78 FR 19541 - Proposed Revision to Design of Structures, Components, Equipment and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0041] Proposed Revision to Design of Structures, Components, Equipment and Systems AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft..., ``Design of Structures, Components, Equipment, and Systems;'' and the request for comment on NUREG-0800...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0041] Proposed Revision to Design of Structures, Components, Equipment and Systems; Correction AGENCY: Nuclear Regulatory Commission. ACTION: Standard review... for comments of the proposed revision in Chapter 3, ``Design of Structures, Components, Equipment, and...
Components of the airport access system
NASA Technical Reports Server (NTRS)
1978-01-01
The organizations and agencies which make up or influence the airport access system are examined. These include the airport, the airline industry, the public and private transit agencies which provide ground access to the airport, and the regulatory agencies which affect all of these organizations and their actions. Each component, with the exception of the regulatory agencies is described in terms of its legal status, its sources of funds, and the nature of its relationship with the other components. Conclusions regarding the system components' effects on airport access and recommendations for changes which appear practical are presented.
USDA-ARS?s Scientific Manuscript database
Campylobacter jejuni is a leading cause of bacterial diarrheal disease throughout the world and a frequent commensal in the intestinal tract of poultry and many other animals. For maintaining optimal growth and ability to colonize various hosts, C. jejuni depends upon two-component regulatory system...
78 FR 57904 - Request for a License To Export; Reactor Components
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-20
... NUCLEAR REGULATORY COMMISSION Request for a License To Export; Reactor Components Pursuant to 10..., systems, related reactors. operation of AP- XR177, 11006121. equipment, and 1000 (design) spare parts. nuclear reactors. Dated this 16th day of September 2013 in Rockville, Maryland. For The Nuclear Regulatory...
Graham, Morag R; Smoot, Laura M; Migliaccio, Cristi A Lux; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Federle, Michael J; Adams, Gerald J; Scott, June R; Musser, James M
2002-10-15
Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.
75 FR 62436 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... Power Plants,'' includes in its scope safety- related structures, systems, and components (SSCs) that... monitor the effectiveness of maintenance for protective coatings within its scope (as discrete systems or... and Management System (ADAMS) under Accession No. ML102230359. Electronic copies of Regulatory Guide 1...
Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto
2015-01-01
During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.
78 FR 41434 - Proposed Revisions to Design of Structures, Components, Equipment and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
..., Components, Equipment and Systems AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft... Systems, Piping Components and their Associated Supports,'' of NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition.'' DATES: Submit comments by...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0098] Embedded Digital Devices in Safety-Related Systems... (NRC) is issuing for public comment Draft Regulatory Issue Summary (RIS) 2013-XX, ``Embedded Digital... requirements for the quality and reliability of basic components with embedded digital devices. DATES: Submit...
Zoetendal, Erwin G.; Smith, Alexandra H.; Sundset, Monica A.; Mackie, Roderick I.
2008-01-01
The gene expression profiles of Escherichia coli strains grown anaerobically with or without Acacia mearnsii (black wattle) extract were compared to identify tannin resistance strategies. The cell envelope stress protein gene spy and the multidrug transporter-encoding operon mdtABCD, both under the control of the BaeSR two-component regulatory system, were significantly up-regulated in the presence of tannins. BaeSR mutants were more tannin sensitive than their wild-type counterparts. PMID:18039828
General Aspects of Two-Component Regulatory Circuits in Bacteria: Domains, Signals and Roles.
Padilla-Vaca, Felipe; Mondragón-Jaimes, Verónica; Franco, Bernardo
2017-01-01
All living organisms are subject to changing environments, which must be sensed in order to respond swiftly and efficiently. Two-component systems (TCS) are signal transduction regulatory circuits based typically on a membrane bound sensor kinase and a cytoplasmic response regulator, that is activated through a histidine to aspartate phosphorelay reactions. Activated response regulator acts usually as a transcription factor. The best known examples were identified in bacteria, but they are also found in fungi, algae and plants. Thus far, they are not found in mammals. Regulatory circuits coupled to two-component systems exhibit a myriad of responses to environmental stimuli such as: redox potential, pH, specific metabolites, pressure, light and more recently to specific antimicrobial peptides that activate a sensor kinase responsible for expressing virulence factors through the active response regulator. In this review we explore general aspects on two-component systems that ultimately can play a role on virulence regulation, also the intriguing domain properties of the sensor kinases that can be a potential target for antimicrobial compounds. Only a handful of sensor kinases are extensively characterized, the vast majority belong to what we call 'the dark matter of bacterial signal transduction' since no known signal, structure and biochemical properties are available. Regulatory circuits from vertebrate pathogenic organisms can explain virulence in terms of either response to environmental factors or specific niche occupancy. Hopefully, knowledge on these signal transduction systems can lead to identify novel molecules that target two-component systems, since the increase of drug resistant microorganisms is worrisome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
75 FR 33853 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... performance or condition of structures, systems, or components * * * in a manner sufficient to provide reasonable assurance that these structures, systems, and components * * * are capable of fulfilling their... Management System (ADAMS). Comments would be most helpful if received by August 13, 2010. Comments received...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Rozhdestvenskaya, Anastasia S.; Totolian, Artem A.; Dmitriev, Alexander V.
2010-01-01
Background Streptococcus agalactiae is able to colonize numerous tissues employing different mechanisms of gene regulation, particularly via two-component regulatory systems. These systems sense the environmental stimuli and regulate expression of the genes including virulence genes. Recently, the novel two-component regulatory system Sak188/Sak189 was identified. In S. agalactiae genome, it was adjacent to the bac gene encoding for β-antigen, an important virulence factor. Methodology/Principal Findings In this study, the sak188 and sak189 genes were inactivated, and the functional role of Sak188/Sak189 two-component system in regulation of the β-antigen expression was investigated. It was demonstrated that both transcription of bac gene and expression of encoded β-antigen were controlled by Sak189 response regulator, but not Sak188 histidine kinase. It was also found that the regulation occurred at transcriptional level. Finally, insertional inactivation of sak189 gene, but not sak188 gene, significantly affected virulent properties of S. agalactiae. Conclusions/Significance Sak189 response regulator is necessary for activation of bac gene transcription. It also controls the virulent properties of S. agalactiae. Given that the primary functional role of Sak188/Sak189 two-component systems is a control of bac gene transcription, this system can be annotated as BgrR/S (bac gene regulatory system). PMID:20419089
Stability analysis of an autocatalytic protein model
NASA Astrophysics Data System (ADS)
Lee, Julian
2016-05-01
A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.
Regulatory networks and connected components of the neutral space. A look at functional islands
NASA Astrophysics Data System (ADS)
Boldhaus, G.; Klemm, K.
2010-09-01
The functioning of a living cell is largely determined by the structure of its regulatory network, comprising non-linear interactions between regulatory genes. An important factor for the stability and evolvability of such regulatory systems is neutrality - typically a large number of alternative network structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional networks is fragmented into ≈ 4.7 × 108 components. One of the smaller ones contains the wildtype network. On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.
77 FR 3514 - Protection Against Turbine Missiles
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0481] Protection Against Turbine Missiles AGENCY: Nuclear... (NRC or Commission) is issuing a revision to Regulatory Guide 1.115, ``Protection Against Turbine... structures, systems, and components against missiles resulting from turbine failure by the appropriate...
Christensen, Steen; Serbus, Laura Renee
2015-01-01
Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk. PMID:25809075
Networking Omic Data to Envisage Systems Biological Regulation.
Kalapanulak, Saowalak; Saithong, Treenut; Thammarongtham, Chinae
To understand how biological processes work, it is necessary to explore the systematic regulation governing the behaviour of the processes. Not only driving the normal behavior of organisms, the systematic regulation evidently underlies the temporal responses to surrounding environments (dynamics) and long-term phenotypic adaptation (evolution). The systematic regulation is, in effect, formulated from the regulatory components which collaboratively work together as a network. In the drive to decipher such a code of lives, a spectrum of technologies has continuously been developed in the post-genomic era. With current advances, high-throughput sequencing technologies are tremendously powerful for facilitating genomics and systems biology studies in the attempt to understand system regulation inside the cells. The ability to explore relevant regulatory components which infer transcriptional and signaling regulation, driving core cellular processes, is thus enhanced. This chapter reviews high-throughput sequencing technologies, including second and third generation sequencing technologies, which support the investigation of genomics and transcriptomics data. Utilization of this high-throughput data to form the virtual network of systems regulation is explained, particularly transcriptional regulatory networks. Analysis of the resulting regulatory networks could lead to an understanding of cellular systems regulation at the mechanistic and dynamics levels. The great contribution of the biological networking approach to envisage systems regulation is finally demonstrated by a broad range of examples.
Regulation of Toxin Production in Clostridium perfringens
Ohtani, Kaori; Shimizu, Tohru
2016-01-01
The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here. PMID:27399773
Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola.
Marconi, Richard T
2017-10-13
The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.
Carden, Tony; Goode, Natassia; Read, Gemma J M; Salmon, Paul M
2017-03-15
Like most work systems, the domain of adventure activities has seen a series of serious incidents and subsequent calls to improve regulation. Safety regulation systems aim to promote safety and reduce accidents. However, there is scant evidence they have led to improved safety outcomes. In fact there is some evidence that the poor integration of regulatory system components has led to adverse safety outcomes in some contexts. Despite this, there is an absence of methods for evaluating regulatory and compliance systems. This article argues that sociotechnical systems theory and methods provide a suitable framework for evaluating regulatory systems. This is demonstrated through an analysis of a recently introduced set of adventure activity regulations. Work Domain Analysis (WDA) was used to describe the regulatory system in terms of its functional purposes, values and priority measures, purpose-related functions, object-related processes and cognitive objects. This allowed judgement to be made on the nature of the new regulatory system and on the constraints that may impact its efficacy following implementation. Importantly, the analysis suggests that the new system's functional purpose of ensuring safe activities is not fully supported in terms of the functions and objects available to fulfil them. Potential improvements to the design of the system are discussed along with the implications for regulatory system design and evaluation across the safety critical domains generally. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes
Okkotsu, Yuta; Little, Alexander S.; Schurr, Michael J.
2014-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections. PMID:24999454
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0095] Design Limits and Loading Combinations for Metal... Regulatory Guide (RG) 1.57, ``Design Limits and Loading Combinations for Metal Primary Reactor Containment... the NRC staff considers acceptable for design limits and loading combinations for metal primary...
Mern, Demissew S; Ha, Seung-Wook; Khodaverdi, Viola; Gliese, Nicole; Görisch, Helmut
2010-05-01
In addition to the known response regulator ErbR (former AgmR) and the two-component regulatory system EraSR (former ExaDE), three additional regulatory proteins have been identified as being involved in controlling transcription of the aerobic ethanol oxidation system in Pseudomonas aeruginosa. Two putative sensor kinases, ErcS and ErcS', and a response regulator, ErdR, were found, all of which show significant similarity to the two-component flhSR system that controls methanol and formaldehyde metabolism in Paracoccus denitrificans. All three identified response regulators, EraR (formerly ExaE), ErbR (formerly AgmR) and ErdR, are members of the luxR family. The three sensor kinases EraS (formerly ExaD), ErcS and ErcS' do not contain a membrane domain. Apparently, they are localized in the cytoplasm and recognize cytoplasmic signals. Inactivation of gene ercS caused an extended lag phase on ethanol. Inactivation of both genes, ercS and ercS', resulted in no growth at all on ethanol, as did inactivation of erdR. Of the three sensor kinases and three response regulators identified thus far, only the EraSR (formerly ExaDE) system forms a corresponding kinase/regulator pair. Using reporter gene constructs of all identified regulatory genes in different mutants allowed the hierarchy of a hypothetical complex regulatory network to be established. Probably, two additional sensor kinases and two additional response regulators, which are hidden among the numerous regulatory genes annotated in the genome of P. aeruginosa, remain to be identified.
Network motifs – recurring circuitry components in biological systems
Environmental perturbations, elicited by chemicals, dietary supplements, and drugs, can alter the dynamics of the molecular circuits and networks operating in cells, leading to multiple disease endpoints. Multi-component signal transduction pathways and gene regulatory circuits u...
Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants
Liang, Yan; Richardson, Sarah; Yan, Jingwei; ...
2017-01-17
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less
Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yan; Richardson, Sarah; Yan, Jingwei
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less
USDA-ARS?s Scientific Manuscript database
Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle including pathogenesis. Most TCSs remain uncharacterized with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterize a TCS in the plant-...
Martínez, Luary C; Yakhnin, Helen; Camacho, Martha I; Georgellis, Dimitris; Babitzke, Paul; Puente, José L; Bustamante, Víctor H
2011-06-01
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events. © 2011 Blackwell Publishing Ltd.
76 FR 16842 - Request for a License To Export Reactor Components
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Reactor Components Pursuant to 10.... Mechanical Corporation. coolant pump 1000 (design) maintenance, and systems, related reactors. operation of AP- equipment, and 1000 (design) spare parts. nuclear reactors. February 10, 2011 February 23, 2011...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-08
... defense weapon systems, subsystems, components, and other items. The proposed rule prohibits the delivery... initial regulatory flexibility analysis. DoD invites comments from small business concerns and other... and their related parts, subsystems, and components that already contain hexavalent chromium. However...
10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...
10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...
Heroven, Ann Kathrin; Böhme, Katja; Dersch, Petra
2012-04-01
This review emphasizes the function and regulation of the Csr regulatory system in the human enteropathogen Yersinia pseudotuberculosis and compares its features with the homologous Csr/Rsm systems of related pathogens. The Csr/Rsm systems of eubacteria form a complex regulatory network in which redundant non-translated Csr/Rsm-RNAs bind the RNA-binding protein CsrA/RsmA, thereby preventing its interaction with mRNA targets. The Csr system is controlled by the BarA/UvrY-type of two-component sensor-regulator systems. Apart from that, common or pathogen-specific regulators control the abundance of the Csr components. The coordinate control of virulence factors and infection-linked physiological traits by the Csr/Rsm systems helps the pathogens to adapt individually to rapidly changing conditions to which they are exposed during the different stages of an infection. As Csr/Rsm function is relevant for full virulence, it represents a target suitable for antimicrobial drug development.
Information theory in systems biology. Part I: Gene regulatory and metabolic networks.
Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali
2016-03-01
"A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.
The ribonucleoprotein Csr network.
Seyll, Ethel; Van Melderen, Laurence
2013-11-08
Ribonucleoprotein complexes are essential regulatory components in bacteria. In this review, we focus on the carbon storage regulator (Csr) network, which is well conserved in the bacterial world. This regulatory network is composed of the CsrA master regulator, its targets and regulators. CsrA binds to mRNA targets and regulates translation either negatively or positively. Binding to small non-coding RNAs controls activity of this protein. Expression of these regulators is tightly regulated at the level of transcription and stability by various global regulators (RNAses, two-component systems, alarmone). We discuss the implications of these complex regulations in bacterial adaptation.
Bouzat, Juan L; Hoostal, Matthew J
2013-05-01
Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark
2010-01-01
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers’ continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems. PMID:20439753
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark
2010-05-18
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.
Zhou, Xuan; Zhang, Nan; Xia, Liming; Li, Qing; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu
2018-04-15
Efficient biofilm formation and root colonization capabilities facilitate the ability of beneficial plant rhizobacteria to promote plant growth and antagonize soilborne pathogens. Biofilm formation by plant-beneficial Bacillus strains is triggered by environmental cues, including oxygen deficiency, but the pathways that sense these environmental signals and regulate biofilm formation have not been thoroughly elucidated. In this study, we showed that the ResDE two-component regulatory system in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain SQR9 senses the oxygen deficiency signal and regulates biofilm formation. ResE is activated by sensing the oxygen limitation-induced reduction of the NAD + /NADH pool through its PAS domain, stimulating its kinase activity, and resulting in the transfer of a phosphoryl group to ResD. The phosphorylated ResD directly binds to the promoter regions of the qoxABCD and ctaCDEF operons to improve the biosynthesis of terminal oxidases, which can interact with KinB to activate biofilm formation. These results not only revealed the novel regulatory function of the ResDE two-component system but also contributed to the understanding of the complicated regulatory network governing Bacillus biofilm formation. This research may help to enhance the root colonization and the plant-beneficial efficiency of SQR9 and other Bacillus rhizobacteria used in agriculture. IMPORTANCE Bacillus spp. are widely used as bioinoculants for plant growth promotion and disease suppression. The exertion of their plant-beneficial functions is largely dependent on their root colonization, which is closely related to their biofilm formation capabilities. On the other hand, Bacillus is the model bacterium for biofilm study, and the process and molecular network of biofilm formation are well characterized (B. Mielich-Süss and D. Lopez, Environ Microbiol 17:555-565, 2015, https://doi.org/10.1111/1462-2920.12527; L. S. Cairns, L. Hobley, and N. R. Stanley-Wall, Mol Microbiol 93:587-598, 2014, https://doi.org/10.1111/mmi.12697; H. Vlamakis, C. Aguilar, R. Losick, and R. Kolter, Genes Dev 22:945-953, 2008, https://doi.org/10.1101/gad.1645008; S. S. Branda, A. Vik, L. Friedman, and R. Kolter, Trends Microbiol 13:20-26, 2005, https://doi.org/10.1016/j.tim.2004.11.006; C. Aguilar, H. Vlamakis, R. Losick, and R. Kolter, Curr Opin Microbiol 10:638-643, 2007, https://doi.org/10.1016/j.mib.2007.09.006; S. S. Branda, J. E. González-Pastor, S. Ben-Yehuda, R. Losick, and R. Kolter, Proc Natl Acad Sci U S A 98:11621-11626, 2001, https://doi.org/10.1073/pnas.191384198). However, the identification and sensing of environmental signals triggering Bacillus biofilm formation need further research. Here, we report that the oxygen deficiency signal inducing Bacillus biofilm formation is sensed by the ResDE two-component regulatory system. Our results not only revealed the novel regulatory function of the ResDE two-component regulatory system but also identified the sensing system of a biofilm-triggering signal. This knowledge can help to enhance the biofilm formation and root colonization of plant-beneficial Bacillus strains and also provide new insights of bacterial biofilm formation regulation. Copyright © 2018 American Society for Microbiology.
75 FR 45173 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... coolant system for measuring process variables (e.g., pressure, level, and flow). The term ``safety- related'' refers to those structures, systems, and components necessary to ensure (1) the integrity of the... are located in the NRC's Agencywide Documents Access and Management System (ADAMS) under Accession No...
Korneli, Claudia; David, Florian; Biedendieck, Rebekka; Jahn, Dieter; Wittmann, Christoph
2013-01-20
The high industrial relevance of the soil bacterium Bacillus megaterium as host for recombinant proteins is driving systems-wide analyses of its metabolic and regulatory networks. The present review highlights novel systems biology tools available to unravel the various cellular components on the level of metabolic and regulatory networks. These provide a rational platform for systems metabolic engineering of B. megaterium. In line, a number of interesting studies have particularly focused on studying recombinant B. megaterium in its industrial bioprocess environment thus integrating systems metabolic engineering with systems biotechnology and providing the full picture toward optimal processes. Copyright © 2012 Elsevier B.V. All rights reserved.
Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya
2017-11-01
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria.
Silver, S; Walderhaug, M
1992-01-01
Regulation of chromosomally determined nutrient cation and anion uptake systems shows important similarities to regulation of plasmid-determined toxic ion resistance systems that mediate the outward transport of deleterious ions. Chromosomally determined transport systems result in accumulation of K+, Mg2+, Fe3+, Mn2+, PO4(3-), SO4(2-), and additional trace nutrients, while bacterial plasmids harbor highly specific resistance systems for AsO2-, AsO4(3-), CrO4(2-), Cd2+, Co2+, Cu2+, Hg2+, Ni2+, SbO2-, TeO3(2-), Zn2+, and other toxic ions. To study the regulation of these systems, we need to define both the trans-acting regulatory proteins and the cis-acting target operator DNA regions for the proteins. The regulation of gene expression for K+ and PO4(3-) transport systems involves two-component sensor-effector pairs of proteins. The first protein responds to an extracellular ionic (or related) signal and then transmits the signal to an intracellular DNA-binding protein. Regulation of Fe3+ transport utilizes the single iron-binding and DNA-binding protein Fur. The MerR regulatory protein for mercury resistance both represses and activates transcription. The ArsR regulatory protein functions as a repressor for the arsenic and antimony(III) efflux system. Although the predicted cadR regulatory gene has not been identified, cadmium, lead, bismuth, zinc, and cobalt induce this system in a carefully regulated manner from a single mRNA start site. The cadA Cd2+ resistance determinant encodes an E1(1)-1E2-class efflux ATPase (consisting of two polypeptides, rather than the one earlier identified). Cadmium resistance is also conferred by the czc system (which confers resistances to zinc and cobalt in Alcaligenes species) via a complex efflux pump consisting of four polypeptides. These two cadmium efflux systems are not otherwise related. For chromate resistance, reduced cellular accumulation is again the resistance mechanism, but the regulatory components are not identified. For other toxic heavy metals (with few exceptions), there exist specific plasmid resistances that remain relatively terra incognita for future exploration of bioinorganic molecular genetics and gene regulation. PMID:1579110
Rajeev, Lara; Luning, Eric G; Dehal, Paramvir S; Price, Morgan N; Arkin, Adam P; Mukhopadhyay, Aindrila
2011-10-12
Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0237] Cost-Benefit Analysis for Radwaste Systems for Light... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...
The Portuguese electric system and the role of the Portuguese regulatory entity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santana, J.
1998-07-01
According to the organization model of the Portuguese Electric System, there is the coexistence of two subsystems with different characteristics: the Public Electric System, which has public service obligations and the Independent Electric System which does not have such obligations, and part of it obeys a market logic. Nowadays, the Public Electric System is the main component of the electric sector, however there are reasons to believe that the Independent System can increase its participation. The 1995 Portuguese legislation established the existence of an independent structure to regulate the electric sector: the Electric Sector Regulatory Entity. In this paper, themore » organization of this entity is described, as well as its objectives and main powers.« less
VfrB Is a Key Activator of the Staphylococcus aureus SaeRS Two-Component System.
Krute, Christina N; Rice, Kelly C; Bose, Jeffrey L
2017-03-01
In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB , saeR , and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I ( coa ) and class II ( hla ) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureus IMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase VfrB as a positive regulatory modulator of SaeRS-mediated transcription of virulence factors in S. aureus In addition to describing a new regulatory aspect of SaeRS, this study establishes a link between fatty acid kinase activity and virulence factor regulation. Copyright © 2017 American Society for Microbiology.
The immunoregulatory role of type I and type II NKT cells in cancer and other diseases
Terabe, Masaki; Berzofsky, Jay A.
2014-01-01
NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells. PMID:24384834
Chen, Jianming; Rood, Julian I; McClane, Bruce A
2011-01-01
Clostridium perfringens type B and D strains cause enterotoxemias and enteritis in livestock after proliferating in the intestines and producing epsilon-toxin (ETX), alpha-toxin (CPA), and, usually, perfringolysin O (PFO). Although ETX is one of the most potent bacterial toxins, the regulation of ETX production by type B or D strains remains poorly understood. The present work determined that the type D strain CN3718 upregulates production of ETX upon close contact with enterocyte-like Caco-2 cells. This host cell-induced upregulation of ETX expression was mediated at the transcriptional level. Using an isogenic agrB null mutant and complemented strain, the agr operon was shown to be required when CN3718 produces ETX in broth culture or, via a secreted signal consistent with a quorum-sensing (QS) effect, upregulates ETX production upon contact with host cells. These findings provide the first insights into the regulation of ETX production, as well as additional evidence that the Agr-like QS system functions as a global regulator of C. perfringens toxin production. Since it was proposed previously that the Agr-like QS system regulates C. perfringens gene expression via the VirS/VirR two-component regulatory system, an isogenic virR null mutant of CN3718 was constructed to evaluate the importance of VirS/VirR for CN3718 toxin production. This mutation affected production of CPA and PFO, but not ETX, by CN3718. These results provide the first indication that C. perfringens toxin expression regulation by the Agr-like quorum-sensing system may not always act via the VirS/VirR two-component system. IMPORTANCE Mechanisms by which Clostridium perfringens type B and D strains regulate production of epsilon-toxin (ETX), a CDC class B select toxin, are poorly understood. Production of several other toxins expressed by C. perfringens is wholly or partially regulated by both the Agr-like quorum-sensing (QS) system and the VirS/VirR two-component regulatory system, so the present study tested whether ETX expression by type D strain CN3718 also requires these regulatory systems. The agr operon was shown to be essential for signaling CN3718 to produce ETX in broth culture or to upregulate ETX production upon close contact with enterocyte-like Caco-2 cells, which may have pathogenic relevance since ETX is produced intestinally. However, ETX production remained at wild-type levels after inactivation of the VirS/VirR system in CN3718. These findings provide the first information regarding regulation of ETX production and suggest Agr-like QS toxin production regulation in C. perfringens does not always require the VirS/VirR system.
