Sample records for component presents math

  1. Etiological Distinction of Working Memory Components in Relation to Mathematics

    PubMed Central

    Lukowski, Sarah L.; Soden, Brooke; Hart, Sara A.; Thompson, Lee A.; Kovas, Yulia; Petrill, Stephen A.

    2014-01-01

    Working memory has been consistently associated with mathematics achievement, although the etiology of these relations remains poorly understood. The present study examined the genetic and environmental underpinnings of math story problem solving, timed calculation, and untimed calculation alongside working memory components in 12-year-old monozygotic (n = 105) and same-sex dizygotic (n = 143) twin pairs. Results indicated significant phenotypic correlation between each working memory component and all mathematics outcomes (r = 0.18 – 0.33). Additive genetic influences shared between the visuo-spatial sketchpad and mathematics achievement was significant, accounting for roughly 89% of the observed correlation. In addition, genetic covariance was found between the phonological loop and math story problem solving. In contrast, despite there being a significant observed relationship between phonological loop and timed and untimed calculation, there was no significant genetic or environmental covariance between the phonological loop and timed or untimed calculation skills. Further analyses indicated that genetic overlap between the visuo-spatial sketchpad and math story problem solving and math fluency was distinct from general genetic factors, whereas g, phonological loop, and mathematics shared generalist genes. Thus, although each working memory component was related to mathematics, the etiology of their relationships may be distinct. PMID:25477699

  2. More Value through Greater Differentiation: Gender Differences in Value Beliefs about Math

    ERIC Educational Resources Information Center

    Gaspard, Hanna; Dicke, Anna-Lena; Flunger, Barbara; Schreier, Brigitte; Häfner, Isabelle; Trautwein, Ulrich; Nagengast, Benjamin

    2015-01-01

    Expectancy-value theory (Eccles et al., 1983) is a prominent approach to explaining gender differences in math-related academic choices, with value beliefs acting as an important explanatory factor. Expectancy-value theory defines 4 value components: intrinsic value, attainment value, utility value, and cost. The present study followed up on…

  3. Reactive recruitment of attentional control in math anxiety: an ERP study of numeric conflict monitoring and adaptation.

    PubMed

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2014-01-01

    This study uses event-related brain potentials (ERPs) to investigate the electrophysiological correlates of numeric conflict monitoring in math-anxious individuals, by analyzing whether math anxiety is related to abnormal processing in early conflict detection (as shown by the N450 component) and/or in a later, response-related stage of processing (as shown by the conflict sustained potential; Conflict-SP). Conflict adaptation effects were also studied by analyzing the effect of the previous trial's congruence in current interference. To this end, 17 low math-anxious (LMA) and 17 high math-anxious (HMA) individuals were presented with a numerical Stroop task. Groups were extreme in math anxiety but did not differ in trait or state anxiety or in simple math ability. The interference effect of the current trial (incongruent-congruent) and the interference effect preceded by congruence and by incongruity were analyzed both for behavioral measures and for ERPs. A greater interference effect was found for response times in the HMA group than in the LMA one. Regarding ERPs, the LMA group showed a greater N450 component for the interference effect preceded by congruence than when preceded by incongruity, while the HMA group showed greater Conflict-SP amplitude for the interference effect preceded by congruence than when preceded by incongruity. Our study showed that the electrophysiological correlates of numeric interference in HMA individuals comprise the absence of a conflict adaptation effect in the first stage of conflict processing (N450) and an abnormal subsequent up-regulation of cognitive control in order to overcome the conflict (Conflict-SP). More concretely, our study shows that math anxiety is related to a reactive and compensatory recruitment of control resources that is implemented only when previously exposed to a stimuli presenting conflicting information.

  4. Reactive Recruitment of Attentional Control in Math Anxiety: An ERP Study of Numeric Conflict Monitoring and Adaptation

    PubMed Central

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2014-01-01

    This study uses event-related brain potentials (ERPs) to investigate the electrophysiological correlates of numeric conflict monitoring in math-anxious individuals, by analyzing whether math anxiety is related to abnormal processing in early conflict detection (as shown by the N450 component) and/or in a later, response-related stage of processing (as shown by the conflict sustained potential; Conflict-SP). Conflict adaptation effects were also studied by analyzing the effect of the previous trial’s congruence in current interference. To this end, 17 low math-anxious (LMA) and 17 high math-anxious (HMA) individuals were presented with a numerical Stroop task. Groups were extreme in math anxiety but did not differ in trait or state anxiety or in simple math ability. The interference effect of the current trial (incongruent-congruent) and the interference effect preceded by congruence and by incongruity were analyzed both for behavioral measures and for ERPs. A greater interference effect was found for response times in the HMA group than in the LMA one. Regarding ERPs, the LMA group showed a greater N450 component for the interference effect preceded by congruence than when preceded by incongruity, while the HMA group showed greater Conflict-SP amplitude for the interference effect preceded by congruence than when preceded by incongruity. Our study showed that the electrophysiological correlates of numeric interference in HMA individuals comprise the absence of a conflict adaptation effect in the first stage of conflict processing (N450) and an abnormal subsequent up-regulation of cognitive control in order to overcome the conflict (Conflict-SP). More concretely, our study shows that math anxiety is related to a reactive and compensatory recruitment of control resources that is implemented only when previously exposed to a stimuli presenting conflicting information. PMID:24918584

  5. Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials

    PubMed Central

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants’ math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN. PMID:24236212

  6. The Prediction of Students' Academic Performance With Fluid Intelligence in Giving Special Consideration to the Contribution of Learning.

    PubMed

    Ren, Xuezhu; Schweizer, Karl; Wang, Tengfei; Xu, Fen

    2015-01-01

    The present study provides a new account of how fluid intelligence influences academic performance. In this account a complex learning component of fluid intelligence tests is proposed to play a major role in predicting academic performance. A sample of 2, 277 secondary school students completed two reasoning tests that were assumed to represent fluid intelligence and standardized math and verbal tests assessing academic performance. The fluid intelligence data were decomposed into a learning component that was associated with the position effect of intelligence items and a constant component that was independent of the position effect. Results showed that the learning component contributed significantly more to the prediction of math and verbal performance than the constant component. The link from the learning component to math performance was especially strong. These results indicated that fluid intelligence, which has so far been considered as homogeneous, could be decomposed in such a way that the resulting components showed different properties and contributed differently to the prediction of academic performance. Furthermore, the results were in line with the expectation that learning was a predictor of performance in school.

  7. The Prediction of Students’ Academic Performance With Fluid Intelligence in Giving Special Consideration to the Contribution of Learning

    PubMed Central

    Ren, Xuezhu; Schweizer, Karl; Wang, Tengfei; Xu, Fen

    2015-01-01

    The present study provides a new account of how fluid intelligence influences academic performance. In this account a complex learning component of fluid intelligence tests is proposed to play a major role in predicting academic performance. A sample of 2, 277 secondary school students completed two reasoning tests that were assumed to represent fluid intelligence and standardized math and verbal tests assessing academic performance. The fluid intelligence data were decomposed into a learning component that was associated with the position effect of intelligence items and a constant component that was independent of the position effect. Results showed that the learning component contributed significantly more to the prediction of math and verbal performance than the constant component. The link from the learning component to math performance was especially strong. These results indicated that fluid intelligence, which has so far been considered as homogeneous, could be decomposed in such a way that the resulting components showed different properties and contributed differently to the prediction of academic performance. Furthermore, the results were in line with the expectation that learning was a predictor of performance in school. PMID:26435760

  8. Space shuttle plume/simulation application: Results and math model supersonic data

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.; Bell, G.

    1979-01-01

    The analysis of pressure and gage wind tunnel data from space shuttle wind tunnel test IA138 was performed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes on the total vehicles, elements, and components of the space shuttle vehicle during the supersonic portion of ascent flight. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach numbers from 1.55 to 2.5.

  9. Reading and Math.

    ERIC Educational Resources Information Center

    Baldwin, Anna; And Others

    This publication contains materials used in the three phases of the reading and mathematics components of work-specific classes. Each section begins with an overview of developments in that phase. Section 1 focuses on Phase 1 during which math and reading were taught as separate components. It contains a math placement appraisal, worksheets and…

  10. How preschool executive functioning predicts several aspects of math achievement in Grades 1 and 3: A longitudinal study.

    PubMed

    Viterbori, Paola; Usai, M Carmen; Traverso, Laura; De Franchis, Valentina

    2015-12-01

    This longitudinal study analyzes whether selected components of executive function (EF) measured during the preschool period predict several indices of math achievement in primary school. Six EF measures were assessed in a sample of 5-year-old children (N = 175). The math achievement of the same children was then tested in Grades 1 and 3 using both a composite math score and three single indices of written calculation, arithmetical facts, and problem solving. Using previous results obtained from the same sample of children, a confirmatory factor analysis examining the latent EF structure in kindergarten indicated that a two-factor model provided the best fit for the data. In this model, inhibition and working memory (WM)-flexibility were separate dimensions. A full structural equation model was then used to test the hypothesis that math achievement (the composite math score and single math scores) in Grades 1 and 3 could be explained by the two EF components comprising the kindergarten model. The results indicate that the WM-flexibility component measured during the preschool period substantially predicts mathematical achievement, especially in Grade 3. The math composite scores were predicted by the WM-flexibility factor at both grade levels. In Grade 3, both problem solving and arithmetical facts were predicted by the WM-flexibility component. The results empirically support interventions that target EF as an important component of early childhood mathematics education. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Promoting children's health through physically active math classes: a pilot study.

    PubMed

    Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W

    2011-03-01

    School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.

  12. Minimum-complexity helicopter simulation math model

    NASA Technical Reports Server (NTRS)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  13. Space shuttle plume simulation application. Results and math model. [Ames unitary plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.

    1978-01-01

    Pressure and gauge wind tunnel data from a transonic test of a 0.02 scale model of the space shuttle launch vehicle was analyzed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes during the transonic portion of ascent flight. Air was used as a simulant gas to develop the model exhaust plumes. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach number from 0.6 to 1.4 Element and component base and forebody aerodynamic characteristics are presented for Mach numbers of 0.6, 1.05, 1.1, 1.25 and 1.4. The forebody data is available at Mach 1.55. Tolerances for all plume induced aerodynamic characteristics are developed in terms of a math model.

  14. Semantic-Aware Components and Services of ActiveMath

    ERIC Educational Resources Information Center

    Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan

    2006-01-01

    ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…

  15. Neuroanatomical correlates of performance in a state-wide test of math achievement.

    PubMed

    Wilkey, Eric D; Cutting, Laurie E; Price, Gavin R

    2018-03-01

    The development of math skills is a critical component of early education and a strong indicator of later school and economic success. Recent research utilizing population-normed, standardized measures of math achievement suggest that structural and functional integrity of parietal regions, especially the intraparietal sulcus, are closely related to the development of math skills. However, it is unknown how these findings relate to in-school math learning. The present study is the first to address this issue by investigating the relationship between regional differences in grey matter (GM) volume and performance in grade-level mathematics as measured by a state-wide, school-based test of math achievement (TCAP math) in children from 3rd to 8th grade. Results show that increased GM volume in the bilateral hippocampal formation and the right inferior frontal gyrus, regions associated with learning and memory, is associated with higher TCAP math scores. Secondary analyses revealed that GM volume in the left angular gyrus had a stronger relationship to TCAP math in grades 3-4 than in grades 5-8 while the relationship between GM volume in the left inferior frontal gyrus and TCAP math was stronger for grades 5-8. These results suggest that the neuroanatomical architecture related to in-school math achievement differs from that related to math achievement measured by standardized tests, and that the most related neural structures differ as a function of grade level. We suggest, therefore, that the use of school-relevant outcome measures is critical if neuroscience is to bridge the gap to education. © 2017 John Wiley & Sons Ltd.

  16. Smith college secondary math and science outreach program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.A.; Clark, C.

    1994-12-31

    The Smith College Secondary Math and Science Outreach Program works collaboratively with front-line educators to encourage young women students of all abilities, especially underrepresented and underserved minorities, to continue studying math and science throughout high school. The program includes three main components: (1) Twenty-five to thirty teams of math/science teachers and guidance counselors participate in a year-long program which begins with a three-day Current Students/Future Scientists and Engineering Workshop. This event includes a keynote address, presentations and workshops by successful women in science and engineering, and hands-on laboratory sessions. Each participant receives a stipend and free room and board. Returningmore » to their schools, the teacher-counselor teams implement ongoing plans designed to counteract gender bias in the sciences and to alert female students to the broad range of math, science, and engineering career choices open to them. A follow-up session in the spring allows the teams to present and discuss their year-long activities. (2) TRI-ON, a day of science for 120 ninth- and tenth- grade girls from schools with a large underserved and underrepresented population, is held in early spring. Girls discover the excitement of laboratory investigation and interact with female college science and math majors. (3) Teaching Internships, initiated in 1991, involve ten to fifteen Smith College math and science majors in teaching in public schools. The teaching interns experience the rewards and challenges of classroom teaching, and they also serve as role models for younger students.« less

  17. Proprioceptor pathway development is dependent on Math1

    NASA Technical Reports Server (NTRS)

    Bermingham, N. A.; Hassan, B. A.; Wang, V. Y.; Fernandez, M.; Banfi, S.; Bellen, H. J.; Fritzsch, B.; Zoghbi, H. Y.

    2001-01-01

    The proprioceptive system provides continuous positional information on the limbs and body to the thalamus, cortex, pontine nucleus, and cerebellum. We showed previously that the basic helix-loop-helix transcription factor Math1 is essential for the development of certain components of the proprioceptive pathway, including inner-ear hair cells, cerebellar granule neurons, and the pontine nuclei. Here, we demonstrate that Math1 null embryos lack the D1 interneurons and that these interneurons give rise to a subset of proprioceptor interneurons and the spinocerebellar and cuneocerebellar tracts. We also identify three downstream genes of Math1 (Lh2A, Lh2B, and Barhl1) and establish that Math1 governs the development of multiple components of the proprioceptive pathway.

  18. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    NASA Astrophysics Data System (ADS)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  19. Abacus Training Affects Math and Task Switching Abilities and Modulates Their Relationships in Chinese Children

    PubMed Central

    Yao, Yuan; Weng, Jian; Hu, Yuzheng; Chen, Feiyan

    2015-01-01

    Our previous work demonstrated that abacus-based mental calculation (AMC), a traditional Chinese calculation method, could help children improve their math abilities (e.g. basic arithmetical ability) and executive function (e.g. working memory). This study further examined the effects of long-term AMC training on math ability in visual-spatial domain and the task switching component of executive function. More importantly, this study investigated whether AMC training modulated the relationship between math abilities and task switching. The participants were seventy 7-year-old children who were randomly assigned into AMC and control groups at primary school entry. Children in AMC group received 2-hour AMC training every week since primary school entry. On the contrary, children in the control group had never received any AMC training. Math and task switching abilities were measured one year and three years respectively after AMC training began. The results showed that AMC children performed better than their peers on math abilities in arithmetical and visual-spatial domains. In addition, AMC group responded faster than control group in the switching task, while no group difference was found in switch cost. Most interestingly, group difference was present in the relationships between math abilities and switch cost. These results implied the effect of AMC training on math abilities as well as its relationship with executive function. PMID:26444689

  20. Abacus Training Affects Math and Task Switching Abilities and Modulates Their Relationships in Chinese Children.

    PubMed

    Wang, Chunjie; Geng, Fengji; Yao, Yuan; Weng, Jian; Hu, Yuzheng; Chen, Feiyan

    2015-01-01

    Our previous work demonstrated that abacus-based mental calculation (AMC), a traditional Chinese calculation method, could help children improve their math abilities (e.g. basic arithmetical ability) and executive function (e.g. working memory). This study further examined the effects of long-term AMC training on math ability in visual-spatial domain and the task switching component of executive function. More importantly, this study investigated whether AMC training modulated the relationship between math abilities and task switching. The participants were seventy 7-year-old children who were randomly assigned into AMC and control groups at primary school entry. Children in AMC group received 2-hour AMC training every week since primary school entry. On the contrary, children in the control group had never received any AMC training. Math and task switching abilities were measured one year and three years respectively after AMC training began. The results showed that AMC children performed better than their peers on math abilities in arithmetical and visual-spatial domains. In addition, AMC group responded faster than control group in the switching task, while no group difference was found in switch cost. Most interestingly, group difference was present in the relationships between math abilities and switch cost. These results implied the effect of AMC training on math abilities as well as its relationship with executive function.

  1. Flight Software Math Library

    NASA Technical Reports Server (NTRS)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  2. The role of social support in students' perceived abilities and attitudes toward math and science.

    PubMed

    Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M

    2013-07-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.

  3. Neuroanatomical Correlates of Performance in a State-Wide Test of Math Achievement

    ERIC Educational Resources Information Center

    Wilkey, Eric D.; Cutting, Laurie E.; Price, Gavin R.

    2018-01-01

    The development of math skills is a critical component of early education and a strong indicator of later school and economic success. Recent research utilizing population-normed, standardized measures of math achievement suggest that structural and functional integrity of parietal regions, especially the intraparietal sulcus, are closely related…

  4. 75 FR 48658 - Notice of Proposed Information Collection Requests

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... individuals who teach science, technology, engineering, and math (STEM). TEACH.gov is an essential component... among minority individuals, and particularly in teaching science, technology, engineering, and math...

  5. Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children

    ERIC Educational Resources Information Center

    MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne

    2014-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary…

  6. The ABCs of Math: A Genetic Analysis of Mathematics and Its Links With Reading Ability and General Cognitive Ability

    PubMed Central

    Hart, Sara A.; Petrill, Stephen A.; Thompson, Lee A.; Plomin, Robert

    2009-01-01

    The goal of this first major report from the Western Reserve Reading Project Math component is to explore the etiology of the relationship among tester-administered measures of mathematics ability, reading ability, and general cognitive ability. Data are available on 314 pairs of monozygotic and same-sex dizygotic twins analyzed across 5 waves of assessment. Univariate analyses provide a range of estimates of genetic (h2 = .00 –.63) and shared (c2 = .15–.52) environmental influences across math calculation, fluency, and problem solving measures. Multivariate analyses indicate genetic overlap between math problem solving with general cognitive ability and reading decoding, whereas math fluency shares significant genetic overlap with reading fluency and general cognitive ability. Further, math fluency has unique genetic influences. In general, math ability has shared environmental overlap with general cognitive ability and decoding. These results indicate that aspects of math that include problem solving have different genetic and environmental influences than math calculation. Moreover, math fluency, a timed measure of calculation, is the only measured math ability with unique genetic influences. PMID:20157630

  7. Math Sense: The Look, Sound, and Feel of Effective Instruction

    ERIC Educational Resources Information Center

    Moynihan, Christine

    2012-01-01

    How is that you can walk into a classroom and gain an overall sense of the quality of math instruction taking place there? What contributes to getting that sense? In "Math Sense," Chris Moynihan explores some of the components that comprise the look, sound, and feel of effective teaching and learning. Does the landscape of the classroom feature…

  8. Edge Simulation Laboratory Progress and Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began inmore » fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.« less

  9. Reactivity to stress and the cognitive components of math disability in grade 1 children.

    PubMed

    MacKinnon McQuarrie, Maureen A; Siegel, Linda S; Perry, Nancy E; Weinberg, Joanne

    2014-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children's reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. © Hammill Institute on Disabilities 2012.

  10. Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children

    PubMed Central

    MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne

    2016-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children’s reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. PMID:23124381

  11. How Do Mathematicians Learn Math?: Resources and Acts for Constructing and Understanding Mathematics

    ERIC Educational Resources Information Center

    Wilkerson-Jerde, Michelle H.; Wilensky, Uri J.

    2011-01-01

    In this paper, we present an analytic framework for investigating expert mathematical learning as the process of building a "network of mathematical resources" by establishing relationships between different components and properties of mathematical ideas. We then use this framework to analyze the reasoning of ten mathematicians and mathematics…

  12. Universals and Specifics of Math Self-Concept, Math Self-Efficacy, and Math Anxiety across 41 PISA 2003 Participating Countries

    ERIC Educational Resources Information Center

    Lee, Jihyun

    2009-01-01

    The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…

  13. Writing Chinese and mathematics achievement: A study with Chinese-American undergraduates

    NASA Astrophysics Data System (ADS)

    Li, Chieh; Nuttall, Ronald

    2001-04-01

    Two recent studies indicated that writing Chinese is correlated to Chinese-American (CA) students' spatial skills. The current study investigated whether writing Chinese would have the same relationship to mathematics skills. The Scholastic Assessment Test—Mathematics (SAT-Math) scores were analysed for 150 CA undergraduates: 42 writers of Chinese and 108 non-writers of Chinese. The results suggested a strong correlation between writing Chinese and success on SAT-Math. An underlying mechanism may be the common cognitive components that encompass writing Chinese, spatial tasks, and SAT-Math. Contrary to previous findings with other populations in the USA, CA females scored slightly higher on SAT-Math than males. The finding supports the cultural relativity theory of gender difference on SAT-Math.

  14. The Effects of Interspersal and Reinforcement on Math Fact Accuracy and Learning Rate

    ERIC Educational Resources Information Center

    Rumberger, Jessica L.

    2013-01-01

    Mathematics skill acquisition is a crucial component of education and ongoing research is needed to determine quality instructional techniques. A ubiquitous instructional question is how to manage time. This study investigated several flashcard presentation methods to determine the one that would provide the most learning in a set amount of time.…

  15. Addressing Negative Math Attitudes with Service-Learning

    ERIC Educational Resources Information Center

    Henrich, Allison; Sloughter, J. McLean; Anderson, Jeffrey; Bahuaud, Eric

    2016-01-01

    In this paper, we share the results of our recent study of a quantitative literacy course with a service-learning component. Our study aims to answer the question: How did student attitudes shift as a result of participating in this course? We present and analyze statistics from pre- and post-surveys in five classes (N = 78) taught by two…

  16. Less precise representation of numerical magnitude in high math-anxious individuals: an ERP study of the size and distance effects.

    PubMed

    Núñez-Peña, M Isabel; Suárez-Pellicioni, Macarena

    2014-12-01

    Numerical comparison tasks are widely used to study the mental representation of numerical magnitude. In study, event-related brain potentials (ERPs) were recorded while 26 high math-anxious (HMA) and 27 low math-anxious (LMA) individuals were presented with pairs of single-digit Arabic numbers and were asked to decide which one had the larger numerical magnitude. The size of the numbers and the distance between them were manipulated in order to study the size and the distance effects. The results showed that both distance and size effects were larger for the HMA group. As for ERPs, results showed that the ERP distance effect had larger amplitude for both the size and distance effects in the HMA group than among their LMA counterparts. Since this component has been taken as a marker of the processing of numerical magnitude, this result suggests that HMA individuals have a less precise representation of numerical magnitude. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Math anxiety and exposure to statistics in messages about genetically modified foods: effects of numeracy, math self-efficacy, and form of presentation.

    PubMed

    Silk, Kami J; Parrott, Roxanne L

    2014-01-01

    Health risks are often communicated to the lay public in statistical formats even though low math skills, or innumeracy, have been found to be prevalent among lay individuals. Although numeracy has been a topic of much research investigation, the role of math self-efficacy and math anxiety on health and risk communication processing has received scant attention from health communication researchers. To advance theoretical and applied understanding regarding health message processing, the authors consider the role of math anxiety, including the effects of math self-efficacy, numeracy, and form of presenting statistics on math anxiety, and the potential effects for comprehension, yielding, and behavioral intentions. The authors also examine math anxiety in a health risk context through an evaluation of the effects of exposure to a message about genetically modified foods on levels of math anxiety. Participants (N = 323) were randomly assigned to read a message that varied the presentation of statistical evidence about potential risks associated with genetically modified foods. Findings reveal that exposure increased levels of math anxiety, with increases in math anxiety limiting yielding. Moreover, math anxiety impaired comprehension but was mediated by perceivers' math confidence and skills. Last, math anxiety facilitated behavioral intentions. Participants who received a text-based message with percentages were more likely to yield than participants who received either a bar graph with percentages or a combined form. Implications are discussed as they relate to math competence and its role in processing health and risk messages.

  18. The Amazing Mathematical Race

    ERIC Educational Resources Information Center

    Noblitt, Bethany A.; Buckley, Brooke E.

    2011-01-01

    Teams, pit stops, clues, time limits, fast forwards, challenges, and prizes are all components of the CBS hit show "The Amazing Race." They were also elements of the Amazing Mathematical Race sponsored by the Math and Stats Club at Northern Kentucky University in April 2009. Held in recognition of Math Awareness Month, which is advocated…

  19. Singapore Math: Problem-Solving Secrets from the World's Math Leader

    ERIC Educational Resources Information Center

    Hogan, Bob

    2005-01-01

    Using this four CD-ROM disc set, teachers can have their very own math problem solving mentor as a leading expert in Singapore Math guides them through a lively presentation, working through math problems and explaining how Singapore has become the world's leading method in math. The expert's explanation of how to use Singapore's model-drawing…

  20. Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task

    PubMed Central

    Suárez-Pellicioni, Macarena; Núñez-Peña, Maria Isabel; Colomé, Àngels

    2015-01-01

    Attentional bias toward threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias toward math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present study seeks to avoid. Twenty high math-anxious (HMA) and 20 low math-anxious (LMA) individuals were presented with an emotional Stroop task including math-related and neutral words. Participants in the two groups did not differ in trait anxiety or depression. We found that the HMA group showed slower response times to math-related words than to neutral words, as well as a greater attentional bias (math-related – neutral difference score) than the LMA one, which constitutes the first demonstration of an attentional bias toward math-related words in HMA individuals. PMID:26539137

  1. The Role of Social Support in Students' Perceived Abilities and Attitudes toward Math and Science

    ERIC Educational Resources Information Center

    Rice, Lindsay; Barth, Joan M.; Guadagno, Rosanna E.; Smith, Gabrielle P. A.; McCallum, Debra M.

    2013-01-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social…

  2. Inhibitory Control of Spanish-Speaking Language-Minority Preschool Children: Measurement and Association with Language, Literacy, and Math Skills

    ERIC Educational Resources Information Center

    Lonigan, Christopher J.; Allan, Darcey M.; Goodrich, J. Marc; Farrington, Amber L.; Phillips, Beth M.

    2017-01-01

    Children's self-regulation, including components of executive function such as inhibitory control, is related concurrently and longitudinally with elementary school children's reading and math abilities. Although several recent studies have examined links between preschool children's self-regulation or executive function and their academic skill…

  3. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia.

    PubMed

    Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael

    2018-01-01

    Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (= negative math priming effect ).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

  4. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia

    PubMed Central

    Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael

    2018-01-01

    Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task. PMID:29755376

  5. An Indigenous Framework for Science, Technology, Engineering and Mathematics

    NASA Astrophysics Data System (ADS)

    Monette, G.

    2003-12-01

    The American Indian Higher Education Consortium, composed of 35 American Indian tribally-controlled Colleges and Universities in the U.S. and Canada, is leading a comprehensive effort to improve American Indian student achievement in STEM. A key component of this effort is the synthesis of indigenous ways of knowing and western education systems. This presentation will provide an overview of culturally responsive, place-based teaching, learning, and research and will discuss potential opportunities and strategies for helping to ensure that education systems and research programs reflect our diversity and respect our cultures. One example to be discussed is the NSF-funded "Tribal College Rural Systemic Initiative." Founded on the belief that all students can learn and should be given the opportunity to reach their full potential, Tribal Colleges are leading this effort to achieve successful and sustainable improvement of science, math, and technology education at the K-14 level in rural, economically disadvantaged, geographically challenged areas. Working with parents, tribal governments, schools and the private sector, the colleges are helping to implement math and science standards-based curriculum for students and standards-based assessment for schools; provide math and science standards-based professional development for teachers, administrators, and community leaders; and integrate local Native culture into math and science standards-based curriculum. The close working relationship between the Tribal Colleges and K-12 is paying off. According to the National Science Foundation, successful systemic reform has resulted in enhanced student achievement and participation in science and math; reductions in the achievement disparities among students that can be attributed to socioeconomic status, race, ethnicity, gender, or learning styles; implementation of a comprehensive, standards-based curriculum aligned with instructions and assessment; development of a coherent, consistent set of policies that supports high quality math and science education for each student; convergence of science and math resource; and broad-based support from parents and the community.

  6. The Role of PS Ability and RC Skill in Predicting Growth Trajectories of Mathematics Achievement

    ERIC Educational Resources Information Center

    Vista, Alvin

    2016-01-01

    There are relatively few studies in Australia and South-East Asian region that combine investigating models of math growth trajectories with predictors such as reasoning ability and reading comprehension skills. Math achievement is one of the major components of overall academic achievement and it is important to determine what factors (especially…

  7. Focusing on Mathematical Knowledge: The Impact of Content-Intensive Teacher Professional Development. NCEE 2016-4010

    ERIC Educational Resources Information Center

    Garet, Michael S.; Heppen, Jessica B.; Walters, Kirk; Parkinson, Julia; Smith, Toni M.; Song, Mengli; Garrett, Rachel; Yang, Rui; Borman, Geoffrey D.

    2016-01-01

    This report examines the impact of content-intensive Professional Development (PD) on teachers' math content knowledge, their instructional practice, and their students' achievement. The study's PD had three components, totaling 93 hours. The core of the PD was "Intel Math," an intensive 80-hour workshop delivered in summer 2013 that…

  8. Effects of Digital-Based Math Fluency Interventions on Learners with Math Difficulties: A Review of the Literature

    ERIC Educational Resources Information Center

    Cozad, Lauren E.; Riccomini, Paul J.

    2016-01-01

    Mathematical proficiency serves as a foundation for student success in the classroom and real world. One component of mathematical proficiency is fluency with basic facts. Frequently, students with mathematics difficulties struggle to become proficient and fluent in the four basic operations. Interventions are available to help develop and promote…

  9. The Impact of Every Classroom, Every Day on High School Student Achievement: Results from a School-Randomized Trial

    ERIC Educational Resources Information Center

    Early, Diane M.; Berg, Juliette K.; Alicea, Stacey; Si, Yajuan; Aber, J. Lawrence; Ryan, Richard M.; Deci, Edward L.

    2016-01-01

    Every Classroom, Every Day (ECED) is a set of instructional improvement interventions designed to increase student achievement in math and English/language arts (ELA). ECED includes three primary components: (a) systematic classroom observations by school leaders, (b) intensive professional development and support for math teachers and…

  10. Supporting English Language Learners in Math Class, Grades 6-8

    ERIC Educational Resources Information Center

    Melanese, Kathy; Chung, Luz; Forbes, Cheryl

    2011-01-01

    This new addition to Math Solutions "Supporting English Language Learners in Math Class series" offers a wealth of lessons and strategies for modifying grades 6-8 instruction. Section I presents an overview of teaching math to English learners: the research, the challenges, the linguistic demands of a math lesson, and specific strategies and…

  11. Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells.

    PubMed

    Katri, Patricia; Ruan, Shigui

    2004-11-01

    Stilianakis and Seydel (Bull. Math. Biol., 1999) proposed an ODE model that describes the T-cell dynamics of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of four components: uninfected healthy CD4+ T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells, and ATL cells. Mathematical analysis that completely determines the global dynamics of this model has been done by Wang et al. (Math. Biosci., 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivity rates. Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles by active CD4+ T-cells and infection of pure cells. Using the results in Culshaw and Ruan (Math. Biosci., 2000) in the analysis of time delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically infected equilibrium. Numerical simulations are presented to illustrate the results.

  12. The Precision of Mapping Between Number Words and the Approximate Number System Predicts Children’s Formal Math Abilities

    PubMed Central

    Libertus, Melissa E.; Odic, Darko; Feigenson, Lisa; Halberda, Justin

    2016-01-01

    Children can represent number in at least two ways: by using their non-verbal, intuitive Approximate Number System (ANS), and by using words and symbols to count and represent numbers exactly. Further, by the time they are five years old, children can map between the ANS and number words, as evidenced by their ability to verbally estimate numbers of items without counting. How does the quality of the mapping between approximate and exact numbers relate to children’s math abilities? The role of the ANS-number word mapping in math competence remains controversial for at least two reasons. First, previous work has not examined the relation between verbal estimation and distinct subtypes of math abilities. Second, previous work has not addressed how distinct components of verbal estimation – mapping accuracy and variability – might each relate to math performance. Here, we address these gaps by measuring individual differences in ANS precision, verbal number estimation, and formal and informal math abilities in 5- to 7-year-old children. We found that verbal estimation variability, but not estimation accuracy, predicted formal math abilities even when controlling for age, expressive vocabulary, and ANS precision, and that it mediated the link between ANS precision and overall math ability. These findings suggest that variability in the ANS-number word mapping may be especially important for formal math abilities. PMID:27348475

  13. The precision of mapping between number words and the approximate number system predicts children's formal math abilities.

    PubMed

    Libertus, Melissa E; Odic, Darko; Feigenson, Lisa; Halberda, Justin

    2016-10-01

    Children can represent number in at least two ways: by using their non-verbal, intuitive approximate number system (ANS) and by using words and symbols to count and represent numbers exactly. Furthermore, by the time they are 5years old, children can map between the ANS and number words, as evidenced by their ability to verbally estimate numbers of items without counting. How does the quality of the mapping between approximate and exact numbers relate to children's math abilities? The role of the ANS-number word mapping in math competence remains controversial for at least two reasons. First, previous work has not examined the relation between verbal estimation and distinct subtypes of math abilities. Second, previous work has not addressed how distinct components of verbal estimation-mapping accuracy and variability-might each relate to math performance. Here, we addressed these gaps by measuring individual differences in ANS precision, verbal number estimation, and formal and informal math abilities in 5- to 7-year-old children. We found that verbal estimation variability, but not estimation accuracy, predicted formal math abilities, even when controlling for age, expressive vocabulary, and ANS precision, and that it mediated the link between ANS precision and overall math ability. These findings suggest that variability in the ANS-number word mapping may be especially important for formal math abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Opportunities for Learning Math in Elementary School: Implications for SES Disparities in Procedural and Conceptual Math Skills

    ERIC Educational Resources Information Center

    Bachman, Heather J.; Votruba-Drzal, Elizabeth; El Nokali, Nermeen E.; Castle Heatly, Melissa

    2015-01-01

    The present study examined whether multiple opportunities to learn math were associated with smaller socioeconomic status (SES) disparities in fifth-grade math achievement using data from the NICHD Study of Early Child Care and Youth Development (SECCYD; N = 1,364). High amounts of procedural math instruction were associated with higher…

  15. Examining Big-Fish-Little-Pond-Effects across 49 Countries: A Multilevel Latent Variable Modelling Approach

    ERIC Educational Resources Information Center

    Wang, Ze

    2015-01-01

    Using data from the Trends in International Mathematics and Science Study (TIMSS) 2007, this study examined the big-fish-little-pond-effects (BFLPEs) in 49 countries. In this study, the effect of math ability on math self-concept was decomposed into a within- and a between-level components using implicit mean centring and the complex data…

  16. Low Voltage Alarm Apprenticeship. Related Training Modules. 1.1-1.14 Trade Math.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 14 learning modules on trade math is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check list…

  17. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.

  18. Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.

    PubMed

    Buelow, Melissa T; Frakey, Laura L

    2013-06-01

    Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.

  19. Web Sitings.

    ERIC Educational Resources Information Center

    Lo, Erika

    2001-01-01

    Presents seven mathematics games, located on the World Wide Web, for elementary students, including: Absurd Math: Pre-Algebra from Another Dimension; The Little Animals Activity Centre; MathDork Game Room (classic video games focusing on algebra); Lemonade Stand (students practice math and business skills); Math Cats (teaches the artistic beauty…

  20. Three brief assessments of math achievement.

    PubMed

    Steiner, Eric T; Ashcraft, Mark H

    2012-12-01

    Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.

  1. Summertime Math.

    ERIC Educational Resources Information Center

    Broderick, Kathy

    1998-01-01

    These new paperbacks and recent paperback reprints present simple and complex math concepts as engaging, challenging puzzles and can make math fun for children from preschool through primary grades. (Author/AEF)

  2. Math and Science Are America's Future. National Math and Science Initiative Annual Report, 2008

    ERIC Educational Resources Information Center

    National Math and Science Initiative, 2008

    2008-01-01

    This paper presents the annual report of the National Math and Science Initiative (NMSI) for 2008. Eighteen months ago, the National Math and Science Initiative did not exist. Today NMSI is helping lead the country forward in math and science. In just 18 months, NMSI has rolled out the first round of grants and has implemented programs in 14…

  3. The Multiple Component Alternative for Gifted Education.

    ERIC Educational Resources Information Center

    Swassing, Ray

    1984-01-01

    The Multiple Component Model (MCM) of gifted education includes instruction which may overlap in literature, history, art, enrichment, languages, science, physics, math, music, and dance. The model rests on multifactored identification and requires systematic development and selection of components with ongoing feedback and evaluation. (CL)

  4. Group Activities for Math Enthusiasts

    ERIC Educational Resources Information Center

    Holdener, J.; Milnikel, R.

