Sample records for component mixing model

  1. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    PubMed

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  2. Experimental and mathematical model of the interactions in the mixed culture of links in the "producer-consumer" cycle

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.

    The paper presents experimental and mathematical model of interactions between invertebrates the ciliates Paramecium caudatum and the rotifers Brachionus plicatilis and algae Chlorella vulgaris and Scenedesmus quadricauda in the producer -- consumer aquatic biotic cycle with spatially separated components The model describes the dynamics of the mixed culture of ciliates and rotifers in the consumer component feeding on the mixed algal culture of the producer component It has been found that metabolites of the algae Scenedesmus produce an adverse effect on the reproduction of the ciliates P caudatum Taking into account this effect the results of investigation of the mathematical model were in qualitative agreement with the experimental results In the producer -- consumer biotic cycle it was shown that coexistence is impossible in the mixed algal culture of the producer component and in the mixed culture of invertebrates of the consumer component The ciliates P caudatum are driven out by the rotifers Brachionus plicatilis

  3. Multiple component end-member mixing model of dilution: hydrochemical effects of construction water at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2008-12-01

    The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.

  4. Experimental and mathematical model of the interactions in the mixed culture of links in the “producer-consumer” cycle

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.

    2009-07-01

    The paper presents a experimental and mathematical model of interactions between invertebrates (the ciliates Paramecium caudatum and the rotifers Brachionus plicatilis) in the "producer-consumer" aquatic biotic cycle with spatially separated components. The model describes the dynamics of the mixed culture of ciliates and rotifers in the "consumer" component, feeding on the mixed algal culture of the "producer" component. It has been found that metabolites of the algae Scenedesmus produce an adverse effect on the reproduction of the ciliates P. caudatum. Taking into account this effect, the results of investigation of the mathematical model were in qualitative agreement with the experimental results. In the "producer-consumer" biotic cycle it was shown that coexistence is impossible in the mixed culture of invertebrates of the "consumer" component. The ciliates P. caudatum are driven out by the rotifers B. plicatilis.

  5. How Many Separable Sources? Model Selection In Independent Components Analysis

    PubMed Central

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  6. Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model

    NASA Astrophysics Data System (ADS)

    Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair

    2017-11-01

    We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.

  7. The Apollo 16 regolith - A petrographically-constrained chemical mixing model

    NASA Technical Reports Server (NTRS)

    Kempa, M. J.; Papike, J. J.; White, C.

    1980-01-01

    A mixing model for Apollo 16 regolith samples has been developed, which differs from other A-16 mixing models in that it is both petrographically constrained and statistically sound. The model was developed using three components representative of rock types present at the A-16 site, plus a representative mare basalt. A linear least-squares fitting program employing the chi-squared test and sum of components was used to determine goodness of fit. Results for surface soils indicate that either there are no significant differences between Cayley and Descartes material at the A-16 site or, if differences do exist, they have been obscured by meteoritic reworking and mixing of the lithologies.

  8. On testing an unspecified function through a linear mixed effects model with multiple variance components

    PubMed Central

    Wang, Yuanjia; Chen, Huaihou

    2012-01-01

    Summary We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic approximation may be unreliable and conservative. PMID:23020801

  9. On testing an unspecified function through a linear mixed effects model with multiple variance components.

    PubMed

    Wang, Yuanjia; Chen, Huaihou

    2012-12-01

    We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.

  10. Modeling and Analysis of Mixed Synchronous/Asynchronous Systems

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin R.; Madl. Gabor; Hall, Brendan

    2012-01-01

    Practical safety-critical distributed systems must integrate safety critical and non-critical data in a common platform. Safety critical systems almost always consist of isochronous components that have synchronous or asynchronous interface with other components. Many of these systems also support a mix of synchronous and asynchronous interfaces. This report presents a study on the modeling and analysis of asynchronous, synchronous, and mixed synchronous/asynchronous systems. We build on the SAE Architecture Analysis and Design Language (AADL) to capture architectures for analysis. We present preliminary work targeted to capture mixed low- and high-criticality data, as well as real-time properties in a common Model of Computation (MoC). An abstract, but representative, test specimen system was created as the system to be modeled.

  11. Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna.

    PubMed

    Park, Chang-Beom; Jang, Jiyi; Kim, Sanghun; Kim, Young Jun

    2017-03-01

    In freshwater environments, aquatic organisms are generally exposed to mixtures of various chemical substances. In this study, we tested the toxicity of three organic UV-filters (ethylhexyl methoxycinnamate, octocrylene, and avobenzone) to Daphnia magna in order to evaluate the combined toxicity of these substances when in they occur in a mixture. The values of effective concentrations (ECx) for each UV-filter were calculated by concentration-response curves; concentration-combinations of three different UV-filters in a mixture were determined by the fraction of components based on EC 25 values predicted by concentration addition (CA) model. The interaction between the UV-filters were also assessed by model deviation ratio (MDR) using observed and predicted toxicity values obtained from mixture-exposure tests and CA model. The results from this study indicated that observed ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values obtained from mixture-exposure tests were higher than predicted ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values calculated by CA model. MDR values were also less than a factor of 1.0 in a mixtures of three different UV-filters. Based on these results, we suggest for the first time a reduction of toxic effects in the mixtures of three UV-filters, caused by antagonistic action of the components. Our findings from this study will provide important information for hazard or risk assessment of organic UV-filters, when they existed together in the aquatic environment. To better understand the mixture toxicity and the interaction of components in a mixture, further studies for various combinations of mixture components are also required. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Compatible estimators of the components of change for a rotating panel forest inventory design

    Treesearch

    Francis A. Roesch

    2007-01-01

    This article presents two approaches for estimating the components of forest change utilizing data from a rotating panel sample design. One approach uses a variant of the exponentially weighted moving average estimator and the other approach uses mixed estimation. Three general transition models were each combined with a single compatibility model for the mixed...

  13. MRMAide: a mixed resolution modeling aide

    NASA Astrophysics Data System (ADS)

    Treshansky, Allyn; McGraw, Robert M.

    2002-07-01

    The Mixed Resolution Modeling Aide (MRMAide) technology is an effort to semi-automate the implementation of Mixed Resolution Modeling (MRM). MRMAide suggests ways of resolving differences in fidelity and resolution across diverse modeling paradigms. The goal of MRMAide is to provide a technology that will allow developers to incorporate model components into scenarios other than those for which they were designed. Currently, MRM is implemented by hand. This is a tedious, error-prone, and non-portable process. MRMAide, in contrast, will automatically suggest to a developer where and how to connect different components and/or simulations. MRMAide has three phases of operation: pre-processing, data abstraction, and validation. During pre-processing the components to be linked together are evaluated in order to identify appropriate mapping points. During data abstraction those mapping points are linked via data abstraction algorithms. During validation developers receive feedback regarding their newly created models relative to existing baselined models. The current work presents an overview of the various problems encountered during MRM and the various technologies utilized by MRMAide to overcome those problems.

  14. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu`u `Ō`ō eruption

    NASA Astrophysics Data System (ADS)

    Shamberger, Patrick J.; Garcia, Michael O.

    2007-02-01

    Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3 31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ˜3 to ˜10 12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.

  15. The abundances of components of the lunar soils by a least-squares mixing model and the formation age of KREEP.

    NASA Technical Reports Server (NTRS)

    Schonfeld, E.; Meyer, C., Jr.

    1972-01-01

    A least-square mixing model incorporating mare basalts, KREEP basalts, anorthosites, anorthositic gabbros, ultramafics, granites, and meteorites was used to estimate the abundances of rock components in lunar soil from the Apollo 11, 12, 15, Luna 16, and Surveyor 5 and 6 landing sites. The predominance of iron-rich mare basalt at the sites is indicated.

  16. Determination of community structure through deconvolution of PLFA-FAME signature of mixed population.

    PubMed

    Dey, Dipesh K; Guha, Saumyen

    2007-02-15

    Phospholipid fatty acids (PLFAs) as biomarkers are well established in the literature. A general method based on least square approximation (LSA) was developed for the estimation of community structure from the PLFA signature of a mixed population where biomarker PLFA signatures of the component species were known. Fatty acid methyl ester (FAME) standards were used as species analogs and mixture of the standards as representative of the mixed population. The PLFA/FAME signatures were analyzed by gas chromatographic separation, followed by detection in flame ionization detector (GC-FID). The PLFAs in the signature were quantified as relative weight percent of the total PLFA. The PLFA signatures were analyzed by the models to predict community structure of the mixture. The LSA model results were compared with the existing "functional group" approach. Both successfully predicted community structure of mixed population containing completely unrelated species with uncommon PLFAs. For slightest intersection in PLFA signatures of component species, the LSA model produced better results. This was mainly due to inability of the "functional group" approach to distinguish the relative amounts of the common PLFA coming from more than one species. The performance of the LSA model was influenced by errors in the chromatographic analyses. Suppression (or enhancement) of a component's PLFA signature in chromatographic analysis of the mixture, led to underestimation (or overestimation) of the component's proportion in the mixture by the model. In mixtures of closely related species with common PLFAs, the errors in the common components were adjusted across the species by the model.

  17. Four-component numerical simulation model of radiative convective interactions in large-scale oxygen-hydrogen turbulent fire balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surzhikov, S.T.

    1996-12-31

    Two-dimensional radiative gas dynamics model for numerical simulation of oxygen-hydrogen fire ball which may be generated by an explosion of a launch vehicle with cryogenic (LO{sub 2}-LH{sub 2}) fuel components is presented. The following physical-chemical processes are taken into account in the numerical model: and effective chemical reaction between the gaseous components (O{sub 2}-H{sub 2}) of the propellant, turbulent mixing and diffusion of the components, and radiative heat transfer. The results of numerical investigations of the following problems are presented: The influence of radiative heat transfer on fire ball gas dynamics during the first 13 sec after explosion, the effectmore » of the fuel gaseous components afterburning on fire ball gas dynamics, and the effect of turbulence on fire ball gas dynamics (in a framework of algebraic model of turbulent mixing).« less

  18. A Bayesian Semiparametric Latent Variable Model for Mixed Responses

    ERIC Educational Resources Information Center

    Fahrmeir, Ludwig; Raach, Alexander

    2007-01-01

    In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…

  19. Estimating the numerical diapycnal mixing in an eddy-permitting ocean model

    NASA Astrophysics Data System (ADS)

    Megann, Alex

    2018-01-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, having attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimates have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is a recent ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre. It forms the ocean component of the GC2 climate model, and is closely related to the ocean component of the UKESM1 Earth System Model, the UK's contribution to the CMIP6 model intercomparison. GO5.0 uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. An approach to quantifying the numerical diapycnal mixing in this model, based on the isopycnal watermass analysis of Lee et al. (2002), is described, and the estimates thereby obtained of the effective diapycnal diffusivity in GO5.0 are compared with the values of the explicit diffusivity used by the model. It is shown that the effective mixing in this model configuration is up to an order of magnitude higher than the explicit mixing in much of the ocean interior, implying that mixing in the model below the mixed layer is largely dominated by numerical mixing. This is likely to have adverse consequences for the representation of heat uptake in climate models intended for decadal climate projections, and in particular is highly relevant to the interpretation of the CMIP6 class of climate models, many of which use constant-depth ocean models at ¼° resolution

  20. Genetic mixed linear models for twin survival data.

    PubMed

    Ha, Il Do; Lee, Youngjo; Pawitan, Yudi

    2007-07-01

    Twin studies are useful for assessing the relative importance of genetic or heritable component from the environmental component. In this paper we develop a methodology to study the heritability of age-at-onset or lifespan traits, with application to analysis of twin survival data. Due to limited period of observation, the data can be left truncated and right censored (LTRC). Under the LTRC setting we propose a genetic mixed linear model, which allows general fixed predictors and random components to capture genetic and environmental effects. Inferences are based upon the hierarchical-likelihood (h-likelihood), which provides a statistically efficient and unified framework for various mixed-effect models. We also propose a simple and fast computation method for dealing with large data sets. The method is illustrated by the survival data from the Swedish Twin Registry. Finally, a simulation study is carried out to evaluate its performance.

  1. Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery.

    PubMed

    Altmann, Yoann; Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2012-06-01

    This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A Bayesian algorithm and optimization methods are proposed to estimate the parameters involved in the model. The performance of the unmixing strategies is evaluated by simulations conducted on synthetic and real data.

  2. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE PAGES

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2017-03-09

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  3. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  4. Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach.

    Treesearch

    Rafal Podlaski; Francis Roesch

    2014-01-01

    In recent years finite-mixture models have been employed to approximate and model empirical diameter at breast height (DBH) distributions. We used two-component mixtures of either the Weibull distribution or the gamma distribution for describing the DBH distributions of mixed-species, two-cohort forest stands, to analyse the relationships between the DBH components,...

  5. Multi-stage mixing in subduction zone: Application to Merapi volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Debaille, V.; Doucelance, R.; Weis, D.; Schiano, P.

    2003-04-01

    Basalts sampling subduction zone volcanism (IAB) often show binary mixing relationship in classical Sr-Nd, Pb-Pb, Sr-Pb isotopic diagrams, generally interpreted as reflecting the involvement of two components in their source. However, several authors have highlighted the presence of minimum three components in such a geodynamical context: mantle wedge, subducted and altered oceanic crust and subducted sediments. The overlying continental crust can also contribute by contamination and assimilation in magma chambers and/or during magma ascent. Here we present a multi-stage model to obtain a two end-member mixing from three components (mantle wedge, altered oceanic crust and sediments). The first stage of the model considers the metasomatism of the mantle wedge by fluids and/or melts released by subducted materials (altered oceanic crust and associated sediments), considering mobility and partition coefficient of trace elements in hydrated fluids and silicate melts. This results in the generation of two distinct end-members, reducing the number of components (mantle wedge, oceanic crust, sediments) from three to two. The second stage of the model concerns the binary mixing of the two end-members thus defined: mantle wedge metasomatized by slab-derived fluids and mantle wedge metasomatized by sediment-derived fluids. This model has been applied on a new isotopic data set (Sr, Nd and Pb, analyzed by TIMS and MC-ICP-MS) of Merapi volcano (Java island, Indonesia). Previous studies have suggested three distinct components in the source of indonesian lavas: mantle wedge, subducted sediments and altered oceanic crust. Moreover, it has been shown that crustal contamination does not significantly affect isotopic ratios of lavas. The multi-stage model proposed here is able to reproduce the binary mixing observed in lavas of Merapi, and a set of numerical values of bulk partition coefficient is given that accounts for the genesis of lavas.

  6. Predictions of Supersonic Jet Mixing and Shock-Associated Noise Compared With Measured Far-Field Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2010-01-01

    Codes for predicting supersonic jet mixing and broadband shock-associated noise were assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. Two types of codes were used to make predictions. Fast running codes containing empirical models were used to compute both the mixing noise component and the shock-associated noise component of the jet noise spectrum. One Reynolds-averaged, Navier-Stokes-based code was used to compute only the shock-associated noise. To enable the comparisons of the predicted component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise components. Comparisons were made for 1/3-octave spectra and some power spectral densities using data from jets operating at 24 conditions covering essentially 6 fully expanded Mach numbers with 4 total temperature ratios.

  7. Modeling condensation with a noncondensable gas for mixed convection flow

    NASA Astrophysics Data System (ADS)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface using the Clausius-Clapeyron equation. The model was developed on a mass basis instead of a molar basis to be consistent with general conservation equations. It was found that vapor diffusion is not only driven by a gradient of the molar fraction but also a gradient of the mixture molecular weight at the diffusion layer.

  8. Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction.

    PubMed

    Shi, J Q; Wang, B; Will, E J; West, R M

    2012-11-20

    We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  10. Application of linear mixed-effects model with LASSO to identify metal components associated with cardiac autonomic responses among welders: a repeated measures study

    PubMed Central

    Zhang, Jinming; Cavallari, Jennifer M; Fang, Shona C; Weisskopf, Marc G; Lin, Xihong; Mittleman, Murray A; Christiani, David C

    2017-01-01

    Background Environmental and occupational exposure to metals is ubiquitous worldwide, and understanding the hazardous metal components in this complex mixture is essential for environmental and occupational regulations. Objective To identify hazardous components from metal mixtures that are associated with alterations in cardiac autonomic responses. Methods Urinary concentrations of 16 types of metals were examined and ‘acceleration capacity’ (AC) and ‘deceleration capacity’ (DC), indicators of cardiac autonomic effects, were quantified from ECG recordings among 54 welders. We fitted linear mixed-effects models with least absolute shrinkage and selection operator (LASSO) to identify metal components that are associated with AC and DC. The Bayesian Information Criterion was used as the criterion for model selection procedures. Results Mercury and chromium were selected for DC analysis, whereas mercury, chromium and manganese were selected for AC analysis through the LASSO approach. When we fitted the linear mixed-effects models with ‘selected’ metal components only, the effect of mercury remained significant. Every 1 µg/L increase in urinary mercury was associated with −0.58 ms (−1.03, –0.13) changes in DC and 0.67 ms (0.25, 1.10) changes in AC. Conclusion Our study suggests that exposure to several metals is associated with impaired cardiac autonomic functions. Our findings should be replicated in future studies with larger sample sizes. PMID:28663305

  11. Analysis of lithology: Vegetation mixes in multispectral images

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Smith, M.; Adams, J. D.

    1982-01-01

    Discrimination and identification of lithologies from multispectral images is discussed. Rock/soil identification can be facilitated by removing the component of the signal in the images that is contributed by the vegetation. Mixing models were developed to predict the spectra of combinations of pure end members, and those models were refined using laboratory measurements of real mixtures. Models in use include a simple linear (checkerboard) mix, granular mixing, semi-transparent coatings, and combinations of the above. The use of interactive computer techniques that allow quick comparison of the spectrum of a pixel stack (in a multiband set) with laboratory spectra is discussed.

  12. Linear mixing model applied to AVHRR LAC data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.

  13. Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D

    NASA Technical Reports Server (NTRS)

    Wolf, D. E.; Sinha, N.; Dash, S. M.

    1988-01-01

    Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D.

  14. The model of the composition of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Izakov, M. N.; Krasitskiy, O. P.

    1977-01-01

    Global mean distributions of Martian atmospheric components concentrations from the planet's surface up to an altitude of 250 km are calculated. Improved data on the turbulent mixing coefficient, as a function of altitude, on temperature distribution and on chemical and photochemical reaction rates are used. The model data agree well with available measurements of some components concentrations. Variations of composition due to long-period variations of temperature, moisture and turbulent mixing are investigated. The relative significance of different catalytic cycles and the important role of excited atoms 0 (d-1) are revealed.

  15. Marketing for a Web-Based Master's Degree Program in Light of Marketing Mix Model

    ERIC Educational Resources Information Center

    Pan, Cheng-Chang

    2012-01-01

    The marketing mix model was applied with a focus on Web media to re-strategize a Web-based Master's program in a southern state university in U.S. The program's existing marketing strategy was examined using the four components of the model: product, price, place, and promotion, in hopes to repackage the program (product) to prospective students…

  16. Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 1. Mixing alone

    NASA Astrophysics Data System (ADS)

    Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.

    2010-09-01

    Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (<1 PSU) members. TFF permeates (<1 kDa) from the three members were used to create artificial salinity transects ranging from ˜0 to ˜36, with 4 PSU increments. UDOM from the end- or mid-members was added in equal amounts to each salinity-mix. Three-dimensional fluorescence excitation-emission matrix (EEMs) spectra were generated for each end-member permeate and UDOM through the full estuarine mixing transect. Fluorescence components such as proteinaceous, terrigenous, and marine derived humic peaks, and certain fluorescent ratios were noticeably altered by simulated estuarine mixing, suggesting that LMW DOM and UDOM undergo physicochemical alteration as they move to or from the freshwater, mid-estuarine, or coastal ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (<8). Significant shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.

  17. Combined Recirculatory-compartmental Population Pharmacokinetic Modeling of Arterial and Venous Plasma S(+) and R(-) Ketamine Concentrations.

    PubMed

    Henthorn, Thomas K; Avram, Michael J; Dahan, Albert; Gustafsson, Lars L; Persson, Jan; Krejcie, Tom C; Olofsen, Erik

    2018-05-16

    The pharmacokinetics of infused drugs have been modeled without regard for recirculatory or mixing kinetics. We used a unique ketamine dataset with simultaneous arterial and venous blood sampling, during and after separate S(+) and R(-) ketamine infusions, to develop a simplified recirculatory model of arterial and venous plasma drug concentrations. S(+) or R(-) ketamine was infused over 30 min on two occasions to 10 healthy male volunteers. Frequent, simultaneous arterial and forearm venous blood samples were obtained for up to 11 h. A multicompartmental pharmacokinetic model with front-end arterial mixing and venous blood components was developed using nonlinear mixed effects analyses. A three-compartment base pharmacokinetic model with additional arterial mixing and arm venous compartments and with shared S(+)/R(-) distribution kinetics proved superior to standard compartmental modeling approaches. Total pharmacokinetic flow was estimated to be 7.59 ± 0.36 l/min (mean ± standard error of the estimate), and S(+) and R(-) elimination clearances were 1.23 ± 0.04 and 1.06 ± 0.03 l/min, respectively. The arm-tissue link rate constant was 0.18 ± 0.01 min and the fraction of arm blood flow estimated to exchange with arm tissue was 0.04 ± 0.01. Arterial drug concentrations measured during drug infusion have two kinetically distinct components: partially or lung-mixed drug and fully mixed-recirculated drug. Front-end kinetics suggest the partially mixed concentration is proportional to the ratio of infusion rate and total pharmacokinetic flow. This simplified modeling approach could lead to more generalizable models for target-controlled infusions and improved methods for analyzing pharmacokinetic-pharmacodynamic data.

  18. The role of the Indonesian Throughflow in equatorial Pacific thermocline ventilation

    NASA Astrophysics Data System (ADS)

    Rodgers, Keith B.; Cane, Mark A.; Naik, Naomi H.; Schrag, Daniel P.

    1999-09-01

    The role of the Indonesian Throughflow (ITF) in the thermocline circulation of the low-latitude Pacific Ocean is explored using a high-resolution primitive equation ocean circulation model. Seasonally forced runs for a domain with an open Indonesian passage are compared with seasonally forced runs for a closed Pacific domain. Three cases are considered: one with no throughflow, one with 10 Sv of imposed ITF transport, and one with 20 Sv of ITF transport. Two idealized tracers, one that tags northern component subtropical water and another that tags southern component subtropical water, are used to diagnose the mixing ratio of northern and southern component waters in the equatorial thermocline. It is found that the mixing ratio of north/south component waters in the equatorial thermocline is highly sensitive to whether the model accounts for an ITF. Without an ITF, the source of equatorial undercurrent water is primarily of North Pacific origin, with the ratio of northern to southern component water being approximately 2.75 to 1. The ratio of northern to southern component water in the Equatorial Undercurrent with 10 Sv of ITF is approximately 1.4 to 1, and the ratio with 20 Sv of imposed ITF is 1 to 1.25. Estimates from data suggest a mean mixing ratio of northern to southern component water of less than 1 to 1. Assuming that the mixing ratio changes approximately linearly as the ITF transport varies between 10 and 20 Sv, an approximate balance between northern and southern component water is reached when the ITF transport is approximately 16 Sv. It is also shown that for the isopycnal surfaces within the core of the equatorial undercurrent, a 2°C temperature front exists across the equator in the western equatorial Pacific, beneath the warm pool. The implications of the model results and the temperature data for the heat budget of the equatorial Pacific are considered.

  19. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions

    PubMed Central

    Mountain, Raymond D.; Harvey, Allan H.

    2015-01-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009

  20. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions.

    PubMed

    Mountain, Raymond D; Harvey, Allan H

    2015-10-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.

  1. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.

    PubMed

    Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin

    2015-01-01

    The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.

  2. Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling

    USGS Publications Warehouse

    Srodon, J.; Clauer, Norbert; Eberl, D.D.D.

    2002-01-01

    K-Ar dates of illitic clays from sedimentary rocks may contain "mixed ages," i.e., may have ages that are intermediate between the ages of end-member events. Two phenomena that may cause mixed ages are: (1) long-lasting reaction during the burial illitization of smectite: and (2) physical mixing of detrital and diagenetic components. The first phenomenon was investigated by simulation of illitization reactions using a nucleation and growth mechanism. These calculations indicate that values for mixed ages are related to burial history: for an equivalent length of reaction time, fast burial followed by slow burial produces much older mixed ages than slow burial followed by fast. The type of reaction that occured in a rock can be determined from the distribution of ages with respect to the thickness of illite crystals. Dating of artificial mixtures confirms a non-linear relation between mixed ages and the proportions of the components. Vertical variation of K-Ar age dates from Gulf Coast shales can be modeled by assuming diagenetic illitization that overprints a subtle vertical trend (presumably of sedimentary origin) in detrital mineral content.

  3. Enthalpy of Mixing in Al–Tb Liquid

    DOE PAGES

    Zhou, Shihuai; Tackes, Carl; Napolitano, Ralph

    2017-06-21

    The liquid-phase enthalpy of mixing for Al$-$Tb alloys is measured for 3, 5, 8, 10, and 20 at% Tb at selected temperatures in the range from 1364 to 1439 K. Methods include isothermal solution calorimetry and isoperibolic electromagnetic levitation drop calorimetry. Mixing enthalpy is determined relative to the unmixed pure (Al and Tb) components. The required formation enthalpy for the Al3Tb phase is computed from first-principles calculations. Finally, based on our measurements, three different semi-empirical solution models are offered for the excess free energy of the liquid, including regular, subregular, and associate model formulations. These models are also compared withmore » the Miedema model prediction of mixing enthalpy.« less

  4. Miscibility and Thermodynamics of Mixing of Different Models of Formamide and Water in Computer Simulation.

    PubMed

    Kiss, Bálint; Fábián, Balázs; Idrissi, Abdenacer; Szőri, Milán; Jedlovszky, Pál

    2017-07-27

    The thermodynamic changes that occur upon mixing five models of formamide and three models of water, including the miscibility of these model combinations itself, is studied by performing Monte Carlo computer simulations using an appropriately chosen thermodynamic cycle and the method of thermodynamic integration. The results show that the mixing of these two components is close to the ideal mixing, as both the energy and entropy of mixing turn out to be rather close to the ideal term in the entire composition range. Concerning the energy of mixing, the OPLS/AA_mod model of formamide behaves in a qualitatively different way than the other models considered. Thus, this model results in negative, while the other ones in positive energy of mixing values in combination with all three water models considered. Experimental data supports this latter behavior. Although the Helmholtz free energy of mixing always turns out to be negative in the entire composition range, the majority of the model combinations tested either show limited miscibility, or, at least, approach the miscibility limit very closely in certain compositions. Concerning both the miscibility and the energy of mixing of these model combinations, we recommend the use of the combination of the CHARMM formamide and TIP4P water models in simulations of water-formamide mixtures.

  5. Free energy of mixing of acetone and methanol: a computer simulation investigation.

    PubMed

    Idrissi, Abdenacer; Polok, Kamil; Barj, Mohammed; Marekha, Bogdan; Kiselev, Mikhail; Jedlovszky, Pál

    2013-12-19

    The change of the Helmholtz free energy, internal energy, and entropy accompanying the mixing of acetone and methanol is calculated in the entire composition range by the method of thermodynamic integration using three different potential model combinations of the two compounds. In the first system, both molecules are described by the OPLS, and in the second system, both molecules are described by the original TraPPE force field, whereas in the third system a modified version of the TraPPE potential is used for acetone in combination with the original TraPPE model of methanol. The results reveal that, in contrast with the acetone-water system, all of these three model combinations are able to reproduce the full miscibility of acetone and methanol, although the thermodynamic driving force of this mixing is very small. It is also seen, in accordance with the finding of former structural analyses, that the mixing of the two components is driven by the entropy term corresponding to the ideal mixing, which is large enough to overcompensate the effect of the energy increase and entropy loss due to the interaction of the unlike components in the mixtures. Among the three model combinations, the use of the original TraPPE model of methanol and modified TraPPE model of acetone turns out to be clearly the best in this respect, as it is able to reproduce the experimental free energy, internal energy, and entropy of mixing values within 0.15 kJ/mol, 0.2 kJ/mol, and 1 J/(mol K), respectively, in the entire composition range. The success of this model combination originates from the fact that the use of the modified TraPPE model of acetone instead of the original one in these mixtures improves the reproduction of the entropy of mixing, while it retains the ability of the original model of excellently reproducing the internal energy of mixing.

  6. Thermo-Gas-Dynamic Model of Afterburning in Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Ferguson, R E; Bell, J B

    2003-07-27

    A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.

  7. Correcting for population structure and kinship using the linear mixed model: theory and extensions.

    PubMed

    Hoffman, Gabriel E

    2013-01-01

    Population structure and kinship are widespread confounding factors in genome-wide association studies (GWAS). It has been standard practice to include principal components of the genotypes in a regression model in order to account for population structure. More recently, the linear mixed model (LMM) has emerged as a powerful method for simultaneously accounting for population structure and kinship. The statistical theory underlying the differences in empirical performance between modeling principal components as fixed versus random effects has not been thoroughly examined. We undertake an analysis to formalize the relationship between these widely used methods and elucidate the statistical properties of each. Moreover, we introduce a new statistic, effective degrees of freedom, that serves as a metric of model complexity and a novel low rank linear mixed model (LRLMM) to learn the dimensionality of the correction for population structure and kinship, and we assess its performance through simulations. A comparison of the results of LRLMM and a standard LMM analysis applied to GWAS data from the Multi-Ethnic Study of Atherosclerosis (MESA) illustrates how our theoretical results translate into empirical properties of the mixed model. Finally, the analysis demonstrates the ability of the LRLMM to substantially boost the strength of an association for HDL cholesterol in Europeans.

  8. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  9. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model

    Treesearch

    Fabian C.C. Uzoh; William W. Oliver

    2008-01-01

    A diameter increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in the United States using a multilevel linear mixed model. Stochastic variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting at tree and stand level, as breast height diameter, density, site index...

  10. Integration of Component Knowledge in Penalized-Likelihood Reconstruction with Morphological and Spectral Uncertainties.

    PubMed

    Stayman, J Webster; Tilley, Steven; Siewerdsen, Jeffrey H

    2014-01-01

    Previous investigations [1-3] have demonstrated that integrating specific knowledge of the structure and composition of components like surgical implants, devices, and tools into a model-based reconstruction framework can improve image quality and allow for potential exposure reductions in CT. Using device knowledge in practice is complicated by uncertainties in the exact shape of components and their particular material composition. Such unknowns in the morphology and attenuation properties lead to errors in the forward model that limit the utility of component integration. In this work, a methodology is presented to accommodate both uncertainties in shape as well as unknown energy-dependent attenuation properties of the surgical devices. This work leverages the so-called known-component reconstruction (KCR) framework [1] with a generalized deformable registration operator and modifications to accommodate a spectral transfer function in the component model. Moreover, since this framework decomposes the object into separate background anatomy and "known" component factors, a mixed fidelity forward model can be adopted so that measurements associated with projections through the surgical devices can be modeled with much greater accuracy. A deformable KCR (dKCR) approach using the mixed fidelity model is introduced and applied to a flexible wire component with unknown structure and composition. Image quality advantages of dKCR over traditional reconstruction methods are illustrated in cone-beam CT (CBCT) data acquired on a testbench emulating a 3D-guided needle biopsy procedure - i.e., a deformable component (needle) with strong energy-dependent attenuation characteristics (steel) within a complex soft-tissue background.

  11. A Mixed Methods Investigation of Mixed Methods Sampling Designs in Social and Health Science Research

    ERIC Educational Resources Information Center

    Collins, Kathleen M. T.; Onwuegbuzie, Anthony J.; Jiao, Qun G.

    2007-01-01

    A sequential design utilizing identical samples was used to classify mixed methods studies via a two-dimensional model, wherein sampling designs were grouped according to the time orientation of each study's components and the relationship of the qualitative and quantitative samples. A quantitative analysis of 121 studies representing nine fields…

  12. Software engineering the mixed model for genome-wide association studies on large samples.

    PubMed

    Zhang, Zhiwu; Buckler, Edward S; Casstevens, Terry M; Bradbury, Peter J

    2009-11-01

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models. While multiple software packages implement the mixed model method, no single package provides the best combination of fast computation, ability to handle large samples, flexible modeling and ease of use. Key elements of association analysis with mixed models are reviewed, including modeling phenotype-genotype associations using mixed models, population stratification, kinship and its estimation, variance component estimation, use of best linear unbiased predictors or residuals in place of raw phenotype, improving efficiency and software-user interaction. The available software packages are evaluated, and suggestions made for future software development.

  13. Competitive adsorption from mixed hen egg-white lysozyme/surfactant solutions at the air-water interface studied by tensiometry, ellipsometry, and surface dilational rheology.

    PubMed

    Alahverdjieva, V S; Grigoriev, D O; Fainerman, V B; Aksenenko, E V; Miller, R; Möhwald, H

    2008-02-21

    The competitive adsorption at the air-water interface from mixed adsorption layers of hen egg-white lysozyme with a non-ionic surfactant (C10DMPO) was studied and compared to the mixture with an ionic surfactant (SDS) using bubble and drop shape analysis tensiometry, ellipsometry, and surface dilational rheology. The set of equilibrium and kinetic data of the mixed solutions is described by a thermodynamic model developed recently. The theoretical description of the mixed system is based on the model parameters for the individual components.

  14. Modeling snag dynamics in northern Arizona mixed-conifer and ponderosa pine forests

    Treesearch

    Joseph L. Ganey; Scott C. Vojta

    2007-01-01

    Snags (standing dead trees) are important components of forested habitats that contribute to ecological decay and recycling processes as well as providing habitat for many life forms. As such, snags are of special interest to land managers, but information on dynamics of snag populations is lacking. We modeled trends in snag populations in mixed-conifer and ponderosa...

  15. User's guide to the stand-damage model: a component of the gypsy moth life system model

    Treesearch

    J. J. Colbert; George Racin

    1995-01-01

    The Stand-Damage Model (a component of the Gypsy Moth Life System Model) simulates the growth of a mixed hardwood forest and incorporates the effects of defoliation by gypsy moth or tree harvesting as prescribed by the user. It can be used to assess the damage from expected defoliation, view the differences between various degrees of defoliation, and describe the...

  16. Relating B_S Mixing and B_S to mu+mu- with New Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golowich, Eugene; /Massachusetts U., Amherst; Hewett, JoAnne

    2012-06-11

    We perform a study of the standard model fit to the mixing quantities {Delta}M{sub B{sub s}}, and {Delta}{Lambda}{sub B{sub s}}/{Delta}M{sub B{sub s}} in order to bound contributions of new physics (NP) to B{sub s} mixing. We then use this to explore the branching fraction of B{sub s} {yields} {mu}{sup +}{mu}{sup -} in certain models of NP. In most cases, this constrains NP amplitudes for B{sub s} {yields} {mu}{sup +}{mu}{sup -} to lie below the standard model component.

  17. Submesoscale Flows and Mixing in the Oceanic Surface Layer Using the Regional Oceanic Modeling System (ROMS)

    DTIC Science & Technology

    2014-09-30

    continuation of the evolution of the Regional Oceanic Modeling System (ROMS) as a multi-scale, multi-process model and its utilization for...hydrostatic component of ROMS (Kanarska et al., 2007) is required to increase its efficiency and generality. The non-hydrostatic ROMS involves the solution...instability and wind-driven mixing. For the computational regime where those processes can be partially, but not yet fully resolved, it will

  18. The multivariate egg: quantifying within- and among-clutch correlations between maternally derived yolk immunoglobulins and yolk androgens using multivariate mixed models.

    PubMed

    Postma, Erik; Siitari, Heli; Schwabl, Hubert; Richner, Heinz; Tschirren, Barbara

    2014-03-01

    Egg components are important mediators of prenatal maternal effects in birds and other oviparous species. Because different egg components can have opposite effects on offspring phenotype, selection is expected to favour their mutual adjustment, resulting in a significant covariation between egg components within and/or among clutches. Here we tested for such correlations between maternally derived yolk immunoglobulins and yolk androgens in great tit (Parus major) eggs using a multivariate mixed-model approach. We found no association between yolk immunoglobulins and yolk androgens within clutches, indicating that within clutches the two egg components are deposited independently. Across clutches, however, there was a significant negative relationship between yolk immunoglobulins and yolk androgens, suggesting that selection has co-adjusted their deposition. Furthermore, an experimental manipulation of ectoparasite load affected patterns of covariance among egg components. Yolk immunoglobulins are known to play an important role in nestling immune defence shortly after hatching, whereas yolk androgens, although having growth-enhancing effects under many environmental conditions, can be immunosuppressive. We therefore speculate that variation in the risk of parasitism may play an important role in shaping optimal egg composition and may lead to the observed pattern of yolk immunoglobulin and yolk androgen deposition across clutches. More generally, our case study exemplifies how multivariate mixed-model methodology presents a flexible tool to not only quantify, but also test patterns of (co)variation across different organisational levels and environments, allowing for powerful hypothesis testing in ecophysiology.

  19. A numerical study of mixing enhancement in supersonic reacting flow fields. [in scramjets

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Mukunda, H. S.

    1988-01-01

    NASA Langley has intensively investigated the components of ramjet and scramjet systems for endoatmospheric, airbreathing hypersonic propulsion; attention is presently given to the optimization of scramjet combustor fuel-air mixing and reaction characteristics. A supersonic, spatially developing and reacting mixing layer has been found to serve as an excellent physical model for the mixing and reaction process. Attention is presently given to techniques that have been applied to the enhancement of the mixing processes and the overall combustion efficiency of the mixing layer. A fuel injector configuration has been computationally designed which significantly increases mixing and reaction rates.

  20. Delamination modeling of laminate plate made of sublaminates

    NASA Astrophysics Data System (ADS)

    Kormaníková, Eva; Kotrasová, Kamila

    2017-07-01

    The paper presents the mixed-mode delamination of plates made of sublaminates. To this purpose an opening load mode of delamination is proposed as failure model. The failure model is implemented in ANSYS code to calculate the mixed-mode delamination response as energy release rate. The analysis is based on interface techniques. Within the interface finite element modeling there are calculated the individual components of damage parameters as spring reaction forces, relative displacements and energy release rates along the lamination front.

  1. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.

    PubMed

    Covarrubias-Pazaran, Giovanny

    2016-01-01

    Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.

  2. Analysis and Modeling of a Two-Phase Jet Pump of a Thermal Management System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.

    1998-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.

  3. Improving the Power of GWAS and Avoiding Confounding from Population Stratification with PC-Select

    PubMed Central

    Tucker, George; Price, Alkes L.; Berger, Bonnie

    2014-01-01

    Using a reduced subset of SNPs in a linear mixed model can improve power for genome-wide association studies, yet this can result in insufficient correction for population stratification. We propose a hybrid approach using principal components that does not inflate statistics in the presence of population stratification and improves power over standard linear mixed models. PMID:24788602

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, Edgar C.; Wittman, Richard S.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste. Within the UFDC, the components for a general system model of the degradation and subsequent transport of UNF is being developed to analyze the performance of disposal options [Sassani et al., 2012]. Two model components of the near-field part of the problem are the ANL Mixed Potential Model and the PNNL Radiolysis Model. This reportmore » is in response to the desire to integrate the two models as outlined in [Buck, E.C, J.L. Jerden, W.L. Ebert, R.S. Wittman, (2013) “Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation,” FCRD-UFD-2013-000290, M3FT-PN0806058]« less

  5. Separation of pedogenic and lithogenic components of magnetic susceptibility in the Chinese loess/palaeosol sequence as determined by the CBD procedure and a mixing analysis

    NASA Astrophysics Data System (ADS)

    Vidic, Nataša. J.; TenPas, Jeff D.; Verosub, Kenneth L.; Singer, Michael J.

    2000-08-01

    Magnetic susceptibility variations in the Chinese loess/palaeosol sequences have been used extensively for palaeoclimatic interpretations. The magnetic signal of these sequences must be divided into lithogenic and pedogenic components because the palaeoclimatic record is primarily reflected in the pedogenic component. In this paper we compare two methods for separating the pedogenic and lithogenic components of the magnetic susceptibility signal: the citrate-bicarbonate-dithionite (CBD) extraction procedure, and a mixing analysis. Both methods yield good estimates of the pedogenic component, especially for the palaeosols. The CBD procedure underestimates the lithogenic component and overestimates the pedogenic component. The magnitude of this effect is moderately high in loess layers but almost negligible in palaeosols. The mixing model overestimates the lithogenic component and underestimates the pedogenic component. Both methods can be adjusted to yield better estimates of both components. The lithogenic susceptibility, as determined by either method, suggests that palaeoclimatic interpretations based only on total susceptibility will be in error and that a single estimate of the average lithogenic susceptibility is not an accurate basis for adjusting the total susceptibility. A long-term decline in lithogenic susceptibility with depth in the section suggests more intense or prolonged periods of weathering associated with the formation of the older palaeosols. The CBD procedure provides the most comprehensive information on the magnitude of the components and magnetic mineralogy of loess and palaeosols. However, the mixing analysis provides a sensitive, rapid, and easily applied alternative to the CBD procedure. A combination of the two approaches provides the most powerful and perhaps the most accurate way of separating the magnetic susceptibility components.

  6. A preliminary case-mix classification system for Medicare home health clients.

    PubMed

    Branch, L G; Goldberg, H B

    1993-04-01

    In this study, a hierarchical case-mix model was developed for grouping Medicare home health beneficiaries homogeneously, based on the allowed charges for their home care. Based on information from a two-page form from 2,830 clients from ten states and using the classification and regression trees method, a four-component model was developed that yielded 11 case-mix groups and explained 22% of the variance for the test sample of 1,929 clients. The four components are rehabilitation, special care, skilled-nurse monitoring, and paralysis; each are categorized as present or absent. The range of mean-allowed charges for the 11 groups in the total sample was $473 to $2,562 with a mean of $847. Of the six groups with mean charges above $1,000, none exceeded 5.2% of clients; thus, the high-cost groups are relatively rare.

  7. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl in apatite.

  8. On modeling pressure diffusion in non-homogeneous shear flows

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Rogers, M. M.; Durbin, P.; Lele, S. K.

    1996-01-01

    New models are proposed for the 'slow and 'rapid' parts of the pressure diffusive transport based on the examination of DNS databases for plane mixing layers and wakes. The model for the 'slow' part is non-local, but requires the distribution of the triple-velocity correlation as a local source. The latter can be computed accurately for the normal component from standard gradient diffusion models, but such models are inadequate for the cross component. More work is required to remedy this situation.

  9. Improving model biases in an ESM with an isopycnic ocean component by accounting for wind work on oceanic near-inertial motions.

    NASA Astrophysics Data System (ADS)

    de Wet, P. D.; Bentsen, M.; Bethke, I.

    2016-02-01

    It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.

  10. A Parameter Subset Selection Algorithm for Mixed-Effects Models

    DOE PAGES

    Schmidt, Kathleen L.; Smith, Ralph C.

    2016-01-01

    Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less

  11. Contributions of the atmosphere-land and ocean-sea ice model components to the tropical Atlantic SST bias in CESM1

    NASA Astrophysics Data System (ADS)

    Song, Z.; Lee, S. K.; Wang, C.; Kirtman, B. P.; Qiao, F.

    2016-02-01

    In order to identify and quantify intrinsic errors in the atmosphere-land and ocean-sea ice model components of the Community Earth System Model version 1 (CESM1) and their contributions to the tropical Atlantic sea surface temperature (SST) bias in CESM1, we propose a new method of diagnosis and apply it to a set of CESM1 simulations. Our analyses of the model simulations indicate that both the atmosphere-land and ocean-sea ice model components of CESM1 contain large errors in the tropical Atlantic. When the two model components are fully coupled, the intrinsic errors in the two components emerge quickly within a year with strong seasonality in their growth rates. In particular, the ocean-sea ice model contributes significantly in forcing the eastern equatorial Atlantic warm SST bias in early boreal summer. Further analysis shows that the upper thermocline water underneath the eastern equatorial Atlantic surface mixed layer is too warm in a stand-alone ocean-sea ice simulation of CESM1 forced with observed surface flux fields, suggesting that the mixed layer cooling associated with the entrainment of upper thermocline water is too weak in early boreal summer. Therefore, although we acknowledge the potential importance of the westerly wind bias in the western equatorial Atlantic and the low-level stratus cloud bias in the southeastern tropical Atlantic, both of which originate from the atmosphere-land model, we emphasize here that solving those problems in the atmosphere-land model alone does not resolve the equatorial Atlantic warm bias in CESM1.

  12. Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

    NASA Astrophysics Data System (ADS)

    Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus

    2018-02-01

    The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

  13. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  14. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less

  15. Heterogeneity in general practitioners' preferences for quality improvement programs: a choice experiment and policy simulation in France.

    PubMed

    Ammi, Mehdi; Peyron, Christine

    2016-12-01

    Despite increasing popularity, quality improvement programs (QIP) have had modest and variable impacts on enhancing the quality of physician practice. We investigate the heterogeneity of physicians' preferences as a potential explanation of these mixed results in France, where the national voluntary QIP - the CAPI - has been cancelled due to its unpopularity. We rely on a discrete choice experiment to elicit heterogeneity in physicians' preferences for the financial and non-financial components of QIP. Using mixed and latent class logit models, results show that the two models should be used in concert to shed light on different aspects of the heterogeneity in preferences. In particular, the mixed logit demonstrates that heterogeneity in preferences is concentrated on the pay-for-performance component of the QIP, while the latent class model shows that physicians can be grouped in four homogeneous groups with specific preference patterns. Using policy simulation, we compare the French CAPI with other possible QIPs, and show that the majority of the physician subgroups modelled dislike the CAPI, while favouring a QIP using only non-financial interventions. We underline the importance of modelling preference heterogeneity in designing and implementing QIPs.

  16. Multidisciplinary, interdisciplinary, or dysfunctional? Team working in mixed-methods research.

    PubMed

    O'Cathain, Alicia; Murphy, Elizabeth; Nicholl, Jon

    2008-11-01

    Combining qualitative and quantitative methods in a single study-otherwise known as mixed-methods research-is common. In health research these projects can be delivered by research teams. A typical scenario, for example, involves medical sociologists delivering qualitative components and researchers from medicine or health economics delivering quantitative components. We undertook semistructured interviews with 20 researchers who had worked on mixed-methods studies in health services research to explore the facilitators of and barriers to exploiting the potential of this approach. Team working emerged as a key issue, with three models of team working apparent: multidisciplinary, interdisciplinary, and dysfunctional. Interdisciplinary research was associated with integration of data or findings from the qualitative and quantitative components in both the final reports and the peer-reviewed publications. Methodological respect between team members and a principal investigator who valued integration emerged as essential to achieving integrated research outcomes.

  17. Identification and evaluation of composition in food powder using point-scan Raman spectral imaging

    USDA-ARS?s Scientific Manuscript database

    This study used Raman spectral imaging coupled with self-modeling mixture analysis (SMA) for identification of three components mixed into a complex food powder mixture. Vanillin, melamine, and sugar were mixed together at 10 different concentration levels (spanning 1% to 10%, w/w) into powdered non...

  18. Functional mixed effects spectral analysis

    PubMed Central

    KRAFTY, ROBERT T.; HALL, MARTICA; GUO, WENSHENG

    2011-01-01

    SUMMARY In many experiments, time series data can be collected from multiple units and multiple time series segments can be collected from the same unit. This article introduces a mixed effects Cramér spectral representation which can be used to model the effects of design covariates on the second-order power spectrum while accounting for potential correlations among the time series segments collected from the same unit. The transfer function is composed of a deterministic component to account for the population-average effects and a random component to account for the unit-specific deviations. The resulting log-spectrum has a functional mixed effects representation where both the fixed effects and random effects are functions in the frequency domain. It is shown that, when the replicate-specific spectra are smooth, the log-periodograms converge to a functional mixed effects model. A data-driven iterative estimation procedure is offered for the periodic smoothing spline estimation of the fixed effects, penalized estimation of the functional covariance of the random effects, and unit-specific random effects prediction via the best linear unbiased predictor. PMID:26855437

  19. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    PubMed

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  20. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly differentmore » from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.« less

  1. Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.

    PubMed

    Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C

    2014-12-01

    D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.

  2. Evaluating methods to visualize patterns of genetic differentiation on a landscape.

    PubMed

    House, Geoffrey L; Hahn, Matthew W

    2018-05-01

    With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.

  3. Estimating spatial and temporal components of variation in count data using negative binomial mixed models

    USGS Publications Warehouse

    Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.

    2013-01-01

    Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.

  4. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE (root mean square error) is 0.03 for SSA and 0.02 for AAOD lower than 0.05. The SSA is further evaluated by comparison with the SSA retrieved from the Ozone Monitoring Instrument (OMI). The SSA retrieved from both instruments show similar features, with generally lower AATSR-estimated SSA values over areas affected by wildfires.

  5. Nationwide review of mixed and non-mixed components from different manufacturers in total hip arthroplasty

    PubMed Central

    Peters, Rinne M; van Steenbergen, Liza N; Bulstra, Sjoerd K; Zeegers, Adelgunde V C M; Stewart, Roy E; Poolman, Rudolf W; Hosman, Anton H

    2016-01-01

    Background and purpose Combining components from different manufacturers in total hip arthroplasty (THA) is common practice worldwide. We determined the proportion of THAs used in the Netherlands that consist of components from different manufacturers, and compared the revision rates of these mixed THAs with those of non-mixed THAs. Patients and methods Data on primary and revision hip arthroplasty are recorded in the LROI, the nationwide population-based arthroplasty register in the Netherlands. We selected all 163,360 primary THAs that were performed in the period 2007–2014. Based on the manufacturers of the components, 4 groups were discerned: non-mixed THAs with components from the same manufacturer (n = 142,964); mixed stem-head THAs with different manufacturers for the femoral stem and head (n = 3,663); mixed head-cup THAs with different head and cup manufacturers (n = 12,960), and mixed stem-head-cup THAs with different femoral stem, head, and cup manufacturers (n = 1,773). Mixed prostheses were defined as THAs (stem, head, and cup) composed of components made by different manufacturers. Results 11% of THAs had mixed components (n = 18,396). The 6-year revision rates were similar for mixed and non-mixed THAs: 3.4% (95% CI: 3.1w–3.7) for mixed THAs and 3.5% (95% CI: 3.4–3.7) for non-mixed THAs. Revision of primary THAs due to loosening of the acetabulum was more common in mixed THAs (16% vs. 12%). Interpretation Over an 8-year period in the Netherlands, 11% of THAs had mixed components—with similar medium-term revision rates to those of non-mixed THAs. PMID:27348544

  6. Estimating the Numerical Diapycnal Mixing in the GO5.0 Ocean Model

    NASA Astrophysics Data System (ADS)

    Megann, A.; Nurser, G.

