the use of these sampling techniques improves the confidence intervals for the failure probability estimate for a given number of sample points and how they reduce the number of sample point analyses needed to achieve a given level of confidence.

  18. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  19. Model-Based Method for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  20. Failure probability analysis of optical grid

    NASA Astrophysics Data System (ADS)

    Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng

    2008-11-01

    Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.

  1. Material wear and failure mode analysis of breakfast cereal extruder barrels and screw elements

    NASA Astrophysics Data System (ADS)

    Mastio, Michael Joseph, Jr.

    2005-11-01

    Nearly seventy-five years ago, the single screw extruder was introduced as a means to produce metal products. Shortly after that, the extruder found its way into the plastics industry. Today much of the world's polymer industry utilizes extruders to produce items such as soda bottles, PVC piping, and toy figurines. Given the significant economical advantages of extruders over conventional batch flow systems, extruders have also migrated into the food industry. Food applications include the meat, pet food, and cereal industries to name just a few. Cereal manufacturers utilize extruders to produce various forms of Ready-to-Eat (RTE) cereals. These cereals are made from grains such as rice, oats, wheat, and corn. The food industry has been incorrectly viewed as an extruder application requiring only minimal energy control and performance capability. This misconception has resulted in very little research in the area of material wear and failure mode analysis of breakfast cereal extruders. Breakfast cereal extruder barrels and individual screw elements are subjected to the extreme pressures and temperatures required to shear and cook the cereal ingredients, resulting in excessive material wear and catastrophic failure of these components. Therefore, this project focuses on the material wear and failure mode analysis of breakfast cereal extruder barrels and screw elements, modeled as a Discrete Time Markov Chain (DTMC) process in which historical data is used to predict future failures. Such predictive analysis will yield cost savings opportunities by providing insight into extruder maintenance scheduling and interchangeability of screw elements. In this DTMC wear analysis, four states of wear are defined and a probability transition matrix is determined based upon 24,041 hours of operational data. This probability transition matrix is used to predict when an extruder component will move to the next state of wear and/or failure. This information can be used to determine maintenance schedules and screw element interchangeability.

  2. Reliability analysis based on the losses from failures.

    PubMed

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the early-life failures region and the expected losses given failure characterizing the corresponding time intervals. For complex systems whose components are not logically arranged in series, discrete simulation algorithms and software have been created for determining the losses from failures in terms of expected lost production time, cost of intervention, and cost of replacement. Different system topologies are assessed to determine the effect of modifications of the system topology on the expected losses from failures. It is argued that the reliability allocation in a production system should be done to maximize the profit/value associated with the system. Consequently, a method for setting reliability requirements and reliability allocation maximizing the profit by minimizing the total cost has been developed. Reliability allocation that maximizes the profit in case of a system consisting of blocks arranged in series is achieved by determining for each block individually the reliabilities of the components in the block that minimize the sum of the capital, operation costs, and the expected losses from failures. A Monte Carlo simulation based net present value (NPV) cash-flow model has also been proposed, which has significant advantages to cash-flow models based on the expected value of the losses from failures per time interval. Unlike these models, the proposed model has the capability to reveal the variation of the NPV due to different number of failures occurring during a specified time interval (e.g., during one year). The model also permits tracking the impact of the distribution pattern of failure occurrences and the time dependence of the losses from failures.

  3. Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading

    NASA Astrophysics Data System (ADS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  4. Recent progress in the NDE of cast ship propulsion components

    NASA Astrophysics Data System (ADS)

    Spies, Martin; Rieder, Hans; Dillhöfer, Alexander; Rauhut, Markus; Taeubner, Kai; Kreier, Peter

    2014-02-01

    The failure of propulsion components of ships and ferries can lead to serious environmental and economic damage or even the loss of lives. For ultrasonic inspection of such large components we employ mechanized scanning and defect reconstruction using the Synthetic Aperture Focusing Technique (SAFT). We report on results obtained in view of the detection of defects with different inspection techniques. Also, we address the issue of Probability of Detection by reporting results obtained in POD and MAPOD-studies (Model-Assisted POD) using experimental and simulated data. Finally, we show recent results of surface and sub-surface inspection using optical and eddy current techniques.

  5. ACARA - AVAILABILITY, COST AND RESOURCE ALLOCATION

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    ACARA is a program for analyzing availability, lifecycle cost, and resource scheduling. It uses a statistical Monte Carlo method to simulate a system's capacity states as well as component failure and repair. Component failures are modelled using a combination of exponential and Weibull probability distributions. ACARA schedules component replacement to achieve optimum system performance. The scheduling will comply with any constraints on component production, resupply vehicle capacity, on-site spares, or crew manpower and equipment. ACARA is capable of many types of analyses and trade studies because of its integrated approach. It characterizes the system performance in terms of both state availability and equivalent availability (a weighted average of state availability). It can determine the probability of exceeding a capacity state to assess reliability and loss of load probability. It can also evaluate the effect of resource constraints on system availability and lifecycle cost. ACARA interprets the results of a simulation and displays tables and charts for: (1) performance, i.e., availability and reliability of capacity states, (2) frequency of failure and repair, (3) lifecycle cost, including hardware, transportation, and maintenance, and (4) usage of available resources, including mass, volume, and maintenance man-hours. ACARA incorporates a user-friendly, menu-driven interface with full screen data entry. It provides a file management system to store and retrieve input and output datasets for system simulation scenarios. ACARA is written in APL2 using the APL2 interpreter for IBM PC compatible systems running MS-DOS. Hardware requirements for the APL2 system include 640K of RAM, 2Mb of extended memory, and an 80386 or 80486 processor with an 80x87 math co-processor. A dot matrix printer is required if the user wishes to print a graph from a results table. A sample MS-DOS executable is provided on the distribution medium. The executable contains licensed material from the APL2 for the IBM PC product which is program property of IBM; Copyright IBM Corporation 1988 - All rights reserved. It is distributed with IBM's permission. The standard distribution medium for this program is a set of three 5.25 inch 360K MS-DOS format diskettes. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. ACARA was developed in 1992.

  6. Effects of Assuming Independent Component Failure Times, If They Are Actually Dependent, in a Series System.

    DTIC Science & Technology

    1985-11-26

    etc.).., Major decisions involving reliability ptudies, based on competing risk methodology , have been made in the past and will continue to be made...censoring mechanism. In such instances, the methodology for estimating relevant reliabili- ty probabilities has received considerable attention (cf. David...proposal for a discussion of the general methodology . .,4..% . - ’ -. - ’ . ’ , . * I - " . . - - - - . . ,_ . . . . . . . . .4

  7. Response analysis of curved bridge with unseating failure control system under near-fault ground motions

    NASA Astrophysics Data System (ADS)

    Zuo, Ye; Sun, Guangjun; Li, Hongjing

    2018-01-01

    Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.

  8. Probabilistic Design Analysis (PDA) Approach to Determine the Probability of Cross-System Failures for a Space Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.

    2010-01-01

    Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project

  9. Organ failure and tight glycemic control in the SPRINT study.

    PubMed

    Chase, J Geoffrey; Pretty, Christopher G; Pfeifer, Leesa; Shaw, Geoffrey M; Preiser, Jean-Charles; Le Compte, Aaron J; Lin, Jessica; Hewett, Darren; Moorhead, Katherine T; Desaive, Thomas

    2010-01-01

    Intensive care unit mortality is strongly associated with organ failure rate and severity. The sequential organ failure assessment (SOFA) score is used to evaluate the impact of a successful tight glycemic control (TGC) intervention (SPRINT) on organ failure, morbidity, and thus mortality. A retrospective analysis of 371 patients (3,356 days) on SPRINT (August 2005 - April 2007) and 413 retrospective patients (3,211 days) from two years prior, matched by Acute Physiology and Chronic Health Evaluation (APACHE) III. SOFA is calculated daily for each patient. The effect of the SPRINT TGC intervention is assessed by comparing the percentage of patients with SOFA ≤5 each day and its trends over time and cohort/group. Organ-failure free days (all SOFA components ≤2) and number of organ failures (SOFA components >2) are also compared. Cumulative time in 4.0 to 7.0 mmol/L band (cTIB) was evaluated daily to link tightness and consistency of TGC (cTIB ≥0.5) to SOFA ≤5 using conditional and joint probabilities. Admission and maximum SOFA scores were similar (P = 0.20; P = 0.76), with similar time to maximum (median: one day; IQR: 13 days; P = 0.99). Median length of stay was similar (4.1 days SPRINT and 3.8 days Pre-SPRINT; P = 0.94). The percentage of patients with SOFA ≤5 is different over the first 14 days (P = 0.016), rising to approximately 75% for Pre-SPRINT and approximately 85% for SPRINT, with clear separation after two days. Organ-failure-free days were different (SPRINT = 41.6%; Pre-SPRINT = 36.5%; P < 0.0001) as were the percent of total possible organ failures (SPRINT = 16.0%; Pre-SPRINT = 19.0%; P < 0.0001). By Day 3 over 90% of SPRINT patients had cTIB ≥0.5 (37% Pre-SPRINT) reaching 100% by Day 7 (50% Pre-SPRINT). Conditional and joint probabilities indicate tighter, more consistent TGC under SPRINT (cTIB ≥0.5) increased the likelihood SOFA ≤5. SPRINT TGC resolved organ failure faster, and for more patients, from similar admission and maximum SOFA scores, than conventional control. These reductions mirror the reduced mortality with SPRINT. The cTIB ≥0.5 metric provides a first benchmark linking TGC quality to organ failure. These results support other physiological and clinical results indicating the role tight, consistent TGC can play in reducing organ failure, morbidity and mortality, and should be validated on data from randomised trials.

  10. Organ failure and tight glycemic control in the SPRINT study

    PubMed Central

    2010-01-01

    Introduction Intensive care unit mortality is strongly associated with organ failure rate and severity. The sequential organ failure assessment (SOFA) score is used to evaluate the impact of a successful tight glycemic control (TGC) intervention (SPRINT) on organ failure, morbidity, and thus mortality. Methods A retrospective analysis of 371 patients (3,356 days) on SPRINT (August 2005 - April 2007) and 413 retrospective patients (3,211 days) from two years prior, matched by Acute Physiology and Chronic Health Evaluation (APACHE) III. SOFA is calculated daily for each patient. The effect of the SPRINT TGC intervention is assessed by comparing the percentage of patients with SOFA ≤5 each day and its trends over time and cohort/group. Organ-failure free days (all SOFA components ≤2) and number of organ failures (SOFA components >2) are also compared. Cumulative time in 4.0 to 7.0 mmol/L band (cTIB) was evaluated daily to link tightness and consistency of TGC (cTIB ≥0.5) to SOFA ≤5 using conditional and joint probabilities. Results Admission and maximum SOFA scores were similar (P = 0.20; P = 0.76), with similar time to maximum (median: one day; IQR: [1,3] days; P = 0.99). Median length of stay was similar (4.1 days SPRINT and 3.8 days Pre-SPRINT; P = 0.94). The percentage of patients with SOFA ≤5 is different over the first 14 days (P = 0.016), rising to approximately 75% for Pre-SPRINT and approximately 85% for SPRINT, with clear separation after two days. Organ-failure-free days were different (SPRINT = 41.6%; Pre-SPRINT = 36.5%; P < 0.0001) as were the percent of total possible organ failures (SPRINT = 16.0%; Pre-SPRINT = 19.0%; P < 0.0001). By Day 3 over 90% of SPRINT patients had cTIB ≥0.5 (37% Pre-SPRINT) reaching 100% by Day 7 (50% Pre-SPRINT). Conditional and joint probabilities indicate tighter, more consistent TGC under SPRINT (cTIB ≥0.5) increased the likelihood SOFA ≤5. Conclusions SPRINT TGC resolved organ failure faster, and for more patients, from similar admission and maximum SOFA scores, than conventional control. These reductions mirror the reduced mortality with SPRINT. The cTIB ≥0.5 metric provides a first benchmark linking TGC quality to organ failure. These results support other physiological and clinical results indicating the role tight, consistent TGC can play in reducing organ failure, morbidity and mortality, and should be validated on data from randomised trials. PMID:20704712

  11. Bootstrap imputation with a disease probability model minimized bias from misclassification due to administrative database codes.

    PubMed

    van Walraven, Carl

    2017-04-01

    Diagnostic codes used in administrative databases cause bias due to misclassification of patient disease status. It is unclear which methods minimize this bias. Serum creatinine measures were used to determine severe renal failure status in 50,074 hospitalized patients. The true prevalence of severe renal failure and its association with covariates were measured. These were compared to results for which renal failure status was determined using surrogate measures including the following: (1) diagnostic codes; (2) categorization of probability estimates of renal failure determined from a previously validated model; or (3) bootstrap methods imputation of disease status using model-derived probability estimates. Bias in estimates of severe renal failure prevalence and its association with covariates were minimal when bootstrap methods were used to impute renal failure status from model-based probability estimates. In contrast, biases were extensive when renal failure status was determined using codes or methods in which model-based condition probability was categorized. Bias due to misclassification from inaccurate diagnostic codes can be minimized using bootstrap methods to impute condition status using multivariable model-derived probability estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Model 0A wind turbine generator FMEA

    NASA Technical Reports Server (NTRS)

    Klein, William E.; Lalli, Vincent R.

    1989-01-01

    The results of Failure Modes and Effects Analysis (FMEA) conducted for the Wind Turbine Generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems which are also reflected in this FMEA.

  13. Developing Ultra Reliable Life Support for the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2009-01-01

    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  14. Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung

    2017-04-01

    The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.

  15. Centralized Cryptographic Key Management and Critical Risk Assessment - CRADA Final Report For CRADA Number NFE-11-03562

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, R. K.; Peters, Scott

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) Cyber Security for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing Cyber Security for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modifiedmore » and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system operation. To further address probabilities of threats, information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain from NESCOR WG1. From these five selected scenarios, we characterized them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrated how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.« less

  16. Cryptographic Key Management and Critical Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) CyberSecurity for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing CyberSecurity for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and usedmore » as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system operation. To further address probabilities of threats, information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain from NESCOR WG1. From these five selected scenarios, we characterized them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrated how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.« less

  17. Review of Literature on Probability of Detection for Liquid Penetrant Nondestructive Testing

    DTIC Science & Technology

    2011-11-01

    increased maintenance costs , or catastrophic failure of safety- critical structure. Knowledge of the reliability achieved by NDT methods, including...representative components to gather data for statistical analysis, which can be prohibitively expensive. To account for sampling variability inherent in any...Sioux City and Pensacola. (Those recommendations were discussed in Section 3.4.) Drury et al report on a factorial experiment aimed at identifying the

  18. Parameters affecting the resilience of scale-free networks to random failures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran

    2005-09-01

    It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degreemore » of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.« less

  19. Sensor Based Engine Life Calculation: A Probabilistic Perspective

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Chen, Philip

    2003-01-01

    It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.

  20. CARES/Life Ceramics Durability Evaluation Software Used for Mars Microprobe Aeroshell

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    1998-01-01

    The CARES/Life computer program, which was developed at the NASA Lewis Research Center, predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs-which resolve a component's temperature and stress distribution-to-reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength. The capability, flexibility, and uniqueness of CARES/Life has attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer.

  1. Probabilistic confidence for decisions based on uncertain reliability estimates

    NASA Astrophysics Data System (ADS)

    Reid, Stuart G.

    2013-05-01

    Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.

  2. Modeling Finite-Time Failure Probabilities in Risk Analysis Applications.

    PubMed

    Dimitrova, Dimitrina S; Kaishev, Vladimir K; Zhao, Shouqi

    2015-10-01

    In this article, we introduce a framework for analyzing the risk of systems failure based on estimating the failure probability. The latter is defined as the probability that a certain risk process, characterizing the operations of a system, reaches a possibly time-dependent critical risk level within a finite-time interval. Under general assumptions, we define two dually connected models for the risk process and derive explicit expressions for the failure probability and also the joint probability of the time of the occurrence of failure and the excess of the risk process over the risk level. We illustrate how these probabilistic models and results can be successfully applied in several important areas of risk analysis, among which are systems reliability, inventory management, flood control via dam management, infectious disease spread, and financial insolvency. Numerical illustrations are also presented. © 2015 Society for Risk Analysis.

  3. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  4. Risk management.

    PubMed

    Chambers, David W

    2010-01-01

    Every plan contains risk. To proceed without planning some means of managing that risk is to court failure. The basic logic of risk is explained. It consists in identifying a threshold where some corrective action is necessary, the probability of exceeding that threshold, and the attendant cost should the undesired outcome occur. This is the probable cost of failure. Various risk categories in dentistry are identified, including lack of liquidity; poor quality; equipment or procedure failures; employee slips; competitive environments; new regulations; unreliable suppliers, partners, and patients; and threats to one's reputation. It is prudent to make investments in risk management to the extent that the cost of managing the risk is less than the probable loss due to risk failure and when risk management strategies can be matched to type of risk. Four risk management strategies are discussed: insurance, reducing the probability of failure, reducing the costs of failure, and learning. A risk management accounting of the financial meltdown of October 2008 is provided.

  5. Probabilistic safety analysis of earth retaining structures during earthquakes

    NASA Astrophysics Data System (ADS)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  6. RELAV - RELIABILITY/AVAILABILITY ANALYSIS PROGRAM

    NASA Technical Reports Server (NTRS)

    Bowerman, P. N.

    1994-01-01

    RELAV (Reliability/Availability Analysis Program) is a comprehensive analytical tool to determine the reliability or availability of any general system which can be modeled as embedded k-out-of-n groups of items (components) and/or subgroups. Both ground and flight systems at NASA's Jet Propulsion Laboratory have utilized this program. RELAV can assess current system performance during the later testing phases of a system design, as well as model candidate designs/architectures or validate and form predictions during the early phases of a design. Systems are commonly modeled as System Block Diagrams (SBDs). RELAV calculates the success probability of each group of items and/or subgroups within the system assuming k-out-of-n operating rules apply for each group. The program operates on a folding basis; i.e. it works its way towards the system level from the most embedded level by folding related groups into single components. The entire folding process involves probabilities; therefore, availability problems are performed in terms of the probability of success, and reliability problems are performed for specific mission lengths. An enhanced cumulative binomial algorithm is used for groups where all probabilities are equal, while a fast algorithm based upon "Computing k-out-of-n System Reliability", Barlow & Heidtmann, IEEE TRANSACTIONS ON RELIABILITY, October 1984, is used for groups with unequal probabilities. Inputs to the program include a description of the system and any one of the following: 1) availabilities of the items, 2) mean time between failures and mean time to repairs for the items from which availabilities are calculated, 3) mean time between failures and mission length(s) from which reliabilities are calculated, or 4) failure rates and mission length(s) from which reliabilities are calculated. The results are probabilities of success of each group and the system in the given configuration. RELAV assumes exponential failure distributions for reliability calculations and infinite repair resources for availability calculations. No more than 967 items or groups can be modeled by RELAV. If larger problems can be broken into subsystems of 967 items or less, the subsystem results can be used as item inputs to a system problem. The calculated availabilities are steady-state values. Group results are presented in the order in which they were calculated (from the most embedded level out to the system level). This provides a good mechanism to perform trade studies. Starting from the system result and working backwards, the granularity gets finer; therefore, system elements that contribute most to system degradation are detected quickly. RELAV is a C-language program originally developed under the UNIX operating system on a MASSCOMP MC500 computer. It has been modified, as necessary, and ported to an IBM PC compatible with a math coprocessor. The current version of the program runs in the DOS environment and requires a Turbo C vers. 2.0 compiler. RELAV has a memory requirement of 103 KB and was developed in 1989. RELAV is a copyrighted work with all copyright vested in NASA.

  7. Unbiased multi-fidelity estimate of failure probability of a free plane jet

    NASA Astrophysics Data System (ADS)

    Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin

    2017-11-01

    Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.

  8. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current statemore » of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.« less

  9. Bounding the Failure Probability Range of Polynomial Systems Subject to P-box Uncertainties

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2012-01-01

    This paper proposes a reliability analysis framework for systems subject to multiple design requirements that depend polynomially on the uncertainty. Uncertainty is prescribed by probability boxes, also known as p-boxes, whose distribution functions have free or fixed functional forms. An approach based on the Bernstein expansion of polynomials and optimization is proposed. In particular, we search for the elements of a multi-dimensional p-box that minimize (i.e., the best-case) and maximize (i.e., the worst-case) the probability of inner and outer bounding sets of the failure domain. This technique yields intervals that bound the range of failure probabilities. The offset between this bounding interval and the actual failure probability range can be made arbitrarily tight with additional computational effort.

  10. Estimated survival probability of the Spotorno total hip arthroplasty after a 15- to 21-year follow-up: one surgeon's results.

    PubMed

    Terré, Ricardo A

    2010-01-01

    We retrospectively assess 171 consecutive total hip arthroplasties (THAs) with a Spotorno CLS uncemented prosthesis implanted through a Hardinge approach. The mean follow-up was 17.9 years. All consecutive operations were performed by 1 surgeon. Eight patients had been lost to follow-up, and 77 had died for unrelated causes. Overall, 4 stems and 19 cups underwent revision. The cumulative survival rate at 21 years was 79.02% (95% confidence interval [95% CI], 45.98-100.00%) for the acetabular component and 96.71% (95% CI, 60.71-100.00%) for the stem. We can conclude that failure of the Spotorno CLS THA is mainly due to its acetabular component (relative risk 4.5). Survival results for the Spotorno CLS stem exceed the patients? life expectancies in the 60- to 70-year-old population in our area. Loosening with or without fatigue fracture of the component and the learning curve for proper implantation have been the main causes for the expansion cup failure.

  11. Risk-based decision making to manage water quality failures caused by combined sewer overflows

    NASA Astrophysics Data System (ADS)

    Sriwastava, A. K.; Torres-Matallana, J. A.; Tait, S.; Schellart, A.

    2017-12-01

    Regulatory authorities set certain environmental permit for water utilities such that the combined sewer overflows (CSO) managed by these companies conform to the regulations. These utility companies face the risk of paying penalty or negative publicity in case they breach the environmental permit. These risks can be addressed by designing appropriate solutions such as investing in additional infrastructure which improve the system capacity and reduce the impact of CSO spills. The performance of these solutions is often estimated using urban drainage models. Hence, any uncertainty in these models can have a significant effect on the decision making process. This study outlines a risk-based decision making approach to address water quality failure caused by CSO spills. A calibrated lumped urban drainage model is used to simulate CSO spill quality in Haute-Sûre catchment in Luxembourg. Uncertainty in rainfall and model parameters is propagated through Monte Carlo simulations to quantify uncertainty in the concentration of ammonia in the CSO spill. A combination of decision alternatives such as the construction of a storage tank at the CSO and the reduction in the flow contribution of catchment surfaces are selected as planning measures to avoid the water quality failure. Failure is defined as exceedance of a concentration-duration based threshold based on Austrian emission standards for ammonia (De Toffol, 2006) with a certain frequency. For each decision alternative, uncertainty quantification results into a probability distribution of the number of annual CSO spill events which exceed the threshold. For each alternative, a buffered failure probability as defined in Rockafellar & Royset (2010), is estimated. Buffered failure probability (pbf) is a conservative estimate of failure probability (pf), however, unlike failure probability, it includes information about the upper tail of the distribution. A pareto-optimal set of solutions is obtained by performing mean- pbf optimization. The effectiveness of using buffered failure probability compared to the failure probability is tested by comparing the solutions obtained by using mean-pbf and mean-pf optimizations.

  12. Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method

    PubMed Central

    Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan

    2018-01-01

    Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824

  13. A methodology for estimating risks associated with landslides of contaminated soil into rivers.

    PubMed

    Göransson, Gunnel; Norrman, Jenny; Larson, Magnus; Alén, Claes; Rosén, Lars

    2014-02-15

    Urban areas adjacent to surface water are exposed to soil movements such as erosion and slope failures (landslides). A landslide is a potential mechanism for mobilisation and spreading of pollutants. This mechanism is in general not included in environmental risk assessments for contaminated sites, and the consequences associated with contamination in the soil are typically not considered in landslide risk assessments. This study suggests a methodology to estimate the environmental risks associated with landslides in contaminated sites adjacent to rivers. The methodology is probabilistic and allows for datasets with large uncertainties and the use of expert judgements, providing quantitative estimates of probabilities for defined failures. The approach is illustrated by a case study along the river Göta Älv, Sweden, where failures are defined and probabilities for those failures are estimated. Failures are defined from a pollution perspective and in terms of exceeding environmental quality standards (EQSs) and acceptable contaminant loads. Models are then suggested to estimate probabilities of these failures. A landslide analysis is carried out to assess landslide probabilities based on data from a recent landslide risk classification study along the river Göta Älv. The suggested methodology is meant to be a supplement to either landslide risk assessment (LRA) or environmental risk assessment (ERA), providing quantitative estimates of the risks associated with landslide in contaminated sites. The proposed methodology can also act as a basis for communication and discussion, thereby contributing to intersectoral management solutions. From the case study it was found that the defined failures are governed primarily by the probability of a landslide occurring. The overall probabilities for failure are low; however, if a landslide occurs the probabilities of exceeding EQS are high and the probability of having at least a 10% increase in the contamination load within one year is also high. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  15. Failure Modes Effects and Criticality Analysis, an Underutilized Safety, Reliability, Project Management and Systems Engineering Tool

    NASA Astrophysics Data System (ADS)

    Mullin, Daniel Richard

    2013-09-01

    The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management, assembly integration and test (AI&T) and operations if applied early, performed to completion and updated along with system design.

  16. Selective monitoring

    NASA Astrophysics Data System (ADS)

    Homem-de-Mello, Luiz S.

    1992-04-01

    While in NASA's earlier space missions such as Voyager the number of sensors was in the hundreds, future platforms such as the Space Station Freedom will have tens of thousands sensors. For these planned missions it will be impossible to use the comprehensive monitoring strategy that was used in the past in which human operators monitored all sensors all the time. A selective monitoring strategy must be substituted for the current comprehensive strategy. This selective monitoring strategy uses computer tools to preprocess the incoming data and direct the operators' attention to the most critical parts of the physical system at any given time. There are several techniques that can be used to preprocess the incoming information. This paper presents an approach to using diagnostic reasoning techniques to preprocess the sensor data and detect which parts of the physical system require more attention because components have failed or are most likely to have failed. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that assertions can be made from instantaneous measurements. And the system must be such that changes are slow enough to allow the computation.

  17. An overview of engineering concepts and current design algorithms for probabilistic structural analysis

    NASA Technical Reports Server (NTRS)

    Duffy, S. F.; Hu, J.; Hopkins, D. A.

    1995-01-01

    The article begins by examining the fundamentals of traditional deterministic design philosophy. The initial section outlines the concepts of failure criteria and limit state functions two traditional notions that are embedded in deterministic design philosophy. This is followed by a discussion regarding safety factors (a possible limit state function) and the common utilization of statistical concepts in deterministic engineering design approaches. Next the fundamental aspects of a probabilistic failure analysis are explored and it is shown that deterministic design concepts mentioned in the initial portion of the article are embedded in probabilistic design methods. For components fabricated from ceramic materials (and other similarly brittle materials) the probabilistic design approach yields the widely used Weibull analysis after suitable assumptions are incorporated. The authors point out that Weibull analysis provides the rare instance where closed form solutions are available for a probabilistic failure analysis. Since numerical methods are usually required to evaluate component reliabilities, a section on Monte Carlo methods is included to introduce the concept. The article concludes with a presentation of the technical aspects that support the numerical method known as fast probability integration (FPI). This includes a discussion of the Hasofer-Lind and Rackwitz-Fiessler approximations.

  18. Evaluation of Enhanced Risk Monitors for Use on Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Veeramany, Arun; Bonebrake, Christopher A.

    This study provides an overview of the methodology for integrating time-dependent failure probabilities into nuclear power reactor risk monitors. This prototypic enhanced risk monitor (ERM) methodology was evaluated using a hypothetical probabilistic risk assessment (PRA) model, generated using a simplified design of a liquid-metal-cooled advanced reactor (AR). Component failure data from industry compilation of failures of components similar to those in the simplified AR model were used to initialize the PRA model. Core damage frequency (CDF) over time were computed and analyzed. In addition, a study on alternative risk metrics for ARs was conducted. Risk metrics that quantify the normalizedmore » cost of repairs, replacements, or other operations and management (O&M) actions were defined and used, along with an economic model, to compute the likely economic risk of future actions such as deferred maintenance based on the anticipated change in CDF due to current component condition and future anticipated degradation. Such integration of conventional-risk metrics with alternate-risk metrics provides a convenient mechanism for assessing the impact of O&M decisions on safety and economics of the plant. It is expected that, when integrated with supervisory control algorithms, such integrated-risk monitors will provide a mechanism for real-time control decision-making that ensure safety margins are maintained while operating the plant in an economically viable manner.« less

  19. Failure mechanisms of fibrin-based surgical tissue adhesives

    NASA Astrophysics Data System (ADS)

    Sierra, David Hugh

    A series of studies was performed to investigate the potential impact of heterogeneity in the matrix of multiple-component fibrin-based tissue adhesives upon their mechanical and biomechanical properties both in vivo and in vitro. Investigations into the failure mechanisms by stereological techniques demonstrated that heterogeneity could be measured quantitatively and that the variation in heterogeneity could be altered both by the means of component mixing and delivery and by the formulation of the sealant. Ex vivo tensile adhesive strength was found to be inversely proportional to the amount of heterogeneity. In contrast, in vivo tensile wound-closure strength was found to be relatively unaffected by the degree of heterogeneity, while in vivo parenchymal organ hemostasis in rabbits was found to be affected: greater heterogeneity appeared to correlate with an increase in hemostasis time and amount of sealant necessary to effect hemostasis. Tensile testing of the bulk sealant showed that mechanical parameters were proportional to fibrin concentration and that the physical characteristics of the failure supported a ductile mechanism. Strain hardening as a function of percentage of strain, and strain rate was observed for both concentrations, and syneresis was observed at low strain rates for the lower fibrin concentration. Blister testing demonstrated that burst pressure and failure energy were proportional to fibrin concentration and decreased with increasing flow rate. Higher fibrin concentration demonstrated predominately compact morphology debonds with cohesive failure loci, demonstrating shear or viscous failure in a viscoelastic rubbery adhesive. The lower fibrin concentration sealant exhibited predominately fractal morphology debonds with cohesive failure loci, supporting an elastoviscous material condition. The failure mechanism for these was hypothesized and shown to be flow-induced ductile fracture. Based on these findings, the failure mechanism was stochastic in nature because the mean failure energy and burst pressure values were not predictive of locus and morphology. Instead, flow rate and fibrin concentration showed the most predictive value, with the outcome best described as a probability distribution rather than a specific deterministic outcome.

  20. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  1. Reliability Analysis of a Glacier Lake Warning System Using a Bayesian Net

    NASA Astrophysics Data System (ADS)

    Sturny, Rouven A.; Bründl, Michael

    2013-04-01

    Beside structural mitigation measures like avalanche defense structures, dams and galleries, warning and alarm systems have become important measures for dealing with Alpine natural hazards. Integrating them into risk mitigation strategies and comparing their effectiveness with structural measures requires quantification of the reliability of these systems. However, little is known about how reliability of warning systems can be quantified and which methods are suitable for comparing their contribution to risk reduction with that of structural mitigation measures. We present a reliability analysis of a warning system located in Grindelwald, Switzerland. The warning system was built for warning and protecting residents and tourists from glacier outburst floods as consequence of a rapid drain of the glacier lake. We have set up a Bayesian Net (BN, BPN) that allowed for a qualitative and quantitative reliability analysis. The Conditional Probability Tables (CPT) of the BN were determined according to manufacturer's reliability data for each component of the system as well as by assigning weights for specific BN nodes accounting for information flows and decision-making processes of the local safety service. The presented results focus on the two alerting units 'visual acoustic signal' (VAS) and 'alerting of the intervention entities' (AIE). For the summer of 2009, the reliability was determined to be 94 % for the VAS and 83 % for the AEI. The probability of occurrence of a major event was calculated as 0.55 % per day resulting in an overall reliability of 99.967 % for the VAS and 99.906 % for the AEI. We concluded that a failure of the VAS alerting unit would be the consequence of a simultaneous failure of the four probes located in the lake and the gorge. Similarly, we deduced that the AEI would fail either if there were a simultaneous connectivity loss of the mobile and fixed network in Grindelwald, an Internet access loss or a failure of the regional operations centre. However, the probability of a common failure of these components was assumed to be low. Overall it can be stated that due to numerous redundancies, the investigated warning system is highly reliable and its influence on risk reduction is very high. Comparable studies in the future are needed to classify these results and to gain more experience how the reliability of warning systems could be determined in practice.

  2. Contraceptive failure in the United States

    PubMed Central

    Trussell, James

    2013-01-01

    This review provides an update of previous estimates of first-year probabilities of contraceptive failure for all methods of contraception available in the United States. Estimates are provided of probabilities of failure during typical use (which includes both incorrect and inconsistent use) and during perfect use (correct and consistent use). The difference between these two probabilities reveals the consequences of imperfect use; it depends both on how unforgiving of imperfect use a method is and on how hard it is to use that method perfectly. These revisions reflect new research on contraceptive failure both during perfect use and during typical use. PMID:21477680

  3. Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory

    NASA Astrophysics Data System (ADS)

    Alvarez, Diego A.; Uribe, Felipe; Hurtado, Jorge E.

    2018-02-01

    Random set theory is a general framework which comprises uncertainty in the form of probability boxes, possibility distributions, cumulative distribution functions, Dempster-Shafer structures or intervals; in addition, the dependence between the input variables can be expressed using copulas. In this paper, the lower and upper bounds on the probability of failure are calculated by means of random set theory. In order to accelerate the calculation, a well-known and efficient probability-based reliability method known as subset simulation is employed. This method is especially useful for finding small failure probabilities in both low- and high-dimensional spaces, disjoint failure domains and nonlinear limit state functions. The proposed methodology represents a drastic reduction of the computational labor implied by plain Monte Carlo simulation for problems defined with a mixture of representations for the input variables, while delivering similar results. Numerical examples illustrate the efficiency of the proposed approach.

  4. Award-Winning CARES/Life Ceramics Durability Evaluation Software Is Making Advanced Technology Accessible

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.

  5. Risk and Vulnerability Analysis of Satellites Due to MM/SD with PIRAT

    NASA Astrophysics Data System (ADS)

    Kempf, Scott; Schafer, Frank Rudolph, Martin; Welty, Nathan; Donath, Therese; Destefanis, Roberto; Grassi, Lilith; Janovsky, Rolf; Evans, Leanne; Winterboer, Arne

    2013-08-01

    Until recently, the state-of-the-art assessment of the threat posed to spacecraft by micrometeoroids and space debris was limited to the application of ballistic limit equations to the outer hull of a spacecraft. The probability of no penetration (PNP) is acceptable for assessing the risk and vulnerability of manned space mission, however, for unmanned missions, whereby penetrations of the spacecraft exterior do not necessarily constitute satellite or mission failure, these values are overly conservative. The newly developed software tool PIRAT (Particle Impact Risk and Vulnerability Analysis Tool) has been developed based on the Schäfer-Ryan-Lambert (SRL) triple-wall ballistic limit equation (BLE), applicable for various satellite components. As a result, it has become possible to assess the individual failure rates of satellite components. This paper demonstrates the modeling of an example satellite, the performance of a PIRAT analysis and the potential for subsequent design optimizations with respect of micrometeoroid and space debris (MM/SD) impact risk.

  6. Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Nemeth, Noel N.

    1987-01-01

    The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  7. Reliability analysis and fault-tolerant system development for a redundant strapdown inertial measurement unit. [inertial platforms

    NASA Technical Reports Server (NTRS)

    Motyka, P.

    1983-01-01

    A methodology is developed and applied for quantitatively analyzing the reliability of a dual, fail-operational redundant strapdown inertial measurement unit (RSDIMU). A Markov evaluation model is defined in terms of the operational states of the RSDIMU to predict system reliability. A 27 state model is defined based upon a candidate redundancy management system which can detect and isolate a spectrum of failure magnitudes. The results of parametric studies are presented which show the effect on reliability of the gyro failure rate, both the gyro and accelerometer failure rates together, false alarms, probability of failure detection, probability of failure isolation, and probability of damage effects and mission time. A technique is developed and evaluated for generating dynamic thresholds for detecting and isolating failures of the dual, separated IMU. Special emphasis is given to the detection of multiple, nonconcurrent failures. Digital simulation time histories are presented which show the thresholds obtained and their effectiveness in detecting and isolating sensor failures.

  8. PRA and Risk Informed Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernsen, Sidney A.; Simonen, Fredric A.; Balkey, Kenneth R.

    2006-01-01

    The Boiler and Pressure Vessel Code (BPVC) of the American Society of Mechanical Engineers (ASME) has introduced a risk based approach into Section XI that covers Rules for Inservice Inspection of Nuclear Power Plant Components. The risk based approach requires application of the probabilistic risk assessments (PRA). Because no industry consensus standard existed for PRAs, ASME has developed a standard to evaluate the quality level of an available PRA needed to support a given risk based application. The paper describes the PRA standard, Section XI application of PRAs, and plans for broader applications of PRAs to other ASME nuclear codesmore » and standards. The paper addresses several specific topics of interest to Section XI. Important consideration are special methods (surrogate components) used to overcome the lack of PRA treatments of passive components in PRAs. The approach allows calculations of conditional core damage probabilities both for component failures that cause initiating events and failures in standby systems that decrease the availability of these systems. The paper relates the explicit risk based methods of the new Section XI code cases to the implicit consideration of risk used in the development of Section XI. Other topics include the needed interactions of ISI engineers, plant operating staff, PRA specialists, and members of expert panels that review the risk based programs.« less

  9. Design of ceramic components with the NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    The ceramics analysis and reliability evaluation of structures (CARES) computer program is described. The primary function of the code is to calculate the fast-fracture reliability or failure probability of macro-scopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. CARES uses results from MSC/NASTRAN or ANSYS finite-element analysis programs to evaluate how inherent surface and/or volume type flaws component reliability. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effects of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or uniform uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for a single or multiple failure modes by using a least-squares analysis or a maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-to-fit-tests, 90 percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan 90 percent confidence band values are also provided. Examples are provided to illustrate the various features of CARES.

  10. [Comments on the use of the "life-table method" in orthopedics].

    PubMed

    Hassenpflug, J; Hahne, H J; Hedderich, J

    1992-01-01

    In the description of long term results, e.g. of joint replacements, survivorship analysis is used increasingly in orthopaedic surgery. The survivorship analysis is more useful to describe the frequency of failure rather than global statements in percentage. The relative probability of failure for fixed intervals is drawn from the number of controlled patients and the frequency of failure. The complementary probabilities of success are linked in their temporal sequence thus representing the probability of survival at a fixed endpoint. Necessary condition for the use of this procedure is the exact definition of moment and manner of failure. It is described how to establish survivorship tables.