    2016-01-01

    In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.

  5. Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics

    ERIC Educational Resources Information Center

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-01-01

    Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…

  6. Number Line Estimation: The Use of Number Line Magnitude Estimation to Detect the Presence of Math Disability in Postsecondary Students

    ERIC Educational Resources Information Center

    McDonald, Steven A.

    2010-01-01

    This study arose from an interest in the possible presence of mathematics disabilities among students enrolled in the developmental math program at a large university in the Mid-Atlantic region. Research in mathematics learning disabilities (MLD) has included a focus on the construct of working memory and number sense. A component of number sense…

  7. Gender Differences in Mathematics and Science: The Role of the Actiotope in Determining Individuals' Achievements and Confidence in Their Own Abilities

    ERIC Educational Resources Information Center

    Ziegler, Albert; Stoeger, Heidrun; Harder, Bettina; Park, Kyungbin; Portešová, Šárka; Porath, Marion

    2014-01-01

    Despite changes, gender differences in math and science continue to exist in some countries. We examined whether the actiotopes of boys and girls at the high school level in math and science differed and the extent to which (a) their actiotope components, (b) the progressive development of their actiotopes (dynamic perspective), and (c) the…

  8. The ABCs of Math: A Genetic Analysis of Mathematics and Its Links with Reading Ability and General Cognitive Ability

    ERIC Educational Resources Information Center

    Hart, Sara A.; Petrill, Stephen A.; Thompson, Lee A.; Plomin, Robert

    2009-01-01

    The goal of this first major report from the Western Reserve Reading Project Math component is to explore the etiology of the relationship among tester-administered measures of mathematics ability, reading ability, and general cognitive ability. Data are available on 314 pairs of monozygotic and same-sex dizygotic twins analyzed across 5 waves of…

  9. Impacts after One Year of "Healing Classroom" on Children's Reading and Math Skills in DRC: Results from a Cluster Randomized Trial

    ERIC Educational Resources Information Center

    Aber, J. Lawrence; Torrente, Catalina; Starkey, Leighann; Johnston, Brian; Seidman, Edward; Halpin, Peter; Shivshanker, Anjuli; Weisenhorn, Nina; Annan, Jeannie; Wolf, Sharon

    2017-01-01

    This article examines the effects of one year of exposure to "Learning to Read in a Healing Classroom" (LRHC) on the reading and math skills of second- to fourth-grade children in the low-income and conflict-affected Democratic Republic of the Congo. LRHC consists of two primary components: teacher resource materials that infuse…

  10. The Role of Parental Math Anxiety and Math Attitude in Their Children's Math Achievement

    ERIC Educational Resources Information Center

    Soni, Akanksha; Kumari, Santha

    2017-01-01

    The present study investigated the antecedents and consequences of children's math anxiety and math attitude. A total of 595 students aged 10 to 15 years (5th to 10th grades) and 1 parent of each (mother or father) participated in the study. The study was conducted in India, with the study sample drawn from schools in South-West Punjab. Math…

  11. Mathematics anxiety in children with developmental dyscalculia.

    PubMed

    Rubinsten, Orly; Tannock, Rosemary

    2010-07-15

    Math anxiety, defined as a negative affective response to mathematics, is known to have deleterious effects on math performance in the general population. However, the assumption that math anxiety is directly related to math performance, has not yet been validated. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in children with specific deficits in the acquisition of math skills (Developmental Dyscalculia; DD) by using a novel affective priming task as an indirect measure. Participants (12 children with DD and 11 typically-developing peers) completed a novel priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative or related to mathematics). Children were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication or division) was true or false. Typically, people respond to target stimuli more quickly after presentation of an affectively-related prime than after one that is unrelated affectively. Participants with DD responded faster to targets that were preceded by both negative primes and math-related primes. A reversed pattern was present in the control group. These results reveal a direct link between emotions, arithmetic and low achievement in math. It is also suggested that arithmetic-affective priming might be used as an indirect measure of math anxiety.

  12. When approximate number acuity predicts math performance: The moderating role of math anxiety

    PubMed Central

    Libertus, Melissa E.

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939

  13. When approximate number acuity predicts math performance: The moderating role of math anxiety.

    PubMed

    Braham, Emily J; Libertus, Melissa E

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.

  14. Preliminary Success and Retention Rates in Selected Math Courses. Research Report.

    ERIC Educational Resources Information Center

    Cuesta Coll., San Luis Obispo, CA. Matriculation and Research Services.

    This report presents findings of exploratory research on success, retention, and persistence in math courses at Cuesta College. The following research questions were addressed: (1) How do success rates in Math 23 (elementary algebra) and Math 27 (intermediate algebra) compare with traditional and computer-assisted formats? (2) What are the…

  15. The impact of inquiry-based instructional professional development upon instructional practice: An action research study

    NASA Astrophysics Data System (ADS)

    Broom, Frances A.

    This mixed method case study employs action research, conducted over a three month period with 11 elementary math and science practitioners. Inquiry as an instructional practice is a vital component of math and science instruction and STEM teaching. Teachers examined their beliefs and teaching practices with regard to those instructional factors that influence inquiry instruction. Video-taped lessons were compared to a rubric and pre and post questionnaires along with two interviews which informed the study. The results showed that while most beliefs were maintained, teachers implemented inquiry at a more advanced level after examining their teaching and reflecting on ways to increase inquiry practices. Because instructional practices provide only one component of inquiry-based instruction, other components need to be examined in a future study.

  16. Math for Learning, Math for Life: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Elliott, Claire

    This document presents a total of 109 references and annotations of works that are in some way related to the topic of math for learning and life. Section 1 presents 68 annotated references with keywords drawn from the Canadian Literacy Thesaurus. Selected topics covered in the listed publications are as follows: numeracy as social practice; the…

  17. The role of early language abilities on math skills among Chinese children.

    PubMed

    Zhang, Juan; Fan, Xitao; Cheung, Sum Kwing; Meng, Yaxuan; Cai, Zhihui; Hu, Bi Ying

    2017-01-01

    The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects) and formal math (calculations including addition and subtraction) skills, language abilities and nonverbal intelligence. Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children's language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children's language abilities and formal math skills was partially mediated by informal math skills. The current findings indicate 1) Children's language abilities are of strong predictive values for both informal and formal math skills; 2) Language abilities impacts formal math skills partially through the mediation of informal math skills.

  18. The role of early language abilities on math skills among Chinese children

    PubMed Central

    Fan, Xitao; Cheung, Sum Kwing; Cai, Zhihui; Hu, Bi Ying

    2017-01-01

    Background The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects) and formal math (calculations including addition and subtraction) skills, language abilities and nonverbal intelligence. Methodology Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children’s language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children’s language abilities and formal math skills was partially mediated by informal math skills. Results The current findings indicate 1) Children’s language abilities are of strong predictive values for both informal and formal math skills; 2) Language abilities impacts formal math skills partially through the mediation of informal math skills. PMID:28749950

  19. Sex Differences in the Relation between Math Performance, Spatial Skills, and Attitudes

    ERIC Educational Resources Information Center

    Ganley, Colleen M.; Vasilyeva, Marina

    2011-01-01

    Sex differences have been previously found in cognitive and affective predictors of math achievement, including spatial skills and math attitudes. It is important to determine whether there are sex differences not only in the predictors themselves, but also in the nature of their relation to math achievement. The present paper examined spatial…

  20. Attributional Gender Bias: Teachers' Ability and Effort Explanations for Students' Math Performance

    ERIC Educational Resources Information Center

    Espinoza, Penelope; Arêas da Luz Fontes, Ana B.; Arms-Chavez, Clarissa J.

    2014-01-01

    Research is presented on the attributional gender bias: the tendency to generate different attributions (explanations) for female versus male students' performance in math. Whereas boys' successes in math are attributed to ability, girls' successes are attributed to effort; conversely, boys' failures in math are attributed to a…

  1. Measurement of math beliefs and their associations with math behaviors in college students.

    PubMed

    Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara

    2014-12-01

    Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.

  2. Mathematics anxiety in children with developmental dyscalculia

    PubMed Central

    2010-01-01

    Background Math anxiety, defined as a negative affective response to mathematics, is known to have deleterious effects on math performance in the general population. However, the assumption that math anxiety is directly related to math performance, has not yet been validated. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in children with specific deficits in the acquisition of math skills (Developmental Dyscalculia; DD) by using a novel affective priming task as an indirect measure. Methods Participants (12 children with DD and 11 typically-developing peers) completed a novel priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative or related to mathematics). Children were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication or division) was true or false. Typically, people respond to target stimuli more quickly after presentation of an affectively-related prime than after one that is unrelated affectively. Result Participants with DD responded faster to targets that were preceded by both negative primes and math-related primes. A reversed pattern was present in the control group. Conclusion These results reveal a direct link between emotions, arithmetic and low achievement in math. It is also suggested that arithmetic-affective priming might be used as an indirect measure of math anxiety. PMID:20633269

  3. Math Anxiety Is Related to Some, but Not All, Experiences with Math

    PubMed Central

    O'Leary, Krystle; Fitzpatrick, Cheryll L.; Hallett, Darcy

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not. PMID:29375410

  4. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School

    PubMed Central

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973

  5. Math Anxiety Is Related to Some, but Not All, Experiences with Math.

    PubMed

    O'Leary, Krystle; Fitzpatrick, Cheryll L; Hallett, Darcy

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.

  6. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.

    PubMed

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.

  7. Cognitive Priming and Cognitive Training: Immediate and Far Transfer to Academic Skills in Children.

    PubMed

    Wexler, Bruce E; Iseli, Markus; Leon, Seth; Zaggle, William; Rush, Cynthia; Goodman, Annette; Esat Imal, A; Bo, Emily

    2016-09-12

    Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement.

  8. Cognitive Priming and Cognitive Training: Immediate and Far Transfer to Academic Skills in Children

    PubMed Central

    Wexler, Bruce E; Iseli, Markus; Leon, Seth; Zaggle, William; Rush, Cynthia; Goodman, Annette; Esat Imal, A.; Bo, Emily

    2016-01-01

    Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement. PMID:27615029

  9. Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.

    PubMed

    Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M

    2007-05-15

    The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.

  10. Analysis and Design of Phase Change Thermal Control for Light Emitting Diode (LED) Spacesuit Helmet Lights

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Nguyen, Hiep X.; Keller, John R.

    2010-01-01

    LED Helmet Extravehicular Activity Helmet Interchangeable Portable (LEHIP) lights for the Extravehicular Mobility Unit (EMU) have been built and tested and are currently being used on the International Space Station. A design is presented of the passive thermal control system consisting of a chamber filled with aluminum foam and wax. A thermal math model of LEHIP was built and correlated by test to show that the thermal design maintains electronic components within hot and cold limits for a 7 hour spacewalk in the most extreme EVA average environments, and do not pose a hazard to the crew or to components of the EMU.

  11. Preschool Math Exposure in Private Center-Based Care and Low-SES Children's Math Development

    ERIC Educational Resources Information Center

    Bachman, Heather J.; Degol, Jessica L.; Elliott, Leanne; Scharphorn, Laura; El Nokali, Nermeen E.; Palmer, Kalani M.

    2018-01-01

    Research Findings: The present study examined the amount of exposure to math activities that children of low socioeconomic status (SES) encounter in private community-based preschool classrooms and whether greater time in these activities predicted higher math skills. Three cohorts of 4- to 5-year-old children were recruited from 30 private…

  12. Are Psychology Students Getting Worse at Math?: Trends in the Math Skills of Psychology Statistics Students across 21 Years

    ERIC Educational Resources Information Center

    Carpenter, Thomas P.; Kirk, Roger E.

    2017-01-01

    Statistics is an important subject in psychology and social science education. However, inadequate mathematical skills can pose a barrier to learning statistics. Some educators have suggested that students' math skills are declining. The present research examined trends in the math skills of psychology undergraduates across 21 years. Students…

  13. Math Strategies You Can Count On: Tools & Activities to Build Math Appreciation, Understanding & Skills

    ERIC Educational Resources Information Center

    Forsten, Char

    2005-01-01

    This book offers classroom-tested activities designed to make even the most reluctant learners crazy about math. Appealing to everyone from sports fans to readers, future fashion designers to budding musicians, the activities presented in this book offer ways to develop a deep-rooted love and appreciation of math in every student. Teachers are…

  14. School Board Member Practices in Governance, Teamwork and Board Development, and Their Sense of Effectiveness in High and Low Math Academic Achievement Districts of New York State

    ERIC Educational Resources Information Center

    Siegel, Kyrie

    2009-01-01

    The purpose of this study was to examine the relationships among New York State school board member attitudes toward components of school board governance and their sense of effectiveness in high and low math academic achievement districts in New York State. The study examined board members' perceptions of their actual practices in policy…

  15. A 3-Component System of Competition and Diffusion.

    DTIC Science & Technology

    1983-08-01

    assume * that the distribution of the populations are determined by competition of’ Lotka - Volterra - * Gause type and simple diffusion. Suppose ui(t,x...diffusive Lotka - Volterra system with three species can have a stable non-constant equilibrium solutions. J. Math. Biol., (in press). [7] Kishimoto, K., Mimura...M. and Yoshida, K., Stable spatlo-temporal oscillations of diffusive Lotka - Volterra systems with three or more species, to appear in J. Math. Biol

  16. Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context

    NASA Astrophysics Data System (ADS)

    Myers, J. D.; Lyford, M. E.; Mayes, R. L.

    2010-12-01

    Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and science teachers from the same school or district. By jointly developing units focused on energy and environment, math and science curricula can be coordinated during the school year. During development, teams present their curricular ideas for peer-review. Throughout the school year, teachers implement their units and collect pre-post data on student learning. Ultimately, science teachers integrate math into their science courses, and math teachers integrate science content in their math courses. Following implementation, participants share their experiences with their peers and faculty. Of central interest during these presentations are: 1) How did the QR-STEM experience change teacher practices in the classroom?; and 2) How did the modification of their teaching practices impact student learning and their ability to successfully master QR? The UW QR-STEM has worked with Wyoming science and math teachers from across the state over the three year grant period.

  17. Attentional bias in math anxiety.

    PubMed

    Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly

    2015-01-01

    Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.

  18. Primary Place. Math Projects That Count.

    ERIC Educational Resources Information Center

    Buschman, Larry; And Others

    1993-01-01

    Offers elementary math-centered recycling activities and ideas on transforming throwaways into valuable classroom resources. The math activities teach estimating, counting, measuring, weighing, graphing, patterning, thinking, comparing, proportion, and dimensions. The recycling ideas present ways to use pieces of trash to create educational games.…

  19. Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety.

    PubMed

    Pizzie, Rachel G; Kraemer, David J M

    2017-11-01

    Math anxiety (MA) is characterized by negative feelings towards mathematics, resulting in avoidance of math classes and of careers that rely on mathematical skills. Focused on a long timescale, this research may miss important cognitive and affective processes that operate moment-to-moment, changing rapid reactions even when a student simply sees a math problem. Here, using fMRI with an attentional deployment paradigm, we show that MA influences rapid spontaneous emotional and attentional responses to mathematical stimuli upon brief presentation. Critically, participants viewed but did not attempt to solve the problems. Indicating increased threat reactivity to even brief presentations of math problems, increased MA was associated with increased amygdala response during math viewing trials. Functionally and anatomically defined amygdala ROIs yielded similar results, indicating robustness of the finding. Similar to the pattern of vigilance and avoidance observed in specific phobia, behavioral results of the attentional paradigm demonstrated that MA is associated with attentional disengagement for mathematical symbols. This attentional avoidance is specific to math stimuli; when viewing negatively-valenced images, MA is correlated with attentional engagement, similar to other forms of anxiety. These results indicate that even brief exposure to mathematics triggers a neural response related to threat avoidance in highly MA individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Gender stereotype endorsement differentially predicts girls' and boys' trait-state discrepancy in math anxiety.

    PubMed

    Bieg, Madeleine; Goetz, Thomas; Wolter, Ilka; Hall, Nathan C

    2015-01-01

    Mathematics is associated with anxiety for many students; an emotion linked to lower well-being and poorer learning outcomes. While findings typically show females to report higher trait math anxiety than males, no gender differences have to date been found in state (i.e., momentary) math anxiety. The present diary study aimed to replicate previous findings in investigating whether levels of academic self-concept was related to this discrepancy in trait vs. state anxiety measures. Additionally, mathematics-related gender stereotype endorsement (mathematics is a male domain) was investigated as an additional predictor of the trait-state discrepancy. The sample included 755 German 9th and 10th graders who completed self-report measures of trait math anxiety, math self-concept, and gender stereotype endorsement, in addition to state measures of anxiety after math classes by use of a standardized diary for 2-3 weeks (N within = 6207). As expected, females reported higher trait math anxiety but no gender differences were found for state math anxiety. Also in line with our assumptions, multilevel analyses showed the discrepancy between trait and state anxiety to be negatively related to students' self-concept (i.e., a lower discrepancy for students with higher self-concepts). Furthermore, gender stereotype endorsement differentially predicted the trait-state discrepancy: When controlling for self-concept in mathematics, females who endorsed the gender stereotype of math being a male domain more strongly overestimated their trait math anxiety as compared to their state anxiety whereas this effect was not significant for males. The present findings suggest that gender stereotype endorsement plays an important role in explaining gender differences in math anxiety above and beyond academic self-concept. Implications for future research and educational practice are discussed.

  1. Gender stereotype endorsement differentially predicts girls' and boys' trait-state discrepancy in math anxiety

    PubMed Central

    Bieg, Madeleine; Goetz, Thomas; Wolter, Ilka; Hall, Nathan C.

    2015-01-01

    Mathematics is associated with anxiety for many students; an emotion linked to lower well-being and poorer learning outcomes. While findings typically show females to report higher trait math anxiety than males, no gender differences have to date been found in state (i.e., momentary) math anxiety. The present diary study aimed to replicate previous findings in investigating whether levels of academic self-concept was related to this discrepancy in trait vs. state anxiety measures. Additionally, mathematics-related gender stereotype endorsement (mathematics is a male domain) was investigated as an additional predictor of the trait-state discrepancy. The sample included 755 German 9th and 10th graders who completed self-report measures of trait math anxiety, math self-concept, and gender stereotype endorsement, in addition to state measures of anxiety after math classes by use of a standardized diary for 2–3 weeks (Nwithin = 6207). As expected, females reported higher trait math anxiety but no gender differences were found for state math anxiety. Also in line with our assumptions, multilevel analyses showed the discrepancy between trait and state anxiety to be negatively related to students' self-concept (i.e., a lower discrepancy for students with higher self-concepts). Furthermore, gender stereotype endorsement differentially predicted the trait-state discrepancy: When controlling for self-concept in mathematics, females who endorsed the gender stereotype of math being a male domain more strongly overestimated their trait math anxiety as compared to their state anxiety whereas this effect was not significant for males. The present findings suggest that gender stereotype endorsement plays an important role in explaining gender differences in math anxiety above and beyond academic self-concept. Implications for future research and educational practice are discussed. PMID:26441778

  2. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms.

    PubMed

    Piasta, Shayne B; Logan, Jessica A R; Pelatti, Christina Yeager; Capps, Janet L; Petrill, Stephen A

    2015-05-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators' provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children ( n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children's math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children's learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age.

  3. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    PubMed Central

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2014-01-01

    Because recent initiatives highlight the need to better support preschool-aged children’s math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators’ provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children’s math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children’s learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age. PMID:26257434

  4. Gender compatibility, math-gender stereotypes, and self-concepts in math and physics

    NASA Astrophysics Data System (ADS)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.

  5. The Development and Validation of a Revised Version of the Math Anxiety Scale for Young Children.

    PubMed

    Ganley, Colleen M; McGraw, Amanda L

    2016-01-01

    Although there is an extensive amount of research that examines the relation between math anxiety and math performance in adolescents and adults, little work has focused on this relation in young children. Recently more attention has been paid to the early development of math anxiety, and new measures have been created for use with this age group. In the present study, we report on the development and validation of a revised version of the Math Anxiety Scale for Young Children (MASYC; Harari et al., 2013). We conducted cognitive interviews with the 12 MASYC items with nine children and then administered the MASYC and five newly-developed items to 296 first-, second- and third-grade children. Results from cognitive interviews show that three of the items from the original scale were being systematically misinterpreted by young children. We present a revised measure (the MASYC-R) consisting of 13 items (eight original, five newly-developed) that shows strong evidence for reliability and validity. Results also showed that a small, but meaningful, proportion of children at this age show signs of high math anxiety. Validity of the MASYC-R was supported through correlations with a number of other factors, including general anxiety, math performance, and math attitudes. In addition, results suggest that a substantial proportion of the variance in math anxiety can be explained from these other variables together. The findings suggest that the MASYC-R is appropriate for use with young children and can help researchers to answer important questions about the nature and development of math anxiety at this age.

  6. The Development and Validation of a Revised Version of the Math Anxiety Scale for Young Children

    PubMed Central

    Ganley, Colleen M.; McGraw, Amanda L.

    2016-01-01

    Although there is an extensive amount of research that examines the relation between math anxiety and math performance in adolescents and adults, little work has focused on this relation in young children. Recently more attention has been paid to the early development of math anxiety, and new measures have been created for use with this age group. In the present study, we report on the development and validation of a revised version of the Math Anxiety Scale for Young Children (MASYC; Harari et al., 2013). We conducted cognitive interviews with the 12 MASYC items with nine children and then administered the MASYC and five newly-developed items to 296 first-, second- and third-grade children. Results from cognitive interviews show that three of the items from the original scale were being systematically misinterpreted by young children. We present a revised measure (the MASYC-R) consisting of 13 items (eight original, five newly-developed) that shows strong evidence for reliability and validity. Results also showed that a small, but meaningful, proportion of children at this age show signs of high math anxiety. Validity of the MASYC-R was supported through correlations with a number of other factors, including general anxiety, math performance, and math attitudes. In addition, results suggest that a substantial proportion of the variance in math anxiety can be explained from these other variables together. The findings suggest that the MASYC-R is appropriate for use with young children and can help researchers to answer important questions about the nature and development of math anxiety at this age. PMID:27605917

  7. Project Shuttle simulation math model coordination catalog, revision 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A catalog is presented of subsystem and environment math models used or planned for space shuttle simulations. The purpose is to facilitate sharing of similar math models between shuttle simulations. It provides information on mach model requirements, formulations, schedules, and contact persons for further information.

  8. The shopping brain: math anxiety modulates brain responses to buying decisions.

    PubMed

    Jones, William J; Childers, Terry L; Jiang, Yang

    2012-01-01

    Metacognitive theories propose that consumers track fluency feelings when buying, which may have biological underpinnings. We explored this using event-related potential (ERP) measures as twenty high-math anxiety (High MA) and nineteen low-math anxiety (Low MA) consumers made buying decisions for promoted (e.g., 15% discount) and non-promoted products. When evaluating prices, ERP correlates of higher perceptual and conceptual fluency were associated with buys, however only for High MA females under no promotions. In contrast, High MA females and Low MA males demonstrated greater FN400 amplitude, associated with enhanced conceptual processing, to prices of buys relative to non-buys under promotions. Concurrent late positive component (LPC) differences under no promotions suggest discrepant retrieval processes during price evaluations between consumer groups. When making decisions to buy or not, larger (smaller) P3, sensitive to outcome responses in the brain, was associated with buying for High MA females (Low MA females) under promotions, an effect also present for males under no promotions. Thus, P3 indexed decisions to buy differently between anxiety groups, but only for promoted items among females and for no promotions among males. Our findings indicate that perceptual and conceptual processes interact with anxiety and gender to modulate brain responses during consumer choices. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Attentional bias in math anxiety

    PubMed Central

    Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly

    2015-01-01

    Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms. PMID:26528208

  10. From access to success in science: An academic-student affairs intervention for undergraduate freshmen biology students

    NASA Astrophysics Data System (ADS)

    Aldridge, Jacqueline Nouvelle

    The first year experience is known to present an array of challenges for traditional college students. In particular, freshmen who major in a STEM discipline have their own unique set of challenges when they transition from high school science and math to college science and math; especially chemistry. As a result, students may encounter negative experiences which lower academic and social confidence. This project was designed as a pilot study intervention for a small group of freshmen biology students who were considered academically at-risk due their math SAT scores. The study occurred during the fall semester involving an enhanced active learning component based on the Peer-led Team Learning (PLTL) general chemistry supplemental pedagogy model, and a biology-focused First Year Experience (FYE). PLTL workshops took place in freshmen residence halls, creating a live-n-learn community environment. Mid-term and final chemistry grades and final math grades were collected to measure academic progress. Self-reporting surveys and journals were used to encourage participants to reconstruct their experiences and perceptions of the study. Descriptive analysis was performed to measure statistical significance between midterm and final grade performance, and a general inductive qualitative method was used to determine academic and social confidence as well as experiences and perceptions of the project. Findings of this project revealed a statistically significant improvement between chemistry midterm and final grades of the sample participants. Although academic confidence did not increase, results reveal that social confidence progressed as the majority of students developed a value for studying in groups.

  11. Improving Success in Developmental Mathematics: An Interview with Paul Nolting

    ERIC Educational Resources Information Center

    Boylan, Hunter R.

    2011-01-01

    This article presents an interview with Dr. Paul Nolting, a national expert in assessing individual math learning problems, developing effective student learning strategies, and assessing institutional variables that affect math success. Since his dissertation in 1986 on improving math success with study skills Dr. Nolting has consulted with over…

  12. Wake up, because Math Matters

    ERIC Educational Resources Information Center

    Gilpin, Jeanny

    2010-01-01

    This article presents the author's story, as a teacher, about building a Math Matters club and discusses why her students arrived at school before first bell to participate enthusiastically. The author's students seemed to have a negative attitude about math. In giving that stirring motivational speech, she apparently overlooked one important…

  13. Math in Action. Number-Sense Fun: Solving Riddles, Making Change.

    ERIC Educational Resources Information Center

    Bresser, Rusty; Sheffield, Stephanie; Burns, Marilyn, Ed.

    1997-01-01

    Presents two activities for teaching elementary level mathematics by immersing students in worthwhile literature (the Hello Math Reader series) while introducing them to real-life mathematics. The primary level activity teaches students to use number relationships to solve math riddles. The intermediate level activity has students explore…

  14. Prediction and Stability of Mathematics Skill and Difficulty

    ERIC Educational Resources Information Center

    Martin, Rebecca B.; Cirino, Paul T.; Barnes, Marcia A.; Ewing-Cobbs, Linda; Fuchs, Lynn S.; Stuebing, Karla K.; Fletcher, Jack M.

    2013-01-01

    The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also…

  15. Mini-Portfolio on Math and Science.

    ERIC Educational Resources Information Center

    Teaching PreK-8, 1996

    1996-01-01

    Presents six articles dealing with math and science education: "Sneaker Geometry" (Jack George), "Fairs with a Flair" (Diane McCarty), "Generating Excitement with Math Projects" (Jeffrey Kostecky and Louis Roe), "Playing with Numbers" (Diana Smith), "When Student Teachers Want to Do Hands-On Science" (Betsy Feldkamp-Price), and "Science ala Carte"…

  16. Tutoring math platform accessible for visually impaired people.

    PubMed

    Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland

    2018-04-01

    There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Educational consequences of developmental speech disorder: Key Stage 1 National Curriculum assessment results in English and mathematics.

    PubMed

    Nathan, Liz; Stackhouse, Joy; Goulandris, Nata; Snowling, Margaret J

    2004-06-01

    Children with speech difficulties may have associated educational problems. This paper reports a study examining the educational attainment of children at Key Stage 1 of the National Curriculum who had previously been identified with a speech difficulty. (1) To examine the educational attainment at Key Stage 1 of children diagnosed with speech difficulties two/three years prior to the present study. (2) To compare the Key Stage 1 assessment results of children whose speech problems had resolved at the time of assessment with those whose problems persisted. Data were available from 39 children who had an earlier diagnosis of speech difficulties at age 4/5 (from an original cohort of 47) at the age of 7. A control group of 35 children identified and matched at preschool on age, nonverbal ability and gender provided comparative data. Results of Statutory Assessment Tests (SATs) in reading, reading comprehension, spelling, writing and maths, administered to children at the end of Year 2 of school were analysed. Performance across the two groups was compared. Performance was also compared to published statistics on national levels of attainment. Children with a history of speech difficulties performed less well than controls on reading, spelling and maths. However, children whose speech problems had resolved by the time of assessment performed no differently to controls. Children with persisting speech problems performed less well than controls on tests of literacy and maths. Spelling performance was a particular area of difficulty for children with persisting speech problems. Children with speech difficulties are likely to perform less well than expected on literacy and maths SAT's at age 7. Performance is related to whether the speech problem resolves early on and whether associated language problems exist. Whilst it is unclear whether poorer performance on maths is because of the language components of this task, the results indicate that speech problems, especially persisting ones, can affect the ability to access the National Curriculum to expected levels.

  18. Placing Math Reform: Locating Latino English Learners in Math Classrooms and Communities

    ERIC Educational Resources Information Center

    Erbstein, Nancy

    2015-01-01

    This article explores how place matters in public school reform efforts intended to promote more equitable opportunities and outcomes. Qualitative case studies of three California middle schools' eighth grade math reforms and the resulting opportunities for Latino English learners are presented, using the conceptual frameworks of critical human…

  19. Effects of Math Anxiety on Student Success in Higher Education

    ERIC Educational Resources Information Center

    Nunez-Pena, M. I.; Suarez-Pellicioni, M.; Bono, R.

    2013-01-01

    This study examines whether math anxiety and negative attitudes toward mathematics have an effect on university students' academic achievement in a methodological course forming part of their degree. A total of 193 students were presented with a math anxiety test and some questions about their enjoyment, self-confidence and motivation regarding…

  20. Accelerated Math®. Secondary Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    This intervention report presents findings from a systematic review of "Accelerated Math®" conducted using the WWC Procedures and Standards Handbook (version 3.0) and the Secondary Mathematics review protocol (version 3.1). No studies of "Accelerated Math®" that fall within the scope of the Secondary Mathematics review protocol…

  1. Teachers' Ability and Help Attributions and Children's Math Performance and Task Persistence

    ERIC Educational Resources Information Center

    Tõeväli, Paula-Karoliina; Kikas, Eve

    2016-01-01

    The present longitudinal study examined the reciprocal relationships between teachers' causal attributions and children's math performance and task persistence. In total, 760 elementary school children and their teachers participated in this study. The children were tested in math twice, at the end of the second and third grades. At both time…

  2. Gender Similarities in Math Performance from Middle School through High School

    ERIC Educational Resources Information Center

    Scafidi, Tony; Bui, Khanh

    2010-01-01

    Using data from 10 states, Hyde, Lindberg, Linn, Ellis, and Williams (2008) found gender similarities in performance on standardized math tests. The present study attempted to replicate this finding with national data and to extend it by examining whether gender similarities in math performance are moderated by race, socioeconomic status, or math…

  3. Classroom Composition, Classroom Management, and the Relationship between Student Attributes and Grades

    ERIC Educational Resources Information Center

    Hochweber, Jan; Hosenfeld, Ingmar; Klieme, Eckhard

    2014-01-01

    The present study examined the extent to which the relationships between student self-reported math grades and different types of student variables (standardized math test scores, interest and effort in math, parental education) are predicted by classroom composition and teachers' classroom management. Based on a representative sample of 31,038…

  4. Evaluating Procedures for Reducing Measurement Error in Math Curriculum-Based Measurement Probes

    ERIC Educational Resources Information Center

    Methe, Scott A.; Briesch, Amy M.; Hulac, David

    2015-01-01

    At present, it is unclear whether math curriculum-based measurement (M-CBM) procedures provide a dependable measure of student progress in math computation because support for its technical properties is based largely upon a body of correlational research. Recent investigations into the dependability of M-CBM scores have found that evaluating…

  5. Explaining Variation in Student Efforts towards Using Math and Science Knowledge in Engineering Contexts

    ERIC Educational Resources Information Center

    Berland, Leema K.; Steingut, Rebecca

    2016-01-01

    Previous research suggests that in classes that take an integrated approach to science, technology, engineering, and math (STEM) education, students tend to engage in fulfilling goals of their engineering design challenges, but only inconsistently engage with the related math and science content. The present research examines these inconsistencies…

  6. Helping Your Child Learn Math: Math Tips for Parents

    ERIC Educational Resources Information Center

    Nebraska Department of Education, 2010

    2010-01-01

    This paper presents tips, activities, resources, and games that parents can use to help their children become more proficient in math. Some helpful tips offered are: (1) Be positive; (2) Play family games; (3) Avoid stereotypes; (4) Choose gifts that develop problem solving skills; (5) Expand your children's horizons; (6) Buy or borrow library…

  7. ASTP ranging system mathematical model

    NASA Technical Reports Server (NTRS)

    Ellis, M. R.; Robinson, L. H.

    1973-01-01

    A mathematical model is presented of the VHF ranging system to analyze the performance of the Apollo-Soyuz test project (ASTP). The system was adapted for use in the ASTP. The ranging system mathematical model is presented in block diagram form, and a brief description of the overall model is also included. A procedure for implementing the math model is presented along with a discussion of the validation of the math model and the overall summary and conclusions of the study effort. Detailed appendices of the five study tasks are presented: early late gate model development, unlock probability development, system error model development, probability of acquisition and model development, and math model validation testing.

  8. Mathematics/Arithmetic Knowledge-Based Way of Thinking and Its Maintenance Needed for Engineers

    NASA Astrophysics Data System (ADS)

    Harada, Shoji

    Examining curriculum among universities revealed that no significant difference in math class or related subjects can be seen. However, amount and depth of those studies, in general, differed depending on content of curriculum and the level of achievement at entrance to individual university. Universalization of higher education shows that students have many problems in learning higher level of traditional math and that the memory of math they learned quickly fades away after passing in exam. It means that further development of higher math knowledgebased engineer after graduation from universities. Under these circumstances, the present author, as one of fun of math, propose how to maintain way of thinking generated by math knowledge. What necessary for engineer is to pay attention to common books, dealing with elementary mathematics or arithmetic- related matters. This surely leads engineer to nourish math/arithmetic knowledge-based way of thinking.

  9. Girls' math performance under stereotype threat: the moderating role of mothers' gender stereotypes.

    PubMed

    Tomasetto, Carlo; Alparone, Francesca Romana; Cadinu, Mara

    2011-07-01

    Previous research on stereotype threat in children suggests that making gender identity salient disrupts girls' math performance at as early as 5 to 7 years of age. The present study (n = 124) tested the hypothesis that parents' endorsement of gender stereotypes about math moderates girls' susceptibility to stereotype threat. Results confirmed that stereotype threat impaired girls' performance on math tasks among students from kindergarten through 2nd grade. Moreover, mothers' but not fathers' endorsement of gender stereotypes about math moderated girls' vulnerability to stereotype threat: performance of girls whose mothers strongly rejected the gender stereotype about math did not decrease under stereotype threat. These findings are important because they point to the role of mothers' beliefs in the development of girls' vulnerability to the negative effects of gender stereotypes about math. PsycINFO Database Record (c) 2011 APA, all rights reserved

  10. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers

    PubMed Central

    Szkudlarek, Emily; Brannon, Elizabeth M.

    2018-01-01

    Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills. PMID:29867624

  11. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.

    PubMed

    Szkudlarek, Emily; Brannon, Elizabeth M

    2018-01-01

    Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills.