    2014-12-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, and have attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimations have been made of the magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is the latest ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre (Megann et al, 2014), and forms part of the GC1 and GC2 climate models. It uses version 3.4 of the NEMO model, on the ORCA025 ¼° global tripolar grid. We describe various approaches to quantifying the numerical diapycnal mixing in this model, and present results from analysis of the GO5.0 model based on the isopycnal watermass analysis of Lee et al (2002) that indicate that numerical mixing does indeed form a significant component of the watermass transformation in the ocean interior.

  7. Multivariate statistical approach to estimate mixing proportions for unknown end members

    USGS Publications Warehouse

    Valder, Joshua F.; Long, Andrew J.; Davis, Arden D.; Kenner, Scott J.

    2012-01-01

    A multivariate statistical method is presented, which includes principal components analysis (PCA) and an end-member mixing model to estimate unknown end-member hydrochemical compositions and the relative mixing proportions of those end members in mixed waters. PCA, together with the Hotelling T2 statistic and a conceptual model of groundwater flow and mixing, was used in selecting samples that best approximate end members, which then were used as initial values in optimization of the end-member mixing model. This method was tested on controlled datasets (i.e., true values of estimates were known a priori) and found effective in estimating these end members and mixing proportions. The controlled datasets included synthetically generated hydrochemical data, synthetically generated mixing proportions, and laboratory analyses of sample mixtures, which were used in an evaluation of the effectiveness of this method for potential use in actual hydrological settings. For three different scenarios tested, correlation coefficients (R2) for linear regression between the estimated and known values ranged from 0.968 to 0.993 for mixing proportions and from 0.839 to 0.998 for end-member compositions. The method also was applied to field data from a study of end-member mixing in groundwater as a field example and partial method validation.

  8. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition

    EPA Science Inventory

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...

  9. Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrödinger equations.

    PubMed

    Agalarov, Agalar; Zhulego, Vladimir; Gadzhimuradov, Telman

    2015-04-01

    The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.

  10. Phenomenology of mixed states: a principal component analysis study.

    PubMed

    Bertschy, G; Gervasoni, N; Favre, S; Liberek, C; Ragama-Pardos, E; Aubry, J-M; Gex-Fabry, M; Dayer, A

    2007-12-01

    To contribute to the definition of external and internal limits of mixed states and study the place of dysphoric symptoms in the psychopathology of mixed states. One hundred and sixty-five inpatients with major mood episodes were diagnosed as presenting with either pure depression, mixed depression (depression plus at least three manic symptoms), full mixed state (full depression and full mania), mixed mania (mania plus at least three depressive symptoms) or pure mania, using an adapted version of the Mini International Neuropsychiatric Interview (DSM-IV version). They were evaluated using a 33-item inventory of depressive, manic and mixed affective signs and symptoms. Principal component analysis without rotation yielded three components that together explained 43.6% of the variance. The first component (24.3% of the variance) contrasted typical depressive symptoms with typical euphoric, manic symptoms. The second component, labeled 'dysphoria', (13.8%) had strong positive loadings for irritability, distressing sensitivity to light and noise, impulsivity and inner tension. The third component (5.5%) included symptoms of insomnia. Median scores for the first component significantly decreased from the pure depression group to the pure mania group. For the dysphoria component, scores were highest among patients with full mixed states and decreased towards both patients with pure depression and those with pure mania. Principal component analysis revealed that dysphoria represents an important dimension of mixed states.

  11. The PX-EM algorithm for fast stable fitting of Henderson's mixed model

    PubMed Central

    Foulley, Jean-Louis; Van Dyk, David A

    2000-01-01

    This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399

  12. Numerical simulation of life cycles of advection warm fog

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Vaughan, O. H.

    1977-01-01

    The formation, development and dissipation of advection warm fog is investigated. The equations employed in the model include the equation of continuity, momentum and energy for the descriptions of density, wind component and potential temperature, respectively, together with two diffusion equations for the modification of water-vapor mixing ratio and liquid-water mixing ratios. A description of the vertical turbulent transfer of heat, moisture and momentum has been taken into consideration. The turbulent exchange coefficients adopted in the model are based on empirical flux-gradient relations.

  13. Towards a Theory-Based Design Framework for an Effective E-Learning Computer Programming Course

    ERIC Educational Resources Information Center

    McGowan, Ian S.

    2016-01-01

    Built on Dabbagh (2005), this paper presents a four component theory-based design framework for an e-learning session in introductory computer programming. The framework, driven by a body of exemplars component, emphasizes the transformative interaction between the knowledge building community (KBC) pedagogical model, a mixed instructional…

  14. Microwave Dielectric Constant Dependence on Soil Tension.

    DTIC Science & Technology

    1983-10-01

    water to be only a single monolayer thick .1 (OA) with Ice-like dielectric properties EWS = (3.15, JO). The first approach apportions the soil solution Into...mixing model that accounts explicitly for the presence of a hydrationU layer of bound water adjacent to hydrophilic soil particle surfaces. The soil ... solution is differentiated Into (1) a bound, ice-like component and (2) a bulk solution component, by a physical soil model dependent upon either soil

  15. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover

    DOE PAGES

    Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; ...

    2016-04-07

    Environmental transition zones are associated with geochemical gradients that overcome energy limitations to microbial metabolism, resulting in biogeochemical hot spots and moments. Riverine systems where groundwater mixes with surface water (the hyporheic zone) are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. To investigate the coupling among groundwater-surface water mixing, microbial communities, and biogeochemistry we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected across times and locations representing amore » broad range of mixing conditions. Mixing of groundwater and surface water resulted in a shift from transport-driven stochastic dynamics to a deterministic microbial structure associated with elevated biogeochemical rates. While the dynamics of the hyporheic make predictive modeling a challenge, we provide new knowledge that can improve the tractability of such models.« less

  16. Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California

    USGS Publications Warehouse

    Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.

    2013-01-01

    Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.

  17. THE 2006 CMAQ RELEASE AND PLANS FOR 2007

    EPA Science Inventory

    The 2006 release of the Community Multiscale Air Quality (CMAQ) model (Version 4.6) includes upgrades to several model components as well as new modules for gas-phase chemistry and boundary layer mixing. Capabilities for simulation of hazardous air pollutants have been expanded ...

  18. Mixture modelling for cluster analysis.

    PubMed

    McLachlan, G J; Chang, S U

    2004-10-01

    Cluster analysis via a finite mixture model approach is considered. With this approach to clustering, the data can be partitioned into a specified number of clusters g by first fitting a mixture model with g components. An outright clustering of the data is then obtained by assigning an observation to the component to which it has the highest estimated posterior probability of belonging; that is, the ith cluster consists of those observations assigned to the ith component (i = 1,..., g). The focus is on the use of mixtures of normal components for the cluster analysis of data that can be regarded as being continuous. But attention is also given to the case of mixed data, where the observations consist of both continuous and discrete variables.

  19. Effective algorithm for solving complex problems of production control and of material flows control of industrial enterprise

    NASA Astrophysics Data System (ADS)

    Mezentsev, Yu A.; Baranova, N. V.

    2018-05-01

    A universal economical and mathematical model designed for determination of optimal strategies for managing subsystems (components of subsystems) of production and logistics of enterprises is considered. Declared universality allows taking into account on the system level both production components, including limitations on the ways of converting raw materials and components into sold goods, as well as resource and logical restrictions on input and output material flows. The presented model and generated control problems are developed within the framework of the unified approach that allows one to implement logical conditions of any complexity and to define corresponding formal optimization tasks. Conceptual meaning of used criteria and limitations are explained. The belonging of the generated tasks of the mixed programming with the class of NP is shown. An approximate polynomial algorithm for solving the posed optimization tasks for mixed programming of real dimension with high computational complexity is proposed. Results of testing the algorithm on the tasks in a wide range of dimensions are presented.

  20. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  1. Unmixing Magnetic Hysteresis Loops

    NASA Astrophysics Data System (ADS)

    Heslop, D.; Roberts, A. P.

    2012-04-01

    Magnetic hysteresis loops provide important information in rock and environmental magnetic studies. Natural samples often contain an assemblage of magnetic particles composed of components with different origins. Each component potentially carries important environmental information. Hysteresis loops, however, provide information concerning the bulk magnetic assemblage, which makes it difficult to isolate the specific contributions from different sources. For complex mineral assemblages an unmixing strategy with which to separate hysteresis loops into their component parts is therefore essential. Previous methods to unmix hysteresis data have aimed at separating individual loops into their constituent parts using libraries of type-curves thought to correspond to specific mineral types. We demonstrate an alternative approach, which rather than decomposing a single loop into monomineralic contributions, examines a collection of loops to determine their constituent source materials. These source materials may themselves be mineral mixtures, but they provide a genetically meaningful decomposition of a magnetic assemblage in terms of the processes that controlled its formation. We show how an empirically derived hysteresis mixing space can be created, without resorting to type-curves, based on the co-variation within a collection of measured loops. Physically realistic end-members, which respect the expected behaviour and symmetries of hysteresis loops, can then be extracted from the mixing space. These end-members allow the measured loops to be described as a combination of invariant parts that are assumed to represent the different sources in the mixing model. Particular attention is paid to model selection and estimating the complexity of the mixing model, specifically, how many end-members should be included. We demonstrate application of this approach using lake sediments from Butte Valley, northern California. Our method successfully separates the hysteresis loops into sources with a variety of terrigenous and authigenic origins.

  2. Dark matter and electroweak phase transition in the mixed scalar dark matter model

    NASA Astrophysics Data System (ADS)

    Liu, Xuewen; Bian, Ligong

    2018-03-01

    We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.

  3. Mixed Models and Reduction Techniques for Large-Rotation, Nonlinear Analysis of Shells of Revolution with Application to Tires

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Andersen, C. M.; Tanner, J. A.

    1984-01-01

    An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.

  4. Modelling the baroclinic circulation with tidal components in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Pinardi, N.; Oddo, P.; Bortoluzzi, G.; Ravaioli, M.

    2012-04-01

    The impact of tides in the circulation of the Adriatic sea has been investigated by means of a nested baroclinic numerical ocean model. Tides have been introduced using a modified Flather boundary condition at the open side of the domain. The results show that tidal amplitudes and phases are reproduced correctly by the baroclinic model and the tidal harmonic constants errors are comparable with those resulting from the most consolidated barotropic models. Numerical experiments were conducted to estimate and assess the impact of (i) the modified Flather lateral boundary condition, (ii) the tides on temperature, salinity and stratification structures in the basin, and (iii) the tides on mixing and circulation in general. Tides induce a different momentum advective component in the basin which in turn produces a different distribution of water masses in the basin. Tides impact on mixing and stratification in the Po river region (north-western Adriatic) and induce fluctuations of salinity and temperature on semidiurnal frequencies in all seasons for the first and only winter for the second.

  5. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Pant, Vimlesh

    2017-01-01

    A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.

  6. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  7. Modelling and simulation of passive Lab-on-a-Chip (LoC) based micromixer for clinical application

    NASA Astrophysics Data System (ADS)

    Saikat, Chakraborty; Sharath, M.; Srujana, M.; Narayan, K.; Pattnaik, Prasant Kumar

    2016-03-01

    In biomedical application, micromixer is an important component because of many processes requires rapid and efficient mixing. At micro scale, the flow is Laminar due to small channel size which enables controlled rapid mixing. The reduction in analysis time along with high throughput can be achieved with the help of rapid mixing. In LoC application, micromixer is used for mixing of fluids especially for the devices which requires efficient mixing. Micromixer of this type of microfluidic devices with a rapid mixing is useful in application such as DNA/RNA synthesis, drug delivery system & biological agent detection. In this work, we design and simulate a microfluidic based passive rapid micromixer for lab-on-a-chip application.

  8. Turbulence Measurements of Separate Flow Nozzles with Mixing Enhancement Features

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2002-01-01

    Comparison of turbulence data taken in three separate flow nozzles, two with mixing enhancement features on their core nozzle, shows how the mixing enhancement features modify turbulence to reduce jet noise. The three nozzles measured were the baseline axisymmetric nozzle 3BB, the alternating chevron nozzle, 3A12B, with 6-fold symmetry, and the flipper tab nozzle 3T24B also with 6-fold symmetry. The data presented show the differences in turbulence characteristics produced by the geometric differences in the nozzles, with emphasis on those characteristics of interest in jet noise. Among the significant findings: the enhanced mixing devices reduce turbulence in the jet mixing region while increasing it in the fan/core shear layer, the ratios of turbulence components are significantly altered by the mixing devices, and the integral lengthscales do not conform to any turbulence model yet proposed. These findings should provide guidance for modeling the statistical properties of turbulence to improve jet noise prediction.

  9. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.

  10. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1991-01-01

    Constrained-least-squares and weighted-least-squares mixing models for generating fraction images derived from remote sensing multispectral data are presented. An experiment considering three components within the pixels-eucalyptus, soil (understory), and shade-was performed. The generated fraction images for shade (shade image) derived from these two methods were compared by considering the performance and computer time. The derived shade images are related to the observed variation in forest structure, i.e., the fraction of inferred shade in the pixel is related to different eucalyptus ages.

  11. Mixed model approaches for diallel analysis based on a bio-model.

    PubMed

    Zhu, J; Weir, B S

    1996-12-01

    A MINQUE(1) procedure, which is minimum norm quadratic unbiased estimation (MINQUE) method with 1 for all the prior values, is suggested for estimating variance and covariance components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were compared for MINQUE(1), restricted maximum likelihood (REML) and MINQUE theta which has parameter values for the prior values. MINQUE(1) is almost as efficient as MINQUE theta for unbiased estimation of genetic variance and covariance components. The bio-model is efficient and robust for estimating variance and covariance components for maternal and paternal effects as well as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects. Worked examples are given for estimation of variance and covariance components and for prediction of genetic merits.

  12. Energy-exchange collisions of dark-bright-bright vector solitons.

    PubMed

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  13. Simulating the Cyclone Induced Turbulent Mixing in the Bay of Bengal using COAWST Model

    NASA Astrophysics Data System (ADS)

    Prakash, K. R.; Nigam, T.; Pant, V.

    2017-12-01

    Mixing in the upper oceanic layers (up to a few tens of meters from surface) is an important process to understand the evolution of sea surface properties. Enhanced mixing due to strong wind forcing at surface leads to deepening of mixed layer that affects the air-sea exchange of heat and momentum fluxes and modulates sea surface temperature (SST). In the present study, we used Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to demonstrate and quantify the enhanced cyclone induced turbulent mixing in case of a severe cyclonic storm. The COAWST model was configured over the Bay of Bengal (BoB) and used to simulate the atmospheric and oceanic conditions prevailing during the tropical cyclone (TC) Phailin that occurred over the BoB during 10-15 October 2013. The model simulated cyclone track was validated with IMD best-track and model SST validated with daily AVHRR SST data. Validation shows that model simulated track & intensity, SST and salinity were in good agreement with observations and the cyclone induced cooling of the sea surface was well captured by the model. Model simulations show a considerable deepening (by 10-15 m) of the mixed layer and shoaling of thermocline during TC Phailin. The power spectrum analysis was performed on the zonal and meridional baroclinic current components, which shows strongest energy at 14 m depth. Model results were analyzed to investigate the non-uniform energy distribution in the water column from surface up to the thermocline depth. The rotary spectra analysis highlights the downward direction of turbulent mixing during the TC Phailin period. Model simulations were used to quantify and interpret the near-inertial mixing, which were generated by cyclone induced strong wind stress and the near-inertial energy. These near-inertial oscillations are responsible for the enhancement of the mixing operative in the strong post-monsoon (October-November) stratification in the BoB.

  14. Sedimentary Geochemistry of Martian Samples from the Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    McLennan, Scott M.

    2001-01-01

    The purpose of this research project was to evaluate the APXS data collected on soils and rocks at the Pathfinder site in terms of sedimentary geochemistry. Below are described the major findings of this research: (1) An influential model to explain the chemical variation among Pathfinder soils and rocks is a two component mixing model where rocks of fairly uniform composition mix with soil of uniform composition; (2) The very strong positive correlation between MgO and SO, points to a control by a MgSO4 mineral however, spectroscopic data continue to suggest that Fe-sulfates, notably schwertmannite and jarosite, may be important components; (3) In an attempt to better understand the causes of complexities in mixing relationships, the possible influence of sedimentary transport has been evaluated; (4) Another aspect of this research has been to examine the possibility of sedimentary silica being a significant phase on Mars; and (5) On Earth, the geochemistry of sedimentary rocks has been used to constrain the chemical composition of the continental crust and an important part of this research was to evaluate this approach for Mars.

  15. Efficient Computational Prototyping of Mixed Technology Microfluidic Components and Systems

    DTIC Science & Technology

    2002-08-01

    AFRL-IF-RS-TR-2002-190 Final Technical Report August 2002 EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC...SUBTITLE EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC COMPONENTS AND SYSTEMS 6. AUTHOR(S) Narayan R. Aluru, Jacob White...Aided Design (CAD) tools for microfluidic components and systems were developed in this effort. Innovative numerical methods and algorithms for mixed

  16. Method of chaotic mixing and improved stirred tank reactors

    DOEpatents

    Muzzio, F.J.; Lamberto, D.J.

    1999-07-13

    The invention provides a method and apparatus for efficiently achieving a homogeneous mixture of fluid components by introducing said components having a Reynolds number of between about [le]1 to about 500 into a vessel and continuously perturbing the mixing flow by altering the flow speed and mixing time until homogeneity is reached. This method prevents the components from aggregating into non-homogeneous segregated regions within said vessel during mixing and substantially reduces the time the admixed components reach homogeneity. 19 figs.

  17. Method of chaotic mixing and improved stirred tank reactors

    DOEpatents

    Muzzio, Fernando J.; Lamberto, David J.

    1999-01-01

    The invention provides a method and apparatus for efficiently achieving a homogeneous mixture of fluid components by introducing said components having a Reynolds number of between about .ltoreq.1 to about 500 into a vessel and continuously perturbing the mixing flow by altering the flow speed and mixing time until homogeniety is reached. This method prevents the components from aggregating into non-homogeneous segregated regions within said vessel during mixing and substantially reduces the time the admixed components reach homogeneity.

  18. Ascribing soil erosion of hillslope components to river sediment yield.

    PubMed

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  20. A corrected formulation for marginal inference derived from two-part mixed models for longitudinal semi-continuous data

    PubMed Central

    Su, Li; Farewell, Vernon T

    2013-01-01

    For semi-continuous data which are a mixture of true zeros and continuously distributed positive values, the use of two-part mixed models provides a convenient modelling framework. However, deriving population-averaged (marginal) effects from such models is not always straightforward. Su et al. presented a model that provided convenient estimation of marginal effects for the logistic component of the two-part model but the specification of marginal effects for the continuous part of the model presented in that paper was based on an incorrect formulation. We present a corrected formulation and additionally explore the use of the two-part model for inferences on the overall marginal mean, which may be of more practical relevance in our application and more generally. PMID:24201470

  1. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  2. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  3. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  4. Modelling of strong heterogeneities in aerosol single scattering albedos over a polluted region

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Pont, V.; Liousse, C.

    2005-05-01

    To date, most models dedicated to the investigation of aerosol direct or semi-direct radiative forcings have assumed the various aerosol components to be either completely externally mixed or homogeneously internally mixed. Some recent works have shown that a core-shell treatment of particles should be more realistic, leading to significant differences in the radiative impact as compared to only externally or well-internally mixed states. To account for these studies, an optical module, ORISAM-RAD, has been developed for computing aerosol radiative properties under the hypothesis of internally mixed particles with a n-layer spherical concentric structure. Mesoscale simulations using ORISAM-RAD, coupled with the 3D mesoscale model Meso-NH-C, have been performed for one selected day (06/24/2001) during the ESCOMPTE experiment in the Marseilles-Fos/Berre region, which illustrate the ability of this new module to reproduce spatial heterogeneities of measured single scattering albedo (ωo), due to industrial and/or urban pollution plumes.

  5. Coding response to a case-mix measurement system based on multiple diagnoses.

    PubMed

    Preyra, Colin

    2004-08-01

    To examine the hospital coding response to a payment model using a case-mix measurement system based on multiple diagnoses and the resulting impact on a hospital cost model. Financial, clinical, and supplementary data for all Ontario short stay hospitals from years 1997 to 2002. Disaggregated trends in hospital case-mix growth are examined for five years following the adoption of an inpatient classification system making extensive use of combinations of secondary diagnoses. Hospital case mix is decomposed into base and complexity components. The longitudinal effects of coding variation on a standard hospital payment model are examined in terms of payment accuracy and impact on adjustment factors. Introduction of the refined case-mix system provided incentives for hospitals to increase reporting of secondary diagnoses and resulted in growth in highest complexity cases that were not matched by increased resource use over time. Despite a pronounced coding response on the part of hospitals, the increase in measured complexity and case mix did not reduce the unexplained variation in hospital unit cost nor did it reduce the reliance on the teaching adjustment factor, a potential proxy for case mix. The main implication was changes in the size and distribution of predicted hospital operating costs. Jurisdictions introducing extensive refinements to standard diagnostic related group (DRG)-type payment systems should consider the effects of induced changes to hospital coding practices. Assessing model performance should include analysis of the robustness of classification systems to hospital-level variation in coding practices. Unanticipated coding effects imply that case-mix models hypothesized to perform well ex ante may not meet expectations ex post.

  6. Low-illumination image denoising method for wide-area search of nighttime sea surface

    NASA Astrophysics Data System (ADS)

    Song, Ming-zhu; Qu, Hong-song; Zhang, Gui-xiang; Tao, Shu-ping; Jin, Guang

    2018-05-01

    In order to suppress complex mixing noise in low-illumination images for wide-area search of nighttime sea surface, a model based on total variation (TV) and split Bregman is proposed in this paper. A fidelity term based on L1 norm and a fidelity term based on L2 norm are designed considering the difference between various noise types, and the regularization mixed first-order TV and second-order TV are designed to balance the influence of details information such as texture and edge for sea surface image. The final detection result is obtained by using the high-frequency component solved from L1 norm and the low-frequency component solved from L2 norm through wavelet transform. The experimental results show that the proposed denoising model has perfect denoising performance for artificially degraded and low-illumination images, and the result of image quality assessment index for the denoising image is superior to that of the contrastive models.

  7. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  8. PDF turbulence modeling and DNS

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.

    1992-01-01

    The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.

  9. Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field

    NASA Astrophysics Data System (ADS)

    Chavanne, C. P.; Klein, P.

    2016-02-01

    A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.

  10. Diphotons from electroweak triplet-singlet mixing

    DOE PAGES

    Howe, Kiel; Knapen, Simon; Robinson, Dean J.

    2016-08-23

    The neutral component of a real pseudoscalar electroweak (EW) triplet can produce a diphoton excess at 750 GeV, if it is somewhat mixed with an EW singlet pseudoscalar. This triplet-singlet mixing allows for greater freedom in the diboson branching ratios than the singlet-only case, but it is still possible to probe the parameter space extensively with 300 fb -1. The charged component of the triplet is pair produced at the LHC, which results in a striking signal in the form of a pair of Wγ resonances with an irreducible rate of 0.27 fb. Other signatures include multiboson final states from cascade decaysmore » of the triplet-singlet neutral states. In conclusion, a large class of composite models feature both EW singlet and triplet pseudo-Nambu-Goldstone bosons in their spectrum, with the diboson couplings generated by axial anomalies.« less

  11. Mixed Methods in CAM Research: A Systematic Review of Studies Published in 2012

    PubMed Central

    Bishop, Felicity L.; Holmes, Michelle M.

    2013-01-01

    Background. Mixed methods research uses qualitative and quantitative methods together in a single study or a series of related studies. Objectives. To review the prevalence and quality of mixed methods studies in complementary medicine. Methods. All studies published in the top 10 integrative and complementary medicine journals in 2012 were screened. The quality of mixed methods studies was appraised using a published tool designed for mixed methods studies. Results. 4% of papers (95 out of 2349) reported mixed methods studies, 80 of which met criteria for applying the quality appraisal tool. The most popular formal mixed methods design was triangulation (used by 74% of studies), followed by embedded (14%), sequential explanatory (8%), and finally sequential exploratory (5%). Quantitative components were generally of higher quality than qualitative components; when quantitative components involved RCTs they were of particularly high quality. Common methodological limitations were identified. Most strikingly, none of the 80 mixed methods studies addressed the philosophical tensions inherent in mixing qualitative and quantitative methods. Conclusions and Implications. The quality of mixed methods research in CAM can be enhanced by addressing philosophical tensions and improving reporting of (a) analytic methods and reflexivity (in qualitative components) and (b) sampling and recruitment-related procedures (in all components). PMID:24454489

  12. External Validation of a Case-Mix Adjustment Model for the Standardized Reporting of 30-Day Stroke Mortality Rates in China.

    PubMed

    Yu, Ping; Pan, Yuesong; Wang, Yongjun; Wang, Xianwei; Liu, Liping; Ji, Ruijun; Meng, Xia; Jing, Jing; Tong, Xu; Guo, Li; Wang, Yilong

    2016-01-01

    A case-mix adjustment model has been developed and externally validated, demonstrating promise. However, the model has not been thoroughly tested among populations in China. In our study, we evaluated the performance of the model in Chinese patients with acute stroke. The case-mix adjustment model A includes items on age, presence of atrial fibrillation on admission, National Institutes of Health Stroke Severity Scale (NIHSS) score on admission, and stroke type. Model B is similar to Model A but includes only the consciousness component of the NIHSS score. Both model A and B were evaluated to predict 30-day mortality rates in 13,948 patients with acute stroke from the China National Stroke Registry. The discrimination of the models was quantified by c-statistic. Calibration was assessed using Pearson's correlation coefficient. The c-statistic of model A in our external validation cohort was 0.80 (95% confidence interval, 0.79-0.82), and the c-statistic of model B was 0.82 (95% confidence interval, 0.81-0.84). Excellent calibration was reported in the two models with Pearson's correlation coefficient (0.892 for model A, p<0.001; 0.927 for model B, p = 0.008). The case-mix adjustment model could be used to effectively predict 30-day mortality rates in Chinese patients with acute stroke.

  13. A review of mixing and propulsion of chyme in the small intestine: fresh insights from new methods.

    PubMed

    Lentle, R G; de Loubens, C

    2015-05-01

    The small intestine is a convoluted flexible tube of inconstant form and capacity through which chyme is propelled and mixed by varying patterns of contraction. These inconstancies have prevented quantitative comparisons of the manner in which contractile activity engenders mixing of contained chyme. Recent quantitative work based on spatiotemporal mapping of intestinal contractions, macro- and micro-rheology, particle image velocimetry and real-time modelling has provided new insights into this process. Evidence indicates that the speeds and patterns of the various types of small intestinal contraction are insufficient to secure optimal mixing and enzymatic digestion over a minimal length of intestine. Hence particulate substrates and soluble nutrients become dispersed along the length of the lumen. Mixing within the lumen is not turbulent but results from localised folding and kneading of the contents by contractions but is augmented by the inconstant spatial disposition of the contractions and their component contractile processes. The latter include inconstancies in the sites of commencement and the directions of propagation of contraction in component groups of smooth muscle cells and in the coordination of the radial and circular components of smooth muscle contraction. Evidence suggests there is ongoing augmentation of mixing at the periphery of the lumen, during both the post-prandial and inter-meal periods, to promote flow around and between adjacent villi. This results largely from folding of the relatively inelastic mucosa during repeated radial and longitudinal muscular contraction, causing chyme to be displaced by periodic crowding and separation of the tips of the relatively rigid villi. Further, micro-rheological studies indicate that such peripheral mixing may extend to the apices of enterocytes owing to discontinuities in the mobile mucus layer that covers the ileal mucosa.

  14. Three-level mixing model for nuclear chiral rotation: Role of the planar component

    NASA Astrophysics Data System (ADS)

    Chen, Q. B.; Starosta, K.; Koike, T.

    2018-04-01

    Three- and two-level mixing models are proposed to understand the doubling of states at the same spin and parity in triaxially deformed atomic nuclei with odd numbers of protons and neutrons. The particle-rotor model for such nuclei is solved using the newly proposed basis which couples angular momenta of two valence nucleons and the rotating triaxial mean field into left-handed |L > , right-handed |R > , and planar |P > configurations. The presence and impact of the planar component is investigated as a function of the total spin for mass A ≈130 nuclei with the valence h11 /2 proton particle, valence h11 /2 neutron hole, and the maximum difference between principal axes allowed by the quadrupole deformation of the mean field. It is concluded that at each spin value the higher energy member of a doublet of states is built on the antisymmetric combination of |L > and |R > and is free of the |P > component, indicating that it is of pure chiral geometry. For the lower energy member of the doublet, the contribution of the |P > component to the eigenfunction first decreases and then increases as a function of the total spin. This trend as well as the energy splitting between the doublet states are both determined by the Hamiltonian matrix elements between the planar (|P > ) and nonplanar (|L > and |R > ) subspaces of the full Hilbert space.

  15. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    NASA Astrophysics Data System (ADS)

    Toth, David J.; Katz, Brian G.

    2006-06-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  16. Broken flavor 2↔3 symmetry and phenomenological approach for universal quark and lepton mass matrices

    NASA Astrophysics Data System (ADS)

    Matsuda, Koichi; Nishiura, Hiroyuki

    2006-01-01

    A phenomenological approach for the universal mass matrix model with a broken flavor 2↔3 symmetry is explored by introducing the 2↔3 antisymmetric parts of mass matrices for quarks and charged leptons. We present explicit texture components of the mass matrices, which are consistent with all the neutrino oscillation experiments and quark mixing data. The mass matrices have a common structure for quarks and leptons, while the large lepton mixings and the small quark mixings are derived with no fine-tuning due to the difference of the phase factors. The model predicts a value 2.4×10-3 for the lepton mixing matrix element square |U13|2, and also ⟨mν⟩=(0.89-1.4)×10-4eV for the averaged neutrino mass which appears in the neutrinoless double beta decay.

  17. Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H. (Editor); Herd, Christopher D. K. (Editor)

    2002-01-01

    Geochemical and petrologic studies of the Martian meteorites (nicknamed the SNCs) have proliferated in the past few years, from a wealth of new samples and the perfection of new analytical methods. An intriguing result from these studies is that the chemical and isotopic compositions of the Martian meteorites, all basalts or derived from basaltic magma, can be modeled as mixtures of a limited number of components. These mixing components were the focus of the workshop.

  18. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support enhanced light absorption by internally mixed BC parameterizations in models and identify mixed biomass and fossil combustion regions where this effect is large. We unify the treatment of carbonaceous aerosol components and their interactions to simplify and verify their representation in climate models, and re-evaluate their direct radiative forcing.

  19. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1981-06-01

    a tough urethane film. The basic principle is to pump two components to a spinning disc, mixing the components just prior to depositing in a well...and check out an electronic target scoring device using developed scientific principles without drastically modifying existing commercial...equipment. The scoring device selected and installed was an Accubar Model ATS-16D using the underlying physics principle of acoustic shock wave propagation

  20. In-depth study of 16CygB using inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Salmon, S. J. A. J.; Reese, D. R.; Dupret, M. A.

    2016-12-01

    Context. The 16Cyg binary system hosts the solar-like Kepler targets with the most stringent observational constraints. Indeed, we benefit from very high quality oscillation spectra, as well as spectroscopic and interferometric observations. Moreover, this system is particularly interesting since both stars are very similar in mass but the A component is orbited by a red dwarf, whereas the B component is orbited by a Jovian planet and thus could have formed a more complex planetary system. In our previous study, we showed that seismic inversions of integrated quantities could be used to constrain microscopic diffusion in the A component. In this study, we analyse the B component in the light of a more regularised inversion. Aims: We wish to analyse independently the B component of the 16Cyg binary system using the inversion of an indicator dedicated to analyse core conditions, denoted tu. Using this independent determination, we wish to analyse any differences between both stars due to the potential influence of planetary formation on stellar structure and/or their respective evolution. Methods: First, we recall the observational constraints for 16CygB and the method we used to generate reference stellar models of this star. We then describe how we improved the inversion and how this approach could be used for future targets with a sufficient number of observed frequencies. The inversion results were then used to analyse the differences between the A and B components. Results: The inversion of the tu indicator for 16CygB shows a disagreement with models including microscopic diffusion and sharing the chemical composition previously derived for 16CygA. We show that small changes in chemical composition are insufficient to solve the problem but that extra mixing can account for the differences seen between both stars. We use a parametric approach to analyse the impact of extra mixing in the form of turbulent diffusion on the behaviour of the tu values. We conclude on the necessity of further investigations using models with a physically motivated implementation of extra mixing processes including additional constraints to further improve the accuracy with which the fundamental parameters of this system are determined.

  1. Building Comprehensive High School Guidance Programs through the Smaller Learning Communities Model

    ERIC Educational Resources Information Center

    Harper, Geralyn

    2013-01-01

    Despite many reform initiatives, including the federally funded initiative titled the Smaller Learning Communities' (SLC) Model, many students are still underexposed to comprehensive guidance programs. The purpose of this mixed method project study was to examine which components in a comprehensive guidance program for the learning academies at a…

  2. Gamma-Ray Burst Optical Afterglows with Two-component Jets: Polarization Evolution Revisited

    NASA Astrophysics Data System (ADS)

    Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao

    2018-06-01

    Gamma-ray bursts have been widely argued to originate from binary compact object mergers or core collapse of massive stars. Jets from these systems may have two components: an inner, narrow sub-jet and an outer, wider sub-jet. Such a jet subsequently interacts with its ambient gas, leading to a reverse shock (RS) and a forward shock. The magnetic field in the narrow sub-jet is very likely to be mixed by an ordered component and a random component during the afterglow phase. In this paper, we calculate light curves and polarization evolution of optical afterglows with this mixed magnetic field in the RS region of the narrow sub-jet in a two-component jet model. The resultant light curve has two peaks: an early peak arising from the narrow sub-jet and a late-time rebrightening due to the wider sub-jet. We find the polarization degree (PD) evolution under such a mixed magnetic field confined in the shock plane is very similar to that under the purely ordered magnetic field condition. The two-dimensional “mixed” magnetic fields confined in the shock plane are essentially the ordered magnetic fields only with different configurations. The position angle (PA) of the two-component jet can change gradually or abruptly by 90°. In particular, an abrupt 90° change of the PA occurs when the PD changes from its decline phase to the rise phase.

  3. A multi-objective genetic algorithm for a mixed-model assembly U-line balancing type-I problem considering human-related issues, training, and learning

    NASA Astrophysics Data System (ADS)

    Rabbani, Masoud; Montazeri, Mona; Farrokhi-Asl, Hamed; Rafiei, Hamed

    2016-12-01

    Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate components. The first part of the objective function is related to balance problem. In this part, objective functions are minimizing the cycle time, minimizing the number of workstations, and maximizing the line efficiencies. The second part is related to human issues and consists of hiring cost, firing cost, training cost, and salary. To solve the presented model, two well-known multi-objective evolutionary algorithms, namely non-dominated sorting genetic algorithm and multi-objective particle swarm optimization, have been used. A simple solution representation is provided in this paper to encode the solutions. Finally, the computational results are compared and analyzed.

  4. Overview of Global/Regional Models Used to Evaluate Tropospheric Ozone in North America

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2015-01-01

    Ozone (O3) is an important greenhouse gas, toxic pollutant, and plays a major role in atmospheric chemistry. Tropospheric O3 which resides in the planetary boundary layer (PBL) is highly reactive and has a lifetime on the order of days, however, O3 in the free troposphere and stratosphere has a lifetime on the order of weeks or months. Modeling O3 mixing ratios at and above the surface is difficult due to the multiple formation/destruction processes and transport pathways that cause large spatio-temporal variability in O3 mixing ratios. This talk will summarize in detail the global/regional models that are commonly used to simulate/predict O3 mixing ratios in the United States. The major models which will be focused on are the: 1) Community Multi-scale Air Quality Model (CMAQ), 2) Comprehensive Air Quality Model with Extensions (CAMx), 3) Goddard Earth Observing System with Chemistry (GEOS-Chem), 4) Real Time Air Quality Modeling System (RAQMS), 5) Weather Research and Forecasting/Chemistry (WRF-Chem) model, National Center for Atmospheric Research (NCAR)'s Model for OZone And Related chemical Tracers (MOZART), and 7) Geophysical Fluid Dynamics Laboratory (GFDL) AM3 model. I will discuss the major modeling components which impact O3 mixing ratio calculations in each model and the similarities/differences between these models. This presentation is vital to the 2nd Annual Tropospheric Ozone Lidar Network (TOLNet) Conference as it will provide an overview of tools, which can be used in conjunction with TOLNet data, to evaluate the complex chemistry and transport pathways controlling tropospheric O3 mixing ratios.

  5. Using nitrate to quantify quick flow in a karst aquifer

    USGS Publications Warehouse

    Mahler, B.J.; Garner, B.D.

    2009-01-01

    In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.

  6. Comparing estimates of genetic variance across different relationship models.

    PubMed

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Modeling and simulation of large scale stirred tank

    NASA Astrophysics Data System (ADS)

    Neuville, John R.

    The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.

  8. Proximity of f0(1500 ) and f0(1710 ) to the scalar glueball

    NASA Astrophysics Data System (ADS)

    Fariborz, Amir H.; Azizi, Azizollah; Asrar, Abdorreza

    2015-12-01

    Within a nonlinear chiral Lagrangian framework, the underlying mixings among quark-antiquark, four-quark and glue components of f0(1500 ) and f0(1710 ) are studied in a global picture that includes all isosinglet scalar mesons below 2 GeV. The quark components are introduced in the Lagrangian in terms of two separate nonets (a quark-antiquark nonet and a four-quark nonet) which can mix with each other and with a scalar glueball. An iterative Monte Carlo simulation is developed to study the 14 free parameters of the Lagrangian by a simultaneous fit to more than 20 experimental data and constraints on the mass spectrum, decay widths, and decay ratios of the isosinglet scalars below 2 GeV. Moreover, constraints on the mass spectrum and decay widths of isodoublet and isovector scalars below 2 GeV as well as pion-pion scattering amplitude are also taken into account. In the leading order of the model and within the overall experimental uncertainties, the ranges of variation of the model parameters are determined. This leads to a set of points in the 14-dimensional parameter space at which the overall disagreement with experiment is no larger than the overall experimental uncertainties. The insights gained in this global picture, due to the complexities of the mixings as well as the experimental uncertainties, are mainly qualitative but are relatively robust, and reveal that the lowest scalar glueball hides between f0(1500 ) and f0(1710 ) , resulting in a considerable mixing with various quark components of these two states. The overall current experimental and theoretical uncertainties do not allow us to pin down the exact glue components of isosinglet states; nevertheless it is shown that the f0(1500 ) and f0(1710 ) have the highest glue component. While this global study does not allow precision predictions for each individual state, it provides useful "family" correlations among the isosinglet states that are found insightful in probing the substructure of scalars, in general, and the isosinglets, in particular. Specifically, a close correlation between the substructure of isosinglets below and above 1 GeV is observed. It is shown that as the simulations approach the limit where the f0(500 ) and f0(980 ) become the two isosinglet members of an ideally mixed two-quark two-antiquark nonet (which is widely believed to be a good approximation), the f0(1500 ) develops a large glue component. The overall estimate of the scalar glueball mass is found to be 1.58 ±0.18 GeV .

  9. Model verification of mixed dynamic systems. [POGO problem in liquid propellant rockets

    NASA Technical Reports Server (NTRS)

    Chrostowski, J. D.; Evensen, D. A.; Hasselman, T. K.

    1978-01-01

    A parameter-estimation method is described for verifying the mathematical model of mixed (combined interactive components from various engineering fields) dynamic systems against pertinent experimental data. The model verification problem is divided into two separate parts: defining a proper model and evaluating the parameters of that model. The main idea is to use differences between measured and predicted behavior (response) to adjust automatically the key parameters of a model so as to minimize response differences. To achieve the goal of modeling flexibility, the method combines the convenience of automated matrix generation with the generality of direct matrix input. The equations of motion are treated in first-order form, allowing for nonsymmetric matrices, modeling of general networks, and complex-mode analysis. The effectiveness of the method is demonstrated for an example problem involving a complex hydraulic-mechanical system.

  10. A corrected formulation for marginal inference derived from two-part mixed models for longitudinal semi-continuous data.

    PubMed

    Tom, Brian Dm; Su, Li; Farewell, Vernon T

    2016-10-01

    For semi-continuous data which are a mixture of true zeros and continuously distributed positive values, the use of two-part mixed models provides a convenient modelling framework. However, deriving population-averaged (marginal) effects from such models is not always straightforward. Su et al. presented a model that provided convenient estimation of marginal effects for the logistic component of the two-part model but the specification of marginal effects for the continuous part of the model presented in that paper was based on an incorrect formulation. We present a corrected formulation and additionally explore the use of the two-part model for inferences on the overall marginal mean, which may be of more practical relevance in our application and more generally. © The Author(s) 2013.

  11. The regolith at the Apollo 15 site and its stratigraphic implications

    USGS Publications Warehouse

    Carr, M.H.; Meyer, C.E.

    1974-01-01

    Regolith samples from the Apollo 15 landing site are described in terms of two major fractions, a homogeneous glass fraction and a non-homogeneous glass fraction. The proportions of different components in the homogeneous glass fraction were determined directly by chemical analyses of individual particles. They are mainly green glass, a mare-like glass, and different types of Fra Mauro and Highland type glasses. The proportions of various components in the remainder of each of the soils were determined indirectly by finding the mix of components that best fits their bulk compositions. The mixing model suggests that the Apennine Front consists mainly of rocks of low-K Fra Mauro basalt composition. These may overlie rocks with the composition of anorthositic gabbro. Green glass, which occurs widely throughout the site is believed to be derived from a green glass layer which darkens upland surfaces and lies beneath the local mare surface. ?? 1974.

  12. An analysis of tree mortality using high resolution remotely-sensed data for mixed-conifer forests in San Diego county

    NASA Astrophysics Data System (ADS)

    Freeman, Mary Pyott

    ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.

  13. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    PubMed

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  14. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    PubMed

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  15. Methodological reporting in qualitative, quantitative, and mixed methods health services research articles.

    PubMed

    Wisdom, Jennifer P; Cavaleri, Mary A; Onwuegbuzie, Anthony J; Green, Carla A

    2012-04-01

    Methodologically sound mixed methods research can improve our understanding of health services by providing a more comprehensive picture of health services than either method can alone. This study describes the frequency of mixed methods in published health services research and compares the presence of methodological components indicative of rigorous approaches across mixed methods, qualitative, and quantitative articles. All empirical articles (n = 1,651) published between 2003 and 2007 from four top-ranked health services journals. All mixed methods articles (n = 47) and random samples of qualitative and quantitative articles were evaluated to identify reporting of key components indicating rigor for each method, based on accepted standards for evaluating the quality of research reports (e.g., use of p-values in quantitative reports, description of context in qualitative reports, and integration in mixed method reports). We used chi-square tests to evaluate differences between article types for each component. Mixed methods articles comprised 2.85 percent (n = 47) of empirical articles, quantitative articles 90.98 percent (n = 1,502), and qualitative articles 6.18 percent (n = 102). There was a statistically significant difference (χ(2) (1) = 12.20, p = .0005, Cramer's V = 0.09, odds ratio = 1.49 [95% confidence interval = 1,27, 1.74]) in the proportion of quantitative methodological components present in mixed methods compared to quantitative papers (21.94 versus 47.07 percent, respectively) but no statistically significant difference (χ(2) (1) = 0.02, p = .89, Cramer's V = 0.01) in the proportion of qualitative methodological components in mixed methods compared to qualitative papers (21.34 versus 25.47 percent, respectively). Few published health services research articles use mixed methods. The frequency of key methodological components is variable. Suggestions are provided to increase the transparency of mixed methods studies and the presence of key methodological components in published reports. © Health Research and Educational Trust.

  16. Methodological Reporting in Qualitative, Quantitative, and Mixed Methods Health Services Research Articles

    PubMed Central

    Wisdom, Jennifer P; Cavaleri, Mary A; Onwuegbuzie, Anthony J; Green, Carla A

    2012-01-01

    Objectives Methodologically sound mixed methods research can improve our understanding of health services by providing a more comprehensive picture of health services than either method can alone. This study describes the frequency of mixed methods in published health services research and compares the presence of methodological components indicative of rigorous approaches across mixed methods, qualitative, and quantitative articles. Data Sources All empirical articles (n = 1,651) published between 2003 and 2007 from four top-ranked health services journals. Study Design All mixed methods articles (n = 47) and random samples of qualitative and quantitative articles were evaluated to identify reporting of key components indicating rigor for each method, based on accepted standards for evaluating the quality of research reports (e.g., use of p-values in quantitative reports, description of context in qualitative reports, and integration in mixed method reports). We used chi-square tests to evaluate differences between article types for each component. Principal Findings Mixed methods articles comprised 2.85 percent (n = 47) of empirical articles, quantitative articles 90.98 percent (n = 1,502), and qualitative articles 6.18 percent (n = 102). There was a statistically significant difference (χ2(1) = 12.20, p = .0005, Cramer's V = 0.09, odds ratio = 1.49 [95% confidence interval = 1,27, 1.74]) in the proportion of quantitative methodological components present in mixed methods compared to quantitative papers (21.94 versus 47.07 percent, respectively) but no statistically significant difference (χ2(1) = 0.02, p = .89, Cramer's V = 0.01) in the proportion of qualitative methodological components in mixed methods compared to qualitative papers (21.34 versus 25.47 percent, respectively). Conclusion Few published health services research articles use mixed methods. The frequency of key methodological components is variable. Suggestions are provided to increase the transparency of mixed methods studies and the presence of key methodological components in published reports. PMID:22092040

  17. Coding Response to a Case-Mix Measurement System Based on Multiple Diagnoses

    PubMed Central

    Preyra, Colin

    2004-01-01

    Objective To examine the hospital coding response to a payment model using a case-mix measurement system based on multiple diagnoses and the resulting impact on a hospital cost model. Data Sources Financial, clinical, and supplementary data for all Ontario short stay hospitals from years 1997 to 2002. Study Design Disaggregated trends in hospital case-mix growth are examined for five years following the adoption of an inpatient classification system making extensive use of combinations of secondary diagnoses. Hospital case mix is decomposed into base and complexity components. The longitudinal effects of coding variation on a standard hospital payment model are examined in terms of payment accuracy and impact on adjustment factors. Principal Findings Introduction of the refined case-mix system provided incentives for hospitals to increase reporting of secondary diagnoses and resulted in growth in highest complexity cases that were not matched by increased resource use over time. Despite a pronounced coding response on the part of hospitals, the increase in measured complexity and case mix did not reduce the unexplained variation in hospital unit cost nor did it reduce the reliance on the teaching adjustment factor, a potential proxy for case mix. The main implication was changes in the size and distribution of predicted hospital operating costs. Conclusions Jurisdictions introducing extensive refinements to standard diagnostic related group (DRG)-type payment systems should consider the effects of induced changes to hospital coding practices. Assessing model performance should include analysis of the robustness of classification systems to hospital-level variation in coding practices. Unanticipated coding effects imply that case-mix models hypothesized to perform well ex ante may not meet expectations ex post. PMID:15230940

  18. Identifying geochemical processes using End Member Mixing Analysis to decouple chemical components for mixing ratio calculations

    NASA Astrophysics Data System (ADS)

    Pelizardi, Flavia; Bea, Sergio A.; Carrera, Jesús; Vives, Luis

    2017-07-01

    Mixing calculations (i.e., the calculation of the proportions in which end-members are mixed in a sample) are essential for hydrological research and water management. However, they typically require the use of conservative species, a condition that may be difficult to meet due to chemical reactions. Mixing calculation also require identifying end-member waters, which is usually achieved through End Member Mixing Analysis (EMMA). We present a methodology to help in the identification of both end-members and such reactions, so as to improve mixing ratio calculations. The proposed approach consists of: (1) identifying the potential chemical reactions with the help of EMMA; (2) defining decoupled conservative chemical components consistent with those reactions; (3) repeat EMMA with the decoupled (i.e., conservative) components, so as to identify end-members waters; and (4) computing mixing ratios using the new set of components and end-members. The approach is illustrated by application to two synthetic mixing examples involving mineral dissolution and cation exchange reactions. Results confirm that the methodology can be successfully used to identify geochemical processes affecting the mixtures, thus improving the accuracy of mixing ratios calculations and relaxing the need for conservative species.

  19. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  20. Expansion Under Climate Change: The Genetic Consequences.

    PubMed

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  1. Dependence of Ru2O3 Activity on Composition of Silicate Melts: Using Statistical Correlations to Infer Thermodynamic Behavior in the Melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Malum, K. M.