Fisheries regulatory regimes and resilience to climate change.
Ojea, Elena; Pearlman, Isaac; Gaines, Steven D; Lester, Sarah E
2017-05-01
Climate change is already producing ecological, social, and economic impacts on fisheries, and these effects are expected to increase in frequency and magnitude in the future. Fisheries governance and regulations can alter socio-ecological resilience to climate change impacts via harvest control rules and incentives driving fisher behavior, yet there are no syntheses or conceptual frameworks for examining how institutions and their regulatory approaches can alter fisheries resilience to climate change. We identify nine key climate resilience criteria for fisheries socio-ecological systems (SES), defining resilience as the ability of the coupled system of interacting social and ecological components (i.e., the SES) to absorb change while avoiding transformation into a different undesirable state. We then evaluate the capacity of four fisheries regulatory systems that vary in their degree of property rights, including open access, limited entry, and two types of rights-based management, to increase or inhibit resilience. Our exploratory assessment of evidence in the literature suggests that these regulatory regimes vary widely in their ability to promote resilient fisheries, with rights-based approaches appearing to offer more resilience benefits in many cases, but detailed characteristics of the regulatory instruments are fundamental.
UV DISINFECTION GUIDANCE MANUAL FOR THE ...
Provides technical information on selection, design and operation of UV systems; provides regulatory agencies with guidance and the necessary tools to assess UV systems at the design, start-up, and routine operation phase; provides manufacturers with the testing and performance standards for UV components and systems for treating drinking water. Provide guidance to water systems, regulators and manufacturers on UV disinfection of drinking water.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... complex order auction (COA) and book (COB) rule. The COA system facilitates the handling and execution of complex orders by allowing for complex orders to rest in the system and allowing for inbound complex... order), and the stock component of a stock-option complex order handled by the system is executed on...
Quantifying Ubiquitin Signaling
Ordureau, Alban; Münch, Christian; Harper, J. Wade
2015-01-01
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850
Quebatte, Maxime; Dehio, Michaela; Tropel, David; Basler, Andrea; Toller, Isabella; Raddatz, Guenter; Engel, Philipp; Huser, Sonja; Schein, Hermine; Lindroos, Hillevi L.; Andersson, Siv G. E.; Dehio, Christoph
2010-01-01
Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria. PMID:20418395
2011-01-01
Background Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. Results We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. Conclusions The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms. PMID:21992415
Mission Risk Reduction Regulatory Change Management
NASA Technical Reports Server (NTRS)
Scroggins, Sharon
2007-01-01
NASA Headquarters Environmental Management Division supports NASA's mission to pioneer the future in space exploration, scientific discovery, and aeronautics research by integrating environmental considerations into programs and projects early-on, thereby proactively reducing NASA's exposure to institutional, programmatic and operational risk. As part of this effort, NASA established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) as a resource for detecting, analyzing, and communicating environmental regulatory risks to the NASA stakeholder community. The RRAC PC focuses on detecting emerging environmental regulations and other operational change drivers that may pose risks to NASA programs and facilities, and effectively communicating the potential risks. For example, regulatory change may restrict how and where certain activities or operations may be conducted. Regulatory change can also directly affect the ability to use certain materials by mandating a production phase-out or restricting usage applications of certain materials. Regulatory change can result in significant adverse impacts to NASA programs and facilities due to NASA's stringent performance requirements for materials and components related to human-rated space vehicles. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented a system for proactively managing regulatory change to minimize potential adverse impacts to NASA programs and facilities. This presentation highlights the process utilized by the RRACPC to communicate regulatory change and the associated potential risks within NASA, as well as the process for communicating and cooperating with other government agencies and industry partners, both domestic and international, to ensure mission success.
Hempel, Niels; Görisch, Helmut; Mern, Demissew S
2013-09-01
Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported.
Hempel, Niels; Görisch, Helmut
2013-01-01
Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported. PMID:23813731
78 FR 14717 - Energy Conservation Standards for Set-Top Boxes: Availability of Initial Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
.... Despite the participants' best efforts to negotiate a non- regulatory agreement, these talks ultimately... consumption of baseline products in on and sleep modes of operation by system level components (e.g., tuners...
Using DCOM to support interoperability in forest ecosystem management decision support systems
W.D. Potter; S. Liu; X. Deng; H.M. Rauscher
2000-01-01
Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...
An Optical Disk-Based Information Retrieval System.
ERIC Educational Resources Information Center
Bender, Avi
1988-01-01
Discusses a pilot project by the Nuclear Regulatory Commission to apply optical disk technology to the storage and retrieval of documents related to its high level waste management program. Components and features of the microcomputer-based system which provides full-text and image access to documents are described. A sample search is included.…
Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.
Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum
2013-01-01
Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.
Innovative Strategies for Breast Cancer Immunotherapy
2014-09-01
as well as T regulatory cells ( Tregs : FOXP3 and CD25 positive) were determined in K-CAR T cells obtained from BC patients or normal female donors...since Tregs are a component of the immune system that suppresses immune responses of other cells. A sample from a BC patient (#243, diagnosed with...33). Suppression of CD8+ effector cells by CD4+CD25+FoxP3+ regulatory T cells ( Tregs ) plays a key role in this immunosuppression (34). Our results
Innovative Strategies for Breast Cancer Immunotherapy
2014-09-01
donors, percentages of CD4+ and CD8+ T cells as well as T regulatory cells ( Tregs : FOXP3 and CD25 positive) were determined in K-CAR T cells...obtained from BC patients or normal female donors, since Tregs are a component of the immune system that suppresses immune responses of other cells. A...immunosuppressive mechanisms that inhibit T cell activation (33). Suppression of CD8+ effector cells by CD4+CD25+FoxP3+ regulatory T cells ( Tregs ) plays a key role
Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria
Papenfort, Kai; Bassler, Bonnie
2016-01-01
Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0070] Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Updated Aging Management Criteria for PWR Reactor Vessel Internal Components.'' This draft LR-ISG revises...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0070] Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-ISG), LR-ISG-2011-04, ``Updated Aging Management Criteria for PWR Reactor Vessel Internal Components...
Waste Information Management System v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustamante, David G.; Schade, A. Carl
WIMS is a functional interface to an Oracle database for managing the required regulatory information about the handling of Hazardous Waste. WIMS does not have a component to track Radiological Waste data. And it does not have the ability to manage sensitive information.
Control systems and coordination protocols of the secretory pathway.
Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge
2014-01-01
Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.
Variable setpoint as a relaxing component in physiological control.
Risvoll, Geir B; Thorsen, Kristian; Ruoff, Peter; Drengstig, Tormod
2017-09-01
Setpoints in physiology have been a puzzle for decades, and especially the notion of fixed or variable setpoints have received much attention. In this paper, we show how previously presented homeostatic controller motifs, extended with saturable signaling kinetics, can be described as variable setpoint controllers. The benefit of a variable setpoint controller is that an observed change in the concentration of the regulated biochemical species (the controlled variable) is fully characterized, and is not considered a deviation from a fixed setpoint. The variation in this biochemical species originate from variation in the disturbances (the perturbation), and thereby in the biochemical species representing the controller (the manipulated variable). Thus, we define an operational space which is spanned out by the combined high and low levels of the variations in (1) the controlled variable, (2) the manipulated variable, and (3) the perturbation. From this operational space, we investigate whether and how it imposes constraints on the different motif parameters, in order for the motif to represent a mathematical model of the regulatory system. Further analysis of the controller's ability to compensate for disturbances reveals that a variable setpoint represents a relaxing component for the controller, in that the necessary control action is reduced compared to that of a fixed setpoint controller. Such a relaxing component might serve as an important property from an evolutionary point of view. Finally, we illustrate the principles using the renal sodium and aldosterone regulatory system, where we model the variation in plasma sodium as a function of salt intake. We show that the experimentally observed variations in plasma sodium can be interpreted as a variable setpoint regulatory system. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás
2015-01-01
Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.
Hologram interferometry in automotive component vibration testing
NASA Astrophysics Data System (ADS)
Brown, Gordon M.; Forbes, Jamie W.; Marchi, Mitchell M.; Wales, Raymond R.
1993-02-01
An ever increasing variety of automotive component vibration testing is being pursued at Ford Motor Company, U.S.A. The driving force for use of hologram interferometry in these tests is the continuing need to design component structures to meet more stringent functional performance criteria. Parameters such as noise and vibration, sound quality, and reliability must be optimized for the lightest weight component possible. Continually increasing customer expectations and regulatory pressures on fuel economy and safety mandate that vehicles be built from highly optimized components. This paper includes applications of holographic interferometry for powertrain support structure tuning, body panel noise reduction, wiper system noise and vibration path analysis, and other vehicle component studies.
Evolutionary rewiring of bacterial regulatory networks
Taylor, Tiffany B.; Mulley, Geraldine; McGuffin, Liam J.; Johnson, Louise J.; Brockhurst, Michael A.; Arseneault, Tanya; Silby, Mark W.; Jackson, Robert W.
2015-01-01
Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks - homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs. PMID:28357301
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... Underlying Securities) of the NASDAQ Options Market rules.\\11\\ Additionally, the Target Component's and the...\\ Additionally, the Target Component's and the Benchmark Component's trading volume (in all markets in which the...-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Approving a Proposed Rule Change Relating to the...
Validation of gamma irradiator controls for quality and regulatory compliance
NASA Astrophysics Data System (ADS)
Harding, Rorry B.; Pinteric, Francis J. A.
1995-09-01
Since 1978 the U.S. Food and Drug Administration (FDA) has had both the legal authority and the Current Good Manufacturing Practice (CGMP) regulations in place to require irradiator owners who process medical devices to produce evidence of Irradiation Process Validation. One of the key components of Irradiation Process Validation is the validation of the irradiator controls. However, it is only recently that FDA audits have focused on this component of the process validation. What is Irradiator Control System Validation? What constitutes evidence of control? How do owners obtain evidence? What is the irradiator supplier's role in validation? How does the ISO 9000 Quality Standard relate to the FDA's CGMP requirement for evidence of Control System Validation? This paper presents answers to these questions based on the recent experiences of Nordion's engineering and product management staff who have worked with several US-based irradiator owners. This topic — Validation of Irradiator Controls — is a significant regulatory compliance and operations issue within the irradiator suppliers' and users' community.
NASA Astrophysics Data System (ADS)
Lakyda, Petro; Vasylyshyn, Roman; Lakyda, Ivan
2013-04-01
Stabilization and preservation of the planet's climate system today is regarded as one of the most important global political-economic, environmental and social problems of mankind. Rising concentration of carbon dioxide in the planet's atmosphere due to anthropogenic impact is the main reason leading to global climate change. Due to the above mentioned, social demands on forests are changing their biosphere role and function of natural sink of greenhouse gases becomes top priority. It is known that one of the most essential components of biological productivity of forests is their live biomass. Absorption, long-term sequestration of carbon and generation of oxygen are secured by its components. System research of its parametric structure and development of regulatory and reference information for assessment of aboveground live biomass components of trees and stands of the main forest-forming tree species in Ukraine began over twenty-five years ago at the department of forest mensuration and forest inventory of National University of Life and Environmental Sciences of Ukraine, involving staff from other research institutions. Today, regulatory and reference materials for evaluation of parametric structure of live biomass are developed for trees of the following major forest-forming tree species of Ukraine: Scots pine of natural and artificial origin, Crimean pine, Norway spruce, silver fir, pedunculate oak, European beech, hornbeam, ash, common birch, aspen and black alder (P.I. Lakyda et al., 2011). An ongoing process on development of similar regulatory and reference materials for forest stands of the abovementioned forest-forming tree species of Ukraine is secured by scientists of departments of forest management, and forest mensuration and forest inventory. The total experimental research base is 609 temporary sample plots, where 4880 model trees were processed, including 3195 model trees with estimates of live biomass components. Laboratory studies conducted on 1743 research sections of tree stems, 809 samples of crown branches, 2560 model tree greenery branches, 346 batches of needles and 534 batches of leaves. These materials have high scientific and practical value, forming a basis for quantitative evaluation of biological productivity of forests in Ukraine, which are of great importance for mitigation of climate change. They also can be used as a data source for development of systems of models of various purposes, which find their application in Ukrainian and world forest science and practice.
Huang, Yi-Wei; Wu, Chao-Jung; Hu, Rouh-Mei; Lin, Yi-Tsung
2015-01-01
Lytic transglycosylases (LTs) are an important class of enzymes involved in peptidoglycan (PG) cleavage, with the concomitant formation of an intramolecular 1,6-anhydromuramoyl reaction product. There are six annotated LT genes in the Stenotrophomonas maltophilia genome, including genes for five membrane-bound LTs (mltA, mltB1, mltB2, mltD1, and mltD2) and a gene for soluble LT (slt). Six LTs of S. maltophilia KJ were systematically mutated, yielding the ΔmltA, ΔmltB1, ΔmltB2, ΔmltD1, ΔmltD2, and Δslt mutants. Inactivation of mltD1 conferred a phenotype of elevated uninduced β-lactamase activity. The underlying mechanism responsible for this phenotype was elucidated by the construction of several mutants and determination of β-lactamase activity. The expression of the genes assayed was assessed by quantitative reverse transcriptase PCR and a promoter transcription fusion assay. The results demonstrate that ΔmltD1 mutant-mediated L1/L2 β-lactamase expression involved the creBC two-component regulatory system (TCS) and the ampNG-ampDI-nagZ-ampR regulatory circuit. The inactivation of mltD1 resulted in mltB1 and mltD2 upexpression in a creBC- and ampNG-dependent manner. The overexpressed MltB1 and MltD2 activity contributed to the expression of the L1/L2 β-lactamase genes via the ampNG-ampDI-nagZ-ampR regulatory circuit. These findings reveal, for the first time, a linkage between LTs, the CreBC TCS, the ampNG-ampDI-nagZ-ampR regulatory circuit, and L1/L2 β-lactamase expression in S. maltophilia. PMID:26282431
Tatsuno, Ichiro; Isaka, Masanori; Okada, Ryo; Zhang, Yan; Hasegawa, Tadao
2014-03-28
The production of virulence proteins depends on environmental factors, and two-component regulatory systems are involved in sensing these factors. We previously established knockout strains in all suspected two-component regulatory sensor proteins of the emm1 clinical strain of S. pyogenes and examined their relevance to acid stimuli in a natural atmosphere. In the present study, their relevance to acid stimuli was re-examined in an atmosphere containing 5% CO2. The spy1236 (which is identical to ciaHpy) sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1236 (CiaHpy) two-component sensor protein is involved in acid response of S. pyogenes. CiaH is also conserved in Streptococcus pneumoniae, and it has been reported that deletion of the gene for its cognate response regulator (ciaRpn) made the pneumococcal strains more sensitive to oxidative stress. In this report, we show that the spy1236 knockout mutant of S. pyogenes is more sensitive to oxidative stress than the parental strain. These results suggest that the two-component sensor protein CiaH is involved in stress responses in S. pyogenes.
The Vibrio cholerae VprA-VprB Two-Component System Controls Virulence Through Endotoxin Modification
2014-12-23
antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS... antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification in V. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...12211 Research Triangle Park, NC 27709-2211 bacterial cell surface, host immune system, cationic antimicrobial peptides , lipid A, LPS REPORT
Junker, F; Saller, E; Schläfli Oppenberg, H R; Kroneck, P M; Leisinger, T; Cook, A M
1996-09-01
Three multicomponent oxygenases involved in the degradation of p-toluenesulfonate and p-toluenecarboxylate and the regulation of their synthesis have been examined in three strains (T-2, PSB-4 and TER-1) of Comamonas testosteroni. Strain T-2 utilizes p-toluenesulfonate as a source of carbon and energy for growth via p-sulfobenzoate and protocatechuate, and p-toluenecarboxylate via terephthalate and protocatechuate, and has the unusual property of requiring the reductase (TsaB) of the toluenesulfonate methyl monooxygenase system (TsaMB) in an incompletely expressed sulfobenzoate dioxygenase system (PsbAC) [Schläfli Oppenberg, H.R., Chen, G., Leisinger, T. & Cook, A. M. (1995). Microbiology 141, 1891-1899]. The independently isolated C. testosteroni PSB-4 utilized only sulfobenzoate and terephthalate via protocatechuate. Mutant TER-1, derived from strain T-2, utilized only terephthalate via protocatechuate. We detected no enzymes of the pathway from toluenesulfonate to sulfobenzoate in strains PSB-4 and TER-1, and confirmed by PCR and Southern blot analysis that the genes (tsaMB) encoding toluenesulfonate monooxygenase were absent. We concluded that, in strain PSB-4, the regulatory unit encoding the genes for the conversion of toluenesulfonate to sulfobenzoate was missing, and that generation of mutant TER-1 involved deletion of this regulatory unit and of the regulatory unit encoding desulfonation of sulfobenzoate. The degradation of sulfobenzoate in strain PSB-4 was catalysed by a fully inducible sulfobenzoate dioxygenase system (PsbACPSB-4), which, after purification of the oxygenase component (PsbAPSB-4), turned out to be indistinguishable from the corresponding component from strain T-2 (PsbAT-2). Reductase PsbCPSB-4, which we could separate but not purify, was active with oxygenase PsbAPSB-4 and PsbAT-2. Oxygenase PsbAPSB-4 was shown by electron paramagnetic resonance spectroscopy to contain a Rieske [2Fe-2S] centre. The enzyme system oxygenating terephthalate was examined and the oxygenase component purified and characterized. The oxygenase component in strains T-2 (and mutant TER-1) and PSB-4 were indistinguishable. The reductase component, which we separated but failed to purify, was active with the oxygenase from all strains. Gains and losses of blocks of genes in evolution is discussed.
Emotion: The Self-regulatory Sense
2014-01-01
While emotion is a central component of human health and well-being, traditional approaches to understanding its biological function have been wanting. A dynamic systems model, however, broadly redefines and recasts emotion as a primary sensory system—perhaps the first sensory system to have emerged, serving the ancient autopoietic function of “self-regulation.” Drawing upon molecular biology and revelations from the field of epigenetics, the model suggests that human emotional perceptions provide an ongoing stream of “self-relevant” sensory information concerning optimally adaptive states between the organism and its immediate environment, along with coupled behavioral corrections that honor a universal self-regulatory logic, one still encoded within cellular signaling and immune functions. Exemplified by the fundamental molecular circuitry of sensorimotor control in the E coli bacterium, the model suggests that the hedonic (affective) categories emerge directly from positive and negative feedback processes, their good/bad binary appraisals relating to dual self-regulatory behavioral regimes—evolutionary purposes, through which organisms actively participate in natural selection, and through which humans can interpret optimal or deficit states of balanced being and becoming. The self-regulatory sensory paradigm transcends anthropomorphism, unites divergent theoretical perspectives and isolated bodies of literature, while challenging time-honored assumptions. While suppressive regulatory strategies abound, it suggests that emotions are better understood as regulating us, providing a service crucial to all semantic language, learning systems, evaluative decision-making, and fundamental to optimal physical, mental, and social health. PMID:24808986
Digital Therapeutics: An Integral Component of Digital Innovation in Drug Development.
Sverdlov, Oleksandr; van Dam, Joris; Hannesdottir, Kristin; Thornton-Wells, Tricia
2018-07-01
Digital therapeutics represent a new treatment modality in which digital systems such as smartphone apps are used as regulatory-approved, prescribed therapeutic interventions to treat medical conditions. In this article we provide a critical overview of the rationale for investing in such novel modalities, including the unmet medical needs addressed by digital therapeutics and the potential for reducing current costs of medical care. We also discuss emerging pathways to regulatory approval and how innovative business models are enabling further growth in the development of digital therapeutics. We conclude by providing some recent examples of digital therapeutics that have gained regulatory approval and highlight opportunities for the near future. © 2018 American Society for Clinical Pharmacology and Therapeutics.
Extracellular matrix and growth factors in branching morphogenesis
NASA Technical Reports Server (NTRS)
Hardman, P.; Spooner, B. S.
1993-01-01
The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.
Transportation of Large Wind Components: A Permitting and Regulatory Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Aaron; Cook, Jeff
This report summarizes permitting and regulatory issues associated with transporting wind turbine blades, towers, and nacelles as well as large transformers (wind components). These wind components are commonly categorized as oversized and overweight (OSOW) and require specific permit approvals from state and local jurisdictions. The report was developed based on a Quadrennial Energy Review (QER) recommendation on logistical requirements for the transportation of 'oversized or high-consequence energy materials, equipment, and components.'
Molecular, metabolic, and genetic control: An introduction
NASA Astrophysics Data System (ADS)
Tyson, John J.; Mackey, Michael C.
2001-03-01
The living cell is a miniature, self-reproducing, biochemical machine. Like all machines, it has a power supply, a set of working components that carry out its necessary tasks, and control systems that ensure the proper coordination of these tasks. In this Special Issue, we focus on the molecular regulatory systems that control cell metabolism, gene expression, environmental responses, development, and reproduction. As for the control systems in human-engineered machines, these regulatory networks can be described by nonlinear dynamical equations, for example, ordinary differential equations, reaction-diffusion equations, stochastic differential equations, or cellular automata. The articles collected here illustrate (i) a range of theoretical problems presented by modern concepts of cellular regulation, (ii) some strategies for converting molecular mechanisms into dynamical systems, (iii) some useful mathematical tools for analyzing and simulating these systems, and (iv) the sort of results that derive from serious interplay between theory and experiment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor...'' for reactor coolant system (RCS) components, as mentioned in 10 CFR 50 Appendix A, GDC-4. The...
Multiple species inventory and monitoring technical guide
P.N. Manley; B. Van Horne; J.K. Roth; W.J. Zielinski; M.M. McKenzie; T.J. Weller; F.W. Weckerly; C. Vojta
2006-01-01
The National Forest Management Act (1976) recognizes the importance of maintaining species and community diversity on National Forest System (NFS) lands as a critical component of our ecological and cultural heritage. Monitoring is required of land management to assess the success of management activities in meeting legal, regulatory, and policy objectives, including...
Global Gene Expression Profiles Identify Metastasis Regulatory Networks | Center for Cancer Research
Metastasis is a systemic disease in which cancer cells break away from a tumor and migrate to other parts of the body, usually via the blood or lymphatic systems, to form new tumors. Metastatic tumors are difficult to treat and account for the majority of cancer-related deaths. Susceptibility to metastasis is known to have a genetic component, with some individuals more
Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.
Ma, Zheng; Fung, Victor; D'Orso, Iván
2017-01-26
The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.
Exploration of cellular reaction systems.
Kirkilionis, Markus
2010-01-01
We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.
Multi-agent electricity market modeling with EMCAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M.; Macal, C.; Conzelmann, G.
2002-09-05
Electricity systems are a central component of modern economies. Many electricity markets are transitioning from centrally regulated systems to decentralized markets. Furthermore, several electricity markets that have recently undergone this transition have exhibited extremely unsatisfactory results, most notably in California. These high stakes transformations require the introduction of largely untested regulatory structures. Suitable tools that can be used to test these regulatory structures before they are applied to real systems are required. Multi-agent models can provide such tools. To better understand the requirements such as tool, a live electricity market simulation was created. This experience helped to shape the developmentmore » of the multi-agent Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.« less
76 FR 68514 - Request for a License To Export Reactor Components
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Reactor Components Pursuant to 10.../docket Number Westinghouse Electric Company Complete reactor 12 Perform seismic China. LLC, August 18... qualification equipment. of AP1000 (design) nuclear reactors. For the Nuclear Regulatory Commission. Dated this...