  12. Relations among Parental Causal Attributions and Children's Math Performance and Task Persistence

    ERIC Educational Resources Information Center

    Tõeväli, Paula-Karoliina; Kikas, Eve

    2017-01-01

    The present longitudinal study examined the cross-lagged relations between parental causal attributions of children's math success to children's ability, parental help, children's math performance and task persistence. A total of 735 children, their mothers, fathers and teachers were assessed twice--at the end of the second and the third grades.…

  13. Math on the Web: A Status Report.

    ERIC Educational Resources Information Center

    Miner, Robert; Topping, Paul

    This publication reports on resources on the Web for the area of math. A quick look is given at innovative sites under the areas of new resources for students, new ways for teachers and students to interact, new ways of presenting math, and new tools for research. Next, advantages and disadvantages are identified for each of the following…

  14. EEG Estimates of Cognitive Workload and Engagement Predict Math Problem Solving Outcomes

    ERIC Educational Resources Information Center

    Beal, Carole R.; Galan, Federico Cirett

    2012-01-01

    In the present study, the authors focused on the use of electroencephalography (EEG) data about cognitive workload and sustained attention to predict math problem solving outcomes. EEG data were recorded as students solved a series of easy and difficult math problems. Sequences of attention and cognitive workload estimates derived from the EEG…

  15. Girls' Math Performance under Stereotype Threat: The Moderating Role of Mothers' Gender Stereotypes

    ERIC Educational Resources Information Center

    Tomasetto, Carlo; Alparone, Francesca Romana; Cadinu, Mara

    2011-01-01

    Previous research on stereotype threat in children suggests that making gender identity salient disrupts girls' math performance at as early as 5 to 7 years of age. The present study (n = 124) tested the hypothesis that parents' endorsement of gender stereotypes about math moderates girls' susceptibility to stereotype threat. Results confirmed…

  16. I Heard This Great Math Story the Other Day!

    ERIC Educational Resources Information Center

    Gadanidis, George

    2009-01-01

    In this article, the author declares that if a student is able to discuss school math with family and friends just like one would a new movie, then that student has experienced meaningful math learning and teaching. With the support of the Social Sciences and Humanities Research Council, the author is presently working in K-8 classrooms, offering…

  17. Teachers Learning to Prepare Future Engineers: A Systemic Analysis Through Five Components of Development and Transfer

    ERIC Educational Resources Information Center

    Hardré, Patricia L.; Ling, Chen; Shehab, Randa L.; Nanny, Mark A.; Refai, Hazem; Nollert, Matthias U.; Ramseyer, Christopher; Wollega, Ebisa D.; Huang, Su-Min; Herron, Jason

    2018-01-01

    This study used a systemic perspective to examine a five-component experiential process of perceptual and developmental growth, and transfer-to-teaching. Nineteen secondary math and science teachers participated in a year-long, engineering immersion and support experience, with university faculty mentors. Teachers identified critical shifts in…

  18. Language, reading, and math learning profiles in an epidemiological sample of school age children.

    PubMed

    Archibald, Lisa M D; Oram Cardy, Janis; Joanisse, Marc F; Ansari, Daniel

    2013-01-01

    Dyscalculia, dyslexia, and specific language impairment (SLI) are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities.

  19. Language, Reading, and Math Learning Profiles in an Epidemiological Sample of School Age Children

    PubMed Central

    Archibald, Lisa M. D.; Oram Cardy, Janis; Joanisse, Marc F.; Ansari, Daniel

    2013-01-01

    Dyscalculia, dyslexia, and specific language impairment (SLI) are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities. PMID:24155959

  20. Electrochemical carbon dioxide concentrator subsystem math model. [for manned space station

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Carlson, J. N.; Schubert, F. H.

    1974-01-01

    A steady state computer simulation model has been developed to describe the performance of a total six man, self-contained electrochemical carbon dioxide concentrator subsystem built for the space station prototype. The math model combines expressions describing the performance of the electrochemical depolarized carbon dioxide concentrator cells and modules previously developed with expressions describing the performance of the other major CS-6 components. The model is capable of accurately predicting CS-6 performance over EDC operating ranges and the computer simulation results agree with experimental data obtained over the prediction range.

  1. A Comparison of Math Cover, Copy, Compare Intervention Procedures for Children with Autism Spectrum Disorder.

    PubMed

    Morton, Reeva C; Gadke, Daniel L

    2018-03-01

    Cover, Copy, Compare (CCC) and Copy, Cover, Compare (MCCC) procedures are effective interventions for improving math fluency. However, there is a gap in literature exploring the use of these interventions for children with autism spectrum disorders (ASD). The purpose of the current study was to compare the use of CCC and MCCC for children with ASD using a multi-component single-case experimental design. The results showed no notable difference between the interventions. Implications and limitations, particularly surrounding experimental control, are discussed in detail.

  2. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years

    PubMed Central

    Pitchford, Nicola J.; Papini, Chiara; Outhwaite, Laura A.; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342

  3. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years.

    PubMed

    Pitchford, Nicola J; Papini, Chiara; Outhwaite, Laura A; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills.

  4. A Comparison of Two Balance Calibration Model Building Methods

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Ulbrich, Norbert

    2007-01-01

    Simulated strain-gage balance calibration data is used to compare the accuracy of two balance calibration model building methods for different noise environments and calibration experiment designs. The first building method obtains a math model for the analysis of balance calibration data after applying a candidate math model search algorithm to the calibration data set. The second building method uses stepwise regression analysis in order to construct a model for the analysis. Four balance calibration data sets were simulated in order to compare the accuracy of the two math model building methods. The simulated data sets were prepared using the traditional One Factor At a Time (OFAT) technique and the Modern Design of Experiments (MDOE) approach. Random and systematic errors were introduced in the simulated calibration data sets in order to study their influence on the math model building methods. Residuals of the fitted calibration responses and other statistical metrics were compared in order to evaluate the calibration models developed with different combinations of noise environment, experiment design, and model building method. Overall, predicted math models and residuals of both math model building methods show very good agreement. Significant differences in model quality were attributable to noise environment, experiment design, and their interaction. Generally, the addition of systematic error significantly degraded the quality of calibration models developed from OFAT data by either method, but MDOE experiment designs were more robust with respect to the introduction of a systematic component of the unexplained variance.

  5. Trends in International Mathematics and Science Study and Gendered Math Teaching in Kuwait

    ERIC Educational Resources Information Center

    Ahmad, Fatimah; Greenhalgh-Spencer, Heather

    2017-01-01

    This paper argues for a more complex literature around gender and math performance. In order to argue for this complexity, we present a small portion of data from a case study examining the performance of Kuwaiti students on the Trends in International Mathematics and Science Study and on Kuwait national math tests. Westernized discourses suggest…

  6. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    ERIC Educational Resources Information Center

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2015-01-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hr) of training on math and science or on…

  7. After Two Years, Three Elementary Math Curricula Outperform a Fourth. NCEE Evaluation Brief. NCEE 2013-4019

    ERIC Educational Resources Information Center

    Agodini, Roberto; Harris, Barbara; Seftor, Neil; Remillard, Janine; Thomas, Melissa

    2013-01-01

    This brief aims to help educators understand the implications of math curriculum choice in the early elementary grades by presenting new findings from a study that examined how four math curricula affect students' achievement across two years--from 1st through 2nd grades. The four curricula were (1) Investigations in Number, Data, and Space…

  8. Motivation and Math Skills as Determinants of First-Year Performance in Economics

    ERIC Educational Resources Information Center

    Arnold, Ivo J. M.; Straten, Jerry T.

    2012-01-01

    The importance of math skills for study success in economics has been widely researched. This article adds to the literature by combining information on students' math skills and their motivation. The authors are thus able to present a rich picture of why students succeed in their study of economics and to confirm previous findings that deficient…

  9. "Luchando y Logrando"/Struggling and Achieving: Resilience of Latina/o Math and Science Teacher Candidates at California Hispanic-Serving Institutions: A Critical Race Perspective

    ERIC Educational Resources Information Center

    Gonzalez, Laura

    2013-01-01

    Latin@ math and science students represent a resilient, determined, and encouraging group of high achievers. This qualitative study presents the narratives of 10 Latin@ science and math teacher candidates currently attending Hispanic-Serving Institutions in California. Semi structured, in-depth interviews were conducted, where participants shared…

  10. Mobile Math: Math Educators and Students Engage in Mobile Learning

    ERIC Educational Resources Information Center

    Franklin, Teresa; Peng, Li-Wei

    2008-01-01

    The public and educational communities are aware of the continuing crisis in math education in our middle schools and the convergence of technologies for teaching and learning. This paper presents a case study in which iPod Touch[R] was used to help middle school students learn about algebraic equations and, in particular, the concept of slope,…

  11. The Relation between Teachers' Math Talk and the Acquisition of Number Sense within Kindergarten Classrooms

    ERIC Educational Resources Information Center

    Boonen, Anton J. H.; Kolkman, Meijke E.; Kroesbergen, Evelyn H.

    2011-01-01

    The aim of the present study was to investigate the relation between teachers' math talk and the acquisition of number sense within kindergarten classrooms. The mathematical language input provided by 35 kindergarten teachers was examined with 9 different input categories. The results of this study indicate that the role of each of these math talk…

  12. Curriculum Boosters. Social Studies, Math, Language Arts.

    ERIC Educational Resources Information Center

    Reissman, Rose; And Others

    1994-01-01

    Presents three curriculum boosting activities for elementary classes. A social studies activity builds bridges to other cultures via literature. A math activity teaches students about percentages using baseball card statistics. A language arts activity helps students learn to appreciate the language of Shakespeare. A student page presents a…

  13. The Influence of Math Anxiety, Math Performance, Worry, and Test Anxiety on the Iowa Gambling Task and Balloon Analogue Risk Task.

    PubMed

    Buelow, Melissa T; Barnhart, Wesley R

    2017-01-01

    Multiple studies have shown that performance on behavioral decision-making tasks, such as the Iowa Gambling Task (IGT) and Balloon Analogue Risk Task (BART), is influenced by external factors, such as mood. However, the research regarding the influence of worry is mixed, and no research has examined the effect of math or test anxiety on these tasks. The present study investigated the effects of anxiety (including math anxiety) and math performance on the IGT and BART in a sample of 137 undergraduate students. Math performance and worry were not correlated with performance on the IGT, and no variables were correlated with BART performance. Linear regressions indicated math anxiety, physiological anxiety, social concerns/stress, and test anxiety significantly predicted disadvantageous selections on the IGT during the transition from decision making under ambiguity to decision making under risk. Implications for clinical evaluation of decision making are discussed. © The Author(s) 2015.

  14. Special health care needs explains the effect of extremely low birth weight on math but not language achievement.

    PubMed

    Litt, Jonathan S; Minich, Nori; Taylor, H Gerry; Hack, Maureen

    2017-12-01

    Extremely low birth weight (ELBW; <1kg) adolescents are at risk for special health care needs (SHCN) and poor math achievement compared to normal birth weight (NBW) peers. SHCN are associated with poor academic achievement among NBW children. We hypothesize that SHCN explain the effect of ELBW on math achievement. We compared age 14 Woodcock-Johnson Calculation standard scores between 181 ELBW infants and 115 NBW controls. Persistent SHCN included: 1) prescription medication or equipment use, 2) subspecialty or therapeutic service use, or 3) hospitalization. We used nonlinear marginal effects models to decompose the total effect of ELBW on math into the following 4 components: the effect of ELBW controlling for SHCN, the effect of SHCN controlling for ELBW, effect modification by SHCN, and mediated interaction where SHCN is both causal mediator and effect modifier. Models were adjusted for sociodemographic factors. ELBW adolescents had lower mean math scores than NBW peers (81.3 vs. 96.4). SHCN were more common among ELBW adolescents (54.1% vs. 27%). The total effect of ELBW on math scores was -15.7 points (95% CI -21.0, -10.5). The effect of birth weight alone was -7.6 points (95% CI -13.7, -1.4); the effect of SHCN alone was negligible. SHCN interaction and mediated interaction effects each accounted for 25% of the total effect. Birth weight alone explains only half of the effect of ELBW on math achievement. We found evidence of effect modification and mediation by SHCN. Understanding these explanatory pathways may lead to targeted interventions for improved outcomes. Copyright © 2017. Published by Elsevier B.V.

  15. MATHEMATICAL DEVELOPMENT IN SPINA BIFIDA

    PubMed Central

    English, Lianne H.; Barnes, Marcia A.; Taylor, Heather B.; Landry, Susan H.

    2011-01-01

    Spina bifida (SB) is a neural tube defect diagnosed before or at birth that is associated with a high incidence of math disability often without co-occurring difficulties in reading. SB provides an interesting population within which to examine the development of mathematical abilities and disability across the lifespan and in relation to the deficits in visual-spatial processing that are also associated with the disorder. An overview of math and its cognitive correlates in preschoolers, school-age children and adults with SB is presented including the findings from a longitudinal study linking early executive functions in infancy to the development of later preschool and school age math skills. These findings are discussed in relation to socio-historical perspectives on math education and implications for intervention and directions for further research are presented. PMID:19213013

  16. Executive Function Buffers the Association between Early Math and Later Academic Skills.

    PubMed

    Ribner, Andrew D; Willoughby, Michael T; Blair, Clancy B

    2017-01-01

    Extensive evidence has suggested that early academic skills are a robust indicator of later academic achievement; however, there is mixed evidence of the effectiveness of intervention on academic skills in early years to improve later outcomes. As such, it is clear there are other contributing factors to the development of academic skills. The present study tests the role of executive function (EF) (a construct made up of skills complicit in the achievement of goal-directed tasks) in predicting 5th grade math and reading ability above and beyond math and reading ability prior to school entry, and net of other cognitive covariates including processing speed, vocabulary, and IQ. Using a longitudinal dataset of N = 1292 participants representative of rural areas in two distinctive geographical parts of the United States, the present investigation finds EF at age 5 strongly predicts 5th grade academic skills, as do cognitive covariates. Additionally, investigation of an interaction between early math ability and EF reveals the magnitude of the association between early math and later math varies as a function of early EF, such that participants who have high levels of EF can "catch up" to peers who perform better on assessments of early math ability. These results suggest EF is pivotal to the development of academic skills throughout elementary school. Implications for further research and practice are discussed.

  17. Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology

    NASA Astrophysics Data System (ADS)

    Redish, Edward F.; Kuo, Eric

    2015-07-01

    Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we suggest that a fundamental issue has received insufficient exploration: the fact that in science, we don't just use math, we make meaning with it in a different way than mathematicians do. In this reflective essay, we explore math as a language and consider the language of math in physics through the lens of cognitive linguistics. We begin by offering a number of examples that show how the use of math in physics differs from the use of math as typically found in math classes. We then explore basic concepts in cognitive semantics to show how humans make meaning with language in general. The critical elements are the roles of embodied cognition and interpretation in context. Then, we show how a theoretical framework commonly used in physics education research, resources, is coherent with and extends the ideas of cognitive semantics by connecting embodiment to phenomenological primitives and contextual interpretation to the dynamics of meaning-making with conceptual resources, epistemological resources, and affect. We present these ideas with illustrative case studies of students working on physics problems with math and demonstrate the dynamical nature of student reasoning with math in physics. We conclude with some thoughts about the implications for instruction.

  18. The contribution of general cognitive abilities and approximate number system to early mathematics.

    PubMed

    Passolunghi, Maria Chiara; Cargnelutti, Elisa; Pastore, Massimiliano

    2014-12-01

    Math learning is a complex process that entails a wide range of cognitive abilities to be fulfilled. There is sufficient evidence that both general and specific cognitive skills assume a fundamental role, despite the absence of shared consensus about the relative extent of their involvement. Moreover, regarding general abilities, there is no agreement about the recruitment of the different memory components or of intelligence. In relation to specific factors, great debate subsists regarding the role of the approximate number system (ANS). Starting from these considerations, we wanted to conduct a wide assessment of memory components and ANS, by controlling for the effects associated with intelligence and also exploring possible relationships between all precursors. To achieve this purpose, a sample of 157 children was tested at both beginning and end of their Grade 1. Both general (memory and intelligence) and specific (ANS) precursors were evaluated by a wide battery of tests and put in relation to concurrent and subsequent math skills. Memory was explored in passive and active aspects involving both verbal and visuo-spatial components. Path analysis results demonstrated that memory, and especially the more active processes, and intelligence were the strongest precursors in both assessment times. ANS had a milder role which lost significance by the end of the school year. Memory and ANS seemed to influence early mathematics almost independently. Both general and specific precursors seemed to have a crucial role in early math competences, despite the lower involvement of ANS. © 2014 The British Psychological Society.

  19. The Isolated and Combined Effects of Intervention Components on Mathematic Fluency

    ERIC Educational Resources Information Center

    Hastings, Kimberly A.

    2010-01-01

    Scope and Method of Study: The scope of the study was to compare empirically supported math fluency interventions to a control group as well as each other. The intervention components were isolated to investigate their initial strength as well as adding them together to investigate if the combined intervention was actually stronger or more…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Jennifer

    The Association for Women in Mathematics (AWM) seeks to advance the rates of participation by women in events at national mathematical sciences conference primarily in the U.S. The grant was funded from 8/1/2007 through 3/31/2015. The first component is the lecture series (Noether, Kovalevsky and Falconer Lectures) named after celebrated mathematicians, and featuring prominent women mathematicians, with the result that men, as well as women, will learn about the achievements of women in the mathematical sciences. 22 women mathematicians gave lectures at the annual JMM, SIAM Annual Meetings, and the MAA MathFest. The second component is AWM’s “Workshops for Womenmore » Graduate Students and Recent PhDs,” which select junior women to give research talks and research poster presentations at the SIAM Annual Meeting. The workshop activities allow wider recruitment of participants and increased attention to mentoring. 122 women gave mathematics research presentations. The third component is the AWM’s 40th Anniversary Research Symposium, 2011. 300 women and men attended the two-day symposium with 135 women presenting mathematics research. These activities have succeeded in increasing the number of women speakers and presenters at meetings and have brought more women attendees to the meetings.« less

  1. Supplying Disadvantaged Schools with Effective Teachers: Experimental Evidence on Secondary Math Teachers from Teach For America

    ERIC Educational Resources Information Center

    Chiang, Hanley S.; Clark, Melissa A.; McConnell, Sheena

    2017-01-01

    Teach For America (TFA) is an important but controversial source of teachers for hard-to-staff subjects in high-poverty U.S. schools. We present findings from the first large-scale experimental study of secondary math teachers from TFA. We find that TFA teachers are more effective than other math teachers in the same schools, increasing student…

  2. Fixed-point theorems for families of weakly non-expansive maps

    NASA Astrophysics Data System (ADS)

    Mai, Jie-Hua; Liu, Xin-He

    2007-10-01

    In this paper, we present some fixed-point theorems for families of weakly non-expansive maps under some relatively weaker and more general conditions. Our results generalize and improve several results due to Jungck [G. Jungck, Fixed points via a generalized local commutativity, Int. J. Math. Math. Sci. 25 (8) (2001) 497-507], Jachymski [J. Jachymski, A generalization of the theorem by Rhoades and Watson for contractive type mappings, Math. Japon. 38 (6) (1993) 1095-1102], Guo [C. Guo, An extension of fixed point theorem of Krasnoselski, Chinese J. Math. (P.O.C.) 21 (1) (1993) 13-20], Rhoades [B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290], and others.

  3. Math.

    ERIC Educational Resources Information Center

    Learning, 1980

    1980-01-01

    Classroom games designed to develop mathematics skills in elementary school children are presented. These games involve personalizing metric measurement, telling time by television, creating an all-math newsletter, addition puzzles, subtraction games, division cards, multiplication, fractions, and measurement. (JD)

  4. Science Fiction across the Curriculum.

    ERIC Educational Resources Information Center

    Kay, Andrew L.; Golden, Michael

    1991-01-01

    Presents ideas on integrating science fiction into language arts, science, social studies, and math. Suggestions include an interstellar journey, imaginative language lessons, futuristic social studies, extraterrestrial life studies, intergalactic math, and science fiction story writing. (SM)

  5. Exorcising the ghost of the Sputnik crisis.

    PubMed

    Kolberg, Espen Skarstein; Holt, Heidi Marie; Klevan, Ingvild

    2017-10-01

    Drug calculation is not immune to the undesirable impact of math anxiety and negative attitudes on test outcomes in nursing studies, and several studies indicate that math anxiety is present in the student population at such a degree that it is likely to interfere with these students' mathematical ability. Examining the educational system through the lens of history and adding a dash of cultural theory, a contributing cause to the math anxiety may be found in the Sputnik Crisis of the late 1950s, the ghostly remnants of which are still present in the stereotypes of mathematics promoted by mass media. In an effort to reshape the culturally conditioned attitudes which may be responsible for math anxiety, we suggest using elements from popular culture to diversify the perception and image of mathematics in drug calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Business Math in Everyday Life.

    ERIC Educational Resources Information Center

    McGee, Phil

    The material presented in this booklet is designed to provide supplemental information and exercises to aid in the development of basic everyday skills in business math. Seven units are presented with each unit containing basic information on the unit topic, followed by student exercises, and a review section. The seven units are (1) check writing…

  7. Building Links between Early Socioeconomic Status, Cognitive Ability, and Math and Science Achievement

    ERIC Educational Resources Information Center

    Blums, Angela; Belsky, Jay; Grimm, Kevin; Chen, Zhe

    2017-01-01

    The present study examined whether and how socioeconomic status (SES) predicts school achievement in science, technology, engineering, and math (STEM) using structural equation modeling and data from the National Institute of Child Health and Human Development Study of Child Care and Youth Development. The present inquiry addresses gaps in…

  8. Physical fitness and academic performance in middle school students.

    PubMed

    Bass, Ronald W; Brown, Dale D; Laurson, Kelly R; Coleman, Margaret M

    2013-08-01

    The purpose of this study was to determine whether physical fitness is linked to academic success in middle school students. The FITNESSGRAM test battery assessed students (n = 838) in the five components of health-related fitness. The Illinois Standardized Achievement Test (ISAT) was used to assess academic achievement in reading and math. The largest correlations were seen for aerobic fitness and muscular endurance (ranging from 0.12 to 0.27, all p < 0.05). Boys in the Healthy Fitness Zone (HFZ) for aerobic fitness or muscular endurance were 2.5-3 times more likely to pass their math or reading exams. Girls in the HFZ for aerobic fitness were approximately 2-4 times as likely to meet or exceed reading and math test standards. Aerobic capacity and muscular endurance seem to positively affect academic achievement in middle school students. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  9. Finsler-Geometric Continuum Dynamics and Shock Compression

    DTIC Science & Technology

    2018-01-01

    An important mathe - matical device used in the current derivations centers on the divergence theorem of Finsler geometry first presented by Rund...carbide ceramic. Philos Mag 92:2860–2893 Clayton JD (2012b)On anholonomic deformation, geometry, and differentiation. Math Mech Solids 17:702–735 Clayton... Math Phys 2015:828475 Clayton JD (2015b) Penetration resistance of armor ceramics: dimensional analysis and property correlations. Int J Impact Eng

  10. Parallel and Distributed Computing Combinatorial Algorithms

    DTIC Science & Technology

    1993-10-01

    Discrete Math , 1991. In press. [551 L. Finkelstein, D. Kleitman, and T. Leighton. Applying the classification theorem for finite simple groups to minimize...Mathematics (in press). [741 L. Heath, T. Leighton, and A. Rosenberg. Comparing queue and stack layouts. SIAM J Discrete Math , 5(3):398-412, August 1992...line can meet only a few. DIMA CS Series in Discrete Math and Theoretical Computer Science, 9, 1993. Publications, Presentations and Theses Supported

  11. Efficient development and processing of thermal math models of very large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.

    1993-01-01

    As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.

  12. Software Reviews.

    ERIC Educational Resources Information Center

    Mathematics and Computer Education, 1987

    1987-01-01

    Presented are reviews of several microcomputer software programs. Included are reviews of: (1) Microstat (Zenith); (2) MathCAD (MathSoft); (3) Discrete Mathematics (True Basic); (4) CALCULUS (True Basic); (5) Linear-Kit (John Wiley); and (6) Geometry Sensei (Broderbund). (RH)

  13. National Youth Sports Program: Math/Science. Final report, [June 1, 1992--November 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    NYSP, a partnership of NCAA, HHS, and colleges and universities, is aimed at sports instruction and physical activity for disadvantaged youth. In 1992, DOE joined in to add a mathematics/science component. Federal funds were used to conduct mathematics and science education components on a limited pilot basis at 16 sites. Recommendations for future improvements are given.

  14. Title I/PSEN Individualized Reading and Math Services for the Handicapped, 1980-81. Final Evaluation Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Educational Evaluation.

    The Title I Umbrella Program provided compensatory instruction in reading, mathematics, and writing to 24,000 mildly or moderately handicapped students in New York City. The program was comprised of seven discrete components for the remediation of reading and writing skills, five after-school models, and two components for the remediation of math…

  15. Critical Literacy: Does Advertising Show Gender and Cultural Stereotyping?

    ERIC Educational Resources Information Center

    Russo, Elizabeth

    1996-01-01

    The critical literacy component of an adult program developed skills in analyzing media advertising; using math for data analysis, graphing, and computation; interpreting data; and becoming aware of advertising's part in reenforcing gender roles. (SK)

  16. Satisfying STEM Education Using the Arduino Microprocessor in C Programming

    NASA Astrophysics Data System (ADS)

    Hoffer, Brandyn M.

    There exists a need to promote better Science Technology Engineering and Math (STEM) education at the high school level. To satisfy this need a series of hands-on laboratory assignments were created to be accompanied by 2 educational trainers that contain various electronic components. This project provides an interdisciplinary, hands-on approach to teaching C programming that meets several standards defined by the Tennessee Board of Education. Together the trainers and lab assignments also introduce key concepts in math and science while allowing students hands-on experience with various electronic components. This will allow students to mimic real world applications of using the C programming language while exposing them to technology not currently introduced in many high school classrooms. The developed project is targeted at high school students performing at or above the junior level and uses the Arduino Mega open-source Microprocessor and software as the primary control unit.

  17. Math: The Gateway to Great Careers

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Robert

    2010-01-01

    This slide presentation examines the role of mathematical proficiency and how it relates to advantages in careers. It emphasises the role of math in attaining entrance to college, graduate schools, and a career that is interesting and well paying.

  18. Modifying high-order aeroelastic math model of a jet transport using maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Anissipour, Amir A.; Benson, Russell A.

    1989-01-01

    The design of control laws to damp flexible structural modes requires accurate math models. Unlike the design of control laws for rigid body motion (e.g., where robust control is used to compensate for modeling inaccuracies), structural mode damping usually employs narrow band notch filters. In order to obtain the required accuracy in the math model, maximum likelihood estimation technique is employed to improve the accuracy of the math model using flight data. Presented here are all phases of this methodology: (1) pre-flight analysis (i.e., optimal input signal design for flight test, sensor location determination, model reduction technique, etc.), (2) data collection and preprocessing, and (3) post-flight analysis (i.e., estimation technique and model verification). In addition, a discussion is presented of the software tools used and the need for future study in this field.

  19. Unpacking the Clinical and Participatory Dimensions of the Trump Math-Teacher-Residency-Program

    ERIC Educational Resources Information Center

    Imanuel-Noy, Dalia; Wagner, Tili

    2016-01-01

    The research presents a Residency Math teacher education program that has been developed in Israel in search of transforming initial teacher preparation on the Clinical-Participatory continuum. It is a "multi-phase" mixed-method research aiming to present the clinical and participatory dimensions of the TMR: the way in which they are…

  20. A Math-Related Decrement Stereotype Threat Reaction among Older Nontraditional College Learners

    ERIC Educational Resources Information Center

    Hollis-Sawyer, Lisa

    2011-01-01

    It is important to address quality of life issues, such as education participation, with a growing aging population. The focus for the present research was on possible reactions among a broad age range of nontraditional learners. The present study found significant aging-related issues in perceived willingness to be involved in math-related…

  1. Choking under the pressure of a positive stereotype: gender identification and self-consciousness moderate men's math test performance.

    PubMed

    Tagler, Michael J

    2012-01-01

    Choking under pressure occurs when an individual underperforms due to situational pressure. The present study examined whether being the target of a positive social stereotype regarding math ability causes choking among men. Gender identification and self-consciousness were hypothesized to moderate the effect of math-gender stereotypes on men's math test performance. Men high in self-consciousness but low in gender identification significantly underperformed when exposed to gender-relevant test instructions. No significant effects were found under a gender-irrelevant condition. These findings are discussed in the contexts of research on stereotype threat, stereotype lift, and choking under pressure.

  2. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    PubMed

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. The Relation between 1st Grade Grey Matter Volume and 2nd Grade Math Competence

    PubMed Central

    Price, Gavin R.; Wilkey, Eric D.; Yeo, Darren J.; Cutting, Laurie E.

    2015-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence. PMID:26334946

  4. Why Cooking in the Curriculum?

    ERIC Educational Resources Information Center

    Dahl, Keith

    1998-01-01

    Discusses how food preparation activities in the early childhood classroom can facilitate parent participation. Explains how cooking activities can involve reading, math, science, reading, writing, multicultural components, and creativity. They also provide opportunities to foster social skills, independence, and following directions. Suggests…

  5. Word Problem Wizardry.

    ERIC Educational Resources Information Center

    Cassidy, Jack

    1991-01-01

    Presents suggestions for teaching math word problems to elementary students. The strategies take into consideration differences between reading in math and reading in other areas. A problem-prediction game and four self-checking activities are included along with a magic password challenge. (SM)

  6. Disentangling fine motor skills' relations to academic achievement: the relative contributions of visual-spatial integration and visual-motor coordination.

    PubMed

    Carlson, Abby G; Rowe, Ellen; Curby, Timothy W

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.

  7. A Randomized Controlled Trial of the Morningside Math Facts Curriculum on Fluency, Stability, Endurance and Application Outcomes

    ERIC Educational Resources Information Center

    McTiernan, Aoife; Holloway, Jennifer; Healy, Olive; Hogan, Michael

    2016-01-01

    A randomized controlled trial was used to evaluate the impact of a frequency-building curriculum to increase the fluency of component mathematics skills in a sample of 28 males aged 9-11 years. Assessments of mathematical ability were conducted before and after the training period to evaluate the impact of learning component skills fluently on…

  8. Matching Theory - A Sampler: From Denes Koenig to the Present

    DTIC Science & Technology

    1991-01-01

    1079. [1131 , Matching Theory, Ann. Discrete Math . 29, North- Holland, Amsterdam, 1986. [114 ] M. Luby, A simple parallel algorithm for the maximal...311. [135 ]M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. [1361 , Matching extension and the genus of a graph, J. Combin...Theory Ser. B, 44, 1988, 329-837. [137] , A theorem on matchings in the plane, Graph Theory in Memory of G.A. Dirac, Ann. Discrete Math . 41, North

  9. Changing the precision of preschoolers' approximate number system representations changes their symbolic math performance.

    PubMed

    Wang, Jinjing Jenny; Odic, Darko; Halberda, Justin; Feigenson, Lisa

    2016-07-01

    From early in life, humans have access to an approximate number system (ANS) that supports an intuitive sense of numerical quantity. Previous work in both children and adults suggests that individual differences in the precision of ANS representations correlate with symbolic math performance. However, this work has been almost entirely correlational in nature. Here we tested for a causal link between ANS precision and symbolic math performance by asking whether a temporary modulation of ANS precision changes symbolic math performance. First, we replicated a recent finding that 5-year-old children make more precise ANS discriminations when starting with easier trials and gradually progressing to harder ones, compared with the reverse. Next, we show that this brief modulation of ANS precision influenced children's performance on a subsequent symbolic math task but not a vocabulary task. In a supplemental experiment, we present evidence that children who performed ANS discriminations in a random trial order showed intermediate performance on both the ANS task and the symbolic math task, compared with children who made ordered discriminations. Thus, our results point to a specific causal link from the ANS to symbolic math performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance

    PubMed Central

    Wang, Jinjing (Jenny); Odic, Darko; Halberda, Justin; Feigenson, Lisa

    2016-01-01

    From early in life, humans have access to an Approximate Number System (ANS) that supports an intuitive sense of numerical quantity. Previous work in both children and adults suggests that individual differences in the precision of ANS representations correlate with symbolic math performance. However, this work has been almost entirely correlational in nature. Here we tested for a causal link between ANS precision and symbolic math performance by asking whether a temporary modulation of ANS precision changes symbolic math performance. First we replicated a recent finding that 5-year-old children make more precise ANS discriminations when starting with easier trials and gradually progressing to harder ones, compared to the reverse. Next, we show that this brief modulation of ANS precision influenced children’s performance on a subsequent symbolic math task, but not a vocabulary task. In a supplemental experiment we present evidence that children who performed ANS discriminations in a random trial order showed intermediate performance both on the ANS task and the symbolic math task, compared to the children who made ordered discriminations. Thus, our results point to a specific causal link from the ANS to symbolic math performance. PMID:27061668

  11. The Relation between Students' Math and Reading Ability and Their Mathematics, Physics, and Chemistry Examination Grades in Secondary Education

    ERIC Educational Resources Information Center

    Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje

    2015-01-01

    Word problems are math- or science-related problems presented in the context of a story or real-life scenario. Literature suggests that, to solve these problems, advanced reading skills are required, in addition to content-related skills in, for example, mathematics. In the present study, we investigated the relation between students' reading…

  12. Assessment of factors impacting success for incoming college engineering students in a summer bridge program

    NASA Astrophysics Data System (ADS)

    Reisel, John R.; Jablonski, Marissa; Hosseini, Hossein; Munson, Ethan

    2012-06-01

    A summer bridge program for incoming engineering and computer science freshmen has been used at the University of Wisconsin-Milwaukee from 2007 to 2010. The primary purpose of this program has been to improve the mathematics course placement for incoming students who initially place into a course below Calculus I on the math placement examination. The students retake the university's math placement examination after completing the bridge program to determine if they then place into a higher-level mathematics course. If the students improve their math placement, the program is considered successful for that student. The math portion of the bridge program is designed around using the ALEKS software package for targeted, self-guided learning. In the 2007 and 2008 versions of the program, both an on-line version and an on-campus version with additional instruction were offered. In 2009 and 2010, the program was exclusively in an on-campus format, and also featured a required residential component and additional engineering activities for the students. From the results of these four programs, we are able to evaluate the success of the program in its different formats. In addition, data has been collected and analysed regarding the impact of other factors on the program's success. The factors include student preparation before the beginning of the program (as measured by math ACT scores) and the amount of time the student spent working on the material during the program. Better math preparation and the amount of time spent on the program were found to be good indicators of success. Furthermore, the on-campus version of the program is more effective than the on-line version.

  13. LOX/hydrocarbon auxiliary propulsion system study

    NASA Technical Reports Server (NTRS)

    Orton, G. F.; Mark, T. D.; Weber, D. D.

    1982-01-01

    Liquid oxygen/hydrocarbon propulsion systems applicable to a second generation orbiter OMS/RCS were compared, and major system/component options were evaluated. A large number of propellant combinations and system concepts were evaluated. The ground rules were defined in terms of candidate propellants, system/component design options, and design requirements. System and engine component math models were incorporated into existing computer codes for system evaluations. The detailed system evaluations and comparisons were performed to identify the recommended propellant combination and system approach.

  14. Multiple social identities and stereotype threat: imbalance, accessibility, and working memory.

    PubMed

    Rydell, Robert J; McConnell, Allen R; Beilock, Sian L

    2009-05-01

    In 4 experiments, the authors showed that concurrently making positive and negative self-relevant stereotypes available about performance in the same ability domain can eliminate stereotype threat effects. Replicating past work, the authors demonstrated that introducing negative stereotypes about women's math performance activated participants' female social identity and hurt their math performance (i.e., stereotype threat) by reducing working memory. Moving beyond past work, it was also demonstrated that concomitantly presenting a positive self-relevant stereotype (e.g., college students are good at math) increased the relative accessibility of females' college student identity and inhibited their gender identity, eliminating attendant working memory deficits and contingent math performance decrements. Furthermore, subtle manipulations in questions presented in the demographic section of a math test eliminated stereotype threat effects that result from women reporting their gender before completing the test. This work identifies the motivated processes through which people's social identities became active in situations in which self-relevant stereotypes about a stigmatized group membership and a nonstigmatized group membership were available. In addition, it demonstrates the downstream consequences of this pattern of activation on working memory and performance. Copyright (c) 2009 APA, all rights reserved.