    2005-01-01

    Understanding variations in activity with composition is an essential step in improving prediction of partition coefficients during magma evolution. Variations in activity with composition are complex and do not generally exhibit ideal behavior relative to a traditional melt-component set. Although deviations from component ideality can be modeled numerically by simply fitting to compositional variables (such as in a regular or subregular solution model), such models have not been particularly successful for describing variations in trace component activities. A better approach might be to try to identify components that do a better job of describing the behavior of the species in the melt. Electrochemical Measurement of Ru2O3 activities: Electrodes were inserted into silicate melt beads of various compositions (Table 1) suspended on Ptwire loops in a 1-atm gas mixing furnace. An electrical potential was imposed between the electrodes, the imposed potential increasing along a step ramp with a pulse imposed on each step (Fig. 1). Current flows between electrodes when electroactive species in the melt are oxidized or reduced at the electrodes. The resulting current was measured at the top and bottom of the voltage pulse, and the difference (the differential current) was plotted against potential. The peak of the resulting curve is related to the activity coefficient for the particular electroactive species (Ru2O3) in the melt [1, 2, 3]. A significant part of the nonideal contribution to activity is due not to intrinsic properties of the component in the melt, but to our ignorance about the state and mixing properties of the component in the melt.

  2. Mechanical Properties Studies of Components Formulation for Mixing Process Contain of Polypropylene, Polyethylene, and Aluminium Powder

    NASA Astrophysics Data System (ADS)

    Hamsi, A.; Dinzi, R.

    2017-03-01

    Certain powder and others components can induce toxic reactions if not properly handled in the mixing stage. During handling, the small particles can become airborne and be trapped in the lungs, another concern is inhomogeneities in the mixing process. Uniform quantities of the particles of the components are needed in all portions of the mixture. This paper reports the results of mechanical properties studies of mixing three components formulation for mixing process. Contain of Polyethylene (PE), Polyprophylene (PP) and Aluminium Powder. Powder mixer, Autodesk mold flow and computer based on excell method was carried out to study the influence of each formulation component on the flow %, PE 20% and Aluminium powder 2%. Macroscopic optic and macro photo was carried out to identify the homogenity of mixing, tensile test for identify the strength of component after mixing. Finally the optimal tensile test with composition PP 785,PE 20% and Aluminium powder 2% at speed 52 rpm, temperature 1500C, the tensile strength 20,92 N/mm2. At temperature 1600C, speed 100 rpm the optimum tensile strength 17,91 N/mm2. The result of simulation autodesk mold flow adviser the filling time 6 seconds. Otherwise on manual hot hidraulic press the time of filling 10 seconds.

  3. Subpixel target detection and enhancement in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Tiwari, K. C.; Arora, M.; Singh, D.

    2011-06-01

    Hyperspectral data due to its higher information content afforded by higher spectral resolution is increasingly being used for various remote sensing applications including information extraction at subpixel level. There is however usually a lack of matching fine spatial resolution data particularly for target detection applications. Thus, there always exists a tradeoff between the spectral and spatial resolutions due to considerations of type of application, its cost and other associated analytical and computational complexities. Typically whenever an object, either manmade, natural or any ground cover class (called target, endmembers, components or class) gets spectrally resolved but not spatially, mixed pixels in the image result. Thus, numerous manmade and/or natural disparate substances may occur inside such mixed pixels giving rise to mixed pixel classification or subpixel target detection problems. Various spectral unmixing models such as Linear Mixture Modeling (LMM) are in vogue to recover components of a mixed pixel. Spectral unmixing outputs both the endmember spectrum and their corresponding abundance fractions inside the pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based super-resolution mapping method has been presented that achieves subpixel target detection in hyperspectral images by adjusting spatial distribution of abundance fraction within a pixel. Results obtained at different resolutions indicate that super-resolution mapping may effectively aid subpixel target detection.

  4. Evaluating the Ocean Component of the US Navy Earth System Model

    NASA Astrophysics Data System (ADS)

    Zamudio, L.

    2017-12-01

    Ocean currents, temperature, and salinity observations are used to evaluate the ocean component of the US Navy Earth System Model. The ocean and atmosphere components of the system are an eddy-resolving (1/12.5° equatorial resolution) version of the HYbrid Coordinate Ocean Model (HYCOM), and a T359L50 version of the NAVy Global Environmental Model (NAVGEM), respectively. The system was integrated in hindcast mode and the ocean results are compared against unassimilated observations, a stand-alone version of HYCOM, and the Generalized Digital Environment Model ocean climatology. The different observation types used in the system evaluation are: drifting buoys, temperature profiles, salinity profiles, and acoustical proxies (mixed layer depth, sonic layer depth, below layer gradient, and acoustical trapping). To evaluate the system's performance in each different metric, a scorecard is used to translate the system's errors into scores, which provide an indication of the system's skill in both space and time.

  5. The effect of symmetry on the U L3 NEXAFS of octahedral coordinated uranium(vi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    2017-03-21

    We describe a detailed theoretical analysis of how distortions from ideal cubic or Oh symmetry affect the shape, in particular the width, of the U L3-edge NEXAFS for U(VI) in octahedral coordination. The full-width-half-maximum (FWHM) of the L3-edge white line decreases with increasing distortion from Oh symmetry due to the mixing of symmetry broken t2g and eg components of the excited state U(6d) orbitals. The mixing is allowed because of spin-orbit splitting of the ligand field split 6d orbitals. Especially for higher distortions, it is possible to identify a mixing between one of the t2g and one of the egmore » components, allowed in the double group representation when the spin-orbit interaction is taken into account. This mixing strongly reduces the ligand field splitting, which, in turn, leads to a narrowing of the U L3 white line. However, the effect of this mixing is partially offset by an increase in the covalent anti-bonding character of the highest energy spin-orbit split eg orbital. At higher distortions, mixing overwhelms the increasing anti-bonding character of this orbital which leads to an accelerated decrease in the FWHM with increasing distortion. Additional evidence for the effect of mixing of t2g and eg components is that the FWHM of the white line narrows whether the two axial U-O bond distances shorten or lengthen. Our ab initio theory uses relativistic wavefunctions for cluster models of the structures; empirical or semi-empirical parameters were not used to adjust prediction to experiment. A major advantage is that it provides a transparent approach for determining how the character and extent of the covalent mixing of the relevant U and O orbitals affect the U L3-edge white line.« less

  6. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-02-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  7. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying

    2018-03-01

    The chemical compositions of gas discharges from the Kueishantao (KST) hydrothermal field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a hydrothermal and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the hydrothermal endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the hydrothermal endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine hydrothermal vents. In addition, it is suggested that the mixing between a magmatic and a hydrothermal endmember may play an important role in the concentrations of CO2 and CH4 in hydrothermal gas discharges.

  8. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state

    EPA Science Inventory

    A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD =...

  9. Target space pseudoduality in supersymmetric sigma models on symmetric spaces

    NASA Astrophysics Data System (ADS)

    Sarisaman, Mustafa

    We discuss the target space pseudoduality in supersymmetric sigma models on symmetric spaces. We first consider the case where sigma models based on real compact connected Lie groups of the same dimensionality and give examples using three dimensional models on target spaces. We show explicit construction of nonlocal conserved currents on the pseudodual manifold. We then switch the Lie group valued pseudoduality equations to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations. We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric spaces), we investigate pseudoduality transformation on the symmetric space sigma models in the third chapter. We see that there can be mixing of decomposed spaces with each other, which leads to mixings of the following expressions. We obtain the pseudodual conserved currents which are viewed as the orthonormal frame on the pullback bundle of the tangent space of G˜ which is the Lie group on which the pseudodual model based. Hence we obtain the mixing forms of curvature relations and one loop renormalization group beta function by means of these currents. In chapter four, we generalize the classical construction of pseudoduality transformation to supersymmetric case. We perform this both by component expansion method on manifold M and by orthonormal coframe method on manifold SO( M). The component method produces the result that pseudoduality transformation is not invertible at all points and occurs from all points on one manifold to only one point where riemann normal coordinates valid on the second manifold. Torsion of the sigma model on M must vanish while it is nonvanishing on M˜, and curvatures of the manifolds must be constant and the same because of anticommuting grassmann numbers. We obtain the similar results with the classical case in orthonormal coframe method. In case of super WZW sigma models pseudoduality equations result in three different pseudoduality conditions; flat space, chiral and antichiral pseudoduality. Finally we study the pseudoduality transformations on symmetric spaces using two different methods again. These two methods yield similar results to the classical cases with the exception that commuting bracket relations in classical case turns out to be anticommuting ones because of the appearance of grassmann numbers. It is understood that constraint relations in case of non-mixing pseudoduality are the remnants of mixing pseudoduality. Once mixing terms are included in the pseudoduality the constraint relations disappear.

  10. Modeling genetic and nongenetic variation of feed efficiency and its partial relationships between component traits as a function of management and environmental factors.

    PubMed

    Lu, Y; Vandehaar, M J; Spurlock, D M; Weigel, K A; Armentano, L E; Staples, C R; Connor, E E; Wang, Z; Coffey, M; Veerkamp, R F; de Haas, Y; Tempelman, R J

    2017-01-01

    Feed efficiency (FE), characterized as the fraction of feed nutrients converted into salable milk or meat, is of increasing economic importance in the dairy industry. We conjecture that FE is a complex trait whose variation and relationships or partial efficiencies (PE) involving the conversion of dry matter intake to milk energy and metabolic body weight may be highly heterogeneous across environments or management scenarios. In this study, a hierarchical Bayesian multivariate mixed model was proposed to jointly infer upon such heterogeneity at both genetic and nongenetic levels on PE and variance components (VC). The heterogeneity was modeled by embedding mixed effects specifications on PE and VC in addition to those directly specified on the component traits. We validated the model by simulation and applied it to a joint analysis of a dairy FE consortium data set with 5,088 Holstein cows from 13 research stations in Canada, the Netherlands, the United Kingdom, and the United States. Although no differences were detected among research stations for PE at the genetic level, some evidence was found of heterogeneity in residual PE. Furthermore, substantial heterogeneity in VC across stations, parities, and ration was observed with heritability estimates of FE ranging from 0.16 to 0.46 across stations. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Large differences in the diabatic heat budget of the tropical UTLS in reanalyses

    NASA Astrophysics Data System (ADS)

    Wright, J. S.; Fueglistaler, S.

    2013-04-01

    We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: MERRA, ERA-Interim, CFSR, JRA-25/JCDAS, and NCEP/NCAR. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Although they may be expected given difficulties in representing moist convection in models, the discrepancies in latent heating are still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention).

  12. External Validation of a Case-Mix Adjustment Model for the Standardized Reporting of 30-Day Stroke Mortality Rates in China

    PubMed Central

    Yu, Ping; Pan, Yuesong; Wang, Yongjun; Wang, Xianwei; Liu, Liping; Ji, Ruijun; Meng, Xia; Jing, Jing; Tong, Xu; Guo, Li; Wang, Yilong

    2016-01-01

    Background and Purpose A case-mix adjustment model has been developed and externally validated, demonstrating promise. However, the model has not been thoroughly tested among populations in China. In our study, we evaluated the performance of the model in Chinese patients with acute stroke. Methods The case-mix adjustment model A includes items on age, presence of atrial fibrillation on admission, National Institutes of Health Stroke Severity Scale (NIHSS) score on admission, and stroke type. Model B is similar to Model A but includes only the consciousness component of the NIHSS score. Both model A and B were evaluated to predict 30-day mortality rates in 13,948 patients with acute stroke from the China National Stroke Registry. The discrimination of the models was quantified by c-statistic. Calibration was assessed using Pearson’s correlation coefficient. Results The c-statistic of model A in our external validation cohort was 0.80 (95% confidence interval, 0.79–0.82), and the c-statistic of model B was 0.82 (95% confidence interval, 0.81–0.84). Excellent calibration was reported in the two models with Pearson’s correlation coefficient (0.892 for model A, p<0.001; 0.927 for model B, p = 0.008). Conclusions The case-mix adjustment model could be used to effectively predict 30-day mortality rates in Chinese patients with acute stroke. PMID:27846282

  13. Response Surface Modeling of Combined-Cycle Propulsion Components using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.

    2002-01-01

    Three examples of response surface modeling with CFD are presented for combined cycle propulsion components. The examples include a mixed-compression-inlet during hypersonic flight, a hydrogen-fueled scramjet combustor during hypersonic flight, and a ducted-rocket nozzle during all-rocket flight. Three different experimental strategies were examined, including full factorial, fractionated central-composite, and D-optimal with embedded Plackett-Burman designs. The response variables have been confined to integral data extracted from multidimensional CFD results. Careful attention to uncertainty assessment and modeling bias has been addressed. The importance of automating experimental setup and effectively communicating statistical results are emphasized.

  14. Recombining Plasma and Gamma-Ray Emission in the Mixed-morphology Supernova Remnant 3C 400.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergin, T.; Sezer, A.; Sano, H.

    3C 400.2 belongs to the mixed-morphology supernova remnant class, showing center-filled X-ray and shell-like radio morphology. We present a study of 3C 400.2 with archival Suzaku and Fermi -LAT observations. We find recombining plasma (RP) in the Suzaku spectra of north–east and south–east regions. The spectra of these regions are well described by two-component thermal plasma models: the hard component is in RP, while the soft component is in collisional ionization equilibrium (CIE) conditions. The RP has enhanced abundances, indicating that the X-ray emission has an ejecta origin, while the CIE has solar abundances associated with the interstellar material. Themore » X-ray spectra of north–west and south–west regions are best fitted by a two-component thermal plasma model: an ionizing and a CIE plasma. We have detected GeV gamma-ray emission from 3C 400.2 at the level of ∼5 σ , assuming a point-like source model with a power-law (PL) type spectrum. We have also detected a new GeV source at the level of ∼13 σ, assuming a Gaussian extension model with a PL-type spectrum in the neighborhood of the supernova remnant. We report the analysis results of 3C 400.2 and the new extended gamma-ray source, and discuss the nature of gamma-ray emission of 3C 400.2 in the context of existing NANTEN CO data, Dominion Radio Astrophysical Observatory H i data, and the Suzaku X-ray analysis results.« less

  15. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    USGS Publications Warehouse

    Toth, D.J.; Katz, B.G.

    2006-01-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data-chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6) - for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge. ?? Springer-Verlag 2006.

  16. Erratum: Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    NASA Astrophysics Data System (ADS)

    Toth, David J.; Katz, Brian G.

    2006-09-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  17. Timescales of mixing and storage for Keanakāko`i Tephra magmas (1500-1820 C.E.), Kīlauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Lynn, Kendra J.; Garcia, Michael O.; Shea, Thomas; Costa, Fidel; Swanson, Donald A.

    2017-09-01

    The last 2500 years of activity at Kīlauea Volcano (Hawai`i) have been characterized by centuries-long periods dominated by either effusive or explosive eruptions. The most recent period of explosive activity produced the Keanakāko`i Tephra (KT; ca. 1500-1820 C.E.) and occurred after the collapse of the summit caldera (1470-1510 C.E.). Previous studies suggest that KT magmas may have ascended rapidly to the surface, bypassing storage in crustal reservoirs. The storage conditions and rapid ascent hypothesis are tested here using chemical zoning in olivine crystals and thermodynamic modeling. Forsterite contents (Fo; [Mg/(Mg + Fe) × 100]) of olivine core and rim populations are used to identify melt components in Kīlauea's prehistoric (i.e., pre-1823) plumbing system. Primitive (≥Fo88) cores occur throughout the 300+ years of the KT period; they originated from mantle-derived magmas that were first mixed and stored in a deep crustal reservoir. Bimodal olivine populations (≥Fo88 and Fo83-84) record repeated mixing of primitive magmas and more differentiated reservoir components shallower in the system, producing a hybrid composition (Fo85-87). Phase equilibria modeling using MELTS shows that liquidus olivine is not stable at depths >17 km. Thus, calculated timescales likely record mixing and storage within the crust. Modeling of Fe-Mg and Ni zoning patterns (normal, reverse, complex) reveal that KT magmas were mixed and stored for a few weeks to several years before eruption, illustrating a more complex storage history than direct and rapid ascent from the mantle as previously inferred for KT magmas. Complexly zoned crystals also have smoothed compositional reversals in the outer 5-20 µm rims that are out of Fe-Mg equilibrium with surrounding glasses. Diffusion models suggest that these rims formed within a few hours to a few days, indicating that at least one additional, late-stage mixing event may have occurred shortly prior to eruption. Our study illustrates that the lifetimes of KT magmas are more complex than previously proposed, and that most KT magmas did not rise rapidly from the mantle without modification during shallow crustal storage.

  18. Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Qin, Datong; Ding, Yi

    A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.

  19. Upscaling anomalous reactive kinetics (A+B-->C) from pore scale Lagrangian velocity analysis

    NASA Astrophysics Data System (ADS)

    De Anna, P.; Tartakovsky, A. M.; Le Borgne, T.; Dentz, M.

    2011-12-01

    Natural flow fields in porous media display a complex spatio-temporal organization due to heterogeneous geological structures at different scales. This multiscale disorder implies anomalous dispersion, mixing and reaction kinetics (Berkowitz et al. RG 2006, Tartakovsky PRE 2010). Here, we focus on the upscaling of anomalous kinetics arising from pore scale, non Gaussian and correlated, velocity distributions. We consider reactive front simulations, where a component A displaces a component B that saturates initially the porous domain. The reactive component C is produced at the dispersive front located at interface between the A and B domains. The simulations are performed with the SPH method. As the mixing zone grows, the total mass of C produced increases with time. The scaling of this evolution with time is different from that which would be obtained from the homogeneous advection dispersion reaction equation. This anomalous kinetics property is related to spatial structure of the reactive mixture, and its evolution with time under the combined action of advective and diffusive processes. We discuss the different scaling regimes arising depending on the dominant process that governs mixing. In order to upscale these processes, we analyze the Lagrangian velocity properties, which are characterized by the non Gaussian distributions and long range temporal correlation. The main origin of these properties is the existence of very low velocity regions where solute particles can remain trapped for a long time. Another source of strong correlation is the channeling of flow in localized high velocity regions, which created finger-like structures in the concentration field. We show the spatial Markovian, and temporal non Markovian, nature of the Lagrangian velocity field. Therefore, an upscaled model can be defined as a correlated Continuous Time Random Walk (Le Borgne et al. PRL 2008). A key feature of this model is the definition of a transition probability density for Lagrangian velocities across a characteristic correlation distance. We quantify this transition probability density from pore scale simulations and use it in the effective stochastic model. In this framework, we investigate the ability of this effective model to represent correctly dispersion and mixing.

  20. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Revised Method of Presenting Wavenumber-Frequency Power Spectrum Diagrams That Reveals the Asymmetric Nature of Tropical Large-scale Waves

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Yang, Bo; Fu, Xiouhua

    2007-01-01

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called "convectively-coupled Kelvin (mixed Rossby-gravity) waves" are presented as existing only in the symmetric (antisymmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of "convectively-coupled Kelvin waves," which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, "convectively-coupled Kelvin waves" do show anti-symmetric components, and "convectively-coupled mixed Rossby-gravity waves (also known as Yanai waves)" do show a hint of symmetric components. These results bolster a published proposal that these waves be called "chimeric Kelvin waves," "chimeric mixed Rossby-gravity waves," etc. This revised method of presenting power spectrum diagrams offers a more rigorous means of comparing the General Circulation Models (GCM) output with observations by calling attention to the capability of GCMs in correctly simulating the asymmetric characteristics of the equatorial waves.

  2. Efficiency of circulant diallels via mixed models in the selection of papaya genotypes resistant to foliar fungal diseases.

    PubMed

    Vivas, M; Silveira, S F; Viana, A P; Amaral, A T; Cardoso, D L; Pereira, M G

    2014-07-02

    Diallel crossing methods provide information regarding the performance of genitors between themselves and their hybrid combinations. However, with a large number of parents, the number of hybrid combinations that can be obtained and evaluated become limited. One option regarding the number of parents involved is the adoption of circulant diallels. However, information is lacking regarding diallel analysis using mixed models. This study aimed to evaluate the efficacy of the method of linear mixed models to estimate, for variable resistance to foliar fungal diseases, components of general and specific combining ability in a circulant table with different s values. Subsequently, 50 diallels were simulated for each s value, and the correlations and estimates of the combining abilities of the different diallel combinations were analyzed. The circulant diallel method using mixed modeling was effective in the classification of genitors regarding their combining abilities relative to the complete diallels. The numbers of crosses in which each genitor(s) will compose the circulant diallel and the estimated heritability affect the combining ability estimates. With three crosses per parent, it is possible to obtain good concordance (correlation above 0.8) between the combining ability estimates.

  3. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    NASA Astrophysics Data System (ADS)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  4. Polyenergetic known-component CT reconstruction with unknown material compositions and unknown x-ray spectra

    NASA Astrophysics Data System (ADS)

    Xu, S.; Uneri, A.; Khanna, A. Jay; Siewerdsen, J. H.; Stayman, J. W.

    2017-04-01

    Metal artifacts can cause substantial image quality issues in computed tomography. This is particularly true in interventional imaging where surgical tools or metal implants are in the field-of-view. Moreover, the region-of-interest is often near such devices which is exactly where image quality degradations are largest. Previous work on known-component reconstruction (KCR) has shown the incorporation of a physical model (e.g. shape, material composition, etc) of the metal component into the reconstruction algorithm can significantly reduce artifacts even near the edge of a metal component. However, for such approaches to be effective, they must have an accurate model of the component that include energy-dependent properties of both the metal device and the CT scanner, placing a burden on system characterization and component material knowledge. In this work, we propose a modified KCR approach that adopts a mixed forward model with a polyenergetic model for the component and a monoenergetic model for the background anatomy. This new approach called Poly-KCR jointly estimates a spectral transfer function associated with known components in addition to the background attenuation values. Thus, this approach eliminates both the need to know component material composition a prior as well as the requirement for an energy-dependent characterization of the CT scanner. We demonstrate the efficacy of this novel approach and illustrate its improved performance over traditional and model-based iterative reconstruction methods in both simulation studies and in physical data including an implanted cadaver sample.

  5. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  6. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  7. Generalized linear mixed models with varying coefficients for longitudinal data.

    PubMed

    Zhang, Daowen

    2004-03-01

    The routinely assumed parametric functional form in the linear predictor of a generalized linear mixed model for longitudinal data may be too restrictive to represent true underlying covariate effects. We relax this assumption by representing these covariate effects by smooth but otherwise arbitrary functions of time, with random effects used to model the correlation induced by among-subject and within-subject variation. Due to the usually intractable integration involved in evaluating the quasi-likelihood function, the double penalized quasi-likelihood (DPQL) approach of Lin and Zhang (1999, Journal of the Royal Statistical Society, Series B61, 381-400) is used to estimate the varying coefficients and the variance components simultaneously by representing a nonparametric function by a linear combination of fixed effects and random effects. A scaled chi-squared test based on the mixed model representation of the proposed model is developed to test whether an underlying varying coefficient is a polynomial of certain degree. We evaluate the performance of the procedures through simulation studies and illustrate their application with Indonesian children infectious disease data.

  8. A multifluid model extended for strong temperature nonequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chong

    2016-08-08

    We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregatedmore » material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.« less

  9. Real-time simulation of an F110/STOVL turbofan engine

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Ouzts, Peter J.

    1989-01-01

    A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data.

  10. Small signal analysis of four-wave mixing in InAs/GaAs quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Ma, Shaozhen; Chen, Zhe; Dutta, Niloy K.

    2009-02-01

    A model to study four-wave mixing (FWM) wavelength conversion in InAs-GaAs quantum-dot semiconductor optical amplifier is proposed. Rate equations involving two QD states are solved to simulate the carrier density modulation in the system, results show that the existence of QD excited state contributes to the ultra fast recover time for single pulse response by serving as a carrier reservoir for the QD ground state, its speed limitations are also studied. Nondegenerate four-wave mixing process with small intensity modulation probe signal injected is simulated using this model, a set of coupled wave equations describing the evolution of all frequency components in the active region of QD-SOA are derived and solved numerically. Results show that better FWM conversion efficiency can be obtained compared with the regular bulk SOA, and the four-wave mixing bandwidth can exceed 1.5 THz when the detuning between pump and probe lights is 0.5 nm.

  11. Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.

    2002-01-01

    A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

  12. Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.

    2000-01-01

    A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condense one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is not liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

  13. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    PubMed

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to other active volcanic systems on Earth.

  15. A model of air-sea gas exchange incorporating the physics of the turbulent boundary layer and the properties of the sea surface

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Schluessel, Peter

    The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the air-sea gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the air-sea gas exchange can be extended to the global scale, using remote sensing techniques.

  16. Molecular Analysis of Mixed Endometrial Carcinomas Shows Clonality in Most Cases.

    PubMed

    Köbel, Martin; Meng, Bo; Hoang, Lien N; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C Blake; Lee, Cheng-Han

    2016-02-01

    Mixed endometrial carcinoma refers to a tumor that comprises 2 or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas-11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade ECs (CCC/EC), and 2 mixed CCC and SCs (CCC/SC), using targeted next-generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC, and 1 SC/CCC) showed an SC molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch-repair protein deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and 1 EC/CCC case showed both shared and unique molecular features in the 2 histotype components, suggesting early molecular divergence from a common clonal origin. In 2 cases, there were no shared molecular features, and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphologic mimicry, whereby tumors with serous-type molecular profile show morphologic features of EC or CCC, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors).

  17. Molecular analysis of mixed endometrial carcinomas shows clonality in most cases

    PubMed Central

    Hoang, Lien N.; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C. Blake; Lee, Cheng-Han

    2016-01-01

    Mixed endometrial carcinoma refers to a tumor that is comprised of two or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas - 11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade endometrioid carcinomas (CCC/EC), and 2 mixed clear cell and serous carcinoma (CCC/SC), using targeted next generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC and 1 SC/CCC) showed a serous carcinoma molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch repair protein (MMR) deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and one EC/CCC case showed both shared and unique molecular features in the two histotype components, suggesting early molecular divergence from a common clonal origin. In two cases, there were no shared molecular features and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphological mimicry, whereby tumors with serous-type molecular profile show morphological features of endometrioid or clear cell carcinoma, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors). PMID:26492180

  18. Malignant mixed germ cell tumour of ovary--an unusual combination and review of literature.

    PubMed

    Goyal, Lajya Devi; Kaur, Sharanjit; Kawatra, Kanwardeep

    2014-11-04

    Mixed germ cell tumours of the ovary are malignant neoplasms of the ovary comprising of two or more types of germ cell components. Most of the malignant mixed germ cell tumours consists of dysgerminoma accompanied by endodermal sinus tumours, immature teratoma or choriocarcinoma. There are only few case reports of mixed germ cell tumours with different combinations of malignant components. We report a very rare case of mixed germ cell tumours consisted of malignant components of endodermal sinus tumour, emryonal carcinoma, and benign component of teratomatuos and trophoblastic differentiation. This is the first case report in the literature with both benign and malignant component of type described to best of our knowledge. Patient was an 18 year old girl, who presented with pain abdomen, abdominal mass and irregular bleeding. Ultrasound and CT scan showed a huge mass with solid and cystic component. Tumour markers i.e alpha feto- protein (AFP), human chorionic gonadotropin (hCG), lactate dehydrogenate (LDH) and Ca-125 were raised. We performed fertility sparing surgery by preserving one ovary, tube and uterus. Conclusion: Malingnant mixed germ cell tumours of ovary are highly aggressive neoplasm and early intervention and fertility sparing surgery is required for any adolescent girl presenting with rapidly enlarging pelvic mass.

  19. Removing an intersubject variance component in a general linear model improves multiway factoring of event-related spectral perturbations in group EEG studies.

    PubMed

    Spence, Jeffrey S; Brier, Matthew R; Hart, John; Ferree, Thomas C

    2013-03-01

    Linear statistical models are used very effectively to assess task-related differences in EEG power spectral analyses. Mixed models, in particular, accommodate more than one variance component in a multisubject study, where many trials of each condition of interest are measured on each subject. Generally, intra- and intersubject variances are both important to determine correct standard errors for inference on functions of model parameters, but it is often assumed that intersubject variance is the most important consideration in a group study. In this article, we show that, under common assumptions, estimates of some functions of model parameters, including estimates of task-related differences, are properly tested relative to the intrasubject variance component only. A substantial gain in statistical power can arise from the proper separation of variance components when there is more than one source of variability. We first develop this result analytically, then show how it benefits a multiway factoring of spectral, spatial, and temporal components from EEG data acquired in a group of healthy subjects performing a well-studied response inhibition task. Copyright © 2011 Wiley Periodicals, Inc.

  20. Single-channel mixed signal blind source separation algorithm based on multiple ICA processing

    NASA Astrophysics Data System (ADS)

    Cheng, Xiefeng; Li, Ji

    2017-01-01

    Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.

  1. Clarifying the Content Coverage of Differing Psychopathy Inventories through Reference to the Triarchic Psychopathy Measure

    PubMed Central

    Drislane, Laura E.; Patrick, Christopher J.; Arsal, Güler

    2014-01-01

    The Triarchic Model of psychopathy (Patrick, Fowles, and Krueger, 2009) was formulated as an integrative framework for reconciling differing conceptions of psychopathy. The model characterizes psychopathy in terms of three distinguishable phenotypic components: boldness, meanness, and disinhibition. Data from a large mixed-gender undergraduate sample (N = 618) were used to examine relations of several of the best-known measures for assessing psychopathic traits with scores on the Triarchic Psychopathy Measure (TriPM), an inventory developed to operationalize the Triarchic Model through separate facet scales. Analyses revealed that established inventories of psychopathy index components of the model as indexed by the TriPM to varying degrees. While each inventory provided effective coverage of meanness and disinhibition components, instruments differed in their representation of boldness. Current results demonstrate the heuristic value of the Triarchic Model for delineating commonalities and differences among alternative measures of psychopathy, and provide support for the utility of the Triarchic Model as a framework for reconciling alternative conceptions of psychopathy. PMID:24320762

  2. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed us- ing a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify de ciencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the mea- sured data, a sensitivity analysis of the model parameters with emphasis on the de nition of the convection velocity parameter, and a least-squares t of the predicted to the mea- sured shock-associated noise component spectra, resulted in a new de nition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  3. A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Randall; Weinschenk, Craig

    2013-11-01

    A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.

  4. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden.

    PubMed

    Gómez, Javier B; Gimeno, María J; Auqué, Luis F; Acero, Patricia

    2014-01-15

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water-rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. © 2013 Elsevier B.V. All rights reserved.

  5. Data-driven RANS for simulations of large wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Viola, F.; Ciri, U.; Rotea, M. A.; Leonardi, S.

    2015-06-01

    In the wind energy industry there is a growing need for real-time predictions of wind turbine wake flows in order to optimize power plant control and inhibit detrimental wake interactions. To this aim, a data-driven RANS approach is proposed in order to achieve very low computational costs and adequate accuracy through the data assimilation procedure. The RANS simulations are implemented with a classical Boussinesq hypothesis and a mixing length turbulence closure model, which is calibrated through the available data. High-fidelity LES simulations of a utility-scale wind turbine operating with different tip speed ratios are used as database. It is shown that the mixing length model for the RANS simulations can be calibrated accurately through the Reynolds stress of the axial and radial velocity components, and the gradient of the axial velocity in the radial direction. It is found that the mixing length is roughly invariant in the very near wake, then it increases linearly with the downstream distance in the diffusive region. The variation rate of the mixing length in the downstream direction is proposed as a criterion to detect the transition between near wake and transition region of a wind turbine wake. Finally, RANS simulations were performed with the calibrated mixing length model, and a good agreement with the LES simulations is observed.

  6. A Discussion on Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms based on Kalman Filter Estimation Applied to Prognostics of Electronics Components

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.

  7. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  8. Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium and its availability on PAH biodegradation.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2015-06-01

    The use of metal-tolerant polyaromatic hydrocarbon (PAH)-degrading bacteria is viable for mitigating metal inhibition of organic compound biodegradation in the remediation of mixed contaminated sites. Many microbial growth media used for toxicity testing contain high concentrations of metal-binding components such as phosphates that can reduce solution-phase metal concentrations thereby underestimate the real toxicity. In this study, we isolated two PAHs-degrading bacterial consortia from long-term mixed contaminated soils. We have developed a new mineral medium by optimising the concentrations of medium components to allow the bacterial growth and at the same time maintain high bioavailable metal (Cd(2+) as a model metal) in the medium. This medium has more than 60 % Cd as Cd(2+) at pH 6.5 as measured by an ion selective electrode and visual MINTEQ model. The Cd-tolerant patterns of the consortia were tested and minimum inhibitory concentration (MIC) derived. The consortium-5 had the highest MIC of 5 mg l(-1) Cd followed by consortium-9. Both cultures were able to completely metabolise 200 mg l(-1) phenanthrene in less than 4 days in the presence of 5 mg l(-1) Cd. The isolated metal-tolerant PAH-degrading bacterial cultures have great potential for bioremediation of mixed contaminated soils.

  9. Estimates of lake trout (Salvelinus namaycush) diet in Lake Ontario using two and three isotope mixing models

    USGS Publications Warehouse

    Colborne, Scott F.; Rush, Scott A.; Paterson, Gordon; Johnson, Timothy B.; Lantry, Brian F.; Fisk, Aaron T.

    2016-01-01

    Recent development of multi-dimensional stable isotope models for estimating both foraging patterns and niches have presented the analytical tools to further assess the food webs of freshwater populations. One approach to refine predictions from these analyses is to include a third isotope to the more common two-isotope carbon and nitrogen mixing models to increase the power to resolve different prey sources. We compared predictions made with two-isotope carbon and nitrogen mixing models and three-isotope models that also included sulphur (δ34S) for the diets of Lake Ontario lake trout (Salvelinus namaycush). We determined the isotopic compositions of lake trout and potential prey fishes sampled from Lake Ontario and then used quantitative estimates of resource use generated by two- and three-isotope Bayesian mixing models (SIAR) to infer feeding patterns of lake trout. Both two- and three-isotope models indicated that alewife (Alosa pseudoharengus) and round goby (Neogobius melanostomus) were the primary prey items, but the three-isotope models were more consistent with recent measures of prey fish abundances and lake trout diets. The lake trout sampled directly from the hatcheries had isotopic compositions derived from the hatchery food which were distinctively different from those derived from the natural prey sources. Those hatchery signals were retained for months after release, raising the possibility to distinguish hatchery-reared yearlings and similarly sized naturally reproduced lake trout based on isotopic compositions. Addition of a third-isotope resulted in mixing model results that confirmed round goby have become an important component of lake trout diet and may be overtaking alewife as a prey resource.

  10. A classical model for closed-loop diagrams of binary liquid mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnitzler, J.v.; Prausnitz, J.M.

    1994-03-01

    A classical lattice model for closed-loop temperature-composition phase diagrams has been developed. It considers the effect of specific interactions, such as hydrogen bonding, between dissimilar components. This van Laar-type model includes a Flory-Huggins term for the excess entropy of mixing. It is applied to several liquid-liquid equilibria of nonelectrolytes, where the molecules of the two components differ in size. The model is able to represent the observed data semi-quantitatively, but in most cases it is not flexible enough to predict all parts of the closed loop quantitatively. The ability of the model to represent different binary systems is discussed. Finally,more » attention is given to a correction term, concerning the effect of concentration fluctuations near the upper critical solution temperature.« less

  11. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle

    NASA Astrophysics Data System (ADS)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling

    2016-03-01

    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in volatile and trace element contents. Our results are consistent with previously proposed geodynamical processes acting at mid-ocean ridges and with the generation of the E-DMM. Our observations indicate that the D-DMM and E-DMM have (1) a relatively constant CO2/Cl ratio of ∼57 ± 8, and (2) volatile and ITE element abundance patterns that can be related by a simple melting event, supporting the hypothesis that the E-DMM is a recycled oceanic lithosphere mantle metasomatized by low degree melts. Our calculation and model give rise to a Pacific upper mantle with volatile content of CO2 = 235 ppm, H2O = 191 ppm, F = 13 ppm, Cl = 5 ppm, and S = 114 ppm.

  12. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover

    PubMed Central

    Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; Konopka, Allan E.; Nelson, William C.; Arntzen, Evan V.; Chrisler, William B.; Chu, Rosalie K.; Danczak, Robert E.; Fansler, Sarah J.; Kennedy, David W.; Resch, Charles T.; Tfaily, Malak

    2016-01-01

    Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater–surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater–surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. PMID:27052662

  13. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover.

    PubMed

    Stegen, James C; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Danczak, Robert E; Fansler, Sarah J; Kennedy, David W; Resch, Charles T; Tfaily, Malak

    2016-04-07

    Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds.

  14. Restoration of recto-verso colour documents using correlated component analysis

    NASA Astrophysics Data System (ADS)

    Tonazzini, Anna; Bedini, Luigi

    2013-12-01

    In this article, we consider the problem of removing see-through interferences from pairs of recto-verso documents acquired either in grayscale or RGB modality. The see-through effect is a typical degradation of historical and archival documents or manuscripts, and is caused by transparency or seeping of ink from the reverse side of the page. We formulate the problem as one of separating two individual texts, overlapped in the recto and verso maps of the colour channels through a linear convolutional mixing operator, where the mixing coefficients are unknown, while the blur kernels are assumed known a priori or estimated off-line. We exploit statistical techniques of blind source separation to estimate both the unknown model parameters and the ideal, uncorrupted images of the two document sides. We show that recently proposed correlated component analysis techniques overcome the already satisfactory performance of independent component analysis techniques and colour decorrelation, when the two texts are even sensibly correlated.

  15. Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials

    NASA Astrophysics Data System (ADS)

    Ju, Taeho

    To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear mixing technique is adapted to develop an NDE technique for characterizing thermal aging of adhesive joints. To this end, a nonlinear spring model is used to simulate the effect of the adhesive layer. Based on this nonlinear spring model, analytical expressions of the resonant wave generated by the adhesive layers is obtained through an asymptotic analysis when the adhesive layer thickness is much smaller than the pertinent wavelength. The solutions are expressed in terms of the properties of the adhesive layer. The nonlinear spring model shows a good agreement with the finite layer model solutions in the limit of a small thickness to wavelength ratio. Third, to demonstrate the effectiveness of this newly developed technique, measurements are conducted on adhesive joint samples made of two aluminum adherends bonded together by a polymer adhesive tape. The samples are aged in a thermal chamber to induce thermal ageing degradation in the adhesive layer. Using the developed wave-mixing technique in conjunction with the nonlinear spring model, we show that the thermal aging damage of the adhesive layer can be quantified from only one side of the sample. Finally, by mixing two L-waves, we develop a mixing technique to nondestructively evaluate the damage induced by alkali-silica reaction (ASR) in concrete. Experimental measurements are conducted on concrete prism samples that contain reactive aggregates and have been subjected to different ASR conditioning. This new technique takes into consideration of the significant attenuation caused by ASR-induced microcracks and scattering by the aggregates. The measurement results show that the ANLP has a much greater sensitivity to ASR damage than other parameters such as attenuation and wave speed. More remarkably, it is also found that the measured acoustic nonlinearity parameter is well-correlated with the reduction of the compressive strength induced by ASR damage. Thus, ANLP can be used to nondestructively track ASR damage in concrete.

  16. Design of an impact evaluation using a mixed methods model--an explanatory assessment of the effects of results-based financing mechanisms on maternal healthcare services in Malawi.

    PubMed

    Brenner, Stephan; Muula, Adamson S; Robyn, Paul Jacob; Bärnighausen, Till; Sarker, Malabika; Mathanga, Don P; Bossert, Thomas; De Allegri, Manuela

    2014-04-22

    In this article we present a study design to evaluate the causal impact of providing supply-side performance-based financing incentives in combination with a demand-side cash transfer component on equitable access to and quality of maternal and neonatal healthcare services. This intervention is introduced to selected emergency obstetric care facilities and catchment area populations in four districts in Malawi. We here describe and discuss our study protocol with regard to the research aims, the local implementation context, and our rationale for selecting a mixed methods explanatory design with a quasi-experimental quantitative component. The quantitative research component consists of a controlled pre- and post-test design with multiple post-test measurements. This allows us to quantitatively measure 'equitable access to healthcare services' at the community level and 'healthcare quality' at the health facility level. Guided by a theoretical framework of causal relationships, we determined a number of input, process, and output indicators to evaluate both intended and unintended effects of the intervention. Overall causal impact estimates will result from a difference-in-difference analysis comparing selected indicators across intervention and control facilities/catchment populations over time.To further explain heterogeneity of quantitatively observed effects and to understand the experiential dimensions of financial incentives on clients and providers, we designed a qualitative component in line with the overall explanatory mixed methods approach. This component consists of in-depth interviews and focus group discussions with providers, service user, non-users, and policy stakeholders. In this explanatory design comprehensive understanding of expected and unexpected effects of the intervention on both access and quality will emerge through careful triangulation at two levels: across multiple quantitative elements and across quantitative and qualitative elements. Combining a traditional quasi-experimental controlled pre- and post-test design with an explanatory mixed methods model permits an additional assessment of organizational and behavioral changes affecting complex processes. Through this impact evaluation approach, our design will not only create robust evidence measures for the outcome of interest, but also generate insights on how and why the investigated interventions produce certain intended and unintended effects and allows for a more in-depth evaluation approach.

  17. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, John William; Hannington, Mark D.; Tivey, Margaret K.; Hansteen, Thor; Williamson, Nicole M.-B.; Stewart, Margaret; Fietzke, Jan; Butterfield, David; Frische, Matthias; Allen, Leigh; Cousens, Brian; Langer, Julia

    2016-01-01

    Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during barite crystallization. The comparison of fluid inclusion formation temperatures to modelled mixing temperatures indicates that conductive cooling of the vent fluid accounts for 60-120 °C reduction in fluid temperature. Strontium zonation within individual barite crystals records fluctuations in the amount of conductive cooling within chimney walls that may result from cyclical oscillations in hydrothermal fluid flux. Barite chemistry and morphology can be used as a reliable indicator for past conditions of mineralization within both extinct seafloor hydrothermal deposits and ancient land-based volcanogenic massive sulfide deposits.

  18. Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models.

    PubMed

    Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T

    2009-07-09

    Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.

  19. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

  20. Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa.

    PubMed Central

    Omedo, Irene; Mogeni, Polycarp; Bousema, Teun; Rockett, Kirk; Amambua-Ngwa, Alfred; Oyier, Isabella; C. Stevenson, Jennifer; Y. Baidjoe, Amrish; de Villiers, Etienne P.; Fegan, Greg; Ross, Amanda; Hubbart, Christina; Jeffreys, Anne; N. Williams, Thomas; Kwiatkowski, Dominic; Bejon, Philip

    2017-01-01

    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population. PMID:28612053

  1. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOEpatents

    Moos, Daniel

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  2. Jet Surface Interaction Noise in a High Aspect Ratio Rectangular Exhaust

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2017-01-01

    A physics-based prediction model is employed to simulate jet surface interaction (JSI) noise in a transversely sheared jet exhaust. The methodology finds application in jets with a high aspect ratio (AR) rectangular exhaust in the proximity of a flat surface. Two component spectra are simulated: (i) mixing/scrubbing noise; (ii) trailing edge noise--and are superimposed to obtain the far field exhaust noise on either side of a nearby surface. This document describes the necessary input parameters (including mean flow and turbulence information for the nozzle exhaust of interest) that should be prepared in order to initiate the simulation for each noise component. Sample input/output files in connection with an 8:1 aspect ratio rectangular exhaust at Mach 0.98 near a rigid surface are described. Jet noise spectra are examined below at operating conditions listed in Table IV. Individual noise components, designated as Scrubbing Noise and Trailing Edge Noise, are presented and their sum Total Noise (Analysis) is compared with Measurement (Refs. 8 and 9) at selective number of observer polar angles at azimuth f = 90deg. Results are presented on an arc R = 17.80-ft (i.e., R = 100Deq) on both sides of a nearby surface. Although the predicted TE noise component is symmetric with respect to the edge due to symmetry in the propagator, measurements for the majority of cases are not quite symmetric and exhibit a slightly larger peak on the reflected side of the surface. Turbulent mixing/scrubbing noise component has a greater presence on the reflected side, as expected. Figure 13 to Figure 18 show that the peak in the predicted TE component could differ from measurements by as much as 4 dB due to lack of symmetry in measured data, however, the general trend is in agreement with data across the three Mach numbers. The overall sound pressure level (OASPL) associated with the TE noise component follows a U5 velocity scaling in the current modeling (Ref. 4). Directivity predictions for the TE noise component as well as the total noise are shown in Figure 19 (bottom)-and are compared with measurements (top figure) at conditions of Table IV. As anticipated, the TE noise component (dashed-line) overwhelms the directivity factor due to its dominant spectral peak level. Only at small angles to the jet axis the mixing noise component contributes significant enough to weight noticeably on the total noise.

  3. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Han, Y. S.; Wang, J. Y.

    2017-07-01

    The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  4. Analysis of models for two solution crystal growth problems

    NASA Technical Reports Server (NTRS)

    Fehribach, Joseph D.; Rosenberger, Franz

    1989-01-01

    Two diffusive solution crystal growth models are considered which are characterized by two phases separated by an interface, a lack of convective mixing in either phase, and the presence of diffusion components differing widely in diffusivity. The first model describes precipitant-driven solution crystal growth and the second model describes a hanging drop evaporation problem. It is shown that for certain proteins sharp concentration gradients may develop in the drop during evaporation, while under the same conditions the concentrations of other proteins remain uniform.

  5. Effects of mixing states on the multiple-scattering properties of soot aerosols.

    PubMed

    Cheng, Tianhai; Wu, Yu; Gu, Xingfa; Chen, Hao

    2015-04-20

    The radiative properties of soot aerosols are highly sensitive to the mixing states of black carbon particles and other aerosol components. Light absorption properties are enhanced by the mixing state of soot aerosols. Quantification of the effects of mixing states on the scattering properties of soot aerosol are still not completely resolved, especially for multiple-scattering properties. This study focuses on the effects of the mixing state on the multiple scattering of soot aerosols using the vector radiative transfer model. Two types of soot aerosols with different mixing states such as external mixture soot aerosols and internal mixture soot aerosols are studied. Upward radiance/polarization and hemispheric flux are studied with variable soot aerosol loadings for clear and haze scenarios. Our study showed dramatic changes in upward radiance/polarization due to the effects of the mixing state on the multiple scattering of soot aerosols. The relative difference in upward radiance due to the different mixing states can reach 16%, whereas the relative difference of upward polarization can reach 200%. The effects of the mixing state on the multiple-scattering properties of soot aerosols increase with increasing soot aerosol loading. The effects of the soot aerosol mixing state on upwelling hemispheric flux are much smaller than in upward radiance/polarization, which increase with increasing solar zenith angle. The relative difference in upwelling hemispheric flux due to the different soot aerosol mixing states can reach 18% when the solar zenith angle is 75°. The findings should improve our understanding of the effects of mixing states on the optical properties of soot aerosols and their effects on climate. The mixing mechanism of soot aerosols is of critical importance in evaluating the climate effects of soot aerosols, which should be explicitly included in radiative forcing models and aerosol remote sensing.

  6. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  7. Advanced simulation of mixed-material erosion/evolution and application to low and high-Z containing plasma facing components

    NASA Astrophysics Data System (ADS)

    Brooks, J. N.; Hassanein, A.; Sizyuk, T.

    2013-07-01

    Plasma interactions with mixed-material surfaces are being analyzed using advanced modeling of time-dependent surface evolution/erosion. Simulations use the REDEP/WBC erosion/redeposition code package coupled to the HEIGHTS package ITMC-DYN mixed-material formation/response code, with plasma parameter input from codes and data. We report here on analysis for a DIII-D Mo/C containing tokamak divertor. A DIII-D/DiMES probe experiment simulation predicts that sputtered molybdenum from a 1 cm diameter central spot quickly saturates (˜4 s) in the 5 cm diameter surrounding carbon probe surface, with subsequent re-sputtering and transport to off-probe divertor regions, and with high (˜50%) redeposition on the Mo spot. Predicted Mo content in the carbon agrees well with post-exposure probe data. We discuss implications and mixed-material analysis issues for Be/W mixing at the ITER outer divertor, and Li, C, Mo mixing at an NSTX divertor.

  8. [New method of mixed gas infrared spectrum analysis based on SVM].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2007-07-01

    A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.

  9. Spectral Mixing in Nervous Systems: Experimental Evidenceand Biologically Plausible Circuits

    NASA Astrophysics Data System (ADS)

    Kleinfeld, D.; Mehta, S. B.

    The ability to compute the difference frequency for two periodic signals depends on a nonlinear operation that mixes those signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the vertebrate nervous system as a means to compare rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. Electrophysiological data from electroreceptors in the immobilized electric fish and somatosensory cortex in the anesthetized rat yield direct evidence for such mixing, providing a neurological substrate for the modulation and demodulation of rhythmic neuronal signals. We consider an analytical model of spectral mixing that makes use of the threshold characteristics of neuronal firing and which has features consistent with the experimental observations. This model serves as a guide for constructing circuits that isolate given mixture components. In particular, such circuits can generate nearly pure difference tones from sinusoidal inputs without the use of band-pass filters, in analogy to an image-reject mixer in communications engineering. We speculate that such computations may play a role in coding of sensory input and feedback stabilization of motor output in nervous systems.

  10. Approach to knowledge of the interaction between the constituents of contact lenses and ocular tears: mixed monolayers of poly(methyl methacrylate) and dipalmitoyl phosphatidyl choline.