Ho, Hsiang; Milenković, Tijana; Memisević, Vesna; Aruri, Jayavani; Przulj, Natasa; Ganesan, Anand K
2010-06-15
RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches.
2010-01-01
Background RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. Results In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. Conclusions We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches. PMID:20550706
Adolescent transformations of behavioral and neural processes as potential targets for prevention.
Eldreth, Dana; Hardin, Michael G; Pavletic, Nevia; Ernst, Monique
2013-06-01
Adolescence is a transitional period in development that is marked by a distinct, typical behavioral profile of high rates of exploration, novelty-seeking, and emotional lability. While these behaviors generally assist the adolescent transition to independence, they can also confer vulnerability for excessive risk-taking and psychopathology, particularly in the context of specific environmental or genetic influences. As prevention research depends on the identification of targets of vulnerability, the following review will discuss the interplay among motivational systems including reward-related, avoidance-related, and regulatory processes in typical and atypical adolescent development. Each set of processes will be discussed in relation to their underlying neural correlates and distinct developmental trajectories. Evidence suggests that typical adolescent behavior and the risk for atypical development are mediated by heightened adolescent responsiveness of reward-related and avoidance-related systems under specific conditions, concurrent with poor modulation by immature regulatory processes. Finally, we will propose strategies to exploit heightened reward processing to reinforce inhibitory control, which is an essential component of regulatory processes in prevention interventions.
Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach.
Rodríguez-Mega, Emiliano; Piñeyro-Nelson, Alma; Gutierrez, Crisanto; García-Ponce, Berenice; Sánchez, María De La Paz; Zluhan-Martínez, Estephania; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana
2015-03-02
A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially studied in animal systems, this phenomenon has also been addressed in plants. In this review, we summarize evidence for cis-regulatory mutations, trans-regulatory changes and epigenetic modifications as molecular events underlying important phenotypic alterations, and thus shaping the evolution of plant development. We postulate that a mechanistic understanding of why such molecular alterations have a key role in development, morphology and evolution will have to rely on dynamic models of complex regulatory networks that consider the concerted action of genetic and nongenetic components, and that also incorporate the restrictions underlying the genotype to phenotype mapping process. Developmental Dynamics, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Campylobacter jejuni is a leading cause of food- and waterbourne bacterial gastroenteritis in the developed world. Although illness is usually self-limiting, immunocompromised individuals are at risk for infections recalcitrant to antibiotic treatment, and prior campylobacter infection correlates wi...
Battery condenser system total particulate emission factors and rates for cotton gins
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...
Battery condenser system PM10 emission factors and rates for cotton gins
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...
Battery condenser system total particulate emission factors and rates for cotton gins: Method 17
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...
Development of disease-resistant rice using regulatory components of induced disease resistance
Takatsuji, Hiroshi
2014-01-01
Infectious diseases cause huge crop losses annually. In response to pathogen attacks, plants activate defense systems that are mediated through various signaling pathways. The salicylic acid (SA) signaling pathway is the most powerful of these pathways. Several regulatory components of the SA signaling pathway have been identified, and are potential targets for genetic manipulation of plants’ disease resistance. However, the resistance associated with these regulatory components is often accompanied by fitness costs; that is, negative effects on plant growth and crop yield. Chemical defense inducers, such as benzothiadiazole and probenazole, act on the SA pathway and induce strong resistance to various pathogens without major fitness costs, owing to their ‘priming effect.’ Studies on how benzothiadiazole induces disease resistance in rice have identified WRKY45, a key transcription factor in the branched SA pathway, and OsNPR1/NH1. Rice plants overexpressing WRKY45 were extremely resistant to rice blast disease caused by the fungus Magnaporthe oryzae and bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), the two major rice diseases. Disease resistance is often accompanied by fitness costs; however, WRKY45 overexpression imposed relatively small fitness costs on rice because of its priming effect. This priming effect was similar to that of chemical defense inducers, although the fitness costs were amplified by some environmental factors. WRKY45 is degraded by the ubiquitin–proteasome system, and the dual role of this degradation partly explains the priming effect. The synergistic interaction between SA and cytokinin signaling that activates WRKY45 also likely contributes to the priming effect. With a main focus on these studies, I review the current knowledge of SA-pathway-dependent defense in rice by comparing it with that in Arabidopsis, and discuss potential strategies to develop disease-resistant rice using signaling components. PMID:25431577
Bacterial hybrid histidine kinases in plant-bacteria interactions.
Borland, Stéphanie; Prigent-Combaret, Claire; Wisniewski-Dyé, Florence
2016-10-01
Two-component signal transduction systems are essential for many bacteria to maintain homeostasis and adapt to environmental changes. Two-component signal transduction systems typically involve a membrane-bound histidine kinase that senses stimuli, autophosphorylates in the transmitter region and then transfers the phosphoryl group to the receiver domain of a cytoplasmic response regulator that mediates appropriate changes in bacterial physiology. Although usually found on distinct proteins, the transmitter and receiver modules are sometimes fused into a so-called hybrid histidine kinase (HyHK). Such structure results in multiple phosphate transfers that are believed to provide extra-fine-tuning mechanisms and more regulatory checkpoints than classical phosphotransfers. HyHK-based regulation may be crucial for finely tuning gene expression in a heterogeneous environment such as the rhizosphere, where intricate plant-bacteria interactions occur. In this review, we focus on roles fulfilled by bacterial HyHKs in plant-associated bacteria, providing recent findings on the mechanistic of their signalling properties. Recent insights into understanding additive regulatory properties fulfilled by the tethered receiver domain of HyHKs are also addressed.
Co-culture-inducible bacteriocin production in lactic acid bacteria.
Chanos, Panagiotis; Mygind, Tina
2016-05-01
It is common knowledge that microorganisms have capabilities, like the production of antimicrobial compounds, which do not normally appear in ideal laboratory conditions. Common antimicrobial discovery techniques require the isolation of monocultures and their individual screening against target microorganisms. One strategy to achieve expression of otherwise hidden antimicrobials is induction by co-cultures. In the area of bacteriocin-producing lactic acid bacteria, there has been some research focusing into the characteristics of co-culture-inducible bacteriocin production and particularly the molecular mechanism(s) of such interactions. No clear relationship has been seen between bacteriocin-inducing and bacteriocin-producing microorganisms. The three-component regulatory system seems to be playing a central role in the induction, but inducing compounds have not been identified or characterized. However, the presence of the universal messenger molecule autoinducer-2 has been associated in some cases with the co-culture-inducible bacteriocin phenotype and it may play the role in the additional regulation of the three-component regulatory system. Understanding the mechanisms of induction would facilitate the development of strategies for screening and development of co-culture bacteriocin-producing systems and novel products as well as the perseverance of such systems in food and down to the intestinal tract, possibly conferring a probiotic effect on the host.
76 FR 74831 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... exposed to treated borated water. In response to a request from the Nuclear Energy Institute (NEI), the... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim staff...
GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations.
Van Eenennaam, Alison L
2013-09-25
In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems.
GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations
2013-01-01
In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems. PMID:24066781
Gene Regulatory Networks in Cardiac Conduction System Development
Munshi, Nikhil V.
2014-01-01
The cardiac conduction system is a specialized tract of myocardial cells responsible for maintaining normal cardiac rhythm. Given its critical role in coordinating cardiac performance, a detailed analysis of the molecular mechanisms underlying conduction system formation should inform our understanding of arrhythmia pathophysiology and affect the development of novel therapeutic strategies. Historically, the ability to distinguish cells of the conduction system from neighboring working myocytes presented a major technical challenge for performing comprehensive mechanistic studies. Early lineage tracing experiments suggested that conduction cells derive from cardiomyocyte precursors, and these claims have been substantiated by using more contemporary approaches. However, regional specialization of conduction cells adds an additional layer of complexity to this system, and it appears that different components of the conduction system utilize unique modes of developmental formation. The identification of numerous transcription factors and their downstream target genes involved in regional differentiation of the conduction system has provided insight into how lineage commitment is achieved. Furthermore, by adopting cutting-edge genetic techniques in combination with sophisticated phenotyping capabilities, investigators have made substantial progress in delineating the regulatory networks that orchestrate conduction system formation and their role in cardiac rhythm and physiology. This review describes the connectivity of these gene regulatory networks in cardiac conduction system development and discusses how they provide a foundation for understanding normal and pathological human cardiac rhythms. PMID:22628576
Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary
Yoshida, Saishu; Kato, Takako; Kato, Yukio
2016-01-01
The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.
Modeling gene regulatory network motifs using statecharts
2012-01-01
Background Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks. For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. Results We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal. We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. Conclusions We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed. PMID:22536967
Prokaryotic 2-component systems and the OmpR/PhoB superfamily.
Nguyen, Minh-Phuong; Yoon, Joo-Mi; Cho, Man-Ho; Lee, Sang-Won
2015-11-01
In bacteria, 2-component regulatory systems (TCSs) are the critical information-processing pathways that link stimuli to specific adaptive responses. Signals perceived by membrane sensors, which are generally histidine kinases, are transmitted by response regulators (RRs) to allow cells to cope rapidly and effectively with environmental challenges. Over the past few decades, genes encoding components of TCSs and their responsive proteins have been identified, crystal structures have been described, and signaling mechanisms have been elucidated. Here, we review recent findings and interesting breakthroughs in bacterial TCS research. Furthermore, we discuss structural features, mechanisms of activation and regulation, and cross-regulation of RRs, with a focus on the largest RR family, OmpR/PhoB, to provide a comprehensive overview of these critically important signaling molecules.
Facing regulatory challenges of on-line hemodiafiltration.
Kümmerle, Wolfgang
2011-01-01
On-line hemodiafiltration (on-line HDF) is the result of a vision that triggered multifarious changes in very different areas. Driven by the idea to offer better medical treatment for renal patients, technological innovations were developed and established that also constituted new challenges in the field of regulatory affairs. The existing regulations predominantly addressed the quality and safety of those products needed to perform dialysis treatment which were supplied by industrial manufacturers. However, the complexity of treatment system required for the provision of on-line fluids demanded a holistic approach encompassing all components involved. Hence, focus was placed not only on single products, but much more on their interfacing, and the clinical infrastructure, in particular, had to undergo substantial changes. The overall understanding of the interaction between such factors, quite different in their nature, was crucial to overcome the arising regulatory obstacles. This essay describes the evolution of the on-line HDF procedure from the regulatory point of view. A simplified diagram demonstrates the path taken from the former regulatory understanding to the realization of necessary changes. That achievement was only possible through 'management of preview' and consequent promotion of technical and medical innovations as well as regulatory re-evaluations. Copyright © 2011 S. Karger AG, Basel.
Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
Thompson, Dawn; Regev, Aviv; Roy, Sushmita
2015-01-01
Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.
Systems-Level Analysis of Innate Immunity
Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan
2014-01-01
Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298
Hayashi, J; Nishikawa, K; Hirano, R; Noguchi, T; Yoshimura, F
2000-01-01
Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.
Iommarini, Luisa; Peralta, Susana; Torraco, Alessandra; Diaz, Francisca
2015-01-01
Mitochondrial disorders are defined as defects that affect the oxidative phosphorylation system (OXPHOS). They are characterized by a heterogeneous array of clinical presentations due in part to a wide variety of factors required for proper function of the components of the OXPHOS system. There is no cure for these disorders owing our poor knowledge of the pathogenic mechanisms of disease. To understand the mechanisms of human disease numerous mouse models have been developed in recent years. Here we summarize the features of several mouse models of mitochondrial diseases directly related to those factors affecting mtDNA maintenance, replication, transcription, translation as well to other proteins that are involved in mitochondrial dynamics and quality control which affect mitochondrial OXPHOS function without been intrinsic components of the system. We discuss how these models have contributed to our understanding of mitochondrial diseases and their pathogenic mechanisms. PMID:25640959
Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective
van Heeswijk, Wally C.; Westerhoff, Hans V.
2013-01-01
SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575
Heroven, Ann Kathrin; Böhme, Katja; Rohde, Manfred; Dersch, Petra
2008-06-01
The MarR-type regulator RovA controls expression of virulence genes of Yersinia pseudotuberculosis in response to environmental signals. Using a genetic strategy to discover components that influence rovA expression, we identified new regulatory factors with homology to components of the carbon storage regulator system (Csr). We showed that overexpression of a CsrB- or a CsrC-type RNA activates rovA, whereas a CsrA-like protein represses RovA synthesis. We further demonstrate that influence of the Csr system on rovA is indirect and occurs through control of the LysR regulator RovM, which inhibits rovA transcription. The CsrA protein had also a major influence on the motility of Yersinia, which was independent of RovM. The CsrB and CsrC RNAs are differentially expressed in Yersinia. CsrC is highly induced in complex but not in minimal media, indicating that medium-dependent rovM expression is mediated through CsrC. CsrB synthesis is generally very low. However, overexpression of the response regulator UvrY was found to activate CsrB production, which in turn represses CsrC synthesis independent of the growth medium. In summary, the post-transcriptional Csr-type components were shown to be key regulators in the co-ordinated environmental control of physiological processes and virulence factors, which are crucial for the initiation of Yersinia infections.
Modulating the level of components within plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobzin, Steven Craig; Apuya, Nestor; Chiang, Karen
Materials and Methods for identifying lignin regulatory region-regulatory protein associations are disclosed. Materials and methods for modulating lignin accumulation are also disclosed. In addition, methods and materials for modulating (e.g., increasing or decreasing) the level of a component (e.g., protein, oil, lignin, carbon, a carotenoid, or a triterpenoid) in plants are disclosed.
A Just-in-Time Learning based Monitoring and Classification Method for Hyper/Hypocalcemia Diagnosis.
Peng, Xin; Tang, Yang; He, Wangli; Du, Wenli; Qian, Feng
2017-01-20
This study focuses on the classification and pathological status monitoring of hyper/hypo-calcemia in the calcium regulatory system. By utilizing the Independent Component Analysis (ICA) mixture model, samples from healthy patients are collected, diagnosed, and subsequently classified according to their underlying behaviors, characteristics, and mechanisms. Then, a Just-in-Time Learning (JITL) has been employed in order to estimate the diseased status dynamically. In terms of JITL, for the purpose of the construction of an appropriate similarity index to identify relevant datasets, a novel similarity index based on the ICA mixture model is proposed in this paper to improve online model quality. The validity and effectiveness of the proposed approach have been demonstrated by applying it to the calcium regulatory system under various hypocalcemic and hypercalcemic diseased conditions.
Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang 'Apollo', Chen
2006-07-01
For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... Action Because the proposed rule change does not (i) significantly affect the protection of investors or... and a national market system, and, in general, to protect investors and the public interest. \\5\\ 15 U... wider variety of component securities that may meet the investment objectives of investors. Offering...
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...
Genetic association of impulsivity in young adults: a multivariate study
Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D
2014-01-01
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255
78 FR 40776 - Issuance of Regulatory Guide 1.124 and Regulatory Guide 1.130
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
... Limits and Loading Combinations for Class 1 Plate-and- Shell-Type Supports.'' There are no substantive... 1 linear-type component and piping supports, and Class 1 plate-and-shell-type component and piping... Rulemaking Web site: Go to http://www.regulations.gov and search for Docket ID NRC-2013-0141. Address...
Whey proteins in the regulation of food intake and satiety.
Luhovyy, Bohdan L; Akhavan, Tina; Anderson, G Harvey
2007-12-01
Whey protein has potential as a functional food component to contribute to the regulation of body weight by providing satiety signals that affect both short-term and long-term food intake regulation. Because whey is an inexpensive source of high nutritional quality protein, the utilization of whey as a physiologically functional food ingredient for weight management is of current interest. At present, the role of individual whey proteins and peptides in contributing to food intake regulation has not been fully defined. However, Whey protein reduces short-term food intake relative to placebo, carbohydrate and other proteins. Whey protein affects satiation and satiety by the actions of: (1) whey protein fractions per se; (2) bioactive peptides; (3) amino-acids released after digestion; (4) combined action of whey protein and/or peptides and/or amino acids with other milk constituents. Whey ingestion activates many components of the food intake regulatory system. Whey protein is insulinotropic, and whey-born peptides affect the renin-angiotensin system. Therefore whey protein has potential as physiologically functional food component for persons with obesity and its co-morbidities (hypertension, type II diabetes, hyper- and dislipidemia). It remains unclear, however, if the favourable effects of whey on food intake, subjective satiety and intake regulatory mechanisms in humans are obtained from usual serving sizes of dairy products. The effects described have been observed in short-term experiments and when whey is consumed in much higher amounts.
Reboul, Angéline; Lemaître, Nadine; Titecat, Marie; Merchez, Maud; Deloison, Gaspard; Ricard, Isabelle; Pradel, Elizabeth; Marceau, Michaël; Sebbane, Florent
2014-11-01
Plague is transmitted by fleas or contaminated aerosols. To successfully produce disease, the causal agent (Yersinia pestis) must rapidly sense and respond to rapid variations in its environment. Here, we investigated the role of 2-component regulatory systems (2CSs) in plague because the latter are known to be key players in bacterial adaptation to environmental change. Along with the previously studied PhoP-PhoQ system, OmpR-EnvZ was the only one of Y. pestis' 23 other 2CSs required for production of bubonic, septicemic, and pneumonic plague. In vitro, OmpR-EnvZ was needed to counter serum complement and leukocytes but was not required for the secretion of antiphagocyte exotoxins. In vivo, Y. pestis lacking OmpR-EnvZ did not induce an early immune response in the skin and was fully virulent in neutropenic mice. We conclude that, throughout the course of Y. pestis infection, OmpR-EnvZ is required to counter toxic effectors secreted by polymorphonuclear leukocytes in the tissues. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F; MacSharry, John; Zomer, Aldert; van Sinderen, Douwe
2012-08-01
This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted P(i) transporter system, as well as that of phoU, which encodes a putative P(i)-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of P(i) limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to P(i) starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003.
Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F.; MacSharry, John; Zomer, Aldert
2012-01-01
This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (Pi) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted Pi transporter system, as well as that of phoU, which encodes a putative Pi-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of Pi limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to Pi starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003. PMID:22635988
Bordetella pertussis risA, but Not risS, Is Required for Maximal Expression of Bvg-Repressed Genes
Stenson, Trevor H.; Allen, Andrew G.; al-Meer, Jehan A.; Maskell, Duncan; Peppler, Mark S.
2005-01-01
Expression of virulence determinants by Bordetella pertussis, the primary etiological agent of whooping cough, is regulated by the BvgAS two-component regulatory system. The role of a second two-component regulatory system, encoded by risAS, in this process is not defined. Here, we show that mutation of B. pertussis risA does not affect Bvg-activated genes or proteins. However, mutation of risA resulted in greatly diminished expression of Bvg-repressed antigens and decreased transcription of Bvg-repressed genes. In contrast, mutation of risS had no effect on the expression of Bvg-regulated molecules. Mutation of risA also resulted in decreased bacterial invasion in a HeLa cell model. However, decreased invasion could not be attributed to the decreased expression of Bvg-repressed products, suggesting that mutation of risA may affect the expression of a variety of genes. Unlike the risAS operons in B. parapertussis and B. bronchiseptica, B. pertussis risS is a pseudogene that encodes a truncated RisS sensor. Deletion of the intact part of the B. pertussis risS gene does not affect the expression of risA-dependent, Bvg-repressed genes. These observations suggest that RisA activation occurs through cross-regulation by a heterologous system. PMID:16113320
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-05
... systems to execute Stock/Option Orders,\\7\\ Stock/Complex Orders,\\8\\ and the option components of such... Change Amending Exchange Rule 6.91 To Remove Provisions Governing How the Complex Matching Engine Handles Electronic Complex Orders That Contain a Stock Leg May 30, 2013. Pursuant to Section 19(b)(1) \\1\\ of the...
Alvarez-Martin, Pablo; O'Connell Motherway, Mary; Turroni, Francesca; Foroni, Elena; Ventura, Marco; van Sinderen, Douwe
2012-10-01
This work reports on the identification and molecular characterization of a two-component regulatory system (2CRS), encoded by serRK, which is believed to control the expression of the ser(2003) locus in Bifidobacterium breve UCC2003. The ser(2003) locus consists of two genes, Bbr_1319 (sagA) and Bbr_1320 (serU), which are predicted to encode a hypothetical membrane-associated protein and a serpin-like protein, respectively. The response regulator SerR was shown to bind to the promoter region of ser(2003), and the probable recognition sequence of SerR was determined by a combinatorial approach of in vitro site-directed mutagenesis coupled to transcriptional fusion and electrophoretic mobility shift assays (EMSAs). The importance of the serRK 2CRS in the response of B. breve to protease-mediated induction was confirmed by generating a B. breve serR insertion mutant, which was shown to exhibit altered ser(2003) transcriptional induction patterns compared to the parent strain, UCC2003. Interestingly, the analysis of a B. breve serU mutant revealed that the SerRK signaling pathway appears to include a SerU-dependent autoregulatory loop.
Alvarez-Martin, Pablo; O'Connell Motherway, Mary; Turroni, Francesca; Foroni, Elena; Ventura, Marco
2012-01-01
This work reports on the identification and molecular characterization of a two-component regulatory system (2CRS), encoded by serRK, which is believed to control the expression of the ser2003 locus in Bifidobacterium breve UCC2003. The ser2003 locus consists of two genes, Bbr_1319 (sagA) and Bbr_1320 (serU), which are predicted to encode a hypothetical membrane-associated protein and a serpin-like protein, respectively. The response regulator SerR was shown to bind to the promoter region of ser2003, and the probable recognition sequence of SerR was determined by a combinatorial approach of in vitro site-directed mutagenesis coupled to transcriptional fusion and electrophoretic mobility shift assays (EMSAs). The importance of the serRK 2CRS in the response of B. breve to protease-mediated induction was confirmed by generating a B. breve serR insertion mutant, which was shown to exhibit altered ser2003 transcriptional induction patterns compared to the parent strain, UCC2003. Interestingly, the analysis of a B. breve serU mutant revealed that the SerRK signaling pathway appears to include a SerU-dependent autoregulatory loop. PMID:22843530
Automatic Screening for Perturbations in Boolean Networks.
Schwab, Julian D; Kestler, Hans A
2018-01-01
A common approach to address biological questions in systems biology is to simulate regulatory mechanisms using dynamic models. Among others, Boolean networks can be used to model the dynamics of regulatory processes in biology. Boolean network models allow simulating the qualitative behavior of the modeled processes. A central objective in the simulation of Boolean networks is the computation of their long-term behavior-so-called attractors. These attractors are of special interest as they can often be linked to biologically relevant behaviors. Changing internal and external conditions can influence the long-term behavior of the Boolean network model. Perturbation of a Boolean network by stripping a component of the system or simulating a surplus of another element can lead to different attractors. Apparently, the number of possible perturbations and combinations of perturbations increases exponentially with the size of the network. Manually screening a set of possible components for combinations that have a desired effect on the long-term behavior can be very time consuming if not impossible. We developed a method to automatically screen for perturbations that lead to a user-specified change in the network's functioning. This method is implemented in the visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive attractor search.
Regulatory Flexibility: An Individual Differences Perspective on Coping and Emotion Regulation.
Bonanno, George A; Burton, Charles L
2013-11-01
People respond to stressful events in different ways, depending on the event and on the regulatory strategies they choose. Coping and emotion regulation theorists have proposed dynamic models in which these two factors, the person and the situation, interact over time to inform adaptation. In practice, however, researchers have tended to assume that particular regulatory strategies are consistently beneficial or maladaptive. We label this assumption the fallacy of uniform efficacy and contrast it with findings from a number of related literatures that have suggested the emergence of a broader but as yet poorly defined construct that we refer to as regulatory flexibility. In this review, we articulate this broader construct and define both its features and limitations. Specifically, we propose a heuristic individual differences framework and review research on three sequential components of flexibility for which propensities and abilities vary: sensitivity to context, availability of a diverse repertoire of regulatory strategies, and responsiveness to feedback. We consider the methodological limitations of research on each component, review questions that future research on flexibility might address, and consider how the components might relate to each other and to broader conceptualizations about stability and change across persons and situations. © The Author(s) 2013.
Modularized Smad-regulated TGFβ signaling pathway.
Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A
2012-12-01
The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.
76 FR 14108 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
..., Revision 1, ``Control of Preheat Temperature for Welding of Low-Alloy Steel.'' FOR FURTHER INFORMATION... for Welding of Low-Alloy Steel,'' was issued with a temporary identification as Draft Regulatory Guide... implementing regulatory requirements related to the control of welding for low-alloy steel components during...
A quantitative framework for the forward design of synthetic miRNA circuits.
Bloom, Ryan J; Winkler, Sally M; Smolke, Christina D
2014-11-01
Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of β-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.
Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control.
Dong, Peng; Maddali, Manoj V; Srimani, Jaydeep K; Thélot, François; Nevins, Joseph R; Mathey-Prevot, Bernard; You, Lingchong
2014-09-01
A body of evidence has shown that the control of E2F transcription factor activity is critical for determining cell cycle entry and cell proliferation. However, an understanding of the precise determinants of this control, including the role of other cell-cycle regulatory activities, has not been clearly defined. Here, recognizing that the contributions of individual regulatory components could be masked by heterogeneity in populations of cells, we model the potential roles of individual components together with the use of an integrated system to follow E2F dynamics at the single-cell level and in real time. These analyses reveal that crossing a threshold amplitude of E2F accumulation determines cell cycle commitment. Importantly, we find that Myc is critical in modulating the amplitude, whereas cyclin D/E activities have little effect on amplitude but do contribute to the modulation of duration of E2F activation, thereby affecting the pace of cell cycle progression.
Deutscher, Josef; Francke, Christof; Postma, Pieter W.
2006-01-01
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705
Organomatics and organometrics: Novel platforms for long-term whole-organ culture
Bruinsma, Bote G.; Yarmush, Martin L.; Uygun, Korkut
2014-01-01
Organ culture systems are instrumental as experimental whole-organ models of physiology and disease, as well as preservation modalities facilitating organ replacement therapies such as transplantation. Nevertheless, a coordinated system of machine perfusion components and integrated regulatory control has yet to be fully developed to achieve long-term maintenance of organ function ex vivo. Here we outline current strategies for organ culture, or organomatics, and how these systems can be regulated by means of computational algorithms, or organometrics, to achieve the organ culture platforms anticipated in modern-day biomedicine. PMID:25035864
Hierarchical modularization of biochemical pathways using fuzzy-c means clustering.
de Luis Balaguer, Maria A; Williams, Cranos M
2014-08-01
Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.
Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, G.D.; Mei, G.T.
The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.
People save for retirement throughout their career because it is virtually impossible to save all youll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is, To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades? Existing models do not includemore » full regulatory constraints due to their often complex, and inflexible approaches to solve for optimal engineering instead of robust and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework or module to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the models capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technologys demand in the marketplace.« less
Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.
Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico
2017-01-01
Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.
Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra
2018-01-15
Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Paulsson, Johan; Ehrenberg, Måns
2000-06-01
Many intracellular components are present in low copy numbers per cell and subject to feedback control. We use chemical master equations to analyze a negative feedback system where species X and S regulate each other's synthesis with standard intracellular kinetics. For a given number of X-molecules, S-variation can be significant. We show that this signal noise does not necessarily increase X-variation as previously thought but, surprisingly, can be necessary to reduce it below a Poissonian limit. The principle resembles Stochastic Resonance in that signal noise improves signal detection.
Complex metabolic oscillations in plants forced by harmonic irradiance.
Nedbal, Ladislav; Brezina, Vítezslav
2002-01-01
Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date. PMID:12324435
Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal
2014-12-06
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Hours of work and rest in the rail industry.
Anderson, C; Grunstein, R R; Rajaratnam, S M W
2013-06-01
Currently, the National Transport Commission is considering four options to form the regulatory framework for rail safety within Australia with respect to fatigue. While the National Transport Commission currently recommends no limitations around hours of work or rest, we provide evidence which suggests regulatory frameworks should incorporate a traditional hours of service regulation over more flexible policies. Our review highlights: Shift durations >12 h are associated with a doubling of risk for accident and injury. Fatigue builds cumulatively with each successive shift where rest in between is inadequate (<12 h). A regulatory framework for fatigue management within the rail industry should prescribe limits on hours of work and rest, including maximum shift duration and successive number of shifts. Appropriately, validated biomathematical models and technologies may be used as a part of a fatigue management system, to augment the protection afforded by limits on hours of work and rest. A comprehensive sleep disorder screening and management programme should form an essential component of any regulatory framework. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... debit or credit based on the relative prices of the individual components, for the same account, for the... market system and, in general, to protect investors and the public interest. \\6\\ 15 U.S.C. 78f. \\7\\ 15 U.S.C. 78f(b)(5). Specifically, the Exchange believes that investors and other market participants...
ERIC Educational Resources Information Center
Rolle, R. Anthony; Wood, R. Craig
2012-01-01
Texas charter school districts (CSDs) are accredited and monitored by the Texas Education Agency (TEA) utilizing the various components within the state accountability systems for both state and federal requirements. Yet, Texas CSDs are believed to operate with few regulatory restrictions on administrative, instructional, and pedagogical methods.…
Camargo, Tarsila M; Stipp, Rafael N; Alves, Lívia A; Harth-Chu, Erika N; Höfling, José F; Mattos-Graner, Renata O
2018-04-01
Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptR Ss (SKsptR) and sptS Ss (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptR Ss and sptS Ss mutants showed increased biofilm formation associated with higher levels of production of H 2 O 2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H 2 O 2 production (2.5- to 15-fold upregulation of spxB , spxR , vicR , tpk , and ackA in sptR Ss and sptS Ss mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA , pcsB , cwdP , iga , and nt5e ). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR , spxR , comE , comX , and mecA in the sptR Ss and sptS Ss mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H 2 O 2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity. Copyright © 2018 American Society for Microbiology.
Hafemeister, Christoph; Nicotra, Adrienne B.; Jagadish, S.V. Krishna; Bonneau, Richard; Purugganan, Michael
2016-01-01
Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference. PMID:27655842
Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franusich, Michael D.
SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less
Freyre-González, Julio A; Treviño-Quintanilla, Luis G; Valtierra-Gutiérrez, Ilse A; Gutiérrez-Ríos, Rosa María; Alonso-Pavón, José A
2012-10-31
Escherichia coli and Bacillus subtilis are two of the best-studied prokaryotic model organisms. Previous analyses of their transcriptional regulatory networks have shown that they exhibit high plasticity during evolution and suggested that both converge to scale-free-like structures. Nevertheless, beyond this suggestion, no analyses have been carried out to identify the common systems-level components and principles governing these organisms. Here we show that these two phylogenetically distant organisms follow a set of common novel biologically consistent systems principles revealed by the mathematically and biologically founded natural decomposition approach. The discovered common functional architecture is a diamond-shaped, matryoshka-like, three-layer (coordination, processing, and integration) hierarchy exhibiting feedback, which is shaped by four systems-level components: global transcription factors (global TFs), locally autonomous modules, basal machinery and intermodular genes. The first mathematical criterion to identify global TFs, the κ-value, was reassessed on B. subtilis and confirmed its high predictive power by identifying all the previously reported, plus three potential, master regulators and eight sigma factors. The functionally conserved cores of modules, basal cell machinery, and a set of non-orthologous common physiological global responses were identified via both orthologous genes and non-orthologous conserved functions. This study reveals novel common systems principles maintained between two phylogenetically distant organisms and provides a comparison of their lifestyle adaptations. Our results shed new light on the systems-level principles and the fundamental functions required by bacteria to sustain life. Copyright © 2012 Elsevier B.V. All rights reserved.
Diniz, Gabriela P.; Senger, Nathalia; Carneiro-Ramos, Marcela S.; Santos, Robson A. S.; Barreto-Chaves, Maria Luiza M.
2015-01-01
Objectives: Thyroid hormone (TH) promotes marked effects on the cardiovascular system, including the development of cardiac hypertrophy. Some studies have demonstrated that the renin–angiotensin system (RAS) is a key mediator of the cardiac growth in response to elevated TH levels. Although some of the main RAS components are changed in cardiac tissue on hyperthyroid state, the potential modulation of the counter regulatory components of the RAS, such as angiotensin-converting enzyme type 2 (ACE2), angiotensin 1–7 (Ang 1–7) levels and Mas receptor induced by hyperthyroidism is unknown. The aim of this study was to investigate the effect of hyperthyroidism on cardiac Ang 1–7, ACE2 and Mas receptor levels. Methods: Hyperthyroidism was induced in Wistar rats by daily intraperitoneal injections of T4 for 14 days. Results: Although plasma Ang 1–7 levels were unchanged by hyperthyroidism, cardiac Ang 1–7 levels were increased in TH-induced cardiac hypertrophy. ACE2 enzymatic activity was significantly increased in hearts from hyperthyroid animals, which may be contributing to the higher Ang 1–7 levels observed in the T4 group. Furthermore, elevated cardiac levels of Ang 1–7 levels were accompanied by increased Mas receptor protein levels. Conclusion: The counter-regulatory components of the RAS are activated in hyperthyroidism and may be contributing to modulate the cardiac hypertrophy in response to TH. PMID:26715125
Nishino, Kunihiko
2018-01-01
Bacterial multidrug exporters confer resistance to a wide range of antibiotics, dyes, and biocides. Recent studies have shown that there are many multidrug exporters encoded in bacterial genome. For example, it was experimentally identified that E. coli has at least 20 multidrug exporters. Because many of these multidrug exporters have overlapping substrate spectra, it is intriguing that bacteria, with their economically organized genomes, harbor such large sets of multidrug exporter genes. The key to understanding how bacteria utilize these multiple exporters lies in the regulation of exporter expression. Bacteria have developed signaling systems for eliciting a variety of adaptive responses to their environments. These adaptive responses are often mediated by two-component regulatory systems. In this chapter, the method to identify response regulators that affect expression of multidrug exporters is described.
Türkowsky, Dominique; Esken, Jens; Goris, Tobias; Schubert, Torsten; Diekert, Gabriele; Jehmlich, Nico; von Bergen, Martin
2018-06-15
Organohalide respiration (OHR), comprising the reductive dehalogenation of halogenated organic compounds, is subject to a unique memory effect and long-term transcriptional downregulation of the involved genes in Sulfurospirillum multivorans. Gene expression ceases slowly over approximately 100 generations in the absence of tetrachloroethene (PCE). However, the molecular mechanisms of this regulation process are not understood. We show here that Sulfurospirillum halorespirans undergoes the same type of regulation when cultivated without chlorinated ethenes for a long period of time. In addition, we compared the proteomes of S. halorespirans cells cultivated in the presence of PCE with those of cells long- and short-term cultivated with nitrate as the sole electron acceptor. Important OHR-related proteins previously unidentified in S. multivorans include a histidine kinase, a putative quinol dehydrogenase membrane protein, and a PCE-induced porin. Since for some regulatory proteins a posttranslational regulation of activity by lysine acetylations is known, we also analyzed the acetylome of S. halorespirans, revealing that 32% of the proteome was acetylated in at least one condition. The data indicate that the response regulator and the histidine kinase of a two-component system most probably involved in induction of PCE respiration are highly acetylated during short-term cultivation with nitrate in the absence of PCE. The so far unique long-term downregulation of organohalide respiration is now identified in a second species suggesting a broader distribution of this regulatory phenomenon. An improved protein extraction method allowed the identification of proteins most probably involved in transcriptional regulation of OHR in Sulfurospirillum spp. Our data indicate that acetylations of regulatory proteins are involved in this extreme, sustained standby-mode of metabolic enzymes in the absence of a substrate. This first published acetylome of Epsilonproteobacteria might help to study other ecologically or medically important species of this clade. Copyright © 2018 Elsevier B.V. All rights reserved.
Potts, Anastasia H; Leng, Yuanyuan; Babitzke, Paul; Romeo, Tony
2018-03-29
The Csr global regulatory system coordinates gene expression in response to metabolic status. This system utilizes the RNA binding protein CsrA to regulate gene expression by binding to transcripts of structural and regulatory genes, thus affecting their structure, stability, translation, and/or transcription elongation. CsrA activity is controlled by sRNAs, CsrB and CsrC, which sequester CsrA away from other transcripts. CsrB/C levels are partly determined by their rates of turnover, which requires CsrD to render them susceptible to RNase E cleavage. Previous epistasis analysis suggested that CsrD affects gene expression through the other Csr components, CsrB/C and CsrA. However, those conclusions were based on a limited analysis of reporters. Here, we reassessed the global behavior of the Csr circuitry using epistasis analysis with RNA seq (Epi-seq). Because CsrD effects on mRNA levels were entirely lost in the csrA mutant and largely eliminated in a csrB/C mutant under our experimental conditions, while the majority of CsrA effects persisted in the absence of csrD, the original model accounts for the global behavior of the Csr system. Our present results also reflect a more nuanced role of CsrA as terminal regulator of the Csr system than has been recognized.
Löffler, Michael; Simen, Joana Danica; Müller, Jan; Jäger, Günter; Laghrami, Salaheddine; Schäferhoff, Karin; Freund, Andreas; Takors, Ralf
2017-09-20
Transcriptional control under nitrogen and carbon-limitation conditions have been well analyzed for Escherichia coli. However, the transcriptional dynamics that underlie the shift in regulatory programs from nitrogen to carbon limitation is not well studied. In the present study, cells were cultivated at steady state under nitrogen (ammonia)-limited conditions then shifted to carbon (glucose) limitation to monitor changes in transcriptional dynamics. Nitrogen limitation was found to be dominated by sigma 54 (RpoN) and sigma 38 (RpoS), whereas the "housekeeping" sigma factor 70 (RpoD) and sigma 38 regulate cellular status under glucose limitation. During the transition, nitrogen-mediated control was rapidly redeemed and mRNAs that encode active uptake systems, such as ptsG and manXYZ, were quickly amplified. Next, genes encoding facilitators such as lamB were overexpressed, followed by high affinity uptake systems such as mglABC and non-specific porins such as ompF. These regulatory programs are complex and require well-equilibrated and superior control. At the metabolome level, 2-oxoglutarate is the likely component that links carbon- and nitrogen-mediated regulation by interacting with major regulatory elements. In the case of dual glucose and ammonia limitation, sigma 24 (RpoE) appears to play a key role in orchestrating these complex regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Jilong; Yan, Dalai; Dixon, Ray; Wang, Yi-Ping
2016-07-19
A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. Bacteria exhibit different growth rates under various nutrient conditions. These environmentally related behaviors reflect the coordination between metabolism and the underlying regulatory networks. In the present study, we investigated the intertwined nitrogen metabolic and nitrogen regulatory systems to understand the growth differences between rich and poor nitrogen sources. Although maximal growth rate is considered to be evolutionarily advantageous for bacteria (as remarked by François Jacob, who said that the "dream" of every cell is to become two cells), we showed that negative-feedback loops in the regulatory system inhibit growth rates on amino acids. We demonstrated that in the absence of regulatory feedback, amino acids are capable of supporting fast growth rates, but this results in ammonia leaking out from cells as "waste," benefiting the growth of competitors. These findings provide important insights into the regulatory logic that controls metabolic flux and ensures nutrient containment but consequently sacrifices growth rate. Copyright © 2016 Wang et al.
Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela
2008-01-01
The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH. PMID:18203830
Critical thinking as a self-regulatory process component in teaching and learning.
Phan, Huy P
2010-05-01
This article presents a theoretically grounded model of critical thinking and self-regulation in the context of teaching and learning. Critical thinking, deriving from an educational psychology perspective is a complex process of reflection that helps individuals become more analytical in their thinking and professional development. My conceptualisation in this discussion paper argues that both theoretical orientations (critical thinking and self-regulation) operate in a dynamic interactive system of teaching and learning. My argument, based on existing research evidence, suggests two important points: (i) critical thinking acts as another cognitive strategy of self-regulation that learners use in their learning, and (ii) critical thinking may be a product of various antecedents such as different self-regulatory strategies.
Emerging Functions for the Staphylococcus aureus RNome
Felden, Brice
2013-01-01
Staphylococcus aureus is a leading pathogen for animals and humans, not only being one of the most frequently isolated bacteria in hospital-associated infections but also causing diseases in the community. To coordinate the expression of its numerous virulence genes for growth and survival, S. aureus uses various signalling pathways that include two-component regulatory systems, transcription factors, and also around 250 regulatory RNAs. Biological roles have only been determined for a handful of these sRNAs, including cis, trans, and cis-trans acting RNAs, some internally encoding small, functional peptides and others possessing dual or multiple functions. Here we put forward an inventory of these fascinating sRNAs; the proteins involved in their activities; and those involved in stress response, metabolisms, and virulence. PMID:24348246
Coordination of frontline defense mechanisms under severe oxidative stress.
Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S
2010-07-01
Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.
Recommendations for portable supplemental meteorological instrumentation for incident response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.M.; Tichler, J.L.
The Nuclear Regulatory Commission (NRC) staff requested technical assistance in recommending portable supplementary meteorological instrumentation which can be deployed to nuclear power plant sites in response to incidents. A supplementary meteorological system (SMS), whose primary function is to collect, analyze and disseminate supplemental meteorological information, is recommended. Instrument specifications are discussed along with maintenance and staffing requirements. A cost evaluation of the components is made. 5 refs., 1 fig.
Barzantny, Helena; Schröder, Jasmin; Strotmeier, Jasmin; Fredrich, Eugenie; Brune, Iris; Tauch, Andreas
2012-06-15
Lipophilic corynebacteria are involved in the generation of volatile odorous products in the process of human body odor formation by degrading skin lipids and specific odor precursors. Therefore, these bacteria represent appropriate model systems for the cosmetic industry to examine axillary malodor formation on the molecular level. To understand the transcriptional control of metabolic pathways involved in this process, the transcriptional regulatory network of the lipophilic axilla isolate Corynebacterium jeikeium K411 was reconstructed from the complete genome sequence. This bioinformatic approach detected a gene-regulatory repertoire of 83 candidate proteins, including 56 DNA-binding transcriptional regulators, nine two-component systems, nine sigma factors, and nine regulators with diverse physiological functions. Furthermore, a cross-genome comparison among selected corynebacterial species of the taxonomic cluster 3 revealed a common gene-regulatory repertoire of 44 transcriptional regulators, including the MarR-like regulator Jk0257, which is exclusively encoded in the genomes of this taxonomical subline. The current network reconstruction comprises 48 transcriptional regulators and 674 gene-regulatory interactions that were assigned to five interconnected functional modules. Most genes involved in lipid degradation are under the combined control of the global cAMP-sensing transcriptional regulator GlxR and the LuxR-family regulator RamA, probably reflecting the essential role of lipid degradation in C. jeikeium. This study provides the first genome-scale in silico analysis of the transcriptional regulation of metabolism in a lipophilic bacterium involved in the formation of human body odor. Copyright © 2012 Elsevier B.V. All rights reserved.
Straube, Ronny
2017-12-01
Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.
Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazen, Samuel
2013-09-27
Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process,more » we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.« less
Effects of the Global Regulator CsrA on the BarA/UvrY Two-Component Signaling System
Camacho, Martha I.; Alvarez, Adrian F.; Gonzalez Chavez, Ricardo; Romeo, Tony; Merino, Enrique
2014-01-01
The hybrid sensor kinase BarA and its cognate response regulator UvrY, members of the two-component signal transduction family, activate transcription of CsrB and CsrC noncoding RNAs. These two small RNAs act by sequestering the RNA binding protein CsrA, which posttranscriptionally regulates translation and/or stability of its target mRNAs. Here, we provide evidence that CsrA positively affects, although indirectly, uvrY expression, at both the transcriptional and translational levels. We also demonstrate that CsrA is required for properly switching BarA from its phosphatase to its kinase activity. Thus, the existence of a feedback loop mechanism that involves the Csr and BarA/UvrY global regulatory systems is exposed. PMID:25535275
Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R
2006-11-01
The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.
[Research progress on carbon sink function of agroforestry system under climate change].
Xie, Ting-Ting; Su, Pei-Xi; Zhou, Zi-Juan; Shan, Li-Shan
2014-10-01
As a land comprehensive utilization system, agroforestry system can absorb and fix CO2 effectively to increase carbon storage, and also reduces greenhouse effect convincingly while reaching the aim of harvest. The regulatory role in CO2 makes humans realize that agroforestry systems have significant superiority compared with single cropping systems, therefore, understanding the carbon sinks of different components in an agroforestry system and its influencing factors play an important role in studying global carbon cycle and accurate evaluation of carbon budget. This paper reviewed the concept and classification of agroforestry system, and then the carbon sequestration potentials of different components in agroforestry systems and influencing factors. It was concluded that the carbon sequestration rate of plants from different agroforestry systems in different regions are highly variable, ranging from 0.59 to 11.08 t C · hm(-2) · a(-1), and it is mainly influenced by climatic factors and the characteristics of agroforestry systems (species composition, tree density and stand age). The soil C sequestration of any agroforestry system is influenced by the amount and quality of biomass input provided by tree and nontree components of the system and the soil properties such as soil texture and soil structure. Overall the amount of carbon storage in any agroforestry system depends on the structure and function of its each component. The future studies should focus on the carbon sink functions of structurally optimized agroforestry systems, the temporal variation and spatial distribution pattern of carbon storage in agroforestry system and its carbon sequestration mechanism in a long time.
Regulatory gene networks and the properties of the developmental process
NASA Technical Reports Server (NTRS)
Davidson, Eric H.; McClay, David R.; Hood, Leroy
2003-01-01
Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.
Transcriptional regulation by the Set7 lysine methyltransferase
Keating, Samuel; El-Osta, Assam
2013-01-01
Posttranslational histone modifications define chromatin structure and function. In recent years, a number of studies have characterized many of the enzymatic activities and diverse regulatory components required for monomethylation of histone H3 lysine 4 (H3K4me1) and the expression of specific genes. The challenge now is to understand how this specific chemical modification is written and the Set7 methyltransferase has emerged as a key regulatory enzyme mediating methylation of lysine residues of histone and non-histone proteins. In this review, we comprehensively explore the regulatory proteins modified by Set7 and highlight mechanisms of specific co-recruitment of the enzyme to activating promoters. With a focus on signaling and transcriptional control in disease we discuss recent experimental data emphasizing specific components of diverse regulatory complexes that mediate chromatin modification and reinterpretation of Set7-mediated gene expression. PMID:23478572
Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca
2011-09-01
We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597-607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi: 10.1007/s12064-011-0125-0 , 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called 'average dynamics' is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293-326, 2010). The advantage of the 'average dynamics' framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the 'gene' concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335-338, 2000; Gardner et al., Nature 403(6767):339-342, 2000; Hasty et al., Nature 420(6912):224-230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.
Genome plasticity and systems evolution in Streptomyces
2012-01-01
Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A better understanding of the LSE gene families will, on the other hand, bring a wealth of new insights into the mechanisms underlying strain-specific phenotypes, such as the production of novel antibiotics, pathogenesis, and adaptive response to environmental challenges. PMID:22759432
Alegado, Rosanna A; Campbell, Marianne C; Chen, Will C; Slutz, Sandra S; Tan, Man-Wah
2003-07-01
The soil-borne nematode, Caenorhabditis elegans, is emerging as a versatile model in which to study host-pathogen interactions. The worm model has shown to be particularly effective in elucidating both microbial and animal genes involved in toxin-mediated killing. In addition, recent work on worm infection by a variety of bacterial pathogens has shown that a number of virulence regulatory genes mediate worm susceptibility. Many of these regulatory genes, including the PhoP/Q two-component regulators in Salmonella and LasR in Pseudomonas aeruginosa, have also been implicated in mammalian models suggesting that findings in the worm model will be relevant to other systems. In keeping with this concept, experiments aimed at identifying host innate immunity genes have also implicated pathways that have been suggested to play a role in plants and animals, such as the p38 MAP kinase pathway. Despite rapid forward progress using this model, much work remains to be done including the design of more sensitive methods to find effector molecules and further characterization of the exact interaction between invading pathogens and C. elegans' cellular components.
Sato, Masanao; Tsuda, Kenichi; Wang, Lin; Coller, John; Watanabe, Yuichiro; Glazebrook, Jane; Katagiri, Fumiaki
2010-01-01
Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii) negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a “sector-switching” network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. PMID:20661428
Yin, Shouhui; Jo, Dae Sun; Montgomery, Christopher P.; Daum, Robert S.