  15. Matching and Vertex Packing: How Hard Are They?

    DTIC Science & Technology

    1991-01-01

    Theory, 29, Ann. Discrete Math ., North-Holland, Amsterdam, 1986. [2] M.D. Plummer, Matching theory - a sampler: from D~nes K~nig to the present...Ser. B, 28, 1980, 284-304. [20i N. Sbihi, Algorithme de recherche d’un stable de cardinalit6 maximum dans un graphe sans 6toile, Discrete Math ., 29...cliques and by finite families of graphs, Discrete Math ., 49, 1984, 45-59. [92] G. Cornu~jols, D. Hartvigsen and W.R. Pulleyblank, Packing subgraphs in

  16. The Role of the National Science Foundation in K-12 Science and Math Education. Hearing before the Committee on Science, House of Representatives, One Hundred Ninth Congress, Second Session (May 3, 2006). Serial Number 109-46

    ERIC Educational Resources Information Center

    US House of Representatives, 2006

    2006-01-01

    The purpose of this hearing was to review the effectiveness and value of the National Science Foundation's (NSF's) past and present programs in support of improvement of K-12 science and math education and to examine what role the Foundation should play in future federal initiatives for strengthening K-12 science and math education. This hearing…

  17. Math anxiety: A review of its cognitive consequences, psychophysiological correlates, and brain bases.

    PubMed

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2016-02-01

    A decade has passed since the last published review of math anxiety, which was carried out by Ashcraft and Ridley (2005). Given the considerable interest aroused by this topic in recent years and the growing number of publications related to it, the present article aims to provide a full and updated review of the field, ranging from the initial studies of the impact of math anxiety on numerical cognition, to the latest research exploring its electrophysiological correlates and brain bases from a cognitive neuroscience perspective. Finally, this review describes the factors and mechanisms that have been claimed to play a role in the origins and/or maintenance of math anxiety, and it examines in detail the main explanations proposed to account for the negative effects of math anxiety on performance: competition for working memory resources, a deficit in a low-level numerical representation, and inhibition/attentional control deficit.

  18. College and Career Readiness: Course Taking Of Deaf and Hard of Hearing Secondary School Students.

    PubMed

    Nagle, Katherine; Newman, Lynn A; Shaver, Debra M; Marschark, Marc

    2016-01-01

    Research shows that deaf and hard of hearing (DHH) students frequently enter college and the workplace relatively unprepared for success in math, science, and reading. Based on data from the National Longitudinal Transition Study-2 (NLTS2), the present study focused on DHH students' college and career readiness by investigating their opportunities in secondary school to acquire college and career skills. DHH students earned more credits overall than hearing peers; both groups earned a similar number of credits in academic courses. However, DHH students took more vocational and nonacademic courses and fewer courses in science, social science, and foreign languages. There was evidence that DHH students' academic courses in math lacked the rigor of those taken by hearing peers, as DHH students earned more credits in basic math and fewer credits in midlevel math courses, and even fewer in advanced math courses, than hearing peers.

  19. Math is Functional! A Math Fair for Kids.

    ERIC Educational Resources Information Center

    Reys, Barbara J.; Wasman, Deanna G.

    1998-01-01

    Describes a mathematics fair prepared by the University of Missouri Mathematics Teachers Organization (UM2TO) which includes games involving numbers and computation, logic puzzles, geometry and spatial-visualization exploration, and probability and statistics activities. Presents tips for developing a mathematics fair. (ASK)

  20. Self-Discrepancies as Predictors of Self-Concept in Mathematics and Related Emotional Consequences among LD and Regular Education High School Students

    ERIC Educational Resources Information Center

    Mandel, Shawn

    2011-01-01

    Guided by the Self Discrepancy Theory (Higgins, 1987), the present study examines the nature of self-discrepancies, related emotional consequences, and math self-concept among high school students with and without learning disabilities. A total of 104 students in New York area participated in the present study. Math-Self Discrepancy Measure, Math…

  1. Using a Math Pre-Test in a Large General Education Geoscience Course: How Effective?

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.

    2006-12-01

    Teaching large (150 or more students) General Education Geoscience courses presents many challenges, but one of the most important is how to effectively incorporate quantitative literacy. Many students are math phobic, and will run to General Education courses that minimize quantitative aspects. I will present results from one approach that we have used successfully for at least two years: a math pre-test. Our General Education Geoscience course has no prerequisites other than admission to the University, and is designed for first and second year non-science students. Fortunately, with limited exceptions, all entering students at the University of Arizona take a Math Readiness Test (MRT) for math placement. With the cooperation of the Mathematics Department, we have used old MRT exams to selectively use questions that are of the highest utility for the course material `understanding graphs, linear equations and extrapolations, scientific notation and large numbers, word problems, and scaling/unit conversions. We administer the exam in the first discussion section. Students receive full credit for a `serious effort', and we score the exam. In recent semesters the percentage of correct answers has varied from just under 50% to nearly 90% on individual questions. The pre-test has several important benefits. First, it lets students know clearly up front that there will be mathematics in the class. Second, it lets students know the range of skills expected to be successful. Third, because the average score is between 70-80% it gives students confidence that they can do the math in the course. Fourth, we contact all students who score less than 50%, and offer help, including referral to tutoring service in Mathematics. Feedback from students has been positive. Unfortunately, when we compared scores on the math pre-test to final grades in the course, we found essentially no correlation. We are exploring a number of possible explanations. We are also seeing if our math pre-test scores correlate with the initial MRT score, and overall student success.

  2. Short-term retention of a single word relies on retrieval from long-term memory when both rehearsal and refreshing are disrupted.

    PubMed

    Rose, Nathan S; Buchsbaum, Bradley R; Craik, Fergus I M

    2014-07-01

    Many working memory (WM) models propose that the focus of attention (or primary memory) has a capacity limit of one to four items, and therefore, that performance on WM tasks involves retrieving some items from long-term (or secondary) memory (LTM). In the present study, we present evidence suggesting that recall of even one item on a WM task can involve retrieving it from LTM. The WM task required participants to make a deep (living/nonliving) or shallow ("e"/no "e") level-of-processing (LOP) judgment on one word and to recall the word after a 10-s delay on each trial. During the delay, participants either rehearsed the word or performed an easy or a hard math task. When the to-be-remembered item could be rehearsed, recall was fast and accurate. When it was followed by a math task, recall was slower, error-prone, and benefited from a deeper LOP at encoding, especially for the hard math condition. The authors suggest that a covert-retrieval mechanism may have refreshed the item during easy math, and that the hard math condition shows that even a single item cannot be reliably held in WM during a sufficiently distracting task--therefore, recalling the item involved retrieving it from LTM. Additionally, performance on a final free recall (LTM) test was better for items recalled following math than following rehearsal, suggesting that initial recall following math involved elaborative retrieval from LTM, whereas rehearsal did not. The authors suggest that the extent to which performance on WM tasks involves retrieval from LTM depends on the amounts of disruption to both rehearsal and covert-retrieval/refreshing maintenance mechanisms.

  3. Differentiating anxiety forms and their role in academic performance from primary to secondary school

    PubMed Central

    Devine, Amy; Hill, Francesca; Szűcs, Dénes

    2017-01-01

    Introduction Individuals with high levels of mathematics anxiety are more likely to have other forms of anxiety, such as general anxiety and test anxiety, and tend to have some math performance decrement compared to those with low math anxiety. However, it is unclear how the anxiety forms cluster in individuals, or how the presence of other anxiety forms influences the relationship between math anxiety and math performance. Method We measured math anxiety, test anxiety, general anxiety and mathematics and reading performance in 1720 UK students (year 4, aged 8–9, and years 7 and 8, aged 11–13). We conducted latent profile analysis of students’ anxiety scores in order to examine the developmental change in anxiety profiles, the demographics of each anxiety profile and the relationship between profiles and academic performance. Results Anxiety profiles appeared to change in specificity between the two age groups studied. Only in the older students did clusters emerge with specifically elevated general anxiety or academic anxiety (test and math anxiety). Our findings suggest that boys are slightly more likely than girls to have elevated academic anxieties relative to their general anxiety. Year 7/8 students with specifically academic anxiety show lower academic performance than those who also have elevated general anxiety. Conclusions There may be a developmental change in the specificity of anxiety and gender seems to play a strong role in determining one’s anxiety profile. The anxiety profiles present in our year 7/8 sample, and their relationships with math performance, suggest a bidirectional relationship between math anxiety and math performance. PMID:28350857

  4. Differentiating anxiety forms and their role in academic performance from primary to secondary school.

    PubMed

    Carey, Emma; Devine, Amy; Hill, Francesca; Szűcs, Dénes

    2017-01-01

    Individuals with high levels of mathematics anxiety are more likely to have other forms of anxiety, such as general anxiety and test anxiety, and tend to have some math performance decrement compared to those with low math anxiety. However, it is unclear how the anxiety forms cluster in individuals, or how the presence of other anxiety forms influences the relationship between math anxiety and math performance. We measured math anxiety, test anxiety, general anxiety and mathematics and reading performance in 1720 UK students (year 4, aged 8-9, and years 7 and 8, aged 11-13). We conducted latent profile analysis of students' anxiety scores in order to examine the developmental change in anxiety profiles, the demographics of each anxiety profile and the relationship between profiles and academic performance. Anxiety profiles appeared to change in specificity between the two age groups studied. Only in the older students did clusters emerge with specifically elevated general anxiety or academic anxiety (test and math anxiety). Our findings suggest that boys are slightly more likely than girls to have elevated academic anxieties relative to their general anxiety. Year 7/8 students with specifically academic anxiety show lower academic performance than those who also have elevated general anxiety. There may be a developmental change in the specificity of anxiety and gender seems to play a strong role in determining one's anxiety profile. The anxiety profiles present in our year 7/8 sample, and their relationships with math performance, suggest a bidirectional relationship between math anxiety and math performance.

  5. Transforming wealth: using the inverse hyperbolic sine (IHS) and splines to predict youth's math achievement.

    PubMed

    Friedline, Terri; Masa, Rainier D; Chowa, Gina A N

    2015-01-01

    The natural log and categorical transformations commonly applied to wealth for meeting the statistical assumptions of research may not always be appropriate for adjusting for skewness given wealth's unique properties. Finding and applying appropriate transformations is becoming increasingly important as researchers consider wealth as a predictor of well-being. We present an alternative transformation-the inverse hyperbolic sine (IHS)-for simultaneously dealing with skewness and accounting for wealth's unique properties. Using the relationship between household wealth and youth's math achievement as an example, we apply the IHS transformation to wealth data from US and Ghanaian households. We also explore non-linearity and accumulation thresholds by combining IHS transformed wealth with splines. IHS transformed wealth relates to youth's math achievement similarly when compared to categorical and natural log transformations, indicating that it is a viable alternative to other transformations commonly used in research. Non-linear relationships and accumulation thresholds emerge that predict youth's math achievement when splines are incorporated. In US households, accumulating debt relates to decreases in math achievement whereas accumulating assets relates to increases in math achievement. In Ghanaian households, accumulating assets between the 25th and 50th percentiles relates to increases in youth's math achievement. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Using Math With Maple Sugaring.

    ERIC Educational Resources Information Center

    Christenson, Gary

    1984-01-01

    Suggest several math activities using the simple technique of tapping a sugar maple tree for sap. Information and activities presented are useful in tapping one or two trees on school property, helping students who tap trees at home, or leading a field trip to a nearby maple sugaring site. (ERB)

  7. Assessing Course Redesign: The Case of Developmental Math

    ERIC Educational Resources Information Center

    Ariovich, Laura; Walker, Sadé A.

    2014-01-01

    Higher education institutions have taken to redesigning high-enrollment, introductory courses to improve student learning outcomes, student success, and degree completion. This paper presents findings from the assessment of course redesign by focusing on the case of developmental math at a large community college. The college adopted…

  8. Math: Basic Skills Content Standards

    ERIC Educational Resources Information Center

    CASAS - Comprehensive Adult Student Assessment Systems (NJ1), 2008

    2008-01-01

    This document presents content standards tables for math. [CASAS content standards tables are designed for educators at national, state and local levels to inform the alignment of content standards, instruction and assessment. The Content Standards along with the CASAS Competencies form the basis of the CASAS integrated assessment and curriculum…

  9. May/June Activity Notebook.

    ERIC Educational Resources Information Center

    Clarke, Jacqueline, Ed.

    1999-01-01

    Presents hand-on, standards-based activities in language arts, math, science, and social studies, including a daily almanac; bookmark buddies; word palettes; bowling for numbers; math thought teasers; plant puzzles; fingerprint fun; a travel bureau; and an end-of-the-year bulletin board of people involved in interesting activities. Reproducible…

  10. Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.

  11. Cold-Atom Clocks on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Lemonde, Pierre; Laurent, Philippe; Santarelli, Giorgio; Abgrall, Michel; Sortais, Yvan; Bize, Sebastien; Nicolas, Christophe; Zhang, Shougang; Clairon, Andre; Dimarcq, Noel; Petit, Pierre; Mann, Antony G.; Luiten, Andre N.; Chang, Sheng; Salomon, Christophe

    We present recent progress on microwave clocks that make use of laser-cooled atoms. With an ultra-stable cryogenic sapphire oscillator as interrogation oscillator, a cesium fountain operates at the quantum projection noise limit. With 6 x10^5 detected atoms, the relative frequency stability is 4 x10^-14 &1/2circ, where τ is the integration time in seconds. This stability is comparable to that of hydrogen masers. At τ=2 x10^4s, the measured stability reaches 6 x10^-16. A 87Rb fountain has also been constructed and the 87Rb ground-state hyperfine energy has been compared to the Cs primary standard with a relative accuracy of 2.5 x10^-15. The 87Rb collisional shift is found to be at least 30 times below that of cesium. We also describe a transportable cesium fountain, which will be used for frequency comparisons with an accuracy of 10-15 or below. Finally, we present the details of a space mission for a cesium standard which has been selected by the European Space Agency (ESA) to fly on the International Space Station in 2003.

  12. Do We Need Remedial College Math Courses?

    NASA Astrophysics Data System (ADS)

    Hughes, Anne O.; Khatri, D.

    2006-12-01

    Entering college freshmen, in increasing numbers, in practically every public institution of higher learning are in need of one or two remedial math courses. This is particularly a big problem at the Historically Black Colleges and Universities where a large number of remedial math course sections are offered to meet the growing demand for such courses. For most of these students, graduation is delayed by at least a year. In addition, these students continue to be taught by teaching methodologies that did not work for them even in high schools resulting in disgust and hatred for math. This situation makes entry for these students into STEM areas difficult and is the perfect recipe for failure in STEM disciplines if they enroll in college level courses. The University of the District of Columbia (UDC) is no exception. A first attempt was made in summer 2006 to remedy this situation. The problem for this exploratory research study was to ascertain if a short, intensive six-week project in basic math and introductory algebra would produce a recognizable improvement in the math performance of entering UDC freshmen students as measured by the UDC math placement test. The results are eye opening. On the pre-test for basic math (005), the mean score for the group (N=10) was 35.6, with the passing score being 70. On the post-test, the mean increased to 63.4 showing an improvement of 78 percent. The authors will present the results of this research study at the conference

  13. Measuring Math Anxiety (in Spanish) with the Rasch Rating Scale Model.

    PubMed

    Prieto, Gerardo; Delgado, Ana R

    2007-01-01

    Two successive studies probed the psychometric properties of a Math Anxiety questionnaire (in Spanish) by means of the Rasch Rating Scale Model. Participants were 411 and 216 Spanish adolescents. Convergent validity was examined by correlating the scale with both the Fennema and Sherman Attitude Scale and a math achievement test. The results show that the scores are psychometrically appropriate, and replicate those reported in meta-analyses: medium-sized negative correlations with achievement and with attitudes toward mathematics, as well as moderate sex-related differences (with girls presenting higher anxiety levels than boys).

  14. The Story of the Trojan Octagon

    ERIC Educational Resources Information Center

    Derado, Josip; Garner, Mary; Edwards, Belinda P.; Garrett, Violette L.

    2010-01-01

    Stories that are presented through literature or popular media can be used to invite students into the world of math; stir their mathematical imaginations; and enhance their ability to read about, write about, and discuss math. This article explores how literature ("Flatland," the book and the movie) and an existing seventh-grade unit…

  15. New Mexico Math Pathways Taskforce Report

    ERIC Educational Resources Information Center

    New Mexico Higher Education Department, 2016

    2016-01-01

    In April 2015 New Mexico faculty, Dana Center staff, and New Mexico Higher Education (NMHED) co-presented the need for better math pathways statewide. Faculty from 6 institutions (New Mexico State University, New Mexico Highlands University, Dine College, Eastern New Mexico University, El Paso Community College, and San Juan College) participated…

  16. Rethinking Mathematics: Teaching Social Justice by the Numbers

    ERIC Educational Resources Information Center

    Gutstein, Eric, Ed.; Peterson, Bob, Ed.

    2005-01-01

    This unique collection of more than 30 articles shows teachers how to weave social-justice principles throughout the math curriculum, and how to integrate social-justice math into other curricular areas as well. "Rethinking Mathematics" presents teaching ideas, lesson plans and reflections by practicing classroom teachers and distinguished…

  17. An Innovation in Children's T.V. the Infinity Factory

    ERIC Educational Resources Information Center

    La Luz, 1977

    1977-01-01

    "Infinity Factory" is a slick, fast-paced, sophisticated series aimed at teaching mathematics fundamentals with a unique and arresting approach. The 30 minutes of live-action skits, brief filmed documentaries, and animation sequences explore common sense math concepts and present useful information showing math at work in everyday life. (NQ)

  18. Preparing Elementary Mathematics-Science Teaching Specialists.

    ERIC Educational Resources Information Center

    Miller, L. Diane

    1992-01-01

    Describes a professional development program to train math/science specialists for the upper elementary school grades. Using results from an interest survey, 30 teachers were chosen to participate in a 3-year program to become math/science specialists. Presents the teaching model used and the advantages for teachers and students in having subject…

  19. Grade 8 Spanish Math Skills Sharpeners and La Calculadora. Hojas de ejercicios (Calculator Unit. Exercise Sheets.)

    ERIC Educational Resources Information Center

    Milwaukee Public Schools, WI.

    This workbook contains "skill sharpening" math problems presented in Spanish. These problems have been designed as supplementary work for students at the eighth grade level. Functions and topics such as addition, subtraction, division, multiplication, decimals, scientific notation (exponents), fractions, symmetry, angles, the metric…

  20. Exploratory Factor Analysis of Reading, Spelling, and Math Errors

    ERIC Educational Resources Information Center

    O'Brien, Rebecca; Pan, Xingyu; Courville, Troy; Bray, Melissa A.; Breaux, Kristina; Avitia, Maria; Choi, Dowon

    2017-01-01

    Norm-referenced error analysis is useful for understanding individual differences in students' academic skill development and for identifying areas of skill strength and weakness. The purpose of the present study was to identify underlying connections between error categories across five language and math subtests of the Kaufman Test of…

  1. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    PubMed Central

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID:26528210

  2. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance.

    PubMed

    Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.

  3. Conservation Abilities, Visuospatial Skills, and Numerosity Processing Speed: Association With Math Achievement and Math Difficulties in Elementary School Children.

    PubMed

    Lambert, Katharina; Spinath, Birgit

    The aim of the present study was to investigate the associations between elementary school children's mathematical achievement and their conservation abilities, visuospatial skills, and numerosity processing speed. We also assessed differences in these abilities between children with different types of learning problems. In Study 1 ( N = 229), we investigated second to fourth graders and in Study 2 ( N = 120), third and fourth graders. Analyses revealed significant contributions of numerosity processing speed and visuospatial skills to math achievement beyond IQ. Conservation abilities were predictive in Study 1 only. Children with math difficulties showed lower visuospatial skills and conservation abilities than children with typical achievement levels and children with reading and/or spelling difficulties, whereas children with combined difficulties explicitly showed low conservation abilities. These findings provide further evidence for the relations between children's math skills and their visuospatial skills, conservation abilities, and processing speed and contribute to the understanding of deficits that are specific to mathematical difficulties.

  4. Effects of everyday romantic goal pursuit on women's attitudes toward math and science.

    PubMed

    Park, Lora E; Young, Ariana F; Troisi, Jordan D; Pinkus, Rebecca T

    2011-09-01

    The present research examined the impact of everyday romantic goal strivings on women's attitudes toward science, technology, engineering, and math (STEM). It was hypothesized that women may distance themselves from STEM when the goal to be romantically desirable is activated because pursuing intelligence goals in masculine domains (i.e., STEM) conflicts with pursuing romantic goals associated with traditional romantic scripts and gender norms. Consistent with hypotheses, women, but not men, who viewed images (Study 1) or overheard conversations (Studies 2a-2b) related to romantic goals reported less positive attitudes toward STEM and less preference for majoring in math/science compared to other disciplines. On days when women pursued romantic goals, the more romantic activities they engaged in and the more desirable they felt, but the fewer math activities they engaged in. Furthermore, women's previous day romantic goal strivings predicted feeling more desirable but being less invested in math on the following day (Study 3).

  5. The effect of negative performance stereotypes on learning.

    PubMed

    Rydell, Robert J; Rydell, Michael T; Boucher, Kathryn L

    2010-12-01

    Stereotype threat (ST) research has focused exclusively on how negative group stereotypes reduce performance. The present work examines if pejorative stereotypes about women in math inhibit their ability to learn the mathematical rules and operations necessary to solve math problems. In Experiment 1, women experiencing ST had difficulty encoding math-related information into memory and, therefore, learned fewer mathematical rules and showed poorer math performance than did controls. In Experiment 2, women experiencing ST while learning modular arithmetic (MA) performed more poorly than did controls on easy MA problems; this effect was due to reduced learning of the mathematical operations underlying MA. In Experiment 3, ST reduced women's, but not men's, ability to learn abstract mathematical rules and to transfer these rules to a second, isomorphic task. This work provides the first evidence that negative stereotypes about women in math reduce their level of mathematical learning and demonstrates that reduced learning due to stereotype threat can lead to poorer performance in negatively stereotyped domains. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  6. Self-Contained Math Manual. Teacher's Guide.

    ERIC Educational Resources Information Center

    Grant, Shelia I.

    This instructional manual consists of 11 competency-based units for a mathematics course for trade and industrial programs in Texas. Each instructional unit includes the following basic components: unit and specific objectives, notes to the instructor (outline of steps to follow in accomplishing specific objectives), information sheets,…

  7. Development of the Academic Stereotype Threat Inventory

    ERIC Educational Resources Information Center

    Pseekos, A. Chantelle; Dahlen, Eric R.; Levy, Jacob J.

    2008-01-01

    The authors describe the development and preliminary validation of the Academic Stereotype Threat Inventory, a self-report measurement of math-related stereotype threat among women. A preliminary version of the instrument was administered to 308 undergraduate women. Principal component analysis yielded a 3-factor solution. Convergent and…

  8. Annual Evaluation Report. Title I ESEA 1974-75.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    A description and evaluation of Elementary and Secondary Education Act Title I-funded programs for the state of Oklahoma are reviewed in this report. The project components include the following: remedial reading, speech therapy, learning disabilities, underachievers, remedial math, remedial language arts, remedial science, special education, and…

  9. Developing a Conceptual Model of STEAM Teaching Practices

    ERIC Educational Resources Information Center

    Quigley, Cassie F.; Herro, Dani; Jamil, Faiza M.

    2017-01-01

    STEAM, where the "A" represents arts and humanities, is considered a transdisciplinary learning process that has the potential to increase diverse participation in science, technology, engineering, and math (STEM) fields. However, a well-defined conceptual model that clearly articulates essential components of the STEAM approach is…

  10. Santa Fe Alliance for Science: The First Eight Years

    NASA Astrophysics Data System (ADS)

    Eisenstein, Robert A.

    2013-04-01

    The Santa Fe Alliance for Science (SFAFS) was founded in May, 2005. SFAFS exists to provide assistance in K-14 math and science education in the greater Santa Fe area. It does this via extensive programs (1) in math and science tutoring at Santa Fe High School, Santa Fe Community College and to a lesser degree at other schools, (2) science fair advising and judging, (3) its ``Santa Fe Science Cafe for Young Thinkers'' series, (4) a program of professional enrichment for K-12 math and science teachers, and (5) a fledging math intervention program in middle school math. Well over 150 STEM professionals, working mostly as volunteers, have contributed since our beginning. Participation by students, parents and teachers has increased dramatically over the years, leading to much more positive views of math and science, especially among elementary school students and teachers. Support from the community and from local school districts has been very strong. I will present a brief status report on SFAFS activities, discuss some of the lessons learned along the way and describe briefly some ideas for the future. More information can be found at the SFAFS website, www.sfafs.org.

  11. Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.

    PubMed

    Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L

    2015-09-01

    A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.

  12. Sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-[eta]-accretive mappings

    NASA Astrophysics Data System (ADS)

    Kazmi, K. R.; Khan, F. A.

    2008-01-01

    In this paper, using proximal-point mapping technique of P-[eta]-accretive mapping and the property of the fixed-point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of a parametric generalized implicit quasi-variational-like inclusion involving P-[eta]-accretive mapping in real uniformly smooth Banach space. Further, under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. MathE Lett. 13 (2002) 19-24; S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988) 421-434; X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett. 17 (2) (2004) 225-235; X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182 (2) (2005) 252-269; X.-P. Ding, C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999) 195-205; Z. Liu, L. Debnath, S.M. Kang, J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277 (1) (2003) 142-154; R.N. Mukherjee, H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992) 299-304; M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002) 1175-1181; M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999) 290-299; J.Y. Park, J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004) 43-48].

  13. Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD.

    PubMed

    Murphy, Melissa M; Mazzocco, Michèle M M; Hanich, Laurie B; Early, Martha C

    2007-01-01

    Researchers of mathematics learning disability (MLD) commonly use cutoff scores to determine which participants have MLD. Some researchers apply more restrictive cutoffs than others (e.g., performance below the 10th vs. below the 35th percentile). Different cutoffs may lead to groups of children that differ in their profile of math and related skills, including reading, visual-spatial, and working memory skills. The present study assesses the characteristics of children with MLD based on varying MLD definitions of math performance either below the 10th percentile (n = 22) or between the 11th and 25th percentile (n = 42) on the Test of Early Math Ability, second edition (TEMA-2). Initial starting levels and growth rates for math and related skills were examined in these two MLD groups relative to a comparison group (n = 146) whose TEMA-2 performance exceeded the 25th percentile. Between kindergarten and third grade, differences emerged in the starting level and growth rate, suggesting qualitative differences among the three groups. Despite some similarities, qualitative group differences were also observed in the profiles of math-related skills across groups. These results highlight differences in student characteristics based on the definition of MLD and illustrate the value of examining skill areas associated with math performance in addition to math performance itself.

  14. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    PubMed Central

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000

  15. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.

    PubMed

    Casad, Bettina J; Hale, Patricia; Wachs, Faye L

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.

  16. Helping Students with Emotional and Behavioral Disorders Solve Mathematics Word Problems

    ERIC Educational Resources Information Center

    Alter, Peter

    2012-01-01

    The author presents a strategy for helping students with emotional and behavioral disorders become more proficient at solving math word problems. Math word problems require students to go beyond simple computation in mathematics (e.g., adding, subtracting, multiplying, and dividing) and use higher level reasoning that includes recognizing relevant…

  17. Individualized Math Problems in Algebra. Oregon Vo-Tech Mathematics Problem Sets.

    ERIC Educational Resources Information Center

    Cosler, Norma, Ed.

    This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic, and contains problems related to diverse vocations. Solutions are provided for all problems. Problems presented in this package concern ratios used in food…

  18. Evaluating Math Recovery: Implications for Policy and Practice

    ERIC Educational Resources Information Center

    Smith, Thomas

    2010-01-01

    This presentation focuses on an initial evaluation study of Math Recovery (MR), a pullout, one-to-one tutoring program that has been designed to increase mathematics achievement among low-performing first graders, thereby closing the school-entry achievement gap and enabling participants to achieve at the level of their higher-performing peers in…

  19. Priming Ability-Relevant Social Categories Improves Intellectual Test Performance

    ERIC Educational Resources Information Center

    Lin, Phoebe S.; Kennette, Lynne N.; Van Havermaet, Lisa R.; Frank, Nichole M.; McIntyre, Rusty B.

    2012-01-01

    Research shows that priming affects behavioral tasks; fewer studies, however, have been conducted on how social category primes affect cognitive tasks. The present study aimed to examine the effects of social category primes on math performance and word recall. It was hypothesized that Asian prime words would improve math performance and word…

  20. The Effects of Computerized Instruction and Systematic Presentation and Review of Math Fact Acquisition and Fluency

    ERIC Educational Resources Information Center

    Reynolds, Jennifer L.

    2010-01-01

    Cross country investigations have repeatedly demonstrated the disappointing math performance of students in the United States (Beatty, 1997; Ferrini-Mundy & Schmidt, 2005). The National Council of Teachers of Mathematics (2000) listed failure to rapidly recall basic facts as a common problem associated with disabilities in mathematics and…

  1. Voice, Identity, and Mathematics: Narratives of Working Class Students

    ERIC Educational Resources Information Center

    Hodge, Lynn Liao; Harris, Ramona Gartman

    2015-01-01

    In this paper, we present an analysis of student interview data focusing on students' ideas about mathematics and their experiences learning mathematics. We draw on the idea of "personal identity" (Cobb, Gresalfi, & Hodge, 2009) to capture the differences and similarities in students' views of math and themselves as math learners,…

  2. Connecting Teacher Professional Development and Student Mathematics Achievement: Mediating Belonging With Multimodal Explorations in Language, Identity, and Culture

    ERIC Educational Resources Information Center

    Kutaka, Traci Shizu; Smith, Wendy M.; Albano, Anthony D.; Edwards, Carolyn Pope; Ren, Lixin; Beattie, Heidi Lynn; Lewis, W. James; Heaton, Ruth M.; Stroup, Walter W.

    2017-01-01

    The present study investigated the effects of "Primarily Math", an inservice elementary mathematics specialist program. "Primarily Math" sought to augment the mathematical knowledge for teaching of kindergarten through third-grade teachers using a longitudinal multiple cohort design. Two sets of analyses were conducted. The…

  3. Children Can Accurately Monitor and Control Their Number-Line Estimation Performance

    ERIC Educational Resources Information Center

    Wall, Jenna L.; Thompson, Clarissa A.; Dunlosky, John; Merriman, William E.

    2016-01-01

    Accurate monitoring and control are essential for effective self-regulated learning. These metacognitive abilities may be particularly important for developing math skills, such as when children are deciding whether a math task is difficult or whether they made a mistake on a particular item. The present experiments investigate children's ability…

  4. From Square Dance to Mathematics

    ERIC Educational Resources Information Center

    Bremer, Zoe

    2010-01-01

    In this article, the author suggests a cross-curricular idea that can link with PE, dance, music and history. Teacher David Schmitz, a maths teacher in Illinois who was also a square dance caller, had developed a maths course that used the standard square dance syllabus to teach mathematical principles. He presents an intensive, two-week course…

  5. Fostering Early Math Comprehension: Experimental Evidence from Paraguay

    ERIC Educational Resources Information Center

    Naslund-Hadley, Emma; Parker, Susan W.; Hernandez-Agramonte, Juan Manuel

    2014-01-01

    Research indicates that preschool children need to learn pre-math skills to build a foundation for primary- and secondary-level mathematics. This paper presents the results from the early stages of a pilot mathematics program implemented in Cordillera, Paraguay. In a context of significant gaps in teacher preparation and pedagogy, the program uses…

  6. Singapore Math: Place Value, Computation & Number Sense. [CD-ROM

    ERIC Educational Resources Information Center

    Chen, Sandra

    2008-01-01

    "Singapore Math: Place Value, Computation & Number Sense" is a six-part presentation on CD-ROM that can be used by individual teachers or an entire school. The author takes primary to upper elementary grade teachers through place value skills with each of the computational operations: addition, subtraction, multiplication, and division. She gives…

  7. Reciprocal Relationships between Math Self-Concept and Math Anxiety

    ERIC Educational Resources Information Center

    Ahmed, Wondimu; Minnaert, Alexander; Kuyper, Hans; van der Werf, Greetje

    2012-01-01

    The present study examined the reciprocal relationships between self-concept and anxiety in mathematics. A sample of 495 grade 7 students (51% girls) completed self-report measures assessing self-concept and anxiety three times in a school year. Structural equation modeling was used to test a cross-lagged panel model of reciprocal effects between…

  8. Operationalizing Levels of Academic Mastery Based on Vygotsky's Theory: The Study of Mathematical Knowledge

    ERIC Educational Resources Information Center

    Nezhnov, Peter; Kardanova, Elena; Vasilyeva, Marina; Ludlow, Larry

    2015-01-01

    The present study tested the possibility of operationalizing levels of knowledge acquisition based on Vygotsky's theory of cognitive growth. An assessment tool (SAM-Math) was developed to capture a hypothesized hierarchical structure of mathematical knowledge consisting of procedural, conceptual, and functional levels. In Study 1, SAM-Math was…

  9. Transmitting Success: Comprehensive Peer Mentoring for At-Risk Students in Developmental Math

    ERIC Educational Resources Information Center

    Morales, Erik E.; Ambrose-Roman, Sarah; Perez-Maldonado, Rosa

    2016-01-01

    This study presents and assesses a developmental math focused peer mentoring program at a public urban university. Over three semesters 45 mentees participated in the program. Results include substantive increases in developmental pass rates as well as increases in self-efficacy and social integration. Other noteworthy findings include the…

  10. Marvels of Math: Fascinating Reads and Awesome Activities.

    ERIC Educational Resources Information Center

    Haven, Kendall F.

    Any topic, math included, becomes more accessible and understandable when human stories are related about the development of the subject. Stories make subjects real and purposeful. They provide a foundation from which students can understand and appreciate mathematics rather than merely memorize a series of rote exercises. This book presents 16…

  11. Individualized Math Problems in Integers. Oregon Vo-Tech Mathematics Problem Sets.

    ERIC Educational Resources Information Center

    Cosler, Norma, Ed.

    This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. This volume presents problems involving operations with positive and…

  12. A Researcher-Practitioner Partnership on Remedial Math Contextualization in Career and Technical Education Programs

    ERIC Educational Resources Information Center

    Wang, Xueli; Wang, Yan; Prevost, Amy

    2017-01-01

    This chapter documents a partnership between university-based researchers and community college instructors and practitioners in their collective pursuit to improve student success in manufacturing programs at a large urban 2-year technical college, presenting an example of a contextualized instructional approach to teaching developmental math,…

  13. The effects of gender composition on women's experience in math work groups.

    PubMed

    Grover, Sarah S; Ito, Tiffany A; Park, Bernadette

    2017-06-01

    The present studies tested a model outlining the effects of group gender composition on self- and others' perceptions of women's math ability in a truly interactive setting with groups composed entirely of naïve participants (N = 158 4-person groups across 3 studies). One woman in each group was designated to be the "expert" by having her complete a tutorial that gave her task-relevant knowledge for a subsequent group task. Group gender composition was hypothesized to influence perceptions of women's math ability through intrapersonal processes (stereotype threat effects on performance) and interpersonal processes (social cohesion between the expert and other group members). Group composition affected the experts' performance in the group math task, but importantly, it also affected their social cohesion with group members. Moreover, both of these effects-lowered performance and poorer social cohesion in male-dominated groups-made independent contributions in accounting for group gender composition effects on perceptions of women's math ability (Studies 1 and 2). Boundary conditions were examined in a 3rd study. Women who had a history of excelling in math and had chosen a math-intensive STEM major were selected to be the designated experts. We predicted and found this would be sufficient to eliminate the effect of group gender composition on interpersonal processes, and correspondingly the effect on women's perceived math ability. Interestingly (and consistent with past work on stereotype threat effects among highly domain-identified individuals), there were continued performance differences indicative of effects on intrapersonal processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. 34 CFR 300.306 - Determination of eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for that determination is— (i) Lack of appropriate instruction in reading, including the essential components of reading instruction (as defined in section 1208(3) of the ESEA); (ii) Lack of appropriate instruction in math; or (iii) Limited English proficiency; and (2) If the child does not otherwise meet the...

  15. Observing Aggression of Teachers in School Teams

    ERIC Educational Resources Information Center

    Ben Sasson, Dvora; Somech, Anit

    2015-01-01

    To fill the gap in theoretical and empirical knowledge on workplace aggression by teachers working in teams, this study explored its components, its targets, and its contextual determinants. Data were collected through three observations at different schools and at different times on 29 math, homeroom, language, and science studies teams.…

  16. On the Global Regularity for the 3D Magnetohydrodynamics Equations Involving Partial Components

    NASA Astrophysics Data System (ADS)

    Qian, Chenyin

    2018-03-01

    In this paper, we study the regularity criteria of the three-dimensional magnetohydrodynamics system in terms of some components of the velocity field and the magnetic field. With a decomposition of the four nonlinear terms of the system, this result gives an improvement of some corresponding previous works (Yamazaki in J Math Fluid Mech 16: 551-570, 2014; Jia and Zhou in Nonlinear Anal Real World Appl 13: 410-418, 2012).