    PubMed

    Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J

    2011-04-05

    Mixed monolayers of poly(methyl methacrylate) (PMMA), the main component of hard contact lenses, and dipalmitoyl phosphatidyl choline (DPPC), a characteristic phospholipidic constituent of ocular tear films, were selected as an in vitro model in order to observe the behavior of contact lenses on the eye. Using Langmuir monolayer and Brewster angle microscopy (BAM) techniques, the interaction between both components was analyzed from the data of surface pressure-area isotherms, compressional modulus-surface pressure, and relative film thickness versus time elapsed from the beginning of compression, together with BAM images. Regardless of the surface pressure at which the molecular/monomer areas (A(m)) were recorded, the A(m) mole fractions of PMMA (X(PMMA)) plots show that the experimental results match the theoretical values calculated from additivity rule A(m) = X(PMMA)A(PMMA) + X(DPPC)A(DPPC). The application of the Crisp phase rule to the phase diagram of the PMMA-DPPC system can explain the existence of a mixed monolayer made up of miscible components with ideal behavior at surface pressures below 25 mN/m. However, at very high surface pressures, when collapse is reached (at 60 mN/m), the single collapsed components are segregated into two independent phases. These results allows us to argue that PMMA hard contact lenses in the eye do not alter the structural characteristics of the phospholipid (DPPC) in tears.

  11. Mixed reality temporal bone surgical dissector: mechanical design.

    PubMed

    Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram

    2014-08-08

    The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.

  12. Microfluidic mixing using orbiting magnetic microbeads

    NASA Astrophysics Data System (ADS)

    Ballard, Matthew; Owen, Drew; Mao, Wenbin; Hesketh, Peter; Alexeev, Alexander

    2013-11-01

    Using three-dimensional simulations and experiments, we examine mixing in a microfluidic channel that incorporates a hybrid passive-active micromixer. The passive part of the mixer consists of a series of angled parallel ridges lining the top microchannel wall. The active component of the mixer is made up of microbeads rotating around small pillars on the bottom of the microchannel. In our simulations, we use a binary fluid lattice Boltzmann model to simulate the system and characterize the microfluidic mixing in the system. We consider the passive and active micromixers separately and evaluate their combined effect on the mixing of binary fluids. We compare our simulations with the experimental results obtained in a microchannel with magnetically actuated microbeads. Our findings guide the design of an efficient micromixer to be used in sampling in complex fluids. Financial support from NSF (CBET-1159726) is gratefully acknowledged.

  13. The Software Architecture of Global Climate Models

    NASA Astrophysics Data System (ADS)

    Alexander, K. A.; Easterbrook, S. M.

    2011-12-01

    It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.

  14. Interactive, process-oriented climate modeling with CLIMLAB

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2016-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The Jupyter Notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields.

  15. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-04-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  16. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  17. Joint modelling of repeated measurement and time-to-event data: an introductory tutorial.

    PubMed

    Asar, Özgür; Ritchie, James; Kalra, Philip A; Diggle, Peter J

    2015-02-01

    The term 'joint modelling' is used in the statistical literature to refer to methods for simultaneously analysing longitudinal measurement outcomes, also called repeated measurement data, and time-to-event outcomes, also called survival data. A typical example from nephrology is a study in which the data from each participant consist of repeated estimated glomerular filtration rate (eGFR) measurements and time to initiation of renal replacement therapy (RRT). Joint models typically combine linear mixed effects models for repeated measurements and Cox models for censored survival outcomes. Our aim in this paper is to present an introductory tutorial on joint modelling methods, with a case study in nephrology. We describe the development of the joint modelling framework and compare the results with those obtained by the more widely used approaches of conducting separate analyses of the repeated measurements and survival times based on a linear mixed effects model and a Cox model, respectively. Our case study concerns a data set from the Chronic Renal Insufficiency Standards Implementation Study (CRISIS). We also provide details of our open-source software implementation to allow others to replicate and/or modify our analysis. The results for the conventional linear mixed effects model and the longitudinal component of the joint models were found to be similar. However, there were considerable differences between the results for the Cox model with time-varying covariate and the time-to-event component of the joint model. For example, the relationship between kidney function as measured by eGFR and the hazard for initiation of RRT was significantly underestimated by the Cox model that treats eGFR as a time-varying covariate, because the Cox model does not take measurement error in eGFR into account. Joint models should be preferred for simultaneous analyses of repeated measurement and survival data, especially when the former is measured with error and the association between the underlying error-free measurement process and the hazard for survival is of scientific interest. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  18. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci

    PubMed Central

    Ju, Jin Hyun; Crystal, Ronald G.

    2017-01-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL. PMID:28505156

  19. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.

    PubMed

    Ju, Jin Hyun; Shenoy, Sushila A; Crystal, Ronald G; Mezey, Jason G

    2017-05-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL.

  20. Experimental evidence for excess entropy discontinuities in glass-forming solutions.

    PubMed

    Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas

    2012-02-21

    Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics

  1. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  2. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel

    2009-04-07

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  3. Study of abrasive resistance of foundries models obtained with use of additive technology

    NASA Astrophysics Data System (ADS)

    Ol'khovik, Evgeniy

    2017-10-01

    A problem of determination of resistance of the foundry models and patterns from ABS (PLA) plastic, obtained by the method of 3D printing with using FDM additive technology, to abrasive wear and resistance in the environment of foundry sand mould is considered in the present study. The description of a technique and equipment for tests of castings models and patterns for wear is provided in the article. The manufacturing techniques of models with the use of the 3D printer (additive technology) are described. The scheme with vibration load was applied to samples tests. For the most qualitative research of influence of sandy mix on plastic, models in real conditions of abrasive wear have been organized. The results also examined the application of acrylic paintwork to the plastic model and a two-component coating. The practical offers and recommendation on production of master models with the use of FDM technology allowing one to reach indicators of durability, exceeding 2000 cycles of moulding in foundry sand mix, are described.

  4. Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Zaizen, Yuji; Kajino, Mizuo; Igarashi, Yasuhito

    2014-05-01

    Soot particles influence the global climate through interactions with sunlight. A coating on soot particles increases their light absorption by increasing their absorption cross section and cloud condensation nuclei activity when mixed with other hygroscopic aerosol components. Therefore, it is important to understand how soot internally mixes with other materials to accurately simulate its effects in climate models. In this study, we used a transmission electron microscope (TEM) with an auto particle analysis system, which enables more particles to be analyzed than a conventional TEM. Using the TEM, soot particle size and shape (shape factor) were determined with and without coating from samples collected at a remote mountain site in Japan. The results indicate that ~10% of aerosol particles between 60 and 350 nm in aerodynamic diameters contain or consist of soot particles and ~75% of soot particles were internally mixed with nonvolatile ammonium sulfate or other materials. In contrast to an assumption that coatings change soot shape, both internally and externally mixed soot particles had similar shape and size distributions. Larger aerosol particles had higher soot mixing ratios, i.e., more than 40% of aerosol particles with diameters >1 µm had soot inclusions, whereas <20% of aerosol particles with diameters <1 µm included soot. Our results suggest that climate models may use the same size distributions and shapes for both internally and externally mixed soot; however, changing the soot mixing ratios in the different aerosol size bins is necessary.

  5. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 - I. A ternary Bragg-Williams ordering model

    USGS Publications Warehouse

    McSwiggen, P.L.

    1993-01-01

    The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.

  6. Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hyun; Kim, Kyoung-Ho; Thao, Nguyen Thi; Batsaikhan, Bayartungalag; Yun, Seong-Taek

    2017-06-01

    In this study, we evaluated the water quality status (especially, salinity problems) and hydrogeochemical processes of an alluvial aquifer in a floodplain of the Red River delta, Vietnam, based on the hydrochemical and isotopic data of groundwater samples (n = 23) from the Kien Xuong district of the Thai Binh province. Following the historical inundation by paleo-seawater during coastal progradation, the aquifer has been undergone progressive freshening and land reclamation to enable settlements and farming. The hydrochemical data of water samples showed a broad hydrochemical change, from Na-Cl through Na-HCO3 to Ca-HCO3 types, suggesting that groundwater was overall evolved through the freshening process accompanying cation exchange. The principal component analysis (PCA) of the hydrochemical data indicates the occurrence of three major hydrogeochemical processes occurring in an aquifer, namely: 1) progressive freshening of remaining paleo-seawater, 2) water-rock interaction (i.e., dissolution of silicates), and 3) redox process including sulfate reduction, as indicated by heavy sulfur and oxygen isotope compositions of sulfate. To quantitatively assess the hydrogeochemical processes, the end-member mixing analysis (EMMA) and the forward mixing modeling using PHREEQC code were conducted. The EMMA results show that the hydrochemical model with the two-dimensional mixing space composed of PC 1 and PC 2 best explains the mixing in the study area; therefore, we consider that the groundwater chemistry mainly evolved by mixing among three end-members (i.e., paleo-seawater, infiltrating rain, and the K-rich groundwater). The distinct depletion of sulfate in groundwater, likely due to bacterial sulfate reduction, can also be explained by EMMA. The evaluation of mass balances using geochemical modeling supports the explanation that the freshening process accompanying direct cation exchange occurs through mixing among three end-members involving the K-rich groundwater. This study shows that the multiple end-members mixing model is useful to more successfully assess complex hydrogeochemical processes occurring in a salinized aquifer under freshening, as compared to the conventional interpretation using the theoretical mixing line based on only two end-members (i.e., seawater and rainwater).

  7. Glasgow Coma Scale and Its Components on Admission: Are They Valuable Prognostic Tools in Acute Mixed Drug Poisoning?

    PubMed Central

    Eizadi Mood, N.; Sabzghabaee, A. M.; Yadegarfar, Gh.; Yaraghi, A.; Ramazani Chaleshtori, M.

    2011-01-01

    Introduction. The verbal, eye, and motor components of Glasgow coma scale (GCS) may be influenced by poisoned patients' behavior in an attempted suicide. So, the values of admission GCS and its components for outcomes prediction in mixed drugs poisoning were investigated. Materials and Methods. A followup study data was performed on patients with mixed drugs poisoning. Outcomes were recorded as without complications and with complications. Discrimination was evaluated by calculating the area under the receiver operating characteristic curves (AUC). Results. There was a significant difference between the mean value of each component of GCS as well as the total GCS between patients with and without complication. Discrimination was best for GCS (AUC: 0.933 ± 0.020) and verbal (0.932 ± 0.021), followed by motor (0.911 ± 0.025), then eye (0.89 ± 0.028). Conclusions. Admission GCS and its components seem to be valuable in outcome prediction of patients with mixed drug poisoning. PMID:21559299

  8. Designing a Leadership Legacy (L2) Framework

    ERIC Educational Resources Information Center

    Fierke, Kerry K.

    2015-01-01

    What does it mean to leave a "leadership legacy" in the organizations and communities in which we are involved? This mixed-methods research project will explore the stories of successful individuals who have left a leadership legacy. Specifically in this article, the preliminary research will share various components of a model to create…

  9. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    PubMed

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  10. Integrated investigation of the mixed origin of lunar sample 72161,11

    NASA Technical Reports Server (NTRS)

    Basu, A.; Des Marais, D. J.; Hayes, J. M.; Meinschein, W. G.

    1975-01-01

    The comminution-agglutination model and the solar-wind implantation-retention model are used to postulate the origins of the particulate components of lunar sample (72161,11), a submillimeter fraction of a surface sample for the dark mantle regolith at LRV-3. Grain-size analysis was performed by wet sieving with liquid argon, and analyses for CO2, CO, CH4, and H2 were carried out by stepwise pyrolysis in a helium atmosphere. The results indicate that the present sample is from a mature regolith, but the agglutinate content is only 30% in the particle-size range between 90 and 177 microns, indicating an apparent departure from steady state. Analyses of the carbon, methane, and hydrogen concentrations in size fractions larger than 149 microns show that the volume-correlated component of these species increases with increased grain size. It is suggested that the observed increase can be explained in terms of mixing of a dominant local population of coarser agglutinates having high carbon and hydrogen concentrations with an imported population of finer agglutinates relatively poor in carbon and hydrogen.

  11. Extracellular Matrix and the Mechanics of Large Artery Development

    PubMed Central

    Cheng, Jeffrey K.; Wagenseil, Jessica E.

    2012-01-01

    The large, elastic arteries, as their name suggests, provide elastic distention and recoil during the cardiac cycle in vertebrate animals. The arteries are distended from the pressure of ejecting blood during active contraction of the left ventricle (LV) during systole, and recoil to their original dimensions during relaxation of the LV during diastole. The cyclic distension occurs with minimal energy loss, due to the elastic properties of one of the major structural extracellular matrix (ECM) components, elastin. The maximum distension is limited to prevent damage to the artery by another major ECM component, collagen. The mix of ECM components in the wall largely determines the passive mechanical behavior of the arteries and the subsequent load on the heart during systole. While much research has focused on initial artery formation, there has been less attention on the continuing development of the artery to produce the mature composite wall complete with endothelial cells (ECs), smooth muscle cells (SMCs), and the necessary mix of ECM components for proper cardiovascular function. This review focuses on the physiology of large artery development, including SMC differentiation and ECM production. The effects of hemodynamic forces and ECM deposition on the evolving arterial structure and function are discussed. Human diseases and mouse models with genetic mutations in ECM proteins that affect large artery development are summarized. A review of constitutive models and growth and remodeling theories is presented, along with future directions to improve understanding of ECM and the mechanics of large artery development. PMID:22584609

  12. NIR studies of cholesterol-dependent structural modification of the model lipid bilayer doped with inhalation anesthetics

    NASA Astrophysics Data System (ADS)

    Kuć, Marta; Cieślik-Boczula, Katarzyna; Rospenk, Maria

    2018-06-01

    The influence of cholesterol on the structure of the model lipid bilayers treated with inhalation anesthetics (enflurane, isoflurane, sevoflurane and halothane) was investigated employing near-infrared (NIR) spectroscopy combined with the Principal Component Analysis (PCA). The conformational changes occurring in the hydrophobic area of the lipid bilayers were analyzed using the first overtones of symmetric (2νs) and antisymmetric (2νas) stretching vibrations of the CH2 groups of lipid aliphatic chains. The temperature values of chain-melting phase transition (Tm) of anesthetic-mixed dipalmitoylphosphatidylcholine (DPPC)/cholesterol and dipalmitoylphosphatidylglycerol (DPPG)/cholesterol membranes, which were obtained from the PCA analysis, were compared with cholesterol-free DPPC and DPPG bilayers mixed with inhalation anesthetics.

  13. Consistency of patterns in concentration‐discharge plots

    USGS Publications Warehouse

    Chanat, Jeffrey G.; Rice, Karen C.; Hornberger, George M.

    2002-01-01

    Concentration‐discharge (c‐Q) plots have been used to infer how flow components such as event water, soil water, and groundwater mix to produce the observed episodic hydrochemical response of small catchments. Because c‐Q plots are based only on observed streamflow and solute concentration, their interpretation requires assumptions about the relative volume, hydrograph timing, and solute concentration of the streamflow end‐members. Evans and Davies [1998] present a taxonomy of c‐Q loops resulting from three‐component conservative mixing. Their analysis, based on a fixed template of end‐member hydrograph volume, timing, and concentration, suggests a unique relationship between c‐Q loop form and the rank order of end‐member concentrations. Many catchments exhibit variability in component contributions to storm flow in response to antecedent conditions or rainfall characteristics, but the effects of such variation on c‐Q relationships have not been studied systematically. Starting with a “baseline” condition similar to that assumed by Evans and Davies [1998], we use a simple computer model to characterize the variability in c‐Q plot patterns resulting from variation in end‐member volume, timing, and solute concentration. Variability in these three factors can result in more than one c‐Q loop shape for a given rank order of end‐member solute concentrations. The number of resulting hysteresis patterns and their relative frequency depends on the rank order of solute concentrations and on their separation in absolute value. In ambiguous cases the c‐Q loop shape is determined by the relative “prominence” of the event water versus soil water components. This “prominence” is broadly defined as a capacity to influence the total streamflow concentration and may result from a combination of end‐member volume, timing, or concentration. The modeling results indicate that plausible hydrological variability in field situations can confound the interpretation of c‐Q plots, even when fundamental end‐member mixing assumptions are satisfied.

  14. Anisotropic phase-mixing in homogeneous turbulence in a rapidly rotating or in a strongly stratified fluid: An analytical study

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2007-05-01

    Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time single-point energy components, using linear theory. In addition to potential energy, turbulent kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in terms of vertical and horizontal components. Since the axial symmetry around the direction n (which bears both the system angular velocity and the mean density gradient) is consistent with basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case. A general way to construct axisymmetric initial data is used, with a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal energy components. The expansion involves Legendre polynomials of arbitrary order, P2n0(cosθ), (n=0,1,2,…,N0), in which the term [cosθ=(k•n)/∣k∣] characterizes the anisotropy in k-wavespace; two sets of parameters, β2n(e) and β2n(z), separately generate the directional anisotropy and the polarization anisotropy. In the rotating case, the phase mixing results in damping the polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The envelope of these oscillations decay with time like (ft)-2 (f being the Coriolis parameter), whereas those for the vertical and horizontal components decay like (ft)-3. The long-time limit of the ratio of horizontal component to vertical one depends only on β2(e), which is eventually related to a classical component in structure-based modeling, independently of the degree of the expansion of the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance in terms of potential and poloidal (or kinetic gravity wave) energy are investigated. The latter unbalance is characterized by a ratio χ /2, assuming initial proportionality between the kinetic energy spectrum and the potential energy one. The phase mixing yields asymptotic equipartition in terms of poloidal and potential energy components, and analytical solutions are found in terms of Weber functions. At large time, the damped oscillations for poloidal, potential and vertical components decay with time like (Nt)-1/2 (N is the buoyancy frequency), while the oscillations for the horizontal component decay with time like (Nt)-3/2. The long-time limit of the ratio of horizontal component to vertical one depends only on the parameters χ, β2(e), β0(z), β2(z), and β4(z).

  15. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  16. Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM

    NASA Astrophysics Data System (ADS)

    Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei

    2018-02-01

    To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.

  17. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  18. Distillation Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange,Kevin E.; Conger, Bruce; Anderson, Molly

    2010-01-01

    Gravity-based distillation methods may be applied to the purification of wastewater on the lunar base. These solutions to water processing are robust physical separation techniques, which may be more advantageous than many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams.

  19. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model.

    PubMed

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-08-16

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.

  20. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model

    PubMed Central

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-01-01

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target. PMID:27527065

  1. Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries

    USGS Publications Warehouse

    Koseff, Jeffrey R.; Holen, Jacqueline K.; Monismith, Stephen G.; Cloern, James E.

    1993-01-01

    Coastal ocean waters tend to have very different patterns of phytoplankton biomass variability from the open ocean, and the connections between physical variability and phytoplankton bloom dynamics are less well established for these shallow systems. Predictions of biological responses to physical variability in these environments is inherently difficult because the recurrent seasonal patterns of mixing are complicated by aperiodic fluctuations in river discharge and the high-frequency components of tidal variability. We might expect, then, less predictable and more complex bloom dynamics in these shallow coastal systems compared with the open ocean. Given this complex and dynamic physical environment, can we develop a quantitative framework to define the physical regimes necessary for bloom inception, and can we identify the important mechanisms of physical-biological coupling that lead to the initiation and termination of blooms in estuaries and shallow coastal waters? Numerical modeling provides one approach to address these questions. Here we present results of simulation experiments with a refined version of Cloern's (1991) model in which mixing processes are treated more realistically to reflect the dynamic nature of turbulence generation in estuaries. We investigated several simple models for the turbulent mixing coefficient. We found that the addition of diurnal tidal variation to Cloern's model greatly reduces biomass growth indicating that variations of mixing on the time scale of hours are crucial. Furthermore, we found that for conditions representative of South San Francisco Bay, numerical simulations only allowed for bloom development when the water column was stratified and when minimal mixing was prescribed in the upper layer. Stratification, however, itself is not sufficient to ensure that a bloom will develop: minimal wind stirring is a further prerequisite to bloom development in shallow turbid estuaries with abundant populations of benthic suspension feeders.

  2. Predictions and Studies with a One-Dimensional Ice/Ocean Model.

    DTIC Science & Technology

    1987-04-01

    Description of the model c. Initial conditions and forcing Two different test cases are used for model valiCa- tion and scientific studies. One is the...the density of ice (0.92 g/cm 3), AS/J(O0 is and y-components of the current velocity, w the z-com- the salinity difference per mill, assumed to be 30... different treatments of the mixed layer on the Semtner, quickly develops in the CML simulation. In growth and decay of ice. Henceforth, Semtner’s model

  3. Kelvin-Helmholtz instability of counter-rotating discs

    NASA Astrophysics Data System (ADS)

    Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.

    2015-01-01

    Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.

  4. Strength and deformation characteristics of pavements

    NASA Astrophysics Data System (ADS)

    Shook, J. F.; Kallas, B. F.; McCullough, B. F.; Taute, A.; Rada, G.; Witczak, M. W.; Heisey, J. S.; Stokoe, K. H.; Meyer, A. H.; Huffman, M. S.

    The Colorado experimental base project was a full-scale field experment constructed with various thicknesses of two full depth hot mix sand asphalt beans, one full depth asphalt concrete base, and one thickness of a standard design with untreated base and subbase layers. Relative thicknesses of one asphalt concrete base, two hot mix sand asphalt bases, and one standard design with untreated base and subbase required to give an equal level of pavement performance were determined. Certain measured properties of the pavement and the pavement components were related to observed levels of performance by using both empirical and theoretical models for pavement behavior.

  5. The mixing effects for real gases and their mixtures

    NASA Astrophysics Data System (ADS)

    Gong, M. Q.; Luo, E. C.; Wu, J. F.

    2004-10-01

    The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.

  6. Immersion freezing of internally and externally mixed mineral dust species analyzed by stochastic and deterministic models

    NASA Astrophysics Data System (ADS)

    Wong, B.; Kilthau, W.; Knopf, D. A.

    2017-12-01

    Immersion freezing is recognized as the most important ice crystal formation process in mixed-phase cloud environments. It is well established that mineral dust species can act as efficient ice nucleating particles. Previous research has focused on determination of the ice nucleation propensity of individual mineral dust species. In this study, the focus is placed on how different mineral dust species such as illite, kaolinite and feldspar, initiate freezing of water droplets when present in internal and external mixtures. The frozen fraction data for single and multicomponent mineral dust droplet mixtures are recorded under identical cooling rates. Additionally, the time dependence of freezing is explored. Externally and internally mixed mineral dust droplet samples are exposed to constant temperatures (isothermal freezing experiments) and frozen fraction data is recorded based on time intervals. Analyses of single and multicomponent mineral dust droplet samples include different stochastic and deterministic models such as the derivation of the heterogeneous ice nucleation rate coefficient (J­­het), the single contact angle (α) description, the α-PDF model, active sites representation, and the deterministic model. Parameter sets derived from freezing data of single component mineral dust samples are evaluated for prediction of cooling rate dependent and isothermal freezing of multicomponent externally or internally mixed mineral dust samples. The atmospheric implications of our findings are discussed.

  7. MAX UnMix: A web application for unmixing magnetic coercivity distributions

    NASA Astrophysics Data System (ADS)

    Maxbauer, Daniel P.; Feinberg, Joshua M.; Fox, David L.

    2016-10-01

    It is common in the fields of rock and environmental magnetism to unmix magnetic mineral components using statistical methods that decompose various types of magnetization curves (e.g., acquisition, demagnetization, or backfield). A number of programs have been developed over the past decade that are frequently used by the rock magnetic community, however many of these programs are either outdated or have obstacles inhibiting their usability. MAX UnMix is a web application (available online at http://www.irm.umn.edu/maxunmix), built using the shiny package for R studio, that can be used for unmixing coercivity distributions derived from magnetization curves. Here, we describe in detail the statistical model underpinning the MAX UnMix web application and discuss the programs functionality. MAX UnMix is an improvement over previous unmixing programs in that it is designed to be user friendly, runs as an independent website, and is platform independent.

  8. Strategic analysis for safeguards systems: a feasibility study. Volume 2. Appendix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, A J

    1984-12-01

    This appendix provides detailed information regarding game theory (strategic analysis) and its potential role in safeguards to supplement the main body of this report. In particualr, it includes an extensive, though not comprehensive review of literature on game theory and on other topics that relate to the formulation of a game-theoretic model (e.g. the payoff functions). The appendix describes the basic form and components of game theory models, and the solvability of various models. It then discusses three basic issues related to the use of strategic analysis in material accounting: (1) its understandability; (2) its viability in regulatory settings; andmore » (3) difficulties in the use of mixed strategies. Each of the components of a game theoretic model are then discussed and related to the present context.« less

  9. "The stone which the builders rejected...": Delay of reinforcement and response rate on fixed-interval and related schedules.

    PubMed

    Wearden, J H; Lejeune, Helga

    2006-02-28

    The article deals with response rates (mainly running and peak or terminal rates) on simple and on some mixed-FI schedules and explores the idea that these rates are determined by the average delay of reinforcement for responses occurring during the response periods that the schedules generate. The effects of reinforcement delay are assumed to be mediated by a hyperbolic delay of reinforcement gradient. The account predicts that (a) running rates on simple FI schedules should increase with increasing rate of reinforcement, in a manner close to that required by Herrnstein's equation, (b) improving temporal control during acquisition should be associated with increasing running rates, (c) two-valued mixed-FI schedules with equiprobable components should produce complex results, with peak rates sometimes being higher on the longer component schedule, and (d) that effects of reinforcement probability on mixed-FI should affect the response rate at the time of the shorter component only. All these predictions were confirmed by data, although effects in some experiments remain outside the scope of the model. In general, delay of reinforcement as a determinant of response rate on FI and related schedules (rather than temporal control on such schedules) seems a useful starting point for a more thorough analysis of some neglected questions about performance on FI and related schedules.

  10. The Abundance and Isotopic Signature of Chlorine in UrKREEP: Implications for the Early Degassing of the Moon

    NASA Technical Reports Server (NTRS)

    Boyce, J. W.; Kanee, S.; McCubbin, F. M.; Barnes, J. J.; Bricker, H.; Treiman. A. H.

    2017-01-01

    Initally, the elevated delta-37 Cl values of lunar materials were attributed to volcanic degassing[1]. However, chlorine isotope ratios of apatite in lunarmare basalts appear to reflect mixing between two reservoirs.One component, with elevated delta-37 Cl is greater than or equal to + (25%) ([2] may represent the urKREEP--the final product of the crystallization of the lunar magma ocean. The second component, with delta-37 Cl is approximately (0%), is inferred to represent either a mare basalt reservoir or meteoritic materials. The idea that high delta-37 Cl is related to urKREEP suggest a global enrichment that occurred earlier in the lunar history [2,3]. Here we test this urKREEP-mixing hypothesis more rigorously, and report the observed limits of the model. We then use the results to calculate the Cl content of the urKREEP component and use those results to update estimates of the bulk Cl content of the Moon. This allows us to speculate on the mechanisms of loss of Cl from the lunar magma ocean.

  11. A componential model of human interaction with graphs: 1. Linear regression modeling

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert

    1994-01-01

    Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.

  12. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices

    PubMed Central

    Meyer, Karin; Kirkpatrick, Mark

    2005-01-01

    Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566

  13. Customer Service Analysis of Air Combat Command Vehicle Maintenance Support

    DTIC Science & Technology

    1993-09-01

    the survey, the researchers categorized the services or variables into marketing mix components: product, price, promotion, and customer service...comparing and analyzing the variables identified in the previous three phases to determine a strategic marketing mix (46:9). After analyzing the data...service/physical distribution. Additionally, they found that customer service/physical distribution was an integral component of the marketing mix , and

  14. Thermal fluids for CSP systems: Alkaline nitrates/nitrites thermodynamics modelling method

    NASA Astrophysics Data System (ADS)

    Tizzoni, A. C.; Sau, S.; Corsaro, N.; Giaconia, A.; D'Ottavi, C.; Licoccia, S.

    2016-05-01

    Molten salt (MS) mixtures are used for the transport (HTF-heat transfer fluid) and storage of heat (HSM-heat storage material) in Concentration Solar Plants (CSP). In general, alkaline and earth-alkaline nitrate/nitrite mixtures are employed. Along with its upper stability temperature, the melting point (liquidus point) of a MS mixture is one of the main parameters which defines its usefulness as a HTF and HSM medium. As a result, we would like to develop a predictive model which will allow us to forecast freezing points for different MS mixture compositions; thus circumventing the need to determine experimentally the phase diagram for each MS mixture. To model ternary/quaternary phase diagram, parameters for the binary subsystems are to be determined, which is the purpose of the concerned work. In a binary system with components A and B, in phase equilibrium conditions (e.g. liquid and solid) the chemical potentials (partial molar Gibbs energy) for each component in each phase are equal. For an ideal solution it is possible to calculate the mixing (A+B) Gibbs energy:ΔG = ΔH - TΔS = RT(xAlnxA + xBlnxB) In case of non-ideal solid/liquid mixtures, such as the nitrates/nitrites compositions investigated in this work, the actual value will differ from the ideal one by an amount defined as the "mixing" (mix) Gibbs free energy. If the resulting mixtures is assumed, as indicated in the previous literature, to follow a "regular solution" model, where all the non-ideality is considered included in the enthalpy of mixing value and considering, for instance, the A component:Δ G ≡0 =(Δ HA-T Δ SA)+(ΔH¯ m i x AL-T ΔS¯ m i x AL)-(ΔH¯ m i x AS-T ΔS¯ m i x AS)where the molar partial amounts can be calculated from the total value by the Gibbs Duhem equation: (ΔH¯m i x AL=ΔHm i x-XB Ld/Δ Hm i x d XB L ) L;(ΔH¯m i x AS=ΔHm i x-XB Sd/Δ Hm i x d XB S ) S and, in general, it is possible to express the mixing enthalpy for solids and liquids as a function of the mol fraction: Δ HL m i x=XA LXB L(a1+b1XA L+c1XA LXB L),Δ HS m i x=XA SXB S(a2+b2XA S+c2XA SXB S) From the latter expressions it can be possible to modelize the phase diagram of a binary mixtures by using the a,b and c couples of parameters. To calculate those coefficients a method commonly employed in literature is to measure the mixing enthalpies, or to use one reported of the enthalpy of mixing (for instance for the liquid state) and calculate the other one using the phase diagram points. A direct ΔHmix (in solid or liquid phase) measurement can be difficult to carry out using common DSC equipment generally present in research laboratories. In fact, such determinations can be, in principle, performed, but the obtained data will be affected by large experimental errors. On the other hand, it is possible to obtain values with great precision regarding the algebraic sum of mixing enthalpies and the phase diagram trend. For this reason, only the phase diagrams are proposed to be used to calculate a, b, c parameters, and, subsequently, the total (liquid-solid algebraic sum) enthalpy of mixing will be employed to verify their validity. At this aim, a C++ code was assessed and used. Three binary mixtures were considered by combining NaNO3, KNO3 and NaNO2.

  15. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  16. Galactic cosmic ray transport methods and radiation quality issues

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Shinn, J. L.

    1992-01-01

    An overview of galactic cosmic ray (GCR) interaction and transport methods, as implemented in the Langley Research Center GCR transport code, is presented. Representative results for solar minimum, exo-magnetospheric GCR dose equivalents in water are presented on a component by component basis for various thicknesses of aluminum shielding. The impact of proposed changes to the currently used quality factors on exposure estimates and shielding requirements are quantified. Using the cellular track model of Katz, estimates of relative biological effectiveness (RBE) for the mixed GCR radiation fields are also made.

  17. Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland

    NASA Astrophysics Data System (ADS)

    Berhanu, Tesfaye A.; Szidat, Sönke; Brunner, Dominik; Satar, Ece; Schanda, Rüdiger; Nyfeler, Peter; Battaglia, Michael; Steinbacher, Martin; Hammer, Samuel; Leuenberger, Markus

    2017-09-01

    Fossil fuel CO2 (CO2ff) is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Since October 2012, we have been continuously measuring the mixing ratios of CO, CO2, CH4, and H2O at five different heights at the Beromünster tall tower, Switzerland. Air samples for radiocarbon (Δ14CO2) analysis have also been collected from the highest sampling inlet (212.5 m) of the tower on a biweekly basis. A correction was applied for 14CO2 emissions from nearby nuclear power plants (NPPs), which have been simulated with the Lagrangian transport model FLEXPART-COSMO. The 14CO2 emissions from NPPs offset the depletion in 14C by fossil fuel emissions, resulting in an underestimation of the fossil fuel component in atmospheric CO2 by about 16 %. An average observed ratio (RCO) of 13.4 ± 1.3 mmol mol-1 was calculated from the enhancements in CO mixing ratios relative to the clean-air reference site Jungfraujoch (ΔCO) and the radiocarbon-based fossil fuel CO2 mole fractions. The wintertime RCO estimate of 12.5 ± 3.3 is about 30 % higher than the wintertime ratio between in situ measured CO and CO2 enhancements at Beromünster over the Jungfraujoch background (8.7 mmol mol-1) corrected for non-fossil contributions due to strong biospheric contribution despite the strong correlation between ΔCO and ΔCO2 in winter. By combining the ratio derived using the radiocarbon measurements and the in situ measured CO mixing ratios, a high-resolution time series of CO2ff was calculated exhibiting a clear seasonality driven by seasonal variability in emissions and vertical mixing. By subtracting the fossil fuel component and the large-scale background, we have determined the regional biospheric CO2 component that is characterized by seasonal variations ranging between -15 and +30 ppm. A pronounced diurnal variation was observed during summer modulated by biospheric exchange and vertical mixing, while no consistent pattern was found during winter.

  18. What is the existing evidence supporting the efficacy of compression bandage systems containing both elastic and inelastic components (mixed-component systems)? A systematic review.

    PubMed

    Welsh, Lynn

    2017-05-01

    To analyse current evidence on the efficacy of bandage systems containing both elastic and inelastic components (mixed-component systems). International consensus on the efficacy of types of compression systems is difficult to achieve; however, mixed-component systems are being promoted as combining the best properties of both elastic and inelastic bandage systems and increasingly being used to treat venous leg ulcers in practice. A systematic literature review. Search terms such as venous leg ulcer, varicose ulcer, leg ulcer, compression, bandage, elastic, inelastic, short stretch, healing rate, interface pressure, mixed component, two-layer, four-layer and multi-layer were used in database and hand searches in several combinations. Limits were set for years 2005-March 2015 and English-language publications. A total of 475 studies were identified at initial search, and following elimination from abstract and title, this was reduced to 7. A further study was identified on Google Scholar, bringing the final number of studies fitting inclusion criteria to 8. The following subgroups relating to outcomes of efficacy were identified: ulcer healing, maintenance of interface pressure, slippage, ease of application and patient quality of life. Mixed-component systems were found to have comparable ulcer healing rates to alternative compression systems and be easy to apply; have similar abilities to maintain pressure as four-layer bandages and better abilities than short-stretch bandages; have less slippage than alternative systems; and to be significantly associated with several favourable quality of life outcomes. Clinician skill in bandage application was an uncontrolled variable in all eight papers included in the review, which may limit reliability of findings. This review synthesises existing evidence on the efficacy of mixed-component systems and encourages clinicians to regard them as an effective alternative to purely elastic or inelastic compression systems. Additionally, it highlights the importance of clinician skill in bandage application as a crucial determinant of effective compression. © 2016 John Wiley & Sons Ltd.

  19. The Diagnosis and application of a convective vorticity vector associated with convective systems

    NASA Astrophysics Data System (ADS)

    Gao, S.; Zhou, Y.; Tao, W.

    2005-05-01

    Although dry/moist potential vorticity is a very useful and powerful physical quantity in the large scale dynamics, it is not a quite ideal dynamical tool for the study of convective systems or severe storms. A new convective vorticity vector (CVV) is introduced in this study to identify the development of convective systems or severe storms. The daily Aviation (AVN) Model Data is used to diagnose the distribution of the CVV associated with rain storms occurred in the period of Meiyu in 1998. The results have clearly demonstrated that the CVV is an effective vector for indicating the convective actions along the Meiyu front. The CVV also is used to diagnose a 2-D cloud-resolving simulation data associated with 2-D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the Tropical cean-Global tmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2-D x-z frame. Analysis of zonally averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  20. Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission

    PubMed Central

    Perkins, T. Alex; Scott, Thomas W.; Le Menach, Arnaud; Smith, David L.

    2013-01-01

    The Ross-Macdonald model has dominated theory for mosquito-borne pathogen transmission dynamics and control for over a century. The model, like many other basic population models, makes the mathematically convenient assumption that populations are well mixed; i.e., that each mosquito is equally likely to bite any vertebrate host. This assumption raises questions about the validity and utility of current theory because it is in conflict with preponderant empirical evidence that transmission is heterogeneous. Here, we propose a new dynamic framework that is realistic enough to describe biological causes of heterogeneous transmission of mosquito-borne pathogens of humans, yet tractable enough to provide a basis for developing and improving general theory. The framework is based on the ecological context of mosquito blood meals and the fine-scale movements of individual mosquitoes and human hosts that give rise to heterogeneous transmission. Using this framework, we describe pathogen dispersion in terms of individual-level analogues of two classical quantities: vectorial capacity and the basic reproductive number, . Importantly, this framework explicitly accounts for three key components of overall heterogeneity in transmission: heterogeneous exposure, poor mixing, and finite host numbers. Using these tools, we propose two ways of characterizing the spatial scales of transmission—pathogen dispersion kernels and the evenness of mixing across scales of aggregation—and demonstrate the consequences of a model's choice of spatial scale for epidemic dynamics and for estimation of , both by a priori model formulas and by inference of the force of infection from time-series data. PMID:24348223

  1. WT1 immunoreactivity in breast carcinoma: selective expression in pure and mixed mucinous subtypes.

    PubMed

    Domfeh, Akosua B; Carley, AnnaMarie L; Striebel, Joan M; Karabakhtsian, Rouzan G; Florea, Anca V; McManus, Kim; Beriwal, Sushil; Bhargava, Rohit

    2008-10-01

    Current literature suggests that strong WT1 expression in a carcinoma of unknown origin virtually excludes a breast primary. Our previous pilot study on WT1 expression in breast carcinomas has shown WT1 expression in approximately 10% of carcinomas that show mixed micropapillary and mucinous morphology (Mod Pathol 2007;20(Suppl 2):38A). To definitively assess as to what subtype of breast carcinoma might express WT1 protein, we examined 153 cases of invasive breast carcinomas. These consisted of 63 consecutive carcinomas (contained 1 mucinous tumor), 20 cases with micropapillary morphology (12 pure and 8 mixed), 6 micropapillary 'mimics' (ductal no special type carcinomas with retraction artifacts), 33 pure mucinous carcinomas and 31 mixed mucinous carcinomas (mucinous mixed with other morphologic types). Overall, WT1 expression was identified in 33 carcinomas, that is, 22 of 34 (65%) pure mucinous carcinomas and in 11 of 33 (33%) mixed mucinous carcinomas. The non-mucinous component in these 11 mixed mucinous carcinomas was either a ductal no special type carcinoma (8 cases) or a micropapillary component (3 cases). WT1 expression level was similar in both the mucinous and the non-mucinous components. The degree of WT1 expression was generally weak to moderate (>90% cases) and rarely strong (<10% cases). None of the breast carcinoma subtype unassociated with mucinous component showed WT1 expression.

  2. Assessing and Upgrading Ocean Mixing for the Study of Climate Change

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Fells, J.; Lindo, F.; Tulsee, V.; Canuto, V.; Cheng, Y.; Dubovikov, M. S.; Leboissetier, A.

    2016-12-01

    Climate is critical. Climate variability affects us all; Climate Change is a burning issue. Droughts, floods, other extreme events, and Global Warming's effects on these and problems such as sea-level rise and ecosystem disruption threaten lives. Citizens must be informed to make decisions concerning climate such as "business as usual" vs. mitigating emissions to keep warming within bounds. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. To make useful predictions we must realistically model each component of the climate system, including the ocean, whose critical role includes transporting&storing heat and dissolved CO2. We need physically based parameterizations of key ocean processes that can't be put explicitly in a global climate model, e.g. vertical&lateral mixing. The NASA-GISS turbulence group uses theory to model mixing including: 1) a comprehensive scheme for small scale vertical mixing, including convection&shear, internal waves & double-diffusion, and bottom tides 2) a new parameterization for the lateral&vertical mixing by mesoscale eddies. For better understanding we write our own programs. To assess the modelling MATLAB programs visualize and calculate statistics, including means, standard deviations and correlations, on NASA-GISS OGCM output with different mixing schemes and help us study drift from observations. We also try to upgrade the schemes, e.g. the bottom tidal mixing parameterizations' roughness, calculated from high resolution topographic data using Gaussian weighting functions with cut-offs. We study the effects of their parameters to improve them. A FORTRAN program extracts topography data subsets of manageable size for a MATLAB program, tested on idealized cases, to visualize&calculate roughness on. Students are introduced to modeling a complex system, gain a deeper appreciation of climate science, programming skills and familiarity with MATLAB, while furthering climate science by improving our mixing schemes. We are incorporating climate research into our college curriculum. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, an urban minority serving institution in central Brooklyn. Supported by NSF Award AGS-1359293.

  3. Ovarian mixed germ cell tumor with yolk sac and teratomatous components in a dog.

    PubMed

    Robinson, Nicholas A; Manivel, J Carlos; Olson, Erik J

    2013-05-01

    Mixed germ cell tumors of the ovary have rarely been reported in veterinary species. A 3-year-old intact female Labrador Retriever dog was presented for lethargy, abdominal distention, and a midabdominal mass. An exploratory laparotomy revealed a large (23 cm in diameter) left ovarian tumor and multiple small (2-3 cm in diameter) pale tan masses on the peritoneum and abdominal surface of the diaphragm. Histological examination of the left ovary revealed a mixed germ cell tumor with a yolk sac component with rare Schiller-Duval bodies and a teratomatous component comprised primarily of neural differentiation. The abdominal metastases were solely comprised of the yolk sac component. The yolk sac component was diffusely immunopositive for cytokeratin with scattered cells reactive for α-fetoprotein and placental alkaline phosphatase. Within the teratomatous component, the neuropil was diffusely immunopositive for S100, neuron-specific enolase, and neurofilaments with a few glial fibrillary acidic protein immunopositive cells. Ovarian germ cell tumors may be pure and consist of only 1 germ cell element or may be mixed and include more than 1 germ cell element, such as teratoma and yolk sac tumor.

  4. The Development of Talent in Young Adults with Williams Syndrome: An Exploratory Study of Ecological Influences

    ERIC Educational Resources Information Center

    Milne, Harry

    2004-01-01

    This mixed methods study employed comparative, case-study methodology to explore influences affecting the development of musical interests and achievements in eight female and eight male young adults with Williams Syndrome. Components of the "Schoolwide Enrichment Model"; (Renzulli & Reis, 1997b) were used to guide the study. Caregivers completed…

  5. Internal Consistency in Components of International Management/International Business Syllabi: Roadmaps with Mixed Messages

    ERIC Educational Resources Information Center

    Veliyath, Rajaram; Adams, Janet S.

    2005-01-01

    The course syllabus is a contract between instructor and students, a schedule of course assignments and activities, and a roadmap delineating objectives and checkpoints in the course. It is also a planning and reference tool for both students and instructor, and it models professors' expectations for their students. This study investigated whether…

  6. Components of a Flipped Classroom Influencing Student Success in an Undergraduate Business Statistics Course

    ERIC Educational Resources Information Center

    Shinaberger, Lee

    2017-01-01

    An instructor transformed an undergraduate business statistics course over 10 semesters from a traditional lecture course to a flipped classroom course. The researcher used a linear mixed model to explore the effectiveness of the evolution on student success as measured by exam performance. The results provide guidance to successfully implement a…

  7. Mixed and Ambiguous Endometrial Carcinomas: A Heterogenous Group of Tumors With Different Clinicopathologic and Molecular Genetic Features.

    PubMed

    Espinosa, Iñigo; D'Angelo, Emanuela; Palacios, José; Prat, Jaime

    2016-07-01

    Besides endometrioid, serous, and clear cell carcinomas, there are endometrial carcinomas exhibiting mixed and ambiguous morphologic features. We have analyzed the immunophenotype (p53, p16, β-catenin, ER, HNF-1B, MLH1, and Ki-67) and mutational status (PTEN, KRAS, PIK3CA, and POLE) of 7 mixed carcinomas and 13 ambiguous carcinomas, all of them classified initially as mixed carcinomas. Only 2 of the 7 (28%) mixed carcinomas showed different immunophenotypes in different components. All but 2 tumors (5/7, 71%) overexpressed p53 and p16 and were negative for ER. Both carcinomas (2/7, 28%) showed a prominent micropapillary component that resembled an ovarian low-grade serous carcinoma and merged with villoglandular endometrioid carcinoma. The ambiguous carcinomas exhibited glandular architecture, high nuclear grade, and overlapping features of endometrioid and serous carcinomas. All tumors overexpressed p53 and p16, and the majority of cases (12/13, 92%) were negative for ER. KRAS mutations were identified in 3 of 7 (42%) mixed carcinomas, including the 2 cases with a "low-grade" serous-like component. PIK3CA mutations occurred in 2 (2/13, 15%) ambiguous carcinomas and PTEN mutations in 1 (1/7, 14%) mixed and 1 (1/13, 8%) ambiguous carcinoma. POLE exonuclease domain mutations were encountered in a case of mixed undifferentiated and well-differentiated (dedifferentiated) carcinoma. Two of the 7 (29%) mixed endometrial carcinomas and 5 of the 13 (38%) ambiguous carcinomas had extended beyond the pelvis (stages III and IV). Two of the 7 (29%) patients with mixed endometrial carcinoma and 6 of 12 (50%) patients with ambiguous endometrial carcinoma were alive with disease or had died of tumor. Our results show that, biologically, many so-called mixed carcinomas represent serous carcinomas with ambiguous morphology. Our series include 2 true mixed endometrial carcinomas with a "low-grade serous"-like component, microcystic, elongated, or fragmented features, KRAS mutations, and aggressive behavior.

  8. Mixed models approaches for joint modeling of different types of responses.

    PubMed

    Ivanova, Anna; Molenberghs, Geert; Verbeke, Geert

    2016-01-01

    In many biomedical studies, one jointly collects longitudinal continuous, binary, and survival outcomes, possibly with some observations missing. Random-effects models, sometimes called shared-parameter models or frailty models, received a lot of attention. In such models, the corresponding variance components can be employed to capture the association between the various sequences. In some cases, random effects are considered common to various sequences, perhaps up to a scaling factor; in others, there are different but correlated random effects. Even though a variety of data types has been considered in the literature, less attention has been devoted to ordinal data. For univariate longitudinal or hierarchical data, the proportional odds mixed model (POMM) is an instance of the generalized linear mixed model (GLMM; Breslow and Clayton, 1993). Ordinal data are conveniently replaced by a parsimonious set of dummies, which in the longitudinal setting leads to a repeated set of dummies. When ordinal longitudinal data are part of a joint model, the complexity increases further. This is the setting considered in this paper. We formulate a random-effects based model that, in addition, allows for overdispersion. Using two case studies, it is shown that the combination of random effects to capture association with further correction for overdispersion can improve the model's fit considerably and that the resulting models allow to answer research questions that could not be addressed otherwise. Parameters can be estimated in a fairly straightforward way, using the SAS procedure NLMIXED.

  9. Constitutive Behavior of Mixed Sn-Pb/Sn-3.0Ag-0.5Cu Solder Alloys

    NASA Astrophysics Data System (ADS)

    Tucker, J. P.; Chan, D. K.; Subbarayan, G.; Handwerker, C. A.

    2012-03-01

    During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of Sn-Pb and Sn-Ag-Cu often result from either mixed assemblies or rework. Comprehensive characterization of the mechanical behavior of these mixed solder alloys resulting in a deformationally complete constitutive description is necessary to predict failure of mixed alloy solder joints. Three alloys with 1 wt.%, 5 wt.%, and 20 wt.% Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn-37Pb components mixed with Sn-3.0Ag-0.5Cu. Creep and displacement-controlled tests were performed on specially designed assemblies at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. The observed changes in creep and tensile behavior with Pb additions were related to phase equilibria and microstructure differences observed through differential scanning calorimetric and scanning electron microscopic cross-sectional analysis. As Pb content increased, the steady-state creep strain rates increased, and primary creep decreased. Even 1 wt.% Pb addition was sufficient to induce substantially large creep strains relative to the Sn-3.0Ag-0.5Cu alloy. We describe rate-dependent constitutive models for Pb-contaminated Sn-Ag-Cu solder alloys, ranging from the traditional time-hardening creep model to the viscoplastic Anand model. We illustrate the utility of these constitutive models by examining the inelastic response of a chip-scale package (CSP) under thermomechanical loading through finite-element analysis. The models predict that, as Pb content increases, total inelastic dissipation decreases.

  10. Item selection via Bayesian IRT models.

    PubMed

    Arima, Serena

    2015-02-10

    With reference to a questionnaire that aimed to assess the quality of life for dysarthric speakers, we investigate the usefulness of a model-based procedure for reducing the number of items. We propose a mixed cumulative logit model, which is known in the psychometrics literature as the graded response model: responses to different items are modelled as a function of individual latent traits and as a function of item characteristics, such as their difficulty and their discrimination power. We jointly model the discrimination and the difficulty parameters by using a k-component mixture of normal distributions. Mixture components correspond to disjoint groups of items. Items that belong to the same groups can be considered equivalent in terms of both difficulty and discrimination power. According to decision criteria, we select a subset of items such that the reduced questionnaire is able to provide the same information that the complete questionnaire provides. The model is estimated by using a Bayesian approach, and the choice of the number of mixture components is justified according to information criteria. We illustrate the proposed approach on the basis of data that are collected for 104 dysarthric patients by local health authorities in Lecce and in Milan. Copyright © 2014 John Wiley & Sons, Ltd.

  11. The Use of Mixed Methods for Therapeutic Massage Research

    PubMed Central

    Porcino, Antony Joseph; Verhoef, Marja J.