2013-01-01
Staphylococcus aureus infections caused by strains that are resistant to all forms of penicillin, so-called methicillin-resistant S. aureus (MRSA) strains, have become common. One strategy to counter MRSA infections is to use compounds that resensitize MRSA to methicillin. S. aureus responds to diverse classes of cell wall-inhibitory antibiotics, like methicillin, using the two-component regulatory system VraSR (vra) to up- or downregulate a set of genes (the cell wall stimulon) that presumably facilitates resistance to these antibiotics. Accordingly, VraS and VraR mutations decrease resistance to methicillin, vancomycin, and daptomycin cell wall antimicrobials. vraS and vraR are encoded together on a transcript downstream of two other genes, which we call vraU and vraT (previously called yvqF). By producing nonpolar deletions in vraU and vraT in a USA300 MRSA clinical isolate, we demonstrate that vraT is essential for optimal expression of methicillin resistance in vitro, whereas vraU is not required for this phenotype. The deletion of vraT also improved the outcomes of oxacillin therapy in mouse models of lung and skin infection. Since vraT expressed in trans did not complement a vra operon deletion, we conclude that VraT does not inactivate the antimicrobial. Genome-wide transcriptional microarray experiments reveal that VraT facilitates resistance by playing a necessary regulatory role in the VraSR-mediated cell wall stimulon. Our data prove that VraTSR comprise a novel three-component regulatory system required to facilitate resistance to cell wall agents in S. aureus. We also provide the first in vivo proof of principle for using VraT as a sole target to resensitize MRSA to β-lactams. PMID:23070169
Elementary signaling modes predict the essentiality of signal transduction network components
2011-01-01
Background Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction. Results In this work, we present an integrative computational method for evaluating the essentiality of components in signaling networks. This approach expands an existing signaling network to a richer representation that incorporates the positive or negative nature of interactions and the synergistic behaviors among multiple components. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. Our method ranks the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on several signaling networks describing the immune response of mammals to bacteria, guard cell abscisic acid signaling in plants, and T cell receptor signaling shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and results in strong agreement with the results of Boolean (logical) dynamic models and experimental observations. Conclusions This integrative method is an efficient procedure for exploratory analysis of large signaling and regulatory networks where dynamic modeling or experimental tests are impractical. Its results serve as testable predictions, provide insights into signal transduction and regulatory mechanisms and can guide targeted computational or experimental follow-up studies. The source codes for the algorithms developed in this study can be found at http://www.phys.psu.edu/~ralbert/ESM. PMID:21426566
Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne
2014-10-03
Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne
2014-01-01
Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. PMID:25118291
Pipe overpack container for trasuranic waste storage and shipment
Geinitz, Richard R.; Thorp, Donald T.; Rivera, Michael A.
1999-01-01
A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.
Does GLP enhance the quality of toxicological evidence for regulatory decisions?
Borgert, Christopher J.; Becker, Richard A.; Carlton, Betsy D.; Hanson, Mark; Kwiatkowski, Patricia L.; Sue Marty, Mary; McCarty, Lynn S.; Quill, Terry F.; Solomon, Keith; Van Der Kraak, Glen; Witorsch, Raphael J.; Don Yi, Kun
2016-01-01
There is debate over whether the requirements of GLP are appropriate standards for evaluating the quality of toxicological data used to formulate regulations. A group promoting the importance of non-monotonic dose responses for endocrine disruptors contend that scoring systems giving primacy to GLP are biased against non-GLP studies from the literature and are merely record-keeping exercises to prevent fraudulent reporting of data from non-published guideline toxicology studies. They argue that guideline studies often employ insensitive species and outdated methods, and ignore the perspectives of subject-matter experts in endocrine disruption, who should be the sole arbiters of data quality. We believe regulatory agencies should use both non-GLP and GLP studies, that GLP requirements assure fundamental tenets of study integrity not typically addressed by journal peer-review, and that use of standardized test guidelines and GLP promotes consistency, reliability, comparability, and harmonization of various types of studies used by regulatory agencies worldwide. This debate suffers two impediments to progress: a conflation of different phases of study interpretation and levels of data validity, and a misleading characterization of many essential components of GLP and regulatory toxicology. Herein we provide clarifications critical for removing those impediments. PMID:27208076
Daston, George; Knight, Derek J; Schwarz, Michael; Gocht, Tilman; Thomas, Russell S; Mahony, Catherine; Whelan, Maurice
2015-01-01
The development of non-animal methodology to evaluate the potential for a chemical to cause systemic toxicity is one of the grand challenges of modern science. The European research programme SEURAT is active in this field and will conclude its first phase, SEURAT-1, in December 2015. Drawing on the experience gained in SEURAT-1 and appreciating international advancement in both basic and regulatory science, we reflect here on how SEURAT should evolve and propose that further research and development should be directed along two complementary and interconnecting work streams. The first work stream would focus on developing new 'paradigm' approaches for regulatory science. The goal here is the identification of 'critical biological targets' relevant for toxicity and to test their suitability to be used as anchors for predicting toxicity. The second work stream would focus on integration and application of new approach methods for hazard (and risk) assessment within the current regulatory 'paradigm', aiming for acceptance of animal-free testing strategies by regulatory authorities (i.e. translating scientific achievements into regulation). Components for both work streams are discussed and may provide a structure for a future research programme in the field of predictive toxicology.
Recommendations for the treatment of aging in standard technical specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orton, R.D.; Allen, R.P.
1995-09-01
As part of the US Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program, Pacific Northwest Laboratory (PNL) evaluated the standard technical specifications for nuclear power plants to determine whether the current surveillance requirements (SRs) were effective in detecting age-related degradation. Nuclear Plant Aging Research findings for selected systems and components were reviewed to identify the stressors and operative aging mechanisms and to evaluate the methods available to detect, differentiate, and trend the resulting aging degradation. Current surveillance and testing requirements for these systems and components were reviewed for their effectiveness in detecting degraded conditions and for potential contributions to prematuremore » degradation. When the current surveillance and testing requirements appeared ineffective in detecting aging degradation or potentially could contribute to premature degradation, a possible deficiency in the SRs was identified that could result in undetected degradation. Based on this evaluation, PNL developed recommendations for inspection, surveillance, trending, and condition monitoring methods to be incorporated in the SRs to better detect age- related degradation of these selected systems and components.« less
Regulatory considerations on new adjuvants and delivery systems.
Sesardic, D
2006-04-12
New and improved vaccines and delivery systems are increasingly being developed for prevention, treatment and diagnosis of human diseases. Prior to their use in humans, all new biological products must undergo pre-clinical evaluation. These pre-clinical studies are important not only to establish the biological properties of the material and to evaluate its possible risk to the public, but also to plan protocols for subsequent clinical trials from which safety and efficacy can be evaluated. For vaccines, evaluation in pre-clinical studies is particularly important as information gained may also contribute to identifying the optimum composition and formulation process and provide an opportunity to develop suitable indicator tests for quality control. Data from pre-clinical and laboratory evaluation studies, which continue during clinical studies, is used to support an application for marketing authorisation. Addition of a new adjuvant and exploration of new delivery systems for vaccines presents challenges to both manufacturers and regulatory authorities. Because no adjuvant is licensed as a medicinal product in its own right, but only as a component of a particular vaccine, pre-clinical and appropriate toxicology studies need to be designed on a case-by-case basis to evaluate the safety profile of the adjuvant and adjuvant/vaccine combination. Current regulatory requirements for the pharmaceutical and pre-clinical safety assessment of vaccines are insufficient and initiatives are in place to develop more specific guidelines for evaluation of adjuvants in vaccines.
Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis
Bordi, Christophe; Lamy, Marie-Cécile; Ventre, Isabelle; Termine, Elise; Hachani, Abderrahman; Fillet, Sandy; Roche, Béatrice; Bleves, Sophie; Méjean, Vincent; Lazdunski, Andrée; Filloux, Alain
2010-01-01
Bacterial pathogenesis often depends on regulatory networks, two-component systems and small RNAs (sRNAs). In Pseudomonas aeruginosa, the RetS sensor pathway downregulates expression of two sRNAs, rsmY and rsmZ. Consequently, biofilm and the Type Six Secretion System (T6SS) are repressed, whereas the Type III Secretion System (T3SS) is activated. We show that the HptB signalling pathway controls biofilm and T3SS, and fine-tunes P. aeruginosa pathogenesis. We demonstrate that RetS and HptB intersect at the GacA response regulator, which directly controls sRNAs production. Importantly, RetS controls both sRNAs, whereas HptB exclusively regulates rsmY expression. We reveal that HptB signalling is a complex regulatory cascade. This cascade involves a response regulator, with an output domain belonging to the phosphatase 2C family, and likely an anti-anti-σ factor. This reveals that the initial input in the Gac system comes from several signalling pathways, and the final output is adjusted by a differential control on rsmY and rsmZ. This is exemplified by the RetS-dependent but HptB-independent control on T6SS. We also demonstrate a redundant action of the two sRNAs on T3SS gene expression, while the impact on pel gene expression is additive. These features underpin a novel mechanism in the fine-tuned regulation of gene expression. PMID:20398205
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... on a component by component basis, rather than by sector. Energy components can now be held in long... previously approved, all sectors other than energy could go long and short. Components are set to their..., ``Futures Exchanges''). Previously, the Index and the DCFI were designed such that the energy components...
Refining metabolic models and accounting for regulatory effects.
Kim, Joonhoon; Reed, Jennifer L
2014-10-01
Advances in genome-scale metabolic modeling allow us to investigate and engineer metabolism at a systems level. Metabolic network reconstructions have been made for many organisms and computational approaches have been developed to convert these reconstructions into predictive models. However, due to incomplete knowledge these reconstructions often have missing or extraneous components and interactions, which can be identified by reconciling model predictions with experimental data. Recent studies have provided methods to further improve metabolic model predictions by incorporating transcriptional regulatory interactions and high-throughput omics data to yield context-specific metabolic models. Here we discuss recent approaches for resolving model-data discrepancies and building context-specific metabolic models. Once developed highly accurate metabolic models can be used in a variety of biotechnology applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Steunou, Anne Soisig; Liotenberg, Sylviane; Soler, Marie-Noêlle; Briandet, Romain; Barbe, Valérie; Astier, Chantal; Ouchane, Soufian
2013-06-01
Photosynthetic bacteria can switch from planktonic lifestyle to phototrophic biofilm in mats in response to environmental changes. The mechanisms of phototrophic biofilm formation are, however, not characterized. Herein, we report a two-component system EmbRS that controls the biofilm formation in a photosynthetic member of the Burkholderiales order, the purple bacterium Rubrivivax gelatinosus. EmbRS inactivation results in cells that form conspicuous bacterial veils and fast-sinking aggregates in liquid. Biofilm analyses indicated that EmbRS represses the production of an extracellular matrix and biofilm formation. Mapping of transposon mutants that partially or completely restore the wild-type (WT) phenotype allowed the identification of two gene clusters involved in polysaccharide synthesis, one fully conserved only in Thauera sp., a floc-forming wastewater bacterium. A second two-component system BmfRS and a putative diguanylate cyclase BdcA were also identified in this screen suggesting their involvement in biofilm formation in this bacterium. The role of polysaccharides in sinking of microorganisms and organic matter, as well as the importance and the evolution of such regulatory system in phototrophic microorganisms are discussed. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.
Designing and encoding models for synthetic biology.
Endler, Lukas; Rodriguez, Nicolas; Juty, Nick; Chelliah, Vijayalakshmi; Laibe, Camille; Li, Chen; Le Novère, Nicolas
2009-08-06
A key component of any synthetic biology effort is the use of quantitative models. These models and their corresponding simulations allow optimization of a system design, as well as guiding their subsequent analysis. Once a domain mostly reserved for experts, dynamical modelling of gene regulatory and reaction networks has been an area of growth over the last decade. There has been a concomitant increase in the number of software tools and standards, thereby facilitating model exchange and reuse. We give here an overview of the model creation and analysis processes as well as some software tools in common use. Using markup language to encode the model and associated annotation, we describe the mining of components, their integration in relational models, formularization and parametrization. Evaluation of simulation results and validation of the model close the systems biology 'loop'.
Fish pigmentation and the melanocortin system.
Cal, Laura; Suarez-Bregua, Paula; Cerdá-Reverter, José Miguel; Braasch, Ingo; Rotllant, Josep
2017-09-01
The melanocortin system is a complex neuroendocrine signaling mechanism involved in numerous physiological processes in vertebrates, including pigmentation, steroidogenesis and metabolic control. This review focuses at one of its most fascinating function in fish, its regulatory role in the control of pigmentation, in which the melanocortin 1 receptor (Mc1r), its agonist α-melanocyte stimulating hormone (α-Msh), and the endogenous antagonist agouti signaling protein (Asip1) are the main players. Functional control of Mc1r, which is highly expressed in fish skin and whose activation stimulates melanin production and melanosome dispersion in fish melanophores, is considered a key mechanism for vertebrate pigment phenotypes. The α-Msh peptide, the most documented Mc1r agonist involved in pigmentation, is produced in the pituitary gland, activating melanin synthesis by binding to Mc1r in fish melanophores. Finally, Asip1 is the putative factor for establishing the evolutionarily conserved dorso-ventral pigment pattern found across vertebrates. However, we are just starting to understand how other melanocortin system components are acting in this complex regulatory network. Copyright © 2017 Elsevier Inc. All rights reserved.
Egri-Nagy, Attila; Nehaniv, Chrystopher L
2008-01-01
Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a formalized graphical modeling language, often used to describe computation occurring within biochemical and genetic regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore, there are several different ways to turn a Petri net into a state-transition automaton. Here, we systematically investigate different conversion methods and describe cases where they may yield radically different algebraic structures. We focus on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries of the computation occurring within the biological system under study. Results are illustrated by applications to the Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich, regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting a reason for the apparent all-pervasiveness of inhibitory connections in living systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... Lawson, Senior Special Counsel, Division of Trading and Markets (``Division''), Commission, dated May 20... return--of two index components (the target component and the benchmark component). The index is calculated by measuring the total return of the target component relative to the total return of the...
Reverse engineering of gene regulatory networks.
Cho, K H; Choo, S M; Jung, S H; Kim, J R; Choi, H S; Kim, J
2007-05-01
Systems biology is a multi-disciplinary approach to the study of the interactions of various cellular mechanisms and cellular components. Owing to the development of new technologies that simultaneously measure the expression of genetic information, systems biological studies involving gene interactions are increasingly prominent. In this regard, reconstructing gene regulatory networks (GRNs) forms the basis for the dynamical analysis of gene interactions and related effects on cellular control pathways. Various approaches of inferring GRNs from gene expression profiles and biological information, including machine learning approaches, have been reviewed, with a brief introduction of DNA microarray experiments as typical tools for measuring levels of messenger ribonucleic acid (mRNA) expression. In particular, the inference methods are classified according to the required input information, and the main idea of each method is elucidated by comparing its advantages and disadvantages with respect to the other methods. In addition, recent developments in this field are introduced and discussions on the challenges and opportunities for future research are provided.
Remote Excavation System technology evaluation report: Buried Waste Robotics Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the systemmore » and discussed the procedures used to conduct the tests.« less
Regulatory system reform of occupational health and safety in China.
Wu, Fenghong; Chi, Yan
2015-01-01
With the explosive economic growth and social development, China's regulatory system of occupational health and safety now faces more and more challenges. This article reviews the history of regulatory system of occupational health and safety in China, as well as the current reform of this regulatory system in the country. Comprehensive, a range of laws, regulations and standards that promulgated by Chinese government, duties and responsibilities of the regulatory departments are described. Problems of current regulatory system, the ongoing adjustments and changes for modifying and improving regulatory system are discussed. The aim of reform and the incentives to drive forward more health and safety conditions in workplaces are also outlined.
Regulatory system reform of occupational health and safety in China
WU, Fenghong; CHI, Yan
2015-01-01
With the explosive economic growth and social development, China’s regulatory system of occupational health and safety now faces more and more challenges. This article reviews the history of regulatory system of occupational health and safety in China, as well as the current reform of this regulatory system in the country. Comprehensive, a range of laws, regulations and standards that promulgated by Chinese government, duties and responsibilities of the regulatory departments are described. Problems of current regulatory system, the ongoing adjustments and changes for modifying and improving regulatory system are discussed. The aim of reform and the incentives to drive forward more health and safety conditions in workplaces are also outlined. PMID:25843565
Mhedbi-Hajri, Nadia; Malfatti, Pierrette; Pédron, Jacques; Gaubert, Stéphane; Reverchon, Sylvie; Van Gijsegem, Frédérique
2011-11-01
Successful infection of a pathogen relies on the coordinated expression of numerous virulence factor-encoding genes. In plant-bacteria interactions, this control is very often achieved through the integration of several regulatory circuits controlling cell-cell communication or sensing environmental conditions. Dickeya dadantii (formerly Erwinia chrysanthemi), the causal agent of soft rot on many crops and ornamentals, provokes maceration of infected plants mainly by producing and secreting a battery of plant cell wall-degrading enzymes. However, several other virulence factors have also been characterized. During Arabidopsis infection, most D. dadantii virulence gene transcripts accumulated in a coordinated manner during infection. This activation requires a functional GacA-GacS two-component regulatory system but the Gac system is not involved in the growth phase dependence of virulence gene expression. Here we show that, contrary to Pectobacterium, the AHL-mediated ExpIR quorum-sensing system does not play a major role in the growth phase-dependent control of D. dadantii virulence genes. On the other hand, the global regulator PecS participates in this coordinated expression since, in a pecS mutant, an early activation of virulence genes is observed both in vitro and in planta. This correlated with the known hypervirulence phenotype of the pecS mutant. Analysis of the relationship between the regulatory circuits governed by the PecS and GacA global regulators indicates that these two regulators act independently. PecS prevents a premature expression of virulence genes in the first stages of colonization whereas GacA, presumably in conjunction with other regulators, is required for the activation of virulence genes at the onset of symptom occurrence. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael
2014-01-01
For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.
Coordination of frontline defense mechanisms under severe oxidative stress
Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S
2010-01-01
Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations—this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of γ rays. PMID:20664639
Ruths, Troy; Nakhleh, Luay
2013-05-07
Cis-regulatory networks (CRNs) play a central role in cellular decision making. Like every other biological system, CRNs undergo evolution, which shapes their properties by a combination of adaptive and nonadaptive evolutionary forces. Teasing apart these forces is an important step toward functional analyses of the different components of CRNs, designing regulatory perturbation experiments, and constructing synthetic networks. Although tests of neutrality and selection based on molecular sequence data exist, no such tests are currently available based on CRNs. In this work, we present a unique genotype model of CRNs that is grounded in a genomic context and demonstrate its use in identifying portions of the CRN with properties explainable by neutral evolutionary forces at the system, subsystem, and operon levels. We leverage our model against experimentally derived data from Escherichia coli. The results of this analysis show statistically significant and substantial neutral trends in properties previously identified as adaptive in origin--degree distribution, clustering coefficient, and motifs--within the E. coli CRN. Our model captures the tightly coupled genome-interactome of an organism and enables analyses of how evolutionary events acting at the genome level, such as mutation, and at the population level, such as genetic drift, give rise to neutral patterns that we can quantify in CRNs.
Janssen, Jacob; Soule, Tanya
2016-01-01
Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Petrova, Olga E.; Gupta, Kajal; Liao, Julie; Goodwine, James S.; Sauer, Karin
2017-01-01
The opportunistic pathogen Pseudomonas aeruginosa forms antimicrobial resistant biofilms through sequential steps requiring several two-component regulatory systems. The sensor-regulator hybrid SagS plays a central role in biofilm development by enabling the switch from the planktonic to the biofilm mode of growth, and by facilitating the transition of biofilm cells to a highly tolerant state. However, the mechanism by which SagS accomplishes both functions is unknown. SagS harbors a periplasmic sensory HmsP, and phosphorelay HisKA and Rec domains. We used SagS domain constructs and site-directed mutagenesis to elucidate how SagS performs its dual functions. We demonstrate that HisKA-Rec and the phospho-signaling between SagS and BfiS contribute to the switch to the biofilm mode of growth, but not to the tolerant state. Instead, expression of SagS domain constructs harboring HmsP rendered ΔsagS biofilm cells as recalcitrant to antimicrobial agents as wild-type biofilms, likely by restoring BrlR production and cellular c-di-GMP levels to wild-type levels. Restoration of biofilm tolerance by HmsP was independent of biofilm biomass accumulation, RsmA, RsmYZ, HptB, and BfiSR-downstream targets. Our findings thus suggest that SagS likely makes use of a “divide-and-conquer” mechanism to regulate its dual switch function, by activating two distinct regulatory networks via its individual domains. PMID:28263038
Pipe overpack container for transuranic waste storage and shipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geinitz, R.R.; Thorp, D.T.; Rivera, M.A.
1999-12-07
A Pipe Overpack Container is described for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding, thus allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container wasmore » employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.« less
Computer validation in toxicology: historical review for FDA and EPA good laboratory practice.
Brodish, D L
1998-01-01
The application of computer validation principles to Good Laboratory Practice is a fairly recent phenomenon. As automated data collection systems have become more common in toxicology facilities, the U.S. Food and Drug Administration and the U.S. Environmental Protection Agency have begun to focus inspections in this area. This historical review documents the development of regulatory guidance on computer validation in toxicology over the past several decades. An overview of the components of a computer life cycle is presented, including the development of systems descriptions, validation plans, validation testing, system maintenance, SOPs, change control, security considerations, and system retirement. Examples are provided for implementation of computer validation principles on laboratory computer systems in a toxicology facility.
Following the Footsteps of Chlamydial Gene Regulation
Domman, D.; Horn, M.
2015-01-01
Regulation of gene expression ensures an organism responds to stimuli and undergoes proper development. Although the regulatory networks in bacteria have been investigated in model microorganisms, nearly nothing is known about the evolution and plasticity of these networks in obligate, intracellular bacteria. The phylum Chlamydiae contains a vast array of host-associated microbes, including several human pathogens. The Chlamydiae are unique among obligate, intracellular bacteria as they undergo a complex biphasic developmental cycle in which large swaths of genes are temporally regulated. Coupled with the low number of transcription factors, these organisms offer a model to study the evolution of regulatory networks in intracellular organisms. We provide the first comprehensive analysis exploring the diversity and evolution of regulatory networks across the phylum. We utilized a comparative genomics approach to construct predicted coregulatory networks, which unveiled genus- and family-specific regulatory motifs and architectures, most notably those of virulence-associated genes. Surprisingly, our analysis suggests that few regulatory components are conserved across the phylum, and those that are conserved are involved in the exploitation of the intracellular niche. Our study thus lends insight into a component of chlamydial evolution that has otherwise remained largely unexplored. PMID:26424812
Mobile-bearing knee systems: ultra-high molecular weight polyethylene wear and design issues.
Greenwald, A Seth; Heim, Christine S
2005-01-01
In June 2004, the U.S. Food and Drug Administration Orthopaedic Advisory Panel recommended the reclassification of mobile-bearing knee systems for general use. This reflects the increasing use of mobile-bearing knee systems internationally, which is currently limited in the United States by regulatory requirement. Mobile-bearing knee systems are distinguished from conventional, fixed-plateau systems in that they allow dual-surface articulation between an ultra-high molecular weight polyethylene insert and metallic femoral and tibial tray components. Their in vivo success is dependent on patient selection, design, and material choice, as well as surgical precision during implantation. Laboratory and clinical experience extending over 25 years with individual systems suggests that mobile-bearing knee systems represent a viable treatment option for patients with knee arthrosis.