  17. Specific learning disability in mathematics: a comprehensive review.

    PubMed

    Soares, Neelkamal; Evans, Teresa; Patel, Dilip R

    2018-01-01

    Math skills are necessary for success in the childhood educational and future adult work environment. This article reviews the changing terminology for specific learning disabilities (SLD) in math and describes the emerging genetics and neuroimaging studies that relate to individuals with math disability (MD). It is important to maintain a developmental perspective on MD, as presentation changes with age, instruction, and the different models (educational and medical) of identification. Intervention requires a systematic approach to screening and remediation that has evolved with more evidence-based literature. Newer directions in behavioral, educational and novel interventions are described.

  18. Specific learning disability in mathematics: a comprehensive review

    PubMed Central

    Evans, Teresa; Patel, Dilip R.

    2018-01-01

    Math skills are necessary for success in the childhood educational and future adult work environment. This article reviews the changing terminology for specific learning disabilities (SLD) in math and describes the emerging genetics and neuroimaging studies that relate to individuals with math disability (MD). It is important to maintain a developmental perspective on MD, as presentation changes with age, instruction, and the different models (educational and medical) of identification. Intervention requires a systematic approach to screening and remediation that has evolved with more evidence-based literature. Newer directions in behavioral, educational and novel interventions are described. PMID:29441282

  19. Middle school students' attitudes toward math and STEM career interests: A 4-year follow-up study

    NASA Astrophysics Data System (ADS)

    Schneider, Madalyn R.

    The purpose of the current study is to examine middle school students' attitudes toward math, intent to pursue STEM-related education and occupations, and STEM interest from middle school to high school. The data used in this study are from a larger, on-going National Science Foundation (NSF) grant-funded study that is investigating middle school students' disengagement while using the Assistments system (Baker, Heffernan & San Pedro, 2012), a computer-based math tutoring system. The NSF grant study aims to explore how disengagement with STEM material can aid in the prediction of students' college enrollment as well as how it may interact with other factors affecting students' career choices (San Pedro, Baker, Bowers, Heffernan, 2013). Participants are students from urban and suburban schools in Massachusetts measured first in middle school and again four years later. Measures at Time 1 included: various items related to attitudes toward mathematics, occupations they could see themselves doing as adults, and the Brief Self-Control Scale (Tangney, Baumeister, & Luzio Boone, 2004). Measures at Time 2 included: items requesting the students' current mathematics and science courses and intended majors or occupations following high school graduation. Exploratory factor analysis, multiple regression and logistic regression analyses were used to test the following four hypotheses: I. There will be several distinct factors that emerge to provide information about middle school students' attitudes toward math; II. Students' attitudes toward math will correlate positively and significantly with students' intent to pursue STEM-related careers at Time 1 with a medium effect; III. Middle school attitudes toward mathematics will relate positively and significantly to level of high school mathematics and science courses with a medium effect; IV. Middle school intent to pursue STEM will correlate positively and significantly with high school intent to pursue STEM majors/careers with a medium effect. Results supported a 2-factor model of Attitudes toward Mathematics consisting of Math Self-Concept and Attitudes toward Assistments. Other significant findings include: a positive relationship between students' Attitudes toward Assistments and level of math class taken in high school; a positive relationship between students' Math Self-Concept and Self Control; a positive relationship between Self Control and students' endorsement of STEM careers while in middle school, and discrepancy between male and female students' endorsement of STEM careers as early as middle school. Although many of the study's primary hypotheses were not supported, the present study provides a framework and baseline for several important considerations. Limitations, including those related to the present study's small sample size, and future implications of the present study, which add to career development literature in STEM, are discussed in regard to both research and practice. Keywords: career development, middle school, attitudes, math, STEM, self-concept

  20. Climate change in the classroom: Reaching out to middle school students through science and math suitcase lessons

    NASA Astrophysics Data System (ADS)

    Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.

    2011-12-01

    We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.

  1. Math Description Engine Software Development Kit

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  2. Inhibitory Control of Spanish-Speaking Language-Minority Preschool Children: Measurement and Association With Language, Literacy, and Math Skills.

    PubMed

    Lonigan, Christopher J; Allan, Darcey M; Goodrich, J Marc; Farrington, Amber L; Phillips, Beth M

    Children's self-regulation, including components of executive function such as inhibitory control, is related concurrently and longitudinally with elementary school children's reading and math abilities. Although several recent studies have examined links between preschool children's self-regulation or executive function and their academic skill development, few included large numbers of Spanish-speaking language-minority children. Among the fastest growing segments of the U.S. school-age population, many of these children are at significant risk of academic difficulties. We examined the relations between inhibitory control and academic skills in a sample containing a large number of Spanish-speaking preschoolers. Overall, the children demonstrated substantial academic risk based on preschool-entry vocabulary scores in the below-average range. Children completed assessments of language, literacy, and math skills in English and Spanish, when appropriate, at the start and end of their preschool year, along with a measure of inhibitory control, the Head-Toes-Knees-Shoulders task, which was administered at the start of the preschool year in the child's dominant conversational language. Scores on this last measure were lower for children for whom it was administered in Spanish. For both English and Spanish outcomes, those scores were significantly and uniquely associated with higher scores on measures of phonological awareness and math skills but not vocabulary or print knowledge skills.

  3. Affective and Motivational Factors Mediate the Relation between Math Skills and Use of Math in Everyday Life

    PubMed Central

    Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.

    2016-01-01

    This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122

  4. Better together: Simultaneous presentation of speech and gesture in math instruction supports generalization and retention.

    PubMed

    Congdon, Eliza L; Novack, Miriam A; Brooks, Neon; Hemani-Lopez, Naureen; O'Keefe, Lucy; Goldin-Meadow, Susan

    2017-08-01

    When teachers gesture during instruction, children retain and generalize what they are taught (Goldin-Meadow, 2014). But why does gesture have such a powerful effect on learning? Previous research shows that children learn most from a math lesson when teachers present one problem-solving strategy in speech while simultaneously presenting a different, but complementary, strategy in gesture (Singer & Goldin-Meadow, 2005). One possibility is that gesture is powerful in this context because it presents information simultaneously with speech. Alternatively, gesture may be effective simply because it involves the body, in which case the timing of information presented in speech and gesture may be less important for learning. Here we find evidence for the importance of simultaneity: 3 rd grade children retain and generalize what they learn from a math lesson better when given instruction containing simultaneous speech and gesture than when given instruction containing sequential speech and gesture. Interpreting these results in the context of theories of multimodal learning, we find that gesture capitalizes on its synchrony with speech to promote learning that lasts and can be generalized.

  5. Working memory, math performance, and math anxiety.

    PubMed

    Ashcraft, Mark H; Krause, Jeremy A

    2007-04-01

    The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

  6. Mathematics anxiety: separating the math from the anxiety.

    PubMed

    Lyons, Ian M; Beilock, Sian L

    2012-09-01

    Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.

  7. Solving Math and Science Problems in the Real World with a Computational Mind

    ERIC Educational Resources Information Center

    Olabe, Juan Carlos; Basogain, Xabier; Olabe, Miguel Ángel; Maíz, Inmaculada; Castaño, Carlos

    2014-01-01

    This article presents a new paradigm for the study of Math and Sciences curriculum during primary and secondary education. A workshop for Education undergraduates at four different campuses (n = 242) was designed to introduce participants to the new paradigm. In order to make a qualitative analysis of the current school methodologies in…

  8. Robin Hood Effects on Motivation in Math: Family Interest Moderates the Effects of Relevance Interventions

    ERIC Educational Resources Information Center

    Häfner, Isabelle; Flunger, Barbara; Dicke, Anna-Lena; Gaspard, Hanna; Brisson, Brigitte M.; Nagengast, Benjamin; Trautwein, Ulrich

    2017-01-01

    Using a cluster randomized field trial, the present study tested whether 2 relevance interventions affected students' value beliefs, self-concept, and effort in math differently depending on family background (socioeconomic status, family interest (FI), and parental utility value). Eighty-two classrooms were randomly assigned to either 1 of 2…

  9. The Utility of Brief Experimental Analysis and Extended Intervention Analysis in Selecting Effective Mathematics Interventions

    ERIC Educational Resources Information Center

    Mong, Michael D.; Mong, Kristi W.

    2012-01-01

    The present study evaluated the utility of brief experimental analysis (BEA) in predicting effective interventions for increasing the math fluency of 3 elementary students identified as having math skill deficits. Baseline data were collected followed by implementation of a BEA consisting of the following interventions: cover, copy, and compare,…

  10. Short Intervention, Sustained Effects: Promoting Students' Math Competence Beliefs, Effort, and Achievement

    ERIC Educational Resources Information Center

    Brisson, Brigitte Maria; Dicke, Anna-Lena; Gaspard, Hanna; Häfner, Isabelle; Flunger, Barbara; Nagengast, Benjamin; Trautwein, Ulrich

    2017-01-01

    The present study investigated the effectiveness of two short relevance interventions (writing a text or evaluating quotations about the utility of mathematics) using a sample of 1,916 students in 82 math classrooms in a cluster randomized controlled experiment. Short-term and sustained effects (6 weeks and 5 months after the intervention) of the…

  11. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Structural Math Model - A1

    NASA Technical Reports Server (NTRS)

    Ely, W.

    1996-01-01

    This report presents the description for the NASTRAN finite element for the AMSU-A1 module. The purpose of this report is to document the NASTRAN bulk data deck, transmitted under separate cover. The structural Math Model is to be used by the spacecraft contractor for dynamic loads analysis.

  12. Assessing Self-Regulation in Individuals with Visual Impairments: Generality versus Specificity in Self-Regulatory Functioning

    ERIC Educational Resources Information Center

    Argyropoulos, Vassilios; Sideridis, Georgios D.; Botsas, George; Padeliadu, Susana

    2012-01-01

    The purpose of the present study was to assess self-regulation of students with visual impairments across two academic subjects, language and math. The participants were 46 Greek students with visual impairments who completed self-regulation measures across the subject matters of language and math. Initially, the factorial validity of the scale…

  13. The Common Core Math Standards

    ERIC Educational Resources Information Center

    Wurman, Ze'ev; Wilson, W. Stephen

    2012-01-01

    More than 40 states have now signed onto the Common Core standards in English language arts and math, which have been both celebrated as a tremendous advance and criticized as misguided and for bearing the heavy thumbprint of the federal government. This article presents an interview with Ze'ev Wurman and W. Stephen Wilson. Wurman, who was a U.S.…

  14. Project Math-Co. Career Based Math Text Book Produced Entirely by Eighth Grade Students at Wiscasset Middle School.

    ERIC Educational Resources Information Center

    Wiscasset Middle School, ME.

    This career-based mathematics text book was written for eighth grade students by eighth grade students at Wiscasset Middle School, Wiscasset, Maine. The text has an innovative format and features interviews with various townspeople of Wiscasset concerning their occupations; from the interviews, information is presented about training needed,…

  15. Historical Thinking Ability among Talented Math and Science Students: An Exploratory Study.

    ERIC Educational Resources Information Center

    Fehn, Bruce

    This study sought to discern the extent to which a sample of talented math and science students displayed domain-relevant skills possessed by those expertly trained in history. Subjects' experiences varied in terms of their exposure to primary source materials. The students were presented with five different kinds of documents related to the…

  16. Collaboration between Mathematics Facilitators and Preschool Teachers Using the Innovative "Senso-Math" Preschool Program

    ERIC Educational Resources Information Center

    Hassidov, Dina; Ilany, Bat-Sheva

    2018-01-01

    This article presents a mixed-method study of the innovative "Senso-Math" preschool program and the reactions of both the facilitators, who underwent a special training program, and the preschool teachers in whose classes the program was implemented. The goal of the program is to enhance mathematical development in preschool children…

  17. Examining the Relations between Executive Function, Math, and Literacy during the Transition to Kindergarten: A Multi-Analytic Approach

    ERIC Educational Resources Information Center

    Schmitt, Sara A.; Geldhof, G. John; Purpura, David J.; Duncan, Robert; McClelland, Megan M.

    2017-01-01

    The present study explored the bidirectional and longitudinal associations between executive function (EF) and early academic skills (math and literacy) across 4 waves of measurement during the transition from preschool to kindergarten using 2 complementary analytical approaches: cross-lagged panel modeling and latent growth curve modeling (LCGM).…

  18. Conservation Abilities, Visuospatial Skills, and Numerosity Processing Speed: Association with Math Achievement and Math Difficulties in Elementary School Children

    ERIC Educational Resources Information Center

    Lambert, Katharina; Spinath, Birgit

    2018-01-01

    The aim of the present study was to investigate the associations between elementary school children's mathematical achievement and their conservation abilities, visuospatial skills, and numerosity processing speed. We also assessed differences in these abilities between children with different types of learning problems. In Study 1 (N = 229), we…

  19. Evaluating the Benefits of Providing Archived Online Lectures to In-Class Math Students

    ERIC Educational Resources Information Center

    Cascaval, Radu C.; Fogler, Kethera A.; Abrams, Gene D.; Durham, Robert L.

    2008-01-01

    The present study examines the impact of a novel online video lecture archiving system on in-class students enrolled in traditional math courses at a mid-sized, primarily undergraduate, university in the West. The archiving system allows in-class students web access to complete video recordings of the actual classroom lectures, and sometimes of…

  20. Daughters with Disabilities: Reframing Science, Math, and Technology for Girls with Disabilities.

    ERIC Educational Resources Information Center

    Hammrich, Penny L.; Price, Lynda; Nourse, Steven

    This report describes a new approach to teaching science, math, and technology to students, especially girls, with disabilities, who frequently do not have access to appropriate instruction in these critical areas for future academic success. Many specific suggestions, along with a sample lesson that can be used immediately, are presented as part…

  1. The Developmental Dynamics of Task-Avoidant Behavior and Math Performance in Kindergarten and Elementary School

    ERIC Educational Resources Information Center

    Hirvonen, Riikka; Tolvanen, Asko; Aunola, Kaisa; Nurmi, Jari-Erik

    2012-01-01

    Besides cognitive factors, children's learning at school may be influenced by more dynamic phenomena, such as motivation and achievement-related task-avoidant behavior. The present study examined the developmental dynamics of task-avoidant behavior and math performance from kindergarten to Grade 4. A total of 225 children were tested for their…

  2. Longitudinal Effects of Technology Integration and Teacher Professional Development on Students' Mathematics Achievement

    ERIC Educational Resources Information Center

    Bicer, Ali; Capraro, Robert M.

    2017-01-01

    MathForward is a program that provides teacher professional development and integrates the use of technology as a tool in the classroom. The present study examined students' mathematics growth from 2012 to 2013 and observed how students' mathematics scores changed after their school implemented the MathForward program. The sample consisted of two…

  3. The Ethnic Context and Attitudes toward 9th Grade Math

    ERIC Educational Resources Information Center

    Graham, Sandra; Morales-Chicas, Jessica

    2015-01-01

    The present study examined the relations between ethnic context and attitudes about 9th grade math in youth from different ethnic groups who had recently transitioned to high school. The large sample comprised African American, Latino, White, and Asian youth (n = 2,265, 55% girls, M[subscript age] = 14.6 yrs.) A new questionnaire was developed…

  4. Educational benefits of ISY - NASA's perspective

    NASA Technical Reports Server (NTRS)

    Owens, Frank C.; Mcgee, A. S.

    1992-01-01

    Education is a key component of the International Space Year (ISY) and NASA has taken on several roles in the development of ISY educational activities. ISY presents a unique opportunity for international cooperation in education and the global importance of science, math and technology across the educational spectrum has been emphasized. NASA monitors the progress of educational projects, develops educational activities and facilitates the development of such activities in both the public and private sectors. The Space Agency Forum on ISY (SAFISY), the international space and education program, space science and space communications in education are discussed and several educational programs are described. Current activities, distribution of products and future evaluation plans are discussed.

  5. Shuttle cryogenic supply system. Optimization study. Volume 5 B-1: Programmers manual for math models

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer program for rapid parametric evaluation of various types of cryogenics spacecraft systems is presented. The mathematical techniques of the program provide the capability for in-depth analysis combined with rapid problem solution for the production of a large quantity of soundly based trade-study data. The program requires a large data bank capable of providing characteristics performance data for a wide variety of component assemblies used in cryogenic systems. The program data requirements are divided into: (1) the semipermanent data tables and source data for performance characteristics and (2) the variable input data which contains input parameters which may be perturbated for parametric system studies.

  6. Female teachers' math anxiety affects girls' math achievement.

    PubMed

    Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C

    2010-02-02

    People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.

  7. PUMAS: The On-line journal of Math and Science Examples for Pre-College Education

    NASA Astrophysics Data System (ADS)

    Trainer, Melissa G.; Kahn, Ralph A.

    2015-11-01

    PUMAS - “Practical Uses of Math And Science” - is an on-line collection of brief examples showing how math and science topics taught in K-12 classes can be used in interesting settings, including every day life. The examples are written primarily by scientists, engineers, and other content experts having practical experience with the material. They are aimed mainly at classroom teachers to enrich their presentation of math and science topics. The goal of PUMAS is to capture, for the benefit of pre-college education, the flavor of the vast experience that working scientists have with interesting and practical uses of math and science. There are currently over 80 examples in the PUMAS collection, and they are organized by curriculum topics and tagged with relevant grade levels and curriculum topic benchmarks. The published examples cover a wide range of subject matter: from demonstrating why summer is hot, to describing the fluid dynamics of a lava lamp, to calculating the best age to collect Social Security Benefits. The examples are available to all interested parties via the PUMAS web site: http://pumas.nasa.gov/.We invite the community to participate in the PUMAS collection. We seek scientists and scientific thinkers to provide innovative examples of practical uses for teachers to use to enrich the classroom experience, and content experts to participate in peer-review. We also seek teachers to review examples for originality, accuracy of content, clarity of presentation, and grade-level appropriateness. Finally, we encourage teachers to mine this rich repository for real-world examples to demonstrate the value of math in science in everyday life.

  8. Approximate number sense correlates with math performance in gifted adolescents.

    PubMed

    Wang, Jinjing Jenny; Halberda, Justin; Feigenson, Lisa

    2017-05-01

    Nonhuman animals, human infants, and human adults all share an Approximate Number System (ANS) that allows them to imprecisely represent number without counting. Among humans, people differ in the precision of their ANS representations, and these individual differences have been shown to correlate with symbolic mathematics performance in both children and adults. For example, children with specific math impairment (dyscalculia) have notably poor ANS precision. However, it remains unknown whether ANS precision contributes to individual differences only in populations of people with lower or average mathematical abilities, or whether this link also is present in people who excel in math. Here we tested non-symbolic numerical approximation in 13- to 16-year old gifted children enrolled in a program for talented adolescents (the Center for Talented Youth). We found that in this high achieving population, ANS precision significantly correlated with performance on the symbolic math portion of two common standardized tests (SAT and ACT) that typically are administered to much older students. This relationship was robust even when controlling for age, verbal performance, and reaction times in the approximate number task. These results suggest that the Approximate Number System is linked to symbolic math performance even at the top levels of math performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Cognitive Dimensional Approach to Understanding Shared and Unique Contributions to Reading, Math, and Attention Skills.

    PubMed

    Child, Amanda E; Cirino, Paul T; Fletcher, Jack M; Willcutt, Erik G; Fuchs, Lynn S

    2018-05-01

    Disorders of reading, math, and attention frequently co-occur in children. However, it is not yet clear which cognitive factors contribute to comorbidities among multiple disorders and which uniquely relate to one, especially because they have rarely been studied as a triad. Thus, the present study considers how reading, math, and attention relate to phonological awareness, numerosity, working memory, and processing speed, all implicated as either unique or shared correlates of these disorders. In response to findings that the attributes of all three disorders exist on a continuum rather than representing qualitatively different groups, this study employed a dimensional approach. Furthermore, we used both timed and untimed academic variables in addition to attention and activity level variables. The results supported the role of working memory and phonological awareness in the overlap among reading, math, and attention, with a limited role of processing speed. Numerosity was related to the comorbidity between math and attention. The results from timed variables and activity level were similar to those from untimed and attention variables, although activity level was less strongly related to cognitive and academic/attention variables. These findings have implications for understanding cognitive deficits that contribute to comorbid reading disability, math disability, and/or attention-deficit/hyperactivity disorder.

  10. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  11. Eye-movement patterns during nonsymbolic and symbolic numerical magnitude comparison and their relation to math calculation skills.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J

    2017-05-01

    A growing body of research suggests that the processing of nonsymbolic (e.g. sets of dots) and symbolic (e.g. Arabic digits) numerical magnitudes serves as a foundation for the development of math competence. Performance on magnitude comparison tasks is thought to reflect the precision of a shared cognitive representation, as evidence by the presence of a numerical ratio effect for both formats. However, little is known regarding how visuo-perceptual processes are related to the numerical ratio effect, whether they are shared across numerical formats, and whether they relate to math competence independently of performance outcomes. The present study investigates these questions in a sample of typically developing adults. Our results reveal a pattern of associations between eye-movement measures, but not their ratio effects, across formats. This suggests that ratio-specific visuo-perceptual processing during magnitude processing is different across nonsymbolic and symbolic formats. Furthermore, eye movements are related to math performance only during symbolic comparison, supporting a growing body of literature suggesting symbolic number processing is more strongly related to math outcomes than nonsymbolic magnitude processing. Finally, eye-movement patterns, specifically fixation dwell time, continue to be negatively related to math performance after controlling for task performance (i.e. error rate and reaction time) and domain general cognitive abilities (IQ), suggesting that fluent visual processing of Arabic digits plays a unique and important role in linking symbolic number processing to formal math abilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spatial but not temporal numerosity thresholds correlate with formal math skills in children.

    PubMed

    Anobile, Giovanni; Arrighi, Roberto; Castaldi, Elisa; Grassi, Eleonora; Pedonese, Lara; Moscoso, Paula A M; Burr, David C

    2018-03-01

    Humans and other animals are able to make rough estimations of quantities using what has been termed the approximate number system (ANS). Much evidence suggests that sensitivity to numerosity correlates with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to develop symbolic math. Many experiments have demonstrated that numerosity perception transcends the sensory modality of stimuli and their presentation format (sequential or simultaneous), but it remains an open question whether the relationship between numerosity and math generalizes over stimulus format and modality. Here we measured precision for estimating the numerosity of clouds of dots and sequences of flashes or clicks, as well as for paired comparisons of the numerosity of clouds of dots. Our results show that in children, formal math abilities correlate positively with sensitivity for estimation and paired-comparisons of the numerosity of visual arrays of dots. However, precision of numerosity estimation for sequences of flashes or sounds did not correlate with math, although sensitivities in all estimations tasks (for sequential or simultaneous stimuli) were strongly correlated with each other. In adults, we found no significant correlations between math scores and sensitivity to any of the psychophysical tasks. Taken together these results support the existence of a generalized number sense, and go on to demonstrate an intrinsic link between mathematics and perception of spatial, but not temporal numerosity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Luchando y logrando/struggling and achieving: Resilience of Latina/o math and science teacher candidates at California Hispanic-Serving Institutions: A critical race perspective

    NASA Astrophysics Data System (ADS)

    Gonzalez, Laura

    Latin math and science students represent a resilient, determined, and encouraging group of high achievers. This qualitative study presents the narratives of 10 Latin science and math teacher candidates currently attending Hispanic-Serving Institutions in California. Semi structured, in-depth interviews were conducted, where participants shared the challenges they experienced and the factors that contributed to their resilience. The Connor Davidson Resilience Scale CD-RISC was used to present resilience measures for each participant. This score is compared to a group of college students throughout the nation. The findings provide insight into the critical need for universities to examine institutional practices and efforts to support these high achievers who have already beaten tremendous odds by entering the halls of higher education.

  14. Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence.

    PubMed

    Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain

    2014-01-01

    Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms.

  15. Age-Related Differences of Individuals’ Arithmetic Strategy Utilization with Different Level of Math Anxiety

    PubMed Central

    Si, Jiwei; Li, Hongxia; Sun, Yan; Xu, Yanli; Sun, Yu

    2016-01-01

    The present study used the choice/no-choice method to investigate the effect of math anxiety on the strategy used in computational estimation and mental arithmetic tasks and to examine age-related differences in this regard. Fifty-seven fourth graders, 56 sixth graders, and 60 adults were randomly selected to participate in the experiment. Results showed the following: (1) High-anxious individuals were more likely to use a rounding-down strategy in the computational estimation task under the best-choice condition. Additionally, sixth-grade students and adults performed faster than fourth-grade students on the strategy execution parameter. Math anxiety affected response times (RTs) and the accuracy with which strategies were executed. (2) The execution of the partial-decomposition strategy was superior to that of the full-decomposition strategy on the mental arithmetic task. Low-math-anxious persons provided more accurate answers than did high-math-anxious participants under the no-choice condition. This difference was significant for sixth graders. With regard to the strategy selection parameter, the RTs for strategy selection varied with age. PMID:27803685

  16. Age-Related Differences of Individuals' Arithmetic Strategy Utilization with Different Level of Math Anxiety.

    PubMed

    Si, Jiwei; Li, Hongxia; Sun, Yan; Xu, Yanli; Sun, Yu

    2016-01-01

    The present study used the choice/no-choice method to investigate the effect of math anxiety on the strategy used in computational estimation and mental arithmetic tasks and to examine age-related differences in this regard. Fifty-seven fourth graders, 56 sixth graders, and 60 adults were randomly selected to participate in the experiment. Results showed the following: (1) High-anxious individuals were more likely to use a rounding-down strategy in the computational estimation task under the best-choice condition. Additionally, sixth-grade students and adults performed faster than fourth-grade students on the strategy execution parameter. Math anxiety affected response times (RTs) and the accuracy with which strategies were executed. (2) The execution of the partial-decomposition strategy was superior to that of the full-decomposition strategy on the mental arithmetic task. Low-math-anxious persons provided more accurate answers than did high-math-anxious participants under the no-choice condition. This difference was significant for sixth graders. With regard to the strategy selection parameter, the RTs for strategy selection varied with age.

  17. Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence

    PubMed Central

    Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain

    2014-01-01

    Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms. PMID:24772098

  18. Computer-Based Training in Math and Working Memory Improves Cognitive Skills and Academic Achievement in Primary School Children: Behavioral Results

    PubMed Central

    Sánchez-Pérez, Noelia; Castillo, Alejandro; López-López, José A.; Pina, Violeta; Puga, Jorge L.; Campoy, Guillermo; González-Salinas, Carmen; Fuentes, Luis J.

    2018-01-01

    Student academic achievement has been positively related to further development outcomes, such as the attainment of higher educational, employment, and socioeconomic aspirations. Among all the academic competences, mathematics has been identified as an essential skill in the field of international leadership as well as for those seeking positions in disciplines related to science, technology, and engineering. Given its positive consequences, studies have designed trainings to enhance children's mathematical skills. Additionally, the ability to regulate and control actions and cognitions, i.e., executive functions (EF), has been associated with school success, which has resulted in a strong effort to develop EF training programs to improve students' EF and academic achievement. The present study examined the efficacy of a school computer-based training composed of two components, namely, working memory and mathematics tasks. Among the advantages of using a computer-based training program is the ease with which it can be implemented in school settings and the ease by which the difficulty of the tasks can be adapted to fit the child's ability level. To test the effects of the training, children's cognitive skills (EF and IQ) and their school achievement (math and language grades and abilities) were evaluated. The results revealed a significant improvement in cognitive skills, such as non-verbal IQ and inhibition, and better school performance in math and reading among the children who participated in the training compared to those children who did not. Most of the improvements were related to training on WM tasks. These findings confirmed the efficacy of a computer-based training that combined WM and mathematics activities as part of the school routines based on the training's impact on children's academic competences and cognitive skills. PMID:29375442

  19. Computer-Based Training in Math and Working Memory Improves Cognitive Skills and Academic Achievement in Primary School Children: Behavioral Results.

    PubMed

    Sánchez-Pérez, Noelia; Castillo, Alejandro; López-López, José A; Pina, Violeta; Puga, Jorge L; Campoy, Guillermo; González-Salinas, Carmen; Fuentes, Luis J

    2017-01-01

    Student academic achievement has been positively related to further development outcomes, such as the attainment of higher educational, employment, and socioeconomic aspirations. Among all the academic competences, mathematics has been identified as an essential skill in the field of international leadership as well as for those seeking positions in disciplines related to science, technology, and engineering. Given its positive consequences, studies have designed trainings to enhance children's mathematical skills. Additionally, the ability to regulate and control actions and cognitions, i.e., executive functions (EF), has been associated with school success, which has resulted in a strong effort to develop EF training programs to improve students' EF and academic achievement. The present study examined the efficacy of a school computer-based training composed of two components, namely, working memory and mathematics tasks. Among the advantages of using a computer-based training program is the ease with which it can be implemented in school settings and the ease by which the difficulty of the tasks can be adapted to fit the child's ability level. To test the effects of the training, children's cognitive skills (EF and IQ) and their school achievement (math and language grades and abilities) were evaluated. The results revealed a significant improvement in cognitive skills, such as non-verbal IQ and inhibition, and better school performance in math and reading among the children who participated in the training compared to those children who did not. Most of the improvements were related to training on WM tasks. These findings confirmed the efficacy of a computer-based training that combined WM and mathematics activities as part of the school routines based on the training's impact on children's academic competences and cognitive skills.

  20. Young children's non-numerical ordering ability at the start of formal education longitudinally predicts their symbolic number skills and academic achievement in maths.

    PubMed

    O'Connor, Patrick A; Morsanyi, Kinga; McCormack, Teresa

    2018-01-25

    Ordinality is a fundamental feature of numbers and recent studies have highlighted the role that number ordering abilities play in mathematical development (e.g., Lyons et al., ), as well as mature mathematical performance (e.g., Lyons & Beilock, ). The current study tested the novel hypothesis that non-numerical ordering ability, as measured by the ordering of familiar sequences of events, also plays an important role in maths development. Ninety children were tested in their first school year and 87 were followed up at the end of their second school year, to test the hypothesis that ordinal processing, including the ordering of non-numerical materials, would be related to their maths skills both cross-sectionally and longitudinally. The results confirmed this hypothesis. Ordinal processing measures were significantly related to maths both cross-sectionally and longitudinally, and children's non-numerical ordering ability in their first year of school (as measured by order judgements for everyday events and the parents' report of their child's everyday ordering ability) was the strongest longitudinal predictor of maths one year later, when compared to several measures that are traditionally considered to be important predictors of early maths development. Children's everyday ordering ability, as reported by parents, also significantly predicted growth in formal maths ability between Year 1 and Year 2, although this was not the case for the event ordering task. The present study provides strong evidence that domain-general ordering abilities play an important role in the development of children's maths skills at the beginning of formal education. © 2018 John Wiley & Sons Ltd.

  1. SaaS Platform for Time Series Data Handling

    NASA Astrophysics Data System (ADS)

    Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail

    2018-02-01

    The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.

  2. Freshman Engineering Retention: A Holistic Look

    ERIC Educational Resources Information Center

    Honken, Nora; Ralston, Patricia A. S.

    2013-01-01

    The ability to increase the number of engineering graduates depends on many factors including our country's P-16+ educational system, the job market and the engineering professions. Students need to be prepared for the rigorous math and science components of engineering programs, but they also must have interest in engineering as a profession,…

  3. Marginalized Student Access to Technology Education

    ERIC Educational Resources Information Center

    Kurtcu, Wanda M.

    2017-01-01

    The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the…

  4. Computer-Aided College Algebra: Learning Components that Students Find Beneficial

    ERIC Educational Resources Information Center

    Aichele, Douglas B.; Francisco, Cynthia; Utley, Juliana; Wescoatt, Benjamin

    2011-01-01

    A mixed-method study was conducted during the Fall 2008 semester to better understand the experiences of students participating in computer-aided instruction of College Algebra using the software MyMathLab. The learning environment included a computer learning system for the majority of the instruction, a support system via focus groups (weekly…

  5. Iowa Core Annual Report

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2015

    2015-01-01

    One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…

  6. Gender Differences in the Role of Emotional Intelligence during the Primary-Secondary School Transition

    ERIC Educational Resources Information Center

    Jordan, Julie-Ann; McRorie, Margaret; Ewing, Cathy

    2010-01-01

    The relationship between components of emotional intelligence (EI) (interpersonal ability, intrapersonal ability, adaptability and stress management) and academic performance in English, maths and science was examined in a sample of 86 children (49 males and 37 females) aged 11-12 years during the primary-secondary school transition period.…

  7. Ionospheric Disturbances during the Period 30 April to 5 May 1976.

    DTIC Science & Technology

    1979-05-01

    Data 1977, IUGG Publications Office, 39 Ter Rue Gay, Lussac , Paris, 1977. Ichinose, T., and T. Oagawa, HF Doppler observations associated with McMath...electric field E can be separated into components parallel and perpendicular to the magnetic field, E and E . Ohm’s law , relating current density i to the

  8. Exploring Pulses through Math, Science, and Nutrition Activities

    ERIC Educational Resources Information Center

    Smith, Diane K.; Mandal, Bidisha; Wallace, Michael L.; Riddle, Lee Anne; Kerr, Susan; Atterberry, Kelly Ann; Miles, Carol

    2016-01-01

    Purpose/Objectives: The Healthy, Hunger-Free Kids Act of 2010 includes pulses as a required component of the school lunch menu standard. Pulses are nutritionally important staple food crops, and include dry beans, dry peas, garbanzo beans, and lentils. This current study examined the short-term effectiveness of a Science, Technology, Engineering,…

  9. "LearningPad" Conundrum: The Perils of Using Third-Party Software and Student Privacy

    ERIC Educational Resources Information Center

    O'Brien, Jason; Roller, Sarah; Lampley, Sandra

    2017-01-01

    This case focuses on the potential problems associated with sharing personally identifiable information (PII) when students are required to use third-party software. Specifically, third-grade students were required to complete "LearningPad" activities as a component of their homework grade in math, spelling, and language arts. As…

  10. Games and Web 2.0: A Winning Combination for Millennials

    ERIC Educational Resources Information Center

    Spiegelman, Marsha; Glass, Richard

    2009-01-01

    Gaming and social networking define the millennial student. This research focuses on an evolving collaboration between 2 faculty members of different disciplines who merged Web 2.0 and game scenarios to infuse research techniques as integral components of math/computer science courses. Blogs and wikis facilitated student-faculty interaction beyond…

  11. A Model of Success: The Model Institutions for Excellence Program's Decade of Leadership in STEM Education

    ERIC Educational Resources Information Center

    Merisotis, Jamie P.; Kee, Arnold M.

    2006-01-01

    The Model Institutions for Excellence (MIE) Grant, funded by the National Science Foundation and National Aeronautics and Space Administration, enhanced student pathways into science, technology, engineering, and math (STEM). It achieved these results through 10 years of sustained investment and collaborative leadership. Components of the MIE…

  12. Impacts of a Comprehensive School Readiness Curriculum for Preschool Children at Risk for Educational Difficulties

    ERIC Educational Resources Information Center

    Lonigan, Christopher J.; Phillips, Beth M.; Clancy, Jeanine L.; Landry, Susan H.; Swank, Paul R.; Assel, Michael; Taylor, Heather B.; Klein, Alice; Starkey, Prentice; Domitrovich, Celene E.; Eisenberg, Nancy; Villiers, Jill; Villiers, Peter; Barnes, Marcia

    2015-01-01

    This article reports findings from a cluster-randomized study of an integrated literacy- and math-focused preschool curriculum, comparing versions with and without an explicit socioemotional lesson component to a business-as-usual condition. Participants included 110 classroom teachers from randomized classrooms and approximately eight students…

  13. What's My Math Course Got to Do with Biology?

    ERIC Educational Resources Information Center

    Burks, Robert; Lindquist, Joseph; McMurran, Shawnee

    2008-01-01

    At United States Military Academy, a unit on biological modeling applications forms the culminating component of the first semester core mathematics course for freshmen. The course emphasizes the use of problem-solving strategies and modeling to solve complex and ill-defined problems. Topic areas include functions and their shapes, data fitting,…

  14. Improving Test Preparation for Students with Special Needs: Web-Based Tutorial, Student Charting, and a Text Reader

    ERIC Educational Resources Information Center

    Menard, Lauren A.