  11. Availability analysis of an HTGR fuel recycle facility. Summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharmahd, J.N.

    1979-11-01

    An availability analysis of reprocessing systems in a high-temperature gas-cooled reactor (HTGR) fuel recycle facility was completed. This report summarizes work done to date to define and determine reprocessing system availability for a previously planned HTGR recycle reference facility (HRRF). Schedules and procedures for further work during reprocessing development and for HRRF design and construction are proposed in this report. Probable failure rates, transfer times, and repair times are estimated for major system components. Unscheduled down times are summarized.

  12. A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    PubMed Central

    Ye, Qing; Pan, Hao; Liu, Changhua

    2015-01-01

    This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717

  13. A risk assessment method for multi-site damage

    NASA Astrophysics Data System (ADS)

    Millwater, Harry Russell, Jr.

    This research focused on developing probabilistic methods suitable for computing small probabilities of failure, e.g., 10sp{-6}, of structures subject to multi-site damage (MSD). MSD is defined as the simultaneous development of fatigue cracks at multiple sites in the same structural element such that the fatigue cracks may coalesce to form one large crack. MSD is modeled as an array of collinear cracks with random initial crack lengths with the centers of the initial cracks spaced uniformly apart. The data used was chosen to be representative of aluminum structures. The structure is considered failed whenever any two adjacent cracks link up. A fatigue computer model is developed that can accurately and efficiently grow a collinear array of arbitrary length cracks from initial size until failure. An algorithm is developed to compute the stress intensity factors of all cracks considering all interaction effects. The probability of failure of two to 100 cracks is studied. Lower bounds on the probability of failure are developed based upon the probability of the largest crack exceeding a critical crack size. The critical crack size is based on the initial crack size that will grow across the ligament when the neighboring crack has zero length. The probability is evaluated using extreme value theory. An upper bound is based on the probability of the maximum sum of initial cracks being greater than a critical crack size. A weakest link sampling approach is developed that can accurately and efficiently compute small probabilities of failure. This methodology is based on predicting the weakest link, i.e., the two cracks to link up first, for a realization of initial crack sizes, and computing the cycles-to-failure using these two cracks. Criteria to determine the weakest link are discussed. Probability results using the weakest link sampling method are compared to Monte Carlo-based benchmark results. The results indicate that very small probabilities can be computed accurately in a few minutes using a Hewlett-Packard workstation.

  14. Accident hazard evaluation and control decisions on forested recreation sites

    Treesearch

    Lee A. Paine

    1971-01-01

    Accident hazard associated with trees on recreation sites is inherently concerned with probabilities. The major factors include the probabilities of mechanical failure and of target impact if failure occurs, the damage potential of the failure, and the target value. Hazard may be evaluated as the product of these factors; i.e., expected loss during the current...

  15. Determination of Turbine Blade Life from Engine Field Data

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  16. Computational methodology to predict satellite system-level effects from impacts of untrackable space debris

    NASA Astrophysics Data System (ADS)

    Welty, N.; Rudolph, M.; Schäfer, F.; Apeldoorn, J.; Janovsky, R.

    2013-07-01

    This paper presents a computational methodology to predict the satellite system-level effects resulting from impacts of untrackable space debris particles. This approach seeks to improve on traditional risk assessment practices by looking beyond the structural penetration of the satellite and predicting the physical damage to internal components and the associated functional impairment caused by untrackable debris impacts. The proposed method combines a debris flux model with the Schäfer-Ryan-Lambert ballistic limit equation (BLE), which accounts for the inherent shielding of components positioned behind the spacecraft structure wall. Individual debris particle impact trajectories and component shadowing effects are considered and the failure probabilities of individual satellite components as a function of mission time are calculated. These results are correlated to expected functional impairment using a Boolean logic model of the system functional architecture considering the functional dependencies and redundancies within the system.

  17. Integration and Assessment of Component Health Prognostics in Supervisory Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Bonebrake, Christopher A.; Dib, Gerges

    Enhanced risk monitors (ERMs) for active components in advanced reactor concepts use predictive estimates of component failure to update, in real time, predictive safety and economic risk metrics. These metrics have been shown to be capable of use in optimizing maintenance scheduling and managing plant maintenance costs. Integrating this information with plant supervisory control systems increases the potential for making control decisions that utilize real-time information on component conditions. Such decision making would limit the possibility of plant operations that increase the likelihood of degrading the functionality of one or more components while maintaining the overall functionality of the plant.more » ERM uses sensor data for providing real-time information about equipment condition for deriving risk monitors. This information is used to estimate the remaining useful life and probability of failure of these components. By combining this information with plant probabilistic risk assessment models, predictive estimates of risk posed by continued plant operation in the presence of detected degradation may be estimated. In this paper, we describe this methodology in greater detail, and discuss its integration with a prototypic software-based plant supervisory control platform. In order to integrate these two technologies and evaluate the integrated system, software to simulate the sensor data was developed, prognostic models for feedwater valves were developed, and several use cases defined. The full paper will describe these use cases, and the results of the initial evaluation.« less

  18. Variation of Time Domain Failure Probabilities of Jack-up with Wave Return Periods

    NASA Astrophysics Data System (ADS)

    Idris, Ahmad; Harahap, Indra S. H.; Ali, Montassir Osman Ahmed

    2018-04-01

    This study evaluated failure probabilities of jack up units on the framework of time dependent reliability analysis using uncertainty from different sea states representing different return period of the design wave. Surface elevation for each sea state was represented by Karhunen-Loeve expansion method using the eigenfunctions of prolate spheroidal wave functions in order to obtain the wave load. The stochastic wave load was propagated on a simplified jack up model developed in commercial software to obtain the structural response due to the wave loading. Analysis of the stochastic response to determine the failure probability in excessive deck displacement in the framework of time dependent reliability analysis was performed by developing Matlab codes in a personal computer. Results from the study indicated that the failure probability increases with increase in the severity of the sea state representing a longer return period. Although the results obtained are in agreement with the results of a study of similar jack up model using time independent method at higher values of maximum allowable deck displacement, it is in contrast at lower values of the criteria where the study reported that failure probability decreases with increase in the severity of the sea state.

  19. Time-dependent earthquake probabilities

    USGS Publications Warehouse

    Gomberg, J.; Belardinelli, M.E.; Cocco, M.; Reasenberg, P.

    2005-01-01

    We have attempted to provide a careful examination of a class of approaches for estimating the conditional probability of failure of a single large earthquake, particularly approaches that account for static stress perturbations to tectonic loading as in the approaches of Stein et al. (1997) and Hardebeck (2004). We have loading as in the framework based on a simple, generalized rate change formulation and applied it to these two approaches to show how they relate to one another. We also have attempted to show the connection between models of seismicity rate changes applied to (1) populations of independent faults as in background and aftershock seismicity and (2) changes in estimates of the conditional probability of failures of different members of a the notion of failure rate corresponds to successive failures of different members of a population of faults. The latter application requires specification of some probability distribution (density function of PDF) that describes some population of potential recurrence times. This PDF may reflect our imperfect knowledge of when past earthquakes have occurred on a fault (epistemic uncertainty), the true natural variability in failure times, or some combination of both. We suggest two end-member conceptual single-fault models that may explain natural variability in recurrence times and suggest how they might be distinguished observationally. When viewed deterministically, these single-fault patch models differ significantly in their physical attributes, and when faults are immature, they differ in their responses to stress perturbations. Estimates of conditional failure probabilities effectively integrate over a range of possible deterministic fault models, usually with ranges that correspond to mature faults. Thus conditional failure probability estimates usually should not differ significantly for these models. Copyright 2005 by the American Geophysical Union.

  20. Two-IMU FDI performance of the sequential probability ratio test during shuttle entry

    NASA Technical Reports Server (NTRS)

    Rich, T. M.

    1976-01-01

    Performance data for the sequential probability ratio test (SPRT) during shuttle entry are presented. Current modeling constants and failure thresholds are included for the full mission 3B from entry through landing trajectory. Minimum 100 percent detection/isolation failure levels and a discussion of the effects of failure direction are presented. Finally, a limited comparison of failures introduced at trajectory initiation shows that the SPRT algorithm performs slightly worse than the data tracking test.

  1. Reliability of vapor-grown planar In/sub 0. 53/Ga/sub 0. 47/As/InP p-i-n photodiodes with very high failure activation energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, S.R.; Ban, V.S.; Gasparian, G.

    1988-05-01

    The authors measured the mean time to failure (MTTF) for a statistically significant population of planar In/sub 0.53/Ga/sub 0.47/As/InP heterostructure p-i-n photodetectors at several elevated temperatures. The probability for failure is fit to a log-normal distribution, with the result that the width of the failure distribution is sigma = 0.55 +- 0.2, and is roughly independent of temperature. From the temperature dependence of the MTFF data, they find that the failure mechanism is thermally activated, with an activation energy of 1.5 +- 0.2 eV measured in the temperature range of 170 - 250/sup 0/C. This extrapolates to a MTTF ofmore » less than 0.1 failure in 10/sup 9/ h (or < 0.1 FIT) at 70/sup 0/C, indicating that such devices are useful for systems requiring extremely high reliable components, even if operated at elevated temperatures for significant time periods. To the authors' knowledge, this activation energy is the highest value reported for In/sub 0.53/Ga/sub 0.47/As/InP photodetectors, and is significantly higher than the energies of -- 0.85 eV often suspected to these devices.« less

  2. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran☆

    PubMed Central

    Nouri.Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-01-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed. PMID:26779433

  3. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran.

    PubMed

    Nouri Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-04-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed.

  4. Clinical implementation and failure mode and effects analysis of HDR skin brachytherapy using Valencia and Leipzig surface applicators.

    PubMed

    Sayler, Elaine; Eldredge-Hindy, Harriet; Dinome, Jessie; Lockamy, Virginia; Harrison, Amy S

    2015-01-01

    The planning procedure for Valencia and Leipzig surface applicators (VLSAs) (Nucletron, Veenendaal, The Netherlands) differs substantially from CT-based planning; the unfamiliarity could lead to significant errors. This study applies failure modes and effects analysis (FMEA) to high-dose-rate (HDR) skin brachytherapy using VLSAs to ensure safety and quality. A multidisciplinary team created a protocol for HDR VLSA skin treatments and applied FMEA. Failure modes were identified and scored by severity, occurrence, and detectability. The clinical procedure was then revised to address high-scoring process nodes. Several key components were added to the protocol to minimize risk probability numbers. (1) Diagnosis, prescription, applicator selection, and setup are reviewed at weekly quality assurance rounds. Peer review reduces the likelihood of an inappropriate treatment regime. (2) A template for HDR skin treatments was established in the clinic's electronic medical record system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planner as well as increases the detectability of an error. (3) A screen check was implemented during the second check to increase detectability of an error. (4) To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display, facilitating data entry and verification. (5) VLSAs are color coded and labeled to match the electronic medical record prescriptions, simplifying in-room selection and verification. Multidisciplinary planning and FMEA increased detectability and reduced error probability during VLSA HDR brachytherapy. This clinical model may be useful to institutions implementing similar procedures. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  5. Reliability Analysis of Systems Subject to First-Passage Failure

    NASA Technical Reports Server (NTRS)

    Lutes, Loren D.; Sarkani, Shahram

    2009-01-01

    An obvious goal of reliability analysis is the avoidance of system failure. However, it is generally recognized that it is often not feasible to design a practical or useful system for which failure is impossible. Thus it is necessary to use techniques that estimate the likelihood of failure based on modeling the uncertainty about such items as the demands on and capacities of various elements in the system. This usually involves the use of probability theory, and a design is considered acceptable if it has a sufficiently small probability of failure. This report contains findings of analyses of systems subject to first-passage failure.

  6. Monte Carlo simulation methodology for the reliabilty of aircraft structures under damage tolerance considerations

    NASA Astrophysics Data System (ADS)

    Rambalakos, Andreas

    Current federal aviation regulations in the United States and around the world mandate the need for aircraft structures to meet damage tolerance requirements through out the service life. These requirements imply that the damaged aircraft structure must maintain adequate residual strength in order to sustain its integrity that is accomplished by a continuous inspection program. The multifold objective of this research is to develop a methodology based on a direct Monte Carlo simulation process and to assess the reliability of aircraft structures. Initially, the structure is modeled as a parallel system with active redundancy comprised of elements with uncorrelated (statistically independent) strengths and subjected to an equal load distribution. Closed form expressions for the system capacity cumulative distribution function (CDF) are developed by expanding the current expression for the capacity CDF of a parallel system comprised by three elements to a parallel system comprised with up to six elements. These newly developed expressions will be used to check the accuracy of the implementation of a Monte Carlo simulation algorithm to determine the probability of failure of a parallel system comprised of an arbitrary number of statistically independent elements. The second objective of this work is to compute the probability of failure of a fuselage skin lap joint under static load conditions through a Monte Carlo simulation scheme by utilizing the residual strength of the fasteners subjected to various initial load distributions and then subjected to a new unequal load distribution resulting from subsequent fastener sequential failures. The final and main objective of this thesis is to present a methodology for computing the resulting gradual deterioration of the reliability of an aircraft structural component by employing a direct Monte Carlo simulation approach. The uncertainties associated with the time to crack initiation, the probability of crack detection, the exponent in the crack propagation rate (Paris equation) and the yield strength of the elements are considered in the analytical model. The structural component is assumed to consist of a prescribed number of elements. This Monte Carlo simulation methodology is used to determine the required non-periodic inspections so that the reliability of the structural component will not fall below a prescribed minimum level. A sensitivity analysis is conducted to determine the effect of three key parameters on the specification of the non-periodic inspection intervals: namely a parameter associated with the time to crack initiation, the applied nominal stress fluctuation and the minimum acceptable reliability level.

  7. Risk Importance Measures in the Designand Operation of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrbanic I.; Samanta P.; Basic, I

    This monograph presents and discusses risk importance measures as quantified by the probabilistic risk assessment (PRA) models of nuclear power plants (NPPs) developed according to the current standards and practices. Usually, PRA tools calculate risk importance measures related to a single ?basic event? representing particular failure mode. This is, then, reflected in many current PRA applications. The monograph focuses on the concept of ?component-level? importance measures that take into account different failure modes of the component including common-cause failures (CCFs). In opening sections the roleof risk assessment in safety analysis of an NPP is introduced and discussion given of ?traditional?,more » mainly deterministic, design principles which have been established to assign a level of importance to a particular system, structure or component. This is followed by an overview of main risk importance measures for risk increase and risk decrease from current PRAs. Basic relations which exist among the measures are shown. Some of the current practical applications of risk importancemeasures from the field of NPP design, operation and regulation are discussed. The core of the monograph provides a discussion on theoreticalbackground and practical aspects of main risk importance measures at the level of ?component? as modeled in a PRA, starting from the simplest case, single basic event, and going toward more complexcases with multiple basic events and involvements in CCF groups. The intent is to express the component-level importance measures via theimportance measures and probabilities of the underlying single basic events, which are the inputs readily available from a PRA model andits results. Formulas are derived and discussed for some typical cases. The formulas and their results are demonstrated through some practicalexamples, done by means of a simplified PRA model developed in and run by RiskSpectrum? tool, which are presented in the appendices. The monograph concludes with discussion of limitations of the use of risk importance measures and a summary of component-level importance cases evaluated.« less

  8. A Guide to the Application of Probability Risk Assessment Methodology and Hazard Risk Frequency Criteria as a Hazard Control for the Use of the Mobile Servicing System on the International Space Station

    NASA Astrophysics Data System (ADS)

    D'silva, Oneil; Kerrison, Roger

    2013-09-01

    A key feature for the increased utilization of space robotics is to automate Extra-Vehicular manned space activities and thus significantly reduce the potential for catastrophic hazards while simultaneously minimizing the overall costs associated with manned space. The principal scope of the paper is to evaluate the use of industry standard accepted Probability risk/safety assessment (PRA/PSA) methodologies and Hazard Risk frequency Criteria as a hazard control. This paper illustrates the applicability of combining the selected Probability risk assessment methodology and hazard risk frequency criteria, in order to apply the necessary safety controls that allow for the increased use of the Mobile Servicing system (MSS) robotic system on the International Space Station. This document will consider factors such as component failure rate reliability, software reliability, and periods of operation and dormancy, fault tree analyses and their effects on the probability risk assessments. The paper concludes with suggestions for the incorporation of existing industry Risk/Safety plans to create an applicable safety process for future activities/programs

  9. Ceramic component reliability with the restructured NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.

    1992-01-01

    The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).

  10. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an advanced nonlinear signal analysis topographical mapping system (ATMS) of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbopump families.

  11. System Risk Balancing Profiles: Software Component

    NASA Technical Reports Server (NTRS)

    Kelly, John C.; Sigal, Burton C.; Gindorf, Tom

    2000-01-01

    The Software QA / V&V guide will be reviewed and updated based on feedback from NASA organizations and others with a vested interest in this area. Hardware, EEE Parts, Reliability, and Systems Safety are a sample of the future guides that will be developed. Cost Estimates, Lessons Learned, Probability of Failure and PACTS (Prevention, Avoidance, Control or Test) are needed to provide a more complete risk management strategy. This approach to risk management is designed to help balance the resources and program content for risk reduction for NASA's changing environment.

  12. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  13. Derivation of Failure Rates and Probability of Failures for the International Space Station Probabilistic Risk Assessment Study

    NASA Technical Reports Server (NTRS)

    Vitali, Roberto; Lutomski, Michael G.

    2004-01-01

    National Aeronautics and Space Administration s (NASA) International Space Station (ISS) Program uses Probabilistic Risk Assessment (PRA) as part of its Continuous Risk Management Process. It is used as a decision and management support tool to not only quantify risk for specific conditions, but more importantly comparing different operational and management options to determine the lowest risk option and provide rationale for management decisions. This paper presents the derivation of the probability distributions used to quantify the failure rates and the probability of failures of the basic events employed in the PRA model of the ISS. The paper will show how a Bayesian approach was used with different sources of data including the actual ISS on orbit failures to enhance the confidence in results of the PRA. As time progresses and more meaningful data is gathered from on orbit failures, an increasingly accurate failure rate probability distribution for the basic events of the ISS PRA model can be obtained. The ISS PRA has been developed by mapping the ISS critical systems such as propulsion, thermal control, or power generation into event sequences diagrams and fault trees. The lowest level of indenture of the fault trees was the orbital replacement units (ORU). The ORU level was chosen consistently with the level of statistically meaningful data that could be obtained from the aerospace industry and from the experts in the field. For example, data was gathered for the solenoid valves present in the propulsion system of the ISS. However valves themselves are composed of parts and the individual failure of these parts was not accounted for in the PRA model. In other words the failure of a spring within a valve was considered a failure of the valve itself.

  14. Wear-Out Sensitivity Analysis Project Abstract

    NASA Technical Reports Server (NTRS)

    Harris, Adam

    2015-01-01

    During the course of the Summer 2015 internship session, I worked in the Reliability and Maintainability group of the ISS Safety and Mission Assurance department. My project was a statistical analysis of how sensitive ORU's (Orbital Replacement Units) are to a reliability parameter called the wear-out characteristic. The intended goal of this was to determine a worst case scenario of how many spares would be needed if multiple systems started exhibiting wear-out characteristics simultaneously. The goal was also to determine which parts would be most likely to do so. In order to do this, my duties were to take historical data of operational times and failure times of these ORU's and use them to build predictive models of failure using probability distribution functions, mainly the Weibull distribution. Then, I ran Monte Carlo Simulations to see how an entire population of these components would perform. From here, my final duty was to vary the wear-out characteristic from the intrinsic value, to extremely high wear-out values and determine how much the probability of sufficiency of the population would shift. This was done for around 30 different ORU populations on board the ISS.

  15. Determination of Turbine Blade Life from Engine Field Data

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2012-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal mechanical fatigue as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) Thermal-mechanical fatigue, (2) Oxidation/Erosion, and (3) "Other." From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L(sub 10) blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to oxidation/erosion equaled that attributed to thermal-mechanical fatigue. The category that contributed most to blade failure was Other. If there were there no blade failures attributed to oxidation/erosion and thermal-mechanical fatigue, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  16. Savannah River Site generic data base development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, C.H.; Eide, S.A.

    This report describes the results of a project to improve the generic component failure data base for the Savannah River Site (SRS). A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear powermore » plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. This information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor) for each component failure mode.« less

  17. Quality Issues in Propulsion

    NASA Technical Reports Server (NTRS)

    McCarty, John P.; Lyles, Garry M.

    1997-01-01

    Propulsion system quality is defined in this paper as having high reliability, that is, quality is a high probability of within-tolerance performance or operation. Since failures are out-of-tolerance performance, the probability of failures and their occurrence is the difference between high and low quality systems. Failures can be described at 3 levels: the system failure (which is the detectable end of a failure), the failure mode (which is the failure process), and the failure cause (which is the start). Failure causes can be evaluated & classified by type. The results of typing flight history failures shows that most failures are in unrecognized modes and result from human error or noise, i.e. failures are when engineers learn how things really work. Although the study based on US launch vehicles, a sampling of failures from other countries indicates the finding has broad application. The parameters of the design of a propulsion system are not single valued, but have dispersions associated with the manufacturing of parts. Many tests are needed to find failures, if the dispersions are large relative to tolerances, which could contribute to the large number of failures in unrecognized modes.

  18. Sensory redundancy management: The development of a design methodology for determining threshold values through a statistical analysis of sensor output data

    NASA Technical Reports Server (NTRS)

    Scalzo, F.

    1983-01-01

    Sensor redundancy management (SRM) requires a system which will detect failures and reconstruct avionics accordingly. A probability density function to determine false alarm rates, using an algorithmic approach was generated. Microcomputer software was developed which will print out tables of values for the cummulative probability of being in the domain of failure; system reliability; and false alarm probability, given a signal is in the domain of failure. The microcomputer software was applied to the sensor output data for various AFT1 F-16 flights and sensor parameters. Practical recommendations for further research were made.

  19. Probability of failure prediction for step-stress fatigue under sine or random stress

    NASA Technical Reports Server (NTRS)

    Lambert, R. G.

    1979-01-01

    A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.

  20. Quantifying Safety Margin Using the Risk-Informed Safety Margin Characterization (RISMC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Brunett, Acacia

    2015-04-26

    The Risk-Informed Safety Margin Characterization (RISMC), developed by Idaho National Laboratory as part of the Light-Water Reactor Sustainability Project, utilizes a probabilistic safety margin comparison between a load and capacity distribution, rather than a deterministic comparison between two values, as is usually done in best-estimate plus uncertainty analyses. The goal is to determine the failure probability, or in other words, the probability of the system load equaling or exceeding the system capacity. While this method has been used in pilot studies, there has been little work conducted investigating the statistical significance of the resulting failure probability. In particular, it ismore » difficult to determine how many simulations are necessary to properly characterize the failure probability. This work uses classical (frequentist) statistics and confidence intervals to examine the impact in statistical accuracy when the number of simulations is varied. Two methods are proposed to establish confidence intervals related to the failure probability established using a RISMC analysis. The confidence interval provides information about the statistical accuracy of the method utilized to explore the uncertainty space, and offers a quantitative method to gauge the increase in statistical accuracy due to performing additional simulations.« less

  1. Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors.

    PubMed

    Bazant, Zdenĕk P; Pang, Sze-Dai

    2006-06-20

    In mechanical design as well as protection from various natural hazards, one must ensure an extremely low failure probability such as 10(-6). How to achieve that goal is adequately understood only for the limiting cases of brittle or ductile structures. Here we present a theory to do that for the transitional class of quasibrittle structures, having brittle constituents and characterized by nonnegligible size of material inhomogeneities. We show that the probability distribution of strength of the representative volume element of material is governed by the Maxwell-Boltzmann distribution of atomic energies and the stress dependence of activation energy barriers; that it is statistically modeled by a hierarchy of series and parallel couplings; and that it consists of a broad Gaussian core having a grafted far-left power-law tail with zero threshold and amplitude depending on temperature and load duration. With increasing structure size, the Gaussian core shrinks and Weibull tail expands according to the weakest-link model for a finite chain of representative volume elements. The model captures experimentally observed deviations of the strength distribution from Weibull distribution and of the mean strength scaling law from a power law. These deviations can be exploited for verification and calibration. The proposed theory will increase the safety of concrete structures, composite parts of aircraft or ships, microelectronic components, microelectromechanical systems, prosthetic devices, etc. It also will improve protection against hazards such as landslides, avalanches, ice breaks, and rock or soil failures.

  2. Fractography, NDE, and fracture mechanics applications in failure analysis studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, C.R.; Shipley, R.J.; Wilkinson, J.A.

    1994-10-01

    While identification of the precise mode of a failure can lead logically to the underlying cause, a thorough failure investigation requires much more than just the identification of a specific metallurgical mechanism, for example, fatigue, creep, stress corrosion cracking, etc. Failures involving fracture provide good illustrations of this concept. An initial step in characterizing fracture surfaces is often the identification of an origin or origins. However, the analysis should not stop there. If the origin is associated with a discontinuity, the manner in which it was formed must also be addressed. The stresses that would have existed at the originmore » must be determined and compared with material properties to determine whether or not a crack should have initiated and propagated during normal operation. Many critical components are inspected throughout their lives by nondestructive methods. When a crack progresses to failure, its nondetection at earlier inspections must also be understood. Careful study of the fracture surface combined with crack growth analysis based on fracture mechanics can provide an estimate of the crack length at the times of previous inspections. An important issue often overlooked in such studies is how processing of parts during manufacture or rework affects the probability of detection of such cracks. The ultimate goal is to understand thoroughly the progression of the failure, to understand the root cause(s), and to design appropriate corrective action(s) to minimize recurrence.« less

  3. Failure analysis of parameter-induced simulation crashes in climate models

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.

    2013-01-01

    Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We apply support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicts model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures are determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations are the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  4. Failure analysis of parameter-induced simulation crashes in climate models

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.

    2013-08-01

    Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  5. Decomposition-Based Failure Mode Identification Method for Risk-Free Design of Large Systems

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Stone, Robert B.; Roberts, Rory A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When designing products, it is crucial to assure failure and risk-free operation in the intended operating environment. Failures are typically studied and eliminated as much as possible during the early stages of design. The few failures that go undetected result in unacceptable damage and losses in high-risk applications where public safety is of concern. Published NASA and NTSB accident reports point to a variety of components identified as sources of failures in the reported cases. In previous work, data from these reports were processed and placed in matrix form for all the system components and failure modes encountered, and then manipulated using matrix methods to determine similarities between the different components and failure modes. In this paper, these matrices are represented in the form of a linear combination of failures modes, mathematically formed using Principal Components Analysis (PCA) decomposition. The PCA decomposition results in a low-dimensionality representation of all failure modes and components of interest, represented in a transformed coordinate system. Such a representation opens the way for efficient pattern analysis and prediction of failure modes with highest potential risks on the final product, rather than making decisions based on the large space of component and failure mode data. The mathematics of the proposed method are explained first using a simple example problem. The method is then applied to component failure data gathered from helicopter, accident reports to demonstrate its potential.

  6. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  7. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  8. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  9. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  10. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masuda, Y.; Chiba, N.; Matsuo, Y.

    This research proposes to investigate the impact behavior of the steel plate of BWR containment vessels against missiles, caused by the postulated catastrophic failure of components with a high kinetic energy. Although the probability of the occurrence of missiles inside and outside of containment vessels is extremely low, the following items are required to maintain the integrity of containment vessels: the probability of the occurrence of missiles, the weight and energy of missiles, and the impact behavior of containment vessel steel plate against postulated missiles. In connection with the third item, an actualscale missile test was conducted. In addition, amore » computation analysis was performed to confirm the impact behavior against the missiles, in order to search for wide applicability to the various kinds of postulated missiles. This research tries to derive a new empirical formula which carries out the assessment of the integrity of containment vessels.« less

  12. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1995-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  13. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1993-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  14. Fatigue failure of metal components as a factor in civil aircraft accidents

    NASA Technical Reports Server (NTRS)

    Holshouser, W. L.; Mayner, R. D.

    1972-01-01

    A review of records maintained by the National Transportation Safety Board showed that 16,054 civil aviation accidents occurred in the United States during the 3-year period ending December 31, 1969. Material failure was an important factor in the cause of 942 of these accidents. Fatigue was identified as the mode of the material failures associated with the cause of 155 accidents and in many other accidents the records indicated that fatigue failures might have been involved. There were 27 fatal accidents and 157 fatalities in accidents in which fatigue failures of metal components were definitely identified. Fatigue failures associated with accidents occurred most frequently in landing-gear components, followed in order by powerplant, propeller, and structural components in fixed-wing aircraft and tail-rotor and main-rotor components in rotorcraft. In a study of 230 laboratory reports on failed components associated with the cause of accidents, fatigue was identified as the mode of failure in more than 60 percent of the failed components. The most frequently identified cause of fatigue, as well as most other types of material failures, was improper maintenance (including inadequate inspection). Fabrication defects, design deficiencies, defective material, and abnormal service damage also caused many fatigue failures. Four case histories of major accidents are included in the paper as illustrations of some of the factors invovled in fatigue failures of aircraft components.

  15. Contraceptive Failure in the United States: Estimates from the 2006-2010 National Survey of Family Growth.

    PubMed

    Sundaram, Aparna; Vaughan, Barbara; Kost, Kathryn; Bankole, Akinrinola; Finer, Lawrence; Singh, Susheela; Trussell, James

    2017-03-01

    Contraceptive failure rates measure a woman's probability of becoming pregnant while using a contraceptive. Information about these rates enables couples to make informed contraceptive choices. Failure rates were last estimated for 2002, and social and economic changes that have occurred since then necessitate a reestimation. To estimate failure rates for the most commonly used reversible methods in the United States, data from the 2006-2010 National Survey of Family Growth were used; some 15,728 contraceptive use intervals, contributed by 6,683 women, were analyzed. Data from the Guttmacher Institute's 2008 Abortion Patient Survey were used to adjust for abortion underreporting. Kaplan-Meier methods were used to estimate the associated single-decrement probability of failure by duration of use. Failure rates were compared with those from 1995 and 2002. Long-acting reversible contraceptives (the IUD and the implant) had the lowest failure rates of all methods (1%), while condoms and withdrawal carried the highest probabilities of failure (13% and 20%, respectively). However, the failure rate for the condom had declined significantly since 1995 (from 18%), as had the failure rate for all hormonal methods combined (from 8% to 6%). The failure rate for all reversible methods combined declined from 12% in 2002 to 10% in 2006-2010. These broad-based declines in failure rates reverse a long-term pattern of minimal change. Future research should explore what lies behind these trends, as well as possibilities for further improvements. © 2017 The Authors. Perspectives on Sexual and Reproductive Health published by Wiley Periodicals, Inc., on behalf of the Guttmacher Institute.

  16. On the occurrence of rainstorm damage based on home insurance and weather data

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-08-01

    Rainstorm damage caused by malfunctioning of urban drainage systems and water intrusion due to defects in the building envelope can be considerable. Little research on this topic focused on the collection of damage data, the understanding of damage mechanisms and the deepening of data analysis methods. In this paper, the relative contribution of different failure mechanisms to the occurrence of rainstorm damage are investigated, as well as the extent to which these mechanisms relate to weather variables. For a case study in Rotterdam, the Netherlands, a property level home insurance database of around 3100 water-related damage claims was analysed. Records include comprehensive transcripts of communication between insurer, insured and damage assessment experts, which allowed claims to be classified according to their actual damage cause. Results show that roof and wall leakage is the most frequent failure mechanism causing precipitation-related claims, followed by blocked roof gutters, melting snow and sewer flooding. Claims related to sewer flooding were less present in the data, but are associated with significantly larger claim sizes than claims in the majority class, i.e. roof and wall leakages. Rare events logistic regression analysis revealed that maximum rainfall intensity and rainfall volume are significant predictors for the occurrence probability of precipitation-related claims. Moreover, it was found that claims associated with rainfall intensities smaller than 7-8 mm in a 60 min window are mainly related to failures processes in the private domain, such as roof and wall leakages. For rainfall events that exceed the 7-8 mm h-1 threshold, failure of systems in the public domain, such as sewer systems, start to contribute considerably to the overall occurrence probability of claims. The communication transcripts, however, lacked information to be conclusive about to extent to which sewer-related claims were caused by overloading of sewer systems or failure of system components.

  17. On the occurrence of rainstorm damage based on home insurance and weather data

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2015-02-01

    Rainstorm damage caused by the malfunction of urban drainage systems and water intrusion due to defects in the building envelope can be considerable. Little research on this topic focused on the collection of damage data, the understanding of damage mechanisms and the deepening of data analysis methods. In this paper, the relative contribution of different failure mechanisms to the occurrence of rainstorm damage is investigated, as well as the extent to which these mechanisms relate to weather variables. For a case study in Rotterdam, the Netherlands, a property level home insurance database of around 3100 water-related damage claims was analysed. The records include comprehensive transcripts of communication between insurer, insured and damage assessment experts, which allowed claims to be classified according to their actual damage cause. The results show that roof and wall leakage is the most frequent failure mechanism causing precipitation-related claims, followed by blocked roof gutters, melting snow and sewer flooding. Claims related to sewer flooding were less present in the data, but are associated with significantly larger claim sizes than claims in the majority class, i.e. roof and wall leakages. Rare events logistic regression analysis revealed that maximum rainfall intensity and rainfall volume are significant predictors for the occurrence probability of precipitation-related claims. Moreover, it was found that claims associated with rainfall intensities smaller than 7-8 mm in a 60-min window are mainly related to failure processes in the private domain, such as roof and wall leakages. For rainfall events that exceed the 7-8 mm h-1 threshold, the failure of systems in the public domain, such as sewer systems, start to contribute considerably to the overall occurrence probability of claims. The communication transcripts, however, lacked information to be conclusive about to which extent sewer-related claims were caused by overloading of sewer systems or failure of system components.

  18. Mechanical failure probability of glasses in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Results of five years of earth-orbital exposure on mechanical properties of glasses indicate that radiation effects on mechanical properties of glasses, for the glasses examined, are less than the probable error of measurement. During the 5 year exposure, seven micrometeorite or space debris impacts occurred on the samples examined. These impacts were located in locations which were not subjected to effective mechanical testing, hence limited information on their influence upon mechanical strength was obtained. Combination of these results with micrometeorite and space debris impact frequency obtained by other experiments permits estimates of the failure probability of glasses exposed to mechanical loading under earth-orbit conditions. This probabilistic failure prediction is described and illustrated with examples.

  19. Reliability and risk assessment of structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1991-01-01

    Development of reliability and risk assessment of structural components and structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) the evaluation of the various uncertainties in terms of cumulative distribution functions for various structural response variables based on known or assumed uncertainties in primitive structural variables; (2) evaluation of the failure probability; (3) reliability and risk-cost assessment; and (4) an outline of an emerging approach for eventual certification of man-rated structures by computational methods. Collectively, the results demonstrate that the structural durability/reliability of man-rated structural components and structures can be effectively evaluated by using formal probabilistic methods.

  20. Reliability and Maintainability Analysis of a High Air Pressure Compressor Facility

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Ring, Robert W.; Cole, Stuart K.

    2013-01-01

    This paper discusses a Reliability, Availability, and Maintainability (RAM) independent assessment conducted to support the refurbishment of the Compressor Station at the NASA Langley Research Center (LaRC). The paper discusses the methodologies used by the assessment team to derive the repair by replacement (RR) strategies to improve the reliability and availability of the Compressor Station (Ref.1). This includes a RAPTOR simulation model that was used to generate the statistical data analysis needed to derive a 15-year investment plan to support the refurbishment of the facility. To summarize, study results clearly indicate that the air compressors are well past their design life. The major failures of Compressors indicate that significant latent failure causes are present. Given the occurrence of these high-cost failures following compressor overhauls, future major failures should be anticipated if compressors are not replaced. Given the results from the RR analysis, the study team recommended a compressor replacement strategy. Based on the data analysis, the RR strategy will lead to sustainable operations through significant improvements in reliability, availability, and the probability of meeting the air demand with acceptable investment cost that should translate, in the long run, into major cost savings. For example, the probability of meeting air demand improved from 79.7 percent for the Base Case to 97.3 percent. Expressed in terms of a reduction in the probability of failing to meet demand (1 in 5 days to 1 in 37 days), the improvement is about 700 percent. Similarly, compressor replacement improved the operational availability of the facility from 97.5 percent to 99.8 percent. Expressed in terms of a reduction in system unavailability (1 in 40 to 1 in 500), the improvement is better than 1000 percent (an order of magnitude improvement). It is worthy to note that the methodologies, tools, and techniques used in the LaRC study can be used to evaluate similar high value equipment components and facilities. Also, lessons learned in data collection and maintenance practices derived from the observations, findings, and recommendations of the study are extremely important in the evaluation and sustainment of new compressor facilities.

  1. Estimation procedures to measure and monitor failure rates of components during thermal-vacuum testing

    NASA Technical Reports Server (NTRS)

    Williams, R. E.; Kruger, R.

    1980-01-01

    Estimation procedures are described for measuring component failure rates, for comparing the failure rates of two different groups of components, and for formulating confidence intervals for testing hypotheses (based on failure rates) that the two groups perform similarly or differently. Appendix A contains an example of an analysis in which these methods are applied to investigate the characteristics of two groups of spacecraft components. The estimation procedures are adaptable to system level testing and to monitoring failure characteristics in orbit.

  2. A new algorithm for finding survival coefficients employed in reliability equations

    NASA Technical Reports Server (NTRS)

    Bouricius, W. G.; Flehinger, B. J.

    1973-01-01

    Product reliabilities are predicted from past failure rates and reasonable estimate of future failure rates. Algorithm is used to calculate probability that product will function correctly. Algorithm sums the probabilities of each survival pattern and number of permutations for that pattern, over all possible ways in which product can survive.

  3. A chi-square goodness-of-fit test for non-identically distributed random variables: with application to empirical Bayes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, W.J.; Cox, D.D.; Martz, H.F.