Structural Basis of Rap Phosphatase Inhibition by Phr Peptides
Gallego del Sol, Francisca; Marina, Alberto
2013-01-01
Two-component systems, composed of a sensor histidine kinase and an effector response regulator (RR), are the main signal transduction devices in bacteria. In Bacillus, the Rap protein family modulates complex signaling processes mediated by two-component systems, such as competence, sporulation, or biofilm formation, by inhibiting the RR components involved in these pathways. Despite the high degree of sequence homology, Rap proteins exert their activity by two completely different mechanisms of action: inducing RR dephosphorylation or blocking RR binding to its target promoter. However the regulatory mechanism involving Rap proteins is even more complex since Rap activity is antagonized by specific signaling peptides (Phr) through a mechanism that remains unknown at the molecular level. Using X-ray analyses, we determined the structure of RapF, the anti-activator of competence RR ComA, alone and in complex with its regulatory peptide PhrF. The structural and functional data presented herein reveal that peptide PhrF blocks the RapF-ComA interaction through an allosteric mechanism. PhrF accommodates in the C-terminal tetratricopeptide repeat domain of RapF by inducing its constriction, a conformational change propagated by a pronounced rotation to the N-terminal ComA-binding domain. This movement partially disrupts the ComA binding site by triggering the ComA disassociation, whose interaction with RapF is also sterically impaired in the PhrF-induced conformation of RapF. Sequence analyses of the Rap proteins, guided by the RapF-PhrF structure, unveil the molecular basis of Phr recognition and discrimination, allowing us to relax the Phr specificity of RapF by a single residue change. PMID:23526880
Yu, Bowen; Doraiswamy, Harish; Chen, Xi; Miraldi, Emily; Arrieta-Ortiz, Mario Luis; Hafemeister, Christoph; Madar, Aviv; Bonneau, Richard; Silva, Cláudio T
2014-12-01
Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation. There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model bacteria (a small genome with high data-completeness).
Integrated Approach to Reconstruction of Microbial Regulatory Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodionov, Dmitry A; Novichkov, Pavel S
2013-11-04
This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated inmore » RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.« less
Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis.
Wilde, Annegret; Hihara, Yukako
2016-03-01
Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.
Tsatsakis, Aristidis M; Docea, Anca Oana; Tsitsimpikou, Christina
2016-10-01
The general population experiences uncontrolled multi-chemicals exposure from many different sources at doses around or well below regulatory limits. Therefore, traditional chronic toxicity evaluations for a single chemical could possibly miss to identify adequately all the risks. For this an experimental methodology that has the ambition to provide at one strike multi-answers to multi-questions is hereby proposed: a long-term toxicity study of non-commercial chemical mixtures, consisting of common everyday life chemicals (pesticides, food additives, life-style products components) at low and realistic dose levels around the regulatory limits and with the simultaneous investigation of several key endpoints, like genotoxicity, endocrine disruption, target organ toxicity including the heart and systemic mechanistic pathways, like oxidative stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inference of Gene Regulatory Networks Using Time-Series Data: A Survey
Sima, Chao; Hua, Jianping; Jung, Sungwon
2009-01-01
The advent of high-throughput technology like microarrays has provided the platform for studying how different cellular components work together, thus created an enormous interest in mathematically modeling biological network, particularly gene regulatory network (GRN). Of particular interest is the modeling and inference on time-series data, which capture a more thorough picture of the system than non-temporal data do. We have given an extensive review of methodologies that have been used on time-series data. In realizing that validation is an impartible part of the inference paradigm, we have also presented a discussion on the principles and challenges in performance evaluation of different methods. This survey gives a panoramic view on these topics, with anticipation that the readers will be inspired to improve and/or expand GRN inference and validation tool repository. PMID:20190956
77 FR 27815 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and... Guidance (LR-ISG), LR-ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in...) Report for the aging management of stainless steel structures and components exposed to treated borated...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... International Traffic in Arms Regulations: Replacement Parts/Components and Incorporated Articles AGENCY... incorporated articles. DATES: The Department of State will accept comments on this proposed rule until April 14... Controls Policy, Attn: Regulatory Changes--Replacement Parts/Components and Incorporated Articles, Bureau...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-18
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and..., ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water,'' which was... Staff Guidance LR-ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in...
The Yersinia pestis gcvB gene encodes two small regulatory RNA molecules
McArthur, Sarah D; Pulvermacher, Sarah C; Stauffer, George V
2006-01-01
Background In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism. Results In this study, we report that the Yersinia pestis KIM6 gcvB gene encodes two small RNAs. Transcription of gcvB is activated by the GcvA protein and repressed by the GcvR protein. The gcvB-encoded RNAs are required for repression of the Y. pestis dppA gene, encoding the periplasmic-binding protein component of the dipeptide transport system, showing that the GcvB RNAs have regulatory activity. A deletion of the gcvB gene from the Y. pestis KIM6 chromosome results in a decrease in the generation time of the organism as well as a change in colony morphology. Conclusion The results of this study indicate that the Y. pestis gcvB gene encodes two small non-coding regulatory RNAs that repress dppA expression. A gcvB deletion is pleiotropic, suggesting that the sRNAs are likely involved in controlling genes in addition to dppA. PMID:16768793
Windram, Oliver; Madhou, Priyadharshini; McHattie, Stuart; Hill, Claire; Hickman, Richard; Cooke, Emma; Jenkins, Dafyd J.; Penfold, Christopher A.; Baxter, Laura; Breeze, Emily; Kiddle, Steven J.; Rhodes, Johanna; Atwell, Susanna; Kliebenstein, Daniel J.; Kim, Youn-sung; Stegle, Oliver; Borgwardt, Karsten; Zhang, Cunjin; Tabrett, Alex; Legaie, Roxane; Moore, Jonathan; Finkenstadt, Bärbel; Wild, David L.; Mead, Andrew; Rand, David; Beynon, Jim; Ott, Sascha; Buchanan-Wollaston, Vicky; Denby, Katherine J.
2012-01-01
Transcriptional reprogramming forms a major part of a plant’s response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea. PMID:23023172
Fox smell abrogates the effect of herbal odor to prolong mouse cardiac allograft survival.
Jin, Xiangyuan; Uchiyama, Masateru; Zhang, Qi; Niimi, Masanori
2014-05-09
Herbal medicines have unique odors, and the act of smelling may have modulatory effects on the immune system. We investigated the effect of olfactory exposure to Tokishakuyaku-san (TJ-23), a Japanese herbal medicine, on alloimmune responses in a murine model of cardiac allograft transplantation. Naïve or olfactory-dysfunctional CBA mice underwent transplantation of a C57BL/6 heart and were exposed to the odor of TJ-23 until rejection. Some naïve CBA recipients of an allograft were given olfactory exposure to Sairei-to (TJ-114), trimethylthiazoline (TMT), individual components of TJ-23, or a TJ-23 preparation lacking one component. Adoptive transfer studies were performed to determine whether regulatory cells were generated. Untreated CBA mice rejected their C57BL/6 allografts acutely, as did olfactory-dysfunctional CBA mice exposed to the odor of TJ-23. CBA recipients of a C57BL/6 heart given olfactory exposure to TJ-23 had significantly prolonged allograft survival, whereas those exposed to the odor of TJ-114, TMT, one component of TJ-23, or TJ-23 lacking a component did not. Secondary allograft recipients that were given, at 30 days after transplantation, either whole splenocytes, CD4+ cells, or CD4+CD25+ cells from primary recipients exposed to the odor of TJ-23 had indefinitely prolonged allograft survival. Prolonged survival of cardiac allografts and generation of regulatory cells was associated with exposure to the odor of TJ-23 in our model. The olfactory area of the brain may have a role in the modulation of immune responses.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... controls) for conditions where imminent death is threatened by cardiopulmonary failure in neonates and... to the same regulatory controls, all of the device components used in an ECMO procedure are being... regulatory controls needed to provide reasonable assurance of their safety and effectiveness. The three...
Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits
Markoski, Melissa M.; Garavaglia, Juliano; Oliveira, Aline; Olivaes, Jessica; Marcadenti, Aline
2016-01-01
Wine has been used since the dawn of human civilization. Despite many health benefits, there is still a lot of discussion about the real properties of its components and its actions on cells and molecular interactions. A large part of these issues permeate the fine line between the amount of alcohol that causes problems to organic systems and the amount that could be beneficial for the health. However, even after the process of fermentation, wine conserves different organic compounds from grapes, such as polysaccharides, acids, and phenolic compounds, such as flavonoids and nonflavonoids. These substances have known anti-inflammatory and antioxidant capacities, and are considered as regulatory agents in cardiometabolic process. In this study, the main chemical components present in the wine, its interaction with molecules and biological mechanisms, and their interference with intra- and extracellular signaling are reviewed. Finally, the properties of wine that may benefit cardiovascular system are also revised. PMID:27512338
Cnidarian-microbe interactions and the origin of innate immunity in metazoans.
Bosch, Thomas C G
2013-01-01
Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.
A Novel Characterization of Amalgamated Networks in Natural Systems
Barranca, Victor J.; Zhou, Douglas; Cai, David
2015-01-01
Densely-connected networks are prominent among natural systems, exhibiting structural characteristics often optimized for biological function. To reveal such features in highly-connected networks, we introduce a new network characterization determined by a decomposition of network-connectivity into low-rank and sparse components. Based on these components, we discover a new class of networks we define as amalgamated networks, which exhibit large functional groups and dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene regulatory networks, we establish the unique importance of amalgamated networks in fostering biologically advantageous properties, including rapid communication among nodes, structural stability under attacks, and separation of network activity into distinct functional modules. We further observe that our network characterization is scalable with network size and connectivity, thereby identifying robust features significant to diverse physical systems, which are typically undetectable by conventional characterizations of connectivity. We expect that studying the amalgamation properties of biological networks may offer new insights into understanding their structure-function relationships. PMID:26035066
Al-Nedawi, Khalid; Mian, M Firoz; Hossain, Nazia; Karimi, Khalil; Mao, Yu-Kang; Forsythe, Paul; Min, Kevin K; Stanisz, Andrew M; Kunze, Wolfgang A; Bienenstock, John
2015-02-01
Ingestion of a commensal bacteria, Lactobacillus rhamnosus JB-1, has potent immunoregulatory effects, and changes nerve-dependent colon migrating motor complexes (MMCs), enteric nerve function, and behavior. How these alterations occur is unknown. JB-1 microvesicles (MVs) are enriched for heat shock protein components such as chaperonin 60 heat-shock protein isolated from Escherichia coli (GroEL) and reproduce regulatory and neuronal effects in vitro and in vivo. Ingested labeled MVs were detected in murine Peyer's patch (PP) dendritic cells (DCs) within 18 h. After 3 d, PP and mesenteric lymph node DCs assumed a regulatory phenotype and increased functional regulatory CD4(+)25(+)Foxp3+ T cells. JB-1, MVs, and GroEL similarly induced phenotypic change in cocultured DCs via multiple pathways including C-type lectin receptors specific intercellular adhesion molecule-3 grabbing non-integrin-related 1 and Dectin-1, as well as TLR-2 and -9. JB-1 and MVs also decreased the amplitude of neuronally dependent MMCs in an ex vivo model of peristalsis. Gut epithelial, but not direct neuronal application of, MVs, replicated functional effects of JB-1 on in situ patch-clamped enteric neurons. GroEL and anti-TLR-2 were without effect in this system, suggesting the importance of epithelium neuron signaling and discrimination between pathways for bacteria-neuron and -immune communication. Together these results offer a mechanistic explanation of how Gram-positive commensals and probiotics may influence the host's immune and nervous systems. © FASEB.
Osadnik, Hendrik; Schöpfel, Michael; Heidrich, Eyleen; Mehner, Denise; Lilie, Hauke; Parthier, Christoph; Risselada, H Jelger; Grubmüller, Helmut; Stubbs, Milton T; Brüser, Thomas
2015-11-01
Phage shock protein A (PspA) belongs to the highy conserved PspA/IM30 family and is a key component of the stress inducible Psp system in Escherichia coli. One of its central roles is the regulatory interaction with the transcriptional activator of this system, the σ(54) enhancer-binding protein PspF, a member of the AAA+ protein family. The PspA/F regulatory system has been intensively studied and serves as a paradigm for AAA+ enzyme regulation by trans-acting factors. However, the molecular mechanism of how exactly PspA controls the activity of PspF and hence σ(54) -dependent expression of the psp genes is still unclear. To approach this question, we identified the minimal PspF-interacting domain of PspA, solved its structure, determined its affinity to PspF and the dissociation kinetics, identified residues that are potentially important for PspF regulation and analyzed effects of their mutation on PspF in vivo and in vitro. Our data indicate that several characteristics of AAA+ regulation in the PspA·F complex resemble those of the AAA+ unfoldase ClpB, with both proteins being regulated by a structurally highly conserved coiled-coil domain. The convergent evolution of both regulatory domains points to a general mechanism to control AAA+ activity for divergent physiologic tasks via coiled-coil domains. © 2015 John Wiley & Sons Ltd.
Serotonin neuron development: shaping molecular and structural identities.
Deneris, Evan; Gaspar, Patricia
2018-01-01
The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Nervous System Development > Secondary: Vertebrates: Regional Development. © 2017 Wiley Periodicals, Inc.
Thakkar, Jay; Barry, Tony; Thiagalingam, Aravinda; Redfern, Julie; McEwan, Alistair L; Rodgers, Anthony
2016-01-01
Background Mobile health (mHealth) has huge potential to deliver preventative health services. However, there is paucity of literature on theoretical constructs, technical, practical, and regulatory considerations that enable delivery of such services. Objectives The objective of this study was to outline the key considerations in the development of a text message-based mHealth program; thus providing broad recommendations and guidance to future researchers designing similar programs. Methods We describe the key considerations in designing the intervention with respect to functionality, technical infrastructure, data management, software components, regulatory requirements, and operationalization. We also illustrate some of the potential issues and decision points utilizing our experience of developing text message (short message service, SMS) management systems to support 2 large randomized controlled trials: TEXT messages to improve MEDication adherence & Secondary prevention (TEXTMEDS) and Tobacco, EXercise and dieT MEssages (TEXT ME). Results The steps identified in the development process were: (1) background research and development of the text message bank based on scientific evidence and disease-specific guidelines, (2) pilot testing with target audience and incorporating feedback, (3) software-hardware customization to enable delivery of complex personalized programs using prespecified algorithms, and (4) legal and regulatory considerations. Additional considerations in developing text message management systems include: balancing the use of customized versus preexisting software systems, the level of automation versus need for human inputs, monitoring, ensuring data security, interface flexibility, and the ability for upscaling. Conclusions A merging of expertise in clinical and behavioral sciences, health and research data management systems, software engineering, and mobile phone regulatory requirements is essential to develop a platform to deliver and manage support programs to hundreds of participants simultaneously as in TEXT ME and TEXTMEDS trials. This research provides broad principles that may assist other researchers in developing mHealth programs. PMID:27847350
Thakkar, Jay; Barry, Tony; Thiagalingam, Aravinda; Redfern, Julie; McEwan, Alistair L; Rodgers, Anthony; Chow, Clara K
2016-11-15
Mobile health (mHealth) has huge potential to deliver preventative health services. However, there is paucity of literature on theoretical constructs, technical, practical, and regulatory considerations that enable delivery of such services. The objective of this study was to outline the key considerations in the development of a text message-based mHealth program; thus providing broad recommendations and guidance to future researchers designing similar programs. We describe the key considerations in designing the intervention with respect to functionality, technical infrastructure, data management, software components, regulatory requirements, and operationalization. We also illustrate some of the potential issues and decision points utilizing our experience of developing text message (short message service, SMS) management systems to support 2 large randomized controlled trials: TEXT messages to improve MEDication adherence & Secondary prevention (TEXTMEDS) and Tobacco, EXercise and dieT MEssages (TEXT ME). The steps identified in the development process were: (1) background research and development of the text message bank based on scientific evidence and disease-specific guidelines, (2) pilot testing with target audience and incorporating feedback, (3) software-hardware customization to enable delivery of complex personalized programs using prespecified algorithms, and (4) legal and regulatory considerations. Additional considerations in developing text message management systems include: balancing the use of customized versus preexisting software systems, the level of automation versus need for human inputs, monitoring, ensuring data security, interface flexibility, and the ability for upscaling. A merging of expertise in clinical and behavioral sciences, health and research data management systems, software engineering, and mobile phone regulatory requirements is essential to develop a platform to deliver and manage support programs to hundreds of participants simultaneously as in TEXT ME and TEXTMEDS trials. This research provides broad principles that may assist other researchers in developing mHealth programs. ©Jay Thakkar, Tony Barry, Aravinda Thiagalingam, Julie Redfern, Alistair L McEwan, Anthony Rodgers, Clara K Chow. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 15.11.2016.
Trends and problems in development of the power plants electrical part
NASA Astrophysics Data System (ADS)
Gusev, Yu. P.
2015-03-01
The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.
Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart
2014-01-01
Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.03346.001 PMID:25163748
Acute effects on cardiovascular oscillations during controlled slow yogic breathing.
Bhagat, Om Lata; Kharya, Chhaya; Jaryal, Ashok; Deepak, Kishore Kumar
2017-04-01
Breathing exercises are believed to modulate the cardiovascular oscillations in the body. To assess the validity of the assumption and understand the underlying mechanism, the key autonomic regulatory parameters such as heart rate variability (HRV), blood pressure variability (BPV) and baroreflex sensitivity (BRS) were recorded during controlled slow yogic breathing. Alternate nostril breathing (ANB) was selected as the yogic manoeuvre. Twelve healthy volunteers (age 30±3.8 yr) participated in the study. ANB was performed at a breathing frequency of 5 breaths per minute (bpm). In each participant, the electrocardiogram, respiratory movements, beat-to-beat BP and end-tidal carbon dioxide were recorded for five minutes each: before, during and after ANB. The records were analyzed for HRV, BPV and BRS. During ANB, HRV analysis showed significant increase in the standard deviation of all NN intervals, low-frequency (LF) component, LF/HF (low frequency/high frequency) ratio and significant decrease in the HF component. BPV analysis showed a significant increase in total power in systolic BPV (SBPV), diastolic BPV (DBPV) and mean BPV. BRS analysis showed a significant increase in the total number of sequences in SBPV and DBPV and significant augmentation of α-LF and reduction in α-HF. The power spectrum showed a dominant peak in HRV at 0.08 Hz (LF component) similar to the respiratory frequency. The acute short-term change in circulatory control system declined immediately after the cessation of slow yogic breathing (ANB) and remained elevated in post-ANB stage as compared to the pre-ANB. Significant increase in cardiovascular oscillations and baroreflex recruitments during-ANB suggested a dynamic interaction between respiratory and cardiovascular system. Enhanced phasic relationship with some delay indicated the complexity of the system. It indicated that respiratory and cardiovascular oscillations were coupled through multiple regulatory mechanisms, such as mechanical coupling, baroreflex and central cardiovascular control.
Interactive Television: The State of the Industry.
ERIC Educational Resources Information Center
Galbreath, Jeremy
1996-01-01
Discusses interactive television in the context of the developing information superhighway. Topics include potential applications, including video on demand; telecommunications companies; digital media technologies; content; regulatory issues; the nature of technology users; origination components; distribution/infrastructure components;…
Davydyan, Garri
2015-12-01
The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA > 0) and also positive values of matrix determinant ( detA > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what changes in mechanism of cell differentiation may lead to cancer development.
OLYMPUS DISS - A Readily Implemented Geographic Data and Information Sharing System
NASA Astrophysics Data System (ADS)
Necsoiu, D. M.; Winfrey, B.; Murphy, K.; McKague, H. L.
2002-12-01
Electronic information technology has become a crucial component of business, government, and scientific organizations. In this technology era, many enterprises are moving away from the perception that information repositories are only a tool for decision-making. Instead, many organizations are learning that information systems, which are capable of organizing and following the interrelations between information and both the short-term and strategic organizational goals, are assets themselves, with inherent value. Olympus Data and Information Sharing System (DISS) is a system developed at the Center for Nuclear Waste Regulatory Analyses (CNWRA) to solve several difficult tasks associated with the management of geographical, geological and geophysical data. Three of the tasks were to (1) gather the large amount of heterogeneous information that has accumulated over the operational lifespan of CNWRA, (2) store the data in a central, knowledge-based, searchable database and (3) create quick, easy, convenient, and reliable access to that information. Faced with these difficult tasks CNWRA identified the requirements for designing such a system. Key design criteria were: (a) ability to ingest different data formats (i.e., raster, vector, and tabular data); (b) minimal expense using open-source and commercial off-the-shelf software; (c) seamless management of geospatial data, freeing up time for researchers to focus on analyses or algorithm development, rather than on time consuming format conversions; (d) controlled access; and (e) scalable architecture to meet new and continuing demands. Olympus DISS is a solution that can be easily adapted to small and mid-size enterprises dealing with heterogeneous geographic data. It uses established data standards, provides a flexible mechanism to build applications upon and output geographic data in multiple and clear ways. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the Nuclear Regulatory Commission.
Flow Induced Vibration Program at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
1984-01-01
The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.
NASA Astrophysics Data System (ADS)
Chaianong, A.; Bangviwat, A.; Menke, C.
2017-07-01
Driven by decreasing PV and energy storage prices, increasing electricity costs and policy supports from Thai government (self-consumption era), rooftop PV and energy storage systems are going to be deployed in the country rapidly that may disrupt existing business models structure of Thai distribution utilities due to revenue erosion and lost earnings opportunities. The retail rates that directly affect ratepayers (non-solar customers) are expected to increase. This paper focuses on a framework for evaluating impacts of PV with and without energy storage systems on Thai distribution utilities and ratepayers by using cost-benefit analysis (CBA). Prior to calculation of cost/benefit components, changes in energy sales need to be addressed. Government policies for the support of PV generation will also help in accelerating the rooftop PV installation. Benefit components include avoided costs due to transmission losses and deferring distribution capacity with appropriate PV penetration level, while cost components consist of losses in revenue, program costs, integration costs and unrecovered fixed costs. It is necessary for Thailand to compare total costs and total benefits of rooftop PV and energy storage systems in order to adopt policy supports and mitigation approaches, such as business model innovation and regulatory reform, effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Monolekha; Das, Amit Kumar, E-mail: amitk@hijli.iitkgp.ernet.in
Highlights: Black-Right-Pointing-Pointer The regulatory sequences recognized by TcrX have been identified. Black-Right-Pointing-Pointer The regulatory region comprises of inverted repeats segregated by 30 bp region. Black-Right-Pointing-Pointer The mode of binding of TcrX with regulatory sequence is unique. Black-Right-Pointing-Pointer In silico TcrX-DNA docked model binds one of the inverted repeats. Black-Right-Pointing-Pointer Both phosphorylated and unphosphorylated TcrX binds regulatory sequence in vitro. -- Abstract: TcrY, a histidine kinase, and TcrX, a response regulator, constitute a two-component system in Mycobacterium tuberculosis. tcrX, which is expressed during iron scarcity, is instrumental in the survival of iron-dependent M. tuberculosis. However, the regulator of tcrX/Y has notmore » been fully characterized. Crosslinking studies of TcrX reveal that it can form oligomers in vitro. Electrophoretic mobility shift assays (EMSAs) show that TcrX recognizes two regions in the promoter that are comprised of inverted repeats separated by {approx}30 bp. The dimeric in silico model of TcrX predicts binding to one of these inverted repeat regions. Site-directed mutagenesis and radioactive phosphorylation indicate that D54 of TcrX is phosphorylated by H256 of TcrY. However, phosphorylated and unphosphorylated TcrX bind the regulatory sequence with equal efficiency, which was shown with an EMSA using the D54A TcrX mutant.« less
Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella*
Lin, Jianfeng; Tritschler, Douglas; Song, Kangkang; Barber, Cynthia F.; Cobb, Jennifer S.; Porter, Mary E.; Nicastro, Daniela
2011-01-01
The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function. PMID:21700706
Auxiliary feedwater system risk-based inspection guide for the Salem Nuclear Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, R.; Gore, B.F. Vo, T.V.
In a study by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW systemmore » at the selected plants. Salem was selected as the fifth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Salem plant. 23 refs., 1 fig., 1 tab.« less
Du, Liming; Jiao, Fangchan; Chu, Jun; Jin, Gulei; Chen, Ming; Wu, Ping
2007-06-01
In this report we define the genes of two-component regulatory systems in rice through a comprehensive computational analysis of rice (Oryza sativa L.) genome sequence databases. Thirty-seven genes were identified, including 5 HKs (cytokinin-response histidine protein kinase) (OsHK1-4, OsHKL1), 5 HPs (histidine phosphotransfer proteins) (OsHP1-5), 15 type-A RRs (response regulators) (OsRR1-15), 7 type B RR genes (OsRR16-22), and 5 predicted pseudo-response regulators (OsPRR1-5). Protein motif organization, gene structure, phylogenetic analysis, chromosomal location, and comparative analysis between rice, maize, and Arabidopsis are described. Full-length cDNA clones of each gene were isolated from rice. Heterologous expression of each of the OsHKs in yeast mutants conferred histidine kinase function in a cytokinin-dependent manner. Nonconserved regions of individual cDNAs were used as probes in expression profiling experiments. This work provides a foundation for future functional dissection of the rice cytokinin two-component signaling pathway.