    2011-01-01

    Obstacles to the classroom implementation of the fourth grade Math component of Louisiana's web-based testing tutorial were addressed in this informal pilot. Technology integration improved standardized test preparation for students with special needs. Supplemental test preparation sessions give the benefits of (a) increased familiarity with…

  15. On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies.

    PubMed

    Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L

    2016-01-01

    Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Analysis of anatomic variability in children with low mathematical skills

    NASA Astrophysics Data System (ADS)

    Han, Zhaoying; Fuchs, Lynn; Davis, Nikki; Cannistraci, Christopher J.; Anderson, Adam W.; Gore, John C.; Dawant, Benoit M.

    2008-03-01

    Mathematical difficulty affects approximately 5-9% of the population. Studies on individuals with dyscalculia, a neurologically based math disorder, provide important insight into the neural correlates of mathematical ability. For example, cognitive theories, neuropsychological studies, and functional neuroimaging studies in individuals with dyscalculia suggest that the bilateral parietal lobes and intraparietal sulcus are central to mathematical performance. The purpose of the present study was to investigate morphological differences in a group of third grade children with poor math skills. We compare population averages of children with low math skill (MD) to gender and age matched controls with average math ability. Anatomical data were gathered with high resolution MRI and four different population averaging methods were used to study the effect of the normalization technique on the results. Statistical results based on the deformation fields between the two groups show anatomical differences in the bilateral parietal lobes, right frontal lobe, and left occipital/parietal lobe.

  17. Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.

    PubMed

    Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A

    2015-12-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.

  18. Principals in Partnership with Math Coaches

    ERIC Educational Resources Information Center

    Grant, Catherine Miles; Davenport, Linda Ruiz

    2009-01-01

    One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…

  19. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    PubMed

    Lyons, Ian M; Beilock, Sian L

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  20. Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation

    PubMed Central

    Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.

    2015-01-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438

  1. Math anxiety and math performance in children: The mediating roles of working memory and math self-concept.

    PubMed

    Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago

    2017-12-01

    Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.

  2. Computation of convex bounds for present value functions with random payments

    NASA Astrophysics Data System (ADS)

    Ahcan, Ales; Darkiewicz, Grzegorz; Goovaerts, Marc; Hoedemakers, Tom

    2006-02-01

    In this contribution we study the distribution of the present value function of a series of random payments in a stochastic financial environment. Such distributions occur naturally in a wide range of applications within fields of insurance and finance. We obtain accurate approximations by developing upper and lower bounds in the convex-order sense for present value functions. Technically speaking, our methodology is an extension of the results of Dhaene et al. [Insur. Math. Econom. 31(1) (2002) 3-33, Insur. Math. Econom. 31(2) (2002) 133-161] to the case of scalar products of mutually independent random vectors.

  3. Does Growth in Working Memory Span or Executive Processes Predict Growth in Reading and Math in Children with Reading Disabilities?

    ERIC Educational Resources Information Center

    Jerman, Olga; Reynolds, Chandra; Swanson, H. Lee

    2012-01-01

    The present study investigated whether (a) growth patterns related to cognitive processing (working memory, updating, inhibition) differed in subgroups of children with reading disabilities (RD) and (b) growth in working memory (executive processing) predicted growth in other cognitive areas, such as reading and math. Seventy-three children (ages…

  4. Targeting Performance Dimensions in Sequence According to the Instructional Hierarchy: Effects on Children's Math Work within a Self-Monitoring Program

    ERIC Educational Resources Information Center

    Lannie, Amanda L.; Martens, Brian K.

    2008-01-01

    Four fifth-grade students were presented with frustration-level math probes while three performance dimensions were measured (i.e., percent intervals on-task, percent correct digits, and digits correct per minute (DCM)). Using a multiple baseline design across participants, students were trained to self-monitor time on-task, accuracy, and…

  5. English Language Learners' (ELLs) Science, Technology, Engineering, Math (STEM) Course-Taking, Achievement and Attainment in College

    ERIC Educational Resources Information Center

    Shi, Qi

    2017-01-01

    Using data from the Educational Longitudinal Study: 2002, the present study examined the effects of demographic variables, high school math course-taking and high school GPA on ELL students' STEM course-taking, achievement and attainment in college. Regression analysis showed female ELL students were more likely to take more STEM courses and get…

  6. Interaction with an Edu-Game: A Detailed Analysis of Student Emotions and Judges' Perceptions

    ERIC Educational Resources Information Center

    Conati, Cristina; Gutica, Mirela

    2016-01-01

    We present the results of a study that explored the emotions experienced by students during interaction with an educational game for math (Heroes of Math Island). Starting from emotion frameworks in affective computing and education, we considered a larger set of emotions than in related research. For emotion labeling, we started from a standard…

  7. Factors That Promote Anxiety toward Math on High School Students

    ERIC Educational Resources Information Center

    Escalera-Chávez, Milka Elena; Moreno-García, Elena; García-Santillán, Arturo; Rojas-Kramer, Carlos Alberto

    2017-01-01

    Regardless of the social or economic status of a student, it is a fact that math is always present. This discipline is considered as a competitive tool for achieving a more productive life. However, the gap in academic achievement is big. Consequently, in the last decades the research on education has set attention on this point. Therefore, this…

  8. Going for a Swim

    ERIC Educational Resources Information Center

    Covington, Savannah

    2016-01-01

    Is anything more refreshing than going for a nice, long swim? The math scenarios presented in this article will take the reader back to hot summer days and remind the reader what a cool dip in the water feels like. Solving these problems is enjoyable and encourages the solver to think of the many ways that math is all around--even in the middle of…

  9. No Work Like Rework: Issues in the Design of a Math Test Sign-Up Application

    ERIC Educational Resources Information Center

    Alkadi, Ghassan; Beaubouef, Theresa

    2012-01-01

    This paper introduces a test sign-up application developed for a math department at a university. The requirements, design, and final software product are presented, along with one very important unexpected problem that arose after completion of the work--the system to be implemented and maintained by the client was not compatible with the…

  10. Making Basic Math Skills Work for You in Marketing. Student Manual and Laboratory Guide.

    ERIC Educational Resources Information Center

    Klewer, Edwin D.

    This student manual and workbook is the second part of a mathematics series for use with high school students. The manual is to be used to apply the mathematics skills that students have learned in a first part called "Developing Basic Math Skills for Marketing." The manual presents conceptual instruction in mathematics in a competency based…

  11. Math Around the World: Grades 5-8. Teachers' Guide. Great Explorations in Math and Science (GEMS).

    ERIC Educational Resources Information Center

    Braxton, Beverly; And Others

    This document is a collection of eight games from four continents. Students use mathematics that is directly relevant to them as they take part in the games. The first five games (NIM, Kalah, Tower of Hanoi, Shongo Networks, and Magic Squares) feature presentation instructions that describe multiple-session classroom activities for grades 5-8.…

  12. CCSS Literacy and Math Tools: An Interim Report on Implementation and Sustainability during the Pilot Year

    ERIC Educational Resources Information Center

    Reumann-Moore, Rebecca; Lawrence, Nancy; Sanders, Felicia; Shaw, Kate; Christman, Jolley Bruce

    2011-01-01

    This document summarizes the findings from the initial round of research on the development and piloting of two types of instructional tools designed to support teachers' integration of the Common Core State Standards (CCSS) in literacy and math. In this interim report, Research for Action (RFA) presents key findings from the first half of the…

  13. SCDC Spanish Curricula Units. Science/Math Strand, Unit 9, Grade 3, Teacher's Guide.

    ERIC Educational Resources Information Center

    Spanish Curricula Development Center, Miami Beach, FL.

    Instructional and assessment activities in science and math for third graders are presented in this teacher's guide to unit nine. Focus, objectives and materials for each activity are in English and Spanish, while teacher instructions are only in Spanish. The unit's theme is "the nation as a community"; related to the theme are the four spiraling…

  14. Evaluation of the Effectiveness of the Alabama Math, Science, and Technology Initiative (AMSTI). Final Report. NCEE 2012-4008

    ERIC Educational Resources Information Center

    Newman, Denis; Finney, Pamela B.; Bell, Steve; Turner, Herb; Jaciw, Andrew P.; Zacamy, Jenna L.; Gould, Laura Feagans

    2012-01-01

    This report presents the results of an experiment conducted in Alabama beginning in the 2006/07 school year, to determine the effectiveness of the Alabama Math, Science, and Technology Initiative (AMSTI), which aims to improve mathematics and science achievement in the state's K-12 schools. This study is the first randomized controlled trial…

  15. Preparing Children for Success: Integrating Science, Math, and Technology in Early Childhood Classroom

    ERIC Educational Resources Information Center

    Kermani, Hengameh; Aldemir, Jale

    2015-01-01

    The purpose of the present study was to study if purposeful math, science, and technology curriculum projects and activities would support Pre-K children's performance in these subject matter areas. In this study, 58 Pre-K children from 4 Pre-K classrooms in a public Pre-K programme in North Carolina participated. Through a quasi-experimental,…

  16. Building Academic Skills in Context: Testing the Value of Enhanced Math Learning in CTE. Pilot Study

    ERIC Educational Resources Information Center

    Stone, James R., III; Alfeld, Corinne; Pearson, Donna; Lewis, Morgan V.; Jensen, Susan

    2005-01-01

    This report describes the conduct and outcomes of an experimental pilot study conducted in Spring 2004 to develop and test a model that aimed to enhance career and technical education (CTE) instruction with the mathematics already embedded in the curricula of six occupational areas. Although present in the CTE curriculum, math is largely implicit…

  17. When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math

    PubMed Central

    Lyons, Ian M.; Beilock, Sian L.

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929

  18. A latent profile analysis of math achievement, numerosity, and math anxiety in twins

    PubMed Central

    Hart, Sara A.; Logan, Jessica A.R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.

    2015-01-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math. PMID:26957650

  19. A latent profile analysis of math achievement, numerosity, and math anxiety in twins.

    PubMed

    Hart, Sara A; Logan, Jessica A R; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A

    2016-02-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math.

  20. The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness. REL 2015-096

    ERIC Educational Resources Information Center

    Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal

    2015-01-01

    The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…

  1. The Integration of technology in teaching mathematics

    NASA Astrophysics Data System (ADS)

    Muhtadi, D.; Wahyudin; Kartasasmita, B. G.; Prahmana, R. C. I.

    2017-12-01

    This paper presents the Transformation of Technological Pedagogical and Content Knowledge (TPACK) of three pre-service math teacher. They participate in technology-based learning modules aligned with teaching practice taught school and became characteristic of teaching method by using the mathematical software. ICT-based learning environment has been the demands in practice learning to build a more effective approach to the learning process of students. Also, this paper presents the results of research on learning mathematics in middle school that shows the influence of design teaching on knowledge of math content specifically.

  2. A Randomized Control Trial Evaluating the Effectiveness of Computer Assisted Instruction in Numeracy on Math Outcomes for Monolingual English Speaking Kindergartners from Title 1 Schools

    ERIC Educational Resources Information Center

    Foster, M. E.; Anthony, J. L.; Clements, D. H.; Sarama, J.; Williams, J. M.

    2016-01-01

    Children from low-income and ethnic minority backgrounds have demonstrated substantially lower levels of math achievement than their middle class majority peers for decades. The present study addressed two research questions: (1) when used as a supplement to typical classroom instruction and in isolation from the larger curriculum, does Building…

  3. Improving Learning for All Students through Equity-Based Inclusive Reform Practices: Effectiveness of a Fully Integrated Schoolwide Model on Student Reading and Math Achievement

    ERIC Educational Resources Information Center

    Choi, Jeong Hoon; Meisenheimer, Jessica M.; McCart, Amy B.; Sailor, Wayne

    2017-01-01

    The present investigation examines the schoolwide applications model (SAM) as a potentially effective school reform model for increasing equity-based inclusive education practices while enhancing student reading and math achievement for all students. A 3-year quasi-experimental comparison group analysis using latent growth modeling (LGM) was used…

  4. The Reality and Difficulties of Employing ICT in Teaching from the Perspective of Math Teachers of Middle Stage in Riyadh

    ERIC Educational Resources Information Center

    Alghamdi, Mona S.

    2017-01-01

    The present study aims to identify the reality and difficulties of employing Information Communication Technology (ICT) in teaching from the perspective of female Mathematics teachers of middle stage in Riyadh, Saudi Arabia. The study sample consisted of (165) female Math teachers of middle stage in Riyadh. The tool utilized is a questionnaire;…

  5. Student Perceptions of a Mathematics Major for Prospective Elementary Teachers with an Inquiry-Based Philosophy

    ERIC Educational Resources Information Center

    Cook, Samuel A.; Borkovitz, Debra K.

    2017-01-01

    In this paper we present data from one-on-one interviews conducted with students who have taken intermediate and advanced inquiry-based mathematics courses in a program that prepares future preK-8 teachers. Many of these students entered college with a fear of math, but then gained confidence from a required introductory math course and chose to…

  6. An Analysis of the Cost Efficiency of the Math-Science Division Instructional Personnel at Gulf Coast Community College.

    ERIC Educational Resources Information Center

    Etheridge, Sandra Y.

    Prepared to provide a comprehensible and useable statement of the productivity of the members of the Math-Science Division at Gulf Coast Community College (GCCC), this report presents the methods and findings of a study of the income and expenditures related to each full- and part-time faculty member in the division. Following introductory…

  7. A Kit to Develop and Present a Math/Science Conference for Females in Middle School.

    ERIC Educational Resources Information Center

    Ongley, Betty Lee

    A workshop on mathematics and science careers for girls was part of an effort to remediate the effects of past sex bias on females' career and vocational choices. A model for organizing and conducting a conference with emphasis on careers for women in math and science is offered for educators in this publication. The guide includes: (1) planning…

  8. SCDC Spanish Curricula Units. Science/Math Strand, Unit 5, Grade 2, Teacher's Guide--Multi-Ethnic Edition.

    ERIC Educational Resources Information Center

    Operations Research Society of America, Arlington, VA.

    Continuing the theme of the school as a community, the teacher's guide to the science/math strand of unit five presents both instructional and assessment activities for kits 17-20. Focus, materials and objective for each activity are in Spanish and English; teacher instructions are in Spanish only. In kit 17 the science activities deal with the…

  9. Changing Lives, Strengthening America. National Math and Science Initiative Annual Report, 2010

    ERIC Educational Resources Information Center

    National Math and Science Initiative, 2010

    2010-01-01

    This paper presents the annual report of the National Math and Science Initiative (NMSI) for 2010. Four years ago, NMSI was just an idea. NMSI not only hit the ground running in 2007, it picked up the best ideas in the country and rolled them out in schools and universities from coast to coast. Within a year of its creation, NMSI had awarded…

  10. Influences of Disciplinary Classroom Climate on High School Student Self-Efficacy and Mathematics Achievement: A Look at Gender and Racial-Ethnic Differences

    ERIC Educational Resources Information Center

    Cheema, Jehanzeb R.; Kitsantas, Anastasia

    2014-01-01

    The present study investigated the role of disciplinary climate in the classroom and student math self-efficacy on math achievement. The student part of the Program for International Student Assessment (PISA) 2003 survey containing 4,199 U.S. observations was employed in a weighted least squares nested multiple regression framework to predict math…

  11. Instructional Practices for Students with Behavioral Disorders: Strategies for Reading, Writing, and Math. What Works for Special-Needs Learners

    ERIC Educational Resources Information Center

    Nelson, J. Ron; Benner, Gregory J.; Mooney, Paul

    2008-01-01

    Presenting a broad range of instructional programs and practices that are proven effective for students with behavioral disorders, this is the first resource of its kind for K-3 teachers and special educators. Described are clear-cut strategies for promoting mastery and fluency in early reading, writing, and math, while tailoring instruction to…

  12. Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work

    ERIC Educational Resources Information Center

    Bull, Heather

    2009-01-01

    Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…

  13. The Impact of Incentives to Recruit and Retain Teachers in "Hard-to-Staff" Subjects

    ERIC Educational Resources Information Center

    Feng, Li; Sass, Tim R.

    2018-01-01

    We investigate the effects of a statewide program designed to increase the supply of teachers in designated "hard-to-staff" areas, such as special education, math, and science. Employing a difference-in-difference estimator we find that the loan forgiveness component of the program was effective, reducing mean attrition rates for middle…

  14. A Case Study of Student and Instructor Reactions to a Calculus E-Book

    ERIC Educational Resources Information Center

    Bode, Martina; Khorami, Mehdi; Visscher, Daniel

    2014-01-01

    This article details the results of testing an e-book in two differential calculus classes. Although we, as math instructors, were drawn to the components of the e-book that promote conceptual understanding--such as the interactive figures--the students reported liking the assessment support most. We found that students were initially excited…

  15. Redesigning and Aligning Assessment and Evaluation for a Federally Funded Math and Science Teacher Educational Program

    ERIC Educational Resources Information Center

    Hardre, Patricia L.; Slater, Janis; Nanny, Mark

    2010-01-01

    This paper examines the redesign of evaluation components for a teacher professional development project funded by the National Science Foundation. It focuses on aligning evaluation instrumentation and strategies with program goals, research goals and program evaluation best practices. The study identifies weaknesses in the original (year 1)…

  16. An Analysis of Data Activities and Instructional Supports in Middle School Science Textbooks

    ERIC Educational Resources Information Center

    Morris, Bradley J.; Masnick, Amy M.; Baker, Katie; Junglen, Angela

    2015-01-01

    A critical component of science and math education is reasoning with data. Science textbooks are instructional tools that provide opportunities for learning science content (e.g. facts about force and motion) and process skills (e.g. data recording) that support and augment reasoning with data. In addition, the construction and design of textbooks…

  17. Emotional Presence in a Relationship of Inquiry: The Case of One-to-One Online Math Coaching

    ERIC Educational Resources Information Center

    Stenbom, Stefan; Hrastinski, Stefan; Cleveland-Innes, Martha

    2016-01-01

    Emotions have been confirmed to be a critical component of the process of learning. In the online Community of Inquiry theoretical framework, and the recently suggested online Relationship of Inquiry framework, emotions are considered a subsection of social presence. In this study, the concept of emotional presence is examined. This examination…

  18. Chapter One in Ohio. Education Consolidation and Improvement Act. 22nd Annual Evaluation Report. Fiscal 1987.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus.

    Chapter 1 activities in Ohio for 1986-87 are summarized. The basic programs are described with emphasis on the following components: (1) student participation; (2) instructional areas; (3) impact of reading instruction; (4) impact of math instruction; (5) expenditure patterns; (6) staff positions; (7) inservice teacher education; (8) parent…

  19. Assessment of Spreadsheet-based Modules in a Physical Geology Course with Emphasis on the Effectiveness of the use of Excel

    NASA Astrophysics Data System (ADS)

    Lehto, H.; Vacher, H. L.

    2013-12-01

    Educators have used spreadsheets to teach math concepts for years. However, when spreadsheet-based modules began to be used to teach math and geology concepts at USF students found them difficult to use. Most often students expressed frustration that learning how to use Excel took precedence over learning the concepts presented in the modules. Was the Excel was getting in the way? To investigate this question, we placed students in Physical Geology courses into two groups: one group was given a set of modules that instructed them to use Excel for their calculations, while the modules given to the other group simple instructed them to do the calculations but they were not told what method to use. Our expectation was that students in the Non-Excel group would be less frustrated and thus attain a higher level of learning of the concepts presented in the modules. However, our results show that students had high gains for both the math and geology concepts presented in the modules whether Excel was used or not. We also tested the students' attitudes about the modules and the knowledge they gained and found that overall students were comfortable with the math and geology concepts presented in the modules, and most felt that the modules were worth their time; however they did not wish to complete any more modules. The only observed difference in gains was that students in the course led by the author of the modules had larger gains in knowledge versus those in the course led by another instructor. This difference may have been the result of differences in teaching style, such as the module author's mention and linking of the modules with lecture materials throughout the course. We believe that spreadsheet-based modules are a good tool for teaching math and geology concepts, as overall the students were confident in their new knowledge. We also found that the use of Excel within the module did not affect the learning outcomes. The one downside of this study was that after completing the modules the students did not wish to do any more, which may have to do with a strong tendency towards math avoidance.

  20. Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement

    PubMed Central

    Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children. PMID:22701105

  1. Math anxiety in second and third graders and its relation to mathematics achievement.

    PubMed

    Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.

  2. Prediction and Stability of Mathematics Skill and Difficulty

    PubMed Central

    Martin, Rebecca B.; Cirino, Paul T.; Barnes, Marcia A.; Ewing-Cobbs, Linda; Fuchs, Lynn S.; Stuebing, Karla K.; Fletcher, Jack M.

    2016-01-01

    The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years later. For both measure types, a similar proportion of students changed whether assessed categorically or continuously. However, categorical change was heavily dependent on distance from the cut point and so more common for MD, who started closer to the cut point; reliable change index change was more similar across groups. There were few differences with regard to severity level of MD on continuous metrics or in terms of prediction. Final math performance on a broad computation measure was predicted by behavioral inattention and working memory while considering initial performance; for a specific fluency measure, working memory was not uniquely related, and behavioral inattention more variably related to final performance, again while considering initial performance. PMID:22392890

  3. Fine motor skills and early comprehension of the world: two new school readiness indicators.

    PubMed

    Grissmer, David; Grimm, Kevin J; Aiyer, Sophie M; Murrah, William M; Steele, Joel S

    2010-09-01

    Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness factors with 6 longitudinal data sets. Their results identified kindergarten math and reading readiness and attention as the primary long-term predictors but found no effects from social skills or internalizing and externalizing behavior. We incorporated motor skills measures from 3 of the data sets and found that fine motor skills are an additional strong predictor of later achievement. Using one of the data sets, we also predicted later science scores and incorporated an additional early test of general knowledge of the social and physical world as a predictor. We found that the test of general knowledge was by far the strongest predictor of science and reading and also contributed significantly to predicting later math, making the content of this test another important kindergarten readiness indicator. Together, attention, fine motor skills, and general knowledge are much stronger overall predictors of later math, reading, and science scores than early math and reading scores alone.

  4. Prediction and stability of mathematics skill and difficulty.

    PubMed

    Martin, Rebecca B; Cirino, Paul T; Barnes, Marcia A; Ewing-Cobbs, Linda; Fuchs, Lynn S; Stuebing, Karla K; Fletcher, Jack M

    2013-01-01

    The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years later. For both measure types, a similar proportion of students changed whether assessed categorically or continuously. However, categorical change was heavily dependent on distance from the cut point and so more common for MD, who started closer to the cut point; reliable change index change was more similar across groups. There were few differences with regard to severity level of MD on continuous metrics or in terms of prediction. Final math performance on a broad computation measure was predicted by behavioral inattention and working memory while considering initial performance; for a specific fluency measure, working memory was not uniquely related, and behavioral inattention more variably related to final performance, again while considering initial performance.

  5. National Geographic Society Kids Network: Report on 1994 teacher participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In 1994, National Geographic Society Kids Network, a computer/telecommunications-based science curriculum, was presented to elementary and middle school teachers through summer programs sponsored by NGS and US DOE. The network program assists teachers in understanding the process of doing science; understanding the role of computers and telecommunications in the study of science, math, and engineering; and utilizing computers and telecommunications appropriately in the classroom. The program enables teacher to integrate science, math, and technology with other subjects with the ultimate goal of encouraging students of all abilities to pursue careers in science/math/engineering. This report assesses the impact of the networkmore » program on participating teachers.« less

  6. A Solution Space for a System of Null-State Partial Differential Equations: Part 3

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014; Commun Math Phys, arXiv:1405.2747, 2014) is completely rigorous.

  7. Self-Regulation and Math Attitudes: Effects on Academic Performance in Developmental Math Courses at a Community College

    ERIC Educational Resources Information Center

    Otts, Cynthia D.

    2010-01-01

    The purpose of the study was to investigate the relationship among math attitudes, self-regulated learning, and course outcomes in developmental math. Math attitudes involved perceived usefulness of math and math anxiety. Self-regulated learning represented the ability of students to control cognitive, metacognitive, and behavioral aspects of…

  8. College Math Assessment: SAT Scores vs. College Math Placement Scores

    ERIC Educational Resources Information Center

    Foley-Peres, Kathleen; Poirier, Dawn

    2008-01-01

    Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…

  9. Mathematical learning instruction and teacher motivation factors affecting science technology engineering and math (STEM) major choices in 4-year colleges and universities: Multilevel structural equation modeling

    NASA Astrophysics Data System (ADS)

    Lee, Ahlam

    2011-12-01

    Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students should receive all possible opportunities to use computers to enhance their math self-efficacy, be encouraged to review math materials, and concentrate on listening to math teachers' lectures. While all selected math-learning activities should be embraced in math instruction, computer and individual-based learning activities, which reflect student-driven learning, should be emphasized in the high school instruction. Likewise, students should be encouraged to frequently engage in individual-based learning activities to improve their math performance.

  10. Is math anxiety in the secondary classroom limiting physics mastery? A study of math anxiety and physics performance

    NASA Astrophysics Data System (ADS)

    Mercer, Gary J.

    This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.

  11. Writing-Intensive Astronomy Classes in a Liberal Arts Setting

    NASA Astrophysics Data System (ADS)

    Schmidtke, P. C.

    2013-04-01

    The Integrative Studies Program at Arizona State University is a modern adaptation of a traditional liberal arts degree. An important component of the curriculum is the requirement for a course in the area of “math and science perspectives.” Among the options are two classes on Life in the Universe and Black Holes and Beyond. These classes present contemporary astronomy topics in a format designed for humanities-oriented students. Course material is developed via class discussion of readings, augmented by a wide range of hands-on activities, and organized within the BlackBoard course management system. Almost all assignments are writing intensive: daily journals, formal papers, and an essay-type exam. The design of these courses makes them highly interactive between the instructor and students.

  12. Math practice and its influence on math skills and executive functions in adolescents with mild to borderline intellectual disability.

    PubMed

    Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J

    2013-05-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Math anxiety in Thai early adolescents: a cognitive-behavioral perspective.

    PubMed

    Wangsiriwech, Tawatchai; Pisitsungkagarn, Kullaya; Jarukasemthawee, Somboon

    2017-08-29

    With its high prevalence and debilitating impact on students, math anxiety is well studied within the educational context. However, the problem has yet to be examined from the psychological perspective, which is necessary in order to produce a more comprehensive perspective and to pave the way for therapeutic intervention. The current study, therefore, was conducted to identify cognitive and behavioral factors relevant to the occurrence and maintenance of math anxiety. Data were collected from 300 grade 9 students (150 females and 150 males) from public and private schools in Bangkok, Thailand. Participants responded to the measures of math anxiety, negative math beliefs, negative math appraisals and math avoidance. Structural equation modeling was conducted. Model fit indices obtained consistently suggested the good fitness of the model to the data [e.g. χ2/df = 0.42, root mean square error of approximation (RMSEA) = 0.00]. Negative math beliefs, negative math appraisals and math avoidance had a significant direct effect on math anxiety. Additionally, the indirect effect of negative math appraisal was observed between negative math beliefs and math anxiety. In summary, the proposed model accounted for 84.5% of the variance in the anxiety. The findings are discussed with particular focus on implications for therapeutic intervention for math anxiety.

  14. Does Math Self-Efficacy Mediate the Effect of the Perceived Classroom Environment on Standardized Math Test Performance?

    ERIC Educational Resources Information Center

    Fast, Lisa A.; Lewis, James L.; Bryant, Michael J.; Bocian, Kathleen A.; Cardullo, Richard A.; Rettig, Michael; Hammond, Kimberly A.

    2010-01-01

    We examined the effect of the perceived classroom environment on math self-efficacy and the effect of math self-efficacy on standardized math test performance. Upper elementary school students (N = 1,163) provided self-reports of their perceived math self-efficacy and the degree to which their math classroom environment was mastery oriented,…

  15. The role of expressive writing in math anxiety.

    PubMed

    Park, Daeun; Ramirez, Gerardo; Beilock, Sian L

    2014-06-01

    Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Positive stereotypes, negative outcomes: Reminders of the positive components of complementary gender stereotypes impair performance in counter-stereotypical tasks.

    PubMed

    Kahalon, Rotem; Shnabel, Nurit; Becker, Julia C

    2018-04-01

    Gender stereotypes are complementary: Women are perceived to be communal but not agentic, whereas men are perceived to be agentic but not communal. The present research tested whether exposure to reminders of the positive components of these gender stereotypes can lead to stereotype threat and subsequent performance deficits on the complementary dimension. Study 1 (N = 116 female participants) revealed that compared to a control/no-stereotype condition, exposure to reminders of the stereotype about women's communality (but not to reminders of the stereotype about women's beauty) impaired women's math performance. In Study 2 (N = 86 male participants), reminders of the stereotype about men's agency (vs. a control/no-stereotype condition) impaired men's performance in a test of socio-emotional abilities. Consistent with previous research on stereotype threat, in both studies the effect was evident among participants with high domain identification. These findings extend our understanding of the potentially adverse implications of seemingly positive gender stereotypes. © 2018 The British Psychological Society.

  17. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children's Math Skills.

    PubMed

    Hart, Sara A; Ganley, Colleen M; Purpura, David J

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.

  18. Math anxiety and its relationship with basic arithmetic skills among primary school children.

    PubMed

    Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko

    2017-09-01

    Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. In this study, we aimed to examine the prevalence of math anxiety and its relationship with basic arithmetic skills in primary school children, with explicit focus on two aspects of math anxiety: anxiety about failure in mathematics and anxiety in math-related situations. The participants comprised 1,327 children at grades 2-5. Math anxiety was assessed using six items, and basic arithmetic skills were assessed using three assessment tasks. Around one-third of the participants reported anxiety about being unable to do math, one-fifth about having to answer teachers' questions, and one tenth about having to do math. Confirmatory factor analysis indicated that anxiety about math-related situations and anxiety about failure in mathematics are separable aspects of math anxiety. Structural equation modelling suggested that anxiety about math-related situations was more strongly associated with arithmetic fluency than anxiety about failure. Anxiety about math-related situations was most common among second graders and least common among fifth graders. As math anxiety, particularly about math-related situations, was related to arithmetic fluency even as early as the second grade, children's negative feelings and math anxiety should be identified and addressed from the early primary school years. © 2017 The British Psychological Society.

  19. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children’s Math Skills

    PubMed Central

    Ganley, Colleen M.; Purpura, David J.

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925

  20. Enjoying mathematics or feeling competent in mathematics? Reciprocal effects on mathematics achievement and perceived math effort expenditure.

    PubMed

    Pinxten, Maarten; Marsh, Herbert W; De Fraine, Bieke; Van Den Noortgate, Wim; Van Damme, Jan

    2014-03-01

    The multidimensionality of the academic self-concept in terms of domain specificity has been well established in previous studies, whereas its multidimensionality in terms of motivational functions (the so-called affect-competence separation) needs further examination. This study aims at exploring differential effects of enjoyment and competence beliefs on two external validity criteria in the field of mathematics. Data analysed in this study were part of a large-scale longitudinal research project. Following a five-wave design, math enjoyment, math competence beliefs, math achievement, and perceived math effort expenditure measures were repeatedly collected from a cohort of 4,724 pupils in Grades 3-7. Confirmatory factor analysis (CFA) was used to test the internal factor structure of the math self-concept. Additionally, a series of nested models was tested using structural equation modelling to examine longitudinal reciprocal interrelations between math competence beliefs and math enjoyment on the one hand and math achievement and perceived math effort expenditure on the other. Our results showed that CFA models with separate factors for math enjoyment and math competence beliefs fit the data substantially better than models without it. Furthermore, differential relationships between both constructs and the two educational outcomes were observed. Math competence beliefs had positive effects on math achievement and negative effects on perceived math effort expenditure. Math enjoyment had (mild) positive effects on subsequent perceived effort expenditure and math competence beliefs. This study provides further support for the affect-competence separation. Theoretical issues regarding adequate conceptualization and practical consequences for practitioners are discussed. © 2013 The British Psychological Society.

  1. Neural correlates of math anxiety - an overview and implications.

    PubMed

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  2. Neural correlates of math anxiety – an overview and implications

    PubMed Central

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824

  3. The Sum of All Fears: The Effects of Math Anxiety on Math Achievement in Fifth Grade Students and the Implications for School Counselors

    ERIC Educational Resources Information Center

    Ruff, Sarah E.; Boes, Susan R.

    2014-01-01

    Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…

  4. A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults

    ERIC Educational Resources Information Center

    Hocker, Tami

    2017-01-01

    This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…

  5. [The film library of Sandoz].

    PubMed

    Lefebvre, Thierry

    2014-10-01

    During nearly forty years, the Cinémathèque Sandoz helped the initial formation of students and the training of doctors and pharmacists. Half a century after the produc tion of one of his most memorable films, Le Horla (Jean-Daniel Pollet), the author provides a brief history of those cultural sponsorship activites. It presents the main leaders of the cinémathèque et some of its iconic projets.

  6. The Development of Counting Cards: A New Maths Aid for Teaching Place Value, Addition and Subtraction up to 1 Million

    ERIC Educational Resources Information Center

    Taylor, Christian

    2004-01-01

    In this article, the author presents a new maths aid for teaching place value, addition and subtraction up to 1 million. The need for a resource to help his wife understand place value motivated the author to create "Counting Cards". Here, he shares his invention, in the hope that it will help others. (Contains 4 figures.)

  7. [German version of the math anxiety questionnaire (FRA) for 6- to 9-year-old children].

    PubMed

    Krinzinger, Helga; Kaufmann, Liane; Dowker, Ann; Thomas, Gemma; Graf, Martina; Nuerk, Hans-Christoph; Willmes, Klaus

    2007-09-01

    Is the FRA a reliable and valid instrument? Are there any gender differences concerning math anxiety? Are there any developmental changes in this regard in the course of the early grades? Together with the dyscalculia test TEDI-MATH, the FRA was presented to a total of 450 children from the first to the third grade of primary school (at least 40 girls and 40 boys per semester). The total scale has an internal consistency (Cronbach's alpha) between 0.83 and 0.91. Correlations between arithmetic skills and the FRA scales were mostly significant. The significantly higher negative scores for girls were taken into account by providing standard scores corrected for gender. No systematic developmental changes could be observed. The FRA is the first German math anxiety questionnaire for primary school children. High reliability, standard scores corrected for gender, and economic handling make it an instrument well suited for use in clinical settings (e.g., dyscalculia diagnostics and intervention).

  8. Achievement, motivation, and educational choices: A longitudinal study of expectancy and value using a multiplicative perspective.

    PubMed

    Guo, Jiesi; Parker, Philip D; Marsh, Herbert W; Morin, Alexandre J S

    2015-08-01

    Drawing on the expectancy-value model, the present study explored individual and gender differences in university entry and selection of educational pathway (e.g., science, technology, engineering, and mathematics [STEM] course selection). In particular, we examined the multiplicative effects of expectancy and task values on educational outcomes during the transition into early adulthood. Participants were from a nationally representative longitudinal sample of 15-year-old Australian youths (N = 10,370). The results suggest that (a) both math self-concept and intrinsic value interact in predicting advanced math course selection, matriculation results, entrance into university, and STEM fields of study; (b) prior reading achievement has negative effects on advanced math course selection and STEM fields through math motivational beliefs; and (c) gender differences in educational outcomes are mediated by gender differences in motivational beliefs and prior academic achievement, while the processes underlying choice of educational pathway were similar for males and females. (c) 2015 APA, all rights reserved).