    1997-12-01

    When using parametric empirical Bayes estimation methods for estimating the binomial or Poisson parameter, the validity of the assumed beta or gamma conjugate prior distribution is an important diagnostic consideration. Chi-square goodness-of-fit tests of the beta or gamma prior hypothesis are developed for use when the binomial sample sizes or Poisson exposure times vary. Nine examples illustrate the application of the methods, using real data from such diverse applications as the loss of feedwater flow rates in nuclear power plants, the probability of failure to run on demand and the failure rates of the high pressure coolant injection systems atmore » US commercial boiling water reactors, the probability of failure to run on demand of emergency diesel generators in US commercial nuclear power plants, the rate of failure of aircraft air conditioners, baseball batting averages, the probability of testing positive for toxoplasmosis, and the probability of tumors in rats. The tests are easily applied in practice by means of corresponding Mathematica{reg_sign} computer programs which are provided.« less

  4. Design of Critical Components

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Zaretsky, Erwin V.

    2001-01-01

    Critical component design is based on minimizing product failures that results in loss of life. Potential catastrophic failures are reduced to secondary failures where components removed for cause or operating time in the system. Issues of liability and cost of component removal become of paramount importance. Deterministic design with factors of safety and probabilistic design address but lack the essential characteristics for the design of critical components. In deterministic design and fabrication there are heuristic rules and safety factors developed over time for large sets of structural/material components. These factors did not come without cost. Many designs failed and many rules (codes) have standing committees to oversee their proper usage and enforcement. In probabilistic design, not only are failures a given, the failures are calculated; an element of risk is assumed based on empirical failure data for large classes of component operations. Failure of a class of components can be predicted, yet one can not predict when a specific component will fail. The analogy is to the life insurance industry where very careful statistics are book-kept on classes of individuals. For a specific class, life span can be predicted within statistical limits, yet life-span of a specific element of that class can not be predicted.

  5. Archival-grade optical disc design and international standards

    NASA Astrophysics Data System (ADS)

    Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo

    2015-09-01

    Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.

  6. Modelling indirect interactions during failure spreading in a project activity network.

    PubMed

    Ellinas, Christos

    2018-03-12

    Spreading broadly refers to the notion of an entity propagating throughout a networked system via its interacting components. Evidence of its ubiquity and severity can be seen in a range of phenomena, from disease epidemics to financial systemic risk. In order to understand the dynamics of these critical phenomena, computational models map the probability of propagation as a function of direct exposure, typically in the form of pairwise interactions between components. By doing so, the important role of indirect interactions remains unexplored. In response, we develop a simple model that accounts for the effect of both direct and subsequent exposure, which we deploy in the novel context of failure propagation within a real-world engineering project. We show that subsequent exposure has a significant effect in key aspects, including the: (a) final spreading event size, (b) propagation rate, and (c) spreading event structure. In addition, we demonstrate the existence of 'hidden influentials' in large-scale spreading events, and evaluate the role of direct and subsequent exposure in their emergence. Given the evidence of the importance of subsequent exposure, our findings offer new insight on particular aspects that need to be included when modelling network dynamics in general, and spreading processes specifically.

  7. Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.

    PubMed

    Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P

    2018-01-01

    A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic abutment components failed, supporting the research hypothesis with a reliability similar to that of all-metal abutment fixture systems. A lithium disilcate abutment with a Ti alloy sleeve in combination with an all-ceramic crown should be expected to function clinically in a satisfactory manner. © 2016 by the American College of Prosthodontists.

  8. Enhancing the Possibility of Success by Measuring the Probability of Failure in an Educational Program.

    ERIC Educational Resources Information Center

    Brookhart, Susan M.; And Others

    1997-01-01

    Process Analysis is described as a method for identifying and measuring the probability of events that could cause the failure of a program, resulting in a cause-and-effect tree structure of events. The method is illustrated through the evaluation of a pilot instructional program at an elementary school. (SLD)

  9. The Influence of Improper Sets of Information on Judgment: How Irrelevant Information Can Bias Judged Probability

    ERIC Educational Resources Information Center

    Dougherty, Michael R.; Sprenger, Amber

    2006-01-01

    This article introduces 2 new sources of bias in probability judgment, discrimination failure and inhibition failure, which are conceptualized as arising from an interaction between error prone memory processes and a support theory like comparison process. Both sources of bias stem from the influence of irrelevant information on participants'…

  10. A detailed description of the sequential probability ratio test for 2-IMU FDI

    NASA Technical Reports Server (NTRS)

    Rich, T. M.

    1976-01-01

    The sequential probability ratio test (SPRT) for 2-IMU FDI (inertial measuring unit failure detection/isolation) is described. The SPRT is a statistical technique for detecting and isolating soft IMU failures originally developed for the strapdown inertial reference unit. The flowchart of a subroutine incorporating the 2-IMU SPRT is included.

  11. Optimized Vertex Method and Hybrid Reliability

    NASA Technical Reports Server (NTRS)

    Smith, Steven A.; Krishnamurthy, T.; Mason, B. H.

    2002-01-01

    A method of calculating the fuzzy response of a system is presented. This method, called the Optimized Vertex Method (OVM), is based upon the vertex method but requires considerably fewer function evaluations. The method is demonstrated by calculating the response membership function of strain-energy release rate for a bonded joint with a crack. The possibility of failure of the bonded joint was determined over a range of loads. After completing the possibilistic analysis, the possibilistic (fuzzy) membership functions were transformed to probability density functions and the probability of failure of the bonded joint was calculated. This approach is called a possibility-based hybrid reliability assessment. The possibility and probability of failure are presented and compared to a Monte Carlo Simulation (MCS) of the bonded joint.

  12. The application of probabilistic fracture analysis to residual life evaluation of embrittled reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.; Simonen, F.A.

    1992-05-01

    Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less

  13. The application of probabilistic fracture analysis to residual life evaluation of embrittled reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.; Simonen, F.A.

    1992-01-01

    Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less

  14. Probabilistic evaluation of seismic isolation effect with respect to siting of a fusion reactor facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Masatoshi; Komura, Toshiyuki; Hirotani, Tsutomu

    1995-12-01

    Annual failure probabilities of buildings and equipment were roughly evaluated for two fusion-reactor-like buildings, with and without seismic base isolation, in order to examine the effectiveness of the base isolation system regarding siting issues. The probabilities are calculated considering nonlinearity and rupture of isolators. While the probability of building failure for both buildings on the same site was almost equal, the function failures for equipment showed that the base-isolated building had higher reliability than the non-isolated building. Even if the base-isolated building alone is located on a higher seismic hazard area, it could compete favorably with the ordinary one inmore » reliability of equipment.« less

  15. Estimation of submarine mass failure probability from a sequence of deposits with age dates

    USGS Publications Warehouse

    Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.

    2013-01-01

    The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaike’s Information Criterion (AIC) and Akaike’s Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.

  16. SU-C-BRD-02: A Team Focused Clinical Implementation and Failure Mode and Effects Analysis of HDR Skin Brachytherapy Using Valencia and Leipzig Surface Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, E; Harrison, A; Eldredge-Hindy, H

    Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less

  17. SCADA alarms processing for wind turbine component failure detection

    NASA Astrophysics Data System (ADS)

    Gonzalez, E.; Reder, M.; Melero, J. J.

    2016-09-01

    Wind turbine failure and downtime can often compromise the profitability of a wind farm due to their high impact on the operation and maintenance (O&M) costs. Early detection of failures can facilitate the changeover from corrective maintenance towards a predictive approach. This paper presents a cost-effective methodology to combine various alarm analysis techniques, using data from the Supervisory Control and Data Acquisition (SCADA) system, in order to detect component failures. The approach categorises the alarms according to a reviewed taxonomy, turning overwhelming data into valuable information to assess component status. Then, different alarms analysis techniques are applied for two purposes: the evaluation of the SCADA alarm system capability to detect failures, and the investigation of the relation between components faults being followed by failure occurrences in others. Various case studies are presented and discussed. The study highlights the relationship between faulty behaviour in different components and between failures and adverse environmental conditions.

  18. The Use of Probabilistic Methods to Evaluate the Systems Impact of Component Design Improvements on Large Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Packard, Michael H.

    2002-01-01

    Probabilistic Structural Analysis (PSA) is now commonly used for predicting the distribution of time/cycles to failure of turbine blades and other engine components. These distributions are typically based on fatigue/fracture and creep failure modes of these components. Additionally, reliability analysis is used for taking test data related to particular failure modes and calculating failure rate distributions of electronic and electromechanical components. How can these individual failure time distributions of structural, electronic and electromechanical component failure modes be effectively combined into a top level model for overall system evaluation of component upgrades, changes in maintenance intervals, or line replaceable unit (LRU) redesign? This paper shows an example of how various probabilistic failure predictions for turbine engine components can be evaluated and combined to show their effect on overall engine performance. A generic model of a turbofan engine was modeled using various Probabilistic Risk Assessment (PRA) tools (Quantitative Risk Assessment Software (QRAS) etc.). Hypothetical PSA results for a number of structural components along with mitigation factors that would restrict the failure mode from propagating to a Loss of Mission (LOM) failure were used in the models. The output of this program includes an overall failure distribution for LOM of the system. The rank and contribution to the overall Mission Success (MS) is also given for each failure mode and each subsystem. This application methodology demonstrates the effectiveness of PRA for assessing the performance of large turbine engines. Additionally, the effects of system changes and upgrades, the application of different maintenance intervals, inclusion of new sensor detection of faults and other upgrades were evaluated in determining overall turbine engine reliability.

  19. Evaluation of design parameters for TRISO-coated fuel particles to establish manufacturing critical limits using PARFUME

    DOE PAGES

    Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; ...

    2015-12-02

    The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varyingmore » key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. As a result, these critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.« less

  20. Estimation of the risk of failure for an endodontically treated maxillary premolar with MODP preparation and CAD/CAM ceramic restorations.

    PubMed

    Lin, Chun-Li; Chang, Yen-Hsiang; Pa, Che-An

    2009-10-01

    This study evaluated the risk of failure for an endodontically treated premolar with mesio occlusodistal palatal (MODP) preparation and 3 different computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic restoration configurations. Three 3-dimensional finite element (FE) models designed with CAD/CAM ceramic onlay, endocrown, and conventional crown restorations were constructed to perform simulations. The Weibull function was incorporated with FE analysis to calculate the long-term failure probability relative to different load conditions. The results indicated that the stress values on the enamel, dentin, and luting cement for endocrown restoration were the lowest values relative to the other 2 restorations. Weibull analysis revealed that the individual failure probability in the endocrown enamel, dentin, and luting cement obviously diminished more than those for onlay and conventional crown restorations. The overall failure probabilities were 27.5%, 1%, and 1% for onlay, endocrown, and conventional crown restorations, respectively, in normal occlusal condition. This numeric investigation suggests that endocrown and conventional crown restorations for endodontically treated premolars with MODP preparation present similar longevity.

  1. Structural Reliability Analysis and Optimization: Use of Approximations

    NASA Technical Reports Server (NTRS)

    Grandhi, Ramana V.; Wang, Liping

    1999-01-01

    This report is intended for the demonstration of function approximation concepts and their applicability in reliability analysis and design. Particularly, approximations in the calculation of the safety index, failure probability and structural optimization (modification of design variables) are developed. With this scope in mind, extensive details on probability theory are avoided. Definitions relevant to the stated objectives have been taken from standard text books. The idea of function approximations is to minimize the repetitive use of computationally intensive calculations by replacing them with simpler closed-form equations, which could be nonlinear. Typically, the approximations provide good accuracy around the points where they are constructed, and they need to be periodically updated to extend their utility. There are approximations in calculating the failure probability of a limit state function. The first one, which is most commonly discussed, is how the limit state is approximated at the design point. Most of the time this could be a first-order Taylor series expansion, also known as the First Order Reliability Method (FORM), or a second-order Taylor series expansion (paraboloid), also known as the Second Order Reliability Method (SORM). From the computational procedure point of view, this step comes after the design point identification; however, the order of approximation for the probability of failure calculation is discussed first, and it is denoted by either FORM or SORM. The other approximation of interest is how the design point, or the most probable failure point (MPP), is identified. For iteratively finding this point, again the limit state is approximated. The accuracy and efficiency of the approximations make the search process quite practical for analysis intensive approaches such as the finite element methods; therefore, the crux of this research is to develop excellent approximations for MPP identification and also different approximations including the higher-order reliability methods (HORM) for representing the failure surface. This report is divided into several parts to emphasize different segments of the structural reliability analysis and design. Broadly, it consists of mathematical foundations, methods and applications. Chapter I discusses the fundamental definitions of the probability theory, which are mostly available in standard text books. Probability density function descriptions relevant to this work are addressed. In Chapter 2, the concept and utility of function approximation are discussed for a general application in engineering analysis. Various forms of function representations and the latest developments in nonlinear adaptive approximations are presented with comparison studies. Research work accomplished in reliability analysis is presented in Chapter 3. First, the definition of safety index and most probable point of failure are introduced. Efficient ways of computing the safety index with a fewer number of iterations is emphasized. In chapter 4, the probability of failure prediction is presented using first-order, second-order and higher-order methods. System reliability methods are discussed in chapter 5. Chapter 6 presents optimization techniques for the modification and redistribution of structural sizes for improving the structural reliability. The report also contains several appendices on probability parameters.

  2. Failure Analysis of Cracked FS-85 Tubing and ASTAR-811C End Caps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ME Petrichek

    2006-02-09

    Failure analyses were performed on cracked FS-85 tubing and ASTAR-811C and caps which had been fabricated as components of biaxial creep specimens meant to support materials testing for the NR Space program. During the failure analyses of cracked FS-85 tubing, it was determined that the failure potentially could be due to two effects: possible copper contamination from the EDM (electro-discharge machined) recast layer and/or an insufficient solution anneal. to prevent similar failures in the future, a more formal analysis should be done after each processing step to ensure the quality of the material before further processing. During machining of themore » ASTAR-811FC rod to form end caps for biaxial creep specimens, linear defects were observed along the center portion of the end caps. These defects were only found in material that was processed from the top portion of the ingot. The linear defects were attributed to a probable residual ingot pipe that was not removed from the ingot. During the subsequent processing of the ingot to rod, the processing temperatures were not high enough to allow self healing of the ingot's residual pipe defect. To prevent this from occurring in the future, it is necessary to ensure that complete removal of the as-melted ingot pipe is verified by suitable non-destructive evaluation (NDE).« less

  3. Space tug propulsion system failure mode, effects and criticality analysis

    NASA Technical Reports Server (NTRS)

    Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.

    1972-01-01

    For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.

  4. Stochastic damage evolution in textile laminates

    NASA Technical Reports Server (NTRS)

    Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.

    1993-01-01

    A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.

  5. Differential reliability : probabilistic engineering applied to wood members in bending-tension

    Treesearch

    Stanley K. Suddarth; Frank E. Woeste; William L. Galligan

    1978-01-01

    Reliability analysis is a mathematical technique for appraising the design and materials of engineered structures to provide a quantitative estimate of probability of failure. Two or more cases which are similar in all respects but one may be analyzed by this method; the contrast between the probabilities of failure for these cases allows strong analytical focus on the...

  6. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    PubMed Central

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  7. Disparity between online and offline tests in accelerated aging tests of LED lamps under electric stress.

    PubMed

    Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-09-20

    The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiangjiang; Li, Weixuan; Lin, Guang

    In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters.more » To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen–Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.« less

  9. Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series.

    PubMed

    Thorndahl, S; Willems, P

    2008-01-01

    Failure of urban drainage systems may occur due to surcharge or flooding at specific manholes in the system, or due to overflows from combined sewer systems to receiving waters. To quantify the probability or return period of failure, standard approaches make use of the simulation of design storms or long historical rainfall series in a hydrodynamic model of the urban drainage system. In this paper, an alternative probabilistic method is investigated: the first-order reliability method (FORM). To apply this method, a long rainfall time series was divided in rainstorms (rain events), and each rainstorm conceptualized to a synthetic rainfall hyetograph by a Gaussian shape with the parameters rainstorm depth, duration and peak intensity. Probability distributions were calibrated for these three parameters and used on the basis of the failure probability estimation, together with a hydrodynamic simulation model to determine the failure conditions for each set of parameters. The method takes into account the uncertainties involved in the rainstorm parameterization. Comparison is made between the failure probability results of the FORM method, the standard method using long-term simulations and alternative methods based on random sampling (Monte Carlo direct sampling and importance sampling). It is concluded that without crucial influence on the modelling accuracy, the FORM is very applicable as an alternative to traditional long-term simulations of urban drainage systems.

  10. The additive value of N-terminal pro-B-type natriuretic peptide testing at the emergency department in patients with acute dyspnoea.

    PubMed

    van der Burg-de Graauw, N; Cobbaert, C M; Middelhoff, C J F M; Bantje, T A; van Guldener, C

    2009-05-01

    B-type natriuretic peptide (BNP) and its inactive counterpart NT-proBNP can help to identify or rule out heart failure in patients presenting with acute dyspnoea. It is not well known whether measurement of these peptides can be omitted in certain patient groups. We conducted a prospective observational study of 221 patients presenting with acute dyspnoea at the emergency department. The attending physicians estimated the probability of heart failure by clinical judgement. NT-proBNP was measured, but not reported. An independent panel made a final diagnosis of all available data including NT-proBNP level and judged whether and how NT-proBNP would have altered patient management. NT-proBNP levels were highest in patients with heart failure, alone or in combination with pulmonary failure. Additive value of NT-proBNP was present in 40 of 221 (18%) of the patients, and it mostly indicated that a more intensive treatment for heart failure would have been needed. Clinical judgement was an independent predictor of additive value of NT-proBNP with a maximum at a clinical probability of heart failure of 36%. NT-proBNP measurement has additive value in a substantial number of patients presenting with acute dyspnoea, but can possibly be omitted in patients with a clinical probability of heart failure of >70%.

  11. Seismic performance assessment of base-isolated safety-related nuclear structures

    USGS Publications Warehouse

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2010-01-01

    Seismic or base isolation is a proven technology for reducing the effects of earthquake shaking on buildings, bridges and infrastructure. The benefit of base isolation has been presented in terms of reduced accelerations and drifts on superstructure components but never quantified in terms of either a percentage reduction in seismic loss (or percentage increase in safety) or the probability of an unacceptable performance. Herein, we quantify the benefits of base isolation in terms of increased safety (or smaller loss) by comparing the safety of a sample conventional and base-isolated nuclear power plant (NPP) located in the Eastern U.S. Scenario- and time-based assessments are performed using a new methodology. Three base isolation systems are considered, namely, (1) Friction Pendulum??? bearings, (2) lead-rubber bearings and (3) low-damping rubber bearings together with linear viscous dampers. Unacceptable performance is defined by the failure of key secondary systems because these systems represent much of the investment in a new build power plant and ensure the safe operation of the plant. For the scenario-based assessments, the probability of unacceptable performance is computed for an earthquake with a magnitude of 5.3 at a distance 7.5 km from the plant. For the time-based assessments, the annual frequency of unacceptable performance is computed considering all potential earthquakes that may occur. For both assessments, the implementation of base isolation reduces the probability of unacceptable performance by approximately four orders of magnitude for the same NPP superstructure and secondary systems. The increase in NPP construction cost associated with the installation of seismic isolators can be offset by substantially reducing the required seismic strength of secondary components and systems and potentially eliminating the need to seismically qualify many secondary components and systems. ?? 2010 John Wiley & Sons, Ltd.

  12. Reliability-based management of buried pipelines considering external corrosion defects

    NASA Astrophysics Data System (ADS)

    Miran, Seyedeh Azadeh

    Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub-system. Sensitivity analysis is also performed to determine to which incorporated parameter(s) in the growth models reliability of the studied pipeline is most sensitive. The reliability analysis results suggest that newly generated defects should be considered in calculating failure probability, especially for prediction of long-term performance of the pipeline and also, impact of the statistical uncertainty in the model parameters is significant that should be considered in the reliability analysis. Finally, with the evaluated time-dependent failure probabilities, a life cycle-cost analysis is conducted to determine optimal inspection interval of studied pipeline. The expected total life-cycle costs consists construction cost and expected costs of inspections, repair, and failure. The repair is conducted when failure probability from any described failure mode exceeds pre-defined probability threshold after each inspection. Moreover, this study also investigates impact of repair threshold values and unit costs of inspection and failure on the expected total life-cycle cost and optimal inspection interval through a parametric study. The analysis suggests that a smaller inspection interval leads to higher inspection costs, but can lower failure cost and also repair cost is less significant compared to inspection and failure costs.

  13. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method

    PubMed Central

    Alani, Amir M.; Faramarzi, Asaad

    2015-01-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092

  14. Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guan, Z. W.; Wang, Q. Y.; Liu, Y. J.; Li, J. K.

    2018-05-01

    The effects of microstructure and stress ratio on high cycle fatigue of nickel superalloy Nimonic 80A were investigated. The stress ratios of 0.1, 0.5 and 0.8 were chosen to perform fatigue tests in a frequency of 110 Hz. Cleavage failure was observed, and three competing failure crack initiation modes were discovered by a scanning electron microscope, which were classified as surface without facets, surface with facets and subsurface with facets. With increasing the stress ratio from 0.1 to 0.8, the occurrence probability of surface and subsurface with facets also increased and reached the maximum value at R = 0.5, meanwhile the probability of surface initiation without facets decreased. The effect of microstructure on the fatigue fracture behavior at different stress ratios was also observed and discussed. Based on the Goodman diagram, it was concluded that the fatigue strength of 50% probability of failure at R = 0.1, 0.5 and 0.8 is lower than the modified Goodman line.

  15. Common Cause Failure Modeling

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Britton, Paul; Ring, Rob; Novack, Steven D.

    2016-01-01

    Common Cause Failures (CCFs) are a known and documented phenomenon that defeats system redundancy. CCFS are a set of dependent type of failures that can be caused by: system environments; manufacturing; transportation; storage; maintenance; and assembly, as examples. Since there are many factors that contribute to CCFs, the effects can be reduced, but they are difficult to eliminate entirely. Furthermore, failure databases sometimes fail to differentiate between independent and CCF (dependent) failure and data is limited, especially for launch vehicles. The Probabilistic Risk Assessment (PRA) of NASA's Safety and Mission Assurance Directorate at Marshal Space Flight Center (MFSC) is using generic data from the Nuclear Regulatory Commission's database of common cause failures at nuclear power plants to estimate CCF due to the lack of a more appropriate data source. There remains uncertainty in the actual magnitude of the common cause risk estimates for different systems at this stage of the design. Given the limited data about launch vehicle CCF and that launch vehicles are a highly redundant system by design, it is important to make design decisions to account for a range of values for independent and CCFs. When investigating the design of the one-out-of-two component redundant system for launch vehicles, a response surface was constructed to represent the impact of the independent failure rate versus a common cause beta factor effect on a system's failure probability. This presentation will define a CCF and review estimation calculations. It gives a summary of reduction methodologies and a review of examples of historical CCFs. Finally, it presents the response surface and discusses the results of the different CCFs on the reliability of a one-out-of-two system.

  16. Common Cause Failure Modeling

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Britton, Paul; Ring, Rob; Novack, Steven D.

    2015-01-01

    Common Cause Failures (CCFs) are a known and documented phenomenon that defeats system redundancy. CCFS are a set of dependent type of failures that can be caused by: system environments; manufacturing; transportation; storage; maintenance; and assembly, as examples. Since there are many factors that contribute to CCFs, the effects can be reduced, but they are difficult to eliminate entirely. Furthermore, failure databases sometimes fail to differentiate between independent and CCF (dependent) failure and data is limited, especially for launch vehicles. The Probabilistic Risk Assessment (PRA) of NASA's Safety and Mission Assurance Directorate at Marshall Space Flight Center (MFSC) is using generic data from the Nuclear Regulatory Commission's database of common cause failures at nuclear power plants to estimate CCF due to the lack of a more appropriate data source. There remains uncertainty in the actual magnitude of the common cause risk estimates for different systems at this stage of the design. Given the limited data about launch vehicle CCF and that launch vehicles are a highly redundant system by design, it is important to make design decisions to account for a range of values for independent and CCFs. When investigating the design of the one-out-of-two component redundant system for launch vehicles, a response surface was constructed to represent the impact of the independent failure rate versus a common cause beta factor effect on a system's failure probability. This presentation will define a CCF and review estimation calculations. It gives a summary of reduction methodologies and a review of examples of historical CCFs. Finally, it presents the response surface and discusses the results of the different CCFs on the reliability of a one-out-of-two system.

  17. Deviation from Power Law Behavior in Landslide Phenomenon

    NASA Astrophysics Data System (ADS)

    Li, L.; Lan, H.; Wu, Y.

    2013-12-01

    Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law behavior in landslide phenomenon. Figure shows that a rollover of landslide size distribution in the small size end is produced as the probability for V/S (the failure volume to failure surface ratio of landslide) exceeding the mechanical threshold applied to the power law distribution of landslide volume.

  18. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  19. POF-Darts: Geometric adaptive sampling for probability of failure

    DOE PAGES

    Ebeida, Mohamed S.; Mitchell, Scott A.; Swiler, Laura P.; ...

    2016-06-18

    We introduce a novel technique, POF-Darts, to estimate the Probability Of Failure based on random disk-packing in the uncertain parameter space. POF-Darts uses hyperplane sampling to explore the unexplored part of the uncertain space. We use the function evaluation at a sample point to determine whether it belongs to failure or non-failure regions, and surround it with a protection sphere region to avoid clustering. We decompose the domain into Voronoi cells around the function evaluations as seeds and choose the radius of the protection sphere depending on the local Lipschitz continuity. As sampling proceeds, regions uncovered with spheres will shrink,more » improving the estimation accuracy. After exhausting the function evaluation budget, we build a surrogate model using the function evaluations associated with the sample points and estimate the probability of failure by exhaustive sampling of that surrogate. In comparison to other similar methods, our algorithm has the advantages of decoupling the sampling step from the surrogate construction one, the ability to reach target POF values with fewer samples, and the capability of estimating the number and locations of disconnected failure regions, not just the POF value. Furthermore, we present various examples to demonstrate the efficiency of our novel approach.« less

  20. ASSESSMENT OF DYNAMIC PRA TECHNIQUES WITH INDUSTRY AVERAGE COMPONENT PERFORMANCE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Vaibhav; Agarwal, Vivek; Gribok, Andrei V.

    In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the current plant configuration. Current risk monitors are limited in that they do not properly take into account the deteriorating states of plant equipment, which are unit-specific. Current approaches to computing risk monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense by including temporary changes in plant and system configurations. However, information on plant component health are not considered. Thismore » often leaves risk monitors using living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving over time. There is a need to develop enabling approaches to solidify risk monitors to provide time and condition-dependent risk by integrating traditional PRA models with condition monitoring and prognostic techniques. This paper presents estimation of system risk evolution over time by integrating plant risk monitoring data with dynamic PRA methods incorporating aging and degradation. Several online, non-destructive approaches have been developed for diagnosing plant component conditions in nuclear industry, i.e., condition indication index, using vibration analysis, current signatures, and operational history [1]. In this work the component performance measures at U.S. commercial nuclear power plants (NPP) [2] are incorporated within the various dynamic PRA methodologies [3] to provide better estimates of probability of failures. Aging and degradation is modeled within the Level-1 PRA framework and is applied to several failure modes of pumps and can be extended to a range of components, viz. valves, generators, batteries, and pipes.« less

  1. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  2. A new method for computing the reliability of consecutive k-out-of-n:F systems

    NASA Astrophysics Data System (ADS)

    Gökdere, Gökhan; Gürcan, Mehmet; Kılıç, Muhammet Burak

    2016-01-01

    In many physical systems, reliability evaluation, such as ones encountered in telecommunications, the design of integrated circuits, microwave relay stations, oil pipeline systems, vacuum systems in accelerators, computer ring networks, and spacecraft relay stations, have had applied consecutive k-out-of-n system models. These systems are characterized as logical connections among the components of the systems placed in lines or circles. In literature, a great deal of attention has been paid to the study of the reliability evaluation of consecutive k-out-of-n systems. In this paper, we propose a new method to compute the reliability of consecutive k-out-of-n:F systems, with n linearly and circularly arranged components. The proposed method provides a simple way for determining the system failure probability. Also, we write R-Project codes based on our proposed method to compute the reliability of the linear and circular systems which have a great number of components.

  3. Compound estimation procedures in reliability

    NASA Technical Reports Server (NTRS)

    Barnes, Ron

    1990-01-01

    At NASA, components and subsystems of components in the Space Shuttle and Space Station generally go through a number of redesign stages. While data on failures for various design stages are sometimes available, the classical procedures for evaluating reliability only utilize the failure data on the present design stage of the component or subsystem. Often, few or no failures have been recorded on the present design stage. Previously, Bayesian estimators for the reliability of a single component, conditioned on the failure data for the present design, were developed. These new estimators permit NASA to evaluate the reliability, even when few or no failures have been recorded. Point estimates for the latter evaluation were not possible with the classical procedures. Since different design stages of a component (or subsystem) generally have a good deal in common, the development of new statistical procedures for evaluating the reliability, which consider the entire failure record for all design stages, has great intuitive appeal. A typical subsystem consists of a number of different components and each component has evolved through a number of redesign stages. The present investigations considered compound estimation procedures and related models. Such models permit the statistical consideration of all design stages of each component and thus incorporate all the available failure data to obtain estimates for the reliability of the present version of the component (or subsystem). A number of models were considered to estimate the reliability of a component conditioned on its total failure history from two design stages. It was determined that reliability estimators for the present design stage, conditioned on the complete failure history for two design stages have lower risk than the corresponding estimators conditioned only on the most recent design failure data. Several models were explored and preliminary models involving bivariate Poisson distribution and the Consael Process (a bivariate Poisson process) were developed. Possible short comings of the models are noted. An example is given to illustrate the procedures. These investigations are ongoing with the aim of developing estimators that extend to components (and subsystems) with three or more design stages.

  4. Simulation for Prediction of Entry Article Demise (SPEAD): an Analysis Tool for Spacecraft Safety Analysis and Ascent/Reentry Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ling, Lisa

    2014-01-01

    For the purpose of performing safety analysis and risk assessment for a probable offnominal suborbital/orbital atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. This report discusses the capabilities, modeling, and validation of the SPEAD analysis tool. SPEAD is applicable for Earth or Mars, with the option for 3 or 6 degrees-of-freedom (DOF) trajectory propagation. The atmosphere and aerodynamics data are supplied in tables, for linear interpolation of up to 4 independent variables. The gravitation model can include up to 20 zonal harmonic coefficients. The modeling of a single motor is available and can be adapted to multiple motors. For thermal analysis, the aerodynamic radiative and free-molecular/continuum convective heating, black-body radiative cooling, conductive heat transfer between adjacent nodes, and node ablation are modeled. In a 6- DOF simulation, the local convective heating on a node is a function of Mach, angle-ofattack, and sideslip angle, and is dependent on 1) the location of the node in the spacecraft and its orientation to the flow modeled by an exposure factor, and 2) the geometries of the spacecraft and the node modeled by a heating factor and convective area. Node failure is evaluated using criteria based on melting temperature, reference heat load, g-load, or a combination of the above. The failure of a liquid propellant tank is evaluated based on burnout flux from nucleate boiling or excess internal pressure. Following a component failure, updates are made as needed to the spacecraft mass and aerodynamic properties, nodal exposure and heating factors, and nodal convective and conductive areas. This allows the trajectory to be propagated seamlessly in a single run, inclusive of the trajectories of components that have separated from the spacecraft. The node ablation simulates the decreasing mass and convective/reference areas, and variable heating factor. A built-in database provides the thermo-mechanical properties of For the purpose of performing safety analysis and risk assessment for a probable offnominal suborbital/orbital atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. This report discusses the capabilities, modeling, and validation of the SPEAD analysis tool. SPEAD is applicable for Earth or Mars, with the option for 3 or 6 degrees-of-freedom (DOF) trajectory propagation. The atmosphere and aerodynamics data are supplied in tables, for linear interpolation of up to 4 independent variables. The gravitation model can include up to 20 zonal harmonic coefficients. The modeling of a single motor is available and can be adapted to multiple motors. For thermal analysis, the aerodynamic radiative and free-molecular/continuum convective heating, black-body radiative cooling, conductive heat transfer between adjacent nodes, and node ablation are modeled. In a 6- DOF simulation, the local convective heating on a node is a function of Mach, angle-ofattack, and sideslip angle, and is dependent on 1) the location of the node in the spacecraft and its orientation to the flow modeled by an exposure factor, and 2) the geometries of the spacecraft and the node modeled by a heating factor and convective area. Node failure is evaluated using criteria based on melting temperature, reference heat load, g-load, or a combination of the above. The failure of a liquid propellant tank is evaluated based on burnout flux from nucleate boiling or excess internal pressure. Following a component failure, updates are made as needed to the spacecraft mass and aerodynamic properties, nodal exposure and heating factors, and nodal convective and conductive areas. This allows the trajectory to be propagated seamlessly in a single run, inclusive of the trajectories of components that have separated from the spacecraft. The node ablation simulates the decreasing mass and convective/reference areas, and variable heating factor. A built-in database provides the thermo-mechanical properties of

  5. Crisis management with applicability on fire fighting plants

    NASA Astrophysics Data System (ADS)

    Panaitescu, M.; Panaitescu, F. V.; Voicu, I.; Dumitrescu, L. G.

    2017-08-01

    The paper presents a case study for a crisis management analysis which address to fire fighting plants. The procedures include the steps of FTA (Failure tree analysis). The purpose of the present paper is to describe this crisis management plan with tools of FTA. The crisis management procedures have applicability on anticipated and emergency situations and help to describe and planning a worst-case scenario plan. For this issue must calculate the probabilities in different situations for fire fighting plants. In the conclusions of paper is analised the block diagram with components of fire fighting plant and are presented the solutions for each possible risk situations.

  6. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  7. Specifying design conservatism: Worst case versus probabilistic analysis

    NASA Technical Reports Server (NTRS)

    Miles, Ralph F., Jr.

    1993-01-01

    Design conservatism is the difference between specified and required performance, and is introduced when uncertainty is present. The classical approach of worst-case analysis for specifying design conservatism is presented, along with the modern approach of probabilistic analysis. The appropriate degree of design conservatism is a tradeoff between the required resources and the probability and consequences of a failure. A probabilistic analysis properly models this tradeoff, while a worst-case analysis reveals nothing about the probability of failure, and can significantly overstate the consequences of failure. Two aerospace examples will be presented that illustrate problems that can arise with a worst-case analysis.

  8. Demonstrating the Safety and Reliability of a New System or Spacecraft: Incorporating Analyses and Reviews of the Design and Processing in Determining the Number of Tests to be Conducted

    NASA Technical Reports Server (NTRS)

    Vesely, William E.; Colon, Alfredo E.

    2010-01-01

    Design Safety/Reliability is associated with the probability of no failure-causing faults existing in a design. Confidence in the non-existence of failure-causing faults is increased by performing tests with no failure. Reliability-Growth testing requirements are based on initial assurance and fault detection probability. Using binomial tables generally gives too many required tests compared to reliability-growth requirements. Reliability-Growth testing requirements are based on reliability principles and factors and should be used.

  9. Socket position determines hip resurfacing 10-year survivorship.

    PubMed

    Amstutz, Harlan C; Le Duff, Michel J; Johnson, Alicia J

    2012-11-01

    Modern metal-on-metal hip resurfacing arthroplasty designs have been used for over a decade. Risk factors for short-term failure include small component size, large femoral head defects, low body mass index, older age, high level of sporting activity, and component design, and it is established there is a surgeon learning curve. Owing to failures with early surgical techniques, we developed a second-generation technique to address those failures. However, it is unclear whether the techniques affected the long-term risk factors. We (1) determined survivorship for hips implanted with the second-generation cementing technique; (2) identified the risk factors for failure in these patients; and (3) determined the effect of the dominant risk factors on the observed modes of failure. We retrospectively reviewed the first 200 hips (178 patients) implanted using our second-generation surgical technique, which consisted of improvements in cleaning and drying the femoral head before and during cement application. There were 129 men and 49 women. Component orientation and contact patch to rim distance were measured. We recorded the following modes of failure: femoral neck fracture, femoral component loosening, acetabular component loosening, wear, dislocation, and sepsis. The minimum followup was 25 months (mean, 106.5 months; range, 25-138 months). Twelve hips were revised. Kaplan-Meier survivorship was 98.0% at 5 years and 94.3% at 10 years. The only variable associated with revision was acetabular component position. Contact patch to rim distance was lower in hips that dislocated, were revised for wear, or were revised for acetabular loosening. The dominant modes of failure were related to component wear or acetabular component loosening. Acetabular component orientation, a factor within the surgeon's control, determines the long-term success of our current hip resurfacing techniques. Current techniques have changed the modes of failure from aseptic femoral failure to wear or loosening of the acetabular component. Level III, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.

  10. Re‐estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia

    USGS Publications Warehouse

    Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy

    2013-01-01

    Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (<10%) for effective normal stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.

  11. Survivorship analysis of failure pattern after revision total hip arthroplasty.

    PubMed

    Retpen, J B; Varmarken, J E; Jensen, J S

    1989-12-01

    Failure, defined as established indication for or performed re-revision of one or both components, was analyzed using survivorship methods in 306 revision total hip arthroplasties. The longevity of revision total hip arthroplasties was inferior to that of previously reported primary total hip arthroplasties. The overall survival curve was two-phased, with a late failure period associated with aseptic loosening of one or both components and an early failure period associated with causes of failure other than loosening. Separate survival curves for aseptic loosening of femoral and acetabular components showed late and almost simultaneous decline, but with a tendency toward a higher rate of failure for the femoral component. No differences in survival could be found between the Stanmore, Lubinus standard, and Lubinus long-stemmed femoral components. A short interval between the index operation and the revision and intraoperative and postoperative complications were risk factors for early failure. Young age was a risk factor for aseptic loosening of the femoral component. Intraoperative fracture of the femoral shaft was not a risk factor for secondary loosening. No difference in survival was found between primary cemented total arthroplasty and primary noncemented hemiarthroplasty.