    2010-01-01

    Mixed methods research is the integration of quantitative and qualitative components in a research project. Whether you are reading or designing a mixed methods research project, it is important to be familiar with both qualitative and quantitative research methods and the specific purposes for which they are brought together in a study: triangulation, complementarity, expansion, initiation, or development. In addition, decisions need to be made about the sequencing and the priority or importance of each qualitative and quantitative component relative to the other components, and the point or points at which the various qualitative and quantitative components will be integrated. Mixed methods research is increasingly being recognized for its ability to bring multiple points of view to a research project, taking advantage of the strengths of each of the quantitative and qualitative components to explain or resolve complex phenomena or results. This ability becomes critical when complex healing systems such as therapeutic massage are being studied. Complex healing systems may have multiple physiologic effects, often reflected in changes throughout the patient’s body. Additionally, the patient’s experience of the treatment may be an important outcome. PMID:21589698

  12. Importance of the mixing state for ice nucleating capabilities of individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Worringen, Annette; Benker, Nathalie; Weinbruch, Stephan

    2010-05-01

    The effects of aerosol particles on heterogeneous ice formation are currently insufficiently understood. Modelling studies have shown that the type and quantity of atmospheric aerosol particles acting as ice nuclei (IN) can influence ice cloud microphysical and radiative properties as well as their precipitation efficiency. Therefore, the physicochemical identification of IN and a quantitative description of the ice nucleation processes are crucial for a better understanding of formation, life cycles, and the optical properties of clouds as well as for numerical precipitation forecast. During the CLACE 5 campaign in 2006 at the high alpine research station Jungfraujoch (3580 m asl), Switzerland, the physicochemical parameters of IN within mixed-phase clouds were studied. By the use of special Ice-Counterflow Virtual Impactor, residual particles of small ice nuclei (IN) and the interstitial aerosol fraction were sampled seperately within mixed-phase clouds. The size, morphology, elemental composition and mixing state of more than 7000 particles of selected IN- and interstitial-samples were analyzed by scanning electron microscopy (SEM) combined with energy-dispersive X-ray analysis (EDX). For selected particles, the mineralogical phase composition was determined by transmission electron microscopy. In order to receive detailed information about the mixing state (coatings, agglomerates, heterogeneous inclusions) of the IN- and interstitial-samples, the complete individual particle analysis was performed operator controlled. Four different particle types were identified to act as IN. 1) Carbonaceous particles, which were identified to be a complex mixture of soot (main component), sulfate and nitrate. 2) Complex mixtures of two or more diverse particle groups. In almost 75% of these particles silicates or metal oxides are the main-component. 3) Aluminium oxide particles, which were internally mixed with calcium and sulphate rich material and 4) Pb bearing particles. The high abundance of Pb-bearing particles in the IN-samples (up to 24% by number) was an unexpected finding. Besides a smaller content of larger PbO and PbCl2-particles the main component of the particles within this type are predominantly sea salt, soot or silicates, while Pb in these particles is only present as small (50 - 500 nm) heterogeneous Pb or PbS inclusions. In all 4 particle types identified as IN, the mixing state seems to play an essential role. Therefore it can be concluded that the determination of the main-component of a particle is not sufficient for the prediction of its IN-capability.

  13. Quick mixing of epoxy components

    NASA Technical Reports Server (NTRS)

    Dunlap, D. E., Jr.

    1981-01-01

    Two materials are mixed quickly, thoroughly, and in precise proportion by disposable cartridge. Cartridge mixes components of fast-curing epoxy resins, with no mess, just before they are used. It could also be used in industry and home for caulking, sealing, and patching. Materials to be mixed are initially isolated by cylinder wall within cartridge. Cylinder has vanes, with holes in them, at one end and handle at opposite end. When handle is pulled, grooves on shaft rotate cylinder so that vanes rotate to extrude material A uniformly into material B.

  14. Broadband mixing of $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel

    Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less

  15. Broadband mixing of [Formula: see text]-symmetric and [Formula: see text]-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer.

    PubMed

    Özgün, Ege; Serebryannikov, Andriy E; Ozbay, Ekmel; Soukoulis, Costas M

    2017-11-14

    Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enabling [Formula: see text]-symmetric and [Formula: see text]-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the [Formula: see text]-symmetric and [Formula: see text]-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.

  16. Broadband mixing of $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer

    DOE PAGES

    Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel; ...

    2017-11-14

    Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less

  17. Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.

    2008-12-01

    We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.

  18. Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators.

    PubMed

    Arribas-Gil, Ana; De la Cruz, Rolando; Lebarbier, Emilie; Meza, Cristian

    2015-06-01

    We propose a classification method for longitudinal data. The Bayes classifier is classically used to determine a classification rule where the underlying density in each class needs to be well modeled and estimated. This work is motivated by a real dataset of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. The proposed model, which is a semiparametric linear mixed-effects model (SLMM), is a particular case of the semiparametric nonlinear mixed-effects class of models (SNMM) in which finite dimensional (fixed effects and variance components) and infinite dimensional (an unknown function) parameters have to be estimated. In SNMM's maximum likelihood estimation is performed iteratively alternating parametric and nonparametric procedures. However, if one can make the assumption that the random effects and the unknown function interact in a linear way, more efficient estimation methods can be used. Our contribution is the proposal of a unified estimation procedure based on a penalized EM-type algorithm. The Expectation and Maximization steps are explicit. In this latter step, the unknown function is estimated in a nonparametric fashion using a lasso-type procedure. A simulation study and an application on real data are performed. © 2015, The International Biometric Society.

  19. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    PubMed Central

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.

    2018-01-01

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass—namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production. PMID:29381705

  20. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes.

    PubMed

    Nag, Ambarish; St John, Peter C; Crowley, Michael F; Bomble, Yannick J

    2018-01-01

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass-namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.

  1. Detailed stress tensor measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1996-04-01

    Detailed flow measurements have been made in the vaneless diffuser of a large low-speed centrifugal compressor using hot-wire anemometry. The three time mean velocity components and full stress tensor distributions have been determined on eight measurement plans within the diffuser. High levels of Reynolds stress result in the rapid mixing out of the blade wake. Although high levels of turbulent kinetic energy are found in the passage wake, they are not associated with strong Reynolds stresses and hence the passage wake mixes out only slowly. Low-frequency meandering of the wake position is therefore likely to be responsible for the highmore » kinetic energy levels. The anisotropic nature of the turbulence suggests that Reynolds stress turbulence models are required for CFD modeling of diffuser flows.« less

  2. Instability-related delamination growth in thermoset and thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gillespie, John W., Jr.; Carlsson, Leif A.; Rothschilds, Robert J.

    1988-01-01

    Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The elastic restraint model (ERM), combined with existing FSM modeling of the crack-tip region, yields expressions for the Mode I and Mode II components of the strain energy release rate G(I) and G(II) to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of G(I)/G(II) ratios at the onset of crack growth. A linear mixed-mode crack growth criterion in conjunctuion with the ERM provides good agreement between predicted and measured critical loads for both materials studied.

  3. A Hybrid RANS/LES Approach for Predicting Jet Noise

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2006-01-01

    Hybrid acoustic prediction methods have an important advantage over the current Reynolds averaged Navier-Stokes (RANS) based methods in that they only involve modeling of the relatively universal subscale motion and not the configuration dependent larger scale turbulence. Unfortunately, they are unable to account for the high frequency sound generated by the turbulence in the initial mixing layers. This paper introduces an alternative approach that directly calculates the sound from a hybrid RANS/LES flow model (which can resolve the steep gradients in the initial mixing layers near the nozzle lip) and adopts modeling techniques similar to those used in current RANS based noise prediction methods to determine the unknown sources in the equations for the remaining unresolved components of the sound field. The resulting prediction method would then be intermediate between the current noise prediction codes and previously proposed hybrid noise prediction methods.

  4. [Resolving characteristic of CDOM by excitation-emission matrix spectroscopy combined with parallel factor analysis in the seawater of outer Yangtze Estuary in Autumn in 2010].

    PubMed

    Yan, Li-Hong; Chen, Xue-Jun; Su, Rong-Guo; Han, Xiu-Rong; Zhang, Chuan-Song; Shi, Xiao-Yong

    2013-01-01

    The distribution and estuarine behavior of fluorescent components of chromophoric dissolved organic matter in the seawater of outer Yangtze Estuary were determined by fluorescence excitation emission matrix spectra combined with parallel factor analysis. Six individual fluorescent components were identified by PARAFAC models, including three terrestrial humic-like components C1 [330 nm/390(430) nm], C2 (390 nm/480 nm), C3 (360 nm/440 nm), marine biological production component C5 (300 nm/400 nm) and protein-like components C4 (290 nm/350 nm) and C6 (275 nm/300 nm). The results indicated that C1, C2, and C3 showed a conservative mixing behavior in the whole estuarine region, especially in high-salinity region. And the fluorescence intensity proportion of C1 and C3 decreased with increase of salinity and fluorescence intensity proportion of C2 kept constant with increase of salinity in the whole estuarine region. While C4 showed conservative mixing behavior in low-salinity region and non-conservative mixing behavior in high-salinity region, and fluorescence intensity proportion of C4 increased with increase of salinity. However, C5 and C6 showed a non-conservative mixing behavior and fluorescence intensity proportion increased with increase of salinity in high-salinity region. Significantly spatial difference was recorded for CDOM absorption coefficient in the coastal region and in the open water areas with the highest value in coastal region and the lowest value in the open water areas. The scope of absorption coefficient and absorption slope was higher in coastal region than that in the open water areas. Significantly positive correlations were found between CDOM absorption coefficient and the fluorescence intensities of C1, C2, C3, and C4, but no significant correlation was found between C5 and C6, suggesting that the river inputs contributed to the coastal areas, while CDOM in the open water areas was affected by terrestrial inputs and phytoplankton degradation.

  5. Analytic model for academic research productivity having factors, interactions and implications

    PubMed Central

    2011-01-01

    Financial support is dear in academia and will tighten further. How can the research mission be accomplished within new restraints? A model is presented for evaluating source components of academic research productivity. It comprises six factors: funding; investigator quality; efficiency of the research institution; the research mix of novelty, incremental advancement, and confirmatory studies; analytic accuracy; and passion. Their interactions produce output and patterned influences between factors. Strategies for optimizing output are enabled. PMID:22130145

  6. Electromagnetic waves in a model with Chern-Simons potential.

    PubMed

    Pis'mak, D Yu; Pis'mak, Yu M; Wegner, F J

    2015-07-01

    We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell's law is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.

  7. Deletion Diagnostics for the Generalised Linear Mixed Model with independent random effects

    PubMed Central

    Ganguli, B.; Roy, S. Sen; Naskar, M.; Malloy, E. J.; Eisen, E. A.

    2015-01-01

    The Generalised Linear Mixed Model (GLMM) is widely used for modelling environmental data. However, such data are prone to influential observations which can distort the estimated exposure-response curve particularly in regions of high exposure. Deletion diagnostics for iterative estimation schemes commonly derive the deleted estimates based on a single iteration of the full system holding certain pivotal quantities such as the information matrix to be constant. In this paper, we present an approximate formula for the deleted estimates and Cook’s distance for the GLMM which does not assume that the estimates of variance parameters are unaffected by deletion. The procedure allows the user to calculate standardised DFBETAs for mean as well as variance parameters. In certain cases, such as when using the GLMM as a device for smoothing, such residuals for the variance parameters are interesting in their own right. In general, the procedure leads to deleted estimates of mean parameters which are corrected for the effect of deletion on variance components as estimation of the two sets of parameters is interdependent. The probabilistic behaviour of these residuals is investigated and a simulation based procedure suggested for their standardisation. The method is used to identify influential individuals in an occupational cohort exposed to silica. The results show that failure to conduct post model fitting diagnostics for variance components can lead to erroneous conclusions about the fitted curve and unstable confidence intervals. PMID:26626135

  8. A Comparison of Analytical and Numerical Methods for Modeling Dissolution and Other Reactions in Transport Limited Systems

    NASA Astrophysics Data System (ADS)

    Hochstetler, D. L.; Kitanidis, P. K.

    2009-12-01

    Modeling the transport of reactive species is a computationally demanding problem, especially in complex subsurface media, where it is crucial to improve understanding of geochemical processes and the fate of groundwater contaminants. In most of these systems, reactions are inherently fast and actual rates of transformations are limited by the slower physical transport mechanisms. There have been efforts to reformulate multi-component reactive transport problems into systems that are simpler and less demanding to solve. These reformulations include defining conservative species and decoupling of reactive transport equations so that fewer of them must be solved, leaving mostly conservative equations for transport [e.g., De Simoni et al., 2005; De Simoni et al., 2007; Kräutle and Knabner, 2007; Molins et al., 2004]. Complex and computationally cumbersome numerical codes used to solve such problems have also caused De Simoni et al. [2005] to develop more manageable analytical solutions. Furthermore, this work evaluates reaction rates and has reaffirmed that the mixing rate,▽TuD▽u, where u is a solute concentration and D is the dispersion tensor, as defined by Kitanidis [1994], is an important and sometimes dominant factor in determining reaction rates. Thus, mixing of solutions is often reaction-limiting. We will present results from analytical and computational modeling of multi-component reactive-transport problems. The results have applications to dissolution of solid boundaries (e.g., calcite), dissolution of non-aqueous phase liquids (NAPLs) in separate phases, and mixing of saltwater and freshwater (e.g. saltwater intrusion in coastal carbonate aquifers). We quantify reaction rates, compare numerical and analytical results, and analyze under what circumstances which approach is most effective for a given problem. References: DeSimoni, M., et al. (2005), A procedure for the solution of multicomponent reactive transport problems, Water Resources Research, 41(W11410). DeSimoni, M., et al. (2007), A mixing ratios-based formulation for multicomponent reactive transport, Water Resources Research, 43(W07419). Kitanidis, P. (1994), The Concept of the Dilution Index, Water Resources Research, 30(7), 2011-2026. Kräutle, S., and P. Knabner (2007), A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions Water Resources Research, 43. Molins, S., et al. (2004), A formulation for decoupling components in reactive transport porblems, Water Resources Research, 40, 13.

  9. [Discrimination of types of polyacrylamide based on near infrared spectroscopy coupled with least square support vector machine].

    PubMed

    Zhang, Hong-Guang; Yang, Qin-Min; Lu, Jian-Gang

    2014-04-01

    In this paper, a novel discriminant methodology based on near infrared spectroscopic analysis technique and least square support vector machine was proposed for rapid and nondestructive discrimination of different types of Polyacrylamide. The diffuse reflectance spectra of samples of Non-ionic Polyacrylamide, Anionic Polyacrylamide and Cationic Polyacrylamide were measured. Then principal component analysis method was applied to reduce the dimension of the spectral data and extract of the principal compnents. The first three principal components were used for cluster analysis of the three different types of Polyacrylamide. Then those principal components were also used as inputs of least square support vector machine model. The optimization of the parameters and the number of principal components used as inputs of least square support vector machine model was performed through cross validation based on grid search. 60 samples of each type of Polyacrylamide were collected. Thus a total of 180 samples were obtained. 135 samples, 45 samples for each type of Polyacrylamide, were randomly split into a training set to build calibration model and the rest 45 samples were used as test set to evaluate the performance of the developed model. In addition, 5 Cationic Polyacrylamide samples and 5 Anionic Polyacrylamide samples adulterated with different proportion of Non-ionic Polyacrylamide were also prepared to show the feasibilty of the proposed method to discriminate the adulterated Polyacrylamide samples. The prediction error threshold for each type of Polyacrylamide was determined by F statistical significance test method based on the prediction error of the training set of corresponding type of Polyacrylamide in cross validation. The discrimination accuracy of the built model was 100% for prediction of the test set. The prediction of the model for the 10 mixing samples was also presented, and all mixing samples were accurately discriminated as adulterated samples. The overall results demonstrate that the discrimination method proposed in the present paper can rapidly and nondestructively discriminate the different types of Polyacrylamide and the adulterated Polyacrylamide samples, and offered a new approach to discriminate the types of Polyacrylamide.

  10. Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Zhang, Lei; Ma, Jianmin; Tang, Kai; Xu, Lili; Wang, Yuan; Cao, Xianjie; Liang, Jiening; Ji, Yuemeng; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-06-01

    The particle mixing state plays a significant yet poorly quantified role in aerosol radiative forcing, especially for the mixing of dust (mineral absorbing) and anthropogenic pollution (black carbon absorbing) over East Asia. We have investigated the absorption enhancement of mixed-type aerosols over East Asia by using the Aerosol Robotic Network observations and radiative transfer model calculations. The mixed-type aerosols exhibit significantly enhanced absorbing ability than the corresponding unmixed dust and anthropogenic aerosols, as revealed in the spectral behavior of absorbing aerosol optical depth, single scattering albedo, and imaginary refractive index. The aerosol radiative efficiencies for the dust, mixed-type, and anthropogenic aerosols are -101.0, -112.9, and -98.3 Wm-2 τ-1 at the bottom of the atmosphere (BOA); -42.3, -22.5, and -39.8 Wm-2 τ-1 at the top of the atmosphere (TOA); and 58.7, 90.3, and 58.5 Wm-2 τ-1 in the atmosphere (ATM), respectively. The BOA cooling and ATM heating efficiencies of the mixed-type aerosols are significantly higher than those of the unmixed aerosol types over the East Asia region, resulting in atmospheric stabilization. In addition, the mixed-type aerosols correspond to a lower TOA cooling efficiency, indicating that the cooling effect by the corresponding individual aerosol components is partially counteracted. We conclude that the interaction between dust and anthropogenic pollution not only represents a viable aerosol formation pathway but also results in unfavorable dispersion conditions, both exacerbating the regional air pollution in East Asia. Our results highlight the necessity to accurately account for the mixing state of aerosols in atmospheric models over East Asia in order to better understand the formation mechanism for regional air pollution and to assess its impacts on human health, weather, and climate.

  11. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less

  12. Numerical Analysis of Crack Tip Plasticity and History Effects under Mixed Mode Conditions

    NASA Astrophysics Data System (ADS)

    Lopez-Crespo, Pablo; Pommier, Sylvie

    The plastic behaviour in the crack tip region has a strong influence on the fatigue life of engineering components. In general, residual stresses developed as a consequence of the plasticity being constrained around the crack tip have a significant role on both the direction of crack propagation and the propagation rate. Finite element methods (FEM) are commonly employed in order to model plasticity. However, if millions of cycles need to be modelled to predict the fatigue behaviour of a component, the method becomes computationally too expensive. By employing a multiscale approach, very precise analyses computed by FEM can be brought to a global scale. The data generated using the FEM enables us to identify a global cyclic elastic-plastic model for the crack tip region. Once this model is identified, it can be employed directly, with no need of additional FEM computations, resulting in fast computations. This is done by partitioning local displacement fields computed by FEM into intensity factors (global data) and spatial fields. A Karhunen-Loeve algorithm developed for image processing was employed for this purpose. In addition, the partitioning is done such as to distinguish into elastic and plastic components. Each of them is further divided into opening mode and shear mode parts. The plastic flow direction was determined with the above approach on a centre cracked panel subjected to a wide range of mixed-mode loading conditions. It was found to agree well with the maximum tangential stress criterion developed by Erdogan and Sih, provided that the loading direction is corrected for residual stresses. In this approach, residual stresses are measured at the global scale through internal intensity factors.

  13. Trends in stratospheric ozone profiles using functional mixed models

    NASA Astrophysics Data System (ADS)

    Park, A.; Guillas, S.; Petropavlovskikh, I.

    2013-11-01

    This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed. It penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data-driven basis functions (empirical basis functions) are obtained. The coefficients (principal component scores) corresponding to the empirical basis functions represent dominant temporal evolution in the shape of ozone profiles. We use those time series coefficients in the second statistical step to reveal the important sources of the patterns and variations in the profiles. We estimate the effects of covariates - month, year (trend), quasi-biennial oscillation, the solar cycle, the Arctic oscillation, the El Niño/Southern Oscillation cycle and the Eliassen-Palm flux - on the principal component scores of ozone profiles using additive mixed effects models. The effects are represented as smooth functions and the smooth functions are estimated by penalized regression splines. We also impose a heteroscedastic error structure that reflects the observed seasonality in the errors. The more complex error structure enables us to provide more accurate estimates of influences and trends, together with enhanced uncertainty quantification. Also, we are able to capture fine variations in the time evolution of the profiles, such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder and Arosa, as well as for total column ozone. There are great variations in the trends across altitudes, which highlights the benefits of modeling ozone profiles.

  14. Isolating the cow-specific part of residual energy intake in lactating dairy cows using random regressions.

    PubMed

    Fischer, A; Friggens, N C; Berry, D P; Faverdin, P

    2018-07-01

    The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.

  15. Optimization of an electrokinetic mixer for microfluidic applications.

    PubMed

    Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P J

    2012-06-01

    This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly.

  16. Optimization of an electrokinetic mixer for microfluidic applications

    PubMed Central

    Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P. J.

    2012-01-01

    This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly. PMID:22712034

  17. First principles study of surface stability and segregation of PdRuRh ternary metal alloy system

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki

    2018-05-01

    The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.

  18. UManSysProp: An online and open-source facility for molecular property prediction and atmospheric aerosol calculations

    NASA Astrophysics Data System (ADS)

    Topping, David; Barley, Mark; McFiggans, Gordon; Aumont, Bernard

    2016-04-01

    The many thousands of individual aerosol components ensure that explicit manual calculation of properties that influence their environmental impacts is laborious and time-consuming. The emergence of explicit automatic mechanism generation techniques, including up to many millions of individual gas phase products as aerosol precursors, renders manual calculations impossible and automation is necessary. It can be difficult to establish what factors are responsible for the outcome of a model prediction. This is particularly true when the number of components might be high in, for example, SOA mass partitioning simulations. It then becomes difficult for others in the community to assess the results presented. This might be complicated by the need to include pure component vapour pressures or activity coefficient predictions for a wide range of highly multifunctional compounds. It isn't clear to what extent replication of results is ever achieved for a range of aerosol simulations. Whilst this might also be an issue with results from instrumentation, the development of community driven software at least enables modellers to tackle this problem directly. Here we describe the development and application of a new web based facility, UManSysProp, to tackle such issues. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles with associated Kappa-Kohler values; absorptive partitioning calculations with/without a treatment of non-ideality. The website can be found here: http://umansysprop.seaes.manchester.ac.uk/

  19. Shallow Water UXO Technology Demonstration Site Scoring Record Number 5 (NAEVA/XTECH, EM61 MKII)

    DTIC Science & Technology

    2007-01-01

    Clutter items fit into one of three categories: ferrous, nonferrous , and mixed metals . The ferrous and nonferrous items have been further...fragments that have both a ferrous and nonferrous component and could reasonably be encountered in a range area. The mixed- metals clutter was placed...components; however, industrial scrap metal and cultural items are present as well. The mixed- metals clutter is composed of scrap ordnance items or

  20. The Partial Molar Volume and Compressibility of the FeO Component in Model Basalts (Mixed CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6 Liquids) at 0 GPa: evidence of Fe2+ in 6-fold coordination

    NASA Astrophysics Data System (ADS)

    Guo, X.; Lange, R. A.; Ai, Y.

    2010-12-01

    FeO is an important component in magmatic liquids and yet its partial molar volume at one bar is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Moreover, there is growing evidence from spectroscopic studies that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and it is expected that the partial molar volume and compressibility of the FeO component will vary accordingly. We have conducted both density and relaxed sound speed measurements on four liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system: (1) Di-Hd (50:50), (2) An-Hd (50:50), (3) An-Di-Hd (33:33:33) and (4) Hd (100). Densities were measured between 1573 and 1838 K at one bar with the double-bob Archimedean method using molybdenum bobs and crucibles in a reducing gas (1%CO-99%Ar) environment. The sound speeds were measured under similar conditions with a frequency-sweep acoustic interferometer, and used to calculate isothermal compressibility. All the density data for the three multi-component (model basalt) liquids were combined with density data on SiO2-Al2O3-CaO-MgO-K2O-Na2O liquids (Lange, 1997) in a fit to a linear volume equation; the results lead to a partial molar volume (±1σ) for FeO =11.7 ± 0.3(±1σ) cm3/mol at 1723 K. This value is similar to that for crystalline FeO at 298 K (halite structure; 12.06 cm3/mol), which suggests an average Fe2+ coordination of ~6 in these model basalt compositions. In contrast, the fitted partial molar volume of FeO in pure hedenbergite liquid is 14.6 ± 0.3 at 1723 K, which is consistent with an average Fe2+ coordination of 4.3 derived from EXAFS spectroscopy (Rossano, 2000). Similarly, all the compressibility data for the three multi-component liquids were combined with compressibility data on SiO2-Al2O3-CaO-MgO liquids (Ai and Lange, 2008) in a fit to an ideal mixing model for melt compressibility; the results lead to a partial molar compressibility (±1σ) for FeO = 2.4 (± 0.3) 10-2 GPa-1 at 1723 K. In contrast, the compressibility of FeO in pure hedenbergite liquid is more than twice as large: 6.3 (± 0.2) 10-2 GPa-1. When these results are combined with density and sound speed data on CaO-FeO-SiO2 liquids at one bar (Guo et al., 2009), a systematic and linear variation between the partial molar volume and compressibility of the FeO component is obtained, which appears to track changes in the average Fe2+ coordination in these liquids. Therefore, the three most important conclusions of this study are: (1) ideal mixing of volume and compressibility does not occur for all FeO-bearing magmatic liquids, owing to changes in Fe2+ coordination, (2) the partial molar volume and compressibility of FeO varies linearly and systematically with Fe2+ coordination, and (3) ideal mixing of volume and compressibility does occur among the three mixed An-Di-Hd liquids, presumably because of a common, average Fe2+ coordination of ~6.

  1. Thermochemical parameters of minerals from oxygen-buffered hydrothermal equilibrium data: Method, application to annite and almandine

    USGS Publications Warehouse

    Zen, E.-A.

    1973-01-01

    Reversed univariant hydrothermal phase-equilibrium reactions, in which a redox reaction occurs and is controlled by oxygen buffers, can be used to extract thermochemical data on minerals. The dominant gaseous species present, even for relatively oxidizing buffers such as the QFM buffer, are H2O and H2; the main problem is to calculate the chemical potentials of these components in a binary mixture. The mixing of these two species in the gas phase was assumed by Eugster and Wones (1962) to be ideal; this assumption allows calculation of the chemical potentials of the two components in a binary gas mixture, using data in the literature. A simple-mixture model of nonideal mixing, such as that proposed by Shaw (1967), can also be combined with the equations of state for oxygen buffers to permit derivation of the chemical potentials of the two components. The two mixing models yield closely comparable results for the more oxidizing buffers such as the QFM buffer. For reducing buffers such as IQF, the nonideal-mixing correction can be significant and the Shaw model is better. The procedure of calculation of mineralogical thermochemical data, in reactions where hydrogen and H2O simultaneously appear, is applied to the experimental data on annite, given by Wones et al. (1971), and on almandine, given by Hsu (1968). For annite the results are: Standard entropy of formation from the elements, Sf0 (298, 1)=-283.35??2.2 gb/gf, S0 (298, 1) =+92.5 gb/gf. Gf0 (298, 1)=-1148.2??6 kcal, and Hf0 (298, 1)=-1232.7??7 kcal. For almandine, the calculation takes into account the mutual solution of FeAl2O4 (Hc) in magnetite and of Fe3O4 (Mt) in hercynite and the temperature dependence of this solid solution, as given by Turnock and Eugster (1962); the calculations assume a regular-solution model for this binary spinel system. The standard entropy of formation of almandine, Sf,A0 (298, 1) is -272.33??3 gb/gf. The third law entropy, S0 (298, 1) is +68.3??3 gb/gf, a value much less than the oxide-sum estimate but the deviation is nearly the same as that of grossularite, referring to a comparable set of oxide standard states. The Gibbs free energy Gf,A0 (298, 1) is -1192.36??4 kcal, and the enthalpy Hf,A0 (298, 1) is -1273.56??5 kcal. ?? 1973 Springer-Verlag.

  2. Effect of bacterial components of mixed culture supernatants of planktonic and biofilm Pseudomonas aeruginosa with commensal Escherichia coli on the neutrophil response in vitro.

    PubMed

    Maslennikova, Irina L; Kuznetsova, Marina V; Nekrasova, Irina V; Shirshev, Sergei V

    2017-11-30

    Pseudomonas aeruginosa (PA) responsible for acute and chronic infections often forms a well-organized bacterial population with different microbial species including commensal strains of Escherichia coli. Bacterial extracellular components of mixed culture can modulate the influence of bacteria on the neutrophil functions. The objective of this study was to compare the effect of pyocyanin, pyoverdine, LPS, exopolysaccharide of single species and mixed culture supernatants of PA strains and E. coli K12 on microbicidal, secretory activity of human neutrophils in vitro. Bacterial components of E. coli K12 in mixed supernatants with 'biofilm' PA strains (PA ATCC, PA BALG) enhanced short-term microbicidal mechanisms and inhibited neutrophil secretion delayed in time. The influence of 'planktonic' PA (PA 9-3) exometabolites in mixed culture is almost mimicked by E. coli K12 effect on functional neutrophil changes. This investigation may help to understand some of the mechanisms of neutrophil response to mixed infections of different PA with other bacteria species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Linear score tests for variance components in linear mixed models and applications to genetic association studies.

    PubMed

    Qu, Long; Guennel, Tobias; Marshall, Scott L

    2013-12-01

    Following the rapid development of genome-scale genotyping technologies, genetic association mapping has become a popular tool to detect genomic regions responsible for certain (disease) phenotypes, especially in early-phase pharmacogenomic studies with limited sample size. In response to such applications, a good association test needs to be (1) applicable to a wide range of possible genetic models, including, but not limited to, the presence of gene-by-environment or gene-by-gene interactions and non-linearity of a group of marker effects, (2) accurate in small samples, fast to compute on the genomic scale, and amenable to large scale multiple testing corrections, and (3) reasonably powerful to locate causal genomic regions. The kernel machine method represented in linear mixed models provides a viable solution by transforming the problem into testing the nullity of variance components. In this study, we consider score-based tests by choosing a statistic linear in the score function. When the model under the null hypothesis has only one error variance parameter, our test is exact in finite samples. When the null model has more than one variance parameter, we develop a new moment-based approximation that performs well in simulations. Through simulations and analysis of real data, we demonstrate that the new test possesses most of the aforementioned characteristics, especially when compared to existing quadratic score tests or restricted likelihood ratio tests. © 2013, The International Biometric Society.

  4. Mixed Germ Cell Tumour in an Infertile Male Having Unilateral Cryptorchidism: A Rare Case Report.

    PubMed

    Singla, Anand; Kaur, Navneet; Sandhu, Gunjeet; Nagori, Rupesh

    2016-02-01

    Mixed germ cell tumours with multiple components occur more frequently than the pure varieties of germ cell tumours. Embryonal carcinoma and teratoma together form the most common components of the mixed germ cell tumour but the yolk sac tumour is usually seen as a minor component in patients presenting with mixed germ cell tumour. We report a rare case of 27-year-old Hepatitis C positive male presenting with pain in left lower abdomen with associated history of same sided undescended testis and infertility. Right sided testis lying in scrotal sac appeared normal on ultrasonography but patient was azoospermic. He had raised levels of serum markers, alpha feto protein and beta HCG. Examination showed a large mass in left lower abdomen involving the sigmoid colon with the absence of left testis in left scrotum which was confirmed on CT scan. Excision of the mass was done and histopathology examination revealed it as a malignant mixed germ cell tumour composed predominantly of a yolk sac tumour, with minor component as seminoma and embryonal carcinoma in an undescended testis. Following this, the level of serum markers came down. The patient is now undergoing adjuvant chemotherapy and is doing well.

  5. Mixed reality temporal bone surgical dissector: mechanical design

    PubMed Central

    2014-01-01

    Objective The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Method Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Results Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill’s passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. Conclusion These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator. PMID:25927300

  6. ACTIVE REGION FILAMENTS MIGHT HARBOR WEAK MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A., E-mail: cdiazbas@iac.es

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between themmore » being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.« less

  7. Further Improvements to Linear Mixed Models for Genome-Wide Association Studies

    PubMed Central

    Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David

    2014-01-01

    We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science. PMID:25387525

  8. Further Improvements to Linear Mixed Models for Genome-Wide Association Studies

    NASA Astrophysics Data System (ADS)

    Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David

    2014-11-01

    We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science.

  9. Further improvements to linear mixed models for genome-wide association studies.

    PubMed

    Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David

    2014-11-12

    We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science.

  10. Estimation of the four-wave mixing noise probability-density function by the multicanonical Monte Carlo method.

    PubMed

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2005-01-01

    The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.

  11. Functional Additive Mixed Models

    PubMed Central

    Scheipl, Fabian; Staicu, Ana-Maria; Greven, Sonja

    2014-01-01

    We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach. PMID:26347592

  12. Functional Additive Mixed Models.

    PubMed

    Scheipl, Fabian; Staicu, Ana-Maria; Greven, Sonja

    2015-04-01

    We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach.

  13. Turbine component cooling channel mesh with intersection chambers

    DOEpatents

    Lee, Ching-Pang; Marra, John J

    2014-05-06

    A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).

  14. A Markov model for blind image separation by a mean-field EM algorithm.

    PubMed

    Tonazzini, Anna; Bedini, Luigi; Salerno, Emanuele

    2006-02-01

    This paper deals with blind separation of images from noisy linear mixtures with unknown coefficients, formulated as a Bayesian estimation problem. This is a flexible framework, where any kind of prior knowledge about the source images and the mixing matrix can be accounted for. In particular, we describe local correlation within the individual images through the use of Markov random field (MRF) image models. These are naturally suited to express the joint pdf of the sources in a factorized form, so that the statistical independence requirements of most independent component analysis approaches to blind source separation are retained. Our model also includes edge variables to preserve intensity discontinuities. MRF models have been proved to be very efficient in many visual reconstruction problems, such as blind image restoration, and allow separation and edge detection to be performed simultaneously. We propose an expectation-maximization algorithm with the mean field approximation to derive a procedure for estimating the mixing matrix, the sources, and their edge maps. We tested this procedure on both synthetic and real images, in the fully blind case (i.e., no prior information on mixing is exploited) and found that a source model accounting for local autocorrelation is able to increase robustness against noise, even space variant. Furthermore, when the model closely fits the source characteristics, independence is no longer a strict requirement, and cross-correlated sources can be separated, as well.

  15. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    NASA Astrophysics Data System (ADS)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  16. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  17. CLIMLAB: a Python-based software toolkit for interactive, process-oriented climate modeling

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2015-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The IPython notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields. However CLIMLAB is well suited to be deployed as a computational back-end for a graphical gaming environment based on earth-system modeling.

  18. Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Wright, J. S.; Fueglistaler, S.

    2013-09-01

    We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: the Modern-Era Retrospective Analysis for Research and Applications (MERRA), European Reanalysis (ERA-Interim), Climate Forecast System Reanalysis (CFSR), Japanese 25-yr Reanalysis and Japan Meteorological Agency Climate Data Assimilation System (JRA-25/JCDAS), and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Discrepancies in latent heating reflect continuing difficulties in representing moist convection in models. Although these discrepancies may be expected, their magnitude is still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention). The largest differences in radiative heating in the tropical UTLS are attributable to differences in cloud radiative heating, but important systematic differences are present even in the absence of clouds. Local maxima in heating and cooling due to parameterised turbulent mixing occur in the vicinity of the tropical tropopause.

  19. Backscattering from frost on icy satellites in the outer solar system

    NASA Technical Reports Server (NTRS)

    Verbiscer, Anne; Helfenstein, Paul; Veverka, Joseph

    1990-01-01

    Two extreme models are presented of how frost and ice might be intermixed on a typical satellite surface: areal and intimate mixing. Applying such models to selected representative satellite data, it is found that the frost component of the surfaces of these outer satellites must itself be backscattering, unlike its terrestrial counterpart. The difference may arise because frost particles can have much more complex internal textures under the low-temperature and low-gravity conditions of the outer satellites than is the case on earth.

  20. Advanced k-epsilon modeling of heat transfer

    NASA Technical Reports Server (NTRS)

    Kwon, Okey; Ames, Forrest E.

    1995-01-01

    This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of airfoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.

  1. A numerical study of non-collinear wave mixing and generated resonant components.

    PubMed

    Sun, Zhenghao; Li, Fucai; Li, Hongguang

    2016-09-01

    Interaction of two non-collinear nonlinear ultrasonic waves in an elastic half-space with quadratic nonlinearity is investigated in this paper. A hyperbolic system of conservation laws is applied here and a semi-discrete central scheme is used to solve the numerical problem. The numerical results validate that the model can be used as an effective method to generate and evaluate a resonant wave when two primary waves mix together under certain resonant conditions. Features of the resonant wave are analyzed both in the time and frequency domains, and variation trends of the resonant waves together with second harmonics along the propagation path are analyzed. Applied with the pulse-inversion technique, components of resonant waves and second harmonics can be independently extracted and observed without distinguishing times of flight. The results show that under the circumstance of non-collinear wave mixing, both sum and difference resonant components can be clearly obtained especially in the tangential direction of their propagation. For several rays of observation points around the interaction zone, the further it is away from the excitation sources, generally the earlier the maximum of amplitude arises. From the parametric analysis of the phased array, it is found that both the length of array and the density of element have impact on the maximum of amplitude of the resonant waves. The spatial distribution of resonant waves will provide necessary information for the related experiments. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland

    NASA Astrophysics Data System (ADS)

    Perrin, J.; Jeannin, P.-Y.; Cornaton, F.

    2007-01-01

    SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence. Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge.

  3. A model linking clinical workforce skill mix planning to health and health care dynamics.

    PubMed

    Masnick, Keith; McDonnell, Geoff

    2010-04-30

    In an attempt to devise a simpler computable tool to assist workforce planners in determining what might be an appropriate mix of health service skills, our discussion led us to consider the implications of skill mixing and workforce composition beyond the 'stock and flow' approach of much workforce planning activity. Taking a dynamic systems approach, we were able to address the interactions, delays and feedbacks that influence the balance between the major components of health and health care. We linked clinical workforce requirements to clinical workforce workload, taking into account the requisite facilities, technologies, other material resources and their funding to support clinical care microsystems; gave recognition to productivity and quality issues; took cognisance of policies, governance and power concerns in the establishment and operation of the health care system; and, going back to the individual, gave due attention to personal behaviour and biology within the socio-political family environment. We have produced the broad endogenous systems model of health and health care which will enable human resource planners to operate within real world variables. We are now considering the development of simple, computable national versions of this model.

  4. Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions

    NASA Astrophysics Data System (ADS)

    Leifeld, Philip

    2018-10-01

    Academic collaboration in the social sciences is characterized by a polarization between hermeneutic and nomological researchers. This polarization is expressed in different publication strategies. The present article analyzes the complete co-authorship networks in a social science discipline in two separate countries over five years using an exponential random graph model. It examines whether and how assortative mixing in publication strategies is present and leads to a polarization in scientific collaboration. In the empirical analysis, assortative mixing is found to play a role in shaping the topology of the network and significantly explains collaboration. Co-authorship edges are more prevalent within each of the groups, but this mixing pattern does not fully account for the extent of polarization. Instead, a thought experiment reveals that other components of the complex system dampen or amplify polarization in the data-generating process and that microscopic interventions targeting behavior change with regard to assortativity would be hindered by the resilience of the system. The resilience to interventions is quantified in a series of simulations on the effect of microscopic behavior on macroscopic polarization. The empirical study controls for geographic proximity, supervision, and topical similarity (using a vector space model), and the interplay of these factors is likely responsible for this resilience. The paper also predicts the co-authorship network in one country based on the model of collaborations in the other country.

  5. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  6. Effects of Mixed Bone and Brisket Meat on Physico-Chemical Characteristics of Shank Bone and Rib Extracts from Hanwoo

    PubMed Central

    Jung, Myung-Ok; Choi, Jung-Seok

    2016-01-01

    This study was conducted to investigate the effects of mixed bone and brisket meat on the quality characteristics and nutritional components of shank bone extract and rib extract from Hanwoo. The pH values were influenced by the raw bones, mixed bone, brisket meat and their interactions (p<0.05). The salinity, sugar content, turbidity, and essential amino acid values increased significantly with addition of mixed bone and brisket meat. All attributes of sensory evaluation score were the highest in T6 (Rib 500 g + Mixed bone 500 g + Brisket meat 400 g) (p<0.05). The mixed bone significantly increased the saturated fatty acids of shank bone extract (p<0.001). Thus, the addition of mixed bone and brisket meat had a positive effect on the quality and nutritional components in shank and rib extracts of Hanwoo cattle. PMID:27499665

  7. Use of On-Line Tracers as a Diagnostic Tool in General Circulation Model Development. 2; Transport Between the Troposphere and Stratosphere

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lerner, Jean; Shah, Kathy; Suozzo, Robert

    1999-01-01

    A key component of climate/chemistry modeling is how to handle the influx into (and egress from) the troposphere. This is especially important when considering tropospheric ozone, and its precursors (e.g., NO(x) from aircraft). A study has been conducted with various GISS models to determine the minimum requirements necessary for producing realistic troposphere-stratosphere exchange. Four on-line tracers are employed: CFC-11 and SF6 for mixing from the troposphere into the stratosphere, Rn222 for vertical mixing within the troposphere, and 14C for mixing from the stratosphere into the troposphere. Four standard models are tested, with varying vertical resolution, gravity wave drag and location of the model top, and additional subsidiary models are employed to examine specific features. The results show that proper vertical transport between the troposphere and stratosphere in the GISS models requires lifting the top of the model considerably out of the stratosphere, and including gravity wave drag in the lower stratosphere. Increased vertical resolution without these aspects does not improve troposphere-stratosphere exchange. The transport appears to be driven largely by the residual circulation within the stratosphere; associated E-P flux convergences require both realistic upward propagating energy from the troposphere, and realistic pass-through possibilities. A 23 layer version with a top at the mesopause and incorporating gravity wave drag appears to have reasonable stratospheric-tropospheric exchange, in terms of both the resulting tracer distributions and atmospheric mass fluxes.

  8. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.

    PubMed

    Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang

    2014-01-01

    Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.

  9. Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1981-01-01

    The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

  10. Time and frequency domain analysis of sampled data controllers via mixed operation equations

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.

  11. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  12. Components of Effective Cognitive-Behavioral Therapy for Pediatric Headache: A Mixed Methods Approach

    PubMed Central

    Law, Emily F.; Beals-Erickson, Sarah E.; Fisher, Emma; Lang, Emily A.; Palermo, Tonya M.

    2017-01-01

    Internet-delivered treatment has the potential to expand access to evidence-based cognitive-behavioral therapy (CBT) for pediatric headache, and has demonstrated efficacy in small trials for some youth with headache. We used a mixed methods approach to identify effective components of CBT for this population. In Study 1, component profile analysis identified common interventions delivered in published RCTs of effective CBT protocols for pediatric headache delivered face-to-face or via the Internet. We identified a core set of three treatment components that were common across face-to-face and Internet protocols: 1) headache education, 2) relaxation training, and 3) cognitive interventions. Biofeedback was identified as an additional core treatment component delivered in face-to-face protocols only. In Study 2, we conducted qualitative interviews to describe the perspectives of youth with headache and their parents on successful components of an Internet CBT intervention. Eleven themes emerged from the qualitative data analysis, which broadly focused on patient experiences using the treatment components and suggestions for new treatment components. In the Discussion, these mixed methods findings are integrated to inform the adaptation of an Internet CBT protocol for youth with headache. PMID:29503787

  13. Components of Effective Cognitive-Behavioral Therapy for Pediatric Headache: A Mixed Methods Approach.

    PubMed

    Law, Emily F; Beals-Erickson, Sarah E; Fisher, Emma; Lang, Emily A; Palermo, Tonya M

    2017-01-01

    Internet-delivered treatment has the potential to expand access to evidence-based cognitive-behavioral therapy (CBT) for pediatric headache, and has demonstrated efficacy in small trials for some youth with headache. We used a mixed methods approach to identify effective components of CBT for this population. In Study 1, component profile analysis identified common interventions delivered in published RCTs of effective CBT protocols for pediatric headache delivered face-to-face or via the Internet. We identified a core set of three treatment components that were common across face-to-face and Internet protocols: 1) headache education, 2) relaxation training, and 3) cognitive interventions. Biofeedback was identified as an additional core treatment component delivered in face-to-face protocols only. In Study 2, we conducted qualitative interviews to describe the perspectives of youth with headache and their parents on successful components of an Internet CBT intervention. Eleven themes emerged from the qualitative data analysis, which broadly focused on patient experiences using the treatment components and suggestions for new treatment components. In the Discussion, these mixed methods findings are integrated to inform the adaptation of an Internet CBT protocol for youth with headache.

  14. The Mantle Isotopic Array: A Tale of Two FOZOs

    NASA Astrophysics Data System (ADS)

    Apen, F. E.; Mukhopadhyay, S.; Williams, C. D.

    2017-12-01

    Oceanic basalts display isotopic arrays that suggest mixing between a depleted component, several enriched components, and a primitive component. The topology of the arrays provides information on mantle mixing, the distribution of heterogeneities, and information on mantle structure. Here we use a global compilation of mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) He-Sr-Nd-Pb isotopic data to further analyze the topology of these arrays. Previous work indicated that OIB isotopic arrays converge to a common component [1-3] referred to as the focus zone, or FOZO. Our analyses suggest that while all OIBs do point to a common component with unradiogenic 4He/3He ratios relative to MORBs, this component has to be quite variable in its He, Sr, Nd and Pb isotopic compositions. FOZO cannot be a pure component but must represent a heterogeneous mixture of primitive and recycled material. Our analyses of the MORB and OIB isotopic compositions also indicate that while MORBs and OIBs sample the same components, the topology of their mixing arrays are quite distinct. Different MOR segments show quasi-linear isotopic arrays that all converge to a common component. This component is distinctive from the OIB FOZO being more depleted and more restrictive in its He, Sr, Nd and Pb composition. We suggest two common but distinguishable components are present in the mantle arrays: one common to MORBs and the other to OIBs, and we refer to them as MORB-FOZO and OIB-FOZO, respectively. We interpret the two FOZOs to represent the average composition of small-scale heterogeneities that make up the background matrix in the sources of MORBs and OIBs. The depleted and enriched components that are sampled in MORBs and OIBs reflect relatively large-scale heterogeneities distributed within the matrix, material that have yet to be deformed into the smaller length scales of the matrix material. Differences between the two FOZO compositions reflects the inclusion of a component with primitive He in OIBs along with differences in mixing timescales and mantle processing rates for MORBs and OIBs. The two distinct FOZO compositions must also indicate limited direct mixing between the two over Earth's 4.5 Gyr history. References: [1] Hart et al., Science 1992; [2] Farley et al., EPSL 1992; [3] Hanan and Graham, Science 1996.

  15. Inferring sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from the western Taiwan Strait through end-member mixing analysis.

    PubMed

    Li, Tao; Sun, Guihua; Ma, Shengzhong; Liang, Kai; Yang, Chupeng; Li, Bo; Luo, Weidong

    2016-11-15

    Concentration, spatial distribution, composition and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated based on measurements of 16 PAH compounds in surface sediments of the western Taiwan Strait. Total PAH concentrations ranged from 2.41 to 218.54ngg -1 . Cluster analysis identified three site clusters representing the northern, central and southern regions. Sedimentary PAHs mainly originated from a mixture of pyrolytic and petrogenic in the north, from pyrolytic in the central, and from petrogenic in the south. An end-member mixing model was performed using PAH compound data to estimate mixing proportions for unknown end-members (i.e., extreme-value sample points) proposed by principal component analysis (PCA). The results showed that the analyzed samples can be expressed as mixtures of three end-members, and the mixing of different end-members was strongly related to the transport pathway controlled by two currents, which alternately prevail in the Taiwan Strait during different seasons. Copyright © 2016. Published by Elsevier Ltd.

  16. Mixed papillary-sarcomatoid carcinoma of the penis: report of an aggressive subtype.

    PubMed

    Bovolim, Graziele; da Costa, Walter Henriques; Guimaraes, Gustavo Cardoso; Soares, Fernando Augusto; da Cunha, Isabela Werneck

    2017-12-01

    Several different histological subtypes of penile carcinoma had been described in the last decades, many with different biological behavior and prognosis. The association of two histological subtypes (mixed tumors) can be observed in one third of the cases. The most common association is of warty and basaloid tumors, two HPV-related carcinomas. Here, we described a mixed papillary-sarcomatoid carcinoma, never reported before. Although it is a clinical aspect of a low-grade verruciform tumor, its prognosis showed it to be very aggressive due to the sarcomatoid component hidden above the papillary component. The two components showed opposite cadherin/vimentin expression pointed to epithelial-mesenchymal transition between them.

  17. Calculating excess volumes of binary solutions with allowance for structural differences between mixed components

    NASA Astrophysics Data System (ADS)

    Balankina, E. S.

    2016-06-01

    Analytical dependences of a volume's properties on the differences between the geometric structures of initial monosystems are obtained for binary systems simulated by a grain medium. The effect of microstructural parameter k (the ratio of volumes of molecules of mixed components) on the concentration behavior of the relative excess molar volume of different types of real binary solutions is analyzed. It is established that the contribution due to differences between the volumes of molecules and coefficients of the packing density of mixed components is ~80-100% for mutual solutions of n-alkanes and ~55-80% of the experimental value of the relative excess molar volume for water solutions of n-alcohols.

  18. DVV: a taxonomy for mixed reality visualization in image guided surgery.

    PubMed

    Kersten-Oertel, Marta; Jannin, Pierre; Collins, D Louis

    2012-02-01

    Mixed reality visualizations are increasingly studied for use in image guided surgery (IGS) systems, yet few mixed reality systems have been introduced for daily use into the operating room (OR). This may be the result of several factors: the systems are developed from a technical perspective, are rarely evaluated in the field, and/or lack consideration of the end user and the constraints of the OR. We introduce the Data, Visualization processing, View (DVV) taxonomy which defines each of the major components required to implement a mixed reality IGS system. We propose that these components be considered and used as validation criteria for introducing a mixed reality IGS system into the OR. A taxonomy of IGS visualization systems is a step toward developing a common language that will help developers and end users discuss and understand the constituents of a mixed reality visualization system, facilitating a greater presence of future systems in the OR. We evaluate the DVV taxonomy based on its goodness of fit and completeness. We demonstrate the utility of the DVV taxonomy by classifying 17 state-of-the-art research papers in the domain of mixed reality visualization IGS systems. Our classification shows that few IGS visualization systems' components have been validated and even fewer are evaluated.