  9. Neurobiological Underpinnings of Math and Reading Learning Disabilities

    PubMed Central

    Ashkenazi, Sarit; Black, Jessica M.; Abrams, Daniel A.; Hoeft, Fumiko; Menon, Vinod

    2013-01-01

    The primary goal of this review is to highlight current research and theories describing the neurobiological basis of math (MD), reading (RD), and comorbid math and reading disability (MD+RD). We first describe the unique brain and cognitive processes involved in acquisition of math and reading skills, emphasizing similarities and differences in each domain. Next we review functional imaging studies of MD and RD in children, integrating relevant theories from experimental psychology and cognitive neuroscience to characterize the functional neuroanatomy of cognitive dysfunction in MD and RD. We then review recent research on the anatomical correlates of MD and RD. Converging evidence from morphometry and tractography studies are presented to highlight distinct patterns of white matter pathways which are disrupted in MD and RD. Finally, we examine how the intersection of MD and RD provides a unique opportunity to clarify the unique and shared brain systems which adversely impact learning and skill acquisition in MD and RD, and point out important areas for future work on comorbid learning disabilities. PMID:23572008

  10. Errors in Multi-Digit Arithmetic and Behavioral Inattention in Children With Math Difficulties

    PubMed Central

    Raghubar, Kimberly; Cirino, Paul; Barnes, Marcia; Ewing-Cobbs, Linda; Fletcher, Jack; Fuchs, Lynn

    2009-01-01

    Errors in written multi-digit computation were investigated in children with math difficulties. Third-and fourth-grade children (n = 291) with coexisting math and reading difficulties, math difficulties, reading difficulties, or no learning difficulties were compared. A second analysis compared those with severe math learning difficulties, low average achievement in math, and no learning difficulties. Math fact errors were related to the severity of the math difficulties, not to reading status. Contrary to predictions, children with poorer reading, regardless of math achievement, committed more visually based errors. Operation switch errors were not systematically related to group membership. Teacher ratings of behavioral inattention were related to accuracy, math fact errors, and procedural bugs. The findings are discussed with respect to hypotheses about the cognitive origins of arithmetic errors and in relation to current discussions about how to conceptualize math disabilities. PMID:19380494

  11. MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1994-01-01

    MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running SunOS, a Hewlett-Packard 720 computer running HP-UX, a Macintosh computer running MacOS, and an IBM PC compatible computer running MS-DOS. Accompanying the library is a set of 196 "demo" drivers that exercise all of the user-callable subprograms. The FORTRAN source code for MATH77 comprises 109K lines of code in 375 files with a total size of 4.5Mb. The demo drivers comprise 11K lines of code and 418K. Forty-four percent of the lines of the library code and 29% of those in the demo code are comment lines. The standard distribution medium for MATH77 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 9track 1600 BPI magnetic tape in VAX BACKUP format and a TK50 tape cartridge in VAX BACKUP format. An electronic copy of the documentation is included on the distribution media. Previous releases of MATH77 have been used over a number of years in a variety of JPL applications. MATH77 Release 4.0 was completed in 1992. MATH77 is a copyrighted work with all copyright vested in NASA.

  12. Estimation of heat loss from a cylindrical cavity receiver based on simultaneous energy and exergy analyses

    NASA Astrophysics Data System (ADS)

    Madadi, Vahid; Tavakoli, Touraj; Rahimi, Amir

    2015-03-01

    This study undertakes the experimental and theoretical investigation of heat losses from a cylindrical cavity receiver employed in a solar parabolic dish collector. Simultaneous energy and exergy equations are used for a thermal performance analysis of the system. The effects of wind speed and its direction on convection loss has also been investigated. The effects of operational parameters, such as heat transfer fluid mass flow rate and wind speed, and structural parameters, such as receiver geometry and inclination, are investigated. The portion of radiative heat loss is less than 10%. An empirical and simplified correlation for estimating the dimensionless convective heat transfer coefficient in terms of the Re mathrm {Re} number and the average receiver wall temperature is proposed. This correlation is applicable for a wind speed range of 0.10.1 to 10 m/s. Moreover, the proposed correlation for Nu mathrm {Nu} number is validated using experimental data obtained through the experiments carried out with a conical receiver with two aperture diameters. The coefficient of determination R2 and the normalized root mean square error (NRMSE) parameters were calculated, and the results show that there is a good agreement between predicted results and experimental data. R2 is greater than 0.950.95 and the NRMSE parameters is less than 0.060.06 in this analysis.

  13. Association between individual differences in non-symbolic number acuity and math performance: a meta-analysis.

    PubMed

    Chen, Qixuan; Li, Jingguang

    2014-05-01

    Many recent studies have examined the association between number acuity, which is the ability to rapidly and non-symbolically estimate the quantity of items appearing in a scene, and symbolic math performance. However, various contradictory results have been reported. To comprehensively evaluate the association between number acuity and symbolic math performance, we conduct a meta-analysis to synthesize the results observed in previous studies. First, a meta-analysis of cross-sectional studies (36 samples, N = 4705) revealed a significant positive correlation between these skills (r = 0.20, 95% CI = [0.14, 0.26]); the association remained after considering other potential moderators (e.g., whether general cognitive abilities were controlled). Moreover, a meta-analysis of longitudinal studies revealed 1) that number acuity may prospectively predict later math performance (r = 0.24, 95% CI = [0.11, 0.37]; 6 samples) and 2) that number acuity is retrospectively correlated to early math performance as well (r = 0.17, 95% CI = [0.07, 0.26]; 5 samples). In summary, these pieces of evidence demonstrate a moderate but statistically significant association between number acuity and math performance. Based on the estimated effect sizes, power analyses were conducted, which suggested that many previous studies were underpowered due to small sample sizes. This may account for the disparity between findings in the literature, at least in part. Finally, the theoretical and practical implications of our meta-analytic findings are presented, and future research questions are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of self-graphing and goal setting on the math fact fluency of students with disabilities.

    PubMed

    Figarola, Patricia M; Gunter, Philip L; Reffel, Julia M; Worth, Susan R; Hummel, John; Gerber, Brian L

    2008-01-01

    We evaluated the impact of goal setting and students' participation in graphing their own performance data on the rate of math fact calculations. Participants were 3 students with mild disabilities in the first and second grades; 2 of the 3 students were also identified with Attention-Deficit/Hyperactivity Disorder (ADHD). They were taught to use Microsoft Excel® software to graph their rate of correct calculations when completing timed, independent practice sheets consisting of single-digit mathematics problems. Two students' rates of correct calculations nearly always met or exceeded the aim line established for their correct calculations. Additional interventions were required for the third student. Results are discussed in terms of implications and future directions for increasing the use of evaluation components in classrooms for students at risk for behavior disorders and academic failure.

  15. Effects of methylphenidate on acute math performance in children with attention-deficit hyperactivity disorder.

    PubMed

    Grizenko, Natalie; Cai, Emmy; Jolicoeur, Claude; Ter-Stepanian, Mariam; Joober, Ridha

    2013-11-01

    Examine the short-term (acute) effects of methylphenidate (MPH) on math performance in children with attention-deficit hyperactivity disorder (ADHD) and what factors predict improvement in math performance. One hundred ninety-eight children with ADHD participated in a double-blind, placebo-controlled, randomized crossover MPH trial. Math response to MPH was determined through administration of math problems adjusted to their academic level during the Restricted Academic Situation Scale (RASS). Student t tests were conducted to assess change in math performance with psychostimulants. Correlation between change on the RASS and change on the math performance was also examined. Linear regression was performed to determine predictor variables. Children with ADHD improved significantly in their math with MPH (P < 0.001). The degree of improvement on the RASS (which evaluates motor activity and orientation to task) and on math performance on MPH was highly correlated. A child's age at baseline and Wechsler Individual Achievement Test (WIAT)-Numerical Operations standard scores at baseline accounted for 15% of variances for acute math improvement. MPH improves acute math performance in children with ADHD. Younger children with lower math scores (as assessed by the WIAT) improved most on math scores when given psychostimulants. NCT00483106.

  16. T-MATS Toolbox for the Modeling and Analysis of Thermodynamic Systems

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a MATLABSimulink (The MathWorks Inc.) plug-in for creating and simulating thermodynamic systems and controls. The package contains generic parameterized components that can be combined with a variable input iterative solver and optimization algorithm to create complex system models, such as gas turbines.

  17. Tracking Perceived and Observed Growth of Inquiry Practice: A Formative Plan to Improve Professional Development Experiences

    ERIC Educational Resources Information Center

    Marshall, Jeff C.; Smart, Julie; Horton, Robert M.

    2011-01-01

    The authors worked with 22 middle school math and science teachers for one year with the goal of improving the quantity and quality of inquiry-based instruction implemented in the classroom. The professional development experience was framed by the 4E x 2 Instruction Model, which combines key components of inquiry instruction (Engage, Explore,…

  18. Analysis of Place Value Instruction and Development in Pre-Kindergarten Mathematics

    ERIC Educational Resources Information Center

    McGuire, Patrick; Kinzie, Mable B.

    2013-01-01

    Development of two-digit place value understanding in the elementary grades has been the subject of some study; however, research at the pre-kindergarten (Pre-K) level is limited. This two-part paper begins by providing an overview of two-digit place value instruction in Pre-K and describes the component parts of a research-based math curriculum,…

  19. The Experiment Check of the Efficiency of the Historical Component Formation in Teacher's Mathematical Methodological Culture

    ERIC Educational Resources Information Center

    Gilmullin, Mansur Fajzrahmanovich

    2015-01-01

    When teachers do not know the history of science well, when they misunderstand and underestimate its educational importance, it becomes a serious obstacle for the improvement of their methodological skills. This paper has a goal to describe author's method how to teach the history of mathematics. This method is aimed at training math teacher's…

  20. International Education in the 21st Century: The Importance of Faculty in Developing Study Abroad Research Opportunities

    ERIC Educational Resources Information Center

    Giedt, Todd; Gokcek, Gigi; Ghosh, Jayati

    2015-01-01

    This paper argues for a reimagining of education abroad that fuses short-term programming with some kind of experiential research component led by home campus disciplinary faculty, especially those in the sciences, technology, engineering, and math (STEM) fields, in order to better integrate the study abroad program into the core undergraduate…

  1. Benchmarks--Standards Comparisons. Math Competencies: EFF Benchmarks Comparison [and] Reading Competencies: EFF Benchmarks Comparison [and] Writing Competencies: EFF Benchmarks Comparison.

    ERIC Educational Resources Information Center

    Kent State Univ., OH. Ohio Literacy Resource Center.

    This document is intended to show the relationship between Ohio's Standards and Competencies, Equipped for the Future's (EFF's) Standards and Components of Performance, and Ohio's Revised Benchmarks. The document is divided into three parts, with Part 1 covering mathematics instruction, Part 2 covering reading instruction, and Part 3 covering…

  2. Examining the Effects of Non-Cognitive Factors on Mathematics Achievement across National Groups: USA, Germany, Japan, and Korea

    ERIC Educational Resources Information Center

    Walker, Soung Hwa

    2017-01-01

    Since there is limited research on the applicability of the Theory of Planned Behavior (TPB) model in educational contexts, the current cross-national comparison study aimed to investigate how non-cognitive factors, specifically, the TPB model components, affect students' math outcomes in USA and their peers in three other countries, Germany,…

  3. Progress Report, October, 1967, through April, 1968: Educational Component of the Public Service Careers Program.

    ERIC Educational Resources Information Center

    City Univ. of New York, NY. Office of Community Coll. Affairs.

    Parallel with on-the-job training, this program provides remedial courses in High School Equivalency (HSE), Human Relations (HR), English as a Second Language (ESL) to help qualify candidates for public service careers in the Department of Hospitals and Department of Social Services, and Board of Education. HSE develops language, math, and reading…

  4. The basic helix-loop-helix transcription factor Nex-1/Math-2 promotes neuronal survival of PC12 cells by modulating the dynamic expression of anti-apoptotic and cell cycle regulators

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2006-01-01

    The basic helix-loop-helix transcription factor Nex1/Math-2 belongs to the NeuroD subfamily, which plays a critical role during neuronal differentiation and maintenance of the differentiated state. Previously, we demonstrated that Nex1 is a key regulatory component of the nerve growth factor (NGF) pathway. Further supporting this hypothesis, this study shows that Nex1 has survival-inducing properties similar to NGF, as Nex1-overexpressing PC12 cells survive in the absence of trophic factors. We dissected the molecular mechanism by which Nex1 confers neuroprotection upon serum removal and found that constitutive expression of Nex1 maintained the expression of specific G1 phase cyclin-dependent kinase inhibitors and concomitantly induced a dynamic expression profile of key anti-apoptotic regulators. This study provides the first evidence of the underlying mechanism by which a member of the NeuroD-subfamily promotes an active anti-apoptotic program essential to the survival of neurons. Our results suggest that the survival program may be viewed as an integral component of the intrinsic programming of the differ entiated state. PMID:15659228

  5. Motivation and Math Anxiety for Ability Grouped College Math Students

    ERIC Educational Resources Information Center

    Helming, Luralyn

    2013-01-01

    The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…

  6. All Students Need Advanced Mathematics. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  7. Math Anxiety, Working Memory, and Math Achievement in Early Elementary School

    ERIC Educational Resources Information Center

    Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.

    2013-01-01

    Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…

  8. A Real Fear

    ERIC Educational Resources Information Center

    Ruffins, Paul

    2007-01-01

    For years, mainstream thinking about math anxiety assumed that people fear math because they are bad at it. However, a growing body of research shows a much more complicated relationship between math ability and anxiety. It is true that people who fear math have a tendency to avoid math-related classes, which decreases their math competence.…

  9. Expanding your horizons in science and mathematics

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Through the presentation of its Expanding Your Horizons in Science and Mathematics career education conferences for secondary school young women, the Math/Science Network continues its efforts to remove the educational, psychological, and cultural barriers which prevent women from entering math-and science-based careers. The Expanding Your Horizons conferences were presented on 77 college, university and high school campuses across the United States. This year, these unique one day conferences reached 15,500 students, 3,000 parents and educators, and involved 3,000 career women who volunteered their services as conference planners, workshop leaders, speakers, and role models.

  10. Neurocognitive and Behavioral Predictors of Math Performance in Children with and without ADHD

    PubMed Central

    Antonini, Tanya N.; O’Brien, Kathleen M.; Narad, Megan E.; Langberg, Joshua M.; Tamm, Leanne; Epstein, Jeff N.

    2014-01-01

    Objective: This study examined neurocognitive and behavioral predictors of math performance in children with and without attention-deficit/hyperactivity disorder (ADHD). Method: Neurocognitive and behavioral variables were examined as predictors of 1) standardized mathematics achievement scores,2) productivity on an analog math task, and 3) accuracy on an analog math task. Results: Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the Attentional Network Task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Conclusion: Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. PMID:24071774

  11. Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.

    PubMed

    Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N

    2016-02-01

    This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.

  12. Math-gender stereotypes in elementary school children.

    PubMed

    Cvencek, Dario; Meltzoff, Andrew N; Greenwald, Anthony G

    2011-01-01

    A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) me with male (gender identity), (b) male with math (math-gender stereotype), and (c) me with math (math self-concept). Two findings emerged. First, as early as second grade, the children demonstrated the American cultural stereotype that math is for boys on both implicit and explicit measures. Second, elementary school boys identified with math more strongly than did girls on both implicit and self-report measures. The findings suggest that the math-gender stereotype is acquired early and influences emerging math self-concepts prior to ages at which there are actual differences in math achievement. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  13. Number-specific and general cognitive markers of preschoolers' math ability profiles.

    PubMed

    Gray, Sarah A; Reeve, Robert A

    2016-07-01

    Different number-specific and general cognitive markers have been claimed to underlie preschoolers' math ability. It is unclear, however, whether similar/different cognitive markers, or combinations of them, are associated with different patterns of emerging math abilities (i.e., different patterns of strength and weakness). To examine this question, 103 preschoolers (40-60 months of age) completed six math tasks (count sequence, object counting, give a number, naming numbers, ordinal relations, and arithmetic), three number-specific markers of math ability (dot enumeration, magnitude comparison, and spontaneous focusing on numerosity), and four general markers (working memory, response inhibition, attention, and vocabulary). A three-step latent profile modeling procedure identified five math ability profiles that differed in their patterns of math strengths and weaknesses; specifically, the profiles were characterized by (a) excellent math ability on all math tasks, (b) good arithmetic ability, (c) good math ability but relatively poor count sequence recitation ability, (d) average ability on all math tasks, and (e) poor ability on all math tasks. After controlling for age, only dot enumeration and spontaneous focusing on numerosity were associated with the math ability profiles, whereas vocabulary was also marginally significant, and these markers were differentially associated with different profiles; that is, different cognitive markers were associated with different patterns of strengths and weaknesses in math abilities. Findings are discussed in terms of their implications for the development of math cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety

    PubMed Central

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed. PMID:27788235

  15. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    PubMed

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  16. Nurses' maths: researching a practical approach.

    PubMed

    Wilson, Ann

    To compare a new practical maths test with a written maths test. The tests were undertaken by qualified nurses training for intravenous drug administration, a skill dependent on maths accuracy. The literature showed that the higher education institutes (HEIs) that provide nurse training use traditional maths tests, a practical way of testing maths had not been described. Fifty five nurses undertook two maths tests based on intravenous drug calculations. One was a traditional written test. The second was a new type of test using a simulated clinical environment. All participants were also interviewed one week later to ascertain their thoughts and feelings about the tests. There was a significant improvement in maths test scores for those nurses who took the practical maths test first. It is suggested that this is because it improved their conceptualisation skills and thus helped them to achieve accuracy in their calculations. Written maths tests are not the best way to help and support nurses in acquiring and improving their maths skills and should be replaced by a more practical approach.

  17. Thermodynamics of feldspathoid solutions

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.; Ghiorso, Mark S.

    We have developed models for the thermody-namic properties of nephelines, kalsilites, and leucites in the simple system NaAlSiO4-KAlSiO4-Ca0.5AlSiO4-SiO2-H2O that are consistent with all known constraints on subsolidus equilibria and thermodynamic properties, and have integrated them into the existing MELTS software package. The model for nepheline is formulated for the simplifying assumptions that (1) a molecular mixing-type approximation describes changes in the configurational entropy associated with the coupled exchange substitutions □Si?NaAl and □Ca? Na2 and that (2) Na+ and K+ display long-range non-convergent ordering between a large cation and the three small cation sites in the Na4Al4Si4O16 formula unit. Notable features of the model include the prediction that the mineral tetrakalsilite (``panunzite'', sensu stricto) results from anti-ordering of Na and K between the large cation and the three small cation sites in the nepheline structure at high temperatures, an average dT/dP slope of about 55°/kbar for the reaction over the temperature and pressure ranges 800-1050 °C and 500-5000 bars, roughly symmetric (i.e. quadratic) solution behavior of the K-Na substitution along joins between fully ordered components in nepheline, and large positive Gibbs energies for the nepheline reciprocal reactions and and for the leucite reciprocal reaction

  18. IBM techexplorer and MathML: Interactive Multimodal Scientific Documents

    NASA Astrophysics Data System (ADS)

    Diaz, Angel

    2001-06-01

    The World Wide Web provides a standard publishing platform for disseminating scientific and technical articles, books, journals, courseware, or even homework on the internet; however, the transition from paper to web-based interactive content has brought new opportunities for creating interactive content. Students, scientists, and engineers are now faced with the task of rendering the 2D presentational structure of mathematics, harnessing the wealth of scientific and technical software, and creating truly accessible scientific portals across international boundaries and markets. The recent emergence of World Wide Web Consortium (W3C) standards such as the Mathematical Markup Language (MathML), Language (XSL), and Aural CSS (ACSS) provide a foundation whereby mathematics can be displayed, enlivened, computed, and audio formatted. With interoperability ensured by standards, software applications can be easily brought together to create extensible and interactive scientific content. In this presentation we will provide an overview of the IBM techexplorer Hypermedia Browser, a web browser plug-in and ActiveX control aimed at bringing interactive mathematics to the masses across platforms and applications. We will demonstrate "live" mathematics where documents that contain MathML expressions can be edited and computed right inside your favorite web browser. This demonstration will be generalized as we show how MathML can be used to enliven even PowerPoint presentations. Finally, we will close the loop by demonstrating a novel approach to spoken mathematics based on MathML, DOM, XSL, ACSS, techexplorer, and IBM ViaVoice. By making use of techexplorer as the glue that binds the rendered content to the web browser, the back-end computation software, the Java applets that augment the exposition, and voice-rendering systems such as ViaVoice, authors can indeed create truly extensible and interactive scientific content. For more information see: [http://www.software.ibm.com/techexplorer] [http://www.alphaworks.ibm.com] [http://www.w3.org

  19. K-12 Science and Math Education across the Federal Agencies. Hearing before the Committee on Science, U.S. House of Representatives, One Hundred Ninth Congress, Second Session (March 30, 2006). Serial Number 109-43

    ERIC Educational Resources Information Center

    US House of Representatives, 2006

    2006-01-01

    This document records testimony from a hearing held to examine how federal agencies can improve their individual and collective efforts to strengthen K-12 science and math education. Presenters and witnesses included: Representative Sherwood L. Boehlert, Chairman, Committee on Science, U.S. House of Representatives; Representative Bart Gordon,…

  20. The Gradual and Differential Effects of Direct Instruction Flashcards with and without a DRH Contingency on Basic Multiplication Facts for Two Students with Severe Behaviors Disorders

    ERIC Educational Resources Information Center

    Pierce, Kevin D.; McLaughlin, T. F.; Neyman, J.; King, K.

    2012-01-01

    The purpose the present research was to evaluate the efficacy of DI flashcards on the math performance of two students with behavior disorders. The number of correct digits per minute was assessed. The outcomes indicated the DI flashcards were somewhat effective in improving the number of math facts that each participant could correctly write.…

  1. Look down from the Sky: Is It a Bird? Is It Superman? No, It's a Plane

    ERIC Educational Resources Information Center

    Chick, Helen

    2016-01-01

    The plane problem is a real-world problem, presented without any suggestion as to how it might be solved. It arose unexpectedly as the author was messing around on the internet, not thinking about maths at all. She did not encounter the problem in a maths lesson, nor as homework in the middle of a unit on a particular topic, and so she had no…

  2. Close Binary Star Speckle Interferometry on the McMath-Pierce 0.8-Meter Solar Telescope

    NASA Astrophysics Data System (ADS)

    Wiley, Edward; Harshaw, Richard; Jones, Gregory; Branston, Detrick; Boyce, Patrick; Rowe, David; Ridgely, John; Estrada, Reed; Genet, Russell

    2015-09-01

    Observations were made in April 2014 to assess the utility of the 0.8-meter solar telescope at the McMath-Pierce Solar Observatory at Kitt Peak National Observatory for performing speckle interferometry observations of close binary stars. Several configurations using science cameras, acquisition cameras, eyepieces, and flip mirrors were evaluated. Speckle images were obtained and recommendations for further improvement of the acquisition system are presented.

  3. Reducing the Impact of Stereotype Threat on Women's Math Performance: Are Two Strategies Better Than One?

    PubMed Central

    Jones, Paul R.

    2012-01-01

    Introduction Two studies examined whether stereotype threat impairs women's math performance and whether concurrent threat reduction strategies can be used to offset this effect. Method In Study 1, collegiate men and women (N = 100) watched a video purporting that males and females performed equally well (gender-fair) or males outperformed females (gender differences) on an imminent math test. In Study 2, (N = 44) women viewed the gender differences video, followed by misattribution (cue present, absent) and self-affirmation (present, absent) manipulations, before taking the aforesaid test. Results In the initial study, women underperformed men on the test after receiving the gender differences video, whereas no gender differences emerged in the gender-fair condition. In Study 2, affirming the self led to better performance than not doing so. Planned contrasts indicated, however, that only women receiving a misattribution cue and self-affirmation opportunity outperformed their counterparts not given these reduction strategies. Discussion These findings are discussed relative to Stereotype Threat Theory and educational implications are provided. PMID:22545058

  4. Reciprocal Relations among Motivational Frameworks, Math Anxiety, and Math Achievement in Early Elementary School

    ERIC Educational Resources Information Center

    Gunderson, Elizabeth A.; Park, Daeun; Maloney, Erin A.; Beilock, Sian L.; Levine, Susan C.

    2018-01-01

    School-entry math achievement is a strong predictor of math achievement through high school. We asked whether reciprocal relations among math achievement, math anxiety, and entity motivational frameworks (believing that ability is fixed and a focus on performance) can help explain these persistent individual differences. We assessed 1st and 2nd…

  5. A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins

    ERIC Educational Resources Information Center

    Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.

    2016-01-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…

  6. A Longitudinal Analysis of Sex Differences in Math and Spatial Skills in Primary School Age Children

    ERIC Educational Resources Information Center

    Lachance, Jennifer A.; Mazzocco, Michele M. M.

    2006-01-01

    We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming…

  7. Math at home adds up to achievement in school.

    PubMed

    Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L

    2015-10-09

    With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.

  8. Post-error response inhibition in high math-anxious individuals: Evidence from a multi-digit addition task.

    PubMed

    Núñez-Peña, M Isabel; Tubau, Elisabet; Suárez-Pellicioni, Macarena

    2017-06-01

    The aim of the study was to investigate how high math-anxious (HMA) individuals react to errors in an arithmetic task. Twenty HMA and 19 low math-anxious (LMA) individuals were presented with a multi-digit addition verification task and were given response feedback. Post-error adjustment measures (response time and accuracy) were analyzed in order to study differences between groups when faced with errors in an arithmetical task. Results showed that both HMA and LMA individuals were slower to respond following an error than following a correct answer. However, post-error accuracy effects emerged only for the HMA group, showing that they were also less accurate after having committed an error than after giving the right answer. Importantly, these differences were observed only when individuals needed to repeat the same response given in the previous trial. These results suggest that, for HMA individuals, errors caused reactive inhibition of the erroneous response, facilitating performance if the next problem required the alternative response but hampering it if the response was the same. This stronger reaction to errors could be a factor contributing to the difficulties that HMA individuals experience in learning math and doing math tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Making gender matter: the role of gender-based expectancies and gender identification on women's and men's math performance in Sweden.

    PubMed

    Eriksson, Kimmo; Lindholm, Torun

    2007-08-01

    It is well established that an emphasis on gender differences may have a negative effect on women's math performance in USA, Germany and the Netherlands. It has further been found that an individual's identification with the stereotyped group may moderate effects of negative stereotypes. The present study investigated how gender-based expectancies affected the math performance of women and men in Sweden, a nation with a smaller gender gap than in other countries, and a strong cultural emphasis on gender equality. Participants, 112 female and 74 male undergraduate math students from Swedish universities, completed a difficult math test in which their gender was either linked to their test performance or not. Men performed better than women when gender was made relevant among participants who did not see their gender as an important aspect of their identity, while participants high in gender identification were unaffected by gender identity relevance. Moreover, the gender relevance manipulation affected men's performance more than women's. The results deviate from findings on US samples, indicating that the role of group identification as a moderator of stereotype-based expectancy effects is complex, and that factors in the cultural context may interact with individual differences in identification to determine the impact of negative stereotypes.

  10. Mathematics learning disabilities in girls with fragile X or Turner syndrome during late elementary school.

    PubMed

    Murphy, Melissa M; Mazzocco, Michèle M M

    2008-01-01

    The present study focuses on math and related skills among 32 girls with fragile X (n = 14) or Turner (n = 18) syndrome during late elementary school. Performance in each syndrome group was assessed relative to Full Scale IQ-matched comparison groups of girls from the general population (n = 32 and n = 89 for fragile X syndrome and Turner syndrome, respectively). Differences between girls with fragile X and their comparison group emerged on untimed arithmetic calculations, mastery of counting skills, and arithmetic problem verification accuracy. Relative to girls in the comparison group, girls with Turner syndrome did not differ on untimed arithmetic calculations or problem verification accuracy, but they had limited mastery of counting skills and longer response times to complete the problem verification task. Girls with fragile X or Turner syndrome also differed from their respective comparison groups on math-related abilities, including visual-spatial, working memory, and reading skills, and the associations between math and those related skills. Together, these findings support the notion that difficulty with math and related skills among girls with fragile X or Turner syndrome continues into late elementary school and that the profile of math and related skill difficulty distinguishes the two syndrome groups from each other.

  11. The Neurocognitive Architecture of Individual Differences in Math Anxiety in Typical Children.

    PubMed

    Hartwright, Charlotte E; Looi, Chung Yen; Sella, Francesco; Inuggi, Alberto; Santos, Flávia Heloísa; González-Salinas, Carmen; Santos, Jose M García; Kadosh, Roi Cohen; Fuentes, Luis J

    2018-05-31

    Math Anxiety (MA) is characterized by a negative emotional response when facing math-related situations. MA is distinct from general anxiety and can emerge during primary education. Prior studies typically comprise adults and comparisons between high- versus low-MA, where neuroimaging work has focused on differences in network activation between groups when completing numerical tasks. The present study used voxel-based morphometry (VBM) to identify the structural brain correlates of MA in a sample of 79 healthy children aged 7-12 years. Given that MA is thought to develop in later primary education, the study focused on the level of MA, rather than categorically defining its presence. Using a battery of cognitive- and numerical-function tasks, we identified that increased MA was associated with reduced attention, working memory and math achievement. VBM highlighted that increased MA was associated with reduced grey matter in the left anterior intraparietal sulcus. This region was also associated with attention, suggesting that baseline differences in morphology may underpin attentional differences. Future studies should clarify whether poorer attentional capacity due to reduced grey matter density results in the later emergence of MA. Further, our data highlight the role of working memory in propagating reduced math achievement in children with higher MA.

  12. Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety.

    PubMed

    Mattarella-Micke, Andrew; Mateo, Jill; Kozak, Megan N; Foster, Katherine; Beilock, Sian L

    2011-08-01

    In the current study, we explored how a person's physiological arousal relates to their performance in a challenging math situation as a function of individual differences in working memory (WM) capacity and math-anxiety. Participants completed demanding math problems before and after which salivary cortisol, an index of arousal, was measured. The performance of lower WM individuals did not depend on cortisol concentration or math-anxiety. For higher WM individuals high in math-anxiety, the higher their concentration of salivary cortisol following the math task, the worse their performance. In contrast, for higher WM individuals lower in math-anxiety, the higher their salivary cortisol concentrations, the better their performance. For individuals who have the capacity to perform at a high-level (higher WMs), whether physiological arousal will lead an individual to choke or thrive depends on math-anxiety. 2011 APA, all rights reserved

  13. Math Anxiety and Math Ability in Early Primary School Years.

    PubMed

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2009-06-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa-contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development.

  14. Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.

    PubMed

    Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana

    2016-06-01

    Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.

  15. Math Anxiety and Math Ability in Early Primary School Years

    PubMed Central

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2010-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159

  16. A Correlation of Community College Math Readiness and Student Success

    NASA Astrophysics Data System (ADS)

    Brown, Jayna Nicole

    Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p < .001), performance (p = .008), and progress ( p = .001), indicating students who tested into Introduction to Algebra were more successful and persisted more often to degree completion. In order to improve instructional methods for Basic Math courses, a 3-day professional development workshop was developed for math faculty focusing on current, best practices in remedial math instruction. Implications for social change include providing math faculty with the knowledge and skills to develop new instructional methods for remedial math courses. A change in instructional methods may improve community college students' math competencies and degree achievement.

  17. The Influence of Experiencing Success in Math on Math Anxiety, Perceived Math Competence, and Math Performance

    ERIC Educational Resources Information Center

    Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…

  18. Math Practice and Its Influence on Math Skills and Executive Functions in Adolescents with Mild to Borderline Intellectual Disability

    ERIC Educational Resources Information Center

    Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.

    2013-01-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…

  19. Students' Mathematics Self-Efficacy, Anxiety, and Course Level at a Community College

    ERIC Educational Resources Information Center

    Spaniol, Scott R.

    2017-01-01

    Research suggests that student success in mathematics is positively correlated to math self-efficacy and negatively correlated to math anxiety. At a Hispanic serving community college in the Midwest, developmental math students had a lower pass rate than did college-level math students, but the role of math self-efficacy and math anxiety on these…

  20. Turning Negatives into Positives: The Role of an Instructional Math Course on Preservice Teachers' Math Beliefs

    ERIC Educational Resources Information Center

    Looney, Lisa; Perry, David; Steck, Andy

    2017-01-01

    Teachers' beliefs about mathematics can play a role in their teaching effectiveness (Bandura, 1993). Negative attitudes toward math (e.g., math anxiety) or low self-efficacy beliefs for teaching math can act as barriers to the teaching process, impacting the achievement and math beliefs of students (Beilock, Gunderson, Ramirez, & Levine, 2010;…

  1. On the Leaky Math Pipeline: Comparing Implicit Math-Gender Stereotypes and Math Withdrawal in Female and Male Children and Adolescents

    ERIC Educational Resources Information Center

    Steffens, Melanie C.; Jelenec, Petra; Noack, Peter

    2010-01-01

    Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…

  2. Mathematics achievement and anxiety and their relation to internalizing and externalizing behaviors.

    PubMed

    Wu, Sarah S; Willcutt, Erik G; Escovar, Emily; Menon, Vinod

    2014-01-01

    Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of 366 second and third graders. Math achievement was significantly correlated with attentional difficulties and social problems but not with internalizing symptoms. The relation between math achievement and externalizing behavioral problems was stronger in girls than in boys. Math achievement was not correlated with trait anxiety but was negatively correlated with math anxiety. Critically, math anxiety differed significantly between children classified as math learning disabled (MLD), low achieving (LA), and typically developing (TD), with math anxiety significantly higher in the MLD and LA groups compared to the TD group. Our findings suggest that, even in nonclinical samples, math difficulties at the earliest stages of formal math learning are associated with attentional difficulties and domain-specific anxiety. These findings underscore the need for further examination of the shared cognitive, neural, and genetic influences underlying problem solving and nonverbal learning difficulties and accompanying internalizing and externalizing behaviors. © Hammill Institute on Disabilities 2013.

  3. Mathematics Achievement and Anxiety and Their Relation to Internalizing and Externalizing Behaviors

    PubMed Central

    Wu, Sarah S.; Willcutt, Erik G.; Escovar, Emily; Menon, Vinod

    2013-01-01

    Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of 366 second and third graders. Math achievement was significantly correlated with attentional difficulties and social problems but not with internalizing symptoms. The relation between math achievement and externalizing behavioral problems was stronger in girls than in boys. Math achievement was not correlated with trait anxiety but was negatively correlated with math anxiety. Critically, math anxiety differed significantly between children classified as math learning disabled (MLD), low achieving (LA), and typically developing (TD), with math anxiety significantly higher in the MLD and LA groups compared to the TD group. Our findings suggest that, even in nonclinical samples, math difficulties at the earliest stages of formal math learning are associated with attentional difficulties and domain-specific anxiety. These findings underscore the need for further examination of the shared cognitive, neural, and genetic influences underlying problem solving and nonverbal learning difficulties and accompanying internalizing and externalizing behaviors. PMID:23313869

  4. An Investigation of Boys' and Girls' Emotional Experience of Math, Their Math Performance, and the Relation between These Variables

    ERIC Educational Resources Information Center

    Erturan, Selin; Jansen, Brenda

    2015-01-01

    Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…

  5. Trajectories of Self-Perceived Math Ability, Utility Value and Interest across Middle School as Predictors of High School Math Performance

    ERIC Educational Resources Information Center

    Petersen, Jennifer Lee; Hyde, Janet Shibley

    2017-01-01

    Although many studies have documented developmental change in mathematics motivation, little is known about how these trends predict math performance. A sample of 288 participants from the United States reported their perceived math ability, math utility value and math interest in 5th, 7th and 9th grades. Latent growth curve models estimated…

  6. A longitudinal analysis of sex differences in math and spatial skills in primary school age children☆

    PubMed Central

    Lachance, Jennifer A.; Mazzocco, Michèle M.M.

    2009-01-01

    We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming and decoding tasks, visual perception tests, visual motor tasks, and reading skills. During select years of the study we also administered tests of counting and math facts skills. We examined whether girls or boys were overrepresented among the bottom or top performers on any of these tasks, relative to their peers, and whether growth rates or predictors of math-related skills differed for boys and girls. Our findings support the notion that sex differences in math are minimal or nonexistent on standardized psychometric tests routinely given in assessments of primary school age children. There was no persistent finding suggesting a male or female advantage in math performance overall, during any single year of the study, or in any one area of math or spatial skills. Growth rates for all skills, and early correlates of later math performance, were comparable for boys and girls. The findings fail to support either persistent or emerging sex differences on non-specialized math ability measures during the primary school age years. PMID:20463851

  7. The influence of math anxiety on symbolic and non-symbolic magnitude processing.

    PubMed

    Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise

    2015-01-01

    Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.

  8. The influence of math anxiety on symbolic and non-symbolic magnitude processing

    PubMed Central

    Dietrich, Julia F.; Huber, Stefan; Moeller, Korbinian; Klein, Elise

    2015-01-01

    Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed. PMID:26579012

  9. An investigation of the impact of science course sequencing on student performance in high school science and math

    NASA Astrophysics Data System (ADS)

    Mary, Michael Todd

    High school students in the United States for the past century have typically taken science courses in a sequence of biology followed by chemistry and concluding with physics. An alternative sequence, typically referred to as "physics first" inverts the traditional sequence by having students begin with physics and end with biology. Proponents of physics first cite advances in biological sciences that have dramatically changed the nature of high school biology and the potential benefit to student learning in math that would accompany taking an algebra-based physics course in the early years of high school to support changing the sequence. Using a quasi-experimental, quantitative research design, the purpose of this study was to investigate the impact of science course sequencing on student achievement in math and science at a school district that offered both course sequences. The Texas state end-of-course exams in biology, chemistry, physics, algebra I and geometry were used as the instruments measuring student achievement in math and science at the end of each academic year. Various statistical models were used to analyze these achievement data. The conclusion was, for students in this study, the sequence in which students took biology, chemistry, and physics had little or no impact on performance on the end-of-course assessments in each of these courses. Additionally there was only a minimal effect found with respect to math performance, leading to the conclusion that neither the traditional or "physics first" science course sequence presented an advantage for student achievement in math or science.