  12. The assessment of low probability containment failure modes using dynamic PRA

    NASA Astrophysics Data System (ADS)

    Brunett, Acacia Joann

    Although low probability containment failure modes in nuclear power plants may lead to large releases of radioactive material, these modes are typically crudely modeled in system level codes and have large associated uncertainties. Conventional risk assessment techniques (i.e. the fault-tree/event-tree methodology) are capable of accounting for these failure modes to some degree, however, they require the analyst to pre-specify the ordering of events, which can vary within the range of uncertainty of the phenomena. More recently, dynamic probabilistic risk assessment (DPRA) techniques have been developed which remove the dependency on the analyst. Through DPRA, it is now possible to perform a mechanistic and consistent analysis of low probability phenomena, with the timing of the possible events determined by the computational model simulating the reactor behavior. The purpose of this work is to utilize DPRA tools to assess low probability containment failure modes and the driving mechanisms. Particular focus is given to the risk-dominant containment failure modes considered in NUREG-1150, which has long been the standard for PRA techniques. More specifically, this work focuses on the low probability phenomena occurring during a station blackout (SBO) with late power recovery in the Zion Nuclear Power Plant, a Westinghouse pressurized water reactor (PWR). Subsequent to the major risk study performed in NUREG-1150, significant experimentation and modeling regarding the mechanisms driving containment failure modes have been performed. In light of this improved understanding, NUREG-1150 containment failure modes are reviewed in this work using the current state of knowledge. For some unresolved mechanisms, such as containment loading from high pressure melt ejection and combustion events, additional analyses are performed using the accident simulation tool MELCOR to explore the bounding containment loads for realistic scenarios. A dynamic treatment in the characterization of combustible gas ignition is also presented in this work. In most risk studies, combustion is treated simplistically in that it is assumed an ignition occurs if the gas mixture achieves a concentration favorable for ignition under the premise that an adequate ignition source is available. However, the criteria affecting ignition (such as the magnitude, location and frequency of the ignition sources) are complicated. This work demonstrates a technique for characterizing the properties of an ignition source to determine a probability of ignition. The ignition model developed in this work and implemented within a dynamic framework is utilized to analyze the implications and risk significance of late combustion events. This work also explores the feasibility of using dynamic event trees (DETs) with a deterministic sampling approach to analyze low probability phenomena. The flexibility of this approach is demonstrated through the rediscretization of containment fragility curves used in construction of the DET to show convergence to a true solution. Such a rediscretization also reduces the computational burden introduced through extremely fine fragility curve discretization by subsequent refinement of fragility curve regions of interest. Another advantage of the approach is the ability to perform sensitivity studies on the cumulative distribution functions (CDFs) used to determine branching probabilities without the need for rerunning the simulation code. Through review of the NUREG-1150 containment failure modes using the current state of knowledge, it is found that some failure modes, such as Alpha and rocket, can be excluded from further studies; other failure modes, such as failure to isolate, bypass, high pressure melt ejection (HPME), combustion-induced failure and overpressurization are still concerns to varying degrees. As part of this analysis, scoping studies performed in MELCOR show that HPME and the resulting direct containment heating (DCH) do not impose a significant threat to containment integrity. Additional scoping studies regarding the effect of recovery actions on in-vessel hydrogen generation show that reflooding a partially degraded core do not significantly affect hydrogen generation in-vessel, and the NUREG-1150 assumption that insufficient hydrogen is generated in-vessel to produce an energetic deflagration is confirmed. The DET analyses performed in this work show that very late power recovery produces the potential for very energetic combustion events which are capable of failing containment with a non-negligible probability, and that containment cooling systems have a significant impact on core concrete attack, and therefore combustible gas generation ex-vessel. Ultimately, the overall risk of combustion-induced containment failure is low, but its conditional likelihood can have a significant effect on accident mitigation strategies. It is also shown in this work that DETs are particularly well suited to examine low probability events because of their ability to rediscretize CDFs and observe solution convergence.

  13. Probability techniques for reliability analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Wetherhold, Robert C.; Ucci, Anthony M.

    1994-01-01

    Traditional design approaches for composite materials have employed deterministic criteria for failure analysis. New approaches are required to predict the reliability of composite structures since strengths and stresses may be random variables. This report will examine and compare methods used to evaluate the reliability of composite laminae. The two types of methods that will be evaluated are fast probability integration (FPI) methods and Monte Carlo methods. In these methods, reliability is formulated as the probability that an explicit function of random variables is less than a given constant. Using failure criteria developed for composite materials, a function of design variables can be generated which defines a 'failure surface' in probability space. A number of methods are available to evaluate the integration over the probability space bounded by this surface; this integration delivers the required reliability. The methods which will be evaluated are: the first order, second moment FPI methods; second order, second moment FPI methods; the simple Monte Carlo; and an advanced Monte Carlo technique which utilizes importance sampling. The methods are compared for accuracy, efficiency, and for the conservativism of the reliability estimation. The methodology involved in determining the sensitivity of the reliability estimate to the design variables (strength distributions) and importance factors is also presented.

  14. The Simulation Heuristic.

    DTIC Science & Technology

    1981-05-15

    Crane. is capable of imagining unicorns -- and we expect he is -- why does he find it relatively difficult to imagine himself avoiding a 30 minute...probability that the plan will succeed and to evaluate the risk of various causes of failure . We have suggested that the construction of scenarios is...expect that events will unfold as planned. However, the cumulative probability of at least one fatal failure could be overwhelmingly high even when

  15. USAREC’S (United States Army Recruiting Command) Image to the Officer Corps Good, Bad, or Irrelevant? A Prescription for Change.

    DTIC Science & Technology

    1986-04-07

    34 Blackhol -" * Success/failure is too clear cut * The probability of failure is greater than the probability of success The Job Itsellf (59) • Does not...indecd, it is not -- or as one officer in the survey co-ented "a blackhole ." USAHEC is a viable career oppor- tunity; it is career enhancing; and

  16. VHSIC/VHSIC-Like Reliability Prediction Modeling

    DTIC Science & Technology

    1989-10-01

    prediction would require ’ kowledge of event statistics as well as device robustness. Ii1 Additionally, although this is primarily a theoretical, bottom...Degradation in Section 5.3 P = Power PDIP = Plastic DIP P(f) = Probability of Failure due to EOS or ESD P(flc) = Probability of Failure given Contact from an...the results of those stresses: Device Stress Part Number Power Dissipation Manufacturer Test Type Part Description Junction Teniperatune Package Type

  17. Role of HIV Infection Duration and CD4 Cell Level at Initiation of Combination Anti-Retroviral Therapy on Risk of Failure

    PubMed Central

    Lodi, Sara; Phillips, Andrew; Fidler, Sarah; Hawkins, David; Gilson, Richard; McLean, Ken; Fisher, Martin; Post, Frank; Johnson, Anne M.; Walker-Nthenda, Louise; Dunn, David; Porter, Kholoud

    2013-01-01

    Background The development of HIV drug resistance and subsequent virological failure are often cited as potential disadvantages of early cART initiation. However, their long-term probability is not known, and neither is the role of duration of infection at the time of initiation. Methods Patients enrolled in the UK Register of HIV seroconverters were followed-up from cART initiation to last HIV-RNA measurement. Through survival analysis we examined predictors of virologic failure (2HIV-RNA ≥400 c/l while on cART) including CD4 count and HIV duration at initiation. We also estimated the cumulative probabilities of failure and drug resistance (from the available HIV nucleotide sequences) for early initiators (cART within 12 months of seroconversion). Results Of 1075 starting cART at a median (IQR) CD4 count 272 (190,370) cells/mm3 and HIV duration 3 (1,6) years, virological failure occurred in 163 (15%). Higher CD4 count at initiation, but not HIV infection duration at cART initiation, was independently associated with lower risk of failure (p=0.033 and 0.592 respectively). Among 230 patients initiating cART early, 97 (42%) discontinued it after a median of 7 months; cumulative probabilities of resistance and failure by 8 years were 7% (95% CI 4,11) and 19% (13,25), respectively. Conclusion Although the rate of discontinuation of early cART in our cohort was high, the long-term rate of virological failure was low. Our data do not support early cART initiation being associated with increased risk of failure and drug resistance. PMID:24086588

  18. The Study of the Relationship between Probabilistic Design and Axiomatic Design Methodology. Volume 2

    NASA Technical Reports Server (NTRS)

    Onwubiko, Chin-Yere; Onyebueke, Landon

    1996-01-01

    The structural design, or the design of machine elements, has been traditionally based on deterministic design methodology. The deterministic method considers all design parameters to be known with certainty. This methodology is, therefore, inadequate to design complex structures that are subjected to a variety of complex, severe loading conditions. A nonlinear behavior that is dependent on stress, stress rate, temperature, number of load cycles, and time is observed on all components subjected to complex conditions. These complex conditions introduce uncertainties; hence, the actual factor of safety margin remains unknown. In the deterministic methodology, the contingency of failure is discounted; hence, there is a use of a high factor of safety. It may be most useful in situations where the design structures are simple. The probabilistic method is concerned with the probability of non-failure performance of structures or machine elements. It is much more useful in situations where the design is characterized by complex geometry, possibility of catastrophic failure, sensitive loads and material properties. Also included: Comparative Study of the use of AGMA Geometry Factors and Probabilistic Design Methodology in the Design of Compact Spur Gear Set.

  19. Assessing the Climate Resilience of Transport Infrastructure Investments in Tanzania

    NASA Astrophysics Data System (ADS)

    Hall, J. W.; Pant, R.; Koks, E.; Thacker, S.; Russell, T.

    2017-12-01

    Whilst there is an urgent need for infrastructure investment in developing countries, there is a risk that poorly planned and built infrastructure will introduce new vulnerabilities. As climate change increases the magnitudes and frequency of natural hazard events, incidence of disruptive infrastructure failures are likely to become more frequent. Therefore, it is important that infrastructure planning and investment is underpinned by climate risk assessment that can inform adaptation planning. Tanzania's rapid economic growth is placing considerable strain on the country's transportation infrastructure (roads, railways, shipping and aviation); especially at the port of Dar es Salaam and its linking transport corridors. A growing number of natural hazard events, in particular flooding, are impacting the reliability of this already over-used network. Here we report on new methodology to analyse vulnerabilities and risks due to failures of key locations in the intermodal transport network of Tanzania, including strategic connectivity to neighboring countries. To perform the national-scale risk analysis we will utilize a system-of-systems methodology. The main components of this general risk assessment, when applied to transportation systems, include: (1) Assembling data on: spatially coherent extreme hazards and intermodal transportation networks; (2) Intersecting hazards with transport network models to initiate failure conditions that trigger failure propagation across interdependent networks; (3) Quantifying failure outcomes in terms of social impacts (customers/passengers disrupted) and/or macroeconomic consequences (across multiple sectors); and (4) Simulating, testing and collecting multiple failure scenarios to perform an exhaustive risk assessment in terms of probabilities and consequences. The methodology is being used to pinpoint vulnerability and reduce climate risks to transport infrastructure investments.

  20. Adjusting survival estimates for premature transmitter failure: A case study from the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Brandes, Patricia L.; Adams, Noah S.

    2013-01-01

    In telemetry studies, premature tag failure causes negative bias in fish survival estimates because tag failure is interpreted as fish mortality. We used mark-recapture modeling to adjust estimates of fish survival for a previous study where premature tag failure was documented. High rates of tag failure occurred during the Vernalis Adaptive Management Plan’s (VAMP) 2008 study to estimate survival of fall-run Chinook salmon (Oncorhynchus tshawytscha) during migration through the San Joaquin River and Sacramento-San Joaquin Delta, California. Due to a high rate of tag failure, the observed travel time distribution was likely negatively biased, resulting in an underestimate of tag survival probability in this study. Consequently, the bias-adjustment method resulted in only a small increase in estimated fish survival when the observed travel time distribution was used to estimate the probability of tag survival. Since the bias-adjustment failed to remove bias, we used historical travel time data and conducted a sensitivity analysis to examine how fish survival might have varied across a range of tag survival probabilities. Our analysis suggested that fish survival estimates were low (95% confidence bounds range from 0.052 to 0.227) over a wide range of plausible tag survival probabilities (0.48–1.00), and this finding is consistent with other studies in this system. When tags fail at a high rate, available methods to adjust for the bias may perform poorly. Our example highlights the importance of evaluating the tag life assumption during survival studies, and presents a simple framework for evaluating adjusted survival estimates when auxiliary travel time data are available.

  1. Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program.

  2. Performance analysis of the word synchronization properties of the outer code in a TDRSS decoder

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.

    1984-01-01

    A self-synchronizing coding scheme for NASA's TDRSS satellite system is a concatenation of a (2,1,7) inner convolutional code with a (255,223) Reed-Solomon outer code. Both symbol and word synchronization are achieved without requiring that any additional symbols be transmitted. An important parameter which determines the performance of the word sync procedure is the ratio of the decoding failure probability to the undetected error probability. Ideally, the former should be as small as possible compared to the latter when the error correcting capability of the code is exceeded. A computer simulation of a (255,223) Reed-Solomon code as carried out. Results for decoding failure probability and for undetected error probability are tabulated and compared.

  3. Enhanced CARES Software Enables Improved Ceramic Life Prediction

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1997-01-01

    The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.

  4. Study of reactor Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  5. Resistivity tomography of Pointe du Hoc cliffs for stability assessment

    NASA Astrophysics Data System (ADS)

    Udphuay, S.; Everett, M. E.; Warden, R.

    2008-12-01

    Pointe du Hoc WWII battlefield overlooking the English Channel in western Normandy, France, is an important cultural resource, being an integral component of the June 6 1944 D-Day invasion. Two major buildings, the forward observation post (OP) and Col. Rudder's command post (RCP), are now perched perilously close to the cliff's edge owing to six decades of cliff retreat. Geophysical surveys were carried out in March 2008 to investigate the risk of cliff failure and to inform possible geotechnical remediation strategies with a final goal toward re-opening the observation post that is now closed to visitors. The geophysical surveying is accomplished by high-resolution resistivity tomography, conducted in extreme topography and in the midst of dense cultural clutter. The results of the OP tomography indicate that the highest mass movement hazard is associated with the marine caverns at the base of the cliff at the point of strongest wave attack. These caverns occupy the future site of a sea arch which will threaten the OP building. There is a high probability of a soil wedge failure on the east facing cliff edge close to the OP building. Such a failure could damage or destroy the building. The possibility of a sudden catastrophic failure along any one of these fractures cannot be ruled out. The greatest risk at the RCP site, which is under less immediate threat, is associated with soil wedge failures at the top of the cliffs.

  6. Public Risk Assessment Program

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin

    2010-01-01

    The Public Entry Risk Assessment (PERA) program addresses risk to the public from shuttle or other spacecraft re-entry trajectories. Managing public risk to acceptable levels is a major component of safe spacecraft operation. PERA is given scenario inputs of vehicle trajectory, probability of failure along that trajectory, the resulting debris characteristics, and field size and distribution, and returns risk metrics that quantify the individual and collective risk posed by that scenario. Due to the large volume of data required to perform such a risk analysis, PERA was designed to streamline the analysis process by using innovative mathematical analysis of the risk assessment equations. Real-time analysis in the event of a shuttle contingency operation, such as damage to the Orbiter, is possible because PERA allows for a change to the probability of failure models, therefore providing a much quicker estimation of public risk. PERA also provides the ability to generate movie files showing how the entry risk changes as the entry develops. PERA was designed to streamline the computation of the enormous amounts of data needed for this type of risk assessment by using an average distribution of debris on the ground, rather than pinpointing the impact point of every piece of debris. This has reduced the amount of computational time significantly without reducing the accuracy of the results. PERA was written in MATLAB; a compiled version can run from a DOS or UNIX prompt.

  7. Some limitations of frequency as a component of risk: an expository note.

    PubMed

    Cox, Louis Anthony

    2009-02-01

    Students of risk analysis are often taught that "risk is frequency times consequence" or, more generally, that risk is determined by the frequency and severity of adverse consequences. But is it? This expository note reviews the concepts of frequency as average annual occurrence rate and as the reciprocal of mean time to failure (MTTF) or mean time between failures (MTBF) in a renewal process. It points out that if two risks (represented as two (frequency, severity) pairs for adverse consequences) have identical values for severity but different values of frequency, then it is not necessarily true that the one with the smaller value of frequency is preferable-and this is true no matter how frequency is defined. In general, there is not necessarily an increasing relation between the reciprocal of the mean time until an event occurs, its long-run average occurrences per year, and other criteria, such as the probability or expected number of times that it will happen over a specific interval of interest, such as the design life of a system. Risk depends on more than frequency and severity of consequences. It also depends on other information about the probability distribution for the time of a risk event that can become lost in simple measures of event "frequency." More flexible descriptions of risky processes, such as point process models can avoid these limitations.

  8. Gaussian process surrogates for failure detection: A Bayesian experimental design approach

    NASA Astrophysics Data System (ADS)

    Wang, Hongqiao; Lin, Guang; Li, Jinglai

    2016-05-01

    An important task of uncertainty quantification is to identify the probability of undesired events, in particular, system failures, caused by various sources of uncertainties. In this work we consider the construction of Gaussian process surrogates for failure detection and failure probability estimation. In particular, we consider the situation that the underlying computer models are extremely expensive, and in this setting, determining the sampling points in the state space is of essential importance. We formulate the problem as an optimal experimental design for Bayesian inferences of the limit state (i.e., the failure boundary) and propose an efficient numerical scheme to solve the resulting optimization problem. In particular, the proposed limit-state inference method is capable of determining multiple sampling points at a time, and thus it is well suited for problems where multiple computer simulations can be performed in parallel. The accuracy and performance of the proposed method is demonstrated by both academic and practical examples.

  9. The influence of microstructure on the probability of early failure in aluminum-based interconnects

    NASA Astrophysics Data System (ADS)

    Dwyer, V. M.

    2004-09-01

    For electromigration in short aluminum interconnects terminated by tungsten vias, the well known "short-line" effect applies. In a similar manner, for longer lines, early failure is determined by a critical value Lcrit for the length of polygranular clusters. Any cluster shorter than Lcrit is "immortal" on the time scale of early failure where the figure of merit is not the standard t50 value (the time to 50% failures), but rather the total probability of early failure, Pcf. Pcf is a complex function of current density, linewidth, line length, and material properties (the median grain size d50 and grain size shape factor σd). It is calculated here using a model based around the theory of runs, which has proved itself to be a useful tool for assessing the probability of extreme events. Our analysis shows that Pcf is strongly dependent on σd, and a change in σd from 0.27 to 0.5 can cause an order of magnitude increase in Pcf under typical test conditions. This has implications for the web-based two-dimensional grain-growth simulator MIT/EmSim, which generates grain patterns with σd=0.27, while typical as-patterned structures are better represented by a σd in the range 0.4 - 0.6. The simulator will consequently overestimate interconnect reliability due to this particular electromigration failure mode.

  10. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    NASA Technical Reports Server (NTRS)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  11. Voluntary Consensus Organization Standards for Nondestructive Evaluation of Thin-Walled Metallic Liners and Composite Overwraps in Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing and Materials (ASTM) Committee E07 on Nondestructive Testing. Similarly, in 2006 the NASA Engineering and Safety Center (NESC) recommended that nondestructive evaluation methods that can predict composite failure in COPVs should be developed and verified, and integrated into the damage control plan for these vessels

  12. Efficient Probability of Failure Calculations for QMU using Computational Geometry LDRD 13-0144 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Scott A.; Ebeida, Mohamed Salah; Romero, Vicente J.

    2015-09-01

    This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.

  13. Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  14. Uncertainty Analysis via Failure Domain Characterization: Unrestricted Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. The methods developed herein, which are based on nonlinear constrained optimization, are applicable to requirement functions whose functional dependency on the uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  15. Oman India Pipeline: An operational repair strategy based on a rational assessment of risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, P.

    1996-12-31

    This paper describes the development of a repair strategy for the operational phase of the Oman India Pipeline based upon the probability and consequences of a pipeline failure. Risk analyses and cost benefit analyses performed provide guidance on the level of deepwater repair development effort appropriate for the Oman India Pipeline project and identifies critical areas toward which more intense development effort should be directed. The risk analysis results indicate that the likelihood of a failure of the Oman India Pipeline during its 40-year life is low. Furthermore, the probability of operational failure of the pipeline in deepwater regions ismore » extremely low, the major proportion of operational failure risk being associated with the shallow water regions.« less

  16. Failure and recovery in dynamical networks.

    PubMed

    Böttcher, L; Luković, M; Nagler, J; Havlin, S; Herrmann, H J

    2017-02-03

    Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging from transportation structures to the human body. Here we study the interplay between spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. In our model the network's components follow three realistic processes that capture these features: (i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component. We identify a metastable domain in the global network phase diagram spanned by the model's control parameters where dramatic hysteresis effects and random switching between two coexisting states are observed. This dynamics depends on the characteristic link length of the embedded system. For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow region of the parameter space compared to random networks. We develop a unifying theory which links the dynamics of our model to contact processes. Our unifying framework may help to better understand controllability in spatially embedded and random networks where spontaneous recovery of components can mitigate spontaneous failure and damage spread in dynamical networks.

  17. An integrated approach coupling physically based models and probabilistic method to assess quantitatively landslide susceptibility at different scale: application to different geomorphological environments

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Thiéry, Yannick; Sedan, Olivier; Bernardie, Séverine

    2016-04-01

    Landslide hazard assessment is the estimation of a target area where landslides of a particular type, volume, runout and intensity may occur within a given period. The first step to analyze landslide hazard consists in assessing the spatial and temporal failure probability (when the information is available, i.e. susceptibility assessment). Two types of approach are generally recommended to achieve this goal: (i) qualitative approach (i.e. inventory based methods and knowledge data driven methods) and (ii) quantitative approach (i.e. data-driven methods or deterministic physically based methods). Among quantitative approaches, deterministic physically based methods (PBM) are generally used at local and/or site-specific scales (1:5,000-1:25,000 and >1:5,000, respectively). The main advantage of these methods is the calculation of probability of failure (safety factor) following some specific environmental conditions. For some models it is possible to integrate the land-uses and climatic change. At the opposite, major drawbacks are the large amounts of reliable and detailed data (especially materials type, their thickness and the geotechnical parameters heterogeneity over a large area) and the fact that only shallow landslides are taking into account. This is why they are often used at site-specific scales (> 1:5,000). Thus, to take into account (i) materials' heterogeneity , (ii) spatial variation of physical parameters, (iii) different landslide types, the French Geological Survey (i.e. BRGM) has developed a physically based model (PBM) implemented in a GIS environment. This PBM couples a global hydrological model (GARDENIA®) including a transient unsaturated/saturated hydrological component with a physically based model computing the stability of slopes (ALICE®, Assessment of Landslides Induced by Climatic Events) based on the Morgenstern-Price method for any slip surface. The variability of mechanical parameters is handled by Monte Carlo approach. The probability to obtain a safety factor below 1 represents the probability of occurrence of a landslide for a given triggering event. The dispersion of the distribution gives the uncertainty of the result. Finally, a map is created, displaying a probability of occurrence for each computing cell of the studied area. In order to take into account the land-uses change, a complementary module integrating the vegetation effects on soil properties has been recently developed. Last years, the model has been applied at different scales for different geomorphological environments: (i) at regional scale (1:50,000-1:25,000) in French West Indies and French Polynesian islands (ii) at local scale (i.e.1:10,000) for two complex mountainous areas; (iii) at the site-specific scale (1:2,000) for one landslide. For each study the 3D geotechnical model has been adapted. The different studies have allowed : (i) to discuss the different factors included in the model especially the initial 3D geotechnical models; (ii) to precise the location of probable failure following different hydrological scenarii; (iii) to test the effects of climatic change and land-use on slopes for two cases. In that way, future changes in temperature, precipitation and vegetation cover can be analyzed, permitting to address the impacts of global change on landslides. Finally, results show that it is possible to obtain reliable information about future slope failures at different scale of work for different scenarii with an integrated approach. The final information about landslide susceptibility (i.e. probability of failure) can be integrated in landslide hazard assessment and could be an essential information source for future land planning. As it has been performed in the ANR Project SAMCO (Society Adaptation for coping with Mountain risks in a global change COntext), this analysis constitutes a first step in the chain for risk assessment for different climate and economical development scenarios, to evaluate the resilience of mountainous areas.

  18. Virtually-synchronous communication based on a weak failure suspector

    NASA Technical Reports Server (NTRS)

    Schiper, Andre; Ricciardi, Aleta

    1993-01-01

    Failure detectors (or, more accurately Failure Suspectors (FS)) appear to be a fundamental service upon which to build fault-tolerant, distributed applications. This paper shows that a FS with very weak semantics (i.e., that delivers failure and recovery information in no specific order) suffices to implement virtually-synchronous communication (VSC) in an asynchronous system subject to process crash failures and network partitions. The VSC paradigm is particularly useful in asynchronous systems and greatly simplifies building fault-tolerant applications that mask failures by replicating processes. We suggest a three-component architecture to implement virtually-synchronous communication: (1) at the lowest level, the FS component; (2) on top of it, a component (2a) that defines new views; and (3) a component (2b) that reliably multicasts messages within a view. The issues covered in this paper also lead to a better understanding of the various membership service semantics proposed in recent literature.

  19. A novel risk assessment method for landfill slope failure: Case study application for Bhalswa Dumpsite, India.

    PubMed

    Jahanfar, Ali; Amirmojahedi, Mohsen; Gharabaghi, Bahram; Dubey, Brajesh; McBean, Edward; Kumar, Dinesh

    2017-03-01

    Rapid population growth of major urban centres in many developing countries has created massive landfills with extraordinary heights and steep side-slopes, which are frequently surrounded by illegal low-income residential settlements developed too close to landfills. These extraordinary landfills are facing high risks of catastrophic failure with potentially large numbers of fatalities. This study presents a novel method for risk assessment of landfill slope failure, using probabilistic analysis of potential failure scenarios and associated fatalities. The conceptual framework of the method includes selecting appropriate statistical distributions for the municipal solid waste (MSW) material shear strength and rheological properties for potential failure scenario analysis. The MSW material properties for a given scenario is then used to analyse the probability of slope failure and the resulting run-out length to calculate the potential risk of fatalities. In comparison with existing methods, which are solely based on the probability of slope failure, this method provides a more accurate estimate of the risk of fatalities associated with a given landfill slope failure. The application of the new risk assessment method is demonstrated with a case study for a landfill located within a heavily populated area of New Delhi, India.

  20. Control system failure monitoring using generalized parity relations. M.S. Thesis Interim Technical Report

    NASA Technical Reports Server (NTRS)

    Vanschalkwyk, Christiaan Mauritz

    1991-01-01

    Many applications require that a control system must be tolerant to the failure of its components. This is especially true for large space-based systems that must work unattended and with long periods between maintenance. Fault tolerance can be obtained by detecting the failure of the control system component, determining which component has failed, and reconfiguring the system so that the failed component is isolated from the controller. Component failure detection experiments that were conducted on an experimental space structure, the NASA Langley Mini-Mast are presented. Two methodologies for failure detection and isolation (FDI) exist that do not require the specification of failure modes and are applicable to both actuators and sensors. These methods are known as the Failure Detection Filter and the method of Generalized Parity Relations. The latter method was applied to three different sensor types on the Mini-Mast. Failures were simulated in input-output data that were recorded during operation of the Mini-Mast. Both single and double sensor parity relations were tested and the effect of several design parameters on the performance of these relations is discussed. The detection of actuator failures is also treated. It is shown that in all the cases it is possible to identify the parity relations directly from input-output data. Frequency domain analysis is used to explain the behavior of the parity relations.

  1. Analysis of failed nuclear plant components

    NASA Astrophysics Data System (ADS)

    Diercks, D. R.

    1993-12-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.

  2. Effects of footwear and stride length on metatarsal strains and failure in running.

    PubMed

    Firminger, Colin R; Fung, Anita; Loundagin, Lindsay L; Edwards, W Brent

    2017-11-01

    The metatarsal bones of the foot are particularly susceptible to stress fracture owing to the high strains they experience during the stance phase of running. Shoe cushioning and stride length reduction represent two potential interventions to decrease metatarsal strain and thus stress fracture risk. Fourteen male recreational runners ran overground at a 5-km pace while motion capture and plantar pressure data were collected during four experimental conditions: traditional shoe at preferred and 90% preferred stride length, and minimalist shoe at preferred and 90% preferred stride length. Combined musculoskeletal - finite element modeling based on motion analysis and computed tomography data were used to quantify metatarsal strains and the probability of failure was determined using stress-life predictions. No significant interactions between footwear and stride length were observed. Running in minimalist shoes increased strains for all metatarsals by 28.7% (SD 6.4%; p<0.001) and probability of failure for metatarsals 2-4 by 17.3% (SD 14.3%; p≤0.005). Running at 90% preferred stride length decreased strains for metatarsal 4 by 4.2% (SD 2.0%; p≤0.007), and no differences in probability of failure were observed. Significant increases in metatarsal strains and the probability of failure were observed for recreational runners acutely transitioning to minimalist shoes. Running with a 10% reduction in stride length did not appear to be a beneficial technique for reducing the risk of metatarsal stress fracture, however the increased number of loading cycles for a given distance was not detrimental either. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Ranjan; Ghosh, Achyuta Krishna

    2017-04-01

    Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.

  4. Experiences with Probabilistic Analysis Applied to Controlled Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Giesy, Daniel P.

    2004-01-01

    This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.

  5. Improved Correction of Misclassification Bias With Bootstrap Imputation.

    PubMed

    van Walraven, Carl

    2018-07-01

    Diagnostic codes used in administrative database research can create bias due to misclassification. Quantitative bias analysis (QBA) can correct for this bias, requires only code sensitivity and specificity, but may return invalid results. Bootstrap imputation (BI) can also address misclassification bias but traditionally requires multivariate models to accurately estimate disease probability. This study compared misclassification bias correction using QBA and BI. Serum creatinine measures were used to determine severe renal failure status in 100,000 hospitalized patients. Prevalence of severe renal failure in 86 patient strata and its association with 43 covariates was determined and compared with results in which renal failure status was determined using diagnostic codes (sensitivity 71.3%, specificity 96.2%). Differences in results (misclassification bias) were then corrected with QBA or BI (using progressively more complex methods to estimate disease probability). In total, 7.4% of patients had severe renal failure. Imputing disease status with diagnostic codes exaggerated prevalence estimates [median relative change (range), 16.6% (0.8%-74.5%)] and its association with covariates [median (range) exponentiated absolute parameter estimate difference, 1.16 (1.01-2.04)]. QBA produced invalid results 9.3% of the time and increased bias in estimates of both disease prevalence and covariate associations. BI decreased misclassification bias with increasingly accurate disease probability estimates. QBA can produce invalid results and increase misclassification bias. BI avoids invalid results and can importantly decrease misclassification bias when accurate disease probability estimates are used.

  6. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). Version 3.5, Quick Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, B.G.; Richards, R.E.; Reece, W.J.

    1992-10-01

    This Reference Guide contains instructions on how to install and use Version 3.5 of the NRC-sponsored Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The NUCLARR data management system is contained in compressed files on the floppy diskettes that accompany this Reference Guide. NUCLARR is comprised of hardware component failure data (HCFD) and human error probability (HEP) data, both of which are available via a user-friendly, menu driven retrieval system. The data may be saved to a file in a format compatible with IRRAS 3.0 and commercially available statistical packages, or used to formulate log-plots and reports of data retrievalmore » and aggregation findings.« less

  7. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, B.G.; Richards, R.E.; Reece, W.J.

    1992-10-01

    This Reference Guide contains instructions on how to install and use Version 3.5 of the NRC-sponsored Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The NUCLARR data management system is contained in compressed files on the floppy diskettes that accompany this Reference Guide. NUCLARR is comprised of hardware component failure data (HCFD) and human error probability (HEP) data, both of which are available via a user-friendly, menu driven retrieval system. The data may be saved to a file in a format compatible with IRRAS 3.0 and commercially available statistical packages, or used to formulate log-plots and reports of data retrievalmore » and aggregation findings.« less

  8. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M [Dublin, CA; Gentile, Ann C [Dublin, CA; Marzouk, Youssef M [Oakland, CA; Hale, Darrian J [San Jose, CA; Thompson, David C [Livermore, CA

    2011-01-04

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  9. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M [Dublin, CA; Gentile, Ann C [Dublin, CA; Marzouk, Youssef M [Oakland, CA; Hale, Darrian J [San Jose, CA; Thompson, David C [Livermore, CA

    2011-01-25

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  10. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M. , Gentile; Ann C. , Marzouk; Youssef M. , Hale; Darrian J. , Thompson; David, C [Livermore, CA

    2010-07-13

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  11. Rock Slide Risk Assessment: A Semi-Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Duzgun, H. S. B.

    2009-04-01

    Rock slides can be better managed by systematic risk assessments. Any risk assessment methodology for rock slides involves identification of rock slide risk components, which are hazard, elements at risk and vulnerability. For a quantitative/semi-quantitative risk assessment for rock slides, a mathematical value the risk has to be computed and evaluated. The quantitative evaluation of risk for rock slides enables comparison of the computed risk with the risk of other natural and/or human-made hazards and providing better decision support and easier communication for the decision makers. A quantitative/semi-quantitative risk assessment procedure involves: Danger Identification, Hazard Assessment, Elements at Risk Identification, Vulnerability Assessment, Risk computation, Risk Evaluation. On the other hand, the steps of this procedure require adaptation of existing or development of new implementation methods depending on the type of landslide, data availability, investigation scale and nature of consequences. In study, a generic semi-quantitative risk assessment (SQRA) procedure for rock slides is proposed. The procedure has five consecutive stages: Data collection and analyses, hazard assessment, analyses of elements at risk and vulnerability and risk assessment. The implementation of the procedure for a single rock slide case is illustrated for a rock slope in Norway. Rock slides from mountain Ramnefjell to lake Loen are considered to be one of the major geohazards in Norway. Lake Loen is located in the inner part of Nordfjord in Western Norway. Ramnefjell Mountain is heavily jointed leading to formation of vertical rock slices with height between 400-450 m and width between 7-10 m. These slices threaten the settlements around Loen Valley and tourists visiting the fjord during summer season, as the released slides have potential of creating tsunami. In the past, several rock slides had been recorded from the Mountain Ramnefjell between 1905 and 1950. Among them, four of the slides caused formation of tsunami waves which washed up to 74 m above the lake level. Two of the slides resulted in many fatalities in the inner part of the Loen Valley as well as great damages. There are three predominant joint structures in Ramnefjell Mountain, which controls failure and the geometry of the slides. The first joint set is a foliation plane striking northeast-southwest and dipping 35˚ -40˚ to the east-southeast. The second and the third joint sets are almost perpendicular and parallel to the mountain side and scarp, respectively. These three joint sets form slices of rock columns with width ranging between 7-10 m and height of 400-450 m. It is stated that the joints in set II are opened between 1-2 m, which may bring about collection of water during heavy rainfall or snow melt causing the slices to be pressed out. It is estimated that water in the vertical joints both reduces the shear strength of sliding plane and causes reduction of normal stress on the sliding plane due to formation of uplift force. Hence rock slides in Ramnefjell mountain occur in plane failure mode. The quantitative evaluation of rock slide risk requires probabilistic analysis of rock slope stability and identification of consequences if the rock slide occurs. In this study failure probability of a rock slice is evaluated by first-order reliability method (FORM). Then in order to use the calculated probability of failure value (Pf) in risk analyses, it is required to associate this Pf with frequency based probabilities (i.ePf / year) since the computed failure probabilities is a measure of hazard and not a measure of risk unless they are associated with the consequences of the failure. This can be done by either considering the time dependent behavior of the basic variables in the probabilistic models or associating the computed Pf with frequency of the failures in the region. In this study, the frequency of previous rock slides in the previous century in Remnefjell is used for evaluation of frequency based probability to be used in risk assessment. The major consequence of a rock slide is generation of a tsunami in the lake Loen, causing inundation of residential areas around the lake. Risk is assessed by adapting damage probability matrix approach, which is originally developed for risk assessment for buildings in case of earthquake.

  12. Reliability-Based Design Optimization of a Composite Airframe Component

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.

    2009-01-01

    A stochastic design optimization methodology (SDO) has been developed to design components of an airframe structure that can be made of metallic and composite materials. The design is obtained as a function of the risk level, or reliability, p. The design method treats uncertainties in load, strength, and material properties as distribution functions, which are defined with mean values and standard deviations. A design constraint or a failure mode is specified as a function of reliability p. Solution to stochastic optimization yields the weight of a structure as a function of reliability p. Optimum weight versus reliability p traced out an inverted-S-shaped graph. The center of the inverted-S graph corresponded to 50 percent (p = 0.5) probability of success. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponds to unity for reliability p (or p = 1). Weight can be reduced to a small value for the most failure-prone design with a reliability that approaches zero (p = 0). Reliability can be changed for different components of an airframe structure. For example, the landing gear can be designed for a very high reliability, whereas it can be reduced to a small extent for a raked wingtip. The SDO capability is obtained by combining three codes: (1) The MSC/Nastran code was the deterministic analysis tool, (2) The fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and (3) NASA Glenn Research Center s optimization testbed CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life raked wingtip structure of the Boeing 767-400 extended range airliner made of metallic and composite materials.

  13. Eccentric loading of microtensile specimens

    NASA Technical Reports Server (NTRS)

    Trapp, Mark A.

    2004-01-01

    Ceramic materials have a lower density than most metals and are capable of performing at extremely high temperatures. The utility of these materials is obvious; however, the fracture strength of brittle materials is not easily predicted and often varies greatly. Characteristically, brittle materials lack ductility and do not yield as other materials. Ceramics materials are naturally populated with microscopic cracks due to fabrication techniques. Upon application of a load, stress concentration occurs at the root of these cracks and fracture will eventually occur at some not easily predicted strength. In order to use ceramics in any application some design methodology must exist from which a component can be placed into service. This design methodology is CARES/LIFE (Ceramics Analysis and Reliability Evaluation of Structures) which has been developed and refined at NASA over the last several decades. The CARES/LIFE computer program predicts the probability of failure of a ceramic component over its service life. CARES combines finite element results from a commercial FE (finite element) package such as ANSYS and experimental results to compute the abovementioned probability of failure. Over the course of several tests CARES has had great success in predicting the life of various ceramic components and has been used throughout industry. The latest challenge is to verify that CARES is valid for MEMS (Micro-Electro Mechanical Systems). To investigate a series of microtensile specimens were fractured in the laboratory. From this data, material parameters were determined and used to predict a distribution of strength for other specimens that exhibit a known stress concentration. If the prediction matches the experimental results then these parameters can be applied to a desired component outside of the laboratory. During testing nearly half of the tensile Specimens fractured at a location that was not expected and hence not captured in the FE model. It has been my duty to investigate the nature of this phenomenon in hopes of finding a better correlation between theory and empirical results. To investigate I built complete FE models of all of the tensile specimens using ANSYS. It is suspected that some misalignment naturally occurs during testing and thus additional bending stresses are present in the specimens. I modeled this eccentric loading and ran several FE trials using ANSYS/PDS (a probabilistic design system in ANSYS). My objective this summer has been familiarize myself with the CARES/LIFE program in hopes of using it in conjunction with ANSYS to help verify that CARES is applicable to MEMS-scale (greater that 1 micron, less than 1 millimeter) components.

  14. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley P.

    2004-01-01

    Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.

  15. Can non-breeding be a cost of breeding dispersal?

    USGS Publications Warehouse

    Danchin, E.; Cam, E.

    2002-01-01

    Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.