  19. Recrystallization Behavior in Mixed Solder Joints of BGA Components during Thermal Shock

    NASA Astrophysics Data System (ADS)

    Tan, Shihai; Han, Jing; Guo, Fu

    2018-03-01

    Sn-37Pb and Sn-3.0Ag-0.5Cu solder pastes printed onto a board were attached to ball grid array (BGA) samples using Sn-3.0Ag-0.5Cu solder balls. Before thermal shock, the initial grain orientations on the cross-section were obtained by scanning electron microscopy equipped with an electron backscattered diffraction system. Three mixed solder joints (two from the corner and another from the middle of the BGA component) and three lead-free solder joints (at the same positions) were selected to investigate the recrystallization behavior under thermal shock (TS) cycling conditions. All of the mixed and lead-free solder joints were initially single crystal. The results showed that recrystallization occurred in both the mixed and lead-free solder joints after 200 TS. For the mixed solder joints, more recrystallization was observed and the location of samples had a significant influence on their recrystallization behavior, while location was not as important for the lead-free samples after 200 TS in this study. Both the mixed and lead-free solder joints at the corner of BGA components showed the poorest reliability. According to misorientation distribution maps and subgrain rotation behaviors, the reliability of mixed solder joints was much poorer than that of lead-free solder joints.

  20. Department of the Navy Justification of Estimates for Fiscal Year 1986 Submitted to Congress February 1985, Operation and Maintenance, Navy. Book 2

    DTIC Science & Technology

    1985-02-01

    Range Missile Combatants (CGpCON, DDGFFG) 78 85 95 Mobile Logistics Force (AOE ,AE ,AOR,AO) 27 27 27 . ., Unit costs increase due to the mix of components...low- mix maintenance concept (less on-board maintenance) used on this class ship necessitates rework of these antennas % every four years. FY 1984 FY...4. Other 838 40 1,147 55 563 55 (Component mix changes each year) 7091 77--.-- --- o

  1. Longitudinal comparative evaluation of the equivalence of an integrated peer-support and clinical staffing model for residential mental health rehabilitation: a mixed methods protocol incorporating multiple stakeholder perspectives.

    PubMed

    Parker, Stephen; Dark, Frances; Newman, Ellie; Korman, Nicole; Meurk, Carla; Siskind, Dan; Harris, Meredith

    2016-06-02

    A novel staffing model integrating peer support workers and clinical staff within a unified team is being trialled at community based residential rehabilitation units in Australia. A mixed-methods protocol for the longitudinal evaluation of the outcomes, expectations and experiences of care by consumers and staff under this staffing model in two units will be compared to one unit operating a traditional clinical staffing. The study is unique with regards to the context, the longitudinal approach and consideration of multiple stakeholder perspectives. The longitudinal mixed methods design integrates a quantitative evaluation of the outcomes of care for consumers at three residential rehabilitation units with an applied qualitative research methodology. The quantitative component utilizes a prospective cohort design to explore whether equivalent outcomes are achieved through engagement at residential rehabilitation units operating integrated and clinical staffing models. Comparative data will be available from the time of admission, discharge and 12-month period post-discharge from the units. Additionally, retrospective data for the 12-month period prior to admission will be utilized to consider changes in functioning pre and post engagement with residential rehabilitation care. The primary outcome will be change in psychosocial functioning, assessed using the total score on the Health of the Nation Outcome Scales (HoNOS). Planned secondary outcomes will include changes in symptomatology, disability, recovery orientation, carer quality of life, emergency department presentations, psychiatric inpatient bed days, and psychological distress and wellbeing. Planned analyses will include: cohort description; hierarchical linear regression modelling of the predictors of change in HoNOS following CCU care; and descriptive comparisons of the costs associated with the two staffing models. The qualitative component utilizes a pragmatic approach to grounded theory, with collection of data from consumers and staff at multiple time points exploring their expectations, experiences and reflections on the care provided by these services. It is expected that the new knowledge gained through this study will guide the adaptation of these and similar services. For example, if differential outcomes are achieved for consumers under the integrated and clinical staffing models this may inform staffing guidelines.

  2. Disturbance, A Mechanism for Increased Microbial Diversity in a Yellowstone National Park Hot Spring Mixing Zone

    NASA Astrophysics Data System (ADS)

    Howells, A. E.; Oiler, J.; Fecteau, K.; Boyd, E. S.; Shock, E.

    2014-12-01

    The parameters influencing species diversity in natural ecosystems are difficult to assess due to the long and experimentally prohibitive timescales needed to develop causative relationships among measurements. Ecological diversity-disturbance models suggest that disturbance is a mechanism for increased species diversity, allowing for coexistence of species at an intermediate level of disturbance. Observing this mechanism often requires long timescales, such as the succession of a forest after a fire. In this study we evaluated the effect of mixing of two end member hydrothermal fluids on the diversity and structure of a microbial community where disturbance occurs on small temporal and spatial scales. Outflow channels from two hot springs of differing geochemical composition in Yellowstone National Park, one pH 3.3 and 36 °C and the other pH 7.6 and 61 °C flow together to create a mixing zone on the order of a few meters. Geochemical measurements were made at both in-coming streams and at a site of complete mixing downstream of the mixing zone, at pH 6.5 and 46 °C. Compositions were estimated across the mixing zone at 1 cm intervals using microsensor temperature and conductivity measurements and a mixing model. Qualitatively, there are four distinct ecotones existing over ranges in temperature and pH across the mixing zone. Community analysis of the 16S rRNA genes of these ecotones show a peak in diversity at maximal mixing. Principle component analysis of community 16S rRNA genes reflects coexistence of species with communities at maximal mixing plotting intermediate to communities at distal ends of the mixing zone. These spatial biological and geochemical observations suggest that the mixing zone is a dynamic ecosystem where geochemistry and biological diversity are governed by changes in the flow rate and geochemical composition of the two hot spring sources. In ecology, understanding how environmental disruption increases species diversity is a foundation for ecosystem conservation. By studying a hot spring environment where detailed measurements of geochemical variation and community diversity can be made at small spatial scales, the mechanisms by which maximal diversity is achieved can be tested and may assist in applications of diversity-disturbance models for larger ecosystems.

  3. Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2015-11-06

    We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y 3Fe 5O 12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc currentmore » through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. In conclusion, we find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.« less

  4. Hydrogen trapping under the effect of W-C mixed layers

    NASA Astrophysics Data System (ADS)

    Liu, N.; Huang, J.; Sato, K.; Xu, Q.; Shi, L. Q.; Wang, Y. X.

    2014-03-01

    The retention of hydrogen (H) isotope in plasma-facing materials (PFMs) is an important issue for next step fusion device. We used density functional theory (DFT) to study the chemical bonds of H in tungsten-carbon (W-C) mixed layers of tungsten surface, aiming to explore the retention behaviour of H in PFMs. The solubility of C in W was first calculated for revealing the phase components in W-C mixed layers. It was found that C has low solubility in W, which prefers to be segregated on the W surface. Vacancies can enhance the solution of C in W. This makes C appear somewhat carbide feature. Thus, W-C mixed layers should contain multiple phase components. H retention strongly depends on the phase components in the W-C mixed layers. The solution of C will suppress the retention of H in W no matter whether neighbouring vacancies are present, or not. Hydrocarbon precursors, which were observed in desorption experiments, prefer to form by means of H binding to C atoms in C amorphous, or in precipitators in the W-C mixed layers, while not in tungsten carbide phase or in W bulk. Our investigation reasonably explains the experimental results.

  5. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less

  6. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    DOE PAGES

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.; ...

    2018-01-30

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less

  7. Fatigue crack growth and life prediction under mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.

    2018-04-01

    Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.

  8. Development of a numerical model for calculating exposure to toxic and nontoxic stressors in the water column and sediment from drilling discharges.

    PubMed

    Rye, Henrik; Reed, Mark; Frost, Tone Karin; Smit, Mathijs G D; Durgut, Ismail; Johansen, Øistein; Ditlevsen, May Kristin

    2008-04-01

    Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.

  9. Plasmonic Metallurgy Enabled by DNA

    DOE PAGES

    Ross, Michael B.; Ku, Jessie C.; Lee, Byeongdu; ...

    2016-02-05

    In this study, mixed silver and gold plasmonic nanoparticle architectures are synthesized using DNA-programmable assembly, unveiling exquisitely tunable optical properties that are predicted and explained both by effective thin-film models and explicit electrodynamic simulations. These data demonstrate that the manner and ratio with which multiple metallic components are arranged can greatly alter optical properties, including tunable color and asymmetric reflectivity behavior of relevance for thin-film applications.

  10. Fractionating choice: A study on reward discrimination, preference and relative valuation in the rat (Rattus norvegicus)

    PubMed Central

    Ricker, Joshua M.; Hatch, Justin D.; Powers, Daniel D.; Cromwell, Howard C.

    2016-01-01

    Choice behavior combines discrimination between distinctive outcomes, preference for specific outcomes and relative valuation of comparable outcomes. Previous work has focused on one component (i.e., preference) disregarding other influential processes that might provide a more complete understanding. Animal models of choice have been explored primarily utilizing extensive training, limited freedom for multiple decisions and sparse behavioral measures constrained to a single phase of motivated action. The present study used a paradigm that combines different elements of previous methods with the goal to distinguish among components of choice and explore how well components match predictions based on risk-sensitive foraging strategies. In order to analyze discrimination and relative valuation, it was necessary to have an option that shifted and an option that remained constant. Shifting outcomes among weeks included a change in single-option outcome (0 to 1 to 2 pellets) or a change in mixed-option outcome (0 or 5 to 0 or 3 to 0 or 1 pellets). Constant outcomes among weeks were also mixedoption (0 or 3 pellets) or single-option (1 pellet). Shifting single-option outcomes among weeks led to better discrimination, more robust preference and significant incentive contrast effects for the alternative outcome. Shifting multi-options altered choice components and led to dissociations among discrimination, preference, and reduced contrast effects. During extinction, all components were impacted with the greatest deficits during the shifting mixed-option outcome sessions. Results suggest choice behavior can be optimized for one component but suboptimal for others depending upon the complexity of alterations in outcome value between options. PMID:27078079

  11. Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability

    NASA Astrophysics Data System (ADS)

    Małoszewski, P.; Zuber, A.

    1982-06-01

    Three new lumped-parameter models have been developed for the interpretation of environmental radioisotope data in groundwater systems. Two of these models combine other simpler models, i.e. the piston flow model is combined either with the exponential model (exponential distribution of transit times) or with the linear model (linear distribution of transit times). The third model is based on a new solution to the dispersion equation which more adequately represents the real systems than the conventional solution generally applied so far. The applicability of models was tested by the reinterpretation of several known case studies (Modry Dul, Cheju Island, Rasche Spring and Grafendorf). It has been shown that two of these models, i.e. the exponential-piston flow model and the dispersive model give better fitting than other simpler models. Thus, the obtained values of turnover times are more reliable, whereas the additional fitting parameter gives some information about the structure of the system. In the examples considered, in spite of a lower number of fitting parameters, the new models gave practically the same fitting as the multiparameter finite state mixing-cell models. It has been shown that in the case of a constant tracer input a prior physical knowledge of the groundwater system is indispensable for determining the turnover time. The piston flow model commonly used for age determinations by the 14C method is an approximation applicable only in the cases of low dispersion. In some cases the stable-isotope method aids in the interpretation of systems containing mixed waters of different ages. However, when 14C method is used for mixed-water systems a serious mistake may arise by neglecting the different bicarbonate contents in particular water components.

  12. Trends in stratospheric ozone profiles using functional mixed models

    NASA Astrophysics Data System (ADS)

    Park, A. Y.; Guillas, S.; Petropavlovskikh, I.

    2013-05-01

    This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkher ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed as it penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data driven basis functions are obtained. Secondly we estimate the effects of covariates - month, year (trend), quasi biennial oscillation, the Solar cycle, arctic oscillation and the El Niño/Southern Oscillation cycle - on the principal component scores of ozone profiles over time using generalized additive models. The effects are smooth functions of the covariates, and are represented by knot-based regression cubic splines. Finally we employ generalized additive mixed effects models incorporating a more complex error structure that reflects the observed seasonality in the data. The analysis provides more accurate estimates of influences and trends, together with enhanced uncertainty quantification. We are able to capture fine variations in the time evolution of the profiles such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder. The strongly declining trends over 2003-2011 for altitudes of 32-64 hPa show that stratospheric ozone is not yet fully recovering.

  13. An Integrated Model of Co-ordinated Community-Based Care.

    PubMed

    Scharlach, Andrew E; Graham, Carrie L; Berridge, Clara

    2015-08-01

    Co-ordinated approaches to community-based care are a central component of current and proposed efforts to help vulnerable older adults obtain needed services and supports and reduce unnecessary use of health care resources. This study examines ElderHelp Concierge Club, an integrated community-based care model that includes comprehensive personal and environmental assessment, multilevel care co-ordination, a mix of professional and volunteer service providers, and a capitated, income-adjusted fee model. Evaluation includes a retrospective study (n = 96) of service use and perceived program impact, and a prospective study (n = 21) of changes in participant physical and social well-being and health services utilization. Over the period of this study, participants showed greater mobility, greater ability to meet household needs, greater access to health care, reduced social isolation, reduced home hazards, fewer falls, and greater perceived ability to obtain assistance needed to age in place. This study provides preliminary evidence that an integrated multilevel care co-ordination approach may be an effective and efficient model for serving vulnerable community-based elders, especially low and moderate-income elders who otherwise could not afford the cost of care. The findings suggest the need for multisite controlled studies to more rigorously evaluate program impacts and the optimal mix of various program components. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles.

    PubMed

    Estillore, Armando D; Morris, Holly S; Or, Victor W; Lee, Hansol D; Alves, Michael R; Marciano, Meagan A; Laskina, Olga; Qin, Zhen; Tivanski, Alexei V; Grassian, Vicki H

    2017-08-09

    Individual airborne sea spray aerosol (SSA) particles show diversity in their morphologies and water uptake properties that are highly dependent on the biological, chemical, and physical processes within the sea subsurface and the sea surface microlayer. In this study, hygroscopicity data for model systems of organic compounds of marine origin mixed with NaCl are compared to data for authentic SSA samples collected in an ocean-atmosphere facility providing insights into the SSA particle growth, phase transitions and interactions with water vapor in the atmosphere. In particular, we combine single particle morphology analyses using atomic force microscopy (AFM) with hygroscopic growth measurements in order to provide important insights into particle hygroscopicity and the surface microstructure. For model systems, a range of simple and complex carbohydrates were studied including glucose, maltose, sucrose, laminarin, sodium alginate, and lipopolysaccharides. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM). It is shown here that the E-AIM model describes well the deliquescence transition and hygroscopic growth at low mass ratios but not as well for high ratios, most likely due to a high organic volume fraction. AFM imaging reveals that the equilibrium morphology of these single-component organic particles is amorphous. When NaCl is mixed with the organics, the particles adopt a core-shell morphology with a cubic NaCl core and the organics forming a shell similar to what is observed for the authentic SSA samples. The observation of such core-shell morphologies is found to be highly dependent on the salt to organic ratio and varies depending on the nature and solubility of the organic component. Additionally, single particle organic volume fraction AFM analysis of NaCl : glucose and NaCl : laminarin mixtures shows that the ratio of salt to organics in solution does not correspond exactly for individual particles - showing diversity within the ensemble of particles produced even for a simple two component system.

  15. A Facility and Architecture for Autonomy Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.

  16. Equilibrium isotherm and kinetic studies for the simultaneous removal of phenol and cyanide by use of S. odorifera (MTCC 5700) immobilized on coconut shell activated carbon

    NASA Astrophysics Data System (ADS)

    Singh, Neetu; Balomajumder, Chandrajit

    2017-10-01

    In this study, simultaneous removal of phenol and cyanide by a microorganism S. odorifera (MTCC 5700) immobilized onto coconut shell activated carbon surface (CSAC) was studied in batch reactor from mono and binary component aqueous solution. Activated carbon was derived from coconut shell by chemical activation method. Ferric chloride (Fecl3), used as surface modification agents was applied to biomass. Optimum biosorption conditions were obtained as a function of biosorbent dosage, pH, temperature, contact time and initial phenol and cyanide concentration. To define the equilibrium isotherms, experimental data were analyzed by five mono component isotherm and six binary component isotherm models. The higher uptake capacity of phenol and cyanide onto CSAC biosorbent surface was 450.02 and 2.58 mg/g, respectively. Nonlinear regression analysis was used for determining the best fit model on the basis of error functions and also for calculating the parameters involved in kinetic and isotherm models. The kinetic study results revealed that Fractal-like mixed first second order model and Brouser-Weron-Sototlongo models for phenol and cyanide were capable to offer accurate explanation of biosorption kinetic. According to the experimental data results, CSAC with immobilization of bacterium S. odorifera (MTCC 5700) seems to be an alternative and effective biosorbent for the elimination of phenol and cyanide from binary component aqueous solution.

  17. Sediment fingerprinting experiments to test the sensitivity of multivariate mixing models

    NASA Astrophysics Data System (ADS)

    Gaspar, Leticia; Blake, Will; Smith, Hugh; Navas, Ana

    2014-05-01

    Sediment fingerprinting techniques provide insight into the dynamics of sediment transfer processes and support for catchment management decisions. As questions being asked of fingerprinting datasets become increasingly complex, validation of model output and sensitivity tests are increasingly important. This study adopts an experimental approach to explore the validity and sensitivity of mixing model outputs for materials with contrasting geochemical and particle size composition. The experiments reported here focused on (i) the sensitivity of model output to different fingerprint selection procedures and (ii) the influence of source material particle size distributions on model output. Five soils with significantly different geochemistry, soil organic matter and particle size distributions were selected as experimental source materials. A total of twelve sediment mixtures were prepared in the laboratory by combining different quantified proportions of the < 63 µm fraction of the five source soils i.e. assuming no fluvial sorting of the mixture. The geochemistry of all source and mixture samples (5 source soils and 12 mixed soils) were analysed using X-ray fluorescence (XRF). Tracer properties were selected from 18 elements for which mass concentrations were found to be significantly different between sources. Sets of fingerprint properties that discriminate target sources were selected using a range of different independent statistical approaches (e.g. Kruskal-Wallis test, Discriminant Function Analysis (DFA), Principal Component Analysis (PCA), or correlation matrix). Summary results for the use of the mixing model with the different sets of fingerprint properties for the twelve mixed soils were reasonably consistent with the initial mixing percentages initially known. Given the experimental nature of the work and dry mixing of materials, geochemical conservative behavior was assumed for all elements, even for those that might be disregarded in aquatic systems (e.g. P). In general, the best fits between actual and modeled proportions were found using a set of nine tracer properties (Sr, Rb, Fe, Ti, Ca, Al, P, Si, K, Si) that were derived using DFA coupled with a multivariate stepwise algorithm, with errors between real and estimated value that did not exceed 6.7 % and values of GOF above 94.5 %. The second set of experiments aimed to explore the sensitivity of model output to variability in the particle size of source materials assuming that a degree of fluvial sorting of the resulting mixture took place. Most particle size correction procedures assume grain size affects are consistent across sources and tracer properties which is not always the case. Consequently, the < 40 µm fraction of selected soil mixtures was analysed to simulate the effect of selective fluvial transport of finer particles and the results were compared to those for source materials. Preliminary findings from this experiment demonstrate the sensitivity of the numerical mixing model outputs to different particle size distributions of source material and the variable impact of fluvial sorting on end member signatures used in mixing models. The results suggest that particle size correction procedures require careful scrutiny in the context of variable source characteristics.

  18. Istopically Defined Source Reservoirs of Primitive Magmas in the East African Rift.

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Furman, T.; Hanan, B.

    2005-12-01

    Extension within the East African Rift is a function of the interaction between plume-driven uplift and far-field stresses associated with plate tectonic processes. Geochemical and isotopic investigation of primitive basalts from the Main Ethiopian Rift (MER) reveals systematic spatial variations in the contributions from distinct and identifiable source reservoirs that, in turn help identify the mechanisms by which along-axis rifting has progressed. The Sr-Nd-Pb isotopic characteristics of MER basalts can be described by a three-component mixing model involving the long-lived Afar plume, a depleted mantle component similar to the source region for Gulf of Aden MORB from east of 48° E and a reservoir that is likely lithospheric (sub-continental mantle lithosphere, magmatic underplate or lower crust). Quaternary basalts in the central MER exhibit a systematic decrease in plume influence southward from 9.5° N to 8° N, i.e., away from the modern surface expression of the Afar plume in Djibouti and Erta 'Ale. The composition of the Afar plume component is comparable to the "C" mantle reservoir. This southward decrease in plume influence is coupled with an increase in the influence of the lithospheric and depleted mantle components. Linear arrays observed within Pb-Pb isotopic space at each eruptive center require distinctive ratio of lithospheric + depleted mantle components mixing with variable amounts of the "C"-like plume component. This isotopic evidence suggests the depleted mantle and lithosphere mixed prior to the generation of the recent magmas. To the south, the Sr-Nd-Pb isotopic compositions of Turkana (Kenya) rift basalts record a mix of a similar "C"-like plume component and a fourth HIMU-like source component. Low 3He/4He values observed in the HIMU-dominated lavas from Turkana contrast with the higher ratios found in basalts associated with the "C"-like Afar plume. Further analysis of "C"-HIMU lavas at Turkana is required to fully constrain the He isotopic signatures. Thus, along-axis patterns in Quaternary EARS magmatism are compatible with two "C"-like plumes with contributions from the upper mantle and chemically distinct lithospheric components. Alternatively, a single "C"-like plume can account for these relationships. In the single plume scenario, the HIMU source component present in the 30 Ma Turkana lavas may represent melting of metasomatised lithosphere, derived from the accretion of island-arc-backarc basins during Pan-African events (e.g. Schilling et al., 1992). The recent plume-dominated activity in Turkana and Afar are separated by a region characterized by waning plume influence and a greater contribution from the depleted mantle. This intermediate zone, which is located in the south-central MER represents the modern site of contact between the northward propagating Kenya / Turkana Rift and the southward propagating Afar Rift zone.

  19. Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds

    NASA Astrophysics Data System (ADS)

    Ebert, M.; Worringen, A.; Benker, N.; Mertes, S.; Weingartner, E.; Weinbruch, S.

    2010-10-01

    During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and soot (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3-8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17-27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9-15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the separate components contained within the individual particles.

  20. Primitive Magnesian Andesites at Mt. Shasta, California: A Real Mix-up

    NASA Astrophysics Data System (ADS)

    Barr, J. A.; Grove, T. L.; Carlson, R. W.; Krawczynski, M. J.

    2009-12-01

    Until recently, the only described occurrence of primitive magnesian andesite (PMA) at Mt. Shasta was a cinder-pit in the saddle between Whaleback and Deer Mtns. (Location S-17 of Anderson, 1974), north of the main edifice of the volcano. We have reinvestigated PMA occurrence and collected samples from other nearby vents and associated lava flows to provide better constraints on the magmatic processes that led to the formation of this important magma type. The petrology of the PMA samples from S-17 and the newly recognized PMA occurrences nearby, point to a mixing scenario, in which a PMA is the dominant component in the mixed magma. This stands in contrast to other suggestions in which the PMA is created by mixing melts that differ strongly in composition from the PMA. This idea is not new, and previous researchers (e.g. Grove et al., 2005) have shown that crustal-level fractionation products of PMA lavas are one of the major mixing components in the Mt. Shasta plumbing system. The addition of new samples of PMA indicate that the erupted magma was a multi-component mix of two primitive magmas, the PMA and a primitive basaltic andesite (BA) as well as a minor component of evolved andesite or dacite lava. Mineral compositional data, major and trace element systematics, and Sr, Nd and Re/Os isotopic data on the expanded PMA data set provides additional constraints on the mantle melting, crustal level fractional crystallization and magma mixing processing at work underneath Mt. Shasta. The compositional evidence from surrounding lava flows better constrains the composition of the PMA end member involved in the magma mixing at ~ 57.5 wt. % SiO2 at 10.5 wt. % MgO. Petrologic and isotopic data also firmly rule out the possibility suggested by Streck et al. (2007) that the Shasta PMA was formed by mixing an evolved Shasta dacite and Trinity peridotite.

  1. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    NASA Astrophysics Data System (ADS)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  2. Adsorption of lignocelluloses of model pre-hydrolysis liquor on activated carbon.

    PubMed

    Fatehi, Pedram; Ryan, Jennifer; Ni, Yonghao

    2013-03-01

    The main objective of this work was to study the adsorption behavior of various components dissolved in the pre-hydrolysis of kraft process on activated carbon. In this work, model prehydrolysis liquor (PHL) solutions (MPHL)s were prepared via mixing various commercially available monosugars, xylan, lignin and furfural; and their adsorption performance on activated carbon (AC) was investigated. In singular (one component) MPHL/AC systems, furfural had the maximum and xylose had the minimum adsorption, and the adsorption of monosugars was basically similar on AC. Also, polydiallyldimethylammonium chloride (PDADMAC) was added (0.5 g/l) to singular xylan or lignin MPHL/AC system, which increased the lignin and xylan adsorptions to 350 and 190 mg/g on AC, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts from Mangaia, Cook-Austral islands, suggest an Archean source component in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Nebel, Oliver; Arculus, Richard J.; van Westrenen, Wim; Woodhead, Jon D.; Jenner, Frances E.; Nebel-Jacobsen, Yona J.; Wille, Martin; Eggins, Stephen M.

    2013-07-01

    Although it is widely accepted that oceanic island basalts (OIB) sample geochemically distinct mantle reservoirs including recycled oceanic crust, the composition, age, and locus of these reservoirs remain uncertain. OIB with highly radiogenic Pb isotope signatures are grouped as HIMU (high-μ, with μ = 238U/204Pb), and exhibit unique Hf-Nd isotopic characteristics, defined as ΔɛHf, deviant from a terrestrial igneous rock array that includes all other OIB types. Here we combine new Hf isotope data with previous Nd-Pb isotope measurements to assess the coupled, time-integrated Hf-Nd-Pb isotope evolution of the most extreme HIMU location (Mangaia, French Polynesia). In comparison with global MORB and other OIB types, Mangaia samples define a unique trend in coupled Hf-Nd-Pb isotope co-variations (expressed in 207Pb/206Pb vs. ΔɛHf). In a model employing subducted, dehydrated oceanic crust, mixing between present-day depleted MORB mantle (DMM) and small proportions (˜5%) of a HIMU mantle endmember can re-produce the Hf-Nd-Pb isotope systematics of global HIMU basalts (sensu stricto; i.e., without EM-1/EM-2/FOZO components). An age range of 3.5 to <2 Ga is required for HIMU endmember(s) that mix with DMM to account for the observed present-day HIMU isotope compositions, suggesting a range of age distributions rather than a single component in the mantle. Our data suggest that mixing of HIMU mantle endmembers and DMM occurs in the mantle transition zone by entrainment in secondary plumes that rise at the edge of the Pacific Large Low Seismic Velocity Zone (LLSVP). These create either pure HIMU (sensu stricto) or HIMU affected by other enriched mantle endmembers (sensu lato). If correct, this requires isolation of parts of the mantle transition zone for >3 Gyr and implies that OIB chemistry can be used to test geodynamic models.

  4. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.

  5. A possible explanation of the knee of cosmic light component spectrum from 100 TeV to 3 PeV

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Hui; Bao, Bi-Wen; Jiang, Ze-Jun; Zhang, Li

    2017-10-01

    A mixed hydrogen and helium (H + He) spectrum with a clear steepening at ∼ 700 TeV has been detected by the ARGO-YBJ experiments. In this paper, we demonstrate that the observed H + He spectrum can be reproduced well with a model of cosmic rays escaping from the supernova remnants (SNRs) in our Galaxy. In this model, particles are accelerated in a SNR through a non-linear diffusive shock acceleration mechanism. Three components of high energy light nuclei escaped from the SNR are considered. It should be noted that the proton spectrum observed by KASCADE can be also explained by this model given a higher acceleration efficiency. Supported by the National Natural Science Foundation of China (11433004, 11363006, 11103016, 11173020), Top Talents Program of Yunnan Province (2015HA030) and the Natural Science Foundation of Yunnan Province(2015FB103)

  6. Criteria for predicting the formation of single-phase high-entropy alloys

    DOE PAGES

    Troparevsky, M Claudia; Morris, James R..; Kent, Paul R.; ...

    2015-03-15

    High entropy alloys constitute a new class of materials whose very existence poses fundamental questions. Originally thought to be stabilized by the large entropy of mixing, these alloys have attracted attention due to their potential applications, yet no model capable of robustly predicting which combinations of elements will form a single-phase currently exists. Here we propose a model that, through the use of high-throughput computation of the enthalpies of formation of binary compounds, is able to confirm all known high-entropy alloys while rejecting similar alloys that are known to form multiple phases. Despite the increasing entropy, our model predicts thatmore » the number of potential single-phase multicomponent alloys decreases with an increasing number of components: out of more than two million possible 7-component alloys considered, fewer than twenty single-phase alloys are likely.« less

  7. Monticello - A glass-rich howardite

    NASA Technical Reports Server (NTRS)

    Olsen, Edward J.; Dod, Bruce D.; Schmitt, Roman A.; Sipiera, Paul P.

    1987-01-01

    Monticello is a new howardite similar to Malvern in that it contains abundant (15 percent) glass fragments, which show a range of compositions from olivine-normative to quartz-normative. Like Kapoeta, it contains pyroxene grains that range up to highly magnesian compositions, Fs16. Because their pyroxenes are more magnesian than those occurring in diogenites, Monticello and Kapoeta are exceptions to the simple two-component mixing model in which howardites are considered to be mechanical mixtures of fragmented eucrites and diogenites. Monticello also contains clasts of what appear to be a cumulate eucrite and a noncumulate eucrite, as well as a radiating pyroxene chondrule from a chondrite. Monticello is a regolith breccia containing more evolved components than are usually considered in eucrite-diogenite genesis models. As such, it supports those models that involve reworking of a complex parent body crust rather than straightforward partial melting of primitive chondritic parent material.

  8. Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms Based on Kalman Filter Estimation

    NASA Technical Reports Server (NTRS)

    Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.

  9. Steady state RANS simulations of temperature fluctuations in single phase turbulent mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kickhofel, J.; Fokken, J.; Kapulla, R.

    2012-07-01

    Single phase turbulent mixing in nuclear power plant circuits where a strong temperature gradient is present is known to precipitate pipe failure due to thermal fatigue. Experiments in a square mixing channel offer the opportunity to study the phenomenon under simple and easily reproducible boundary conditions. Measurements of this kind have been performed extensively at the Paul Scherrer Inst. in Switzerland with a high density of instrumentation in the Generic Mixing Experiment (GEMIX). As a fundamental mixing phenomena study closely related to the thermal fatigue problem, the experimental results from GEMIX are valuable for the validation of CFD codes strivingmore » to accurately simulate both the temperature and velocity fields in single phase turbulent mixing. In the experiments two iso-kinetic streams meet at a shallow angle of 3 degrees and mix in a straight channel of square cross-section under various degrees of density, temperature, and viscosity stratification over a range of Reynolds numbers ranging from 5*10{sup 3} to 1*10{sup 5}. Conductivity measurements, using wire-mesh and wall sensors, as well as optical measurements, using particle image velocimetry, were conducted with high temporal and spatial resolutions (up to 2.5 kHz and 1 mm in the case of the wire mesh sensor) in the mixing zone, downstream of a splitter plate. The present paper communicates the results of RANS modeling of selected GEMIX tests. Steady-state CFD calculations using a RANS turbulence model represent an inexpensive method for analyzing large and complex components in commercial nuclear reactors, such as the downcomer and reactor pressure vessel heads. Crucial to real world applicability, however, is the ability to model turbulent heat fluctuations in the flow; the Turbulent Heat Flux Transport model developed by ANSYS CFX is capable, by implementation of a transport equation for turbulent heat fluxes, of readily modeling these values. Furthermore, the closure of the turbulent heat flux transport equation evokes a transport equation for the variance of the enthalpy. It is therefore possible to compare the modeled fluctuations of the liquid temperature directly with the scalar fluctuations recorded experimentally with the wire-mesh. Combined with a working Turbulent Heat Flux Transport model, complex mixing problems in large geometries could be better understood. We aim for the validation of Reynolds Stress based RANS simulations extended by the Turbulent Heat Flux Transport model by modeling the GEMIX experiments in detail. Numerical modeling has been performed using both BSL and SSG Reynolds Stress Models in a test matrix comprising experimental trials at the GEMIX facility. We expand on the turbulent mixing RANS CFD results of (Manera 2009) in a few ways. In the GEMIX facility we introduce density stratification in the flow while removing the characteristic large scale vorticity encountered in T-junctions and therefore find better conditions to check the diffusive conditions in the model. Furthermore, we study the performance of the model in a very different, simpler scalar fluctuation spectrum. The paper discusses the performance of the model regarding the dissipation of the turbulent kinetic energy and dissipation of the enthalpy variance. A novel element is the analyses of cases with density stratification. (authors)« less

  10. An Empirical Temperature Variance Source Model in Heated Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  11. Modelling fully convective stars in eclipsing binaries: KOI-126 and CM Draconis

    NASA Astrophysics Data System (ADS)

    Spada, F.; Demarque, P.

    2012-05-01

    We present models of the components of the systems KOI-126 and CM Draconis, the two eclipsing binary systems known to date to contain stars with masses low enough to have fully convective interiors. We are able to model satisfactorily the system KOI-126, finding consistent solutions for the radii and surface temperatures of all three components, using a solar-like value of the mixing-length parameter α in the convection zone and PHOENIX NextGen 1D model atmospheres for the surface boundary conditions. Depending on the chemical composition, we estimate the age of the system to be in the range 3-5 Gyr. For CM Draconis, on the other hand, we cannot reconcile our models with the observed radii and Teff using the current metal-poor composition estimate based on kinematics. Higher metallicities lessen but do not remove the discrepancy. We then explore the effect of varying the mixing-length parameter α. As previously noted in the literature, a reduced α can be used as a simple measure of the lower convective efficiency due to rotation and induced magnetic fields. Our models show a sensitivity to α (for α < 1.0) sufficient to partially account for the radius discrepancies. It is, however, impossible to reconcile the models with the observations on the basis of the effect of the reduced α alone. We therefore suggest that the combined effects of high metallicity and α reduction could explain the observations of CM Draconis. For example, increasing the metallicity of the system towards super-solar values (i.e. Z= 2 Z⊙) yields an agreement within 2σ with α= 1.0.

  12. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  13. Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Duca, Stéphane; Leclerc, Bernard; Tchoreloff, Pierre

    2011-05-30

    In the pharmaceutical industry, tablets are obtained by the compaction of two or more components which have different physical properties and compaction behaviours. Therefore, it could be interesting to predict the physical properties of the mixture using the single-component results. In this paper, we have focused on the prediction of the compressibility of binary mixtures using the Kawakita model. Microcrystalline cellulose (MCC) and L-alanine were compacted alone and mixed at different weight fractions. The volume reduction, as a function of the compaction pressure, was acquired during the compaction process ("in-die") and after elastic recovery ("out-of-die"). For the pure components, the Kawakita model is well suited to the description of the volume reduction. For binary mixtures, an original approach for the prediction of the volume reduction without using the effective Kawakita parameters was proposed and tested. The good agreement between experimental and predicted data proved that this model was efficient to predict the volume reduction of MCC and L-alanine mixtures during compaction experiments. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Corrected confidence bands for functional data using principal components.

    PubMed

    Goldsmith, J; Greven, S; Crainiceanu, C

    2013-03-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.

  15. Corrected Confidence Bands for Functional Data Using Principal Components

    PubMed Central

    Goldsmith, J.; Greven, S.; Crainiceanu, C.

    2014-01-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003

  16. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  17. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  18. Entropy of Mixing of Distinguishable Particles

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2014-01-01

    The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…

  19. Higgs boson mass corrections in the μ ν SSM with effective potential methods

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Bin; Feng, Tai-Fu; Yang, Xiu-Yi; Zhao, Shu-Min; Ning, Guo-Zhu

    2017-04-01

    To solve the μ problem of the MSSM, the μ from ν supersymmetric standard model (μ ν SSM ) introduces three singlet right-handed neutrino superfields ν^ic, which lead to the mixing of the neutral components of the Higgs doublets with the sneutrinos, producing a relatively large C P -even neutral scalar mass matrix. In this work, we analytically diagonalize the C P -even neutral scalar mass matrix and analyze in detail how the mixing impacts the lightest Higgs boson mass. We also give an approximate expression for the lightest Higgs boson mass. Simultaneously, we consider the radiative corrections to the Higgs boson masses with effective potential methods.

  20. Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Li, Jie; Wang, Zifa; Chen, Xueshun; Fu, Pingqing; Yang, Ting; Kobayashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Yamamoto, Shigekazu

    2017-06-01

    The impact of heterogeneous reactions on the chemical components and mixing state of dust particles are investigated by observations and an air quality model over northern China between March 27, 2015 and April 2, 2015. Synergetic observations were conducted using a polarization optical particle counter (POPC), a depolarized two-wavelength Lidar and filter samples in Beijing. During this period, dust plume passed through Beijing on March 28, and flew back on March 29 because of synoptic weather changes. Mineral dust mixed with anthropogenic pollutants was simulated using the Nested Air Quality Prediction Modeling System (NAQPMS) to examine the role of heterogeneous processes on the dust. A comparison of observations shows that the NAQPMS successfully reproduces the time series of the vertical profile, particulate matter concentration, and chemical components of fine mode (diameter ≤ 2.5 μm) and coarse mode (2.5 μm < diameter ≤ 10 μm) particles. After considering the heterogeneous reactions, the simulated nitrate, ammonium, and sulfate are in better agreement with the observed values during this period. The modeling results with observations show that heterogeneous reactions are the major mechanisms producing nitrate reaching 19 μg/m3, and sulfate reaching 7 μg/m3, on coarse mode dust particles, which were almost 100% of the coarse mode nitrate and sulfate. The heterogeneous reactions are also important for fine mode secondary aerosols, for producing 17% of nitrate and 11% of sulfate on fine mode dust particles, with maximum mass concentrations of 6 μg/m3 and 4 μg/m3. In contrast, due to uptake of acid gases (e.g. HNO3 and SO2) by dust particles, the fine mode anthropogenic ammonium nitrate and ammonium sulfate decreased. As a result, the total fine mode nitrate decreased with a maximum of 14 μg/m3, while the total fine mode sulfate increased with a maximum of 2 μg/m3. Because of heterogeneous reactions, 15% of fine mode secondary inorganic aerosols and the entire coarse mode nitrate and sulfate were internally mixed with dust particles. The significant alterations of the chemical composition and mixing state of particles due to heterogeneous reactions are important for the direct and indirect climate effects of dust and anthropogenic aerosols.

  1. Recycle of mixed automotive plastics: A model study

    NASA Astrophysics Data System (ADS)

    Woramongconchai, Somsak

    This research investigated blends of virgin automotive plastics which were identified through market analysis. The intent was that this study could be used as a basis for further research in blends of automotive plastics recyclate. The effects of temperature, shear, time, and degree of mixing in a two-roll mill, a single-screw extruder, and a twin-screw extruder were investigated. Properties were evaluated in terms of melt flow, rigidity, strength, impact, heat resistance, electrical resistivity, color, and resistance to water and gasoline. Torque rheometry, dynamic mechanical analysis (DMA), optical and scanning electron microscopy were used to characterize the processability and morphology of major components of the blends. The two-roll mill was operated at high temperature, short time, and low roll speed to avoid discolored and degraded materials. The single-screw extruder and twin-screw extruder were operated at medium and high temperature and high screw speed, respectively, for optimizing head pressure, residence time, shear and degree of mixing of the materials. Melt index increased with extrusion temperature. Flexural modulus increased with the processing temperatures in milling or twin-screw extrusion, but decreased with the increasing single-screw extrusion temperature. Tensile modulus was also enhanced by increasing processing temperature. The tensile strengths for each process were similar and relatively low. The impact strength increased with temperature and roll speed in two-roll milling, was unaffected by the single-screw extrusion temperature and decreased with increasing twin-screw extrusion temperature. Heat resistance was always reduced by higher processing temperature. The volume resistivity increased, water absorption was unaffected and gasoline absorption altered by increased processing temperature. The latter increased somewhat with mill temperature, roll speed (two-roll mill) and higher extrusion temperature (single-screw extruder), but decreased with increased twin-screw extrusion temperature. The flexural modulus of the recycled mixed automotive plastics expected in 2003 was higher than the 1980s and 1990 recycle. Flexural strength effects were not large enough for serious consideration, but were more dominant when compared to those in the 1980s and 1990s. Impact strengths at 20-30 J/m were the lowest value compared to the 1980s and 1990s mixed automotive recycle. Torque rheometry, dynamic mechanical analysis and optical and electron microscopy agreed with each other on the characterization of the processability and morphology of the blends. LLDPE and HDPE were miscible while PP was partially miscible with polyethylene. ABS and nylon-6 were immiscible with the polyolefins, but partially miscible with each other. As expected, the polyurethane foam was immiscible with the other components. The minor components of the model recycle of mixed automotive materials were probably partially miscible with ABS/nylon-6, but there were multiple and unresolved phases in the major blends.

  2. Family Functioning in Families with a Child with Down Syndrome: A Mixed Methods Approach

    ERIC Educational Resources Information Center

    Povee, K.; Roberts, L.; Bourke, J.; Leonard, H.

    2012-01-01

    Background: This study aimed to explore the factors that predict functioning in families with a child with Down syndrome using a mixed methods design. The quantitative component examined the effect of maladaptive and autism-spectrum behaviours on the functioning of the family while the qualitative component explored the impact of having a child…

  3. Machine for applying a two component resin to a roadway surface

    DOEpatents

    Huszagh, Donald W.

    1985-01-01

    A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including apparatus for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.

  4. Machine for applying a two component resin to a roadway surface

    DOEpatents

    Huszagh, D.W.

    1984-01-01

    A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including means for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.

  5. Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, Kuo-Nan

    2016-02-09

    Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracingmore » computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the computation of light absorption and scattering by complex and inhomogeneous particles for application to aggregates and snow grains with external and internal mixing structures. We demonstrated that a small black (BC) particle on the order of 1 μm internally mixed with snow grains could effectively reduce visible snow albedo by as much as 5–10%. Following this work and within the context of DOE support, we have made two key accomplishments presented in the attached final report.« less

  6. Tools for quantifying isotopic niche space and dietary variation at the individual and population level.

    USGS Publications Warehouse

    Newsome, Seth D.; Yeakel, Justin D.; Wheatley, Patrick V.; Tinker, M. Tim

    2012-01-01

    Ecologists are increasingly using stable isotope analysis to inform questions about variation in resource and habitat use from the individual to community level. In this study we investigate data sets from 2 California sea otter (Enhydra lutris nereis) populations to illustrate the advantages and potential pitfalls of applying various statistical and quantitative approaches to isotopic data. We have subdivided these tools, or metrics, into 3 categories: IsoSpace metrics, stable isotope mixing models, and DietSpace metrics. IsoSpace metrics are used to quantify the spatial attributes of isotopic data that are typically presented in bivariate (e.g., δ13C versus δ15N) 2-dimensional space. We review IsoSpace metrics currently in use and present a technique by which uncertainty can be included to calculate the convex hull area of consumers or prey, or both. We then apply a Bayesian-based mixing model to quantify the proportion of potential dietary sources to the diet of each sea otter population and compare this to observational foraging data. Finally, we assess individual dietary specialization by comparing a previously published technique, variance components analysis, to 2 novel DietSpace metrics that are based on mixing model output. As the use of stable isotope analysis in ecology continues to grow, the field will need a set of quantitative tools for assessing isotopic variance at the individual to community level. Along with recent advances in Bayesian-based mixing models, we hope that the IsoSpace and DietSpace metrics described here will provide another set of interpretive tools for ecologists.

  7. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  8. Seasonality of eddy kinetic energy in an eddy permitting global climate model

    NASA Astrophysics Data System (ADS)

    Uchida, Takaya; Abernathey, Ryan; Smith, Shafer

    2017-10-01

    We examine the seasonal cycle of upper-ocean mesoscale turbulence in a high resolution CESM climate simulation. The ocean model component (POP) has 0.1° resolution, mesoscale resolving at low and middle latitudes. Seasonally and regionally resolved wavenumber power spectra are calculated for sea-surface eddy kinetic energy (EKE). Although the interpretation of the spectral slopes in terms of turbulence theory is complicated by the strong presence of dissipation and the narrow inertial range, the EKE spectra consistently show higher power at small scales during winter throughout the ocean. Potential hypotheses for this seasonality are investigated. Diagnostics of baroclinc energy conversion rates and evidence from linear quasigeostrophic stability analysis indicate that seasonally varying mixed-layer instability is responsible for the seasonality in EKE. The ability of this climate model, which is not considered submesoscale resolving, to produce mixed layer instability although damped by dissipation, demonstrates the ubiquity and robustness of this process for modulating upper ocean EKE.

  9. Hybrid Model Predictive Control for Sequential Decision Policies in Adaptive Behavioral Interventions.

    PubMed

    Dong, Yuwen; Deshpande, Sunil; Rivera, Daniel E; Downs, Danielle S; Savage, Jennifer S

    2014-06-01

    Control engineering offers a systematic and efficient method to optimize the effectiveness of individually tailored treatment and prevention policies known as adaptive or "just-in-time" behavioral interventions. The nature of these interventions requires assigning dosages at categorical levels, which has been addressed in prior work using Mixed Logical Dynamical (MLD)-based hybrid model predictive control (HMPC) schemes. However, certain requirements of adaptive behavioral interventions that involve sequential decision making have not been comprehensively explored in the literature. This paper presents an extension of the traditional MLD framework for HMPC by representing the requirements of sequential decision policies as mixed-integer linear constraints. This is accomplished with user-specified dosage sequence tables, manipulation of one input at a time, and a switching time strategy for assigning dosages at time intervals less frequent than the measurement sampling interval. A model developed for a gestational weight gain (GWG) intervention is used to illustrate the generation of these sequential decision policies and their effectiveness for implementing adaptive behavioral interventions involving multiple components.

  10. Radiogenic and Stable Isotope and Hydrogeochemical Investigation of Groundwater, Pajarito Plateau and Surrounding Areas, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Longmire, Michael Dale, Dale Counce, Andrew Manning, Toti Larson, Kim Granzow, Robert Gray, and Brent Newman

    2007-07-15

    From October 2004 through February 2006, Los Alamos National Laboratory, the New Mexico Environment Department-Department of Energy Oversight Bureau, and the United States Geological Survey conducted a hydrochemical investigation. The purpose of the investigation was to evaluate groundwater flow paths and determine groundwater ages using tritium/helium-3 and carbon-14 along with aqueous inorganic chemistry. Knowledge of groundwater age and flow paths provides a technical basis for selecting wells and springs for monitoring. Groundwater dating is also relevant to groundwater resource management, including aquifer sustainability, especially during periods of long-term drought. At Los Alamos, New Mexico, groundwater is either modern (post-1943), submodernmore » (pre-1943), or mixed (containing both pre- and post-1943 components). The regional aquifer primarily consists of submodern groundwater. Mixed-age groundwater results from initial infiltration of surface water, followed by mixing with perched alluvial and intermediate-depth groundwater and the regional aquifer. No groundwater investigation is complete without using tritium/helium-3 and carbon-14 dating methods to quantify amounts of modern, mixed, and/or submodern components present in samples. Computer models of groundwater flow and transport at Los Alamos should be calibrated to groundwater ages for perched intermediate zones and the regional aquifer determined from this investigation. Results of this study clearly demonstrate the occurrence of multiple flow paths and groundwater ages occurring within the Sierra de los Valles, beneath the Pajarito Plateau, and at the White Rock Canyon springs. Localized groundwater recharge occurs within several canyons dissecting the Pajarito Plateau. Perched intermediate-depth groundwater and the regional aquifer beneath Pueblo Canyon, Los Alamos Canyon, Sandia Canyon, Mortandad Canyon, Pajarito Canyon, and Canon de Valle contain a modern component. This modern component consists of tritium, nitrate, perchlorate, chromate, boron, uranium, and/or high explosive compounds. It is very unlikely that there is only one transport or travel time, ranging from 25 to 62 years, for these conservative chemicals migrating from surface water to the regional water table. Lengths of groundwater flow paths vary within deep saturated zones containing variable concentrations of tritium. The 4-series springs discharging within White Rock Canyon contain a modern component of groundwater, primarily tritium. Average groundwater ages for the regional aquifer beneath the Pajarito Plateau varied from 565 to 10,817 years, based on unadjusted carbon-14 measurements.« less

  11. Three multimedia models used at hazardous and radioactive waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selectionmore » and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.« less

  12. Mixing characterization of highly underexpanded fluid jets with real gas expansion

    NASA Astrophysics Data System (ADS)

    Förster, Felix J.; Baab, Steffen; Steinhausen, Christoph; Lamanna, Grazia; Ewart, Paul; Weigand, Bernhard

    2018-03-01

    We report a comprehensive speed of sound database for multi-component mixing of underexpanded fuel jets with real gas expansion. The paper presents several reference test cases with well-defined experimental conditions providing quantitative data for validation of computational simulations. Two injectant fluids, fundamentally different with respect to their critical properties, are brought to supercritical state and discharged into cold nitrogen at different pressures. The database features a wide range of nozzle pressure ratios covering the regimes that are generally classified as highly and extremely highly underexpanded jets. Further variation is introduced by investigating different injection temperatures. Measurements are obtained along the centerline at different axial positions. In addition, an adiabatic mixing model based on non-ideal thermodynamic mixture properties is used to extract mixture compositions from the experimental speed of sound data. The concentration data obtained are complemented by existing experimental data and represented by an empirical fit.