Zbrozek, Arthur; Hebert, Joy; Gogates, Gregory; Thorell, Rod; Dell, Christopher; Molsen, Elizabeth; Craig, Gretchen; Grice, Kenneth; Kern, Scottie; Hines, Sheldon
2013-06-01
Outcomes research literature has many examples of high-quality, reliable patient-reported outcome (PRO) data entered directly by electronic means, ePRO, compared to data entered from original results on paper. Clinical trial managers are increasingly using ePRO data collection for PRO-based end points. Regulatory review dictates the rules to follow with ePRO data collection for medical label claims. A critical component for regulatory compliance is evidence of the validation of these electronic data collection systems. Validation of electronic systems is a process versus a focused activity that finishes at a single point in time. Eight steps need to be described and undertaken to qualify the validation of the data collection software in its target environment: requirements definition, design, coding, testing, tracing, user acceptance testing, installation and configuration, and decommissioning. These elements are consistent with recent regulatory guidance for systems validation. This report was written to explain how the validation process works for sponsors, trial teams, and other users of electronic data collection devices responsible for verifying the quality of the data entered into relational databases from such devices. It is a guide on the requirements and documentation needed from a data collection systems provider to demonstrate systems validation. It is a practical source of information for study teams to ensure that ePRO providers are using system validation and implementation processes that will ensure the systems and services: operate reliably when in practical use; produce accurate and complete data and data files; support management control and comply with any existing regulations. Furthermore, this short report will increase user understanding of the requirements for a technology review leading to more informed and balanced recommendations or decisions on electronic data collection methods. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Bott, Michael; Brocker, Melanie
2012-06-01
In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.
77 FR 48177 - Fuel Oil Systems for Emergency Power Supplies
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0159] Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; extension of comment period. SUMMARY: On... Regulatory Guide, DG- 1282, ``Fuel Oil Systems for Emergency Power Supplies,'' in the Federal Register for a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
...] Scotts Miracle-Gro Co.; Regulatory Status of Kentucky Bluegrass Genetically Engineered for Herbicide... engineered for herbicide tolerance without the use of plant pest components, does not meet the definition of... has been genetically engineered for herbicide tolerance, does not meet the definition of a regulated...
45 CFR 17.4 - Regulatory investigations and trial-type proceedings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even though...
45 CFR 17.4 - Regulatory investigations and trial-type proceedings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even though...
45 CFR 17.4 - Regulatory investigations and trial-type proceedings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even though...
45 CFR 17.4 - Regulatory investigations and trial-type proceedings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even though...
45 CFR 17.4 - Regulatory investigations and trial-type proceedings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even though...
Global Gene Expression Profiles Identify Metastasis Regulatory Networks | Center for Cancer Research
Metastasis is a systemic disease in which cancer cells break away from a tumor and migrate to other parts of the body, usually via the blood or lymphatic systems, to form new tumors. Metastatic tumors are difficult to treat and account for the majority of cancer-related deaths. Susceptibility to metastasis is known to have a genetic component, with some individuals more predisposed than others. However, because of the complex interchange between random genomic and epigenetic events that contribute to the disease, characterization of individual genes or small numbers of genes is not sufficient to understand the processes leading up to metastasis.
Development of a Carbon Management Geographic Information System (GIS) for the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard Herzog; Holly Javedan
In this project a Carbon Management Geographical Information System (GIS) for the US was developed. The GIS stored, integrated, and manipulated information relating to the components of carbon management systems. Additionally, the GIS was used to interpret and analyze the effect of developing these systems. This report documents the key deliverables from the project: (1) Carbon Management Geographical Information System (GIS) Documentation; (2) Stationary CO{sub 2} Source Database; (3) Regulatory Data for CCS in United States; (4) CO{sub 2} Capture Cost Estimation; (5) CO{sub 2} Storage Capacity Tools; (6) CO{sub 2} Injection Cost Modeling; (7) CO{sub 2} Pipeline Transport Costmore » Estimation; (8) CO{sub 2} Source-Sink Matching Algorithm; and (9) CO{sub 2} Pipeline Transport and Cost Model.« less
A primer on precision medicine informatics.
Sboner, Andrea; Elemento, Olivier
2016-01-01
In this review, we describe key components of a computational infrastructure for a precision medicine program that is based on clinical-grade genomic sequencing. Specific aspects covered in this review include software components and hardware infrastructure, reporting, integration into Electronic Health Records for routine clinical use and regulatory aspects. We emphasize informatics components related to reproducibility and reliability in genomic testing, regulatory compliance, traceability and documentation of processes, integration into clinical workflows, privacy requirements, prioritization and interpretation of results to report based on clinical needs, rapidly evolving knowledge base of genomic alterations and clinical treatments and return of results in a timely and predictable fashion. We also seek to differentiate between the use of precision medicine in germline and cancer. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Gene network analysis: from heart development to cardiac therapy.
Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B
2015-03-01
Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.
Mathematical modeling of physiological systems: an essential tool for discovery.
Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J
2014-08-28
Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.
The cognitive consequences of envy: attention, memory, and self-regulatory depletion.
Hill, Sarah E; DelPriore, Danielle J; Vaughan, Phillip W
2011-10-01
In a series of 4 experiments, we provide evidence that--in addition to having an affective component--envy may also have important consequences for cognitive processing. Our first experiment (N = 69) demonstrated that individuals primed with envy better attended to and more accurately recalled information about fictitious peers than did a control group. Studies 2 (N = 187) and 3 (N = 65) conceptually replicated these results, demonstrating that envy elicited by targets predicts attention and later memory for information about them. We demonstrate that these effects cannot be accounted for by admiration or changes in negative affect or arousal elicited by the targets. Study 4 (N = 152) provides evidence that greater memory for envied--but not neutral--targets leads to diminished perseverance on a difficult anagram task. Findings demonstrate that envy may play an important role in attention and memory systems and deplete limited self-regulatory resources available for acts of volition. 2011 APA, all rights reserved
ε Subunit of Bacillus subtilis F1-ATPase Relieves MgADP Inhibition
Mizumoto, Junya; Kikuchi, Yuka; Nakanishi, Yo-Hei; Mouri, Naoto; Cai, Anrong; Ohta, Tokushiro; Haruyama, Takamitsu; Kato-Yamada, Yasuyuki
2013-01-01
MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition. PMID:23967352
Monitoring quality of care at dialysis facilities: a case for regulatory parsimony--and beyond.
Stivelman, John C
2012-10-01
With the issuance of the new Conditions for Coverage in 2008 and the implementation of the Prospective Payment System in 2011, the Centers for Medicare & Medicaid Services has fundamentally altered the regulatory landscape of quality in the ESRD program. Although these changes-largely through use of tools comparing individual facility performance to regional and national quality expectations-have increased facility accountability for the quality of patient care in many quarters, they have also complicated both substance and process of facility adherence to quality rules in that component of the program. This editorial critically assesses the main quality tools now in use for dialysis facilities and reviews the issues arising from their conjoint use. A scheme for improving the effectiveness of each quality tool is proposed, and an assessment of their future value and effectiveness in quality improvement is offered.
Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.
Hirsh, J; Morgan, B A; Scholnick, S B
1986-01-01
We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170
Plant synthetic biology for molecular engineering of signalling and development.
Nemhauser, Jennifer L; Torii, Keiko U
2016-03-02
Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.
Standardization of shape memory alloy test methods toward certification of aerospace applications
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Mabe, J. H.; Benafan, O.; Coda, A.; Conduit, B.; Padan, R.; Van Doren, B.
2015-08-01
The response of shape memory alloy (SMA) components employed as actuators has enabled a number of adaptable aero-structural solutions. However, there are currently no industry or government-accepted standardized test methods for SMA materials when used as actuators and their transition to commercialization and production has been hindered. This brief fast track communication introduces to the community a recently initiated collaborative and pre-competitive SMA specification and standardization effort that is expected to deliver the first ever regulatory agency-accepted material specification and test standards for SMA as employed as actuators for commercial and military aviation applications. In the first phase of this effort, described herein, the team is working to review past efforts and deliver a set of agreed-upon properties to be included in future material certification specifications as well as the associated experiments needed to obtain them in a consistent manner. Essential for the success of this project is the participation and input from a number of organizations and individuals, including engineers and designers working in materials and processing development, application design, SMA component fabrication, and testing at the material, component, and system level. Going forward, strong consensus among this diverse body of participants and the SMA research community at large is needed to advance standardization concepts for universal adoption by the greater aerospace community and especially regulatory bodies. It is expected that the development and release of public standards will be done in collaboration with an established standards development organization.
A Review of Information for Managing Aging in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
WC Morgan; JV Livingston
1995-09-01
Age related degradation effects in safety related systems of nuclear power plants should be managed to prevent safety margins from eroding below the acceptable limits provided in plant design bases. The Nuclear Plant Aging Research (NPAR) Pro- gram, conducted under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, and other related aging management programs are developing technical information on managing aging. The aging management process central to these efforts consists of three key elements: 1) selecting structures, systems, and components (SSCs) in which aging should be controlled; 2) understanding the mechanisms and rates ofmore » degradation in these SSCs; and 3) managing degradation through effective inspection, surveillance, condition monitoring, trending, record keeping, mainten- ance, refurbishment, replacement, and adjustments in the operating environment and service conditions. This document concisely reviews and integrates information developed under the NPAR Program and other aging management studies and other available information related to understanding and managing age-related degradation effects and provides specific refer- ences to more comprehensive information on the same subjects.« less
Monitoring substrate enables real-time regulation of a protein localization pathway.
Ito, Koreaki; Mori, Hiroyuki; Chiba, Shinobu
2018-06-01
Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.
Strengthening the Canadian alcohol advertising regulatory system.
Heung, Carly M; Rempel, Benjamin; Krank, Marvin
2012-05-24
Research evidence points to harmful effects from alcohol advertising among children and youth. In particular, exposure to alcohol advertising has been associated with adolescents drinking both earlier and heavier. Although current federal and provincial guidelines have addressed advertising practices to prevent underage drinking, practice has not been supported by existing policy. While protective measures such as social marketing campaigns have the potential for counteracting the effects from alcohol advertising, the effectiveness of such measures can be easily drowned out with increasing advertising activities from the alcohol industry, especially without effective regulation. Research reviewed by the European Focus on Alcohol Safe Environment (FASE) Project has identified a set of key elements that are necessary to make alcohol advertising policy measures effective at protecting children and youth from the harmful effects of alcohol marketing. Using these key elements as an evaluation framework, there are critical components in the Canadian alcohol advertising regulatory system that clearly require strengthening. To protect impressionable children and youth against the harmful effects of alcohol advertising, 13 recommendations to strengthen current alcohol advertising regulations in Canada are provided for Canadian policy-makers, advertising standard agencies, and public health groups.
Central- and autonomic nervous system coupling in schizophrenia
Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen
2016-01-01
The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986
Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae
Dar, R. D.; Karig, D. K.; Cooke, J. F.; ...
2010-09-01
Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offsmore » between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.« less
The interaction between intellectual property and drug regulatory systems: global perspectives.
Madden, Edward A
2007-02-01
Regulatory compliance in the development, production and sale of new drugs accounts for the largest single expense in bringing a drug product to market. To justify developmental and regulatory compliance costs, drug innovators turn to the intellectual property (IP) system to provide a means for securing returns on investment. Because the drug regulatory system in most countries operates in isolation of the IP system, one of the greatest challenges facing the pharmaceutical industry is the extent to which IP rights can be managed against an independent drug regulatory system. Many regulatory bodies in developed countries have sought to ensure a compromise between the rights of generic companies and IP owners by including safeguards in the regulatory framework, such as patent linking and data protection; however, these efforts are yet to be applied in some of the biggest potential drug markets in emerging economies.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... customer order resting in the electronic book and is at or between the NBBO, and to date, CBOE has never... other components at or near the same time; (4) the specific relationship between the component orders (e... order is placed; (5) the component orders bear a derivative relationship to one another, represent...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... Component of the Alpha Pair. To calculate the daily total return today of a Target Component or a Benchmark... Benchmark Component, respectively, would be subtracted from today's closing market price for the Target...''). The Price Difference would be added to any declared dividend, if today were an ``ex-dividend'' date...
Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung
2016-01-01
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... regulatory barriers and lowering costs for the wireless microwave backhaul facilities that are an important component of many mobile wireless networks. The steps we take will remove regulatory barriers that today...
Barchi, Francis; Little, Madison T
2016-10-22
Ethical and regulatory guidance on the collection and use of human biospecimens (HBS) for research forms an essential component of national health systems in Sub-Saharan Africa (SSA), where rapid advances in genetic- and genomic-based technologies are fueling clinical trials involving HBS and the establishment of large-scale biobanks. An extensive multi-level search for publicly available ethics regulatory guidance was conducted for each SSA country. A second review documented active trials listed in the WHO International Clinical Trials Registry Platform as of January 2015 in which HBS collection was specified in the protocol. Findings were combined to determine the extent to which countries that are study sites for HBS-related research are supported by regulatory guidance language on the collection, use, ownership and storage of biospecimens. Of the 49 SSA countries, 29 had some form of national ethics guidance, yet only 17 provided language relating to HBS-related research, with specific guidance on consent (14), ownership (6), reuse (10), storage (9), and export/import/transfer (13). Ten countries accounted for 84 % of the active clinical trials involving the collection of HBS in SSA. All except one of these countries were found to have some national guidance in the form of regulations, codes of ethics, and/or standard operating procedures; however, only seven of the ten offered any language specific to HBS. Despite the fact that the bulk of registered clinical trials in SSA involving HBS, as well as existing and proposed sites for biorepositories under the H3Africa Initiative, are currently situated in countries with the most complete ethics and regulatory guidance, variability in the regulations themselves may create challenges for planned and future pan-African collaborations and may require legislative action at the national level to revise. Countries in SSA that still lack regulatory guidance on HBS will require extensive health system strengthening in ethics governance before they can be full participants in the modern research enterprise.
Cai, Yu-Dong; Chou, Kuo-Chen
2011-01-01
Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To address this problem, a novel approach was developed that can be used to predict query pathways among the following six functional categories: (i) “Metabolism”, (ii) “Genetic Information Processing”, (iii) “Environmental Information Processing”, (iv) “Cellular Processes”, (v) “Organismal Systems”, and (vi) “Human Diseases”. The prediction method was established trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR) method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and challenging area. PMID:21980418
Approaches to Quality Risk Management When Using Single-Use Systems in the Manufacture of Biologics.
Ishii-Watabe, Akiko; Hirose, Akihiko; Katori, Noriko; Hashii, Norikata; Arai, Susumu; Awatsu, Hirotoshi; Eiza, Akira; Hara, Yoshiaki; Hattori, Hideshi; Inoue, Tomomi; Isono, Tetsuya; Iwakura, Masahiro; Kajihara, Daisuke; Kasahara, Nobuo; Matsuda, Hiroyuki; Murakami, Sei; Nakagawa, Taishiro; Okumura, Takehiro; Omasa, Takeshi; Takuma, Shinya; Terashima, Iyo; Tsukahara, Masayoshi; Tsutsui, Maiko; Yano, Takahiro; Kawasaki, Nana
2015-10-01
Biologics manufacturing technology has made great progress in the last decade. One of the most promising new technologies is the single-use system, which has improved the efficiency of biologics manufacturing processes. To ensure safety of biologics when employing such single-use systems in the manufacturing process, various issues need to be considered including possible extractables/leachables and particles arising from the components used in single-use systems. Japanese pharmaceutical manufacturers, together with single-use suppliers, members of the academia and regulatory authorities have discussed the risks of using single-use systems and established control strategies for the quality assurance of biologics. In this study, we describe approaches for quality risk management when employing single-use systems in the manufacturing of biologics. We consider the potential impact of impurities related to single-use components on drug safety and the potential impact of the single-use system on other critical quality attributes as well as the stable supply of biologics. We also suggest a risk-mitigating strategy combining multiple control methods which includes the selection of appropriate single-use components, their inspections upon receipt and before releasing for use and qualification of single-use systems. Communication between suppliers of single-use systems and the users, as well as change controls in the facilities both of suppliers and users, are also important in risk-mitigating strategies. Implementing these control strategies can mitigate the risks attributed to the use of single-use systems. This study will be useful in promoting the development of biologics as well as in ensuring their safety, quality and stable supply.
Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes
2013-01-01
Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might be crucial for their local geographic adaptation to cold temperature. Additionally, since the approach presented here is general, it could be adapted to study networks regulating biological process in any biological systems. PMID:24148294
A DNA network as an information processing system.
Santini, Cristina Costa; Bath, Jonathan; Turberfield, Andrew J; Tyrrell, Andy M
2012-01-01
Biomolecular systems that can process information are sought for computational applications, because of their potential for parallelism and miniaturization and because their biocompatibility also makes them suitable for future biomedical applications. DNA has been used to design machines, motors, finite automata, logic gates, reaction networks and logic programs, amongst many other structures and dynamic behaviours. Here we design and program a synthetic DNA network to implement computational paradigms abstracted from cellular regulatory networks. These show information processing properties that are desirable in artificial, engineered molecular systems, including robustness of the output in relation to different sources of variation. We show the results of numerical simulations of the dynamic behaviour of the network and preliminary experimental analysis of its main components.
2012 Global Summit on Regulatory Science (GSRS-2012)--modernizing toxicology.
Miller, Margaret A; Tong, Weida; Fan, Xiaohui; Slikker, William
2013-01-01
Regulatory science encompasses the tools, models, techniques, and studies needed to assess and evaluate product safety, efficacy, quality, and performance. Several recent publications have emphasized the role of regulatory science in improving global health, supporting economic development and fostering innovation. As for other scientific disciplines, research in regulatory science is the critical element underpinning the development and advancement of regulatory science as a modern scientific discipline. As a regulatory agency in the 21st century, the Food and Drug Administration (FDA) has an international component that underpins its domestic mission; foods, drugs, and devices are developed and imported to the United States from across the world. The Global Summit on Regulatory Science, an international conference for discussing innovative technologies, approaches, and partnerships that enhance the translation of basic science into regulatory applications, is providing leadership for the advancement of regulatory sciences within the global context. Held annually, this international conference provides a platform where regulators, policy makers, and bench scientists from various countries can exchange views on how to develop, apply, and implement innovative methodologies into regulatory assessments in their respective countries, as well as developing a harmonized strategy to improve global public health through global collaboration.
Homeostatic Immunity and the Microbiota.
Belkaid, Yasmine; Harrison, Oliver J
2017-04-18
The microbiota plays a fundamental role in the induction, education, and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. Here we review the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. Published by Elsevier Inc.
Homeostatic immunity and the microbiota
Belkaid, Yasmine; Harrison, Oliver J.
2017-01-01
The microbiota plays a fundamental role in the induction, education and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. In this review, we will highlight the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. PMID:28423337
Pérez-Morales, Deyanira; Bustamante, Víctor H
2016-02-01
A novel connection between two regulatory systems controlling crucial biological processes in bacteria, the carbon storage regulator (Csr) system and the glucose-specific phosphotransferase system (PTS), is reported by Leng et al. in this issue. This involves the interaction of unphosphorylated EIIA(Glc), a component of the glucose-specific PTS, with the CsrD protein, which accelerates the decay of the CsrB and CsrC small RNAs via RNase E in Escherichia coli. As unphosphorylated EIIA(G) (lc) is generated in the presence of glucose, the PTS thus acts as a sensor of glucose for the Csr system. Interestingly, another pathway can operate for communication between the Csr system and the glucose-specific PTS. The absence of glucose generates phosphorylated EIIA(Glc) , which activates the enzyme adenylate cyclase to produce cyclic adenosine monophosphate (cAMP) that, in turn, binds to the regulator cAMP receptor protein (CRP). Leng et al. show that the complex cAMP-CRP modestly reduces CsrB decay independently of CsrD. On the other hand, a previous study indicates that the complex cAMP-CRP positively regulates the transcription of CsrB and CsrC in Salmonella enterica. Therefore, EIIA(G) (lc) could work as a molecular switch that regulates the activity of the Csr system, in response to its phosphorylation state determined by the presence or absence of glucose, in order to control gene expression. © 2015 John Wiley & Sons Ltd.
Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1994-01-01
The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.
Klonoff, David C; Zimliki, Charles L; Stevens, LCDR Alan; Beaston, Patricia; Pinkos, Arleen; Choe, Sally Y; Arreaza-Rubín, Guillermo; Heetderks, William
2011-01-01
The Food and Drug Administration in collaboration with the National Institutes of Health presented a public workshop to facilitate medical device innovation in the development of the artificial pancreas (or autonomous system) for the treatment of diabetes mellitus on November 10, 2010 in Gaithersburg, Maryland. The purpose of the workshop was to discuss four aspects of artificial pancreas research and development, including: (1) the current state of device systems for autonomous systems for the treatment of diabetes mellitus; (2) challenges in developing this expert device system using existing technology; (3) clinical expectations for these systems; and (4) development plans for the transition of this device system toward an outpatient setting. The patients discussed how clinical science, system components, and regulatory policies will all need to harmonize in order to achieve the goal of seeing an AP product brought forward to the marketplace for patients to use. PMID:21722597
Complex and unexpected dynamics in simple genetic regulatory networks
NASA Astrophysics Data System (ADS)
Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey
2014-03-01
One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.
Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology.
Steffen, Philipp A; Fonseca, João P; Ringrose, Leonie
2012-10-01
How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins. Copyright © 2012 WILEY Periodicals, Inc.
[Smart therapeutics based on synthetic gene circuits].
Peng, Shuguang; Xie, Zhen
2017-03-25
Synthetic biology has an important impact on biology research since its birth. Applying the thought and methods that reference from electrical engineering, synthetic biology uncovers many regulatory mechanisms of life systems, transforms and expands a series of biological components. Therefore, it brings a wide range of biomedical applications, including providing new ideas for disease diagnosis and treatment. This review describes the latest advances in the field of disease diagnosis and therapy based on mammalian cell or bacterial synthetic gene circuits, and provides new ideas for future smart therapy design.
The Ubiquitin–Proteasome System of Saccharomyces cerevisiae
Finley, Daniel; Ulrich, Helle D.; Sommer, Thomas; Kaiser, Peter
2012-01-01
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell. PMID:23028185
Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling
Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat
2016-01-01
The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937
Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.
Todor, Horia; Sharma, Kriti; Pittman, Adrianne M C; Schmid, Amy K
2013-10-01
Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.
Functional annotation of regulatory pathways.
Pandey, Jayesh; Koyutürk, Mehmet; Kim, Yohan; Szpankowski, Wojciech; Subramaniam, Shankar; Grama, Ananth
2007-07-01
Standardized annotations of biomolecules in interaction networks (e.g. Gene Ontology) provide comprehensive understanding of the function of individual molecules. Extending such annotations to pathways is a critical component of functional characterization of cellular signaling at the systems level. We propose a framework for projecting gene regulatory networks onto the space of functional attributes using multigraph models, with the objective of deriving statistically significant pathway annotations. We first demonstrate that annotations of pairwise interactions do not generalize to indirect relationships between processes. Motivated by this result, we formalize the problem of identifying statistically overrepresented pathways of functional attributes. We establish the hardness of this problem by demonstrating the non-monotonicity of common statistical significance measures. We propose a statistical model that emphasizes the modularity of a pathway, evaluating its significance based on the coupling of its building blocks. We complement the statistical model by an efficient algorithm and software, Narada, for computing significant pathways in large regulatory networks. Comprehensive results from our methods applied to the Escherichia coli transcription network demonstrate that our approach is effective in identifying known, as well as novel biological pathway annotations. Narada is implemented in Java and is available at http://www.cs.purdue.edu/homes/jpandey/narada/.