  16. Risk analysis for dry snow slab avalanche release by skier triggering

    NASA Astrophysics Data System (ADS)

    McClung, David

    2013-04-01

    Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles, the risk analysis showed there are two ranges: ˜ 320; × 460for which risk is lowest. In this case, both the range of and the consequences vary by about a factor of two so the probability of release dominates the risk analysis to yield low risk at the tails of the distribution of with highest risk in the middle (330 - 450) of the expected range (250 - 550).

  17. Probability of loss of assured safety in systems with multiple time-dependent failure modes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helton, Jon Craig; Pilch, Martin.; Sallaberry, Cedric Jean-Marie.

    2012-09-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allowmore » an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). Representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent are derived and numerically evaluated for a variety of WL/SL configurations, including PLOAS defined by (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS are considered.« less

  18. Critical flaw size in silicon nitride ball bearings

    NASA Astrophysics Data System (ADS)

    Levesque, George Arthur

    Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions. This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses: Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches. RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity factor (SIF) trends observed from parametrically varying different physical effects are plotted and discussed. Included are developments in contact algorithms for 3D nonplanar cracks, meshing of nonplanar cracks for SIFs, parametric studies via MATLAB and other subroutines in python and FORTRAN. Establishing Fracture Parameters: the fracture toughness, K c, is determined by using numerical techniques on experimental tests namely the Brazilian disc test and a novel compression test on an indented ball. The fatigue threshold for mixed-mode loading, Keff, is determined by using a combination of numerical modeling and results from the V-ring single ball RCF test. CFS Determination: the range of 3D non-planar surface flaw geometries subject to RCF are simulated to calculate mixed mode SIFs to determine the critical flaw size, or the largest allowable flaw that does not grow under service conditions. The CFS results are presented as a function of Hertzian contact stress, traction magnitude, and crack size. Empirical Equations: accurate empirical equations (response functions) for the KI, KII, and K III SIFs for semi-elliptical surface cracks subjected to RCF as a function of the contact patch diameter, angle of crack to the surface, max pressure, position along the crack front, and aspect ratio of the crack are developed via parametric 3D FEA. Statistical Probability of Failure: since the variability in mechanical properties for brittle materials is high a probabilistic investigation of variations in flaw size, flaw orientation, fracture toughness, and Hertzian load on failure probability is conducted to statistically determine the probability of ball failure for an existing flaw subjected to the service conditions. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  19. Health monitoring display system for a complex plant

    DOEpatents

    Ridolfo, Charles F [Bloomfield, CT; Harmon, Daryl L [Enfield, CT; Colin, Dreyfuss [Enfield, CT

    2006-08-08

    A single page enterprise wide level display provides a comprehensive readily understood representation of the overall health status of a complex plant. Color coded failure domains allow rapid intuitive recognition of component failure status. A three-tier hierarchy of displays provide details on the health status of the components and systems displayed on the enterprise wide level display in a manner that supports a logical drill down to the health status of sub-components on Tier 1 to expected faults of the sub-components on Tier 2 to specific information relative to expected sub-component failures on Tier 3.

  20. Enhancing MPLS Protection Method with Adaptive Segment Repair

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Ling

    We propose a novel adaptive segment repair mechanism to improve traditional MPLS (Multi-Protocol Label Switching) failure recovery. The proposed mechanism protects one or more contiguous high failure probability links by dynamic setup of segment protection. Simulations demonstrate that the proposed mechanism reduces failure recovery time while also increasing network resource utilization.

  1. Probabilistic inspection strategies for minimizing service failures

    NASA Technical Reports Server (NTRS)

    Brot, Abraham

    1994-01-01

    The INSIM computer program is described which simulates the 'limited fatigue life' environment in which aircraft structures generally operate. The use of INSIM to develop inspection strategies which aim to minimize service failures is demonstrated. Damage-tolerance methodology, inspection thresholds and customized inspections are simulated using the probability of failure as the driving parameter.

  2. Economic Statistical Design of Integrated X-bar-S Control Chart with Preventive Maintenance and General Failure Distribution

    PubMed Central

    Caballero Morales, Santiago Omar

    2013-01-01

    The application of Preventive Maintenance (PM) and Statistical Process Control (SPC) are important practices to achieve high product quality, small frequency of failures, and cost reduction in a production process. However there are some points that have not been explored in depth about its joint application. First, most SPC is performed with the X-bar control chart which does not fully consider the variability of the production process. Second, many studies of design of control charts consider just the economic aspect while statistical restrictions must be considered to achieve charts with low probabilities of false detection of failures. Third, the effect of PM on processes with different failure probability distributions has not been studied. Hence, this paper covers these points, presenting the Economic Statistical Design (ESD) of joint X-bar-S control charts with a cost model that integrates PM with general failure distribution. Experiments showed statistically significant reductions in costs when PM is performed on processes with high failure rates and reductions in the sampling frequency of units for testing under SPC. PMID:23527082

  3. Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.

  4. Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin

    1997-01-01

    The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.

  5. On the estimation of risk associated with an attenuation prediction

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1992-01-01

    Viewgraphs from a presentation on the estimation of risk associated with an attenuation prediction is presented. Topics covered include: link failure - attenuation exceeding a specified threshold for a specified time interval or intervals; risk - the probability of one or more failures during the lifetime of the link or during a specified accounting interval; the problem - modeling the probability of attenuation by rainfall to provide a prediction of the attenuation threshold for a specified risk; and an accounting for the inadequacy of a model or models.

  6. An experimental evaluation of software redundancy as a strategy for improving reliability

    NASA Technical Reports Server (NTRS)

    Eckhardt, Dave E., Jr.; Caglayan, Alper K.; Knight, John C.; Lee, Larry D.; Mcallister, David F.; Vouk, Mladen A.; Kelly, John P. J.

    1990-01-01

    The strategy of using multiple versions of independently developed software as a means to tolerate residual software design faults is suggested by the success of hardware redundancy for tolerating hardware failures. Although, as generally accepted, the independence of hardware failures resulting from physical wearout can lead to substantial increases in reliability for redundant hardware structures, a similar conclusion is not immediate for software. The degree to which design faults are manifested as independent failures determines the effectiveness of redundancy as a method for improving software reliability. Interest in multi-version software centers on whether it provides an adequate measure of increased reliability to warrant its use in critical applications. The effectiveness of multi-version software is studied by comparing estimates of the failure probabilities of these systems with the failure probabilities of single versions. The estimates are obtained under a model of dependent failures and compared with estimates obtained when failures are assumed to be independent. The experimental results are based on twenty versions of an aerospace application developed and certified by sixty programmers from four universities. Descriptions of the application, development and certification processes, and operational evaluation are given together with an analysis of the twenty versions.

  7. Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helton, Jon C.; Brooks, Dusty Marie; Sallaberry, Cedric Jean-Marie.

    Probability of loss of assured safety (PLOAS) is modeled for weak link (WL)/strong link (SL) systems in which one or more WLs or SLs could potentially degrade into a precursor condition to link failure that will be followed by an actual failure after some amount of elapsed time. The following topics are considered: (i) Definition of precursor occurrence time cumulative distribution functions (CDFs) for individual WLs and SLs, (ii) Formal representation of PLOAS with constant delay times, (iii) Approximation and illustration of PLOAS with constant delay times, (iv) Formal representation of PLOAS with aleatory uncertainty in delay times, (v) Approximationmore » and illustration of PLOAS with aleatory uncertainty in delay times, (vi) Formal representation of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, (vii) Approximation and illustration of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, and (viii) Procedures for the verification of PLOAS calculations for the three indicated definitions of delayed link failure.« less

  8. Reliability analysis of the F-8 digital fly-by-wire system

    NASA Technical Reports Server (NTRS)

    Brock, L. D.; Goodman, H. A.

    1981-01-01

    The F-8 Digital Fly-by-Wire (DFBW) flight test program intended to provide the technology for advanced control systems, giving aircraft enhanced performance and operational capability is addressed. A detailed analysis of the experimental system was performed to estimated the probabilities of two significant safety critical events: (1) loss of primary flight control function, causing reversion to the analog bypass system; and (2) loss of the aircraft due to failure of the electronic flight control system. The analysis covers appraisal of risks due to random equipment failure, generic faults in design of the system or its software, and induced failure due to external events. A unique diagrammatic technique was developed which details the combinatorial reliability equations for the entire system, promotes understanding of system failure characteristics, and identifies the most likely failure modes. The technique provides a systematic method of applying basic probability equations and is augmented by a computer program written in a modular fashion that duplicates the structure of these equations.

  9. Fishnet statistics for probabilistic strength and scaling of nacreous imbricated lamellar materials

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bažant, Zdeněk P.

    2017-12-01

    Similar to nacre (or brick masonry), imbricated (or staggered) lamellar structures are widely found in nature and man-made materials, and are of interest for biomimetics. They can achieve high defect insensitivity and fracture toughness, as demonstrated in previous studies. But the probability distribution with a realistic far-left tail is apparently unknown. Here, strictly for statistical purposes, the microstructure of nacre is approximated by a diagonally pulled fishnet with quasibrittle links representing the shear bonds between parallel lamellae (or platelets). The probability distribution of fishnet strength is calculated as a sum of a rapidly convergent series of the failure probabilities after the rupture of one, two, three, etc., links. Each of them represents a combination of joint probabilities and of additive probabilities of disjoint events, modified near the zone of failed links by the stress redistributions caused by previously failed links. Based on previous nano- and multi-scale studies at Northwestern, the strength distribution of each link, characterizing the interlamellar shear bond, is assumed to be a Gauss-Weibull graft, but with a deeper Weibull tail than in Type 1 failure of non-imbricated quasibrittle materials. The autocorrelation length is considered equal to the link length. The size of the zone of failed links at maximum load increases with the coefficient of variation (CoV) of link strength, and also with fishnet size. With an increasing width-to-length aspect ratio, a rectangular fishnet gradually transits from the weakest-link chain to the fiber bundle, as the limit cases. The fishnet strength at failure probability 10-6 grows with the width-to-length ratio. For a square fishnet boundary, the strength at 10-6 failure probability is about 11% higher, while at fixed load the failure probability is about 25-times higher than it is for the non-imbricated case. This is a major safety advantage of the fishnet architecture over particulate or fiber reinforced materials. There is also a strong size effect, partly similar to that of Type 1 while the curves of log-strength versus log-size for different sizes could cross each other. The predicted behavior is verified by about a million Monte Carlo simulations for each of many fishnet geometries, sizes and CoVs of link strength. In addition to the weakest-link or fiber bundle, the fishnet becomes the third analytically tractable statistical model of structural strength, and has the former two as limit cases.

  10. A technique for estimating the probability of radiation-stimulated failures of integrated microcircuits in low-intensity radiation fields: Application to the Spektr-R spacecraft

    NASA Astrophysics Data System (ADS)

    Popov, V. D.; Khamidullina, N. M.

    2006-10-01

    In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.

  11. 14 CFR 25.729 - Retracting mechanism.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... design take-off weight), occurring during retraction and extension at any airspeed up to 1.5 VSR1 (with... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any...

  12. 14 CFR 25.729 - Retracting mechanism.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... design take-off weight), occurring during retraction and extension at any airspeed up to 1.5 VSR1 (with... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any...

  13. Mass and Reliability Source (MaRS) Database

    NASA Technical Reports Server (NTRS)

    Valdenegro, Wladimir

    2017-01-01

    The Mass and Reliability Source (MaRS) Database consolidates components mass and reliability data for all Oribital Replacement Units (ORU) on the International Space Station (ISS) into a single database. It was created to help engineers develop a parametric model that relates hardware mass and reliability. MaRS supplies relevant failure data at the lowest possible component level while providing support for risk, reliability, and logistics analysis. Random-failure data is usually linked to the ORU assembly. MaRS uses this data to identify and display the lowest possible component failure level. As seen in Figure 1, the failure point is identified to the lowest level: Component 2.1. This is useful for efficient planning of spare supplies, supporting long duration crewed missions, allowing quicker trade studies, and streamlining diagnostic processes. MaRS is composed of information from various databases: MADS (operating hours), VMDB (indentured part lists), and ISS PART (failure data). This information is organized in Microsoft Excel and accessed through a program made in Microsoft Access (Figure 2). The focus of the Fall 2017 internship tour was to identify the components that were the root cause of failure from the given random-failure data, develop a taxonomy for the database, and attach material headings to the component list. Secondary objectives included verifying the integrity of the data in MaRS, eliminating any part discrepancies, and generating documentation for future reference. Due to the nature of the random-failure data, data mining had to be done manually without the assistance of an automated program to ensure positive identification.

  14. Closed-Form Solutions for a Circular Tunnel in Elastic-Brittle-Plastic Ground with the Original and Generalized Hoek-Brown Failure Criteria

    NASA Astrophysics Data System (ADS)

    Chen, Ran; Tonon, Fulvio

    2011-03-01

    The paper presents a closed-form solution for the convergence curve of a circular tunnel in an elasto-brittle-plastic rock mass with both the Hoek-Brown and generalized Hoek-Brown failure criteria, and a linear flow rule, i.e., the ratio between the minor and major plastic strain increments is constant. The improvement over the original solution of Brown et al. (J Geotech Eng ASCE 109(1):15-39, 1983) consists of taking into account the elastic strain variation in the plastic annulus, which was assumed to be fixed in the original solution by Brown et al. The improvement over Carranza-Torres' solution (Int J Rock Mech Min Sci 41(Suppl 1):629-639, 2004) consists of providing a closed-form solution, rather than resorting to numerical integration of an ordinary differential equation. The presented solution, by rigorously following the theory of plasticity, takes into account that the elastic strain components change with radial and circumferential stress changes within the plastic annulus. For the original Hoek-Brown failure criterion, disregarding the elastic strain change leads to underestimate the convergence by up to 55%. For a rock mass failing according to the generalized Hoek-Brown failure criterion, using the original failure criterion leads to a high probability (97%) of underestimating the convergence by up to 100%. As a consequence, the onset or degree of squeezing may be underestimated, and the loading on the support/reinforcement calculated with the convergence/confinement method may be largely underestimated.

  15. Failure Surfaces for the Design of Ceramic-Lined Gun Tubes

    DTIC Science & Technology

    2004-12-01

    density than steel making them attractive candidates as gun tube liners . A new design approach is necessary to address the large variability in strength...systems. Having established the failure criterion for the ceramic liner as the Weibull probability of failure, the need for a suitable failure...Report AMMRC SP-82-1, Materials Technology Laboratory, Watertown, Massachusetts, 1982. 7 R. Katz, Ceramic Gun Barrel Liners : Retrospect and Prospect

  16. Mechanistic Considerations Used in the Development of the PROFIT PCI Failure Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankaskie, P. J.

    A fuel Pellet-Zircaloy Cladding (thermo-mechanical-chemical) Interactions (PC!) failure model for estimating the probability of failure in !ransient increases in power (PROFIT) was developed. PROFIT is based on 1) standard statistical methods applied to available PC! fuel failure data and 2) a mechanistic analysis of the environmental and strain-rate-dependent stress versus strain characteristics of Zircaloy cladding. The statistical analysis of fuel failures attributable to PCI suggested that parameters in addition to power, transient increase in power, and burnup are needed to define PCI fuel failures in terms of probability estimates with known confidence limits. The PROFIT model, therefore, introduces an environmentalmore » and strain-rate dependent strain energy absorption to failure (SEAF) concept to account for the stress versus strain anomalies attributable to interstitial-disloction interaction effects in the Zircaloy cladding. Assuming that the power ramping rate is the operating corollary of strain-rate in the Zircaloy cladding, then the variables of first order importance in the PCI fuel failure phenomenon are postulated to be: 1. pre-transient fuel rod power, P{sub I}, 2. transient increase in fuel rod power, {Delta}P, 3. fuel burnup, Bu, and 4. the constitutive material property of the Zircaloy cladding, SEAF.« less

  17. Second allogeneic hematopoietic cell transplantation for Patients with Fanconi anemia and Bone Marrow Failure

    PubMed Central

    Ayas, Mouhab; Eapen, Mary; Le-Rademacher, Jennifer; Carreras, Jeanette; Abdel-Azim, Hisham; Alter, Blanche P.; Anderlini, Paolo; Battiwalla, Minoo; Bierings, Marc; Buchbinder, David K.; Bonfim, Carmem; Camitta, Bruce M.; Fasth, Anders L.; Gale, Robert Peter; Lee, Michelle A.; Lund, Troy C.; Myers, Kasiani C.; Olsson, Richard F.; Page, Kristin M.; Prestidge, Tim D.; Radhi, Mohamed; Shah, Ami J.; Schultz, Kirk R.; Wirk, Baldeep; Wagner, John E.; Deeg, H. Joachim

    2015-01-01

    Second allogeneic hematopoietic cell transplantation (HCT) is the only salvage option for those for develop graft failure after their first HCT. Data on outcomes after second HCT in Fanconi anemia (FA) are scarce. We report outcomes after second allogeneic HCT for FA (n=81). The indication for second HCT was graft failure after the first HCT. Transplants occurred between 1990 and 2012. The timing of second transplantation predicted subsequent graft failure and survival. Graft failure was high when the second transplant occurred less than 3 months from the first. The 3-month probability of graft failure was 69% when the interval between first and second transplant was less than 3 months compared to 23% when the interval was longer (p<0.001). Consequently, survival rates were substantially lower when the interval between first and second transplant was less than 3 months, 23% at 1-year compared to 58%, when the interval was longer (p=0.001). The corresponding 5-year probabilities of survival were 16% and 45%, respectively (p=0.006). Taken together, these data suggest that fewer than half of FA patients undergoing a second HCT for graft failure are long-term survivors. There is an urgent need to develop strategies to lower graft failure after first HCT. PMID:26116087

  18. Misinterpretation of statistical distance in security of quantum key distribution shown by simulation

    NASA Astrophysics Data System (ADS)

    Iwakoshi, Takehisa; Hirota, Osamu

    2014-10-01

    This study will test an interpretation in quantum key distribution (QKD) that trace distance between the distributed quantum state and the ideal mixed state is a maximum failure probability of the protocol. Around 2004, this interpretation was proposed and standardized to satisfy both of the key uniformity in the context of universal composability and operational meaning of the failure probability of the key extraction. However, this proposal has not been verified concretely yet for many years while H. P. Yuen and O. Hirota have thrown doubt on this interpretation since 2009. To ascertain this interpretation, a physical random number generator was employed to evaluate key uniformity in QKD. In this way, we calculated statistical distance which correspond to trace distance in quantum theory after a quantum measurement is done, then we compared it with the failure probability whether universal composability was obtained. As a result, the degree of statistical distance of the probability distribution of the physical random numbers and the ideal uniformity was very large. It is also explained why trace distance is not suitable to guarantee the security in QKD from the view point of quantum binary decision theory.

  19. Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.

    1980-01-01

    The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model.

  20. Fatigue Failure of External Hexagon Connections on Cemented Implant-Supported Crowns.

    PubMed

    Malta Barbosa, João; Navarro da Rocha, Daniel; Hirata, Ronaldo; Freitas, Gileade; Bonfante, Estevam A; Coelho, Paulo G

    2018-01-17

    To evaluate the probability of survival and failure modes of different external hexagon connection systems restored with anterior cement-retained single-unit crowns. The postulated null hypothesis was that there would be no differences under accelerated life testing. Fifty-four external hexagon dental implants (∼4 mm diameter) were used for single cement-retained crown replacement and divided into 3 groups: (3i) Full OSSEOTITE, Biomet 3i (n = 18); (OL) OEX P4, Osseolife Implants (n = 18); and (IL) Unihex, Intra-Lock International (n = 18). Abutments were torqued to the implants, and maxillary central incisor crowns were cemented and subjected to step-stress-accelerated life testing in water. Use-level probability Weibull curves and probability of survival for a mission of 100,000 cycles at 200 N (95% 2-sided confidence intervals) were calculated. Stereo and scanning electron microscopes were used for failure inspection. The beta values for 3i, OL, and IL (1.60, 1.69, and 1.23, respectively) indicated that fatigue accelerated the failure of the 3 groups. Reliability for the 3i and OL (41% and 68%, respectively) was not different between each other, but both were significantly lower than IL group (98%). Abutment screw fracture was the failure mode consistently observed in all groups. Because the reliability was significantly different between the 3 groups, our postulated null hypothesis was rejected.

  1. Competing risk models in reliability systems, an exponential distribution model with Bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, I.

    2018-03-01

    The exponential distribution is the most widely used reliability analysis. This distribution is very suitable for representing the lengths of life of many cases and is available in a simple statistical form. The characteristic of this distribution is a constant hazard rate. The exponential distribution is the lower rank of the Weibull distributions. In this paper our effort is to introduce the basic notions that constitute an exponential competing risks model in reliability analysis using Bayesian analysis approach and presenting their analytic methods. The cases are limited to the models with independent causes of failure. A non-informative prior distribution is used in our analysis. This model describes the likelihood function and follows with the description of the posterior function and the estimations of the point, interval, hazard function, and reliability. The net probability of failure if only one specific risk is present, crude probability of failure due to a specific risk in the presence of other causes, and partial crude probabilities are also included.

  2. Security Threat Assessment of an Internet Security System Using Attack Tree and Vague Sets

    PubMed Central

    2014-01-01

    Security threat assessment of the Internet security system has become a greater concern in recent years because of the progress and diversification of information technology. Traditionally, the failure probabilities of bottom events of an Internet security system are treated as exact values when the failure probability of the entire system is estimated. However, security threat assessment when the malfunction data of the system's elementary event are incomplete—the traditional approach for calculating reliability—is no longer applicable. Moreover, it does not consider the failure probability of the bottom events suffered in the attack, which may bias conclusions. In order to effectively solve the problem above, this paper proposes a novel technique, integrating attack tree and vague sets for security threat assessment. For verification of the proposed approach, a numerical example of an Internet security system security threat assessment is adopted in this paper. The result of the proposed method is compared with the listing approaches of security threat assessment methods. PMID:25405226

  3. Cascading failures with local load redistribution in interdependent Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Hong, Chen; Zhang, Jun; Du, Wen-Bo; Sallan, Jose Maria; Lordan, Oriol

    2016-05-01

    Cascading failures of loads in isolated networks have been studied extensively over the last decade. Since 2010, such research has extended to interdependent networks. In this paper, we study cascading failures with local load redistribution in interdependent Watts-Strogatz (WS) networks. The effects of rewiring probability and coupling strength on the resilience of interdependent WS networks have been extensively investigated. It has been found that, for small values of the tolerance parameter, interdependent networks are more vulnerable as rewiring probability increases. For larger values of the tolerance parameter, the robustness of interdependent networks firstly decreases and then increases as rewiring probability increases. Coupling strength has a different impact on robustness. For low values of coupling strength, the resilience of interdependent networks decreases with the increment of the coupling strength until it reaches a certain threshold value. For values of coupling strength above this threshold, the opposite effect is observed. Our results are helpful to understand and design resilient interdependent networks.

  4. Security threat assessment of an Internet security system using attack tree and vague sets.

    PubMed

    Chang, Kuei-Hu

    2014-01-01

    Security threat assessment of the Internet security system has become a greater concern in recent years because of the progress and diversification of information technology. Traditionally, the failure probabilities of bottom events of an Internet security system are treated as exact values when the failure probability of the entire system is estimated. However, security threat assessment when the malfunction data of the system's elementary event are incomplete--the traditional approach for calculating reliability--is no longer applicable. Moreover, it does not consider the failure probability of the bottom events suffered in the attack, which may bias conclusions. In order to effectively solve the problem above, this paper proposes a novel technique, integrating attack tree and vague sets for security threat assessment. For verification of the proposed approach, a numerical example of an Internet security system security threat assessment is adopted in this paper. The result of the proposed method is compared with the listing approaches of security threat assessment methods.

  5. A Study to Compare the Failure Rates of Current Space Shuttle Ground Support Equipment with the New Pathfinder Equipment and Investigate the Effect that the Proposed GSE Infrastructure Upgrade Might Have to Reduce GSE Infrastructure Failures

    NASA Technical Reports Server (NTRS)

    Kennedy, Barbara J.

    2004-01-01

    The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.

  6. Centrifugal compressor modifications and their effect on high-frequency pipe wall vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motriuk, R.W.; Harvey, D.P.

    1998-08-01

    High-frequency pulsation generated by centrifugal compressors, with pressure wave-lengths much smaller than the attached pipe diameter, can cause fatigue failures of the compressor internals, impair compressor performance, and damage the attached compressor piping. There are numerous sources producing pulsation in centrifugal compressors. Some of them are discussed in literature at large (Japikse, 1995; Niese, 1976). NGTL has experienced extreme high-frequency discharge pulsation and pipe wall vibration on many of its radial inlet high-flow centrifugal gas compressor facilities. These pulsations led to several piping attachment failures and compressor internal component failures while the compressor operated within the design envelope. This papermore » considers several pulsation conditions at an NGTL compression facility which resulted in unacceptable piping vibration. Significant vibration attenuation was achieved by modifying the compressor (pulsation source) through removal of the diffuser vanes and partial removal of the inlet guide vanes (IGV). Direct comparison of the changes in vibration, pulsation, and performance are made for each of the modifications. The vibration problem, probable causes, options available to address the problem, and the results of implementation are reviewed. The effects of diffuser vane removal on discharge pipe wall vibration as well as changes in compressor performance are described.« less

  7. Solder Reflow Failures in Electronic Components During Manual Soldering

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander; Greenwell, Chris; Felt, Frederick

    2008-01-01

    This viewgraph presentation reviews the solder reflow failures in electronic components that occur during manual soldering. It discusses the specifics of manual-soldering-induced failures in plastic devices with internal solder joints. The failure analysis turned up that molten solder had squeezed up to the die surface along the die molding compound interface, and the dice were not protected with glassivation allowing solder to short gate and source to the drain contact. The failure analysis concluded that the parts failed due to overheating during manual soldering.

  8. Field testing of a ceramic heat exchanger for heat recovery application

    NASA Astrophysics Data System (ADS)

    Sohal, M. S.

    1988-06-01

    AiResearch Company, Torrance, California, developed a 5 MMBtu/hr ceramic-metallic hybrid High Temperature Burner-Duct-Recuperator (HTBDR) system to recover energy from hot (up to 2500 F), dirty, and corrosive glue gas streams and preheat combustion air up to 2000 F. To reduce the cost and size of the ceramic recuperator, ceramic tubes with internal cruciform baffles were developed. The HTBDR system was tested on a 20 MMBtu/hr rotary forging furnace for about 2000 hours. To facilitate tube replacements, final design configuration uses horizontally mounted tubes. A maximum air preheat temperature of about 1916 F was achieved with a flue gas temperature of 2122 F. This represents fuel savings of about 30 to 50 percent (depending upon the amount of excess air) compared with an unrecuperated furnace. The overall design and operation of the recuperator proved to be successful up to the time of material failure. X ray diffraction of some failed components indicated that there was some residual Silicon in the interior regions and complete nitriding did not occur during the fabrication process. Degradation of failed components was probably caused by oxidation of residual silicon and by the stresses caused due to different coefficient of thermal expansion of various compounds during thermal cycling. A combination of severe and numerous thermal cycling coupled with incomplete nitriding was the most likely cause of material failure.

  9. Quantitative Risk Mapping of Urban Gas Pipeline Networks Using GIS

    NASA Astrophysics Data System (ADS)

    Azari, P.; Karimi, M.

    2017-09-01

    Natural gas is considered an important source of energy in the world. By increasing growth of urbanization, urban gas pipelines which transmit natural gas from transmission pipelines to consumers, will become a dense network. The increase in the density of urban pipelines will influence probability of occurring bad accidents in urban areas. These accidents have a catastrophic effect on people and their property. Within the next few years, risk mapping will become an important component in urban planning and management of large cities in order to decrease the probability of accident and to control them. Therefore, it is important to assess risk values and determine their location on urban map using an appropriate method. In the history of risk analysis of urban natural gas pipeline networks, the pipelines has always been considered one by one and their density in urban area has not been considered. The aim of this study is to determine the effect of several pipelines on the risk value of a specific grid point. This paper outlines a quantitative risk assessment method for analysing the risk of urban natural gas pipeline networks. It consists of two main parts: failure rate calculation where the EGIG historical data are used and fatal length calculation that involves calculation of gas release and fatality rate of consequences. We consider jet fire, fireball and explosion for investigating the consequences of gas pipeline failure. The outcome of this method is an individual risk and is shown as a risk map.

  10. Predicting Quarantine Failure Rates

    PubMed Central

    2004-01-01

    Preemptive quarantine through contact-tracing effectively controls emerging infectious diseases. Occasionally this quarantine fails, however, and infected persons are released. The probability of quarantine failure is typically estimated from disease-specific data. Here a simple, exact estimate of the failure rate is derived that does not depend on disease-specific parameters. This estimate is universally applicable to all infectious diseases. PMID:15109418

  11. Further examination of embedded performance validity indicators for the Conners' Continuous Performance Test and Brief Test of Attention in a large outpatient clinical sample.

    PubMed

    Sharland, Michael J; Waring, Stephen C; Johnson, Brian P; Taran, Allise M; Rusin, Travis A; Pattock, Andrew M; Palcher, Jeanette A

    2018-01-01

    Assessing test performance validity is a standard clinical practice and although studies have examined the utility of cognitive/memory measures, few have examined attention measures as indicators of performance validity beyond the Reliable Digit Span. The current study further investigates the classification probability of embedded Performance Validity Tests (PVTs) within the Brief Test of Attention (BTA) and the Conners' Continuous Performance Test (CPT-II), in a large clinical sample. This was a retrospective study of 615 patients consecutively referred for comprehensive outpatient neuropsychological evaluation. Non-credible performance was defined two ways: failure on one or more PVTs and failure on two or more PVTs. Classification probability of the BTA and CPT-II into non-credible groups was assessed. Sensitivity, specificity, positive predictive value, and negative predictive value were derived to identify clinically relevant cut-off scores. When using failure on two or more PVTs as the indicator for non-credible responding compared to failure on one or more PVTs, highest classification probability, or area under the curve (AUC), was achieved by the BTA (AUC = .87 vs. .79). CPT-II Omission, Commission, and Total Errors exhibited higher classification probability as well. Overall, these findings corroborate previous findings, extending them to a large clinical sample. BTA and CPT-II are useful embedded performance validity indicators within a clinical battery but should not be used in isolation without other performance validity indicators.

  12. Systems Reliability Framework for Surface Water Sustainability and Risk Management

    NASA Astrophysics Data System (ADS)

    Myers, J. R.; Yeghiazarian, L.

    2016-12-01

    With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability.

  13. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering

    USGS Publications Warehouse

    Stein, R.S.; Barka, A.A.; Dieterich, J.H.

    1997-01-01

    10 M ??? 6.7 earthquakes ruptured 1000 km of the North Anatolian fault (Turkey) during 1939-1992, providing an unsurpassed opportunity to study how one large shock sets up the next. We use the mapped surface slip and fault geometry to infer the transfer of stress throughout the sequence. Calculations of the change in Coulomb failure stress reveal that nine out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 1-10 bar, equivalent to 3-30 years of secular stressing. We translate the calculated stress changes into earthquake probability gains using an earthquake-nucleation constitutive relation, which includes both permanent and transient effects of the sudden stress changes. The transient effects of the stress changes dominate during the mean 10 yr period between triggering and subsequent rupturing shocks in the Anatolia sequence. The stress changes result in an average three-fold gain in the net earthquake probability during the decade after each event. Stress is calculated to be high today at several isolated sites along the fault. During the next 30 years, we estimate a 15 per cent probability of a M ??? 6.7 earthquake east of the major eastern centre of Ercinzan, and a 12 per cent probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere.

  14. Differentiated protection services with failure probability guarantee for workflow-based applications

    NASA Astrophysics Data System (ADS)

    Zhong, Yaoquan; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2010-12-01

    A cost-effective and service-differentiated provisioning strategy is very desirable to service providers so that they can offer users satisfactory services, while optimizing network resource allocation. Providing differentiated protection services to connections for surviving link failure has been extensively studied in recent years. However, the differentiated protection services for workflow-based applications, which consist of many interdependent tasks, have scarcely been studied. This paper investigates the problem of providing differentiated services for workflow-based applications in optical grid. In this paper, we develop three differentiated protection services provisioning strategies which can provide security level guarantee and network-resource optimization for workflow-based applications. The simulation demonstrates that these heuristic algorithms provide protection cost-effectively while satisfying the applications' failure probability requirements.

  15. Reliability and Creep/Fatigue Analysis of a CMC Component

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.

    2007-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.

  16. Differential subsidence and its effect on subsurface infrastructure: predicting probability of pipeline failure (STOOP project)

    NASA Astrophysics Data System (ADS)

    de Bruijn, Renée; Dabekaussen, Willem; Hijma, Marc; Wiersma, Ane; Abspoel-Bukman, Linda; Boeije, Remco; Courage, Wim; van der Geest, Johan; Hamburg, Marc; Harmsma, Edwin; Helmholt, Kristian; van den Heuvel, Frank; Kruse, Henk; Langius, Erik; Lazovik, Elena

    2017-04-01

    Due to heterogeneity of the subsurface in the delta environment of the Netherlands, differential subsidence over short distances results in tension and subsequent wear of subsurface infrastructure, such as water and gas pipelines. Due to uncertainties in the build-up of the subsurface, however, it is unknown where this problem is the most prominent. This is a problem for asset managers deciding when a pipeline needs replacement: damaged pipelines endanger security of supply and pose a significant threat to safety, yet premature replacement raises needless expenses. In both cases, costs - financial or other - are high. Therefore, an interdisciplinary research team of geotechnicians, geologists and Big Data engineers from research institutes TNO, Deltares and SkyGeo developed a stochastic model to predict differential subsidence and the probability of consequent pipeline failure on a (sub-)street level. In this project pipeline data from company databases is combined with a stochastic geological model and information on (historical) groundwater levels and overburden material. Probability of pipeline failure is modelled by a coupling with a subsidence model and two separate models on pipeline behaviour under stress, using a probabilistic approach. The total length of pipelines (approx. 200.000 km operational in the Netherlands) and the complexity of the model chain that is needed to calculate a chance of failure, results in large computational challenges, as it requires massive evaluation of possible scenarios to reach the required level of confidence. To cope with this, a scalable computational infrastructure has been developed, composing a model workflow in which components have a heterogeneous technological basis. Three pilot areas covering an urban, a rural and a mixed environment, characterised by different groundwater-management strategies and different overburden histories, are used to evaluate the differences in subsidence and uncertainties that come with different types of land use. Furthermore, the model provides results with a measure of reliability, and determines what is the limiting input factor causing most uncertainty. The model results can be validated and further improved using inSAR data for these pilot areas, by iteratively revising model parameters. The design of the model is such, that it can be applied to the whole of the Netherlands. By assessing differential subsidence and its effect on pipelines over time, the model helps to establish when and where maintenance is due, by indicating what areas are particularly vulnerable, thereby increasing safety and lowering maintenance costs.

  17. The Application of Failure Modes and Effects Analysis Methodology to Intrathecal Drug Delivery for Pain Management

    PubMed Central

    Patel, Teresa; Fisher, Stanley P.

    2016-01-01

    Objective This study aimed to utilize failure modes and effects analysis (FMEA) to transform clinical insights into a risk mitigation plan for intrathecal (IT) drug delivery in pain management. Methods The FMEA methodology, which has been used for quality improvement, was adapted to assess risks (i.e., failure modes) associated with IT therapy. Ten experienced pain physicians scored 37 failure modes in the following categories: patient selection for therapy initiation (efficacy and safety concerns), patient safety during IT therapy, and product selection for IT therapy. Participants assigned severity, probability, and detection scores for each failure mode, from which a risk priority number (RPN) was calculated. Failure modes with the highest RPNs (i.e., most problematic) were discussed, and strategies were proposed to mitigate risks. Results Strategic discussions focused on 17 failure modes with the most severe outcomes, the highest probabilities of occurrence, and the most challenging detection. The topic of the highest‐ranked failure mode (RPN = 144) was manufactured monotherapy versus compounded combination products. Addressing failure modes associated with appropriate patient and product selection was predicted to be clinically important for the success of IT therapy. Conclusions The methodology of FMEA offers a systematic approach to prioritizing risks in a complex environment such as IT therapy. Unmet needs and information gaps are highlighted through the process. Risk mitigation and strategic planning to prevent and manage critical failure modes can contribute to therapeutic success. PMID:27477689

  18. Application of Vibration and Oil Analysis for Reliability Information on Helicopter Main Rotor Gearbox

    NASA Astrophysics Data System (ADS)

    Murrad, Muhamad; Leong, M. Salman

    Based on the experiences of the Malaysian Armed Forces (MAF), failure of the main rotor gearbox (MRGB) was one of the major contributing factors to helicopter breakdowns. Even though vibration and oil analysis are the effective techniques for monitoring the health of helicopter components, these two techniques were rarely combined to form an effective assessment tool in MAF. Results of the oil analysis were often used only for oil changing schedule while assessments of MRGB condition were mainly based on overall vibration readings. A study group was formed and given a mandate to improve the maintenance strategy of S61-A4 helicopter fleet in the MAF. The improvement consisted of a structured approach to the reassessment/redefinition suitable maintenance actions that should be taken for the MRGB. Basic and enhanced tools for condition monitoring (CM) are investigated to address the predominant failures of the MRGB. Quantitative accelerated life testing (QALT) was considered in this work with an intent to obtain the required reliability information in a shorter time with tests under normal stress conditions. These tests when performed correctly can provide valuable information about MRGB performance under normal operating conditions which enable maintenance personnel to make decision more quickly, accurately and economically. The time-to-failure and probability of failure information of the MRGB were generated by applying QALT analysis principles. This study is anticipated to make a dramatic change in its approach to CM, bringing significant savings and various benefits to MAF.

  19. Application of Function-Failure Similarity Method to Rotorcraft Component Design

    NASA Technical Reports Server (NTRS)

    Roberts, Rory A.; Stone, Robert E.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the designs that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. During the design of aircraft, a general technique is needed to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to specific components, which are described by their functionality. The failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using this technique, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. The fundamentals of this method were previously introduced for a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.

  20. 16 CFR § 1207.5 - Design.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... installed swimming pool slide shall be such that no structural failures of any component part shall cause failures of any other component part of the slide as described in the performance tests in paragraphs (d)(4... number and placement of such fasteners shall not cause a failure of the tread under the ladder loading...

  1. Probabilistic structural analysis methods of hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1989-01-01

    Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.

  2. A Numerical Round Robin for the Reliability Prediction of Structural Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.