  13. Effect of nearest-neighbor ions on excited ionic states, emission spectra, and line profiles in hot and dense plasmas

    NASA Technical Reports Server (NTRS)

    Salzmann, D.; Stein, J.; Goldberg, I. B.; Pratt, R. H.

    1991-01-01

    The effect of the cylindrical symmetry imposed by the nearest-neighbor ions on the ionic levels and the emission spectra of a Li-like Kr ion immersed in hot and dense plasmas is investigated using the Stein et al. (1989) two-centered model extended to include computations of the line profiles, shifts, and widths, as well as the energy-level mixing and the forbidden transition probabilities. It is shown that the cylindrical symmetry mixes states with different orbital quantum numbers l, particularly for highly excited states, and, thereby, gives rise to forbidden transitions in the emission spectrum. Results are obtained for the variation of the ionic level shifts and mixing coefficients with the distance to the nearest neighbor. Also obtained are representative computed spectra that show the density effects on the spectral line profiles, shifts, and widths, and the forbidden components in the spectrum.

  14. Examining the Variability of Sleep Patterns during Treatment for Chronic Insomnia: Application of a Location-Scale Mixed Model

    PubMed Central

    Ong, Jason C.; Hedeker, Donald; Wyatt, James K.; Manber, Rachel

    2016-01-01

    Study Objectives: The purpose of this study was to introduce a novel statistical technique called the location-scale mixed model that can be used to analyze the mean level and intra-individual variability (IIV) using longitudinal sleep data. Methods: We applied the location-scale mixed model to examine changes from baseline in sleep efficiency on data collected from 54 participants with chronic insomnia who were randomized to an 8-week Mindfulness-Based Stress Reduction (MBSR; n = 19), an 8-week Mindfulness-Based Therapy for Insomnia (MBTI; n = 19), or an 8-week self-monitoring control (SM; n = 16). Sleep efficiency was derived from daily sleep diaries collected at baseline (days 1–7), early treatment (days 8–21), late treatment (days 22–63), and post week (days 64–70). The behavioral components (sleep restriction, stimulus control) were delivered during late treatment in MBTI. Results: For MBSR and MBTI, the pre-to-post change in mean levels of sleep efficiency were significantly larger than the change in mean levels for the SM control, but the change in IIV was not significantly different. During early and late treatment, MBSR showed a larger increase in mean levels of sleep efficiency and a larger decrease in IIV relative to the SM control. At late treatment, MBTI had a larger increase in the mean level of sleep efficiency compared to SM, but the IIV was not significantly different. Conclusions: The location-scale mixed model provides a two-dimensional analysis on the mean and IIV using longitudinal sleep diary data with the potential to reveal insights into treatment mechanisms and outcomes. Citation: Ong JC, Hedeker D, Wyatt JK, Manber R. Examining the variability of sleep patterns during treatment for chronic insomnia: application of a location-scale mixed model. J Clin Sleep Med 2016;12(6):797–804. PMID:26951414

  15. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single streams, efforts are underway to generate a data bank and algorithm applicable to dual-stream jets. Shock-associated noise in high-powered jets such as military aircraft can benefit from these predictions.

  16. Towards Solving the Mixing Problem in the Decomposition of Geophysical Time Series by Independent Component Analysis

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)

    2000-01-01

    The use of the Principal Component Analysis technique for the analysis of geophysical time series has been questioned in particular for its tendency to extract components that mix several physical phenomena even when the signal is just their linear sum. We demonstrate with a data simulation experiment that the Independent Component Analysis, a recently developed technique, is able to solve this problem. This new technique requires the statistical independence of components, a stronger constraint, that uses higher-order statistics, instead of the classical decorrelation a weaker constraint, that uses only second-order statistics. Furthermore, ICA does not require additional a priori information such as the localization constraint used in Rotational Techniques.

  17. Using a Mixed-Methods RE-AIM Framework to Evaluate Community Health Programs for Older Latinas.

    PubMed

    Schwingel, Andiara; Gálvez, Patricia; Linares, Deborah; Sebastião, Emerson

    2017-06-01

    This study used the RE-AIM (Reach, Effectiveness, Adoption, Implementation, and Maintenance) framework to evaluate a promotora-led community health program designed for Latinas ages 50 and older that sought to improve physical activity, nutrition, and stress management. A mixed-methods evaluation approach was administered at participant and organizational levels with a focus on the efficacy, adoption, implementation, and maintenance components of the RE-AIM theoretical model. The program was shown to be effective at improving participants' eating behaviors, increasing their physical activity levels, and lowering their depressive symptoms. Promotoras felt motivated and sufficiently prepared to deliver the program. Some implementation challenges were reported. More child care opportunities and an increased focus on mental well-being were suggested. The promotora delivery model has promise for program sustainability with both promotoras and participants alike expressing interest in leading future programs.

  18. Hierarchical Bayes approach for subgroup analysis.

    PubMed

    Hsu, Yu-Yi; Zalkikar, Jyoti; Tiwari, Ram C

    2017-01-01

    In clinical data analysis, both treatment effect estimation and consistency assessment are important for a better understanding of the drug efficacy for the benefit of subjects in individual subgroups. The linear mixed-effects model has been used for subgroup analysis to describe treatment differences among subgroups with great flexibility. The hierarchical Bayes approach has been applied to linear mixed-effects model to derive the posterior distributions of overall and subgroup treatment effects. In this article, we discuss the prior selection for variance components in hierarchical Bayes, estimation and decision making of the overall treatment effect, as well as consistency assessment of the treatment effects across the subgroups based on the posterior predictive p-value. Decision procedures are suggested using either the posterior probability or the Bayes factor. These decision procedures and their properties are illustrated using a simulated example with normally distributed response and repeated measurements.

  19. The impacts of precipitation amount simulation on hydrological modeling in Nordic watersheds

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Brissette, Fancois; Chen, Jie

    2013-04-01

    Stochastic modeling of daily precipitation is very important for hydrological modeling, especially when no observed data are available. Precipitation is usually modeled by two component model: occurrence generation and amount simulation. For occurrence simulation, the most common method is the first-order two-state Markov chain due to its simplification and good performance. However, various probability distributions have been reported to simulate precipitation amount, and spatiotemporal differences exist in the applicability of different distribution models. Therefore, assessing the applicability of different distribution models is necessary in order to provide more accurate precipitation information. Six precipitation probability distributions (exponential, Gamma, Weibull, skewed normal, mixed exponential, and hybrid exponential/Pareto distributions) are directly and indirectly evaluated on their ability to reproduce the original observed time series of precipitation amount. Data from 24 weather stations and two watersheds (Chute-du-Diable and Yamaska watersheds) in the province of Quebec (Canada) are used for this assessment. Various indices or statistics, such as the mean, variance, frequency distribution and extreme values are used to quantify the performance in simulating the precipitation and discharge. Performance in reproducing key statistics of the precipitation time series is well correlated to the number of parameters of the distribution function, and the three-parameter precipitation models outperform the other models, with the mixed exponential distribution being the best at simulating daily precipitation. The advantage of using more complex precipitation distributions is not as clear-cut when the simulated time series are used to drive a hydrological model. While the advantage of using functions with more parameters is not nearly as obvious, the mixed exponential distribution appears nonetheless as the best candidate for hydrological modeling. The implications of choosing a distribution function with respect to hydrological modeling and climate change impact studies are also discussed.

  20. A brief measure of attitudes toward mixed methods research in psychology.

    PubMed

    Roberts, Lynne D; Povee, Kate

    2014-01-01

    The adoption of mixed methods research in psychology has trailed behind other social science disciplines. Teaching psychology students, academics, and practitioners about mixed methodologies may increase the use of mixed methods within the discipline. However, tailoring and evaluating education and training in mixed methodologies requires an understanding of, and way of measuring, attitudes toward mixed methods research in psychology. To date, no such measure exists. In this article we present the development and initial validation of a new measure: Attitudes toward Mixed Methods Research in Psychology. A pool of 42 items developed from previous qualitative research on attitudes toward mixed methods research along with validation measures was administered via an online survey to a convenience sample of 274 psychology students, academics and psychologists. Principal axis factoring with varimax rotation on a subset of the sample produced a four-factor, 12-item solution. Confirmatory factor analysis on a separate subset of the sample indicated that a higher order four factor model provided the best fit to the data. The four factors; 'Limited Exposure,' '(in)Compatibility,' 'Validity,' and 'Tokenistic Qualitative Component'; each have acceptable internal reliability. Known groups validity analyses based on preferred research orientation and self-rated mixed methods research skills, and convergent and divergent validity analyses based on measures of attitudes toward psychology as a science and scientist and practitioner orientation, provide initial validation of the measure. This brief, internally reliable measure can be used in assessing attitudes toward mixed methods research in psychology, measuring change in attitudes as part of the evaluation of mixed methods education, and in larger research programs.

  1. Health and Climate Impacts of Rural Residential Energy Transition in China

    NASA Astrophysics Data System (ADS)

    Tao, Shu; Ru, Muye; Du, Wei; Zhu, Xi; Zhong, Qirui

    2017-04-01

    Over the last two to three decades, energy mix in rural China transit dramatically owing to rapid socioeconomic development. It is expected that such transition can result in changes in emissions of climate forcing components and air pollutants, consequently environmental and climate impacts. Such impacts were quantified by a nationwide survey on rural residential energy consumption, compilation of a series of emission inventories, modeling of atmospheric transport of pollutants, assessment on health risk induced by exposure to ambient air pollutants, and evaluation on rural residential emission originated climate forcing components. Co-benefit of the transition on both health and climate is demonstrated.

  2. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    PubMed

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

  3. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    PubMed

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  4. Analysis system for characterisation of simple, low-cost microfluidic components

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Naidoo, Thegaran; Nxumalo, Zandile; Land, Kevin; Davies, Emlyn; Fourie, Louis; Marais, Philip; Roux, Pieter

    2014-06-01

    There is an inherent trade-off between cost and operational integrity of microfluidic components, especially when intended for use in point-of-care devices. We present an analysis system developed to characterise microfluidic components for performing blood cell counting, enabling the balance between function and cost to be established quantitatively. Microfluidic components for sample and reagent introduction, mixing and dispensing of fluids were investigated. A simple inlet port plugging mechanism is used to introduce and dispense a sample of blood, while a reagent is released into the microfluidic system through compression and bursting of a blister pack. Mixing and dispensing of the sample and reagent are facilitated via air actuation. For these microfluidic components to be implemented successfully, a number of aspects need to be characterised for development of an integrated point-of-care device design. The functional components were measured using a microfluidic component analysis system established in-house. Experiments were carried out to determine: 1. the force and speed requirements for sample inlet port plugging and blister pack compression and release using two linear actuators and load cells for plugging the inlet port, compressing the blister pack, and subsequently measuring the resulting forces exerted, 2. the accuracy and repeatability of total volumes of sample and reagent dispensed, and 3. the degree of mixing and dispensing uniformity of the sample and reagent for cell counting analysis. A programmable syringe pump was used for air actuation to facilitate mixing and dispensing of the sample and reagent. Two high speed cameras formed part of the analysis system and allowed for visualisation of the fluidic operations within the microfluidic device. Additional quantitative measures such as microscopy were also used to assess mixing and dilution accuracy, as well as uniformity of fluid dispensing - all of which are important requirements towards the successful implementation of a blood cell counting system.

  5. Investigation of Phase Mixing in Amorphous Solid Dispersions of AMG 517 in HPMC-AS Using DSC, Solid-State NMR, and Solution Calorimetry.

    PubMed

    Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik

    2015-11-02

    Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.

  6. Characterizing fire behavior from laboratory burns of multi-aged, mixed-conifer masticated fuels in the western United States

    Treesearch

    Faith Ann Heinsch; Pamela G. Sikkink; Helen Y. Smith; Molly L. Retzlaff

    2018-01-01

    Mastication is the process of chipping or shredding components of the tree canopy or above-ground vegetation to reduce the canopy, alter fire spread rates, and reduce crown fire potential. Mastication as a fuel treatment, either alone or in combination with prescribed fire, has been the subject of much research. This research has shown that modeling expected fire...

  7. Expression of p16Ink4a in mixed squamous cell and glandular papilloma of the lung.

    PubMed

    Miyoshi, Ryo; Menju, Toshi; Yoshizawa, Akihiko; Date, Hiroshi

    2017-06-01

    Mixed squamous cell and glandular papilloma (mixed papilloma) of the lung is an extremely rare neoplasm, with only 21 cases reported in the English literature. Although the expression of p16 Ink4a has been analyzed in only two cases of mixed papilloma, they were negative for p16 Ink4a . Therefore, the significance of p16 Ink4a overexpression in mixed papilloma remains unclear. This is the first case of mixed papilloma with positive p16 Ink4a expression in a 72-year-old male smoker. The 20 mm sized tumor was histologically diagnosed as mixed papilloma following right upper lobectomy. Immunohistochemically, cytokeratin 5 and p40 positivity was predominant in basal cells of the glandular component and squamous cells, while thyroid transcription factor-1, p53, and Ki-67 were focally positive. Both glandular and squamous components were diffusely positive for p16 Ink4a . This finding could be important to clarify the pathogenesis and biology of mixed papilloma. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  8. Graduates' Perceptions of Learning Affordances in Longitudinal Integrated Clerkships: A Dual-Institution, Mixed-Methods Study.

    PubMed

    Latessa, Robyn A; Swendiman, Robert A; Parlier, Anna Beth; Galvin, Shelley L; Hirsh, David A

    2017-09-01

    The authors explored affordances that contribute to participants' successful learning in longitudinal integrated clerkships (LICs). This dual-institutional, mixed-methods study included electronic surveys and semistructured interviews of LIC graduates who completed their core clinical (third) year of medical school. These LIC graduates took part in LICs at Harvard Medical School from 2004 to 2013 and the University of North Carolina School of Medicine-Asheville campus from 2009 to 2013. The survey questions asked LIC graduates to rate components of LICs that they perceived as contributing to successful learning. A research assistant interviewed a subset of study participants about their learning experiences. The authors analyzed aggregate data quantitatively and performed a qualitative content analysis on interview data. The graduates reported multiple affordances that they perceive contributed to successful learning in their LIC. The most reported components included continuity and relationships with preceptors, patients, place, and peers, along with integration of and flexibility within the curriculum. As LIC models grow in size and number, and their structures and processes evolve, learners' perceptions of affordances may guide curriculum planning. Further research is needed to investigate to what degree and by what means these affordances support learning in LICs and other models of clinical education.

  9. A numerical study of mixing in stationary, nonpremixed, turbulent reacting flows

    NASA Astrophysics Data System (ADS)

    Overholt, Matthew Ryan

    1998-10-01

    In this work a detailed numerical study is made of a statistically-stationary, non-premixed, turbulent reacting model flow known as Periodic Reaction Zones. The mixture fraction-progress variable approach is used, with a mean gradient in the mixture fraction and a model, single-step, reversible, finite-rate thermochemistry, yielding both stationary and local extinction behavior. The passive scalar is studied first, using a statistical forcing scheme to achieve stationarity of the velocity field. Multiple independent direct numerical simulations (DNS) are performed for a wide range of Reynolds numbers with a number of results including a bilinear model for scalar mixing jointly conditioned on the scalar and x2-component of velocity, Gaussian scalar probability density function tails which were anticipated to be exponential, and the quantification of the dissipation of scalar flux. A new deterministic forcing scheme for DNS is then developed which yields reduced fluctuations in many quantities and a more natural evolution of the velocity fields. This forcing method is used for the final portion of this work. DNS results for Periodic Reaction Zones are compared with the Conditional Moment Closure (CMC) model, the Quasi-Equilibrium Distributed Reaction (QEDR) model, and full probability density function (PDF) simulations using the Euclidean Minimum Spanning Tree (EMST) and the Interaction by Exchange with the Mean (IEM) mixing models. It is shown that CMC and QEDR results based on the local scalar dissipation match DNS wherever local extinction is not present. However, due to the large spatial variations of scalar dissipation, and hence local Damkohler number, local extinction is present even when the global Damkohler number is twenty-five times the critical value for extinction. Finally, in the PDF simulations the EMST mixing model closely reproduces CMC and DNS results when local extinction is not present, whereas the IEM model results in large error.

  10. Distillation and Air Stripping Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates.

  11. Fossil track and thermoluminescence studies of Luna 20 material.

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Walker, R.; Zimmerman, D.

    1973-01-01

    Track densities in 85 feldspar crystals from L-2009 range from 2,500,000 per sq cm to greater than one billion per sq cm. This track distribution represents an intermediate case between what have been previously defined as lightly and heavily irradiated soils and suggests that the Luna 20 sample consists of a mixture of a mature, heavily irradiated component with another, lightly irradiated component. Using a two-component mixing model, the age of the lightly irradiated component is about 270,000,000 yr. It is possible, but by no means certain, that this is associated with the formation of the crater Apollonius C. At about 200 C the ratio of natural thermoluminescence to that induced by a standard irradiation is similar to that in Apollo 12 and 14 cores below about 7 cm. This confirms that most of the Luna 20 sample represents subsurface material.

  12. Apportionment of carbon dioxide over central Europe: insights from combined measurements of atmospheric CO2 mixing ratios and carbon isotope composition

    NASA Astrophysics Data System (ADS)

    Zimnoch, M.; Jelen, D.; Galkowski, M.; Kuc, T.; Necki, J.; Chmura, L.; Gorczyca, Z.; Jasek, A.; Rozanski, K.

    2012-04-01

    The European continent, due to high population density and numerous sources of anthropogenic CO2 emissions, plays an important role in the global carbon budget. Nowadays, precise measurements of CO2 mixing ratios performed by both global and regional monitoring networks, combined with appropriate models of carbon cycle, allow quantification of the European input to the global atmospheric CO2 load. However, measurements of CO2 mixing ratios alone cannot provide the information necessary for the apportionment of fossil-fuel related and biogenic contributions to the total CO2 burden of the regional atmosphere. Additional information is required, for instance obtained through measurements of radiocarbon content in atmospheric carbon dioxide. Radiocarbon is a particularly useful tracer for detecting fossil carbon in the atmosphere on different spatial and temporal scales. Regular observations of atmospheric CO2mixing ratios and their isotope compositions have been performed during the period of 2005-2009 at two sites located in central Europe (southern Poland). The sites, only ca. 100 km apart, represent two extreme environments with respect to the extent of anthropogenic pressure: (i) the city of Krakow, representing typical urban environment with numerous sources of anthropogenic CO2, and (ii) remote mountain site Kasprowy Wierch, relatively free of local influences. Regular, quasi-continuous measurements of CO2 mixing ratios have been performed at both sites. In addition, cumulative samples of atmospheric CO2 have been collected (weekly sampling regime for Krakow and monthly for Kasprowy Wierch) to obtain mean carbon isotope signature (14C/12C and 13C/12C ratios) of atmospheric CO2 at both sampling locations. Partitioning of the local atmospheric CO2 load at both locations has been performed using isotope- and mass balance approach. In Krakow, the average fossil-fuel related contribution to the local atmospheric CO2 load was equal to approximately 3.4%. The biogenic component turned out to be of the same magnitude. Both components revealed a distinct seasonality, with the fossil-fuel related component reaching maximum values during winter months and the biogenic component shifted in phase by ca. 6 months. Seasonality of fossil-fuel related CO2 load in the local atmosphere is linked with seasonality of local CO2sources, mostly burning of fossil fuels for heating purposes. Positive values of biogenic component indicate prevalence of the local respiration and biomass burning processes over local photosynthesis. Summer maxima of biogenic CO2 component represent mostly local respiration activity. Direct measurements of soil CO2 fluxes in the Krakow region showed an approximately 10-fold increase of those fluxes during the summer months. Partitioning of the local CO2 budget for Kasprowy Wierch site revealed large differences in the derived components when compared to urban atmosphere of Krakow: the fossil-fuel related component was ca. 5 times lower whereas the biogenic component was negative in summer, pointing to the importance of photosynthetic sink associated with extensive forests in the neighborhood of the station. The isotope- and mass balance approach was also used to derive mean monthly 13C isotope signature of fossil-fuel related CO2 emissions in Krakow. Although the derived δ13CO2 values revealed large variability, they are confined in the range of 13C isotope composition being reported for various sources of CO2 emissions in the city (burning of coal and oil, burning of methane gas, traffic).

  13. A Simulation of Biological Prosesses in the Equatorial Pacific Warm Pool at 165 deg E

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Murtugudde, Ragu; Signorini, Sergio

    1998-01-01

    A nine-year simulation (1984-1992) of biological processes in the equatorial Pacific Warm Pool is presented. A modified version of the 4-component (phytoplankton, zooplankton, nitrate and ammonium) ecosystem model by McClain et al. (1996) is used. Modifications include use of a spectral model for computation of PAR and inclusion of fecal pellet remineralization and ammonium nitrification. The physical parameters (horizontal and vertical velocities and temperature) required by the ecosystem model were derived from an improved version of the Gent and Cane (1990) ocean general circulation model (Murtugudde and Busalacchi, 1997). Surface downwelling spectral irradiance was estimated using the clear-sky models of Frouin et al. (1989) and Gregg and Carder (1990) and cloud cover information from the International Satellite Cloud Climatology Project (ISCCP). The simulations indicate considerable variability on interannual time scales in all four ecosystem components. In particular, surface chlorophyll concentrations varied by an order of magnitude with maximum values exceeding 0.30 mg/cu m in 1988, 1989, and 1990, and pronounced minimums during 1987 and 1992. The deep chlorophyll maximum ranged between 75 and 125 meters with values occasionally exceeding 0.40 mg/cu m. With the exception of the last half of 1988, surface nitrate was always near depletion. Ammonium exhibited a subsurface maximum just below the DCM with concentrations as high as 0.5 mg-atN/cu m . Total integrated annual primary production varied between 40 and 250 gC/sq m/yr with an annual average of 140 gC/sq m/yr. Finally, the model is used to estimate the mean irradiance at the base of the mixed layer, i.e., the penetration irradiance, which was 18 Watts/sq m over the nine year period. The average mixed layer depth was 42 m.

  14. Mixture modeling of multi-component data sets with application to ion-probe zircon ages

    NASA Astrophysics Data System (ADS)

    Sambridge, M. S.; Compston, W.

    1994-12-01

    A method is presented for detecting multiple components in a population of analytical observations for zircon and other ages. The procedure uses an approach known as mixture modeling, in order to estimate the most likely ages, proportions and number of distinct components in a given data set. Particular attention is paid to estimating errors in the estimated ages and proportions. At each stage of the procedure several alternative numerical approaches are suggested, each having their own advantages in terms of efficency and accuracy. The methodology is tested on synthetic data sets simulating two or more mixed populations of zircon ages. In this case true ages and proportions of each population are known and compare well with the results of the new procedure. Two examples are presented of its use with sets of SHRIMP U-238 - Pb-206 zircon ages from Palaeozoic rocks. A published data set for altered zircons from bentonite at Meishucun, South China, previously treated as a single-component population after screening for gross alteration effects, can be resolved into two components by the new procedure and their ages, proportions and standard errors estimated. The older component, at 530 +/- 5 Ma (2 sigma), is our best current estimate for the age of the bentonite. Mixture modeling of a data set for unaltered zircons from a tonalite elsewhere defines the magmatic U-238 - Pb-206 age at high precision (2 sigma +/- 1.5 Ma), but one-quarter of the 41 analyses detect hidden and significantly older cores.

  15. TOGA: A TOUGH code for modeling three-phase, multi-component, and non-isothermal processes involved in CO 2-based Enhanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Oldenburg, Curtis M.

    TOGA is a numerical reservoir simulator for modeling non-isothermal flow and transport of water, CO 2, multicomponent oil, and related gas components for applications including CO 2-enhanced oil recovery (CO 2-EOR) and geologic carbon sequestration in depleted oil and gas reservoirs. TOGA uses an approach based on the Peng-Robinson equation of state (PR-EOS) to calculate the thermophysical properties of the gas and oil phases including the gas/oil components dissolved in the aqueous phase, and uses a mixing model to estimate the thermophysical properties of the aqueous phase. The phase behavior (e.g., occurrence and disappearance of the three phases, gas +more » oil + aqueous) and the partitioning of non-aqueous components (e.g., CO 2, CH 4, and n-oil components) between coexisting phases are modeled using K-values derived from assumptions of equal-fugacity that have been demonstrated to be very accurate as shown by comparison to measured data. Models for saturated (water) vapor pressure and water solubility (in the oil phase) are used to calculate the partitioning of the water (H 2O) component between the gas and oil phases. All components (e.g., CO 2, H 2O, and n hydrocarbon components) are allowed to be present in all phases (aqueous, gaseous, and oil). TOGA uses a multiphase version of Darcy’s Law to model flow and transport through porous media of mixtures with up to three phases over a range of pressures and temperatures appropriate to hydrocarbon recovery and geologic carbon sequestration systems. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. New methods for phase partitioning and thermophysical property modeling in TOGA have been validated against experimental data published in the literature for describing phase partitioning and phase behavior. Flow and transport has been verified by testing against related TOUGH2 EOS modules and CMG. The code has also been validated against a CO 2-EOR experimental core flood involving flow of three phases and 12 components. Results of simulations of a hypothetical 3D CO 2-EOR problem involving three phases and multiple components are presented to demonstrate the field-scale capabilities of the new code. This user guide provides instructions for use and sample problems for verification and demonstration.« less

  16. Impact of tides in a baroclinic circulation model of the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Pinardi, N.; Oddo, P.; Bortoluzzi, G.; Ravaioli, M.