  10. The American Math and Science Student Support Act. Hearing before the Subcommittee on Science of the Committee on Science, Space, and Technology. House of Representatives, One Hundred Second Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.

    This document presents the transcript of a congressional hearing to consider the American Math and Science Student Support Act, H.R. 4595. The legislation is designed to address the issue of attracting a greater proportion of U.S. citizens to graduate study in science, mathematics, and engineering. The hearings include testimony and prepared…

  11. Boundary layer transition: A review of theory, experiment and related phenomena

    NASA Technical Reports Server (NTRS)

    Kistler, E. L.

    1971-01-01

    The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.

  12. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    PubMed Central

    Tsui, Joanne M.; Mazzocco, Michèle M. M.

    2009-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition preceded the untimed condition. We also found that children with higher levels of either math anxiety or perfectionism had a smaller performance discrepancy during timed versus untimed testing, relative to children with lower levels of math anxiety or perfectionism. There were no statistically significant gender differences in overall test performance, nor in levels of math anxiety or perfectionism; however, the difference between performance on timed and untimed math testing was statistically significant for girls, but not for boys. Implications for educators are discussed. PMID:20084180

  13. A descriptive study of high school Latino and Caucasian students' values about math, perceived math achievement and STEM career choice

    NASA Astrophysics Data System (ADS)

    Rodriguez Flecha, Samuel

    The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students' career choice, future directions and recommendations are provided. In sum, positive experiences in STEM can favorably contribute to students' sense of competence and satisfaction.

  14. Cognitive consistency and math-gender stereotypes in Singaporean children.

    PubMed

    Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu

    2014-01-01

    In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. K-16 Computationally Rich Science Education: A Ten-Year Review of the "Journal of Science Education and Technology" (1998-2008)

    ERIC Educational Resources Information Center

    Wofford, Jennifer

    2009-01-01

    Computing is anticipated to have an increasingly expansive impact on the sciences overall, becoming the third, crucial component of a "golden triangle" that includes mathematics and experimental and theoretical science. However, even more true with computing than with math and science, we are not preparing our students for this new reality. It is…

  16. Technology Engineering in Science Education: Where Instructional Challenges Interface Nonconforming Productivity to Increase Retention, Enhance Transfer, and Maximize Student Learning

    ERIC Educational Resources Information Center

    Osler, James E.; Hollowell, Gail P.; Nichols, Stacy M.

    2012-01-01

    Technology Engineering is an innovative component of a much larger arena of teaching that effectively uses interactive technology as a method of enhancing learning and the learning environment. Using this method to teach science and math content empowers the teacher and enhances the curriculum as the classroom becomes more efficient and effective.…

  17. An Analysis of Training Requirements and Competencies for the Naval Acquisition Systems Engineering Workforce

    DTIC Science & Technology

    2013-06-01

    math (Lasley- Hunter, 2011, p. 30–31). The significance of this finding stems from the fact that education is one of three components of DAWIA...II CLE 003 Technical Reviews SYS 302 Technical Leadership in Systems Engineering CLL  008 Designing for Supportability in DoD Systems DAU SPRDE‐SE

  18. "I Learned Quite a Lot of the Maths Stuff Now That I Think of It": Maori Medium Students Reflecting on Their Initial Teacher Education

    ERIC Educational Resources Information Center

    Hawera, Ngarewa; Taylor, Merilyn

    2017-01-01

    Research involving preservice or initial teacher education (ITE) indicates that mathematics education is a vital component of study. Little is known however, of indigenous student views of their compulsory mathematics education courses for a teaching degree. This research contributes to that knowledge space as it explores Maori medium ITE…

  19. FASTSAT-HSV01 Thermal Math Model Correlation

    NASA Technical Reports Server (NTRS)

    McKelvey, Callie

    2011-01-01

    This paper summarizes the thermal math model correlation effort for the Fast Affordable Science and Technology SATellite (FASTSAT-HSV01), which was designed, built and tested by NASA's Marshall Space Flight Center (MSFC) and multiple partners. The satellite launched in November 2010 on a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. It carried three Earth science experiments and two technology demonstrations into a low Earth circular orbit with an inclination of 72deg and an altitude of 650 kilometers. The mission has been successful to date with science experiment activities still taking place daily. The thermal control system on this spacecraft was a passive design relying on thermo-optical properties and six heaters placed on specific components. Flight temperature data is being recorded every minute from the 48 Resistance Temperature Devices (RTDs) onboard the satellite structure and many of its avionics boxes. An effort has been made to correlate the thermal math model to the flight temperature data using Cullimore and Ring's Thermal Desktop and by obtaining Earth and Sun vector data from the Attitude Control System (ACS) team to create an "as-flown" orbit. Several model parameters were studied during this task to understand the spacecraft's sensitivity to these changes. Many "lessons learned" have been noted from this activity that will be directly applicable to future small satellite programs.

  20. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik; Bannon, Erika; Bower, Chad

    2009-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system.. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat being rejected by a radiator. Coupon level tests were performed to test the feasibility of the technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios during a mission profile for Altair Lunar Lander. This paper summarizes results from coupon level tests as well as thermal math models developed to investigate how electrochromics can be used to provide the largest turn down ratio for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  1. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  2. [Prediction of mathematics achievement: effect of personal, socioeducational and contextual variables].

    PubMed

    Rosário, Pedro; Lourenço, Abílio; Paiva, Olímpia; Rodrigues, Adriana; Valle, Antonio; Tuero-Herrero, Ellián

    2012-05-01

    Based upon the self-regulated learning theoretical framework this study examined to what extent students' Math school achievement (fifth to ninth graders from compulsory education) can be explained by different cognitive-motivational, social, educational, and contextual variables. A sample of 571 students (10 to 15 year old) enrolled in the study. Findings suggest that Math achievement can be predicted by self-efficacy in Math, school success and self-regulated learning and that these same variables can be explained by other motivational (ej., achievement goals) and contextual variables (school disruption) stressing this way the main importance of self-regulated learning processes and the role context can play in the promotion of school success. The educational implications of the results to the school levels taken are also discussed in the present paper.

  3. Characteristic behaviors of students with LD who have teacher-identified math weaknesses.

    PubMed

    Bryant, D P; Bryant, B R; Hammill, D D

    2000-01-01

    Mathematics learning disabilities (LD) have gained increased attention over the last decade from both researchers and practitioners. A large percentage of students receiving learning disability services experience difficulties with mathematics, but little research has examined the specific mathematics behaviors of students with LD who have teacher-identified math weaknesses. This study examines the literature on mathematics LD and identifies specific behaviors from that body of research for the purpose of determining the extent to which those behaviors are observed in students with LD. Data are presented from observations of 391 special education professionals on 1724 students with LD, 870 of whom had identified math weaknesses and 854 of whom did not. Our results validate the existing literature and provide implications for teachers, researchers, and others interested in studying mathematics LD.

  4. An overview of the mathematical and statistical analysis component of RICIS

    NASA Technical Reports Server (NTRS)

    Hallum, Cecil R.

    1987-01-01

    Mathematical and statistical analysis components of RICIS (Research Institute for Computing and Information Systems) can be used in the following problem areas: (1) quantification and measurement of software reliability; (2) assessment of changes in software reliability over time (reliability growth); (3) analysis of software-failure data; and (4) decision logic for whether to continue or stop testing software. Other areas of interest to NASA/JSC where mathematical and statistical analysis can be successfully employed include: math modeling of physical systems, simulation, statistical data reduction, evaluation methods, optimization, algorithm development, and mathematical methods in signal processing.

  5. Can Low-Cost Online Summer Math Programs Improve Student Preparation for College-Level Math? Evidence from Randomized Experiments at Three Universities

    ERIC Educational Resources Information Center

    Chingos, Matthew M.; Griffiths, Rebecca J.; Mulhern, Christine

    2017-01-01

    Every year many students enter college without the math preparation needed to succeed in their desired programs of study. Many of these students struggle to catch up, especially those who are required to take remedial math courses before entering college-level math. Increasing the number of students who begin at the appropriate level of math has…

  6. PTC MathCAD and Workgroup Manager: Implementation in a Multi-Org System

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2015-01-01

    In this presentation, the presenter will review what was done at Kennedy Space Center to deploy and implement PTC MathCAD and PTC Workgroup Manager in a multi-org system. During the presentation the presenter will explain how they configured PTC Windchill to create custom soft-types and object initialization rules for their custom numbering scheme and why they choose these methods. This presentation will also include how to modify the EPM default soft-type file in the PTC Windchill server codebase folder. The presenter will also go over the code used in a start up script to initiate PTC MathCAD and PTC Workgroup Manager in the proper order, and also set up the environment variables when running both PTC Workgroup Manager and PTC Creo. The configuration.ini file the presenter used will also be reviewed to show you how to set up the PTC Workgroup Manager and customized it to their user community. This presentation will be of interest to administrators trying to create a similar set-up in either a single org or multiple org system deployment. The big take away will be ideas and best practices learned through implementing this system, and the lessons learned what to do and not to do when setting up this configuration. Attendees will be exposed to several different sets of code used and that worked well and will hear some limitations on what the software can accomplish when configured this way.

  7. Growth Texture and Mechanism of Zinc Nanowires Produced by Mechanical Elongation of Nanocontacts.

    PubMed

    Yamabe, Kammu; Kizuka, Tokushi

    2018-01-01

    Two zinc nanotips were brought into contact and elongated inside a transmission electron microscope, thereby growing single-crystal nanowires. The growth dynamics was observed in situ via a lattice imaging method. The preferential crystal growth directions were identified as [101-0], [112-0], [101-2-], and [0001]. Of these, the nanowires grown along the [101-0] and [112-0] directions accounted for 75% of the total and were surrounded by low-energy side surfaces, i.e., {0001}, {101-1}, and {101-0}. On the basis of these features, models of the nanowire morphology were proposed. In either growth direction, the tensile force aligned parallel to the direction along which slip events corresponding to the predominant slip system were unlikely to occur. This led to a high tensile stress for extracting atoms from the growth region, i.e., the promotion of nanowire growth.

  8. Northland science discovery. Final report, February 15, 1995--February 14, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigford, A.

    1997-09-01

    This is a final report on the US Department of Energy`s grant of $39,900 to the PLUS Center at The College of St. Scholastica for a PREP program called Northland Science Discovery (NSD). This report includes an overview of the past year`s progress toward achieving the goals established for the project, a description of the results of these efforts and their relationship to the project goals, and appendices documenting program activities, accomplishments, and expenditures. The goal of Northland Science Discovery is to provide science and math enrichment activities for students traditionally underrepresented in science (girls, minorities, low-income, and rural children).more » The program works toward this goal by providing a four-week residential, research-based, science and math youth camp which serves approximately 25 students per year. NSD has been held each summer since 1992. This program also has an academic-year component consisting of reunions.« less

  9. Impacts of a Comprehensive School Readiness Curriculum for Preschool Children at Risk for Educational Difficulties.

    PubMed

    Lonigan, Christopher J; Phillips, Beth M; Clancy, Jeanine L; Landry, Susan H; Swank, Paul R; Assel, Michael; Taylor, Heather B; Klein, Alice; Starkey, Prentice; Domitrovich, Celene E; Eisenberg, Nancy; de Villiers, Jill; de Villiers, Peter; Barnes, Marcia

    2015-01-01

    This article reports findings from a cluster-randomized study of an integrated literacy- and math-focused preschool curriculum, comparing versions with and without an explicit socioemotional lesson component to a business-as-usual condition. Participants included 110 classroom teachers from randomized classrooms and approximately eight students from each classroom (N = 760) who averaged 4.48 (SD = 0.44) years of age at the start of the school year. There were positive impacts of the two versions of the curriculum on language, phonological awareness, math, and socioemotional outcomes, but there were no added benefits to academic or socioemotional outcomes for the children receiving explicit socioemotional instruction. Results are discussed with relevance to early childhood theory, policy, and goals of closing the school readiness gap. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.

  10. Effects of Self-Graphing and Goal Setting on the Math Fact Fluency of Students with Disabilities

    PubMed Central

    Figarola, Patricia M; Gunter, Philip L; Reffel, Julia M; Worth, Susan R; Hummel, John; Gerber, Brian L

    2008-01-01

    We evaluated the impact of goal setting and students' participation in graphing their own performance data on the rate of math fact calculations. Participants were 3 students with mild disabilities in the first and second grades; 2 of the 3 students were also identified with Attention-Deficit/Hyperactivity Disorder (ADHD). They were taught to use Microsoft Excel® software to graph their rate of correct calculations when completing timed, independent practice sheets consisting of single-digit mathematics problems. Two students' rates of correct calculations nearly always met or exceeded the aim line established for their correct calculations. Additional interventions were required for the third student. Results are discussed in terms of implications and future directions for increasing the use of evaluation components in classrooms for students at risk for behavior disorders and academic failure. PMID:22477686

  11. Investigating the factors that motivate and engage native American students in math and science on the Duck Valley Indian reservation following participation in the NASA summer of innovation program

    NASA Astrophysics Data System (ADS)

    Herrington, John B.

    In response to the Obama Administration's launch of the "Educate to Innovate" campaign in 2010, the National Aeronautics and Space Administration (NASA) developed the NASA Summer of Innovation (SOI) program, designed to bring NASA educational materials to students and teachers in underserved and underrepresented communities. This study consisted of a mixed methods analysis to determine if the students on the Duck Valley Indian Reservation in southern Idaho experienced a positive change in attitude toward math and science due to their participation in the 2010 NASA SOI, both in the short-term and over a three-year period. Specifically, the quantitative analyses consisted of single-subject visual analysis, a paired-samples t-test, and a factorial ANOVA to analyze baseline and follow-up surveys conducted before and immediately after the summer program. Also, a qualitative case study was conducted to determine if the NASA SOI had a lasting impact on the students' positive attitude toward math and science, three years after the completion of the program. The results of the quantitative analyses did not indicate a statistically significant effect of the summer program on the attitudes of the students with respect to science and mathematics over the course of the program (time), between genders, or a combination of both time and gender. However, the narratives derived from the case study indicated the students' attitudes toward science were increased following their participation in the summer program. The qualitative data supported previous research on the importance of family, culture, hands-on experiential and collaborative learning as essential components in Native American students' motivation and engagement with respect to education and science. Additionally, the study found an absence of curriculum that presented historical examples of Native Americans as natural scientists and engineers.

  12. The effects of anxious responding on mental arithmetic and lexical decision task performance.

    PubMed

    Hopko, Derek R; McNeil, Daniel W; Lejuez, C W; Ashcraft, Mark H; Eifert, Georg H; Riel, Jim

    2003-01-01

    Anxiety-related responding and skill deficits historically are associated with performance-based problems such as mathematics anxiety, yet the relative contribution of these variables to substandard performance remains poorly understood. Utilizing a 7% carbon dioxide (CO2) gas to induce anxiety, the present study examined the impact of anxious responding on two performance tasks, mental arithmetic and lexical decision. Independent variables included math anxiety group, gender, and gas condition. Dependent variables included task performance and physiological and self-report indices of anxiety. A total of 64 university undergraduate students participated. Physiological and verbal-report measures of anxiety supported the utility of 7% carbon dioxide-enriched air as an anxiety-inducing stimulus. Behavioral disruption on performance tasks, however, did not differ as a function of carbon dioxide inhalation. Performance did differ as a function of math anxiety. High math anxious individuals generally exhibited higher error rates on mathematical tasks, particularly on tasks designed to measure advanced math skill and those requiring working memory resources. These findings are discussed with reference to processing efficiency theory, discordance among anxiety response systems, and the intricacies associated with skill measurement.

  13. Data dependence for the amplitude equation of surface waves

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    2016-04-01

    We consider the amplitude equation for nonlinear surface wave solutions of hyperbolic conservation laws. This is an asymptotic nonlocal, Hamiltonian evolution equation with quadratic nonlinearity. For example, this equation describes the propagation of nonlinear Rayleigh waves (Hamilton et al. in J Acoust Soc Am 97:891-897, 1995), surface waves on current-vortex sheets in incompressible MHD (Alì and Hunter in Q Appl Math 61(3):451-474, 2003; Alì et al. in Stud Appl Math 108(3):305-321, 2002) and on the incompressible plasma-vacuum interface (Secchi in Q Appl Math 73(4):711-737, 2015). The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in noncanonical variables was shown in Hunter (J Hyperbolic Differ Equ 3(2):247-267, 2006), Secchi (Q Appl Math 73(4):711-737, 2015). In the present paper we prove the continuous dependence in strong norm of solutions on the initial data. This completes the proof of the well-posedness of the problem in the classical sense of Hadamard.

  14. Putting the spark into physical science and algebra

    NASA Astrophysics Data System (ADS)

    Pill, Bruce; Dagenais, Andre

    2007-06-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.

  15. No doubt about it: when doubtful role models undermine men's and women's math performance under threat.

    PubMed

    Marx, David M; Monroe, Allyce H; Cole, Chris E; Gilbert, Patricia N

    2013-01-01

    Past work has shown that female role models are effective buffers against stereotype threat. The present research examines the boundary conditions of this role model effect. Specifically, we argue that female role models should avoid expressing doubt about their math abilities; otherwise they may cease to buffer women from stereotype threat. For men, a non-doubtful male role model should be seen as threatening, thus harming performance. A doubtful male role model, however, should be seen as non-threatening, thus allowing men to perform up to their ability in math. To test this reasoning, men and women were exposed to either an outgroup or ingroup role model who either expressed doubt or did not. Participants then took a math exam under stereotype threat conditions. As expected, doubtful ingroup role models hurt women, but helped men's performance. Outgroup role models' expressed doubt had no differential effect on performance. We also show that expressions of doubt take on a different meaning when expressed by a female rather than a male role model.

  16. Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x

    NASA Astrophysics Data System (ADS)

    Zhang, Jiecheng; Levenson-Falk, Eli M.; Ramshaw, B. J.; Bonn, D. A.; Liang, Ruixing; Hardy, W. N.; Hartnoll, Sean A.; Kapitulnik, Aharon

    2017-05-01

    The thermal diffusivity in the abab plane of underdoped YBCO crystals is measured by means of a local optical technique in the temperature range of 25-300 K. The phase delay between a point heat source and a set of detection points around it allows for high-resolution measurement of the thermal diffusivity and its in-plane anisotropy. Although the magnitude of the diffusivity may suggest that it originates from phonons, its anisotropy is comparable with reported values of the electrical resistivity anisotropy. Furthermore, the anisotropy drops sharply below the charge order transition, again similar to the electrical resistivity anisotropy. Both of these observations suggest that the thermal diffusivity has pronounced electronic as well as phononic character. At the same time, the small electrical and thermal conductivities at high temperatures imply that neither well-defined electron nor phonon quasiparticles are present in this material. We interpret our results through a strongly interacting incoherent electron-phonon “soup” picture characterized by a diffusion constant D˜vB2τD˜vB2τ, where vBvB is the soup velocity, and scattering of both electrons and phonons saturates a quantum thermal relaxation time τ˜/kBTτ˜ℏ/kBT.

  17. The Combined Influence of Air Pollution and Home Learning Environment on Early Cognitive Skills in Children

    PubMed Central

    Stingone, Jeanette A.

    2017-01-01

    Cognitive skills are one component of school readiness that reflect a child’s neurodevelopment and are influenced by environmental and social factors. Most studies assess the impact of these factors individually, without taking into consideration the complex interactions of multiple factors. The objective of this study was to examine the joint association of markers of environmental pollution and of social factors on early cognitive skills in an urban cohort of children. For this, we chose isophorone in ambient air as a marker of industrial air pollution. Low quality home learning environments was chosen as a marker of the social factors contributing to cognitive development. Using a subpopulation from the Early Childhood Longitudinal Study, Birth Cohort (N = 4050), isophorone exposure was assigned using the 2002 National Air Toxics Assessment. Home learning environment was assessed with a modified version of the Home Observation for Measurement of the Environment (HOME) Inventory, and standardized math assessment scores were used as a measure of early cognitive skills. Multiple linear regression was used to estimate the effect of both exposures on math scores. After adjustment for confounders, children living in areas with ambient isophorone in the upper quintile of exposure (>0.49 ng/m3) had math scores that were 1.63 points lower than their less exposed peers [95% CI: −2.91, −0.34], and children with lower HOME scores (at or below 9 out of 12) had math scores that were 1.20 points lower than children with better HOME scores [95% CI: −2.30, −0.10]. In adjusted models accounting for identified confounders and both exposures of interest, both high isophorone exposure and low HOME score remained independently associated with math scores [−1.48, 95% CI: −2.79, −0.18; −1.05, 95% CI: −2.15, 0.05, respectively]. There was no statistical evidence of interaction between the two exposures, although children with both higher isophorone exposure and a low HOME score had a decrement in math scale score beyond the additive effect of each exposure. This was primarily observed among male children. These findings suggest that aspects of both the physical and social environments are independently associated with children’s early cognitive skills. Future research aiming to improve children’s early cognitive skills and subsequent school readiness should address both domains. PMID:29072589

  18. The Combined Influence of Air Pollution and Home Learning Environment on Early Cognitive Skills in Children.

    PubMed

    Lett, Lanair A; Stingone, Jeanette A; Claudio, Luz

    2017-10-26

    Cognitive skills are one component of school readiness that reflect a child's neurodevelopment and are influenced by environmental and social factors. Most studies assess the impact of these factors individually, without taking into consideration the complex interactions of multiple factors. The objective of this study was to examine the joint association of markers of environmental pollution and of social factors on early cognitive skills in an urban cohort of children. For this, we chose isophorone in ambient air as a marker of industrial air pollution. Low quality home learning environments was chosen as a marker of the social factors contributing to cognitive development. Using a subpopulation from the Early Childhood Longitudinal Study, Birth Cohort (N = 4050), isophorone exposure was assigned using the 2002 National Air Toxics Assessment. Home learning environment was assessed with a modified version of the Home Observation for Measurement of the Environment (HOME) Inventory, and standardized math assessment scores were used as a measure of early cognitive skills. Multiple linear regression was used to estimate the effect of both exposures on math scores. After adjustment for confounders, children living in areas with ambient isophorone in the upper quintile of exposure (>0.49 ng/m³) had math scores that were 1.63 points lower than their less exposed peers [95% CI: -2.91, -0.34], and children with lower HOME scores (at or below 9 out of 12) had math scores that were 1.20 points lower than children with better HOME scores [95% CI: -2.30, -0.10]. In adjusted models accounting for identified confounders and both exposures of interest, both high isophorone exposure and low HOME score remained independently associated with math scores [-1.48, 95% CI: -2.79, -0.18; -1.05, 95% CI: -2.15, 0.05, respectively]. There was no statistical evidence of interaction between the two exposures, although children with both higher isophorone exposure and a low HOME score had a decrement in math scale score beyond the additive effect of each exposure. This was primarily observed among male children. These findings suggest that aspects of both the physical and social environments are independently associated with children's early cognitive skills. Future research aiming to improve children's early cognitive skills and subsequent school readiness should address both domains.

  19. Addressing Math Anxiety in the Classroom

    ERIC Educational Resources Information Center

    Finlayson, Maureen

    2014-01-01

    In today's educational systems, students of all levels of education experience math anxiety. Furthermore, math anxiety is frequently linked to poor achievement in mathematics. The purpose of this study is to examine the causes of math anxiety and to explore strategies which pre-service teachers have identified to overcome math anxiety. The…

  20. The Effects of Math Anxiety

    ERIC Educational Resources Information Center

    Andrews, Amanda; Brown, Jennifer

    2015-01-01

    Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…

  1. Math Exchanges: Guiding Young Mathematicians in Small-Group Meetings

    ERIC Educational Resources Information Center

    Wedekind, Kassia Omohundro

    2011-01-01

    Traditionally, small-group math instruction has been used as a format for reaching children who struggle to understand. Math coach Kassia Omohundro Wedekind uses small-group instruction as the centerpiece of her math workshop approach, engaging all students in rigorous "math exchanges." The key characteristics of these mathematical conversations…

  2. Math Intervention Teachers' Pedagogical Content Knowledge and Student Achievement

    ERIC Educational Resources Information Center

    Waller, Lisa Ivey

    2012-01-01

    This research investigated the relationship of math intervention teachers' (MITs) pedagogical content knowledge (PCK) and students' math achievement gains in primary math interventions. The Kentucky Center for Mathematics gathered data on the MITs and primary math intervention students included in this study. Longitudinal data were analyzed for a…

  3. Some Recent Results on Graph Matching,

    DTIC Science & Technology

    1987-06-01

    V. CHVATAL, Tough graphs and Hamiltonian circuits, Discrete Math . 5, 1973, 215-228. [El] J. EDMONDS, Paths, trees and flowers, Canad. J. Math. 17...Theory, Ann. Discrete Math . 29, North-Holland, Amsterdam, 1986. [N] D. NADDEF, Rank of maximum matchings in a graph, Math. Programming 22, 52-70. [NP...Optimization, Ann. Discrete Math . 16, North-Holland, Amsterdam, 1982, 241-260. [P1] M.D. PLUMMER, On n-extendable graphs, Discrete Math . 31, 1980, 201-210

  4. Advanced Math Course Taking: Effects on Math Achievement and College Enrollment

    PubMed Central

    Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.

    2014-01-01

    Using data from the Educational Longitudinal Study of 2002–2006 (ELS:02/06), this study investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status (SES) and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course taking had positive effects on math achievement and college enrollment. Results also demonstrated that the effect of advanced math course taking on math achievement was greater for low SES students than for high SES students, but smaller for Black students than for White students. No interaction effects were found for college enrollment. Limitations, policy implications, and future research directions are discussed. PMID:26508803

  5. How is anxiety related to math performance in young students? A longitudinal study of Grade 2 to Grade 3 children.

    PubMed

    Cargnelutti, Elisa; Tomasetto, Carlo; Passolunghi, Maria Chiara

    2017-06-01

    Both general and math-specific anxiety are related to proficiency in mathematics. However, it is not clear when math anxiety arises in young children, nor how it relates to early math performance. This study therefore investigated the early association between math anxiety and math performance in Grades 2 and 3, by accounting for general anxiety and by further inspecting the prevalent directionality of the anxiety-performance link. Results revealed that this link was significant in Grade 3, with a prevalent direction from math anxiety to performance, rather than the reverse. Longitudinal analyses also showed an indirect effect of math anxiety in Grade 2 on subsequent math performance in Grade 3. Overall, these findings highlight the importance of monitoring anxiety from the early stages of schooling in order to promote proficient academic performance.

  6. A Systematic Review of Longitudinal Studies of Mathematics Difficulty.

    PubMed

    Nelson, Gena; Powell, Sarah R

    2017-06-01

    Some students may be diagnosed with a learning disability in mathematics or dyscalculia, whereas other students may demonstrate below-grade-level mathematics performance without a disability diagnosis. In the literature, researchers often identify students in both groups as experiencing math difficulty. To understand the performance of students with math difficulty, we examined 35 studies that reported longitudinal results of mathematics achievement (i.e., mathematics performance measured across at least a 12-month span). Our primary goal was to conduct a systematic review of these studies and to understand whether the growth of students with math difficulty was comparable or stagnant when compared with that of students without math difficulty. We also analyzed whether identification of math difficulty was predictive of mathematics achievement in later grades and whether a diagnosis of math difficulty was stable across grade levels. Results indicate that students with math difficulty demonstrate growth on mathematics measures, but this growth still leads to lower performance than that of students without math difficulty. Identification of math difficulty is strongly related to math performance in subsequent grades, and this diagnosis is often stable. Collectively, this literature indicates that students with math difficulty continue to struggle with mathematics in later grades.

  7. Simple arithmetic: not so simple for highly math anxious individuals.

    PubMed

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  8. Simple arithmetic: not so simple for highly math anxious individuals

    PubMed Central

    Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-01-01

    Abstract Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low—compared to high—math anxious individuals perform better when they activate this network less—a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. PMID:29140499

  9. Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring

    PubMed Central

    Iuculano, Teresa; Chen, Lang

    2015-01-01

    Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. SIGNIFICANCE STATEMENT Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate math anxiety in young children. Surprisingly, there have been no studies of cognitive interventions and the underlying neurobiological mechanisms by which math anxiety can be ameliorated in young children. Here, we demonstrate that intensive 8 week one-to-one cognitive tutoring not only reduces math anxiety but also remarkably remediates aberrant functional responses and connectivity in emotion-related circuits anchored in the amygdala. Our findings are likely to propel new ways of thinking about early treatment of a disability that has significant implications for improving each individual's academic and professional chances of success in today's technological society that increasingly demands strong quantitative skills. PMID:26354922

  10. Exploring the relationship between math anxiety and gender through implicit measurement

    PubMed Central

    Rubinsten, Orly; Bialik, Noam; Solar, Yael

    2012-01-01

    Math anxiety, defined as a negative affective response to mathematics, is suggested as a strong antecedent for the low visibility of women in the science and engineering workforce. However, the assumption of gender differences in math anxiety is still being studied and results are inconclusive, probably due to the use of explicit measures such as direct questionnaires. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in males and females by using a novel affective priming task as an indirect measure. Specifically, university students (23 males and 30 females) completed a priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative, or related to mathematics). Participants were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication, or division) was true or false. People are typically found to respond to target stimuli more rapidly after presentation of an affectively related prime than after an affectively unrelated one. In the current study, shorter response latencies for positive as compared to negative affective primes were found in the male group. An affective priming effect was found in the female group as well, but with a reversed pattern. That is, significantly shorter response latencies were observed in the female group for negative as compared to positive targets. That is, for females, negative affective primes act as affectively related to simple arithmetic problems. In contrast, males associated positive affect with simple arithmetic. In addition, only females with lower or insignificant negative affect toward arithmetic study at faculties of mathematics and science. We discuss the advantages of examining pure anxiety factors with implicit measures which are free of response factors. In addition it is suggested that environmental factors may enhance the association between math achievements and math anxiety in females. PMID:23087633

  11. Exploring the relationship between math anxiety and gender through implicit measurement.

    PubMed

    Rubinsten, Orly; Bialik, Noam; Solar, Yael

    2012-01-01

    Math anxiety, defined as a negative affective response to mathematics, is suggested as a strong antecedent for the low visibility of women in the science and engineering workforce. However, the assumption of gender differences in math anxiety is still being studied and results are inconclusive, probably due to the use of explicit measures such as direct questionnaires. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in males and females by using a novel affective priming task as an indirect measure. Specifically, university students (23 males and 30 females) completed a priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative, or related to mathematics). Participants were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication, or division) was true or false. People are typically found to respond to target stimuli more rapidly after presentation of an affectively related prime than after an affectively unrelated one. In the current study, shorter response latencies for positive as compared to negative affective primes were found in the male group. An affective priming effect was found in the female group as well, but with a reversed pattern. That is, significantly shorter response latencies were observed in the female group for negative as compared to positive targets. That is, for females, negative affective primes act as affectively related to simple arithmetic problems. In contrast, males associated positive affect with simple arithmetic. In addition, only females with lower or insignificant negative affect toward arithmetic study at faculties of mathematics and science. We discuss the advantages of examining pure anxiety factors with implicit measures which are free of response factors. In addition it is suggested that environmental factors may enhance the association between math achievements and math anxiety in females.

  12. Motivated Forgetting in Early Mathematics: A Proof-of-Concept Study

    PubMed Central

    Ramirez, Gerardo

    2017-01-01

    Educators assume that students are motivated to retain what they are taught. Yet, students commonly report that they forget most of what they learn, especially in mathematics. In the current study I ask whether students may be motivated to forget mathematics because of academic experiences threaten the self-perceptions they are committed to maintaining. Using a large dataset of 1st and 2nd grade children (N = 812), I hypothesize that math anxiety creates negative experiences in the classroom that threaten children’s positive math self-perceptions, which in turn spurs a motivation to forget mathematics. I argue that this motivation to forget is activated during the winter break, which in turn reduces the extent to which children grow in achievement across the school year. Children were assessed for math self-perceptions, math anxiety and math achievement in the fall before going into winter break. During the spring, children’s math achievement was measured once again. A math achievement growth score was devised from a regression model of fall math achievement predicting spring achievement. Results show that children with higher math self-perceptions showed reduced growth in math achievement across the school year as a function of math anxiety. Children with lower math interest self-perceptions did not show this relationship. Results serve as a proof-of-concept for a scientific account of motivated forgetting within the context of education. PMID:29255439

  13. Motivated Forgetting in Early Mathematics: A Proof-of-Concept Study.

    PubMed

    Ramirez, Gerardo

    2017-01-01

    Educators assume that students are motivated to retain what they are taught. Yet, students commonly report that they forget most of what they learn, especially in mathematics. In the current study I ask whether students may be motivated to forget mathematics because of academic experiences threaten the self-perceptions they are committed to maintaining. Using a large dataset of 1st and 2nd grade children ( N = 812), I hypothesize that math anxiety creates negative experiences in the classroom that threaten children's positive math self-perceptions, which in turn spurs a motivation to forget mathematics. I argue that this motivation to forget is activated during the winter break, which in turn reduces the extent to which children grow in achievement across the school year. Children were assessed for math self-perceptions, math anxiety and math achievement in the fall before going into winter break. During the spring, children's math achievement was measured once again. A math achievement growth score was devised from a regression model of fall math achievement predicting spring achievement. Results show that children with higher math self-perceptions showed reduced growth in math achievement across the school year as a function of math anxiety. Children with lower math interest self-perceptions did not show this relationship. Results serve as a proof-of-concept for a scientific account of motivated forgetting within the context of education.

  14. Helping Students Get Past Math Anxiety

    ERIC Educational Resources Information Center

    Scarpello, Gary

    2007-01-01

    Math anxiety can begin as early as the fourth grade and peaks in middle school and high school. It can be caused by past classroom experiences, parental influences, and remembering poor past math performance. Math anxiety can cause students to avoid challenging math courses and may limit their career choices. It is important for teachers, parents…

  15. Incremental Beliefs of Ability, Achievement Emotions and Learning of Singapore Students

    ERIC Educational Resources Information Center

    Luo, Wenshu; Lee, Kerry; Ng, Pak Tee; Ong, Joanne Xiao Wei

    2014-01-01

    This study investigated the relationships of students' incremental beliefs of math ability to their achievement emotions, classroom engagement and math achievement. A sample of 273 secondary students in Singapore were administered measures of incremental beliefs of math ability, math enjoyment, pride, boredom and anxiety, as well as math classroom…

  16. Adults' Views on Mathematics Education: A Midwest Sample

    ERIC Educational Resources Information Center

    Brez, Caitlin C.; Allen, Jessica J.

    2016-01-01

    Currently, few studies have addressed public opinions regarding math education. The current study surveyed adults in a Midwestern town in the United States to assess opinions regarding math and math education. Overall, we found that adults believe that math is useful and that math education is important. We found that parents who currently have a…

  17. The Effectiveness of Using STAR Math to Improve PSSA Math Scores

    ERIC Educational Resources Information Center

    Holub, Sherry L.

    2017-01-01

    This is a quantitative study examining whether STAR Math, a student monitoring system, can improve PSSA Math scores. The experimental school used STAR Math during the 2015-2016 school year in grouping students for remediation and intervention. The control school used traditional curriculum measures to group students for remediation and…

  18. 1982 Maths Investigation: Technical Report. Mt. Druitt Longitudinal Study.

    ERIC Educational Resources Information Center

    Houghton, Karen; Low, Brian

    Aims of this phase of a longitudinal mathematics achievement investigation were to (1) detect individual and group differences in math achievement among a sample of fourth-year children, (2) monitor changes in math skills since a 1981 math investigation, and (3) identify limits of children's understanding of mathematical concepts. (The math test…

  19. Math at Work: Using Numbers on the Job

    ERIC Educational Resources Information Center

    Torpey, Elka

    2012-01-01

    Math is used in many occupations. And, experts say, workers with a strong background in mathematics are increasingly in demand. That equals prime opportunity for career-minded math enthusiasts. This article describes how math factors into careers. The first section talks about some of the ways workers use math in the workplace. The second section…

  20. Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance

    ERIC Educational Resources Information Center

    Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.

    2011-01-01

    This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…

Top