    1993-01-01

    A round robin has been conducted on integrated fast fracture design programs for brittle materials. An informal working group (WELFEP-WEakest Link failure probability prediction by Finite Element Postprocessors) was formed to discuss and evaluate the implementation of the programs examined in the study. Results from the study have provided insight on the differences between the various programs examined. Conclusions from the study have shown that when brittle materials are used in design, analysis must understand how to apply the concepts presented herein to failure probability analysis.

  3. Failure analysis of aluminum alloy components

    NASA Technical Reports Server (NTRS)

    Johari, O.; Corvin, I.; Staschke, J.

    1973-01-01

    Analysis of six service failures in aluminum alloy components which failed in aerospace applications is reported. Identification of fracture surface features from fatigue and overload modes was straightforward, though the specimens were not always in a clean, smear-free condition most suitable for failure analysis. The presence of corrosion products and of chemically attacked or mechanically rubbed areas here hindered precise determination of the cause of crack initiation, which was then indirectly inferred from the scanning electron fractography results. In five failures the crack propagation was by fatigue, though in each case the fatigue crack initiated from a different cause. Some of these causes could be eliminated in future components by better process control. In one failure, the cause was determined to be impact during a crash; the features of impact fracture were distinguished from overload fractures by direct comparisons of the received specimens with laboratory-generated failures.

  4. A Monte Carlo study of Weibull reliability analysis for space shuttle main engine components

    NASA Technical Reports Server (NTRS)

    Abernethy, K.

    1986-01-01

    The incorporation of a number of additional capabilities into an existing Weibull analysis computer program and the results of Monte Carlo computer simulation study to evaluate the usefulness of the Weibull methods using samples with a very small number of failures and extensive censoring are discussed. Since the censoring mechanism inherent in the Space Shuttle Main Engine (SSME) data is hard to analyze, it was decided to use a random censoring model, generating censoring times from a uniform probability distribution. Some of the statistical techniques and computer programs that are used in the SSME Weibull analysis are described. The methods documented in were supplemented by adding computer calculations of approximate (using iteractive methods) confidence intervals for several parameters of interest. These calculations are based on a likelihood ratio statistic which is asymptotically a chisquared statistic with one degree of freedom. The assumptions built into the computer simulations are described. The simulation program and the techniques used in it are described there also. Simulation results are tabulated for various combinations of Weibull shape parameters and the numbers of failures in the samples.

  5. KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes*

    PubMed Central

    Sanchez, Marco A.; Tran, Khoa D.; Valli, Jessica; Hobbs, Sam; Johnson, Errin; Gluenz, Eva; Landfear, Scott M.

    2016-01-01

    African trypanosomes and related kinetoplastid parasites selectively traffic specific membrane proteins to the flagellar membrane, but the mechanisms for this trafficking are poorly understood. We show here that KHARON, a protein originally identified in Leishmania parasites, interacts with a putative trypanosome calcium channel and is required for its targeting to the flagellar membrane. KHARON is located at the base of the flagellar axoneme, where it likely mediates targeting of flagellar membrane proteins, but is also on the subpellicular microtubules and the mitotic spindle. Hence, KHARON is probably a multifunctional protein that associates with several components of the trypanosome cytoskeleton. RNA interference-mediated knockdown of KHARON mRNA results in failure of the calcium channel to enter the flagellar membrane, detachment of the flagellum from the cell body, and disruption of mitotic spindles. Furthermore, knockdown of KHARON mRNA induces a lethal failure of cytokinesis in both bloodstream (mammalian host) and procyclic (insect vector) life cycle stages, and KHARON is thus critical for parasite viability. PMID:27489106

  6. A geometric approach to failure detection and identification in linear systems

    NASA Technical Reports Server (NTRS)

    Massoumnia, M. A.

    1986-01-01

    Using concepts of (C,A)-invariant and unobservability (complementary observability) subspaces, a geometric formulation of the failure detection and identification filter problem is stated. Using these geometric concepts, it is shown that it is possible to design a causal linear time-invariant processor that can be used to detect and uniquely identify a component failure in a linear time-invariant system, assuming: (1) The components can fail simultaneously, and (2) The components can fail only one at a time. In addition, a geometric formulation of Beard's failure detection filter problem is stated. This new formulation completely clarifies of output separability and mutual detectability introduced by Beard and also exploits the dual relationship between a restricted version of the failure detection and identification problem and the control decoupling problem. Moreover, the frequency domain interpretation of the results is used to relate the concepts of failure sensitive observers with the generalized parity relations introduced by Chow. This interpretation unifies the various failure detection and identification concepts and design procedures.

  7. Deriving Function-failure Similarity Information for Failure-free Rotorcraft Component Design

    NASA Technical Reports Server (NTRS)

    Roberts, Rory A.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the design that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. The aircraft design needs to be passed through a general technique to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to certain components, which are described by their functionality. In turn, the failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using the technique proposed in this paper, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. This method was previously applied to a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.

  8. What Reliability Engineers Should Know about Space Radiation Effects

    NASA Technical Reports Server (NTRS)

    DiBari, Rebecca

    2013-01-01

    Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the current of a nearby Thermal Electric Cooler (turning the TEC into a heater). The elevated temperature caused the PIN diode to anneal and the device to recover. It was by lot qualification testing that NEAR knew the diode would recover when annealed. This paper will look at these effects on a variety of devices in a variety of applications. Single Event Effects (SEE): (1) In contrast to TID and displacement damage, Single Event Effects (SEE) resemble random failures. SEE modes can range from changes in device logic (single-event upset, or SEU). temporary disturbances (single-event transient) to catastrophic effects such as the destructive SEE modes, single-event latchup (SEL). single-event gate rupture (SEGR) and single-event burnout (SEB) (2) The consequences of nondestructive SEE modes such as SEU and SET depend critically on their application--and may range from trivial nuisance errors to catastrophic loss of mission. It is critical not just to ensure that potentially susceptible devices are well characterized for their susceptibility, but also to work with design engineers to understand the implications of each error mode. -For destructive SEE, the predominant risk mitigation strategy is to avoid susceptible parts, or if that is not possible. to avoid conditions under which the part may be susceptible. Destructive SEE mechanisms are often not well understood, and testing is slow and expensive, making rate prediction very challenging. (3) Because the consequences of radiation failure and degradation modes depend so critically on the application as well as the component technology, it is essential that radiation, component. design and system engineers work togetherpreferably starting early in the program to ensure critical applications are addressed in time to optimize the probability of mission success.

  9. A Probability Problem from Real Life: The Tire Exploded.

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1993-01-01

    Discusses the probability of seeing a tire explode or disintegrate while traveling down the highway. Suggests that a person observing 10 hours a day would see a failure on the average of once every 300 years. (MVL)

  10. Environmental testing to prevent on-orbit TDRS failures

    NASA Technical Reports Server (NTRS)

    Cutler, Robert M.

    1994-01-01

    Can improved environmental testing prevent on-orbit component failures such as those experienced in the Tracking and Data Relay Satellite (TDRS) constellation? TDRS communications have been available to user spacecraft continuously for over 11 years, during which the five TDRS's placed in orbit have demonstrated their redundancies and robustness by surviving 26 component failures. Nevertheless, additional environmental testing prior to launch could prevent the occurrence of some types of failures, and could help to maintain communication services. Specific testing challenges involve traveling wave tube assemblies (TWTA's) whose lives may decrease with on-off cycling, and heaters that are subject to thermal cycles. The development of test conditions and procedures should account for known thermal variations. Testing may also have the potential to prevent failures in which components such as diplexers have had their lives dramatically shortened because of particle migration in a weightless environment. Reliability modeling could be used to select additional components that could benefit from special testing, but experience shows that this approach has serious limitations. Through knowledge of on-orbit experience, and with advances in testing, communication satellite programs might avoid the occurrence of some types of failures, and extend future spacecraft longevity beyond the current TDRS design life of ten years. However, determining which components to test, and how must testing to do, remain problematical.

  11. Parametric study of the effect of phase anisotropy on the micromechanical behaviour of dentin–adhesive interfaces

    PubMed Central

    Misra, Anil; Spencer, Paulette; Marangos, Orestes; Wang, Yong; Katz, J. Lawrence

    2005-01-01

    A finite element (FE) model has been developed based upon the recently measured micro-scale morphological, chemical and mechanical properties of dentin–adhesive (d–a) interfaces using confocal Raman microspectroscopy and scanning acoustic microscopy (SAM). The results computed from this FE model indicated that the stress distributions and concentrations are affected by the micro-scale elastic properties of various phases composing the d–a interface. However, these computations were performed assuming isotropic material properties for the d–a interface. The d–a interface components, such as the peritubular and intertubular dentin, the partially demineralized dentin and the so-called ‘hybrid layer’ adhesive-collagen composite, are probably anisotropic. In this paper, the FE model is extended to account for the probable anisotropic properties of these d–a interface phases. A parametric study is performed to study the effect of anisotropy on the micromechanical stress distributions in the hybrid layer and the peritubular dentin phases of the d–a interface. It is found that the anisotropy of the phases affects the region and extent of stress concentration as well as the location of the maximum stress concentrations. Thus, the anisotropy of the phases could effect the probable location of failure initiation, whether in the peritubular region or in the hybrid layer. PMID:16849175

  12. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    PubMed Central

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  13. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    PubMed

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  14. The Failure Models of Lead Free Sn-3.0Ag-0.5Cu Solder Joint Reliability Under Low-G and High-G Drop Impact

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Lei, YongPing; Lin, Jian; Fu, HanGuang; Wu, Zhongwei

    2017-02-01

    The reliability of Sn-3.0Ag-0.5Cu (SAC 305) solder joint under a broad level of drop impacts was studied. The failure performance of solder joint, failure probability and failure position were analyzed under two shock test conditions, i.e., 1000 g for 1 ms and 300 g for 2 ms. The stress distribution on the solder joint was calculated by ABAQUS. The results revealed that the dominant reason was the tension due to the difference in stiffness between the print circuit board and ball grid array, and the maximum tension of 121.1 MPa and 31.1 MPa, respectively, under both 1000 g or 300 g drop impact, was focused on the corner of the solder joint which was located in the outmost corner of the solder ball row. The failure modes were summarized into the following four modes: initiation and propagation through the (1) intermetallic compound layer, (2) Ni layer, (3) Cu pad, or (4) Sn-matrix. The outmost corner of the solder ball row had a high failure probability under both 1000 g and 300 g drop impact. The number of failures of solder ball under the 300 g drop impact was higher than that under the 1000 g drop impact. The characteristic drop values for failure were 41 and 15,199, respectively, following the statistics.

  15. Assessing changes in failure probability of dams in a changing climate

    NASA Astrophysics Data System (ADS)

    Mallakpour, I.; AghaKouchak, A.; Moftakhari, H.; Ragno, E.

    2017-12-01

    Dams are crucial infrastructures and provide resilience against hydrometeorological extremes (e.g., droughts and floods). In 2017, California experienced series of flooding events terminating a 5-year drought, and leading to incidents such as structural failure of Oroville Dam's spillway. Because of large socioeconomic repercussions of such incidents, it is of paramount importance to evaluate dam failure risks associated with projected shifts in the streamflow regime. This becomes even more important as the current procedures for design of hydraulic structures (e.g., dams, bridges, spillways) are based on the so-called stationary assumption. Yet, changes in climate are anticipated to result in changes in statistics of river flow (e.g., more extreme floods) and possibly increasing the failure probability of already aging dams. Here, we examine changes in discharge under two representative concentration pathways (RCPs): RCP4.5 and RCP8.5. In this study, we used routed daily streamflow data from ten global climate models (GCMs) in order to investigate possible climate-induced changes in streamflow in northern California. Our results show that while the average flow does not show a significant change, extreme floods are projected to increase in the future. Using the extreme value theory, we estimate changes in the return periods of 50-year and 100-year floods in the current and future climates. Finally, we use the historical and future return periods to quantify changes in failure probability of dams in a warming climate.

  16. Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    Analysis of the material protection, control, and accountability (MPC&A) system is necessary to understand the limits and vulnerabilities of the system to internal threats. A self-appraisal helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. The material control and accountability (MC&A) system effectiveness tool (MSET) fault tree was developed to depict the failure of the MPC&A system as a result of poor practices and random failures in the MC&A system. It can also be employed as a basis for assessing deliberate threats against a facility. MSET uses faultmore » tree analysis, which is a top-down approach to examining system failure. The analysis starts with identifying a potential undesirable event called a 'top event' and then determining the ways it can occur (e.g., 'Fail To Maintain Nuclear Materials Under The Purview Of The MC&A System'). The analysis proceeds by determining how the top event can be caused by individual or combined lower level faults or failures. These faults, which are the causes of the top event, are 'connected' through logic gates. The MSET model uses AND-gates and OR-gates and propagates the effect of event failure using Boolean algebra. To enable the fault tree analysis calculations, the basic events in the fault tree are populated with probability risk values derived by conversion of questionnaire data to numeric values. The basic events are treated as independent variables. This assumption affects the Boolean algebraic calculations used to calculate results. All the necessary calculations are built into the fault tree codes, but it is often useful to estimate the probabilities manually as a check on code functioning. The probability of failure of a given basic event is the probability that the basic event primary question fails to meet the performance metric for that question. The failure probability is related to how well the facility performs the task identified in that basic event over time (not just one performance or exercise). Fault tree calculations provide a failure probability for the top event in the fault tree. The basic fault tree calculations establish a baseline relative risk value for the system. This probability depicts relative risk, not absolute risk. Subsequent calculations are made to evaluate the change in relative risk that would occur if system performance is improved or degraded. During the development effort of MSET, the fault tree analysis program used was SAPHIRE. SAPHIRE is an acronym for 'Systems Analysis Programs for Hands-on Integrated Reliability Evaluations.' Version 1 of the SAPHIRE code was sponsored by the Nuclear Regulatory Commission in 1987 as an innovative way to draw, edit, and analyze graphical fault trees primarily for safe operation of nuclear power reactors. When the fault tree calculations are performed, the fault tree analysis program will produce several reports that can be used to analyze the MPC&A system. SAPHIRE produces reports showing risk importance factors for all basic events in the operational MC&A system. The risk importance information is used to examine the potential impacts when performance of certain basic events increases or decreases. The initial results produced by the SAPHIRE program are considered relative risk values. None of the results can be interpreted as absolute risk values since the basic event probability values represent estimates of risk associated with the performance of MPC&A tasks throughout the material balance area (MBA). The RRR for a basic event represents the decrease in total system risk that would result from improvement of that one event to a perfect performance level. Improvement of the basic event with the greatest RRR value produces a greater decrease in total system risk than improvement of any other basic event. Basic events with the greatest potential for system risk reduction are assigned performance improvement values, and new fault tree calculations show the improvement in total system risk. The operational impact or cost-effectiveness from implementing the performance improvements can then be evaluated. The improvements being evaluated can be system performance improvements, or they can be potential, or actual, upgrades to the system. The RIR for a basic event represents the increase in total system risk that would result from failure of that one event. Failure of the basic event with the greatest RIR value produces a greater increase in total system risk than failure of any other basic event. Basic events with the greatest potential for system risk increase are assigned failure performance values, and new fault tree calculations show the increase in total system risk. This evaluation shows the importance of preventing performance degradation of the basic events. SAPHIRE identifies combinations of basic events where concurrent failure of the events results in failure of the top event.« less

  17. A cost simulation for mammography examinations taking into account equipment failures and resource utilization characteristics.

    PubMed

    Coelli, Fernando C; Almeida, Renan M V R; Pereira, Wagner C A

    2010-12-01

    This work develops a cost analysis estimation for a mammography clinic, taking into account resource utilization and equipment failure rates. Two standard clinic models were simulated, the first with one mammography equipment, two technicians and one doctor, and the second (based on an actually functioning clinic) with two equipments, three technicians and one doctor. Cost data and model parameters were obtained by direct measurements, literature reviews and other hospital data. A discrete-event simulation model was developed, in order to estimate the unit cost (total costs/number of examinations in a defined period) of mammography examinations at those clinics. The cost analysis considered simulated changes in resource utilization rates and in examination failure probabilities (failures on the image acquisition system). In addition, a sensitivity analysis was performed, taking into account changes in the probabilities of equipment failure types. For the two clinic configurations, the estimated mammography unit costs were, respectively, US$ 41.31 and US$ 53.46 in the absence of examination failures. As the examination failures increased up to 10% of total examinations, unit costs approached US$ 54.53 and US$ 53.95, respectively. The sensitivity analysis showed that type 3 (the most serious) failure increases had a very large impact on the patient attendance, up to the point of actually making attendance unfeasible. Discrete-event simulation allowed for the definition of the more efficient clinic, contingent on the expected prevalence of resource utilization and equipment failures. © 2010 Blackwell Publishing Ltd.

  18. Probability and Confidence Trade-space (PACT) Evaluation: Accounting for Uncertainty in Sparing Assessments

    NASA Technical Reports Server (NTRS)

    Anderson, Leif; Box, Neil; Carter, Katrina; DiFilippo, Denise; Harrington, Sean; Jackson, David; Lutomski, Michael

    2012-01-01

    There are two general shortcomings to the current annual sparing assessment: 1. The vehicle functions are currently assessed according to confidence targets, which can be misleading- overly conservative or optimistic. 2. The current confidence levels are arbitrarily determined and do not account for epistemic uncertainty (lack of knowledge) in the ORU failure rate. There are two major categories of uncertainty that impact Sparing Assessment: (a) Aleatory Uncertainty: Natural variability in distribution of actual failures around an Mean Time Between Failure (MTBF) (b) Epistemic Uncertainty : Lack of knowledge about the true value of an Orbital Replacement Unit's (ORU) MTBF We propose an approach to revise confidence targets and account for both categories of uncertainty, an approach we call Probability and Confidence Trade-space (PACT) evaluation.

  19. Hard choices in assessing survival past dams — a comparison of single- and paired-release strategies

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Stich, Daniel S.; Sigourney, Douglas B.

    2017-01-01

    Mark–recapture models are widely used to estimate survival of salmon smolts migrating past dams. Paired releases have been used to improve estimate accuracy by removing components of mortality not attributable to the dam. This method is accompanied by reduced precision because (i) sample size is reduced relative to a single, large release; and (ii) variance calculations inflate error. We modeled an idealized system with a single dam to assess trade-offs between accuracy and precision and compared methods using root mean squared error (RMSE). Simulations were run under predefined conditions (dam mortality, background mortality, detection probability, and sample size) to determine scenarios when the paired release was preferable to a single release. We demonstrate that a paired-release design provides a theoretical advantage over a single-release design only at large sample sizes and high probabilities of detection. At release numbers typical of many survival studies, paired release can result in overestimation of dam survival. Failures to meet model assumptions of a paired release may result in further overestimation of dam-related survival. Under most conditions, a single-release strategy was preferable.

  20. Compounding effects of sea level rise and fluvial flooding.

    PubMed

    Moftakhari, Hamed R; Salvadori, Gianfausto; AghaKouchak, Amir; Sanders, Brett F; Matthew, Richard A

    2017-09-12

    Sea level rise (SLR), a well-documented and urgent aspect of anthropogenic global warming, threatens population and assets located in low-lying coastal regions all around the world. Common flood hazard assessment practices typically account for one driver at a time (e.g., either fluvial flooding only or ocean flooding only), whereas coastal cities vulnerable to SLR are at risk for flooding from multiple drivers (e.g., extreme coastal high tide, storm surge, and river flow). Here, we propose a bivariate flood hazard assessment approach that accounts for compound flooding from river flow and coastal water level, and we show that a univariate approach may not appropriately characterize the flood hazard if there are compounding effects. Using copulas and bivariate dependence analysis, we also quantify the increases in failure probabilities for 2030 and 2050 caused by SLR under representative concentration pathways 4.5 and 8.5. Additionally, the increase in failure probability is shown to be strongly affected by compounding effects. The proposed failure probability method offers an innovative tool for assessing compounding flood hazards in a warming climate.

  1. Statistical Performance Evaluation Of Soft Seat Pressure Relief Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Stephen P.; Gross, Robert E.

    2013-03-26

    Risk-based inspection methods enable estimation of the probability of failure on demand for spring-operated pressure relief valves at the United States Department of Energy's Savannah River Site in Aiken, South Carolina. This paper presents a statistical performance evaluation of soft seat spring operated pressure relief valves. These pressure relief valves are typically smaller and of lower cost than hard seat (metal to metal) pressure relief valves and can provide substantial cost savings in fluid service applications (air, gas, liquid, and steam) providing that probability of failure on demand (the probability that the pressure relief valve fails to perform its intendedmore » safety function during a potentially dangerous over pressurization) is at least as good as that for hard seat valves. The research in this paper shows that the proportion of soft seat spring operated pressure relief valves failing is the same or less than that of hard seat valves, and that for failed valves, soft seat valves typically have failure ratios of proof test pressure to set pressure less than that of hard seat valves.« less

  2. Increasing Compliance of Children with Autism: Effects of Programmed Reinforcement for High-Probability Requests and Varied Inter-Instruction Intervals

    ERIC Educational Resources Information Center

    Pitts, Laura; Dymond, Simon

    2012-01-01

    Research on the high-probability (high-p) request sequence shows that compliance with low-probability (low-p) requests generally increases when preceded by a series of high-p requests. Few studies have conducted formal preference assessments to identify the consequences used for compliance, which may partly explain treatment failures, and still…

  3. Dam failure analysis for the Lago El Guineo Dam, Orocovis, Puerto Rico

    USGS Publications Warehouse

    Gómez-Fragoso, Julieta; Heriberto Torres-Sierra,

    2016-08-09

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed hydrologic and hydraulic analyses to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers.The hydrologic assessment was designed to determine the outflow hydrographs and peak discharges for Lago El Guineo and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation event, (2) a 24-hour probable maximum precipitation event, and (3) a 24-hour, 100-year recurrence rainfall event. The hydraulic study simulated a dam failure of Lago El Guineo Dam using flood hydrographs generated from the hydrologic study. The simulated dam failure generated a hydrograph that was routed downstream from Lago El Guineo Dam through the lower reaches of the Río Toro Negro and the Río Grande de Manatí to determine water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” conditions. The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS) computer programs, developed by the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was completed using the unsteady flow module available in the HEC–RAS model.Above the Lago El Guineo Dam, the simulated inflow peak discharges from HEC–HMS resulted in about 550 and 414 cubic meters per second for the 6- and 24-hour probable maximum precipitation events, respectively. The 24-hour, 100-year recurrence storm simulation resulted in a peak discharge of about 216 cubic meters per second. For the hydrologic analysis, no dam failure conditions are considered within the model. The results of the hydrologic simulations indicated that for all hydrologic conditions scenarios, the Lago El Guineo Dam would not experience overtopping. For the dam breach hydraulic analysis, failure by piping was the selected hypothetical failure mode for the Lago El Guineo Dam.Results from the simulated dam failure of the Lago El Guineo Dam using the HEC–RAS model for the 6- and 24-hour probable maximum precipitation events indicated peak discharges below the dam of 1,342.43 and 1,434.69 cubic meters per second, respectively. Dam failure during the 24-hour, 100-year recurrence rainfall event resulted in a peak discharge directly downstream from Lago El Guineo Dam of 1,183.12 cubic meters per second. Dam failure during sunny-day conditions (no precipitation) produced a peak discharge at Lago El Guineo Dam of 1,015.31 cubic meters per second assuming the initial water-surface elevation was at the morning-glory spillway invert elevation.The results of the hydraulic analysis indicate that the flood would extend to many inhabited areas along the stream banks from the Lago El Guineo Dam to the mouth of the Río Grande as a result of the simulated failure of the Lago El Guineo Dam. Low-lying regions in the vicinity of Ciales, Manatí, and Barceloneta, Puerto Rico, are among the regions that would be most affected by failure of the Lago El Guineo Dam. Effects of the flood control (levee) structure constructed in 2000 to provide protection to the low-lying populated areas of Barceloneta, Puerto Rico, were considered in the hydraulic analysis of dam failure. The results indicate that overtopping can be expected in the aforementioned levee during 6- and 24-hour probable maximum precipitation events. The levee was not overtopped during dam failure scenarios under the 24-hour, 100-year recurrence rainfall event or sunny-day conditions.

  4. A dual-mode generalized likelihood ratio approach to self-reorganizing digital flight control system design

    NASA Technical Reports Server (NTRS)

    Bueno, R.; Chow, E.; Gershwin, S. B.; Willsky, A. S.

    1975-01-01

    The research is reported on the problems of failure detection and reliable system design for digital aircraft control systems. Failure modes, cross detection probability, wrong time detection, application of performance tools, and the GLR computer package are discussed.

  5. A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities

    USGS Publications Warehouse

    Ellsworth, William L.; Matthews, Mark V.; Nadeau, Robert M.; Nishenko, Stuart P.; Reasenberg, Paul A.; Simpson, Robert W.

    1999-01-01

    A physically-motivated model for earthquake recurrence based on the Brownian relaxation oscillator is introduced. The renewal process defining this point process model can be described by the steady rise of a state variable from the ground state to failure threshold as modulated by Brownian motion. Failure times in this model follow the Brownian passage time (BPT) distribution, which is specified by the mean time to failure, μ, and the aperiodicity of the mean, α (equivalent to the familiar coefficient of variation). Analysis of 37 series of recurrent earthquakes, M -0.7 to 9.2, suggests a provisional generic value of α = 0.5. For this value of α, the hazard function (instantaneous failure rate of survivors) exceeds the mean rate for times > μ⁄2, and is ~ ~ 2 ⁄ μ for all times > μ. Application of this model to the next M 6 earthquake on the San Andreas fault at Parkfield, California suggests that the annual probability of the earthquake is between 1:10 and 1:13.

  6. Risk Analysis using Corrosion Rate Parameter on Gas Transmission Pipeline

    NASA Astrophysics Data System (ADS)

    Sasikirono, B.; Kim, S. J.; Haryadi, G. D.; Huda, A.

    2017-05-01

    In the oil and gas industry, the pipeline is a major component in the transmission and distribution process of oil and gas. Oil and gas distribution process sometimes performed past the pipeline across the various types of environmental conditions. Therefore, in the transmission and distribution process of oil and gas, a pipeline should operate safely so that it does not harm the surrounding environment. Corrosion is still a major cause of failure in some components of the equipment in a production facility. In pipeline systems, corrosion can cause failures in the wall and damage to the pipeline. Therefore it takes care and periodic inspections or checks on the pipeline system. Every production facility in an industry has a level of risk for damage which is a result of the opportunities and consequences of damage caused. The purpose of this research is to analyze the level of risk of 20-inch Natural Gas Transmission Pipeline using Risk-based inspection semi-quantitative based on API 581 associated with the likelihood of failure and the consequences of the failure of a component of the equipment. Then the result is used to determine the next inspection plans. Nine pipeline components were observed, such as a straight pipes inlet, connection tee, and straight pipes outlet. The risk assessment level of the nine pipeline’s components is presented in a risk matrix. The risk level of components is examined at medium risk levels. The failure mechanism that is used in this research is the mechanism of thinning. Based on the results of corrosion rate calculation, remaining pipeline components age can be obtained, so the remaining lifetime of pipeline components are known. The calculation of remaining lifetime obtained and the results vary for each component. Next step is planning the inspection of pipeline components by NDT external methods.

  7. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings.

    PubMed

    Schierjott, Ronja A; Giurea, Alexander; Neuhaus, Hans-Joachim; Schwiesau, Jens; Pfaff, Andreas M; Utzschneider, Sandra; Tozzi, Gianluca; Grupp, Thomas M

    2016-01-01

    Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  8. Disasters as a necessary part of benefit-cost analyses.

    PubMed

    Mark, R K; Stuart-Alexander, D E

    1977-09-16

    Benefit-cost analyses for water projects generally have not included the expected costs (residual risk) of low-probability disasters such as dam failures, impoundment-induced earthquakes, and landslides. Analysis of the history of these types of events demonstrates that dam failures are not uncommon and that the probability of a reservoir-triggered earth-quake increases with increasing reservoir depth. Because the expected costs from such events can be significant and risk is project-specific, estimates should be made for each project. The cost of expected damage from a "high-risk" project in an urban area could be comparable to project benefits.

  9. Postflight analysis of the single-axis acoustic system on SPAR VI and recommendations for future flights

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Oran, W. A.; Whymark, R. R.; Rey, C.

    1981-01-01

    The single axis acoustic levitator that was flown on SPAR VI malfunctioned. The results of a series of tests, analyses, and investigation of hypotheses that were undertaken to determine the probable cause of failure are presented, together with recommendations for future flights of the apparatus. The most probable causes of the SPAR VI failure were lower than expected sound intensity due to mechanical degradation of the sound source, and an unexpected external force that caused the experiment sample to move radially and eventually be lost from the acoustic energy well.

  10. A Brownian model for recurrent earthquakes

    USGS Publications Warehouse

    Matthews, M.V.; Ellsworth, W.L.; Reasenberg, P.A.

    2002-01-01

    We construct a probability model for rupture times on a recurrent earthquake source. Adding Brownian perturbations to steady tectonic loading produces a stochastic load-state process. Rupture is assumed to occur when this process reaches a critical-failure threshold. An earthquake relaxes the load state to a characteristic ground level and begins a new failure cycle. The load-state process is a Brownian relaxation oscillator. Intervals between events have a Brownian passage-time distribution that may serve as a temporal model for time-dependent, long-term seismic forecasting. This distribution has the following noteworthy properties: (1) the probability of immediate rerupture is zero; (2) the hazard rate increases steadily from zero at t = 0 to a finite maximum near the mean recurrence time and then decreases asymptotically to a quasi-stationary level, in which the conditional probability of an event becomes time independent; and (3) the quasi-stationary failure rate is greater than, equal to, or less than the mean failure rate because the coefficient of variation is less than, equal to, or greater than 1/???2 ??? 0.707. In addition, the model provides expressions for the hazard rate and probability of rupture on faults for which only a bound can be placed on the time of the last rupture. The Brownian relaxation oscillator provides a connection between observable event times and a formal state variable that reflects the macromechanics of stress and strain accumulation. Analysis of this process reveals that the quasi-stationary distance to failure has a gamma distribution, and residual life has a related exponential distribution. It also enables calculation of "interaction" effects due to external perturbations to the state, such as stress-transfer effects from earthquakes outside the target source. The influence of interaction effects on recurrence times is transient and strongly dependent on when in the loading cycle step pertubations occur. Transient effects may be much stronger than would be predicted by the "clock change" method and characteristically decay inversely with elapsed time after the perturbation.

  11. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis.

    PubMed

    Bordin, Dimorvan; Bergamo, Edmara T P; Fardin, Vinicius P; Coelho, Paulo G; Bonfante, Estevam A

    2017-07-01

    To assess the probability of survival (reliability) and failure modes of narrow implants with different diameters. For fatigue testing, 42 implants with the same macrogeometry and internal conical connection were divided, according to diameter, as follows: narrow (Ø3.3×10mm) and extra-narrow (Ø2.9×10mm) (21 per group). Identical abutments were torqued to the implants and standardized maxillary incisor crowns were cemented and subjected to step-stress accelerated life testing (SSALT) in water. The use-level probability Weibull curves, and reliability for a mission of 50,000 and 100,000 cycles at 50N, 100, 150 and 180N were calculated. For the finite element analysis (FEA), two virtual models, simulating the samples tested in fatigue, were constructed. Loading at 50N and 100N were applied 30° off-axis at the crown. The von-Mises stress was calculated for implant and abutment. The beta (β) values were: 0.67 for narrow and 1.32 for extra-narrow implants, indicating that failure rates did not increase with fatigue in the former, but more likely were associated with damage accumulation and wear-out failures in the latter. Both groups showed high reliability (up to 97.5%) at 50 and 100N. A decreased reliability was observed for both groups at 150 and 180N (ranging from 0 to 82.3%), but no significant difference was observed between groups. Failure predominantly involved abutment fracture for both groups. FEA at 50N-load, Ø3.3mm showed higher von-Mises stress for abutment (7.75%) and implant (2%) when compared to the Ø2.9mm. There was no significant difference between narrow and extra-narrow implants regarding probability of survival. The failure mode was similar for both groups, restricted to abutment fracture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Reliability and Probabilistic Risk Assessment - How They Play Together

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal; Stutts, Richard; Huang, Zhaofeng

    2015-01-01

    Since the Space Shuttle Challenger accident in 1986, NASA has extensively used probabilistic analysis methods to assess, understand, and communicate the risk of space launch vehicles. Probabilistic Risk Assessment (PRA), used in the nuclear industry, is one of the probabilistic analysis methods NASA utilizes to assess Loss of Mission (LOM) and Loss of Crew (LOC) risk for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability distributions to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: 1) what can go wrong that would lead to loss or degraded performance (i.e., scenarios involving undesired consequences of interest), 2) how likely is it (probabilities), and 3) what is the severity of the degradation (consequences). Since the Challenger accident, PRA has been used in supporting decisions regarding safety upgrades for launch vehicles. Another area that was given a lot of emphasis at NASA after the Challenger accident is reliability engineering. Reliability engineering has been a critical design function at NASA since the early Apollo days. However, after the Challenger accident, quantitative reliability analysis and reliability predictions were given more scrutiny because of their importance in understanding failure mechanism and quantifying the probability of failure, which are key elements in resolving technical issues, performing design trades, and implementing design improvements. Although PRA and reliability are both probabilistic in nature and, in some cases, use the same tools, they are two different activities. Specifically, reliability engineering is a broad design discipline that deals with loss of function and helps understand failure mechanism and improve component and system design. PRA is a system scenario based risk assessment process intended to assess the risk scenarios that could lead to a major/top undesirable system event, and to identify those scenarios that are high-risk drivers. PRA output is critical to support risk informed decisions concerning system design. This paper describes the PRA process and the reliability engineering discipline in detail. It discusses their differences and similarities and how they work together as complementary analyses to support the design and risk assessment processes. Lessons learned, applications, and case studies in both areas are also discussed in the paper to demonstrate and explain these differences and similarities.

  13. Fishnet model for failure probability tail of nacre-like imbricated lamellar materials

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bažant, Zdeněk P.

    2017-12-01

    Nacre, the iridescent material of the shells of pearl oysters and abalone, consists mostly of aragonite (a form of CaCO3), a brittle constituent of relatively low strength (≈10 MPa). Yet it has astonishing mean tensile strength (≈150 MPa) and fracture energy (≈350 to 1,240 J/m2). The reasons have recently become well understood: (i) the nanoscale thickness (≈300 nm) of nacre's building blocks, the aragonite lamellae (or platelets), and (ii) the imbricated, or staggered, arrangement of these lamellea, bound by biopolymer layers only ≈25 nm thick, occupying <5% of volume. These properties inspire manmade biomimetic materials. For engineering applications, however, the failure probability of ≤10-6 is generally required. To guarantee it, the type of probability density function (pdf) of strength, including its tail, must be determined. This objective, not pursued previously, is hardly achievable by experiments alone, since >10^8 tests of specimens would be needed. Here we outline a statistical model of strength that resembles a fishnet pulled diagonally, captures the tail of pdf of strength and, importantly, allows analytical safety assessments of nacreous materials. The analysis shows that, in terms of safety, the imbricated lamellar structure provides a major additional advantage—˜10% strength increase at tail failure probability 10^-6 and a 1 to 2 orders of magnitude tail probability decrease at fixed stress. Another advantage is that a high scatter of microstructure properties diminishes the strength difference between the mean and the probability tail, compared with the weakest link model. These advantages of nacre-like materials are here justified analytically and supported by millions of Monte Carlo simulations.

  14. Effect of Progressive Heart Failure on Cerebral Hemodynamics and Monoamine Metabolism in CNS.

    PubMed

    Mamalyga, M L; Mamalyga, L M

    2017-07-01

    Compensated and decompensated heart failure are characterized by different associations of disorders in the brain and heart. In compensated heart failure, the blood flow in the common carotid and basilar arteries does not change. Exacerbation of heart failure leads to severe decompensation and is accompanied by a decrease in blood flow in the carotid and basilar arteries. Changes in monoamine content occurring in the brain at different stages of heart failure are determined by various factors. The functional exercise test showed unequal monoamine-synthesizing capacities of the brain in compensated and decompensated heart failure. Reduced capacity of the monoaminergic systems in decompensated heart failure probably leads to overstrain of the central regulatory mechanisms, their gradual exhaustion, and failure of the compensatory mechanisms, which contributes to progression of heart failure.

  15. Enhanced Component Performance Study: Motor-Driven Pumps 1998–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2016-02-01

    This report presents an enhanced performance evaluation of motor-driven pumps at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The motor-driven pump failure modes considered for standby systems are failure to start, failure to run less than or equal to one hour, and failure to run more than one hour; for normally running systems, the failure modes considered are failure to start and failure tomore » run. An eight hour unreliability estimate is also calculated and trended. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified in pump run hours per reactor year. Statistically significant decreasing trends were identified for standby systems industry-wide frequency of start demands, and run hours per reactor year for runs of less than or equal to one hour.« less

  16. A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure.

    PubMed

    Rodrigues, Samantha A; Thambyah, Ashvin; Broom, Neil D

    2015-03-01

    The annulus-endplate anchorage system performs a critical role in the disc, creating a strong structural link between the compliant annulus and the rigid vertebrae. Endplate failure is thought to be associated with disc herniation, a recent study indicating that this failure mode occurs more frequently than annular rupture. The aim was to investigate the structural principles governing annulus-endplate anchorage and the basis of its strength and mechanisms of failure. Loading experiments were performed on ovine lumbar motion segments designed to induce annulus-endplate failure, followed by macro- to micro- to fibril-level structural analyses. The study was funded by a doctoral scholarship from our institution. Samples were loaded to failure in three modes: torsion using intact motion segments, in-plane tension of the anterior annulus-endplate along one of the oblique fiber angles, and axial tension of the anterior annulus-endplate. The anterior region was chosen for its ease of access. Decalcification was used to investigate the mechanical influence of the mineralized component. Structural analysis was conducted on both the intact and failed samples using differential interference contrast optical microscopy and scanning electron microscopy. Two main modes of anchorage failure were observed--failure at the tidemark or at the cement line. Samples subjected to axial tension contained more tidemark failures compared with those subjected to torsion and in-plane tension. Samples decalcified before testing frequently contained damage at the cement line, this being more extensive than in fresh samples. Analysis of the intact samples at their anchorage sites revealed that annular subbundle fibrils penetrate beyond the cement line to a limited depth and appear to merge with those in the vertebral and cartilaginous endplates. Annulus-endplate anchorage is more vulnerable to failure in axial tension compared with both torsion and in-plane tension and is probably due to acute fiber bending at the soft-hard interface of the tidemark. This finding is consistent with evidence showing that flexion, which induces a similar pattern of axial tension, increases the risk of herniation involving endplate failure. The study also highlights the important strengthening role of calcification at this junction and provides new evidence of a fibril-based form of structural integration across the cement line. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  18. Reliability analysis of redundant systems. [a method to compute transition probabilities

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1974-01-01

    A method is proposed to compute the transition probability (the probability of partial or total failure) of parallel redundant system. The effect of geometry of the system, the direction of load, and the degree of redundancy on the probability of complete survival of parachute-like system are also studied. The results show that the probability of complete survival of three-member parachute-like system is very sensitive to the variation of horizontal angle of the load. However, it becomes very insignificant as the degree of redundancy increases.