    2013-01-01

    AbstractThe impact of tides in the circulation of the Adriatic Sea is investigated by means of a nested baroclinic numerical ocean model. Tides are introduced using a modified Flather boundary condition at the open edge of the domain. The results show that tidal amplitudes and phases are reproduced correctly by the baroclinic model and tidal harmonic constants errors are comparable with those resulting from the most consolidated barotropic models. Numerical experiments were conducted to estimate and assess the impact of (i) the modified Flather lateral boundary condition; (ii) tides on temperature, salinity, and stratification structures in the basin; and (iii) tides on mixing and circulation in general. Tides induce a different momentum advective component in the basin, which in turn produces a different distribution of water masses in the basin. Tides impact on mixing and stratification in the River Po region (northwestern Adriatic) and induce semidiurnal fluctuations of salinity and temperature, in all four seasons for the former and summer alone for the latter. A clear presence of internal tides was evidenced in the northern Adriatic Sea basin, corroborating previous findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19508236','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19508236"><span>A bayesian hierarchical model for classification with selection of functional predictors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D</p> <p>2010-06-01</p> <p>In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5707626','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5707626"><span>Nanoscale Control over the Mixing Behavior of Surface-Confined Bicomponent Supramolecular Networks Using an Oriented External Electric Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Strong electric fields are known to influence the properties of molecules as well as materials. Here we show that by changing the orientation of an externally applied electric field, one can locally control the mixing behavior of two molecules physisorbed on a solid surface. Whether the starting two-component network evolves into an ordered two-dimensional (2D) cocrystal, yields an amorphous network where the two components phase separate, or shows preferential adsorption of only one component depends on the solution stoichiometry. The experiments are carried out by changing the orientation of the strong electric field that exists between the tip of a scanning tunneling microscope and a solid substrate. The structure of the two-component network typically changes from open porous at negative substrate bias to relatively compact when the polarity of the applied bias is reversed. The electric-field-induced mixing behavior is reversible, and the supramolecular system exhibits excellent stability and good response efficiency. When molecular guests are adsorbed in the porous networks, the field-induced switching behavior was found to be completely different. Plausible reasons behind the field-induced mixing behavior are discussed. PMID:29112378</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8369E..09Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8369E..09Y"><span>Hyperspectral imaging for detection of non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups on spread plates of mixed cultures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoon, Seung Chul; Windham, William R.; Ladely, Scott; Heitschmidt, Gerald W.; Lawrence, Kurt C.; Park, Bosoon; Narang, Neelam; Cray, William C.</p> <p>2012-05-01</p> <p>We investigated the feasibility of visible and near-infrared (VNIR) hyperspectral imaging for rapid presumptive-positive screening of six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) on spread plates of mixed cultures. Although the traditional culture method is still the "gold standard" for presumptive-positive pathogen screening, it is time-consuming, labor-intensive, not effective in testing large amount of food samples, and cannot completely prevent unwanted background microflora from growing together with target microorganisms on agar media. A previous study was performed using the data obtained from pure cultures individually inoculated on spot and/or spread plates in order to develop multivariate classification models differentiating each colony of the six non-O157 STEC serogroups and to optimize the models in terms of parameters. This study dealt with the validation of the trained and optimized models with a test set of new independent samples obtained from colonies on spread plates of mixed cultures. A new validation protocol appropriate to a hyperspectral imaging study for mixed cultures was developed. One imaging experiment with colonies obtained from two serial dilutions was performed. A total of six agar plates were prepared, where O45, O111 and O121 serogroups were inoculated into all six plates and each of O45, O103 and O145 serogroups was added into the mixture of the three common bacterial cultures. The number of colonies grown after 24-h incubation was 331 and the number of pixels associated with the grown colonies was 16,379. The best model found from this validation study was based on pre-processing with standard normal variate and detrending (SNVD), first derivative, spectral smoothing, and k-nearest neighbor classification (kNN, k=3) of scores in the principal component subspace spanned by 6 principal components. The independent testing results showed 95% overall detection accuracy at pixel level and 97% at colony level. The developed model was proven to be still valid even for the independent samples although the size of a test set was small and only one experiment was performed. This study was an important first step in validating and updating multivariate classification models for rapid screening of ground beef samples contaminated by non-O157 STEC pathogens using hyperspectral imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988DSRA...35..311F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988DSRA...35..311F"><span>Water mass modification at the Agulhas retroflection: chlorofluoromethane studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fine, Rana A.; Warner, Mark J.; Weiss, Ray F.</p> <p>1988-03-01</p> <p>Chlorofluoromethane (CFM) and hydrographic data from the 1983 Agulhas Retroflection cruise are used to show the importance of the region in ventilating thermocline and Intermediate Waters of the southwest Indian ocean gyre. Generally South Atlantic waters are more recently ventilated by at least two years than those of the South Indian Ocean, probably because the latter are farther downstream from the source regions near the South Atlantic subantarctic sector. A two-component mixing model shows that the outflow from the Agulhas Retroflection (14-4°C) was composed of South Indian water and at least 23% South Atlantic water. However, at the density of Indian sector Subantarctic Mode Water the inflow into the Agulhas Retroflection was well preserved in the outflow, and the South Atlantic and Indian waters appear to be ventilated by different water masses. In addition, strong interleaving was found throughout the survey area (between 14 and 4°C), characterized by correlations of negative salinity anomalies with high CFM concentrations. At the density of Antarctic Intermediate Water (AAIW) there was interleaving of both low salinity water and higher salinity Red Sea Water. Using estimates of past atmospheric ratios of two CFMs, we calculate that AAIW within the retroflection was 50-75% diluted by mixing with CFM-free water since leaving the source region. Results from the two-component mixing model, which show substantial contributions of South Atlantic water in the outflow, suggest that the return flow for the 10 Sv leakage of Indian Ocean water via the Agulhas Current into the South Atlantic [ GORDON (1985) Science, 227, 1030-1033; GORDONet al. (1987) Deep-Sea Research, 34, 565-600] is occurring at thermocline and intermediate depths. A combination of active mixing in this region and similarity in the ventilation processes may be the reason that the South Atlantic and Indian thermoclines are coincident in temperature and salinity space (between 15 and 7°C) as noted by Gordon.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29751262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29751262"><span>The effect of 580 nm-based-LED mixed light on growth, adipose deposition, skeletal development, and body temperature of chickens.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Yefeng; Zhen, Chenghuang; Yang, Bo; Yu, Yonghua; Pan, Jinming</p> <p>2018-06-01</p> <p>Though previous study indicated that the 580 nm-yellow-LED-light showed an stimulating effect on growth of chickens, the low luminous efficiency of the yellow LED light cannot reflect the advantage of energy saving. In present study, the cool white LED chips and yellow LED chips have been combined to fabricate the white × yellow mixed LED light, with an enhanced luminous efficiency. A total 300 newly hatched chickens were reared under various mixed LED light. The results indicated that the white × yellow mixed LED light had "double-edged sword" effects on bird's body weight, bone development, adipose deposition, and body temperature, depending on variations in ratios of yellow component. Low yellow ratio of mixed LED light (Low group) inhibited body weight, whereas medium and high yellow ratio of mixed LED light (Medium and High groups) promoted body weight, compared with white LED light (White group). A progressive change in yellow component gave rise to consistent changes in body weight over the entire experiment. Moreover, a positive relationship was observed between yellow component and feed conversion ratio. High group-treated birds had greater relative abdominal adipose weight than Medium group-treated birds (P = 0.048), whereas Medium group-treated birds had greater relative abdominal adipose weight than Low group-treated birds (P = 0.044). We found that mixed light improved body weight by enhancing skeletal development (R 2  = 0.5023, P = 0.0001) and adipose deposition (R 2  = 0.6012, P = 0.0001). Birds in the Medium, High and Yellow groups attained significantly higher surface temperatures compared with the White group (P = 0.010). The results suggest that the application of the mixed light with high level of yellow component can be used successfully to improve growth and productive performance in broilers. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-0700444.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-0700444.html"><span>Biotechnology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-05-05</p> <p>Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, a TCM is shown after mixing protocols, and bubbles of various sizes can be seen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..OSF..P018S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..OSF..P018S"><span>Compositional Models of Hematite-Rich Spherules (Blueberries) at Meridiani Planum, Mars and Constraints on Their Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, A.; Mittlefehldt, D.</p> <p>2006-10-01</p> <p>The Mars Exploration Rover Opportunity discovered hematite-rich spherules (``blueberries'') believed to be diagenetic concretions formed in the bedrock in stagnant or slow-moving groundwater. These spherules likely precipitated from solution, but their origins are poorly understood. Three formation mechanisms are possible: inclusive, replacive and displacive. The first would result in a distinct spherule composition compared to the other two. We propose that chemical clues may help to constrain the nature of blueberry formation. We used Alpha Particle X-ray Spectrometer data for undisturbed soils that were blueberry-free and with visible blueberries at the surface in Microscopic Imager images. We made plots of the elements versus iron for the spherule-rich soils and compared them to a mixing line representative of a pure hematite end member spherule (called ``the zero model''). This modeled the replacive formation mechanism, in which pure hematite would replace all of the original material. If the spherules grew inclusively, chemical data should reflect a compositional component of the rock grains included during formation. Four models were developed to test for possible compositions of a rock component. These models could not easily explain the APXS data and thus demonstrate that the most plausible rock compositions are not components of blueberries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25293667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25293667"><span>Derivation and external validation of a case mix model for the standardized reporting of 30-day stroke mortality rates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bray, Benjamin D; Campbell, James; Cloud, Geoffrey C; Hoffman, Alex; James, Martin; Tyrrell, Pippa J; Wolfe, Charles D A; Rudd, Anthony G</p> <p>2014-11-01</p> <p>Case mix adjustment is required to allow valid comparison of outcomes across care providers. However, there is a lack of externally validated models suitable for use in unselected stroke admissions. We therefore aimed to develop and externally validate prediction models to enable comparison of 30-day post-stroke mortality outcomes using routine clinical data. Models were derived (n=9000 patients) and internally validated (n=18 169 patients) using data from the Sentinel Stroke National Audit Program, the national register of acute stroke in England and Wales. External validation (n=1470 patients) was performed in the South London Stroke Register, a population-based longitudinal study. Models were fitted using general estimating equations. Discrimination and calibration were assessed using receiver operating characteristic curve analysis and correlation plots. Two final models were derived. Model A included age (<60, 60-69, 70-79, 80-89, and ≥90 years), National Institutes of Health Stroke Severity Score (NIHSS) on admission, presence of atrial fibrillation on admission, and stroke type (ischemic versus primary intracerebral hemorrhage). Model B was similar but included only the consciousness component of the NIHSS in place of the full NIHSS. Both models showed excellent discrimination and calibration in internal and external validation. The c-statistics in external validation were 0.87 (95% confidence interval, 0.84-0.89) and 0.86 (95% confidence interval, 0.83-0.89) for models A and B, respectively. We have derived and externally validated 2 models to predict mortality in unselected patients with acute stroke using commonly collected clinical variables. In settings where the ability to record the full NIHSS on admission is limited, the level of consciousness component of the NIHSS provides a good approximation of the full NIHSS for mortality prediction. © 2014 American Heart Association, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS21E..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS21E..01A"><span>Modeling High-Resolution Coastal Ocean Dynamics with COAMPS: System Overview, Applications and Future Directions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allard, R. A.; Campbell, T. J.; Edwards, K. L.; Smith, T.; Martin, P.; Hebert, D. A.; Rogers, W.; Dykes, J. D.; Jacobs, G. A.; Spence, P. L.; Bartels, B.</p> <p>2014-12-01</p> <p>The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) is an atmosphere-ocean-wave modeling system developed by the Naval Research Laboratory which can be configured to cycle regional forecasts/analysis models in single-model (atmosphere, ocean, and wave) or coupled-model (atmosphere-ocean, ocean-wave, and atmosphere-ocean-wave) modes. The model coupling is performed using the Earth System Modeling Framework (ESMF). The ocean component is the Navy Coastal Ocean Model (NCOM), and the wave components include Simulating WAves Nearshore (SWAN) and WaveWatch-III. NCOM has been modified to include wetting and drying, the effects of Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum flux of surface waves, enhancement of bottom drag in shallow water, and enhanced vertical mixing due to Langmuir turbulence. An overview of the modeling system including ocean data assimilation and specification of boundary conditions will be presented. Results from a high-resolution (10-250m) modeling study from the Surfzone Coastal Oil Pathways Experiment (SCOPE) near Ft. Walton Beach, Florida in December 2013 will be presented. ®COAMPS is a registered trademark of the Naval Research Laboratory</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174111','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174111"><span>Evaluation of habitat quality for selected wildlife species associated with back channels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry</p> <p>2013-01-01</p> <p>The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25987650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25987650"><span>Methods to assess an exercise intervention trial based on 3-level functional data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Haocheng; Kozey Keadle, Sarah; Staudenmayer, John; Assaad, Houssein; Huang, Jianhua Z; Carroll, Raymond J</p> <p>2015-10-01</p> <p>Motivated by data recording the effects of an exercise intervention on subjects' physical activity over time, we develop a model to assess the effects of a treatment when the data are functional with 3 levels (subjects, weeks and days in our application) and possibly incomplete. We develop a model with 3-level mean structure effects, all stratified by treatment and subject random effects, including a general subject effect and nested effects for the 3 levels. The mean and random structures are specified as smooth curves measured at various time points. The association structure of the 3-level data is induced through the random curves, which are summarized using a few important principal components. We use penalized splines to model the mean curves and the principal component curves, and cast the proposed model into a mixed effects model framework for model fitting, prediction and inference. We develop an algorithm to fit the model iteratively with the Expectation/Conditional Maximization Either (ECME) version of the EM algorithm and eigenvalue decompositions. Selection of the number of principal components and handling incomplete data issues are incorporated into the algorithm. The performance of the Wald-type hypothesis test is also discussed. The method is applied to the physical activity data and evaluated empirically by a simulation study. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29445808','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29445808"><span>Multi-spectrometer calibration transfer based on independent component analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Yan; Xu, Hao; Xia, Zhenzhen; Gong, Zhiyong</p> <p>2018-02-26</p> <p>Calibration transfer is indispensable for practical applications of near infrared (NIR) spectroscopy due to the need for precise and consistent measurements across different spectrometers. In this work, a method for multi-spectrometer calibration transfer is described based on independent component analysis (ICA). A spectral matrix is first obtained by aligning the spectra measured on different spectrometers. Then, by using independent component analysis, the aligned spectral matrix is decomposed into the mixing matrix and the independent components of different spectrometers. These differing measurements between spectrometers can then be standardized by correcting the coefficients within the independent components. Two NIR datasets of corn and edible oil samples measured with three and four spectrometers, respectively, were used to test the reliability of this method. The results of both datasets reveal that spectra measurements across different spectrometers can be transferred simultaneously and that the partial least squares (PLS) models built with the measurements on one spectrometer can predict that the spectra can be transferred correctly on another.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PrOce.112...15M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PrOce.112...15M"><span>Dynamics of the Indian-Ocean oxygen minimum zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCreary, Julian P.; Yu, Zuojun; Hood, Raleigh R.; Vinaychandran, P. N.; Furue, Ryo; Ishida, Akio; Richards, Kelvin J.</p> <p>2013-05-01</p> <p>In the Indian Ocean, mid-depth oxygen minimum zones (OMZs) occur in the Arabian Sea and the Bay of Bengal. The lower part of the Arabian-Sea OMZ (ASOMZ; below 400 m) intensifies northward across the basin; in contrast, its upper part (above 400 m) is located in the central/eastern basin, well east of the most productive regions along the western boundary. The Bay-of-Bengal OMZ (BBOMZ), although strong, is weaker than the ASOMZ. To investigate the processes that maintain the Indian-Ocean OMZs, we obtain a suite of solutions to a coupled biological/physical model. Its physical component is a variable-density, 61/2 >-layer model, in which each layer corresponds to a distinct dynamical regime or water-mass type. Its biological component has six compartments: nutrients, phytoplankton, zooplankton, two size classes of detritus, and oxygen. Because the model grid is non-eddy resolving (0.5°), the biological model also includes a parameterization of enhanced mixing based on the eddy kinetic energy derived from satellite observations. To explore further the impact of local processes on OMZs, we also obtain analytic solutions to a one-dimensional, simplified version of the biological model. Our control run is able to simulate basic features of the oxygen, nutrient, and phytoplankton fields throughout the Indian Ocean. The model OMZs result from a balance, or lack thereof, between a sink of oxygen by remineralization and subsurface oxygen sources due primarily to northward spreading of oxygenated water from the Southern Hemisphere, with a contribution from Persian-Gulf water in the northern Arabian Sea. The northward intensification of the lower ASOMZ results mostly from horizontal mixing since advection is weak in its depth range. The eastward shift of the upper ASOMZ is due primarily to enhanced advection and vertical eddy mixing in the western Arabian Sea, which spread oxygenated waters both horizontally and vertically. Advection carries small detritus from the western boundary into the central/eastern Arabian Sea, where it provides an additional source of remineralization that drives the ASOMZ to suboxic levels. The model BBOMZ is weaker than the ASOMZ because the Bay lacks a remote source of detritus from the western boundary. Although detritus has a prominent annual cycle, the model OMZs do not because there is not enough time for significant remineralization to occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/582215','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/582215"><span>Impact of conversion to mixed-oxide fuels on reactor structural components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yahr, G.T.</p> <p>1997-04-01</p> <p>The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........89M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........89M"><span>Numerical predictions and measurements in the lubrication of aeronautical engine and transmission components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moraru, Laurentiu Eugen</p> <p>2005-11-01</p> <p>This dissertation treats a variety of aspects of the lubrication of mechanical components encountered in aeronautical engines and transmissions. The study covers dual clearance squeeze film dampers, mixed elastohydrodynamic lubrication (EHL) cases and thermal elastohydrodynamic contacts. The dual clearance squeeze film damper (SFD) invented by Fleming is investigated both theoretically and experimentally for cases when the sleeve that separates the two oil films is free to float and for cases when the separating sleeve is supported by a squirrel cage. The Reynolds equation is developed to handle each of these cases and it is solved analytically for short bearings. A rotordynamic model of a test rig is developed, for both the single and dual SFD cases. A computer code is written to calculate the motion of the test rig rotor. Experiments are performed in order to validate the theoretical results. Rotordynamics computations are found to favorably agree with measured data. A probabilistic model for mixed EHL is developed and implemented. Surface roughness of gears are measured and processed. The mixed EHL model incorporates the average flow model of Patir and Cheng and the elasto-plastic contact mechanics model of Chang Etsion and Bogy. The current algorithm allows for the computation of the load supported by an oil film and for the load supported by the elasto-plastically deformed asperities. This work also presents a way to incorporate the effect of the fluid induced roughness deformation by utilizing the "amplitude reduction" results provided by the deterministic analyses. The Lobatto point Gaussian integration algorithm of Elrod and Brewe was extended for thermal lubrication problems involving compressible lubricants and it was implemented in thermal elastohydrodynamic cases. The unknown variables across the film are written in series of Legendre polynomials. The thermal Reynolds equation is obtained in terms of the series coefficients and it is proven that it can only explicitly contain the information from the first three Legendre polynomials. A computer code was written to implement the Lobatto point algorithm for a EHL line contact. Use of the Labatto point calculation method has resulted in greater accuracy without the use of a larger number of grid points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19798955','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19798955"><span>[Infrared spectrum analysis of admixture decoction of herba Ephedrae with Ramulus cinnarnomi].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Wen-Shuo; Guo, Shao-Zhong; Huang, Hao; Chen, Rong; Feng, Shang-Yuan; Li, Yong-Zeng; Chen, Wei-Wei</p> <p>2009-07-01</p> <p>The infrared spectra of decoction of herba ephedra and ramulus cinnarnomi and the mixed decoction of herba ephedra + ramulus cinnarnomi were tested. The change in the mixed decoction was discussed to study the relationship between herba ephedra and ramulus cinnarnomi after decoction. The results showed that some components of herba ephedra and ramulus cinnarnomi were retained in the mixed decoction of herba ephedra + ramulus cinnarnomi, such as 1 205 and 1 074 cm(-1), but some components that never appeared in the two component spectra increased, such as 1 394 and 678 cm(-1). New absorption peaks were generated in the mixed decoction of herba ephedra + ramulus cinnarnomi, such as 757 and 407 cm(-1). It can be showed that there are differences in the chemistry environment of the various chemical groups in the three decoctions introduced above, and with the variation in absorption peak position, possibly some new chemical compositions were created. Medical ingredients in the decoction are not simply the addition of herba ephedra and ramulus cinnarnomi based on the studies of infrared spectrum of the mixed decoction of herba ephedra + ramulus cinnarnomi, and the new notion of prescription spectroscopy was proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010000','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010000"><span>Problem of the thermodynamic status of the mixed-layer minerals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zen, E.-A.</p> <p>1962-01-01</p> <p>Minerals that show mixed layering, particularly with the component layers in random sequence, pose problems because they may behave thermodynamically as single phases or as polyphase aggregates. Two operational criteria are proposed for their distinction. The first scheme requires two samples of mixed-layer material which differ only in the proportions of the layers. If each of these two samples are allowed to equilibrate with the same suitably chosen monitoring solution, then the intensive parameters of the solution will be invariant if the mixed-layer sample is a polyphase aggregate, but not otherwise. The second scheme makes use of the fact that portions of many titration curves of clay minerals show constancy of the chemical activities of the components in the equilibrating solutions, suggesting phase separation. If such phase separation occurs for a mixed-layer material, then, knowing the number of independent components in the system, it should be possible to decide on the number of phases the mixed-layer material represents. Knowledge of the phase status of mixed-layer material is essential to the study of the equilibrium relations of mineral assemblages involving such material, because a given mixed-layer mineral will be plotted and treated differently on a phase diagram, depending on whether it is a single phase or a polyphase aggregate. Extension of the titration technique to minerals other than the mixed-layer type is possible. In particular, this method may be used to determine if cryptoperthites and peristerites are polyphase aggregates. In general, for any high-order phase separation, the method may be used to decide just at what point in this continuous process the system must be regarded operationally as a polyphase aggregate. ?? 1962.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.2813B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.2813B"><span>The impact of sedimentary anisotropy on solute mixing in stacked scour-pool structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, Jeremy P.; Haslauer, Claus P.; Cirpka, Olaf A.</p> <p>2017-04-01</p> <p>The spatial variability of hydraulic conductivity is known to have a strong impact on solute spreading and mixing. In most investigations, its local anisotropy has been neglected. Recent studies have shown that spatially varying orientation in sedimentary anisotropy can lead to twisting flow enhancing transverse mixing, but most of these studies used geologically implausible geometries. We use an object-based approach to generate stacked scour-pool structures with either isotropic or anisotropic filling which are typically reported in glacial outwash deposits. We analyze how spatially variable isotropic conductivity and variation of internal anisotropy in these features impacts transverse plume deformation and both longitudinal and transverse spreading and mixing. In five test cases, either the scalar values of conductivity or the spatial orientation of its anisotropy is varied between the scour-pool structures. Based on 100 random configurations, we compare the variability of velocity components, stretching and folding metrics, advective travel-time distributions, one and two-particle statistics in advective-dispersive transport, and the flux-related dilution indices for steady state advective-dispersive transport among the five test cases. Variation in the orientation of internal anisotropy causes strong variability in the lateral velocity components, which leads to deformation in transverse directions and enhances transverse mixing, whereas it hardly affects the variability of the longitudinal velocity component and thus longitudinal spreading and mixing. The latter is controlled by the spatial variability in the scalar values of hydraulic conductivity. Our results demonstrate that sedimentary anisotropy is important for transverse mixing, whereas it may be neglected when considering longitudinal spreading and mixing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6549046-liquid-hydrocarbon-fuels-from-syngas-third-annual-progress-report-march-february-intimate-contact-between-metal-molecular-sieve-method-preparation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6549046-liquid-hydrocarbon-fuels-from-syngas-third-annual-progress-report-march-february-intimate-contact-between-metal-molecular-sieve-method-preparation"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rabo, J.A.</p> <p></p> <p>Eight catalysts were tested from November, 1983 through January, 1984. One catalyst had only water gas shift activity. The other seven catalysts had Fischer-Tropsch synthesis activity from cobalt/thorium intimately mixed with either UCC-101 or UCC-103. This intimate mixture, either alone or promoted with X/sub 4/ or X/sub 6/, was then used by itself or used with other physically added shape selective and water gas shift components. The over-riding feature of these catalysts was the high degree of stability achieved from the intimate mixing of the metal component with UCC-103. The intimate mixing of the Co/Th with the UCC-101 or UCC-103more » gave other characteristics to these catalysts that were not seen in their physically mixed versions. On the positive side, these intimately mixed catalysts produced liquid hydrocarbons that contained less suspended wax and had a lower olefin content. On the negative side, these intimately mixed catalysts had significantly lower water gas shift activities. The incorporation of a second shape selective component or of other ingredients to the intimately mixed Co/Th+UCC-103 constituent was even less satisfactory. It should be understood that these initial drawbacks for the intimately mixed catalysts are far less important than their achievement of obtaining good stability. Such stability was one of the major goals of this contract. Such stability was one of the major goals of this contract. Its accomplishment is a major milestone towards the development of an improved Fischer-Tropsch catalyst. Appendix B has been entered individually into EDB and ERA.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8669997','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8669997"><span>Function-based payment model for inpatient medical rehabilitation: an evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sutton, J P; DeJong, G; Wilkerson, D</p> <p>1996-07-01</p> <p>To describe the components of a function-based prospective payment model for inpatient medical rehabilitation that parallels diagnosis-related groups (DRGs), to evaluate this model in relation to stakeholder objectives, and to detail the components of a quality of care incentive program that, when combined with this payment model, creates an incentive for provides to maximize functional outcomes. This article describes a conceptual model, involving no data collection or data synthesis. The basic payment model described parallels DRGs. Information on the potential impact of this model on medical rehabilitation is gleaned from the literature evaluating the impact of DRGs. The conceptual model described is evaluated against the results of a Delphi Survey of rehabilitation providers, consumers, policymakers, and researchers previously conducted by members of the research team. The major shortcoming of a function-based prospective payment model for inpatient medical rehabilitation is that it contains no inherent incentive to maximize functional outcomes. Linkage of reimbursement to outcomes, however, by withholding a fixed proportion of the standard FRG payment amount, placing that amount in a "quality of care" pool, and distributing that pool annually among providers whose predesignated, facility-level, case-mix-adjusted outcomes are attained, may be one strategy for maximizing outcome goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22382098-hidden-axion-dark-matter-decaying-through-mixing-qcd-axion-kev-ray-line','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22382098-hidden-axion-dark-matter-decaying-through-mixing-qcd-axion-kev-ray-line"><span>Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Higaki, Tetsutaro; Kitajima, Naoya; Takahashi, Fuminobu, E-mail: thigaki@post.kek.jp, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp</p> <p>2014-12-01</p> <p>Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can bemore » highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields. In particular, the QCD axion decay constant can be much larger than the actual Peccei-Quinn symmetry breaking.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...5E8500T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...5E8500T"><span>Unveiling the Dependence of Glass Transitions on Mixing Thermodynamics in Miscible Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tu, Wenkang; Wang, Yunxi; Li, Xin; Zhang, Peng; Tian, Yongjun; Jin, Shaohua; Wang, Li-Min</p> <p>2015-02-01</p> <p>The dependence of the glass transition in mixtures on mixing thermodynamics is examined by focusing on enthalpy of mixing, ΔHmix with the change in sign (positive vs. negative) and magnitude (small vs. large). The effects of positive and negative ΔHmix are demonstrated based on two isomeric systems of o- vs. m- methoxymethylbenzene (MMB) and o- vs. m- dibromobenzene (DBB) with comparably small absolute ΔHmix. Two opposite composition dependences of the glass transition temperature, Tg, are observed with the MMB mixtures showing a distinct negative deviation from the ideal mixing rule and the DBB mixtures having a marginally positive deviation. The system of 1, 2- propanediamine (12PDA) vs. propylene glycol (PG) with large and negative ΔHmix is compared with the systems of small ΔHmix, and a considerably positive Tg shift is seen. Models involving the properties of pure components such as Tg, glass transition heat capacity increment, ΔCp, and density, ρ, do not interpret the observed Tg shifts in the systems. In contrast, a linear correlation is revealed between ΔHmix and maximum Tg shifts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23860333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23860333"><span>The use of "mixing" procedure of mixed methods in health services research.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Wanqing; Creswell, John</p> <p>2013-08-01</p> <p>Mixed methods research has emerged alongside qualitative and quantitative approaches as an important tool for health services researchers. Despite growing interest, among health services researchers, in using mixed methods designs, little has been done to identify the procedural aspects of doing so. To describe how mixed methods researchers mix the qualitative and quantitative aspects of their studies in health services research. We searched the PubMed for articles, using mixed methods in health services research, published between January 1, 2006 and December 30, 2010. We identified and reviewed 30 published health services research articles on studies in which mixed methods had been used. We selected 3 articles as illustrations to help health services researcher conceptualize the type of mixing procedures that they were using. Three main "mixing" procedures have been applied within these studies: (1) the researchers analyzed the 2 types of data at the same time but separately and integrated the results during interpretation; (2) the researchers connected the qualitative and quantitative portions in phases in such a way that 1 approach was built upon the findings of the other approach; and (3) the researchers mixed the 2 data types by embedding the analysis of 1 data type within the other. "Mixing" in mixed methods is more than just the combination of 2 independent components of the quantitative and qualitative data. The use of "mixing" procedure in health services research involves the integration, connection, and embedding of these 2 data components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/fedfac/federal-register-notice-state-authorization-regulate-hazardous-components-radioactive-mixed','PESTICIDES'); return false;" href="https://www.epa.gov/fedfac/federal-register-notice-state-authorization-regulate-hazardous-components-radioactive-mixed"><span>Federal Register Notice: State Authorization To Regulate the Hazardous Components of Radioactive Mixed Wastes Under the Resource Conservation and Recovery Act</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>The Environmental Protection Agency (EPA) is today publishing a notice that in order to obtain and maintain authorization to administer and enforce a hazardous waste program pursuant to Subtitle C of the Resource Conservation and Recovery Act (RCRA), States must have authority to regulate the hazardous components of 'radioactive mixed wastes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.176..209H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.176..209H"><span>The impact of urban canopy meteorological forcing on summer photochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huszár, Peter; Karlický, Jan; Belda, Michal; Halenka, Tomáš; Pišoft, Petr</p> <p>2018-03-01</p> <p>The regional climate model RegCM4.4, including the surface model CLM4.5, was offline coupled to the chemistry transport model CAMx version 6.30 in order to investigate the impact of the urban canopy induced meteorological changes on the longterm summer photochemistry over central Europe for the 2001-2005 period. First, the urban canopy impact on the meteorological conditions was calculated performing a reference experiment without urban landsurface considered and an experiment with urban surfaces modeled with the urban parameterization within the CLM4.5 model. In accordance with expectations, strong increases of urban surface temperatures (up to 2-3 K), decreases of wind speed (up to -1 ms-1) and increases of vertical turbulent diffusion coefficient (up to 60-70 m2s-1) were found. For the impact on chemistry, these three components were considered. Additionally, we accounted for the effect of temperature enhanced biogenic emission increase. Several experiments were performed by adding these effects one-by-one to the total impact: i.e., first, only the urban temperature impact was considered driving the chemistry model; secondly, the wind impact was added and so on. We found that the impact on biogenic emission account for minor changes in the concentrations of ozone (O3), oxides of nitrogen NOx = NO + NO2 and nitric acid (HNO3). On the other hand, the dominating component acting is the increased vertical mixing, resulting in up to 5 ppbv increase of urban ozone concentrations while causing -2 to -3 ppbv decreases and around 1 ppbv increases of NOx and HNO3 surface concentrations, respectively. The temperature impact alone results in reduction of ozone, increase in NO, decrease in NO2 and increases of HNO3. The wind impact leads, over urban areas, to ozone decreases, increases of NOx and a slight increase in HNO3. The overall impact is similar to the impact of increased vertical mixing alone. The Process Analysis (PA) technique implemented in CAMx was adopted to investigate the causes of the modeled impacts in more details. It showed that the main process contributing to the temperature impact on ozone is a dry-deposition enhancement, while the dominating process controlling the wind impact on ozone over cities is the advection reduction. In case of the impact of enhanced turbulence, PA suggests that ozone increases are, again as assumed, the result of increased downward vertical mixing supported by reduced chemical loss. Comparing the model concentrations with measurements over urban areas, a slight improvement of the model performance was achieved during afternoon hours if urban canopy forcing on chemistry via meteorology was accounted for. The study demonstrates that disregarding the urban canopy induced meteorological effects in air-quality oriented modeling studies can lead to erroneous results in the calculated species concentrations. However, it also shows that the individual components are not equally important: urban canopy induced turbulence effects dominate while the wind-speed and temperature related ones are of considerably smaller magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911007K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911007K"><span>Development of a reactive-dispersive plume model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Hyun S.; Kim, Yong H.; Song, Chul H.</p> <p>2017-04-01</p> <p>A reactive-dispersive plume model (RDPM) was developed in this study. The RDPM can consider two main components of large-scale point source plume: i) turbulent dispersion and ii) photochemical reactions. In order to evaluate the simulation performance of newly developed RDPM, the comparisons between the model-predicted and observed mixing ratios were made using the TexAQS II 2006 (Texas Air Quality Study II 2006) power-plant experiment data. Statistical analyses show good correlation (0.61≤R≤0.92), and good agreement with the Index of Agreement (0.70≤R≤0.95). The chemical NOx lifetimes for two power-plant plumes (Monticello and Welsh power plants) were also estimated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11217854','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11217854"><span>Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jacobson, M Z</p> <p>2001-02-08</p> <p>Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. A large positive component of this radiative forcing from aerosols is due to black carbon--soot--that is released from the burning of fossil fuel and biomass, and, to a lesser extent, natural fires, but the exact forcing is affected by how black carbon is mixed with other aerosol constituents. From studies of aerosol radiative forcing, it is known that black carbon can exist in one of several possible mixing states; distinct from other aerosol particles (externally mixed) or incorporated within them (internally mixed), or a black-carbon core could be surrounded by a well mixed shell. But so far it has been assumed that aerosols exist predominantly as an external mixture. Here I simulate the evolution of the chemical composition of aerosols, finding that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles. This finding implies a higher positive forcing from black carbon than previously thought, suggesting that the warming effect from black carbon may nearly balance the net cooling effect of other anthropogenic aerosol constituents. The magnitude of the direct radiative forcing from black carbon itself exceeds that due to CH4, suggesting that black carbon may be the second most important component of global warming after CO2 in terms of direct forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006WRR....42.2407J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006WRR....42.2407J"><span>An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, J. P.; Sudicky, E. A.; Brookfield, A. E.; Park, Y.-J.</p> <p>2006-02-01</p> <p>The use of conservative geochemical and isotopic tracers along with mass balance equations to determine the pre-event groundwater contributions to streamflow during a rainfall event is widely used for hydrograph separation; however, aspects related to the influence of surface and subsurface mixing processes on the estimates of the pre-event contribution remain poorly understood. Moreover, the lack of a precise definition of "pre-event" versus "event" contributions on the one hand and "old" versus "new" water components on the other hand has seemingly led to confusion within the hydrologic community about the role of Darcian-based groundwater flow during a storm event. In this work, a fully integrated surface and subsurface flow and solute transport model is used to analyze flow system dynamics during a storm event, concomitantly with advective-dispersive tracer transport, and to investigate the role of hydrodynamic mixing processes on the estimates of the pre-event component. A number of numerical experiments are presented, including an analysis of a controlled rainfall-runoff experiment, that compare the computed Darcian-based groundwater fluxes contributing to streamflow during a rainfall event with estimates of these contributions based on a tracer-based separation. It is shown that hydrodynamic mixing processes can dramatically influence estimates of the pre-event water contribution estimated by a tracer-based separation. Specifically, it is demonstrated that the actual amount of bulk flowing groundwater contributing to streamflow may be much smaller than the quantity indirectly estimated from a separation based on tracer mass balances, even if the mixing processes are weak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRD..120.2437A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRD..120.2437A"><span>Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.</p> <p>2015-03-01</p> <p>Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRE..121..965O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRE..121..965O"><span>Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozak, N.; Aharonson, O.; Halevy, I.</p> <p>2016-06-01</p> <p>Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20861554','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20861554"><span>Flood analysis in mixed-urban areas reflecting interactions with the complete water cycle through coupled hydrologic-hydraulic modelling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sto Domingo, N D; Refsgaard, A; Mark, O; Paludan, B</p> <p>2010-01-01</p> <p>The potential devastating effects of urban flooding have given high importance to thorough understanding and management of water movement within catchments, and computer modelling tools have found widespread use for this purpose. The state-of-the-art in urban flood modelling is the use of a coupled 1D pipe and 2D overland flow model to simultaneously represent pipe and surface flows. This method has been found to be accurate for highly paved areas, but inappropriate when land hydrology is important. The objectives of this study are to introduce a new urban flood modelling procedure that is able to reflect system interactions with hydrology, verify that the new procedure operates well, and underline the importance of considering the complete water cycle in urban flood analysis. A physically-based and distributed hydrological model was linked to a drainage network model for urban flood analysis, and the essential components and concepts used were described in this study. The procedure was then applied to a catchment previously modelled with the traditional 1D-2D procedure to determine if the new method performs similarly well. Then, results from applying the new method in a mixed-urban area were analyzed to determine how important hydrologic contributions are to flooding in the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA599049','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA599049"><span>The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-03-27</p> <p>27 25 NPSS Mixed Flow Turbofan Model - Element and Link Names . . . . . . . . . 30 26 VCE with Variable Components Labeled...the power generation, Vogeler proposed the Sequential Combustion Cycle (SCC) for use in aircraft engines [13]. For a conventional turbofan with a...single combustor, thrust is a function of bypass ratio and maximum pressure and temperature in the cycle. Considering a twin spool turbofan engine as</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930039069&hterms=SANJAY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DSANJAY','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930039069&hterms=SANJAY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DSANJAY"><span>A hybrid structured-unstructured grid method for unsteady turbomachinery flow computations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.</p> <p>1993-01-01</p> <p>A hybrid grid technique for the solution of 2D, unsteady flows is developed. This technique is capable of handling complex, multiple component geometries in relative motion, such as those encountered in turbomachinery. The numerical approach utilizes a mixed structured-unstructured zonal grid topology along with modeling equations and solution methods that are most appropriate in the individual domains, therefore combining the advantages of both structured and unstructured grid techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26849019','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26849019"><span>Plasmonic Metallurgy Enabled by DNA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ross, Michael B; Ku, Jessie C; Lee, Byeongdu; Mirkin, Chad A; Schatz, George C</p> <p>2016-04-13</p> <p>Mixed silver and gold plasmonic nanoparticle architectures are synthesized using DNA-programmable assembly, unveiling exquisitely tunable optical properties that are predicted and explained both by effective thin-film models and explicit electrodynamic simulations. These data demonstrate that the manner and ratio with which multiple metallic components are arranged can greatly alter optical properties, including tunable color and asymmetric reflectivity behavior of relevance for thin-film applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6742410','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6742410"><span>An apparatus for sequentially combining microvolumes of reagents by infrasonic mixing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Camien, M N; Warner, R C</p> <p>1984-05-01</p> <p>A method employing high-speed infrasonic mixing for obtaining timed samples for following the progress of a moderately rapid chemical reaction is described. Drops of 10 to 50 microliter each of two reagents are mixed to initiate the reaction, followed, after a measured time interval, by mixing with a drop of a third reagent to quench the reaction. The method was developed for measuring the rate of denaturation of covalently closed, circular DNA in NaOH at several temperatures. For this purpose the timed samples were analyzed by analytical ultracentrifugation. The apparatus was tested by determination of the rate of hydrolysis of 2,4-dinitrophenyl acetate in an alkaline buffer. The important characteristics of the method are (i) it requires very small volumes of sample and reagents; (ii) the components of the reaction mixture are pre-equilibrated and mixed with no transfer outside the prescribed constant temperature environment; (iii) the mixing is very rapid; and (iv) satisfactorily precise measurements of relatively short time intervals (approximately 2 sec minimum) between sequential mixings of the components are readily obtainable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-0700442.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-0700442.html"><span>Biotechnology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-05-07</p> <p>Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. In this picture, the beads are trapped in the injection port shortly after injection. Swirls of beads indicate, event to the naked eye, the contents of the TCM are not fully mixed. The beads are similar in size and density to human lymphoid cells. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0700444&hterms=biotechnology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbiotechnology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0700444&hterms=biotechnology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbiotechnology"><span>Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, a TCM is shown after mixing protocols, and bubbles of various sizes can be seen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AcSpA.192...16H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AcSpA.192...16H"><span>Ethanol- and trifluoroethanol-induced changes in phase states of DPPC membranes. Prodan emission-excitation fluorescence spectroscopy supported by PARAFAC analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horochowska, Martyna; Cieślik-Boczula, Katarzyna; Rospenk, Maria</p> <p>2018-03-01</p> <p>It has been shown that Prodan emission-excitation fluorescence spectroscopy supported by Parallel Factor (PARAFAC) analysis is a fast, simple and sensitive method used in the study of the phase transition from the noninterdigitated gel (Lβ‧) state to the interdigitated gel (LβI) phase, triggered by ethanol and 2,2,2-trifluoroethanol (TFE) molecules in dipalmitoylphosphatidylcholines (DPPC) membranes. The relative contribution of lipid phases with spectral characteristics of each pure phase component has been presented as a function of an increase in alcohol concentration. It has been stated that both alcohol molecules can induce a formation of the LβI phase, but TFE is over six times stronger inducer of the interdigitated phase in DPPC membranes than ethanol molecules. Moreover, in the TFE-mixed DPPC membranes, the transition from the Lβ‧ to LβI phase is accompanied by a formation of the fluid phase, which most probably serves as a boundary phase between the Lβ‧ and LβI regions. Contrary to the three phase-state model of TFE-mixed DPPC membranes, in ethanol-mixed DPPC membranes only the two phase-state model has been detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.9911L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.9911L"><span>Use of a mixing model to investigate groundwater-surface water mixing and nitrogen biogeochemistry in the bed of a groundwater-fed river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao</p> <p>2010-05-01</p> <p>The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual nitrate concentrations (measured from samples collected in the field) then allows patches of biogeochemical activity to be identified. The depth of the groundwater-surface water mixing zone was not uniform along the study reach or over the three sampling periods, varying from <10 to 50 cm in depth. The influence of factors such as the strength of groundwater upwelling, channel geomorphology, substrate composition (permeability) and river discharge on the extent of groundwater-surface mixing have been investigated. During the three field campaigns conducted, groundwater nitrate concentrations (100 cm) were higher than surface water nitrate concentrations (3.7 ± 0.4 mg N/L versus 2.0 ± 0.03 mg N/L; p < 0.001; n = 27), indicating that throughout the reach investigated groundwater will supply nitrate to the overlying water column unless nitrate attenuation occurs along the upwelling flow path. Actual (measured) pore water nitrate concentrations often differed from concentrations predicted using the mixing model, which suggests that biogeochemical transformations also affected nitrate concentrations in the hyporheic zone. The initial field data suggested that there were regions of both nitrate production and nitrate consumption in the subsurface sediments, and that these zones may extend beyond the depths commonly associated with the hyporheic zone. This research demonstrates that a multi-component mixing model can be used to identify possible hotspots of nitrate production or consumption in the bed of a groundwater-fed river. Käser, DH, Binley, A, Heathwaite, AL and Krause, S (2009) Spatio-temporal variations of hyporheic flow in a riffle-pool sequence. Hydrological Processes 23: 2138 - 2149. Rivett, MO, Ellis, PA, Greswell, RB, Ward, RS, Roche, RS, Cleverly, MG, Walker, C, Conran, D, Fitzgerald, PJ, Willcox, T and Dowle, J (2008) Cost-effective mini drive-point piezometers and multilevel samplers for monitoring the hyporheic zone. Quarterly Journal of Engineering Geology and Hydrogeology 41: 49 - 60.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27038431','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27038431"><span>Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mali, Sachin A; Singh, Vaneet; Gilbert, Jeremy L</p> <p>2017-07-01</p> <p>Spinal implants are made from a variety of materials to meet the unique mechanical demands of each application. However, the medical device community has raised concern about mixing dissimilar metals in an implant because of fear of inducing corrosion. There is a lack of systematic studies on the effects of mixing metals on performance of spinal implants, especially in fretting corrosion conditions. Hence, the goal was to determine whether mixing stainless steel (SS316L), titanium alloy (Ti6Al4V) and cobalt chromium (CoCrMo) alloy components in a spinal implant leads to any increased risk of corrosion degradation. Spinal constructs consisting of single assembly screw-connector-rod components were tested using a novel short-term cyclic fretting corrosion test method. A total of 17 alloy component combinations (comprised of SS316L, Ti6Al4V-anodized and CoCrMo alloy for rod, screws and connectors) were tested under three anatomic orientations. Spinal constructs having all SS316L were most susceptible to fretting-initiated crevice corrosion attack and showed higher average fretting currents (∼25 - 30 µA), whereas constructs containing all Ti6Al4V components were less susceptible to fretting corrosion with average fretting currents in the range of 1 - 6 µA. Mixed groups showed evidence of fretting corrosion but they were not as severe as all SS316L group. SEM results showed evidence of severe corrosion attack in constructs having SS316L components. There also did not appear to be any galvanic effects of combining alloys together. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1169-1177, 2017. © 2016 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28314965','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28314965"><span>Genetic analyses using GGE model and a mixed linear model approach, and stability analyses using AMMI bi-plot for late-maturity alpha-amylase activity in bread wheat genotypes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Fofana, Bourlaye</p> <p>2017-06-01</p> <p>Low falling number and discounting grain when it is downgraded in class are the consequences of excessive late-maturity α-amylase activity (LMAA) in bread wheat (Triticum aestivum L.). Grain expressing high LMAA produces poorer quality bread products. To effectively breed for low LMAA, it is necessary to understand what genes control it and how they are expressed, particularly when genotypes are grown in different environments. In this study, an International Collection (IC) of 18 spring wheat genotypes and another set of 15 spring wheat cultivars adapted to South Dakota (SD), USA were assessed to characterize the genetic component of LMAA over 5 and 13 environments, respectively. The data were analysed using a GGE model with a mixed linear model approach and stability analysis was presented using an AMMI bi-plot on R software. All estimated variance components and their proportions to the total phenotypic variance were highly significant for both sets of genotypes, which were validated by the AMMI model analysis. Broad-sense heritability for LMAA was higher in SD adapted cultivars (53%) compared to that in IC (49%). Significant genetic effects and stability analyses showed some genotypes, e.g. 'Lancer', 'Chester' and 'LoSprout' from IC, and 'Alsen', 'Traverse' and 'Forefront' from SD cultivars could be used as parents to develop new cultivars expressing low levels of LMAA. Stability analysis using an AMMI bi-plot revealed that 'Chester', 'Lancer' and 'Advance' were the most stable across environments, while in contrast, 'Kinsman', 'Lerma52' and 'Traverse' exhibited the lowest stability for LMAA across environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26951414','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26951414"><span>Examining the Variability of Sleep Patterns during Treatment for Chronic Insomnia: Application of a Location-Scale Mixed Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ong, Jason C; Hedeker, Donald; Wyatt, James K; Manber, Rachel</p> <p>2016-06-15</p> <p>The purpose of this study was to introduce a novel statistical technique called the location-scale mixed model that can be used to analyze the mean level and intra-individual variability (IIV) using longitudinal sleep data. We applied the location-scale mixed model to examine changes from baseline in sleep efficiency on data collected from 54 participants with chronic insomnia who were randomized to an 8-week Mindfulness-Based Stress Reduction (MBSR; n = 19), an 8-week Mindfulness-Based Therapy for Insomnia (MBTI; n = 19), or an 8-week self-monitoring control (SM; n = 16). Sleep efficiency was derived from daily sleep diaries collected at baseline (days 1-7), early treatment (days 8-21), late treatment (days 22-63), and post week (days 64-70). The behavioral components (sleep restriction, stimulus control) were delivered during late treatment in MBTI. For MBSR and MBTI, the pre-to-post change in mean levels of sleep efficiency were significantly larger than the change in mean levels for the SM control, but the change in IIV was not significantly different. During early and late treatment, MBSR showed a larger increase in mean levels of sleep efficiency and a larger decrease in IIV relative to the SM control. At late treatment, MBTI had a larger increase in the mean level of sleep efficiency compared to SM, but the IIV was not significantly different. The location-scale mixed model provides a two-dimensional analysis on the mean and IIV using longitudinal sleep diary data with the potential to reveal insights into treatment mechanisms and outcomes. © 2016 American Academy of Sleep Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDR11003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDR11003M"><span>Physical modelling of LNG rollover in a depressurized container filled with water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maksim, Dadonau; Denissenko, Petr; Hubert, Antoine; Dembele, Siaka; Wen, Jennifer</p> <p>2015-11-01</p> <p>Stable density stratification of multi-component Liquefied Natural Gas causes it to form distinct layers, with upper layer having a higher fraction of the lighter components. Heat flux through the walls and base of the container results in buoyancy-driven convection accompanied by heat and mass transfer between the layers. The equilibration of densities of the top and bottom layers, normally caused by the preferential evaporation of Nitrogen, may induce an imbalance in the system and trigger a rapid mixing process, so-called rollover. Numerical simulation of the rollover is complicated and codes require validation. Physical modelling of the phenomenon has been performed in a water-filled depressurized vessel. Reducing gas pressure in the container to levels comparable to the hydrostatic pressure in the water column allows modelling of tens of meters industrial reservoirs using a 20 cm laboratory setup. Additionally, it allows to model superheating of the base fluid layer at temperatures close the room temperature. Flow visualizations and parametric studies are presented. Results are related to outcomes of numerical modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28264943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28264943"><span>Innovative Home Visit Models Associated With Reductions In Costs, Hospitalizations, And Emergency Department Use.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruiz, Sarah; Snyder, Lynne Page; Rotondo, Christina; Cross-Barnet, Caitlin; Colligan, Erin Murphy; Giuriceo, Katherine</p> <p>2017-03-01</p> <p>While studies of home-based care delivered by teams led by primary care providers have shown cost savings, little is known about outcomes when practice-extender teams-that is, teams led by registered nurses or lay health workers-provide home visits with similar components (for example, care coordination and education). We evaluated findings from five models funded by Health Care Innovation Awards of the Centers for Medicare and Medicaid Services. Each model used a mix of different components to strengthen connections to primary care among fee-for-service Medicare beneficiaries with multiple chronic conditions; these connections included practice-extender home visits. Two models achieved significant reductions in Medicare expenditures, and three models reduced utilization in the form of emergency department visits, hospitalizations, or both for beneficiaries relative to comparators. These findings present a strong case for the potential value of home visits by practice-extender teams to reduce Medicare expenditures and service use in a particularly vulnerable and costly segment of the Medicare population. Project HOPE—The People-to-People Health Foundation, Inc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27061753','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27061753"><span>A 21-35 kDa Mixed Protein Component from Helicobacter pylori Activates Mast Cells Effectively in Chronic Spontaneous Urticaria.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Ran-Jing; Sun, He-Qiang; Zhang, Wei; Yuan, Han-Mei; Li, Bin; Yan, Hong-Tao; Lan, Chun-Hui; Yang, Jun; Zhao, Zhuo; Wu, Jin-Jin; Wu, Chao</p> <p>2016-12-01</p> <p>Helicobacter pylori (H. pylori) seem to involve in the etiology of chronic spontaneous urticaria (CSU). But studies of the pathogenic mechanism are very little. In this study, we detected the serum-specific anti-H. pylori IgG and IgE antibodies in 211 CSU and 137 normal subjects by enzyme-linked immunosorbent assay (ELISA), evaluated the direct activation effects of H. pylori preparations and its protein components on human LAD 2 mast cell line in vitro, and analyzed the specific protein ingredients and functions of the most effective H. pylori mixed protein component using liquid chromatography-mass spectrometry and ELISA assay. In CSU patients, the positive rate of anti-H. pylori IgG positive rate was significantly higher than that in normal controls, and the anti-H. pylori IgE levels had no statistical difference between H. pylori-infected patients with and without CSU. Further studies suggested that H. pylori preparations can directly activate human LAD 2 mast cell line in a dose-dependent manner and its most powerful protein component was a mixture of 21-35 kDa proteins. Moreover, the 21-35 kDa mixed protein component mainly contained 23 kinds of proteins, which can stimulate the release of histamine, TNF-a, IL-3, IFN-γ, and LTB4 by LAD 2 cells in a dose-dependent or time-dependent manner. A 21-35 kDa mixed protein component should be regarded as the most promising pathogenic factor contributing to the CSU associated with H. pylori infection. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Natur.531..357L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Natur.531..357L"><span>The contribution of China’s emissions to global climate forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng</p> <p>2016-03-01</p> <p>Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on “common but differentiated responsibilities” reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China’s present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China’s relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China’s strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China’s eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26983540','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26983540"><span>The contribution of China's emissions to global climate forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng</p> <p>2016-03-17</p> <p>Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23618052','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23618052"><span>Exploring the value of mixed methods within the At Home/Chez Soi housing first project: a strategy to evaluate the implementation of a complex population health intervention for people with mental illness who have been homeless.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Macnaughton, Eric L; Goering, Paula N; Nelson, Geoffrey B</p> <p>2012-05-02</p> <p>This paper is a methodological case study that describes the At Home/Chez Soi (Housing First) Initiative's mixed-methods strategy for implementation evaluation and discusses the value of these methods in evaluating the implementation of such complex population health interventions. The Housing First (HF) model is being implemented in five cities: Vancouver, Winnipeg, Toronto, Montréal and Moncton. At Home/Chez Soi is an intervention trial that aims to address the issue of homelessness in people with mental health issues. The HF model emphasizes choices, hopefulness and connecting people with resources that make a difference to their quality of life. A component of HF is supported housing, which provides a rent subsidy and rapid access to housing of choice in private apartments; a second component is support. Quantitative and qualitative methods were used to evaluate HF implementation. The findings of this case study illustrate how the critical ingredients of complex interventions, such as HF, can be adapted to different contexts while implementation fidelity is maintained at a theoretical level. The findings also illustrate how the project's mixed methods approach helped to facilitate the adaptation process. Another value of this approach is that it identifies systemic and organizational factors (e.g., housing supply, discrimination, housing procurement strategy) that affect implementation of key elements of HF. In general, the approach provides information about both whether and how key aspects of the intervention are implemented effectively across different settings. It thus provides implementation data that are rigorous, contextually relevant and practical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED31F3487H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED31F3487H"><span>Assessing ocean vertical mixing schemes for the study of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, A. M.; Lindo, F.; Fells, J.; Tulsee, V.; Cheng, Y.; Canuto, V.</p> <p>2014-12-01</p> <p>Climate change is a burning issue of our time. It is critical to know the consequences of choosing "business as usual" vs. mitigating our emissions for impacts e.g. ecosystem disruption, sea-level rise, floods and droughts. To make predictions we must model realistically each component of the climate system. The ocean must be modeled carefully as it plays a critical role, including transporting heat and storing heat and dissolved carbon dioxide. Modeling the ocean realistically in turn requires physically based parameterizations of key processes in it that cannot be explicitly represented in a global climate model. One such process is vertical mixing. The turbulence group at NASA-GISS has developed a comprehensive new vertical mixing scheme (GISSVM) based on turbulence theory, including surface convection and wind shear, interior waves and double-diffusion, and bottom tides. The GISSVM is tested in stand-alone ocean simulations before being used in coupled climate models. It is also being upgraded to more faithfully represent the physical processes. To help assess mixing schemes, students use data from NASA-GISS to create visualizations and calculate statistics including mean bias and rms differences and correlations of fields. These are created and programmed with MATLAB. Results with the commonly used KPP mixing scheme and the present GISSVM and candidate improved variants of GISSVM will be compared between stand-alone ocean models and coupled models and observations. This project introduces students to modeling of a complex system, an important theme in contemporary science and helps them gain a better appreciation of climate science and a new perspective on it. They also gain familiarity with MATLAB, a widely used tool, and develop skills in writing and understanding programs. Moreover they contribute to the advancement of science by providing information that will help guide the improvement of the GISSVM and hence of ocean and climate models and ultimately our understanding and prediction of climate. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, a minority serving institution in an urban setting in central Brooklyn. This Project is supported by NSF award AGS-1359293 REU site: CUNY/GISS Center for Global Climate Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23792611','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23792611"><span>Modeling vehicle operating speed on urban roads in Montreal: a panel mixed ordered probit fractional split model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eluru, Naveen; Chakour, Vincent; Chamberlain, Morgan; Miranda-Moreno, Luis F</p> <p>2013-10-01</p> <p>Vehicle operating speed measured on roadways is a critical component for a host of analysis in the transportation field including transportation safety, traffic flow modeling, roadway geometric design, vehicle emissions modeling, and road user route decisions. The current research effort contributes to the literature on examining vehicle speed on urban roads methodologically and substantively. In terms of methodology, we formulate a new econometric model framework for examining speed profiles. The proposed model is an ordered response formulation of a fractional split model. The ordered nature of the speed variable allows us to propose an ordered variant of the fractional split model in the literature. The proposed formulation allows us to model the proportion of vehicles traveling in each speed interval for the entire segment of roadway. We extend the model to allow the influence of exogenous variables to vary across the population. Further, we develop a panel mixed version of the fractional split model to account for the influence of site-specific unobserved effects. The paper contributes substantively by estimating the proposed model using a unique dataset from Montreal consisting of weekly speed data (collected in hourly intervals) for about 50 local roads and 70 arterial roads. We estimate separate models for local roads and arterial roads. The model estimation exercise considers a whole host of variables including geometric design attributes, roadway attributes, traffic characteristics and environmental factors. The model results highlight the role of various street characteristics including number of lanes, presence of parking, presence of sidewalks, vertical grade, and bicycle route on vehicle speed proportions. The results also highlight the presence of site-specific unobserved effects influencing the speed distribution. The parameters from the modeling exercise are validated using a hold-out sample not considered for model estimation. The results indicate that the proposed panel mixed ordered probit fractional split model offers promise for modeling such proportional ordinal variables. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..525..711M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..525..711M"><span>Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using Genetic Programming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meshgi, Ali; Schmitter, Petra; Chui, Ting Fong May; Babovic, Vladan</p> <p>2015-06-01</p> <p>The decrease of pervious areas during urbanization has severely altered the hydrological cycle, diminishing infiltration and therefore sub-surface flows during rainfall events, and further increasing peak discharges in urban drainage infrastructure. Designing appropriate waster sensitive infrastructure that reduces peak discharges requires a better understanding of land use specific contributions towards surface and sub-surface processes. However, to date, such understanding in tropical urban environments is still limited. On the other hand, the rainfall-runoff process in tropical urban systems experiences a high degree of non-linearity and heterogeneity. Therefore, this study used Genetic Programming to establish a physically interpretable modular model consisting of two sub-models: (i) a baseflow module and (ii) a quick flow module to simulate the two hydrograph flow components. The relationship between the input variables in the model (i.e. meteorological data and catchment initial conditions) and its overall structure can be explained in terms of catchment hydrological processes. Therefore, the model is a partial greying of what is often a black-box approach in catchment modelling. The model was further generalized to the sub-catchments of the main catchment, extending the potential for more widespread applications. Subsequently, this study used the modular model to predict both flow components of events as well as time series, and applied optimization techniques to estimate the contributions of various land uses (i.e. impervious, steep grassland, grassland on mild slope, mixed grasses and trees and relatively natural vegetation) towards baseflow and quickflow in tropical urban systems. The sub-catchment containing the highest portion of impervious surfaces (40% of the area) contributed the least towards the baseflow (6.3%) while the sub-catchment covered with 87% of relatively natural vegetation contributed the most (34.9%). The results from the quickflow module revealed average runoff coefficients between 0.12 and 0.80 for the various land uses and decreased from impervious (0.80), grass on steep slopes (0.56), grass on mild slopes (0.48), mixed grasses and trees (0.42) to relatively natural vegetation (0.12). The established modular model, reflecting the driving hydrological processes, enables the quantification of land use specific contributions towards the baseflow and quickflow components. This quantification facilitates the integration of water sensitive urban infrastructure for the sustainable development of water in tropical megacities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL14010R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL14010R"><span>Mixing efficiency inside micro-droplets coalesced by two components in cross-structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Yanlin; Liu, Zhaomiao; Pang, Yan</p> <p>2017-11-01</p> <p>The mixing of micro-droplets is used in analytical chemistry, medicine production and material synthesis owing to its advantages including the encapsulation and narrow time residence distribution. In this work, droplets are coalesced by two dispersed phase with different flow rates, generated in cross-structure and mixed in planar serpentine structure. The mixing efficiency of micro-droplets under control characters including the width of entrance and the flow rate of dispersed phases have been investigated by experiments and numerical simulations. The UDS (user-defined scalar) as dimensionless concentration of the solution is adopted in simulation, and is used to calculate the concentration and the mixing effect. By changing the flow rates and the entrances` width, the changing rules of the mixing characters have been obtained. The asymmetry distributions of components make rapid mixing process in half part of each droplet when travel through a straight channel. Increasing of the ratio of entrance width result into larger droplet and weaken the chaotic mixing effect. Meanwhile, the coalesced mechanism can be performed by ranging the ratio of flow rates, the ranges are also determined by the widths of entrances. The authors gratefully acknowledge the support of National Natural Science Foundation of China (Grant No. 11572013).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5125402','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5125402"><span>Controlling the surface‐mediated release of DNA using ‘mixed multilayers’</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Appadoo, Visham; Carter, Matthew C. D.</p> <p>2016-01-01</p> <p>Abstract We report the design of erodible ‘mixed multilayer’ coatings fabricated using plasmid DNA and combinations of both hydrolytically degradable and charge‐shifting cationic polymer building blocks. Films fabricated layer‐by‐layer using combinations of a model poly(β‐amino ester) (polymer 1) and a model charge‐shifting polymer (polymer 2) exhibited DNA release profiles that were substantially different than those assembled using DNA and either polymer 1 or polymer 2 alone. In addition, the order in which layers of these two cationic polymers were deposited during assembly had a profound impact on DNA release profiles when these materials were incubated in physiological buffer. Mixed multilayers ∼225 nm thick fabricated by depositing layers of polymer 1/DNA onto films composed of polymer 2/DNA released DNA into solution over ∼60 days, with multi‐phase release profiles intermediate to and exhibiting some general features of polymer 1/DNA or polymer 2/DNA films (e.g., a period of rapid release, followed by a more extended phase). In sharp contrast, ‘inverted’ mixed multilayers fabricated by depositing layers of polymer 2/DNA onto films composed of polymer 1/DNA exhibited release profiles that were almost completely linear over ∼60‐80 days. These and other results are consistent with substantial interdiffusion and commingling (or mixing) among the individual components of these compound materials. Our results reveal this mixing to lead to new, unanticipated, and useful release profiles and provide guidance for the design of polymer‐based coatings for the local, surface‐mediated delivery of DNA from the surfaces of topologically complex interventional devices, such as intravascular stents, with predictable long‐term release profiles. PMID:27981243</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1133938','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1133938"><span>Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary</p> <p>2014-06-10</p> <p>A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28202634','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28202634"><span>Dietary Patterns Are Associated with Metabolic Outcomes among Adult Samoans in a Cross-Sectional Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Dongqing; Hawley, Nicola L; Thompson, Avery A; Lameko, Viali; Reupena, Muagatutia Sefuiva; McGarvey, Stephen T; Baylin, Ana</p> <p>2017-04-01</p> <p>Background: The Samoan population has been undergoing a nutrition transition toward more imported and processed foods and a more sedentary lifestyle. Objectives: We aimed to identify dietary patterns in Samoa and to evaluate their associations with metabolic outcomes. Methods: The sample of this cross-sectional study includes 2774 Samoan adults recruited in 2010 (1104 with metabolic syndrome compared with 1670 without). Principal component analysis on food items from a 104-item food-frequency questionnaire was used to identify dietary patterns. Adjusted least squares means of each component of metabolic syndrome were estimated by quintiles of factor scores for each dietary pattern. Metabolic syndrome status was regressed on quintiles of scores by using log-binomial models to obtain prevalence ratios. Results: We identified a modern pattern, a mixed-traditional pattern, and a mixed-modern pattern. The modern pattern included a high intake of imported and processed foods, including pizza, cheeseburgers, margarine, sugary drinks, desserts, snacks, egg products, noodles, nuts, breads, and cakes and a low intake of traditional agricultural products and fish. The mixed-traditional pattern had a high intake of neotraditional foods, including fruits, vegetables, soup, poultry, and fish, and imported and processed foods, including dairy products, breads, and cakes. The mixed-modern pattern was loaded with imported and processed foods, including pizza, cheeseburgers, red meat, egg products, noodles, and grains, but also with neotraditional foods, such as seafood and coconut. It also included a low intake of fish, tea, coffee, soup, and traditional agricultural staples. Higher adherence to the mixed-modern pattern was associated with lower abdominal circumference ( P -trend < 0.0001), lower serum triglycerides ( P -trend = 0.03), and higher serum HDL cholesterol ( P -trend = 0.0003). The mixed-modern pattern was inversely associated with prevalence of metabolic syndrome (the highest quintile: prevalence ratio = 0.79; 95% CI: 0.69, 0.91; P -trend = 0.006). Conclusion: Mixed dietary patterns containing healthier foods, rather than a largely imported and processed modern diet, may help prevent metabolic syndrome in Samoa. © 2017 American Society for Nutrition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919387C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919387C"><span>Combining external and internal mixing representation of atmospheric aerosol for optical properties calculations: focus on absorption properties over Europe and North America using AERONET observations and AQMEII simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curci, Gabriele</p> <p>2017-04-01</p> <p>The calculation of optical properties from knowledge of the composition and abundance of atmospheric aerosol implies a certain number of assumptions. First and if not known or explicitly simulated, a size distribution must be assigned to each aerosol component (e.g. sulfate-like inorganic ions, organic and back carbon, soil dust, sea salt). Second, physical-chemical properties such as the shape, density, complex refractive index, and hygroscopic factors must be associated to each aerosol species. Third, a representation of how the aerosol species combine together must be made: among those, the most popular are the assumptions of external mixing, in which each particle is assumed to be formed of a single compound and the optical properties may be calculated separately for each species, or of internal core-shell arrangement, in which each particle consists of a water-insoluble core coated with a water-soluble shell and that requires more elaborate calculations for optical properties. Previous work found that the assumption on the mixing state (external or core-shell internal) is the one that introduces the highest uncertainty, quantified in about 30% uncertainty on the calculation of monthly mean aerosol optical depth (AOD) and single-scattering albedo (SSA). The external mixing assumption is generally more reasonable for freshly emitted aerosol, while the internal mixing case is associated with aged aerosol that had the time to form the coating around the core. Both approximations are thus regarded as valid, but in general a combination of the two mixing states may be expected in a given air mass. In this work, we test a simple empirical parameterization of the fraction of internally mixed particles (F_in) in a generic air mass. The F_in fraction is calculated in two alternative ways, one exploiting the NOz to NOx ratio (proxy of the photochemical aging), and the other using the relative abundance of black carbon with respect to other aerosol components (proxy of the coating formation). We compare sunphotometer observations from the AERosol RObotic NETwork (AERONET, http://aeronet.gsfc.nasa.gov/) across Europe and North America for the year 2010 with simulations from the Air Quality Modeling Evaluation International Initiative (AQMEII, http://aqmeii.jrc.ec.europa.eu/). The calculation of optical properties from simulated aerosol profiles is carried out using a single post-processing tool (FlexAOD, http://pumpkin.aquila.infn.it/flexaod/) that allows explicit and flexible assignment of the underlying assumptions mentioned above. We found that the combination of externally and internally mixed particles weighted through the F_in fraction gives the best agreement between models and observations, in particular regarding the single-scattering albedo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..96d3620S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..96d3620S"><span>Flipping-shuttle oscillations of bright one- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with Rabi mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakaguchi, Hidetsugu; Malomed, Boris A.</p> <p>2017-10-01</p> <p>We analyze the possibility of macroscopic quantum effects in the form of coupled structural oscillations and shuttle motion of bright two-component spin-orbit-coupled striped (one-dimensional, 1D) and semivortex (two-dimensional, 2D) matter-wave solitons, under the action of linear mixing (Rabi coupling) between the components. In 1D, the intrinsic oscillations manifest themselves as flippings between spatially even and odd components of striped solitons, while in 2D the system features periodic transitions between zero-vorticity and vortical components of semivortex solitons. The consideration is performed by means of a combination of analytical and numerical methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPCRD..46c3102M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPCRD..46c3102M"><span>Estimation of Solvation Quantities from Experimental Thermodynamic Data: Development of the Comprehensive CompSol Databank for Pure and Mixed Solutes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moine, Edouard; Privat, Romain; Sirjean, Baptiste; Jaubert, Jean-Noël</p> <p>2017-09-01</p> <p>The Gibbs energy of solvation measures the affinity of a solute for its solvent and is thus a key property for the selection of an appropriate solvent for a chemical synthesis or a separation process. More fundamentally, Gibbs energies of solvation are choice data for developing and benchmarking molecular models predicting solvation effects. The Comprehensive Solvation—CompSol—database was developed with the ambition to propose very large sets of new experimental solvation chemical-potential, solvation entropy, and solvation enthalpy data of pure and mixed components, covering extended temperature ranges. For mixed compounds, the solvation quantities were generated in infinite-dilution conditions by combining experimental values of pure-component and binary-mixture thermodynamic properties. Three types of binary-mixture properties were considered: partition coefficients, activity coefficients at infinite dilution, and Henry's-law constants. A rigorous methodology was implemented with the aim to select data at appropriate conditions of temperature, pressure, and concentration for the estimation of solvation data. Finally, our comprehensive CompSol database contains 21 671 data associated with 1969 pure species and 70 062 data associated with 14 102 binary mixtures (including 760 solvation data related to the ionic-liquid class of solvents). On the basis of the very large amount of experimental data contained in the CompSol database, it is finally discussed how solvation energies are influenced by hydrogen-bonding association effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160014924','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160014924"><span>Hemispheric Differences in Tropical Lower Stratospheric Transport and Tracers Annual Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tweedy, Olga; Waugh, D.; Stolarski, R.; Oman, L.</p> <p>2016-01-01</p> <p>Transport of long-lived tracers (such as O, CO, and N O) in the lower stratosphere largely determines the composition of the entire stratosphere. Stratospheric transport includes the mean residual circulation (with air rising in the tropics and sinking in the polar and middle latitudes), plus two-way isentropic (quasi-horizontal) mixing by eddies. However, the relative importance of two transport components remains uncertain. Previous studies quantified the relative role of these processes based on tropics-wide average characteristics under common assumption of well-mixed tropics. However, multiple instruments provide us with evidence that show significant differences in the seasonal cycle of ozone between the Northern (0-20N) and Southern (0-20S) tropical (NT and ST respectively) lower stratosphere. In this study we investigate these differences in tracer seasonality and quantify transport processes affecting tracers annual cycle amplitude using simulations from Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and Whole Atmosphere Community Climate Model (WACCM) and compare them to observations from the Microwave Limb Sounder (MLS) on the Aura satellite. We detect the observed contrast between the ST and NT in GEOSCCM and WACCM: annual cycle in ozone and other chemical tracers is larger in the NT than in the ST but opposite is true for the annual cycle in vertical advection. Ozone budgets in the models, analyzed based on the Transformed Eulerian Mean (TEM) framework, demonstrate a major role of quasi-horizontal mixing vertical advection in determining the NTST ozone distribution and behavior. Analysis of zonal variations in the NT and ST ozone annual cycles further suggests important role of North American and Asian Summer Monsoons (associated with strong isentropic mixing) on the lower stratospheric ozone in the NT. Furthermore, multi model comparison shows that most CCMs reproduce the observed characteristic of ozone annual cycle quite well. Thus, latitudinal variations within the tropics have to be considered in order to understand the balance between upwelling and quasi- horizontal mixing in the tropical lower stratosphere and the paradigm of well mixed tropics has to be reconsidered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChJME..29..152S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChJME..29..152S"><span>A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long</p> <p>2016-01-01</p> <p>The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016279&hterms=elephants&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Delephants','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016279&hterms=elephants&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Delephants"><span>Lunar basalt meteorite EET 87521: Petrology of the clast population</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Semenova, A. S.; Nazarov, M. A.; Kononkova, N. N.</p> <p>1993-01-01</p> <p>The Elephant Moraine meteorite EET 87521 was classified as a lunar mare basalt breccia which is composed mainly of VLT basalt clasts. Here we report on our petrological study of lithic clasts and monomineralic fragments in the thin sections EET 87521,54 and EET 87521,47,1, which were prepared from the meteorite. The results of the study show that EET 87521 consists mainly of Al-rich ferrobasalt clasts and olivine pyroxenite clasts. The bulk composition of the meteorite can be well modelled by the mixing of these lithic components which appear to be differentiates of the Luna 25 basalt melt. KREEP and Mg-rich gabbro components are minor constituents of EET 87521.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920011426','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920011426"><span>Incompressible viscous flow computations for the pump components and the artificial heart</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kiris, Cetin</p> <p>1992-01-01</p> <p>A finite difference, three dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. Here, equations are solved in steadily rotating reference frames by using the steady state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25153730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25153730"><span>Independent components of neural activity carry information on individual populations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K</p> <p>2014-01-01</p> <p>Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4143226','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4143226"><span>Independent Components of Neural Activity Carry Information on Individual Populations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K.</p> <p>2014-01-01</p> <p>Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges. PMID:25153730</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>