  19. CPLOAS_2 User Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sallaberry, Cedric Jean-Marie; Helton, Jon C.

    2015-05-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high - consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to d eactivate the entire system before the SL system fails (i.e., degrades into a configurationmore » that could allow an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). This report describes the Fortran 90 program CPLOAS_2 that implements the following representations for PLOAS for situations in which both link physical properties and link failure properties are time - dependent: (i) failure of all SLs before failure of any WL, (ii) failure of any SL before f ailure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS can be included in the calculations performed by CPLOAS_2. Keywords: Aleatory uncertainty, CPLOAS_2, Epistemic uncertainty, Probability of loss of assured safety, Strong link, Uncertainty analysis, Weak link« less

  20. Studies on Automobile Clutch Release Bearing Characteristics with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Guoliang; Chen, Xiaoyang

    Automobile clutch release bearings are important automotive driveline components. For the clutch release bearing, early fatigue failure diagnosis is significant, but the early fatigue failure response signal is not obvious, because failure signals are susceptible to noise on the transmission path and to working environment factors such as interference. With an improvement in vehicle design, clutch release bearing fatigue life indicators have increasingly become an important requirement. Contact fatigue is the main failure mode of release rolling bearing components. Acoustic emission techniques in contact fatigue failure detection have unique advantages, which include highly sensitive nondestructive testing methods. In the acoustic emission technique to detect a bearing, signals are collected from multiple sensors. Each signal contains partial fault information, and there is overlap between the signals' fault information. Therefore, the sensor signals receive simultaneous source information integration is complete fragment rolling bearing fault acoustic emission signal, which is the key issue of accurate fault diagnosis. Release bearing comprises the following components: the outer ring, inner ring, rolling ball, cage. When a failure occurs (such as cracking, pitting), the other components will impact damaged point to produce acoustic emission signal. Release bearings mainly emit an acoustic emission waveform with a Rayleigh wave propagation. Elastic waves emitted from the sound source, and it is through the part surface bearing scattering. Dynamic simulation of rolling bearing failure will contribute to a more in-depth understanding of the characteristics of rolling bearing failure, because monitoring and fault diagnosis of rolling bearings provide a theoretical basis and foundation.

  1. Variations of electric resistance and H2 and Rn emissions of concrete blocks under increasing uniaxial compression

    USGS Publications Warehouse

    King, C.-Y.; Luo, G.

    1990-01-01

    Electric resistance and emissions of hydrogen and radon isotopes of concrete (which is somewhat similar to fault-zone materials) under increasing uniaxial compression were continuously monitored to check whether they show any pre- and post-failure changes that may correspond to similar changes reported for earthquakes. The results show that all these parameters generally begin to increase when the applied stresses reach 20% to 90% of the corresponding failure stresses, probably due to the occurrence and growth of dilatant microcracks in the specimens. The prefailure changes have different patterns for different specimens, probably because of differences in spatial and temporal distributions of the microcracks. The resistance shows large co-failure increases, and the gas emissions show large post-failure increases. The post-failure increase of radon persists longer and stays at a higher level than that of hydrogen, suggesting a difference in the emission mechanisms for these two kinds of gases. The H2 increase may be mainly due to chemical reaction at the crack surfaces while they are fresh, whereas the Rn increases may be mainly the result of the increased emanation area of such surfaces. The results suggest that monitoring of resistivity and gas emissions may be useful for predicting earthquakes and failures of concrete structures. ?? 1990 Birkha??user Verlag.

  2. Advances on the Failure Analysis of the Dam-Foundation Interface of Concrete Dams.

    PubMed

    Altarejos-García, Luis; Escuder-Bueno, Ignacio; Morales-Torres, Adrián

    2015-12-02

    Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern.

  3. Prognostic Factors in Severe Chagasic Heart Failure

    PubMed Central

    Costa, Sandra de Araújo; Rassi, Salvador; Freitas, Elis Marra da Madeira; Gutierrez, Natália da Silva; Boaventura, Fabiana Miranda; Sampaio, Larissa Pereira da Costa; Silva, João Bastista Masson

    2017-01-01

    Background Prognostic factors are extensively studied in heart failure; however, their role in severe Chagasic heart failure have not been established. Objectives To identify the association of clinical and laboratory factors with the prognosis of severe Chagasic heart failure, as well as the association of these factors with mortality and survival in a 7.5-year follow-up. Methods 60 patients with severe Chagasic heart failure were evaluated regarding the following variables: age, blood pressure, ejection fraction, serum sodium, creatinine, 6-minute walk test, non-sustained ventricular tachycardia, QRS width, indexed left atrial volume, and functional class. Results 53 (88.3%) patients died during follow-up, and 7 (11.7%) remained alive. Cumulative overall survival probability was approximately 11%. Non-sustained ventricular tachycardia (HR = 2.11; 95% CI: 1.04 - 4.31; p<0.05) and indexed left atrial volume ≥ 72 mL/m2 (HR = 3.51; 95% CI: 1.63 - 7.52; p<0.05) were the only variables that remained as independent predictors of mortality. Conclusions The presence of non-sustained ventricular tachycardia on Holter and indexed left atrial volume > 72 mL/m2 are independent predictors of mortality in severe Chagasic heart failure, with cumulative survival probability of only 11% in 7.5 years. PMID:28443956

  4. Advances on the Failure Analysis of the Dam—Foundation Interface of Concrete Dams

    PubMed Central

    Altarejos-García, Luis; Escuder-Bueno, Ignacio; Morales-Torres, Adrián

    2015-01-01

    Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern. PMID:28793709

  5. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Robert F.; Hukerikar, Saurabh

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  6. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  7. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE PAGES

    Lucas, Robert F.; Hukerikar, Saurabh

    2016-05-26

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  8. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    NASA Technical Reports Server (NTRS)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  9. Uncemented glenoid component in total shoulder arthroplasty. Survivorship and outcomes.

    PubMed

    Martin, Scott David; Zurakowski, David; Thornhill, Thomas S

    2005-06-01

    Glenoid component loosening continues to be a major factor affecting the long-term survivorship of total shoulder replacements. Radiolucent lines, cement fracture, migration, and loosening requiring revision are common problems with cemented glenoid components. The purpose of this study was to evaluate the results of total shoulder arthroplasty with an uncemented glenoid component and to identify predictors of glenoid component failure. One hundred and forty-seven consecutive total shoulder arthroplasties were performed in 132 patients (mean age, 63.3 years) with use of an uncemented glenoid component fixed with screws between 1988 and 1996. One hundred and forty shoulders in 124 patients were available for follow-up at an average of 7.5 years. One shoulder in which the arthroplasty had failed at 2.4 years and for which the duration of follow-up was four years was also included for completeness. The preoperative diagnoses included osteoarthritis in seventy-two shoulders and rheumatoid arthritis in fifty-five. Radiolucency was noted around the glenoid component and/or screws in fifty-three of the 140 shoulders. The mean modified ASES (American Shoulder and Elbow Surgeons) score (and standard deviation) improved from 15.6 +/- 11.8 points preoperatively to 75.8 +/- 17.5 points at the time of follow-up. Eighty-five shoulders were not painful, forty-two were slightly or mildly painful, ten were moderately painful, and three were severely painful. Fifteen (11%) of the glenoid components failed clinically, and ten of them also had radiographic signs of failure. Eleven other shoulders had radiographic signs of failure but no symptoms at the time of writing. Three factors had a significant independent association with clinical failure: male gender (p = 0.02), pain (p < 0.01), and radiolucency adjacent to the flat tray (p < 0.001). In addition, the annual risk of implant revision was nearly seven times higher for patients with radiographic signs of failure. Clinical survivorship was 95% at five years and 85% at ten years. The failure rates of the total shoulder arthroplasties in this study were higher than those in previously reported studies of cemented polyethylene components with similar durations of follow-up. Screw breakage and excessive polyethylene wear were common problems that may lead to additional failures of these uncemented glenoid components in the future.

  10. Human versus automation in responding to failures: an expected-value analysis

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.; Parasuraman, R.

    2000-01-01

    A simple analytical criterion is provided for deciding whether a human or automation is best for a failure detection task. The method is based on expected-value decision theory in much the same way as is signal detection. It requires specification of the probabilities of misses (false negatives) and false alarms (false positives) for both human and automation being considered, as well as factors independent of the choice--namely, costs and benefits of incorrect and correct decisions as well as the prior probability of failure. The method can also serve as a basis for comparing different modes of automation. Some limiting cases of application are discussed, as are some decision criteria other than expected value. Actual or potential applications include the design and evaluation of any system in which either humans or automation are being considered.

  11. (n, N) type maintenance policy for multi-component systems with failure interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoqi; Wu, Su; Li, Binfeng; Lee, Seungchul

    2015-04-01

    This paper studies maintenance policies for multi-component systems in which failure interactions and opportunistic maintenance (OM) involve. This maintenance problem can be formulated as a Markov decision process (MDP). However, since an action set and state space in MDP exponentially expand as the number of components increase, traditional approaches are computationally intractable. To deal with curse of dimensionality, we decompose such a multi-component system into mutually influential single-component systems. Each single-component system is formulated as an MDP with the objective of minimising its long-run average maintenance cost. Under some reasonable assumptions, we prove the existence of the optimal (n, N) type policy for a single-component system. An algorithm to obtain the optimal (n, N) type policy is also proposed. Based on the proposed algorithm, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that failure interactions and OM pose significant effects on a maintenance policy.

  12. Failure detection in high-performance clusters and computers using chaotic map computations

    DOEpatents

    Rao, Nageswara S.

    2015-09-01

    A programmable media includes a processing unit capable of independent operation in a machine that is capable of executing 10.sup.18 floating point operations per second. The processing unit is in communication with a memory element and an interconnect that couples computing nodes. The programmable media includes a logical unit configured to execute arithmetic functions, comparative functions, and/or logical functions. The processing unit is configured to detect computing component failures, memory element failures and/or interconnect failures by executing programming threads that generate one or more chaotic map trajectories. The central processing unit or graphical processing unit is configured to detect a computing component failure, memory element failure and/or an interconnect failure through an automated comparison of signal trajectories generated by the chaotic maps.

  13. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lybeck; B. Pham; M. Tawfik

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure,more » and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and maintenance support. Each product is briefly described in Appendix A. Selection of the most appropriate software package for a particular application will depend on the chosen component, system, or structure. Ongoing research will determine the most appropriate choices for a successful demonstration of PHM systems in aging NPPs.« less

  14. Brief followup report: Does high-flexion total knee arthroplasty allow deep flexion safely in Asian patients?

    PubMed

    Han, Hyuk-Soo; Kang, Seung-Baik

    2013-05-01

    The long-term survivorship of TKA in Asian countries is comparable to that in Western countries. High-flexion TKA designs were introduced to improve flexion after TKA. However, several studies suggest high-flexion designs are at greater risk of femoral component loosening compared with conventional TKA designs. We previously reported a revision rate of 21% at 11 to 45 months; this report is intended as a followup to that study. Do implant survival and function decrease with time and do high-flexion activities increase the risk of premature failure? We prospectively followed 72 Nexgen LPS-flex fixed TKAs in 47 patients implanted by a single surgeon between March 2003 and September 2004. We determined the probability of survival using revision as an end point and compared survival between those who could and those who could not perform high-flexion activities. Minimum followup was 0.9 years (median, 6.5 years; range, 0.9-8.6 years). Twenty-five patients (33 knees) underwent revision for aseptic loosening of the femoral component at a mean of 4 years (range, 1-8 years). The probability of revision-free survival for aseptic loosening was 67% and 52% at 5 and 8 years, respectively. Eight-year cumulative survivorship was lower in patients capable of squatting, kneeling, or sitting crosslegged (31% compared with 78%). There were no differences in the pre- and postoperative mean Hospital for Special Surgery scores and maximum knee flexion degrees whether or not high-flexion activities could be achieved. Overall midterm high-flexion TKA survival in our Asian cohort was lower than that of conventional and other high-flexion designs. This unusually high rate of femoral component loosening was associated with postoperative high-flexion activities.

  15. Alternative electrical distribution system architectures for automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afridi, K.K.; Tabors, R.D.; Kassakian, J.G.

    At present most automobiles use a 12 V electrical system with point-to-point wiring. The capability of this architecture in meeting the needs of future electrical loads is questionable. Furthermore, with the development of electric vehicles (EVs) there is a greater need for a better architecture. In this paper the authors outline the limitations of the conventional architecture and identify alternatives. They also present a multi-attribute trade-off methodology which compares these alternatives, and identifies a set of Pareto optimal architectures. The system attributes traded off are cost, weight, losses and probability of failure. These are calculated by a computer program thatmore » has built-in component attribute models. System attributes of a few dozen architectures are also reported and the results analyzed. 17 refs.« less

  16. Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.

    1992-01-01

    The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.

  17. A hierarchical approach to reliability modeling of fault-tolerant systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gossman, W. E.

    1986-01-01

    A methodology for performing fault tolerant system reliability analysis is presented. The method decomposes a system into its subsystems, evaluates vent rates derived from the subsystem's conditional state probability vector and incorporates those results into a hierarchical Markov model of the system. This is done in a manner that addresses failure sequence dependence associated with the system's redundancy management strategy. The method is derived for application to a specific system definition. Results are presented that compare the hierarchical model's unreliability prediction to that of a more complicated tandard Markov model of the system. The results for the example given indicate that the hierarchical method predicts system unreliability to a desirable level of accuracy while achieving significant computational savings relative to component level Markov model of the system.

  18. Forgetting induced speeding: Can prospective memory failure account for drivers exceeding the speed limit?

    PubMed

    Bowden, Vanessa K; Visser, Troy A W; Loft, Shayne

    2017-06-01

    It is generally assumed that drivers speed intentionally because of factors such as frustration with the speed limit or general impatience. The current study examined whether speeding following an interruption could be better explained by unintentional prospective memory (PM) failure. In these situations, interrupting drivers may create a PM task, with speeding the result of drivers forgetting their newly encoded intention to travel at a lower speed after interruption. Across 3 simulated driving experiments, corrected or uncorrected speeding in recently reduced speed zones (from 70 km/h to 40 km/h) increased on average from 8% when uninterrupted to 33% when interrupted. Conversely, the probability that participants traveled under their new speed limit in recently increased speed zones (from 40 km/h to 70 km/h) increased from 1% when uninterrupted to 23% when interrupted. Consistent with a PM explanation, this indicates that interruptions lead to a general failure to follow changed speed limits, not just to increased speeding. Further testing a PM explanation, Experiments 2 and 3 manipulated variables expected to influence the probability of PM failures and subsequent speeding after interruptions. Experiment 2 showed that performing a cognitively demanding task during the interruption, when compared with unfilled interruptions, increased the probability of initially speeding from 1% to 11%, but that participants were able to correct (reduce) their speed. In Experiment 3, providing participants with 10s longer to encode the new speed limit before interruption decreased the probability of uncorrected speeding after an unfilled interruption from 30% to 20%. Theoretical implications and implications for road design interventions are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. neutron-Induced Failures in semiconductor Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wender, Stephen Arthur

    2017-03-13

    Single Event Effects are a very significant failure mode in modern semiconductor devices that may limit their reliability. Accelerated testing is important for semiconductor industry. Considerable more work is needed in this field to mitigate the problem. Mitigation of this problem will probably come from Physicists and Electrical Engineers working together

  20. 14 CFR 29.729 - Retracting mechanism.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 29.777 and 29.779. (g...

  1. 14 CFR 27.729 - Retracting mechanism.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 27.777 and 27.779. (g...

  2. 14 CFR 29.729 - Retracting mechanism.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 29.777 and 29.779. (g...

  3. 14 CFR 27.729 - Retracting mechanism.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 27.777 and 27.779. (g...

  4. 14 CFR 29.729 - Retracting mechanism.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 29.777 and 29.779. (g...

  5. 14 CFR 29.729 - Retracting mechanism.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 29.777 and 29.779. (g...

  6. 14 CFR 27.729 - Retracting mechanism.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 27.777 and 27.779. (g...

  7. 14 CFR 27.729 - Retracting mechanism.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 27.777 and 27.779. (g...

  8. 14 CFR 27.729 - Retracting mechanism.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 27.777 and 27.779. (g...

  9. 14 CFR 29.729 - Retracting mechanism.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... loads occurring during retraction and extension at any airspeed up to the design maximum landing gear... of— (1) Any reasonably probable failure in the normal retraction system; or (2) The failure of any... location and operation of the retraction control must meet the requirements of §§ 29.777 and 29.779. (g...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeida, Mohamed S.; Mitchell, Scott A.; Swiler, Laura P.

    We introduce a novel technique, POF-Darts, to estimate the Probability Of Failure based on random disk-packing in the uncertain parameter space. POF-Darts uses hyperplane sampling to explore the unexplored part of the uncertain space. We use the function evaluation at a sample point to determine whether it belongs to failure or non-failure regions, and surround it with a protection sphere region to avoid clustering. We decompose the domain into Voronoi cells around the function evaluations as seeds and choose the radius of the protection sphere depending on the local Lipschitz continuity. As sampling proceeds, regions uncovered with spheres will shrink,more » improving the estimation accuracy. After exhausting the function evaluation budget, we build a surrogate model using the function evaluations associated with the sample points and estimate the probability of failure by exhaustive sampling of that surrogate. In comparison to other similar methods, our algorithm has the advantages of decoupling the sampling step from the surrogate construction one, the ability to reach target POF values with fewer samples, and the capability of estimating the number and locations of disconnected failure regions, not just the POF value. Furthermore, we present various examples to demonstrate the efficiency of our novel approach.« less

  11. Groundwater contamination from waste management sites: The interaction between risk-based engineering design and regulatory policy: 1. Methodology

    NASA Astrophysics Data System (ADS)

    Massmann, Joel; Freeze, R. Allan

    1987-02-01

    This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While the framework is quite general, the development in this paper is specifically suited for a landfill in which the primary design feature is one or more synthetic liners in parallel. Contamination is brought about by the release of a single, inorganic nonradioactive species into a saturated, high-permeability, advective, steady state horizontal flow system which can be analyzed with a two-dimensional analysis. It is possible to carry out sensitivity analyses for a wide variety of influences on this system, including landfill size, liner design, hydrogeological parameters, amount of exploration, extent of monitoring network, nature of remedial schemes, economic factors, and regulatory policy.

  12. A method for producing digital probabilistic seismic landslide hazard maps

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Michael, J.A.

    2000-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include: (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24 000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10 m grid spacing using ARC/INFO GIS software on a UNIX computer. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure. ?? 2000 Elsevier Science B.V. All rights reserved.

  13. A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area

    USGS Publications Warehouse

    Jibson, Randall W.; Harp, Edwin L.; Michael, John A.

    1998-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24,000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10-m grid spacing in the ARC/INFO GIS platform. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.

  14. Risk factors for the treatment outcome of retreated pulmonary tuberculosis patients in China: an optimized prediction model.

    PubMed

    Wang, X-M; Yin, S-H; Du, J; Du, M-L; Wang, P-Y; Wu, J; Horbinski, C M; Wu, M-J; Zheng, H-Q; Xu, X-Q; Shu, W; Zhang, Y-J

    2017-07-01

    Retreatment of tuberculosis (TB) often fails in China, yet the risk factors associated with the failure remain unclear. To identify risk factors for the treatment failure of retreated pulmonary tuberculosis (PTB) patients, we analyzed the data of 395 retreated PTB patients who received retreatment between July 2009 and July 2011 in China. PTB patients were categorized into 'success' and 'failure' groups by their treatment outcome. Univariable and multivariable logistic regression were used to evaluate the association between treatment outcome and socio-demographic as well as clinical factors. We also created an optimized risk score model to evaluate the predictive values of these risk factors on treatment failure. Of 395 patients, 99 (25·1%) were diagnosed as retreatment failure. Our results showed that risk factors associated with treatment failure included drug resistance, low education level, low body mass index (6 months), standard treatment regimen, retreatment type, positive culture result after 2 months of treatment, and the place where the first medicine was taken. An Optimized Framingham risk model was then used to calculate the risk scores of these factors. Place where first medicine was taken (temporary living places) received a score of 6, which was highest among all the factors. The predicted probability of treatment failure increases as risk score increases. Ten out of 359 patients had a risk score >9, which corresponded to an estimated probability of treatment failure >70%. In conclusion, we have identified multiple clinical and socio-demographic factors that are associated with treatment failure of retreated PTB patients. We also created an optimized risk score model that was effective in predicting the retreatment failure. These results provide novel insights for the prognosis and improvement of treatment for retreated PTB patients.

  15. A Competing Risk Model of First Failure Site after Definitive Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer.

    PubMed

    Nygård, Lotte; Vogelius, Ivan R; Fischer, Barbara M; Kjær, Andreas; Langer, Seppo W; Aznar, Marianne C; Persson, Gitte F; Bentzen, Søren M

    2018-04-01

    The aim of the study was to build a model of first failure site- and lesion-specific failure probability after definitive chemoradiotherapy for inoperable NSCLC. We retrospectively analyzed 251 patients receiving definitive chemoradiotherapy for NSCLC at a single institution between 2009 and 2015. All patients were scanned by fludeoxyglucose positron emission tomography/computed tomography for radiotherapy planning. Clinical patient data and fludeoxyglucose positron emission tomography standardized uptake values from primary tumor and nodal lesions were analyzed by using multivariate cause-specific Cox regression. In patients experiencing locoregional failure, multivariable logistic regression was applied to assess risk of each lesion being the first site of failure. The two models were used in combination to predict probability of lesion failure accounting for competing events. Adenocarcinoma had a lower hazard ratio (HR) of locoregional failure than squamous cell carcinoma (HR = 0.45, 95% confidence interval [CI]: 0.26-0.76, p = 0.003). Distant failures were more common in the adenocarcinoma group (HR = 2.21, 95% CI: 1.41-3.48, p < 0.001). Multivariable logistic regression of individual lesions at the time of first failure showed that primary tumors were more likely to fail than lymph nodes (OR = 12.8, 95% CI: 5.10-32.17, p < 0.001). Increasing peak standardized uptake value was significantly associated with lesion failure (OR = 1.26 per unit increase, 95% CI: 1.12-1.40, p < 0.001). The electronic model is available at http://bit.ly/LungModelFDG. We developed a failure site-specific competing risk model based on patient- and lesion-level characteristics. Failure patterns differed between adenocarcinoma and squamous cell carcinoma, illustrating the limitation of aggregating them into NSCLC. Failure site-specific models add complementary information to conventional prognostic models. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. Landslide Probability Assessment by the Derived Distributions Technique

    NASA Astrophysics Data System (ADS)

    Muñoz, E.; Ochoa, A.; Martínez, H.

    2012-12-01

    Landslides are potentially disastrous events that bring along human and economic losses; especially in cities where an accelerated and unorganized growth leads to settlements on steep and potentially unstable areas. Among the main causes of landslides are geological, geomorphological, geotechnical, climatological, hydrological conditions and anthropic intervention. This paper studies landslides detonated by rain, commonly known as "soil-slip", which characterize by having a superficial failure surface (Typically between 1 and 1.5 m deep) parallel to the slope face and being triggered by intense and/or sustained periods of rain. This type of landslides is caused by changes on the pore pressure produced by a decrease in the suction when a humid front enters, as a consequence of the infiltration initiated by rain and ruled by the hydraulic characteristics of the soil. Failure occurs when this front reaches a critical depth and the shear strength of the soil in not enough to guarantee the stability of the mass. Critical rainfall thresholds in combination with a slope stability model are widely used for assessing landslide probability. In this paper we present a model for the estimation of the occurrence of landslides based on the derived distributions technique. Since the works of Eagleson in the 1970s the derived distributions technique has been widely used in hydrology to estimate the probability of occurrence of extreme flows. The model estimates the probability density function (pdf) of the Factor of Safety (FOS) from the statistical behavior of the rainfall process and some slope parameters. The stochastic character of the rainfall is transformed by means of a deterministic failure model into FOS pdf. Exceedance probability and return period estimation is then straightforward. The rainfall process is modeled as a Rectangular Pulses Poisson Process (RPPP) with independent exponential pdf for mean intensity and duration of the storms. The Philip infiltration model is used along with the soil characteristic curve (suction vs. moisture) and the Mohr-Coulomb failure criteria in order to calculate the FOS of the slope. Data from two slopes located on steep tropical regions of the cities of Medellín (Colombia) and Rio de Janeiro (Brazil) where used to verify the model's performance. The results indicated significant differences between the obtained FOS values and the behavior observed on the field. The model shows relatively high values of FOS that do not reflect the instability of the analyzed slopes. For the two cases studied, the application of a more simple reliability concept (as the Probability of Failure - PR and Reliability Index - β), instead of a FOS could lead to more realistic results.

  17. Proof that green tea tannin suppresses the increase in the blood methylguanidine level associated with renal failure.

    PubMed

    Yokozawa, T; Dong, E; Oura, H

    1997-02-01

    The effects of a green tea tannin mixture and its individual tannin components on methylguanidine were examined in rats with renal failure. The green tea tannin mixture caused a dose-dependent decrease in methylguanidine, a substance which accumulates in the blood with the progression of renal failure. Among individual tannin components, the effect was most conspicuous with (-)-epigallocatechin 3-O-gallate and (-)-epicatechin 3-O-gallate, while other components not linked to gallic acid showed only weak effects. Thus, the effect on methylguanidine was found to vary among different types of tannin.

  18. Cycles till failure of silver-zinc cells with completing failures modes: Preliminary data analysis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.

    1980-01-01

    One hundred and twenty nine cells were run through charge-discharge cycles until failure. The experiment design was a variant of a central composite factorial in five factors. Preliminary data analysis consisted of response surface estimation of life. Batteries fail under two basic modes; a low voltage condition and an internal shorting condition. A competing failure modes analysis using maximum likelihood estimation for the extreme value life distribution was performed. Extensive diagnostics such as residual plotting and probability plotting were employed to verify data quality and choice of model.

  19. Acoustic emissions (AE) monitoring of large-scale composite bridge components

    NASA Astrophysics Data System (ADS)

    Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.

    2008-03-01

    Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.

  20. Working alliance and empathy as mediators of brief telephone counseling for cigarette smokers who are not ready to quit

    PubMed Central

    Klemperer, Elias M.; Hughes, John R.; Callas, Peter W.; Solomon, Laura J.

    2016-01-01

    Working alliance and empathy are believed to be important components of counseling, though few studies have empirically tested this. We recently conducted a randomized controlled trial in which brief motivational and reduction counseling failed to increase the number of participants who made a quit attempt (QA) in comparison to usual care (i.e., brief advice to quit). Our negative findings could have been due to non-specific factors. This secondary analysis used a subset of participants (n=347) to test a) whether, in comparison to usual care, brief telephone-based motivational or reduction counseling predicted greater working alliance or empathy, b) whether changes in these non-specific factors predicted an increased probability of a QA at a 6-month follow-up, and c) whether counseling affected the probability of a QA via working alliance or empathy (i.e., mediation). Findings were similar for both active counseling conditions (motivational and reduction) vs usual care. In comparison to usual care, active counseling predicted greater working alliance (p<.001) and empathy (p<.05). Greater working alliance predicted a greater probability of a QA (p<.001) but, surprisingly, greater empathy predicted a decreased probability of a QA (p<.05) at the 6-month follow-up. Both working alliance (p<.001) and empathy (p<.05) mediated the active counseling's effects on the probability of a QA. One explanation for our motivational and reduction interventions' failure to influence QAs in comparison to usual care is that working alliance and empathy had opposing effects on quitting. Our analyses illustrate how testing non-specific factors as mediators can help explain why a treatment failed. PMID:28165273

  1. Working alliance and empathy as mediators of brief telephone counseling for cigarette smokers who are not ready to quit.

    PubMed

    Klemperer, Elias M; Hughes, John R; Callas, Peter W; Solomon, Laura J

    2017-02-01

    Working alliance and empathy are believed to be important components of counseling, although few studies have empirically tested this. We recently conducted a randomized controlled trial in which brief motivational and reduction counseling failed to increase the number of participants who made a quit attempt (QA) in comparison to usual care (i.e., brief advice to quit). Our negative findings could have been due to nonspecific factors. This secondary analysis used a subset of participants (n = 347) to test (a) whether, in comparison to usual care, brief telephone-based motivational or reduction counseling predicted greater working alliance or empathy; (b) whether changes in these nonspecific factors predicted an increased probability of a QA at a 6-month follow-up; and (c) whether counseling affected the probability of a QA via working alliance or empathy (i.e., mediation). Findings were similar for both active counseling conditions (motivational and reduction) versus usual care. In comparison to usual care, active counseling predicted greater working alliance (p < .001) and empathy (p < .05). Greater working alliance predicted a greater probability of a QA (p < .001) but, surprisingly, greater empathy predicted a decreased probability of a QA (p < .05) at the 6-month follow-up. Working alliance (p < .001) and empathy (p < .05) mediated the active counseling's effects on the probability of a QA. One explanation for our motivational and reduction interventions' failure to influence QAs in comparison to usual care is that working alliance and empathy had opposing effects on quitting. Our analyses illustrate how testing nonspecific factors as mediators can help explain why a treatment failed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. A multistate dynamic site occupancy model for spatially aggregated sessile communities

    USGS Publications Warehouse

    Fukaya, Keiichi; Royle, J. Andrew; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2017-01-01

    Estimation of transition probabilities of sessile communities seems easy in principle but may still be difficult in practice because resampling error (i.e. a failure to resample exactly the same location at fixed points) may cause significant estimation bias. Previous studies have developed novel analytical methods to correct for this estimation bias. However, they did not consider the local structure of community composition induced by the aggregated distribution of organisms that is typically observed in sessile assemblages and is very likely to affect observations.We developed a multistate dynamic site occupancy model to estimate transition probabilities that accounts for resampling errors associated with local community structure. The model applies a nonparametric multivariate kernel smoothing methodology to the latent occupancy component to estimate the local state composition near each observation point, which is assumed to determine the probability distribution of data conditional on the occurrence of resampling error.By using computer simulations, we confirmed that an observation process that depends on local community structure may bias inferences about transition probabilities. By applying the proposed model to a real data set of intertidal sessile communities, we also showed that estimates of transition probabilities and of the properties of community dynamics may differ considerably when spatial dependence is taken into account.Results suggest the importance of accounting for resampling error and local community structure for developing management plans that are based on Markovian models. Our approach provides a solution to this problem that is applicable to broad sessile communities. It can even accommodate an anisotropic spatial correlation of species composition, and may also serve as a basis for inferring complex nonlinear ecological dynamics.

  3. A Bayesian approach to reliability and confidence

    NASA Technical Reports Server (NTRS)

    Barnes, Ron

    1989-01-01

    The historical evolution of NASA's interest in quantitative measures of reliability assessment is outlined. The introduction of some quantitative methodologies into the Vehicle Reliability Branch of the Safety, Reliability and Quality Assurance (SR and QA) Division at Johnson Space Center (JSC) was noted along with the development of the Extended Orbiter Duration--Weakest Link study which will utilize quantitative tools for a Bayesian statistical analysis. Extending the earlier work of NASA sponsor, Richard Heydorn, researchers were able to produce a consistent Bayesian estimate for the reliability of a component and hence by a simple extension for a system of components in some cases where the rate of failure is not constant but varies over time. Mechanical systems in general have this property since the reliability usually decreases markedly as the parts degrade over time. While they have been able to reduce the Bayesian estimator to a simple closed form for a large class of such systems, the form for the most general case needs to be attacked by the computer. Once a table is generated for this form, researchers will have a numerical form for the general solution. With this, the corresponding probability statements about the reliability of a system can be made in the most general setting. Note that the utilization of uniform Bayesian priors represents a worst case scenario in the sense that as researchers incorporate more expert opinion into the model, they will be able to improve the strength of the probability calculations.

  4. Modes of failure of Osteonics constrained tripolar implants: a retrospective analysis of forty-three failed implants.

    PubMed

    Guyen, Olivier; Lewallen, David G; Cabanela, Miguel E

    2008-07-01

    The Osteonics constrained tripolar implant has been one of the most commonly used options to manage recurrent instability after total hip arthroplasty. Mechanical failures were expected and have been reported. The purpose of this retrospective review was to identify the observed modes of failure of this device. Forty-three failed Osteonics constrained tripolar implants were revised at our institution between September 1997 and April 2005. All revisions related to the constrained acetabular component only were considered as failures. All of the devices had been inserted for recurrent or intraoperative instability during revision procedures. Seven different methods of implantation were used. Operative reports and radiographs were reviewed to identify the modes of failure. The average time to failure of the forty-three implants was 28.4 months. A total of five modes of failure were observed: failure at the bone-implant interface (type I), which occurred in eleven hips; failure at the mechanisms holding the constrained liner to the metal shell (type II), in six hips; failure of the retaining mechanism of the bipolar component (type III), in ten hips; dislocation of the prosthetic head at the inner bearing of the bipolar component (type IV), in three hips; and infection (type V), in twelve hips. The mode of failure remained unknown in one hip that had been revised at another institution. The Osteonics constrained tripolar total hip arthroplasty implant is a complex device involving many parts. We showed that failure of this device can occur at most of its interfaces. It would therefore appear logical to limit its application to salvage situations.

  5. CONFIG: Qualitative simulation tool for analyzing behavior of engineering devices

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Basham, Bryan D.; Harris, Richard A.

    1987-01-01

    To design failure management expert systems, engineers mentally analyze the effects of failures and procedures as they propagate through device configurations. CONFIG is a generic device modeling tool for use in discrete event simulation, to support such analyses. CONFIG permits graphical modeling of device configurations and qualitative specification of local operating modes of device components. Computation requirements are reduced by focussing the level of component description on operating modes and failure modes, and specifying qualitative ranges of variables relative to mode transition boundaries. Simulation processing occurs only when modes change or variables cross qualitative boundaries. Device models are built graphically, using components from libraries. Components are connected at ports by graphical relations that define data flow. The core of a component model is its state transition diagram, which specifies modes of operation and transitions among them.

  6. Blowout Prevention System Events and Equipment Component Failures : 2016 SafeOCS Annual Report

    DOT National Transportation Integrated Search

    2017-09-22

    The SafeOCS 2016 Annual Report, produced by the Bureau of Transportation Statistics (BTS), summarizes blowout prevention (BOP) equipment failures on marine drilling rigs in the Outer Continental Shelf. It includes an analysis of equipment component f...

  7. Probabilistic metrology or how some measurement outcomes render ultra-precise estimates

    NASA Astrophysics Data System (ADS)

    Calsamiglia, J.; Gendra, B.; Muñoz-Tapia, R.; Bagan, E.

    2016-10-01

    We show on theoretical grounds that, even in the presence of noise, probabilistic measurement strategies (which have a certain probability of failure or abstention) can provide, upon a heralded successful outcome, estimates with a precision that exceeds the deterministic bounds for the average precision. This establishes a new ultimate bound on the phase estimation precision of particular measurement outcomes (or sequence of outcomes). For probe systems subject to local dephasing, we quantify such precision limit as a function of the probability of failure that can be tolerated. Our results show that the possibility of abstaining can set back the detrimental effects of noise.

  8. Controlling the self-organizing dynamics in a sandpile model on complex networks by failure tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Pfenninger, Stefan

    In this paper, we propose a strategy to control the self-organizing dynamics of the Bak-Tang-Wiesenfeld (BTW) sandpile model on complex networks by allowing some degree of failure tolerance for the nodes and introducing additional active dissipation while taking the risk of possible node damage. We show that the probability for large cascades significantly increases or decreases respectively when the risk for node damage outweighs the active dissipation and when the active dissipation outweighs the risk for node damage. By considering the potential additional risk from node damage, a non-trivial optimal active dissipation control strategy which minimizes the total cost inmore » the system can be obtained. Under some conditions the introduced control strategy can decrease the total cost in the system compared to the uncontrolled model. Moreover, when the probability of damaging a node experiencing failure tolerance is greater than the critical value, then no matter how successful the active dissipation control is, the total cost of the system will have to increase. This critical damage probability can be used as an indicator of the robustness of a network or system. Copyright (C) EPLA, 2015« less

  9. Interim Report on the Examination of Corrosion Damage in Homes Constructed With Imported Wallboard: Examination of Samples Received September 28, 2009.

    PubMed

    Pitchure, D J; Ricker, R E; Williams, M E; Claggett, S A

    2010-01-01

    Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1.2 mm ± 0.2 mm was between 5 μm and 10 μm. These results indicate that a chemical compound that contains reduced sulfur, such as hydrogen sulfide (H2S), is present in the environment to which these samples were exposed. The literature indicates that these species strongly influence corrosion rates of most metals and alloys even at low concentrations. None of the samples examined were failed components, and no evidence of imminent failure was found on any of the samples examined. All of the corrosion damage observed to date is consistent with a general attack form of corrosion that will progress in a uniform and relatively predictable manner. No evidence of localized attack was found, but these forms of attack typically require an incubation period before they initiate. Therefore, the number of samples examined to date is too small to draw a conclusion on the relative probability of these forms of corrosion being able to cause or not cause failure. Samples from failed systems or from laboratory tests conducted over a wide range of metallurgical and environmental conditions will be required to assess the probability of these other forms of corrosion causing failure.

  10. Interim Report on the Examination of Corrosion Damage in Homes Constructed With Imported Wallboard: Examination of Samples Received September 28, 2009

    PubMed Central

    Pitchure, D. J.; Ricker, R. E.; Williams, M. E.; Claggett, S. A.

    2010-01-01

    Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1.2 mm ± 0.2 mm was between 5 μm and 10 μm. These results indicate that a chemical compound that contains reduced sulfur, such as hydrogen sulfide (H2S), is present in the environment to which these samples were exposed. The literature indicates that these species strongly influence corrosion rates of most metals and alloys even at low concentrations. None of the samples examined were failed components, and no evidence of imminent failure was found on any of the samples examined. All of the corrosion damage observed to date is consistent with a general attack form of corrosion that will progress in a uniform and relatively predictable manner. No evidence of localized attack was found, but these forms of attack typically require an incubation period before they initiate. Therefore, the number of samples examined to date is too small to draw a conclusion on the relative probability of these forms of corrosion being able to cause or not cause failure. Samples from failed systems or from laboratory tests conducted over a wide range of metallurgical and environmental conditions will be required to assess the probability of these other forms of corrosion causing failure. PMID:27134786

  11. Analytical Method to Evaluate Failure Potential During High-Risk Component Development

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Stone, Robert B.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Communicating failure mode information during design and manufacturing is a crucial task for failure prevention. Most processes use Failure Modes and Effects types of analyses, as well as prior knowledge and experience, to determine the potential modes of failures a product might encounter during its lifetime. When new products are being considered and designed, this knowledge and information is expanded upon to help designers extrapolate based on their similarity with existing products and the potential design tradeoffs. This paper makes use of similarities and tradeoffs that exist between different failure modes based on the functionality of each component/product. In this light, a function-failure method is developed to help the design of new products with solutions for functions that eliminate or reduce the potential of a failure mode. The method is applied to a simplified rotating machinery example in this paper, and is proposed as a means to account for helicopter failure modes during design and production, addressing stringent safety and performance requirements for NASA applications.

  12. Performance of concatenated Reed-Solomon/Viterbi channel coding

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Yuen, J. H.

    1982-01-01

    The concatenated Reed-Solomon (RS)/Viterbi coding system is reviewed. The performance of the system is analyzed and results are derived with a new simple approach. A functional model for the input RS symbol error probability is presented. Based on this new functional model, we compute the performance of a concatenated system in terms of RS word error probability, output RS symbol error probability, bit error probability due to decoding failure, and bit error probability due to decoding error. Finally we analyze the effects of the noisy carrier reference and the slow fading on the system performance.

  13. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2015-11-01

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The TDP failure modes considered are failure to start (FTS), failure to run less than or equal to one hour (FTR=1H), failure to run more than one hour (FTR>1H), and normally running systems FTS and failure to run (FTR). The component reliability estimates and themore » reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified for TDP unavailability, for frequency of start demands for standby TDPs, and for run hours in the first hour after start. Statistically significant decreasing trends were identified for start demands for normally running TDPs, and for run hours per reactor critical year for normally running TDPs.« less

  14. Study on Failure of Third-Party Damage for Urban Gas Pipeline Based on Fuzzy Comprehensive Evaluation.

    PubMed

    Li, Jun; Zhang, Hong; Han, Yinshan; Wang, Baodong

    2016-01-01

    Focusing on the diversity, complexity and uncertainty of the third-party damage accident, the failure probability of third-party damage to urban gas pipeline was evaluated on the theory of analytic hierarchy process and fuzzy mathematics. The fault tree of third-party damage containing 56 basic events was built by hazard identification of third-party damage. The fuzzy evaluation of basic event probabilities were conducted by the expert judgment method and using membership function of fuzzy set. The determination of the weight of each expert and the modification of the evaluation opinions were accomplished using the improved analytic hierarchy process, and the failure possibility of the third-party to urban gas pipeline was calculated. Taking gas pipelines of a certain large provincial capital city as an example, the risk assessment structure of the method was proved to conform to the actual situation, which provides the basis for the safety risk prevention.

  15. Role of stress triggering in earthquake migration on the North Anatolian fault

    USGS Publications Warehouse

    Stein, R.S.; Dieterich, J.H.; Barka, A.A.

    1996-01-01

    Ten M???6.7 earthquakes ruptured 1,000 km of the North Anatolian fault (Turkey) during 1939-92, providing an unsurpassed opportunity to study how one large shock sets up the next. Calculations of the change in Coulomb failure stress reveal that 9 out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 5 bars, equivalent to 20 years of secular stressing. We translate the calculated stress changes into earthquake probabilities using an earthquake-nucleation constitutive relation, which includes both permanent and transient stress effects. For the typical 10-year period between triggering and subsequent rupturing shocks in the Anatolia sequence, the stress changes yield an average three-fold gain in the ensuing earthquake probability. Stress is now calculated to be high at several isolated sites along the fault. During the next 30 years, we estimate a 15% probability of a M???6.7 earthquake east of the major eastern center of Erzincan, and a 12% probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere. ?? 1997 Elsevier Science Ltd.

  16. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU Portable Life Support System (PLSS) Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2015-01-01

    As the Shuttle/ISS EMU Program exceeds 35 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  17. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2011-01-01

    As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still successfully supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  18. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2015-01-01

    As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  19. Scalable Failure Masking for Stencil Computations using Ghost Region Expansion and Cell to Rank Remapping

    DOE PAGES

    Gamell, Marc; Teranishi, Keita; Kolla, Hemanth; ...

    2017-10-26

    In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments.more » In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduction of impact on total time to solution due to multiple failures. Furthermore, we discuss, implement, and evaluate ghost region expansion and cell-to-rank remapping to increase the probability of failure masking. To conclude, this paper shows the integration of all aforementioned mechanisms with the S3D combustion simulation through an experimental demonstration (using the Titan system) of the ability to tolerate high failure rates (i.e., node failures every five seconds) with low overhead while sustaining performance at large scales. In addition, this demonstration also displays the failure masking probability increase resulting from the combination of both ghost region expansion and cell-to-rank remapping.« less

  20. SU-E-T-627: Failure Modes and Effect Analysis for Monthly Quality Assurance of Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, J; Xiao, Y; Wang, J

    2014-06-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA) on routine monthly Quality Assurance (QA) tests (physical tests part) of linear accelerator. Methods: A systematic failure mode and effect analysis method was performed for monthly QA procedures. A detailed process tree of monthly QA was created and potential failure modes were defined. Each failure mode may have many influencing factors. For each factor, a risk probability number (RPN) was calculated from the product of probability of occurrence (O), the severity of effect (S), and detectability of the failure (D). The RPN scores are in a range ofmore » 1 to 1000, with higher scores indicating stronger correlation to a given influencing factor of a failure mode. Five medical physicists in our institution were responsible to discuss and to define the O, S, D values. Results: 15 possible failure modes were identified and all RPN scores of all influencing factors of these 15 failue modes were from 8 to 150, and the checklist of FMEA in monthly QA was drawn. The system showed consistent and accurate response to erroneous conditions. Conclusion: The influencing factors of RPN greater than 50 were considered as highly-correlated factors of a certain out-oftolerance monthly QA test. FMEA is a fast and flexible tool to develop an implement a quality management (QM) frame work of monthly QA, which improved the QA efficiency of our QA team. The FMEA work may incorporate more quantification and monitoring fuctions in future.« less

  1. Heart failure rehospitalization of the Medicare FFS patient: a state-level analysis exploring 30-day readmission factors.

    PubMed

    Schmeida, Mary; Savrin, Ronald A

    2012-01-01

    Heart failure readmission among the elderly is frequent and costly to both the patient and the Medicare trust fund. In this study, the authors explore the factors that are associated with states having heart failure readmission rates that are higher than the U.S. national rate. Acute inpatient hospital settings. 50 state-level data and multivariate regression analysis is used. The dependent variable Heart Failure 30-day Readmission Worse than U.S. Rate is based on adult Medicare Fee-for-Service patients hospitalized with a primary discharge diagnosis of heart failure and for which a subsequent inpatient readmission occurred within 30 days of their last discharge. One key variable found--states with a higher resident population speaking a primary language other than English at home--that is significantly associated with a decrease in probability in states ranking "worse" on heart failure 30-day readmission. Whereas, states with a higher median income, more total days of care per 1,000 Medicare enrollees, and a greater percentage of Medicare enrollees with prescription drug coverage have a greater probability for heart failure 30-day readmission to be "worse" than the U.S. national rate. Case management interventions targeting health literacy may be more effective than other factors to improve state-level hospital status on heart failure 30-day readmission. Factors such as total days of care per 1,000 Medicare enrollees and improving patient access to postdischarge medication(s) may not be as important as literacy. Interventions aimed to prevent disparities should consider higher income population groups as vulnerable for readmission.

  2. Scalable Failure Masking for Stencil Computations using Ghost Region Expansion and Cell to Rank Remapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamell, Marc; Teranishi, Keita; Kolla, Hemanth

    In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments.more » In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduction of impact on total time to solution due to multiple failures. Furthermore, we discuss, implement, and evaluate ghost region expansion and cell-to-rank remapping to increase the probability of failure masking. To conclude, this paper shows the integration of all aforementioned mechanisms with the S3D combustion simulation through an experimental demonstration (using the Titan system) of the ability to tolerate high failure rates (i.e., node failures every five seconds) with low overhead while sustaining performance at large scales. In addition, this demonstration also displays the failure masking probability increase resulting from the combination of both ghost region expansion and cell-to-rank remapping.« less

  3. Antimicrobial treatment failures in patients with community-acquired pneumonia: causes and prognostic implications.

    PubMed

    Arancibia, F; Ewig, S; Martinez, J A; Ruiz, M; Bauer, T; Marcos, M A; Mensa, J; Torres, A

    2000-07-01

    The aim of the study was to determine the causes and prognostic implications of antimicrobial treatment failures in patients with nonresponding and progressive life-threatening, community-acquired pneumonia. Forty-nine patients hospitalized with a presumptive diagnosis of community-acquired pneumonia during a 16-mo period, failure to respond to antimicrobial treatment, and documented repeated microbial investigation >/= 72 h after initiation of in-hospital antimicrobial treatment were recorded. A definite etiology of treatment failure could be established in 32 of 49 (65%) patients, and nine additional patients (18%) had a probable etiology. Treatment failures were mainly infectious in origin and included primary, persistent, and nosocomial infections (n = 10 [19%], 13 [24%], and 11 [20%] of causes, respectively). Definite but not probable persistent infections were mostly due to microbial resistance to the administered initial empiric antimicrobial treatment. Nosocomial infections were particularly frequent in patients with progressive pneumonia. Definite persistent infections and nosocomial infections had the highest associated mortality rates (75 and 88%, respectively). Nosocomial pneumonia was the only cause of treatment failure independently associated with death in multivariate analysis (RR, 16.7; 95% CI, 1.4 to 194.9; p = 0.03). We conclude that the detection of microbial resistance and the diagnosis of nosocomial pneumonia are the two major challenges in hospitalized patients with community-acquired pneumonia who do not respond to initial antimicrobial treatment. In order to establish these potentially life-threatening etiologies, a regular microbial reinvestigation seems mandatory for all patients presenting with antimicrobial treatment failures.

  4. Predictors of treatment failure in young patients undergoing in vitro fertilization.

    PubMed

    Jacobs, Marni B; Klonoff-Cohen, Hillary; Agarwal, Sanjay; Kritz-Silverstein, Donna; Lindsay, Suzanne; Garzo, V Gabriel

    2016-08-01

    The purpose of the study was to evaluate whether routinely collected clinical factors can predict in vitro fertilization (IVF) failure among young, "good prognosis" patients predominantly with secondary infertility who are less than 35 years of age. Using de-identified clinic records, 414 women <35 years undergoing their first autologous IVF cycle were identified. Logistic regression was used to identify patient-driven clinical factors routinely collected during fertility treatment that could be used to model predicted probability of cycle failure. One hundred ninety-seven patients with both primary and secondary infertility had a failed IVF cycle, and 217 with secondary infertility had a successful live birth. None of the women with primary infertility had a successful live birth. The significant predictors for IVF cycle failure among young patients were fewer previous live births, history of biochemical pregnancies or spontaneous abortions, lower baseline antral follicle count, higher total gonadotropin dose, unknown infertility diagnosis, and lack of at least one fair to good quality embryo. The full model showed good predictive value (c = 0.885) for estimating risk of cycle failure; at ≥80 % predicted probability of failure, sensitivity = 55.4 %, specificity = 97.5 %, positive predictive value = 95.4 %, and negative predictive value = 69.8 %. If this predictive model is validated in future studies, it could be beneficial for predicting IVF failure in good prognosis women under the age of 35 years.

  5. DEPEND - A design environment for prediction and evaluation of system dependability

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.; Iyer, Ravishankar K.

    1990-01-01

    The development of DEPEND, an integrated simulation environment for the design and dependability analysis of fault-tolerant systems, is described. DEPEND models both hardware and software components at a functional level, and allows automatic failure injection to assess system performance and reliability. It relieves the user of the work needed to inject failures, maintain statistics, and output reports. The automatic failure injection scheme is geared toward evaluating a system under high stress (workload) conditions. The failures that are injected can affect both hardware and software components. To illustrate the capability of the simulator, a distributed system which employs a prediction-based, dynamic load-balancing heuristic is evaluated. Experiments were conducted to determine the impact of failures on system performance and to identify the failures to which the system is especially susceptible.

  6. Probability of in-vessel steam explosion-induced containment failure for a KWU PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaili, H.; Khatib-Rahbar, M.; Zuchuat, O.

    During postulated core meltdown accidents in light water reactors, there is a likelihood for an in-vessel steam explosion when the melt contacts the coolant in the lower plenum. The objective of the work described in this paper is to determine the conditional probability of in-vessel steam explosion-induced containment failure for a Kraftwerk Union (KWU) pressurized water reactor (PWR). The energetics of the explosion depends on the mass of the molten fuel that mixes with the coolant and participates in the explosion and on the conversion of fuel thermal energy into mechanical work. The work can result in the generation ofmore » dynamic pressures that affect the lower head (and possibly lead to its failure), and it can cause acceleration of a slug (fuel and coolant material) upward that can affect the upper internal structures and vessel head and ultimately cause the failure of the upper head. If the upper head missile has sufficient energy, it can reach the containment shell and penetrate it. The analysis, must therefore, take into account all possible dissipation mechanisms.« less

  7. 10 CFR 34.101 - Notifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... written report to the NRC's Office of Federal and State Materials and Environmental Management Programs... shielded position and secure it in this position; or (3) Failure of any component (critical to safe... overexposure submitted under 10 CFR 20.2203 which involves failure of safety components of radiography...

  8. A model for the progressive failure of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Lo, D. C.

    1991-01-01

    Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.

  9. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  10. Tuned by experience: How orientation probability modulates early perceptual processing.

    PubMed

    Jabar, Syaheed B; Filipowicz, Alex; Anderson, Britt

    2017-09-01

    Probable stimuli are more often and more quickly detected. While stimulus probability is known to affect decision-making, it can also be explained as a perceptual phenomenon. Using spatial gratings, we have previously shown that probable orientations are also more precisely estimated, even while participants remained naive to the manipulation. We conducted an electrophysiological study to investigate the effect that probability has on perception and visual-evoked potentials. In line with previous studies on oddballs and stimulus prevalence, low-probability orientations were associated with a greater late positive 'P300' component which might be related to either surprise or decision-making. However, the early 'C1' component, thought to reflect V1 processing, was dampened for high-probability orientations while later P1 and N1 components were unaffected. Exploratory analyses revealed a participant-level correlation between C1 and P300 amplitudes, suggesting a link between perceptual processing and decision-making. We discuss how these probability effects could be indicative of sharpening of neurons preferring the probable orientations, due either to perceptual learning, or to feature-based attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Engraftment kinetics and graft failure after single umbilical cord blood transplantation using a myeloablative conditioning regimen.

    PubMed

    Ruggeri, Annalisa; Labopin, Myriam; Sormani, Maria Pia; Sanz, Guillermo; Sanz, Jaime; Volt, Fernanda; Michel, Gerard; Locatelli, Franco; Diaz De Heredia, Cristina; O'Brien, Tracey; Arcese, William; Iori, Anna Paola; Querol, Sergi; Kogler, Gesine; Lecchi, Lucilla; Pouthier, Fabienne; Garnier, Federico; Navarrete, Cristina; Baudoux, Etienne; Fernandes, Juliana; Kenzey, Chantal; Eapen, Mary; Gluckman, Eliane; Rocha, Vanderson; Saccardi, Riccardo

    2014-09-01

    Umbilical cord blood transplant recipients are exposed to an increased risk of graft failure, a complication leading to a higher rate of transplant-related mortality. The decision and timing to offer a second transplant after graft failure is challenging. With the aim of addressing this issue, we analyzed engraftment kinetics and outcomes of 1268 patients (73% children) with acute leukemia (64% acute lymphoblastic leukemia, 36% acute myeloid leukemia) in remission who underwent single-unit umbilical cord blood transplantation after a myeloablative conditioning regimen. The median follow-up was 31 months. The overall survival rate at 3 years was 47%; the 100-day cumulative incidence of transplant-related mortality was 16%. Longer time to engraftment was associated with increased transplant-related mortality and shorter overall survival. The cumulative incidence of neutrophil engraftment at day 60 was 86%, while the median time to achieve engraftment was 24 days. Probability density analysis showed that the likelihood of engraftment after umbilical cord blood transplantation increased after day 10, peaked on day 21 and slowly decreased to 21% by day 31. Beyond day 31, the probability of engraftment dropped rapidly, and the residual probability of engrafting after day 42 was 5%. Graft failure was reported in 166 patients, and 66 of them received a second graft (allogeneic, n=45). Rescue actions, such as the search for another graft, should be considered starting after day 21. A diagnosis of graft failure can be established in patients who have not achieved neutrophil recovery by day 42. Moreover, subsequent transplants should not be postponed after day 42. Copyright© Ferrata Storti Foundation.

  12. Cascading failures in ac electricity grids.

    PubMed

    Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan

    2016-09-01

    Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q≈1.6. Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.

  13. SCARE: A post-processor program to MSC/NASTRAN for the reliability analysis of structural ceramic components

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.

    1985-01-01

    A computer program was developed for calculating the statistical fast fracture reliability and failure probability of ceramic components. The program includes the two-parameter Weibull material fracture strength distribution model, using the principle of independent action for polyaxial stress states and Batdorf's shear-sensitive as well as shear-insensitive crack theories, all for volume distributed flaws in macroscopically isotropic solids. Both penny-shaped cracks and Griffith cracks are included in the Batdorf shear-sensitive crack response calculations, using Griffith's maximum tensile stress or critical coplanar strain energy release rate criteria to predict mixed mode fracture. Weibull material parameters can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and fracture data. The reliability prediction analysis uses MSC/NASTRAN stress, temperature and volume output, obtained from the use of three-dimensional, quadratic, isoparametric, or axisymmetric finite elements. The statistical fast fracture theories employed, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  14. Reliability considerations for the total strain range version of strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.; Wu, Y. T.

    1984-01-01

    A proposed total strainrange version of strainrange partitioning (SRP) to enhance the manner in which SRP is applied to life prediction is considered with emphasis on how advanced reliability technology can be applied to perform risk analysis and to derive safety check expressions. Uncertainties existing in the design factors associated with life prediction of a component which experiences the combined effects of creep and fatigue can be identified. Examples illustrate how reliability analyses of such a component can be performed when all design factors in the SRP model are random variables reflecting these uncertainties. The Rackwitz-Fiessler and Wu algorithms are used and estimates of the safety index and the probablity of failure are demonstrated for a SRP problem. Methods of analysis of creep-fatigue data with emphasis on procedures for producing synoptic statistics are presented. An attempt to demonstrate the importance of the contribution of the uncertainties associated with small sample sizes (fatique data) to risk estimates is discussed. The procedure for deriving a safety check expression for possible use in a design criteria document is presented.

  15. Electromigration model for the prediction of lifetime based on the failure unit statistics in aluminum metallization

    NASA Astrophysics Data System (ADS)

    Park, Jong Ho; Ahn, Byung Tae

    2003-01-01

    A failure model for electromigration based on the "failure unit model" was presented for the prediction of lifetime in metal lines.The failure unit model, which consists of failure units in parallel and series, can predict both the median time to failure (MTTF) and the deviation in the time to failure (DTTF) in Al metal lines. The model can describe them only qualitatively. In our model, both the probability function of the failure unit in single grain segments and polygrain segments are considered instead of in polygrain segments alone. Based on our model, we calculated MTTF, DTTF, and activation energy for different median grain sizes, grain size distributions, linewidths, line lengths, current densities, and temperatures. Comparisons between our results and published experimental data showed good agreements and our model could explain the previously unexplained phenomena. Our advanced failure unit model might be further applied to other electromigration characteristics of metal lines.

  16. Failure detection and identification

    NASA Technical Reports Server (NTRS)

    Massoumnia, Mohammad-Ali; Verghese, George C.; Willsky, Alan S.

    1989-01-01

    Using the geometric concept of an unobservability subspace, a solution is given to the problem of detecting and identifying control system component failures in linear, time-invariant systems. Conditions are developed for the existence of a causal, linear, time-invariant processor that can detect and uniquely identify a component failure, first for the case where components can fail simultaneously, and then for the case where they fail only one at a time. Explicit design algorithms are provided when these conditions are satisfied. In addition to time-domain solvability conditions, frequency-domain interpretations of the results are given, and connections are drawn with results already available in the literature.

  17. Enhanced Component Performance Study: Air-Operated Valves 1998-2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2015-11-01

    This report presents a performance evaluation of air-operated valves (AOVs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The AOV failure modes considered are failure-to-open/close, failure to operate or control, and spurious operation. The component reliability estimates and the reliability data are trended for the most recent 10-year period, while yearly estimates for reliability are provided for the entire active period. One statistically significantmore » trend was observed in the AOV data: The frequency of demands per reactor year for valves recording the fail-to-open or fail-to-close failure modes, for high-demand valves (those with greater than twenty demands per year), was found to be decreasing. The decrease was about three percent over the ten year period trended.« less

  18. Size distribution of submarine landslides along the U.S. Atlantic margin

    USGS Publications Warehouse

    Chaytor, J.D.; ten Brink, Uri S.; Solow, A.R.; Andrews, B.D.

    2009-01-01

    Assessment of the probability for destructive landslide-generated tsunamis depends on the knowledge of the number, size, and frequency of large submarine landslides. This paper investigates the size distribution of submarine landslides along the U.S. Atlantic continental slope and rise using the size of the landslide source regions (landslide failure scars). Landslide scars along the margin identified in a detailed bathymetric Digital Elevation Model (DEM) have areas that range between 0.89??km2 and 2410??km2 and volumes between 0.002??km3 and 179??km3. The area to volume relationship of these failure scars is almost linear (inverse power-law exponent close to 1), suggesting a fairly uniform failure thickness of a few 10s of meters in each event, with only rare, deep excavating landslides. The cumulative volume distribution of the failure scars is very well described by a log-normal distribution rather than by an inverse power-law, the most commonly used distribution for both subaerial and submarine landslides. A log-normal distribution centered on a volume of 0.86??km3 may indicate that landslides preferentially mobilize a moderate amount of material (on the order of 1??km3), rather than large landslides or very small ones. Alternatively, the log-normal distribution may reflect an inverse power law distribution modified by a size-dependent probability of observing landslide scars in the bathymetry data. If the latter is the case, an inverse power-law distribution with an exponent of 1.3 ?? 0.3, modified by a size-dependent conditional probability of identifying more failure scars with increasing landslide size, fits the observed size distribution. This exponent value is similar to the predicted exponent of 1.2 ?? 0.3 for subaerial landslides in unconsolidated material. Both the log-normal and modified inverse power-law distributions of the observed failure scar volumes suggest that large landslides, which have the greatest potential to generate damaging tsunamis, occur infrequently along the margin. ?? 2008 Elsevier B.V.

  19. Validation of a Novel Molecular Host Response Assay to Diagnose Infection in Hospitalized Patients Admitted to the ICU With Acute Respiratory Failure.

    PubMed

    Koster-Brouwer, Maria E; Verboom, Diana M; Scicluna, Brendon P; van de Groep, Kirsten; Frencken, Jos F; Janssen, Davy; Schuurman, Rob; Schultz, Marcus J; van der Poll, Tom; Bonten, Marc J M; Cremer, Olaf L

    2018-03-01

    Discrimination between infectious and noninfectious causes of acute respiratory failure is difficult in patients admitted to the ICU after a period of hospitalization. Using a novel biomarker test (SeptiCyte LAB), we aimed to distinguish between infection and inflammation in this population. Nested cohort study. Two tertiary mixed ICUs in the Netherlands. Hospitalized patients with acute respiratory failure requiring mechanical ventilation upon ICU admission from 2011 to 2013. Patients having an established infection diagnosis or an evidently noninfectious reason for intubation were excluded. None. Blood samples were collected upon ICU admission. Test results were categorized into four probability bands (higher bands indicating higher infection probability) and compared with the infection plausibility as rated by post hoc assessment using strict definitions. Of 467 included patients, 373 (80%) were treated for a suspected infection at admission. Infection plausibility was classified as ruled out, undetermined, or confirmed in 135 (29%), 135 (29%), and 197 (42%) patients, respectively. Test results correlated with infection plausibility (Spearman's rho 0.332; p < 0.001). After exclusion of undetermined cases, positive predictive values were 29%, 54%, and 76% for probability bands 2, 3, and 4, respectively, whereas the negative predictive value for band 1 was 76%. Diagnostic discrimination of SeptiCyte LAB and C-reactive protein was similar (p = 0.919). Among hospitalized patients admitted to the ICU with clinical uncertainty regarding the etiology of acute respiratory failure, the diagnostic value of SeptiCyte LAB was limited.

  20. Risk-based maintenance of ethylene oxide production facilities.

    PubMed

    Khan, Faisal I; Haddara, Mahmoud R

    2004-05-20

    This paper discusses a methodology for the design of an optimum inspection and maintenance program. The methodology, called risk-based maintenance (RBM) is based on integrating a reliability approach and a risk assessment strategy to obtain an optimum maintenance schedule. First, the likely equipment failure scenarios are formulated. Out of many likely failure scenarios, the ones, which are most probable, are subjected to a detailed study. Detailed consequence analysis is done for the selected scenarios. Subsequently, these failure scenarios are subjected to a fault tree analysis to determine their probabilities. Finally, risk is computed by combining the results of the consequence and the probability analyses. The calculated risk is compared against known acceptable criteria. The frequencies of the maintenance tasks are obtained by minimizing the estimated risk. A case study involving an ethylene oxide production facility is presented. Out of the five most hazardous units considered, the pipeline used for the transportation of the ethylene is found to have the highest risk. Using available failure data and a lognormal reliability distribution function human health risk factors are calculated. Both societal risk factors and individual risk factors exceeded the acceptable risk criteria. To determine an optimal maintenance interval, a reverse fault tree analysis was used. The maintenance interval was determined such that the original high risk is brought down to an acceptable level. A sensitivity analysis is also undertaken to study the impact of changing the distribution of the reliability model as well as the error in the distribution parameters on the maintenance interval.

  1. STS-3 main parachute failure

    NASA Technical Reports Server (NTRS)

    Runkle, R.; Henson, K.

    1982-01-01

    A failure analysis of the parachute on the Space Transportation System 3 flight's solid rocket booster's is presented. During the reentry phase of the two Solid Rocket Boosters (SRBs), one 115 ft diameter main parachute failed on the right hand SRB (A12). This parachute failure caused the SRB to impact the Ocean at 110 ft/sec in lieu of the expected 3 parachute impact velocity of 88 ft/sec. This higher impact velocity relates directly to more SRB aft skirt and more motor case damage. The cause of the parachute failure, the potential risks of losing an SRB as a result of this failure, and recommendations to ensure that the probability of chute failures of this type in the future will be low are discussed.

  2. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  3. Impact of coverage on the reliability of a fault tolerant computer

    NASA Technical Reports Server (NTRS)

    Bavuso, S. J.

    1975-01-01

    A mathematical reliability model is established for a reconfigurable fault tolerant avionic computer system utilizing state-of-the-art computers. System reliability is studied in light of the coverage probabilities associated with the first and second independent hardware failures. Coverage models are presented as a function of detection, isolation, and recovery probabilities. Upper and lower bonds are established for the coverage probabilities and the method for computing values for the coverage probabilities is investigated. Further, an architectural variation is proposed which is shown to enhance coverage.

  4. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models

    DOE PAGES

    Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; ...

    2015-04-06

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less

  5. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less

  6. NASA/CARES dual-use ceramic technology spinoff applications

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  7. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.

    PubMed

    Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y

    2016-04-01

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. © 2015 Society for Risk Analysis.

  8. Use of a constrained tripolar acetabular liner to treat intraoperative instability and postoperative dislocation after total hip arthroplasty: a review of our experience.

    PubMed

    Callaghan, John J; O'Rourke, Michael R; Goetz, Devon D; Lewallen, David G; Johnston, Richard C; Capello, William N

    2004-12-01

    Constrained acetabular components have been used to treat certain cases of intraoperative instability and postoperative dislocation after total hip arthroplasty. We report our experience with a tripolar constrained component used in these situations since 1988. The outcomes of the cases where this component was used were analyzed for component failure, component loosening, and osteolysis. At average 10-year followup, for cases treated for intraoperative instability (2 cases) or postoperative dislocation (4 cases), the component failure rate was 6% (6 of 101 hips in 5 patients). For cases where the constrained liner was cemented into a fixed cementless acetabular shell, the failure rate was 7% (2 of 31 hips in 2 patients) at 3.9-year average followup. Use of a constrained liner was not associated with an increased osteolysis or aseptic loosening rate. This tripolar constrained acetabular liner provided total hip arthroplasty construct stability in most cases in which it was used for intraoperative instability or postoperative dislocation.

  9. Effects of Random Shadings, Phasing Errors, and Element Failures on the Beam Patterns of Linear and Planar Arrays

    DTIC Science & Technology

    1980-03-14

    failure Sigmar (Or) in line 50, the standard deviation of the relative error of the weights Sigmap (o) in line 60, the standard deviation of the phase...200, the weight structures in the x and y coordinates Q in line 210, the probability of element failure Sigmar (Or) in line 220, the standard...NUMBER OF ELEMENTS =u;2*H 120 PRINT "Pr’obability of elemenit failure al;O 130 PRINT "Standard dtvi&t ion’ oe r.1&tive ýrror of wl; Sigmar 14 0 PRINT

  10. A Probabilistic Model for Predicting Attenuation of Viruses During Percolation in Unsaturated Natural Barriers

    NASA Astrophysics Data System (ADS)

    Faulkner, B. R.; Lyon, W. G.

    2001-12-01

    We present a probabilistic model for predicting virus attenuation. The solution employs the assumption of complete mixing. Monte Carlo methods are used to generate ensemble simulations of virus attenuation due to physical, biological, and chemical factors. The model generates a probability of failure to achieve 4-log attenuation. We tabulated data from related studies to develop probability density functions for input parameters, and utilized a database of soil hydraulic parameters based on the 12 USDA soil categories. Regulators can use the model based on limited information such as boring logs, climate data, and soil survey reports for a particular site of interest. Plackett-Burman sensitivity analysis indicated the most important main effects on probability of failure to achieve 4-log attenuation in our model were mean logarithm of saturated hydraulic conductivity (+0.396), mean water content (+0.203), mean solid-water mass transfer coefficient (-0.147), and the mean solid-water equilibrium partitioning coefficient (-0.144). Using the model, we predicted the probability of failure of a one-meter thick proposed hydrogeologic barrier and a water content of 0.3. With the currently available data and the associated uncertainty, we predicted soils classified as sand would fail (p=0.999), silt loams would also fail (p=0.292), but soils classified as clays would provide the required 4-log attenuation (p=0.001). The model is extendible in the sense that probability density functions of parameters can be modified as future studies refine the uncertainty, and the lightweight object-oriented design of the computer model (implemented in Java) will facilitate reuse with modified classes. This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

  11. A Comprehensive Reliability Methodology for Assessing Risk of Reusing Failed Hardware Without Corrective Actions with and Without Redundancy

    NASA Technical Reports Server (NTRS)

    Putcha, Chandra S.; Mikula, D. F. Kip; Dueease, Robert A.; Dang, Lan; Peercy, Robert L.

    1997-01-01

    This paper deals with the development of a reliability methodology to assess the consequences of using hardware, without failure analysis or corrective action, that has previously demonstrated that it did not perform per specification. The subject of this paper arose from the need to provide a detailed probabilistic analysis to calculate the change in probability of failures with respect to the base or non-failed hardware. The methodology used for the analysis is primarily based on principles of Monte Carlo simulation. The random variables in the analysis are: Maximum Time of Operation (MTO) and operation Time of each Unit (OTU) The failure of a unit is considered to happen if (OTU) is less than MTO for the Normal Operational Period (NOP) in which this unit is used. NOP as a whole uses a total of 4 units. Two cases are considered. in the first specialized scenario, the failure of any operation or system failure is considered to happen if any of the units used during the NOP fail. in the second specialized scenario, the failure of any operation or system failure is considered to happen only if any two of the units used during the MOP fail together. The probability of failure of the units and the system as a whole is determined for 3 kinds of systems - Perfect System, Imperfect System 1 and Imperfect System 2. in a Perfect System, the operation time of the failed unit is the same as that of the MTO. In an Imperfect System 1, the operation time of the failed unit is assumed as 1 percent of the MTO. In an Imperfect System 2, the operation time of the failed unit is assumed as zero. in addition, simulated operation time of failed units is assumed as 10 percent of the corresponding units before zero value. Monte Carlo simulation analysis is used for this study. Necessary software has been developed as part of this study to perform the reliability calculations. The results of the analysis showed that the predicted change in failure probability (P(sub F)) for the previously failed units is as high as 49 percent above the baseline (perfect system) for the worst case. The predicted change in system P(sub F) for the previously failed units is as high as 36% for single unit failure without any redundancy. For redundant systems, with dual unit failure, the predicted change in P(sub F) for the previously failed units is as high as 16%. These results will help management to make decisions regarding the consequences of using previously failed units without adequate failure analysis or corrective action.

  12. Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns.

    PubMed

    Bonfante, Estevam A; Suzuki, Marcelo; Lorenzoni, Fábio C; Sena, Lídia A; Hirata, Ronaldo; Bonfante, Gerson; Coelho, Paulo G

    2015-08-01

    To evaluate the probability of survival and failure modes of implant-supported resin nanoceramic relative to metal-ceramic crowns. Resin nanoceramic molar crowns (LU) (Lava Ultimate, 3M ESPE, USA) were milled and metal-ceramic (MC) (Co-Cr alloy, Wirobond C+, Bego, USA) with identical anatomy were fabricated (n=21). The metal coping and a burnout-resin veneer were created by CAD/CAM, using an abutment (Stealth-abutment, Bicon LLC, USA) and a milled crown from the LU group as models for porcelain hot-pressing (GC-Initial IQ-Press, GC, USA). Crowns were cemented, the implants (n=42, Bicon) embedded in acrylic-resin for mechanical testing, and subjected to single-load to fracture (SLF, n=3 each) for determination of step-stress profiles for accelerated-life testing in water (n=18 each). Weibull curves (50,000 cycles at 200N, 90% CI) were plotted. Weibull modulus (m) and characteristic strength (η) were calculated and a contour plot used (m versus η) for determining differences between groups. Fractography was performed in SEM and polarized-light microscopy. SLF mean values were 1871N (±54.03) for MC and 1748N (±50.71) for LU. Beta values were 0.11 for MC and 0.49 for LU. Weibull modulus was 9.56 and η=1038.8N for LU, and m=4.57 and η=945.42N for MC (p>0.10). Probability of survival (50,000 and 100,000 cycles at 200 and 300N) was 100% for LU and 99% for MC. Failures were cohesive within LU. In MC crowns, porcelain veneer fractures frequently extended to the supporting metal coping. Probability of survival was not different between crown materials, but failure modes differed. In load bearing regions, similar reliability should be expected for metal ceramics, known as the gold standard, and resin nanoceramic crowns over implants. Failure modes involving porcelain veneer fracture and delamination in MC crowns are less likely to be successfully repaired compared to cohesive failures in resin nanoceramic material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. System Lifetimes, The Memoryless Property, Euler's Constant, and Pi

    ERIC Educational Resources Information Center

    Agarwal, Anurag; Marengo, James E.; Romero, Likin Simon

    2013-01-01

    A "k"-out-of-"n" system functions as long as at least "k" of its "n" components remain operational. Assuming that component failure times are independent and identically distributed exponential random variables, we find the distribution of system failure time. After some examples, we find the limiting…

  14. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley

    2007-01-01

    Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.

  15. Stochastic approach for an unbiased estimation of the probability of a successful separation in conventional chromatography and sequential elution liquid chromatography.

    PubMed

    Ennis, Erin J; Foley, Joe P

    2016-07-15

    A stochastic approach was utilized to estimate the probability of a successful isocratic or gradient separation in conventional chromatography for numbers of sample components, peak capacities, and saturation factors ranging from 2 to 30, 20-300, and 0.017-1, respectively. The stochastic probabilities were obtained under conditions of (i) constant peak width ("gradient" conditions) and (ii) peak width increasing linearly with time ("isocratic/constant N" conditions). The isocratic and gradient probabilities obtained stochastically were compared with the probabilities predicted by Martin et al. [Anal. Chem., 58 (1986) 2200-2207] and Davis and Stoll [J. Chromatogr. A, (2014) 128-142]; for a given number of components and peak capacity the same trend is always observed: probability obtained with the isocratic stochastic approach

  16. Compression Strength of Composite Primary Structural Components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1998-01-01

    Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.

  17. Accelerated Monte Carlo Simulation for Safety Analysis of the Advanced Airspace Concept

    NASA Technical Reports Server (NTRS)

    Thipphavong, David

    2010-01-01

    Safe separation of aircraft is a primary objective of any air traffic control system. An accelerated Monte Carlo approach was developed to assess the level of safety provided by a proposed next-generation air traffic control system. It combines features of fault tree and standard Monte Carlo methods. It runs more than one order of magnitude faster than the standard Monte Carlo method while providing risk estimates that only differ by about 10%. It also preserves component-level model fidelity that is difficult to maintain using the standard fault tree method. This balance of speed and fidelity allows sensitivity analysis to be completed in days instead of weeks or months with the standard Monte Carlo method. Results indicate that risk estimates are sensitive to transponder, pilot visual avoidance, and conflict detection failure probabilities.

  18. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Lipeng; Wang, Feiyi; Oral, H. Sarp

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storagemore » systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results« less

  19. The less familiar side of heart failure: symptomatic diastolic dysfunction.

    PubMed

    Morris, Spencer A; Van Swol, Mark; Udani, Bela

    2005-06-01

    Arrange for echocardiography or radionuclide angiography within 72 hours of a heart failure exacerbation. An ejection fraction >50% in the presence of signs and symptoms of heart failure makes the diagnosis of diastolic heart failure probable. To treat associated hypertension, use angiotensin receptor blockers (ARBs), angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, calcium channel blockers, or diuretics to achieve a blood pressure goal of <130/80 mm Hg. When using beta-blockers to control heart rate, titrate doses more aggressively than would be done for systolic failure, to reach a goal of 60 to 70 bpm. Use ACE inhibitors/ARBs to decrease hospitalizations, decrease symptoms, and prevent left ventricular remodeling.

  20. Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.

Top