Kaunhoven, Rebekah Jane; Dorjee, Dusana
2017-03-01
Pre-adolescence is a key developmental period in which complex intrinsic volitional methods of self-regulation are acquired as a result of rapid maturation within the brain networks underlying the self-regulatory processes of attention control and emotion regulation. Fostering adaptive self-regulation skills during this stage of development has strong implications for physical health, emotional and socio-economic outcomes during adulthood. There is a growing interest in mindfulness-based programmes for pre-adolescents with initial findings suggesting self-regulation improvements, however, neurodevelopmental studies on mindfulness with pre-adolescents are scarce. This analytical review outlines an integrative neuro-developmental approach, which combines self-report and behavioural assessments with event related brain potentials (ERPs) to provide a systemic multilevel understanding of the neurocognitive mechanisms of mindfulness in pre-adolescence. We specifically focus on the N2, error related negativity (ERN), error positivity (Pe), P3a, P3b and late positive potential (LPP) ERP components as indexes of mindfulness related modulations in non-volitional bottom-up self-regulatory processes (salience detection, stimulus driven orienting and mind wandering) and volitional top-down self-regulatory processes (endogenous orienting and executive attention). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Radeck, Jara; Fritz, Georg; Mascher, Thorsten
2017-02-01
The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.
Ouma, Wilberforce Zachary; Pogacar, Katja; Grotewold, Erich
2018-04-01
Understanding complexity in physical, biological, social and information systems is predicated on describing interactions amongst different components. Advances in genomics are facilitating the high-throughput identification of molecular interactions, and graphs are emerging as indispensable tools in explaining how the connections in the network drive organismal phenotypic plasticity. Here, we describe the architectural organization and associated emergent topological properties of gene regulatory networks (GRNs) that describe protein-DNA interactions (PDIs) in several model eukaryotes. By analyzing GRN connectivity, our results show that the anticipated scale-free network architectures are characterized by organism-specific power law scaling exponents. These exponents are independent of the fraction of the GRN experimentally sampled, enabling prediction of properties of the complete GRN for an organism. We further demonstrate that the exponents describe inequalities in transcription factor (TF)-target gene recognition across GRNs. These observations have the important biological implication that they predict the existence of an intrinsic organism-specific trans and/or cis regulatory landscape that constrains GRN topologies. Consequently, architectural GRN organization drives not only phenotypic plasticity within a species, but is also likely implicated in species-specific phenotype.
The control of branching morphogenesis
Iber, Dagmar; Menshykau, Denis
2013-01-01
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663
Portrait of Candida Species Biofilm Regulatory Network Genes.
Araújo, Daniela; Henriques, Mariana; Silva, Sónia
2017-01-01
Most cases of candidiasis have been attributed to Candida albicans, but Candida glabrata, Candida parapsilosis and Candida tropicalis, designated as non-C. albicans Candida (NCAC), have been identified as frequent human pathogens. Moreover, Candida biofilms are an escalating clinical problem associated with significant rates of mortality. Biofilms have distinct developmental phases, including adhesion/colonisation, maturation and dispersal, controlled by complex regulatory networks. This review discusses recent advances regarding Candida species biofilm regulatory network genes, which are key components for candidiasis. Copyright © 2016 Elsevier Ltd. All rights reserved.
47 CFR 101.1309 - Regulatory status.
Code of Federal Regulations, 2010 CFR
2010-10-01
... party may challenge the regulatory status granted an MAS licensee. System License Requirements ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Regulatory status. 101.1309 Section 101.1309... SERVICES Multiple Address Systems General Provisions § 101.1309 Regulatory status. (a) The Commission will...
Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaza, K.E.; Diercks, D.R.; Holland, J.W.
The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters,more » 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This document is Volume 1, consisting of the executive summary, summary and observations, and an appendix listing the GALL literature review tables.« less
On the nature and consequences of early loss.
Hofer, M A
1996-01-01
To describe how an animal model system can be used to explore basic questions about the nature of loss and the effects of early loss on later vulnerability to disease. The physiological and behavioral responses of infant rats to separation from their mothers are first described and then analyzed experimentally into component mechanisms. These studies have revealed an extensive layer of processes underlying the psychological constructs generally used to understand the response to loss. Hidden within the observable interactions of parent and offspring, we found a number of discrete sensorimotor, thermal, and nutrient-based events that have unexpected long-term regulatory effects on specific components of infant physiology and behavior. Release from all of these inhibitory and excitatory regulators together during maternal separation constitutes a novel mechanism by which the experience of loss can be translated into a complex patterned response. Evidence for early regulatory processes has also been found in monkey and human mother-infant interactions. Here they may well constitute the building blocks from which attachment and object representations develop. We and others have found long-term effects of loss, and of selective replacement of regulators, on behavioral development and on later vulnerability to disease. The results give us a new understanding of early attachment as a developmental force and of human grief as a risk to health.
Component Repair Times Obtained from MSPI Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eide, Steven A.; Cadwallader, Lee
Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performancemore » Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only unplanned outages associated with failures of the component of interest, and only unplanned outages associated with PRA failures of the component of interest. The paper will describe how component repair times can be generated from each set and which approach is most applicable. Repair time information will be summarized for MSPI pumps and diesel generators using data over 2003 – 2007. Also, trend information over 2003 – 2012 will be presented to indicate whether the 2003 – 2007 repair time information is still considered applicable. For certain types of pumps, mean repair times are significantly higher than the typically assumed 24 h duration.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... whole months [sic]). In the case of spin-offs, the operating history of the spin-off will be considered... component price per share, (a) the highest price per share of a component was $661.15 (Google, Inc.), (b... top five highest weighted components was 40.78% (Apple Inc., Microsoft Corporation, Google Inc...
An expert system for diagnostics and estimation of steam turbine components condition
NASA Astrophysics Data System (ADS)
Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.
2017-11-01
The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis, calculating the probability of faults hypotheses, given the degree of the expert confidence in estimation of turbine components operation parameters.
National Strategy for Modernizing the Regulatory System for Biotechnology Products
This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.
Ibarra-Arellano, Miguel A.; Campos-González, Adrián I.; Treviño-Quintanilla, Luis G.; Tauch, Andreas; Freyre-González, Julio A.
2016-01-01
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them. Database URL: http://abasy.ccg.unam.mx PMID:27242034
77 FR 55877 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
...-492- 3668; email: [email protected] . NRC's Agencywide Documents Access and Management System... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Systems for Boiling Water Reactor Power Plants.'' This regulatory guide is being revised to: (1) Expand...
Jepsen, H; Gaehtgens, P
1993-09-01
Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.
Tomar, Namrata; Choudhury, Olivia; Chakrabarty, Ankush; De, Rajat K
2013-02-01
Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae's HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000-e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.
Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.
1996-01-01
The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141
18 CFR 367.51 - Components of construction.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Components of construction. 367.51 Section 367.51 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... short life, including small portable tools and implements, must not be charged to service company...
18 CFR 367.51 - Components of construction.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Components of construction. 367.51 Section 367.51 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... short life, including small portable tools and implements, must not be charged to service company...
18 CFR 367.51 - Components of construction.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Components of construction. 367.51 Section 367.51 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... short life, including small portable tools and implements, must not be charged to service company...
18 CFR 367.51 - Components of construction.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Components of construction. 367.51 Section 367.51 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... short life, including small portable tools and implements, must not be charged to service company...
Stein, G S; van Wijnen, A J; Stein, J L; Lian, J B; Montecino, M; Zaidi, K; Javed, A
2000-01-01
The regulated and regulatory components that interrelate nuclear structure and function must be experimentally established. A formidable challenge is to define further the control of transcription factor targeting to acceptor sites associated with the nuclear matrix. It will be important to determine whether acceptor proteins are associated with a pre-existing core-filament structural lattice or whether a compositely organized scaffold of regulatory factors is dynamically assembled. An inclusive model for all steps in the targeting of proteins to subnuclear sites cannot yet be proposed. However, this model must account for the apparent diversity of intranuclear targeting signals. It is also important to assess the extent to which regulatory discrimination is mediated by subnuclear domain-specific trafficking signals. Furthermore, the checkpoints that monitor subnuclear distribution of regulatory factors and the sorting steps that ensure both structural and functional fidelity of nuclear domains in which replication and expression of genes occur must be biochemically and mechanistically defined. There is emerging recognition that placement of regulatory components of gene expression must be temporally and spatially coordinated to facilitate biological control. The consequences of breaches in nuclear structure-function relationships are observed in an expanding series of diseases that include cancer [Weis et al., 1994; Rogaia et al., 1997; Yano et al., 1997; Rowley, 1998; Zeng et al., 1998; McNeil et al., 1999; Tao and Levine, 1999a] and neurological disorders [Skinner et al., 1997]. As the repertoire of architecture-associated regulatory factors and cofactors expands, workers in the field are becoming increasingly confident that nuclear organization contributes significantly to control of transcription. To gain increased appreciation for the complexities of subnuclear organization and gene regulation, we must continue to characterize mechanisms that direct regulatory proteins to specific transcription sites within the nucleus so that these proteins are in the right place at the right time. J. Cell. Biochem. Suppl. 35:84-92, 2000. Copyright 2001 Wiley-Liss, Inc.
Memory functions reveal structural properties of gene regulatory networks
Perez-Carrasco, Ruben
2018-01-01
Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs. PMID:29470492
Kalay, Gizem; Lusk, Richard; Dome, Mackenzie; Hens, Korneel; Deplancke, Bart; Wittkopp, Patricia J.
2016-01-01
The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5′ intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming. PMID:27527791
Modular closed-loop control of diabetes.
Patek, S D; Magni, L; Dassau, E; Karvetski, C; Toffanin, C; De Nicolao, G; Del Favero, S; Breton, M; Man, C Dalla; Renard, E; Zisser, H; Doyle, F J; Cobelli, C; Kovatchev, B P
2012-11-01
Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called "artificial pancreas," modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient's basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability.
An electronic regulatory document management system for a clinical trial network.
Zhao, Wenle; Durkalski, Valerie; Pauls, Keith; Dillon, Catherine; Kim, Jaemyung; Kolk, Deneil; Silbergleit, Robert; Stevenson, Valerie; Palesch, Yuko
2010-01-01
A computerized regulatory document management system has been developed as a module in a comprehensive Clinical Trial Management System (CTMS) designed for an NIH-funded clinical trial network in order to more efficiently manage and track regulatory compliance. Within the network, several institutions and investigators are involved in multiple trials, and each trial has regulatory document requirements. Some of these documents are trial specific while others apply across multiple trials. The latter causes a possible redundancy in document collection and management. To address these and other related challenges, a central regulatory document management system was designed. This manuscript shares the design of the system as well as examples of it use in current studies. Copyright (c) 2009 Elsevier Inc. All rights reserved.
PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases
Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M
2006-01-01
Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016
Current Topics in Postnatal Behavioral Testing.
Henck, Judith W; Elayan, Ikram; Vorhees, Charles; Fisher, J Edward; Morford, LaRonda L
2016-09-01
The study of developmental neurotoxicity (DNT) continues to be an important component of safety evaluation of candidate therapeutic agents and of industrial and environmental chemicals. Developmental neurotoxicity is considered to be an adverse change in the central and/or peripheral nervous system during development of an organism and has been primarily evaluated by studying functional outcomes, such as changes in behavior, neuropathology, neurochemistry, and/or neurophysiology. Neurobehavioral evaluations are a component of a wide range of toxicology studies in laboratory animal models, whereas neurochemistry and neurophysiology are less commonly employed. Although the primary focus of this article is on neurobehavioral evaluation in pre- and postnatal development and juvenile toxicology studies used in pharmaceutical development, concepts may also apply to adult nonclinical safety studies and Environmental Protection Agency/chemical assessments. This article summarizes the proceedings of a symposium held during the 2015 American College of Toxicology annual meeting and includes a discussion of the current status of DNT testing as well as potential issues and recommendations. Topics include the regulatory context for DNT testing; study design and interpretation; behavioral test selection, including a comparison of core learning and memory systems; age of testing; repeated testing of the same animals; use of alternative animal models; impact of findings; and extrapolation of animal results to humans. Integration of the regulatory experience and scientific concepts presented during this symposium, as well as from subsequent discussion and input, provides a synopsis of the current state of DNT testing in safety assessment, as well as a potential roadmap for future advancement. © The Author(s) 2016.
Huang, Chun-Yen; Lin, Hui-Chen; Lin, Cheng-Huang
2015-01-01
We examined the hypothesis that Trichogaster microlepis, a fish with an accessory air-breathing organ, uses a compensatory strategy involving changes in both behavior and protein levels to enhance its gas exchange ability. This compensatory strategy enables the gill ion-regulatory metabolism to maintain homeostasis during exposure to hypoxia. The present study aimed to determine whether ionic regulation, glycogen utilization and antioxidant activity differ in terms of expression under hypoxic stresses; fish were sampled after being subjected to 3 or 12h of hypoxia and 12h of recovery under normoxia. The air-breathing behavior of the fish increased under hypoxia. No morphological modification of the gills was observed. The expression of carbonic anhydrase II did not vary among the treatments. The Na(+)/K(+)-ATPase enzyme activity did not decrease, but increases in Na(+)/K(+)-ATPase protein expression and ionocyte levels were observed. The glycogen utilization increased under hypoxia as measured by glycogen phosphorylase protein expression and blood glucose level, whereas the glycogen content decreased. The enzyme activity of several components of the antioxidant system in the gills, including catalase, glutathione peroxidase, and superoxidase dismutase, increased in enzyme activity. Based on the above data, we concluded that T. microlepis is a hypoxia-tolerant species that does not exhibit ion-regulatory suppression but uses glycogen to maintain energy utilization in the gills under hypoxic stress. Components of the antioxidant system showed increased expression under the applied experimental treatments. Copyright © 2014 Elsevier Inc. All rights reserved.
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ
Mank, Nils N.; Berghoff, Bork A.; Hermanns, Yannick N.; Klug, Gabriele
2012-01-01
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA. PMID:22988125
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.
Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele
2012-10-02
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.
Neves, Susana R; Tsokas, Panayiotis; Sarkar, Anamika; Grace, Elizabeth A; Rangamani, Padmini; Taubenfeld, Stephen M; Alberini, Cristina M; Schaff, James C; Blitzer, Robert D; Moraru, Ion I; Iyengar, Ravi
2008-05-16
The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.
76 FR 69292 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and... Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG revises the guidance in...) and Generic Aging Lessons Learned (GALL) Report for the aging management of stainless steel structures...
18 CFR 367.51 - Components of construction.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Components of construction. 367.51 Section 367.51 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... in other items in this section. (3)(i) Materials and supplies includes the purchase price at the...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for the waste package and its components. (a) High-level-waste package design in general. (1) Packages... package's permanent written records. (c) Waste form criteria for HLW. High-level radioactive waste that is...
77 FR 39521 - Application for a License To Export Nuclear Reactor Major Components and Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... LLC reactor coolant equipment for four constructing four plant May 14, 2012 pumps with motors, APR1400... Emirates. XR176 monitoring and plant in Braka. 110060011 control equipment, auxiliary equipment and... NUCLEAR REGULATORY COMMISSION Application for a License To Export Nuclear Reactor Major Components...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
...\\ may also be known as Gold/Silver Index. The text of the proposed rule change is available on the...-Regulatory Organizations; Notice of Filing of Proposed Rule Change by NASDAQ OMX PHLX LLC To Expand the Number of Components in the PHLX Gold/Silver Sector\\SM\\ Known as XAU\\SM\\, on Which Options Are Listed and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
...-Regulatory Organizations; NASDAQ OMX PHLX LLC; Order Granting Approval of Proposed Rule Change To Expand the Number of Components in the PHLX Gold/Silver Sector\\SM\\ Known as XAU\\SM\\, on Which Options Are Listed and... Act of 1934 (``Act'') \\1\\ and Rule 19b-4 thereunder,\\2\\ a proposed rule change to expand the number of...
Camara, Johanna Eltz; Skarstad, Kirsten; Crooke, Elliott
2003-05-01
Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.
Chang, Peixi; Li, Weitian; Shi, Guolin; Li, Huan; Yang, Xiaoqing; Xia, Zechen; Ren, Yuan; Li, Zhiwei; Chen, Huanchun; Bei, Weicheng
2018-01-01
ABSTRACT Streptococcus suis is a highly invasive pathogen that can cause sepsis and meningitis in pigs and humans. However, we have limited understanding of the mechanisms S. suis uses to evade innate immunity. To investigate the involvement of the two-component signal transduction system of S. suis in host immune defense, we examined the expression of 15 response regulators of S. suis following stimulation with polymorphonuclear leukocytes (PMNs). We found that several response regulators were significantly up-regulated including vraR. Thus, we constructed an isogenic deletion mutant of vraSR genes in S. suis and demonstrated VraSR promotes both bacterial survival in human blood and resistance to human PMN-mediated killing. The VraSR mutant was more susceptible to phagocytosis by human PMNs and had greater sensitivity to oxidant and lysozyme than wild-type S. suis. Furthermore, in vitro findings and in vivo evidence from a mouse infection model together strongly demonstrate that ΔvraSR had greatly attenuated virulence compared with wild-type S. suis. Collectively, our data reveal that VraSR is a critical regulatory system that contributes to the survival of S. suis and its ability to defend against host innate immunity. PMID:29471718
Dynamical modeling and analysis of large cellular regulatory networks
NASA Astrophysics Data System (ADS)
Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.
2013-06-01
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Mao, Tin K; Davis, Paul A; Odin, Joseph A; Coppel, Ross L; Gershwin, M Eric
2004-12-01
The E2 component of mitochondrial pyruvate dehydrogenase complex (PDC-E2) is the immunodominant autoantigen of primary biliary cirrhosis. Whereas lipoylation of PDC-E2 is essential for enzymatic activity and predominates under normal conditions, other biochemical systems exist that also target the lysine residue, including acylation of fatty acids or xenobiotics and ubiquitinylation. More importantly, the immunogenicity can be affected by derivatization of the lysine residue, as the recognition of lipoylated PDC-E2 by patient autoantibodies is enhanced compared with octanoylated PDC-E2. Furthermore, our laboratory has shown that various xenobiotic modifications of a peptide representing the immunodominant region of PDC-E2 are immunoreactive against patient sera. The only purported regulatory system that prevents the accumulation of potentially autoreactive PDC-E2 is glutathionylation, in which the lysine-lipoic acid moiety is further modified with glutathione during apoptosis. Interestingly, this system is found in several cell lines, including HeLa, Jurkat, and Caco-2 cells, but not in cholangiocytes and salivary gland epithelial cells, both of which are targets for destruction in primary biliary cirrhosis. Hence, the failure of this or other regulatory system(s) may overwhelm the immune system with immunogenic PDC-E2 that can initiate the breakdown of tolerance in a genetically susceptible individual. In this review the authors survey the data available on the biochemical life of PDC-E2, with particular emphasis on the lysine residue and its known interactions with machinery involved in various posttranslational modifications.
Systemic signaling during plant defense.
Kachroo, Aardra; Robin, Guillaume P
2013-08-01
Systemic acquired resistance (SAR) is a type of pathogen-induced broad-spectrum resistance in plants. During SAR, primary infection-induced rapid generation and transportation of mobile signal(s) 'prepare' the rest of the plant for subsequent infections. Several, seemingly unrelated, mobile chemical inducers of SAR have been identified, at least two of which function in a feed-back regulatory loop with a lipid transfer-like protein. Signal(s) perception in the systemic tissues relies on the presence of an intact cuticle, the waxy layer covering all aerial parts of the plant. SAR results in chromatin modifications, which prime systemic tissues for enhanced and rapid signaling derived from salicylic acid, which along with its signaling components is key for SAR induction. This review summarizes recent findings related to SAR signal generation, movement, and perception. Copyright © 2013 Elsevier Ltd. All rights reserved.
Role of pressure-sensitive adhesives in transdermal drug delivery systems.
Lobo, Shabbir; Sachdeva, Sameer; Goswami, Tarun
2016-01-01
Transdermal drug delivery systems (TDDS) are employed for the delivery of drugs across skin into the systemic circulation. Pressure-sensitive adhesive (PSA) is one of the most critical components used in a TDDS. The primary function of PSA is to help in adhesion of patch to skin, but more importantly it acts as a matrix for the drug and other excipients. Hence, apart from adhesion of the patch, PSA also affects other critical quality attributes of the TDDS such as drug delivery, flux through skin and physical and chemical stability of the finished product. This review article provides a summary of the adhesives used in various types of TDDS. In particular, this review will cover the design types of TDDS, categories of PSAs and their evaluation and regulatory aspects.
Mechanism of phosphoryl transfer and protein-protein interaction in the PTS system-an NMR study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajagopal, P.; Klevit, R.E.
1994-12-01
HPr and Enzyme IIA{sup Glc} are two of the components of the bacterial PTS (phosphoenolpyruvate: sugar phosphotranferase system) and are involved in the phosphorylation and concomitant translocation of sugars across the membrane. These PTS protein complexes also regulate sugar transport. HPr, phosphorylated at a histidine N1 site by Enzyme I and phosphoenol pyruvate, transfers the phosphoryl group to a histidine N3 position in Enzyme IIA{sup Glc}. HPrs from Gram-positive bacteria undergo regulatory phosphorylation at Ser{sup 46}, whereby phosphorylation of the histidine residue is inhibited. Conversely, histidine phosphorylation inhibits phosphorylation at Ser{sup 46}. HPrs from Gram-negative bacteria possess a serine residuemore » at position 46, but do not undergo regulatory phosphorylation. HPr forms an open-faced sandwich structure with a four-strand S-sheet and 2 to 3 helices lying on top of the sheet. The active-site histidine and Ser{sup 46} occur in conformationally flexible regions. P-His-HPr from the Gram-positive bacterium Bacillus subtilus has been investigated by both homonuclear and heteronuclear two-dimensional and three-dimensional NMR experiments using an in-situ enzymatic regeneration system to maintain a constant level of P-His-HPr. The results show that localized conformational changes occur in the vicinity of the active-site histidine and also near Ser{sup 46}. HPr-Enzyme IIA{sup Glc} complexes from both Bacillus subtilis and Gram-negative Escherichia coli were also studied by a variety of {sup 15}N-edited two-dimensional NMR experiments, which were performed on uniformly {sup 15}N-labeled HPr complexed to unlabeled Enzyme IIA{sup Glc}. The complex is in fast exchange with a molecular weight of about 27 kDa. The focus of our work is to assess the changes undergone by HPr (the smaller of the two components), and so all the experiments were performed with excess Enzyme IIA present in the system.« less
Mina, Petros; di Bernardo, Mario; Savery, Nigel J.; Tsaneva-Atanasova, Krasimira
2013-01-01
Population-level measurements of phenotypic behaviour in biological systems may not necessarily reflect individual cell behaviour. To assess qualitative changes in the behaviour of a single cell, when alone and when part of a community, we developed an agent-based model describing the metabolic states of a population of quorum-coupled cells. The modelling is motivated by published experimental work of a synthetic genetic regulatory network (GRN) used in Escherichia coli cells that exhibit oscillatory behaviour across the population. To decipher the mechanisms underlying oscillations in the system, we investigate the behaviour of the model via numerical simulation and bifurcation analysis. In particular, we study the effect of an increase in population size as well as the spatio-temporal behaviour of the model. Our results demonstrate that oscillations are possible only in the presence of a high concentration of the coupling chemical and are due to a time scale separation in key regulatory components of the system. The model suggests that the population establishes oscillatory behaviour as the system's preferred stable state. This is achieved via an effective increase in coupling across the population. We conclude that population effects in GRN design need to be taken into consideration and be part of the design process. This is important in planning intervention strategies or designing specific cell behaviours. PMID:23135248
Mina, Petros; di Bernardo, Mario; Savery, Nigel J; Tsaneva-Atanasova, Krasimira
2013-01-06
Population-level measurements of phenotypic behaviour in biological systems may not necessarily reflect individual cell behaviour. To assess qualitative changes in the behaviour of a single cell, when alone and when part of a community, we developed an agent-based model describing the metabolic states of a population of quorum-coupled cells. The modelling is motivated by published experimental work of a synthetic genetic regulatory network (GRN) used in Escherichia coli cells that exhibit oscillatory behaviour across the population. To decipher the mechanisms underlying oscillations in the system, we investigate the behaviour of the model via numerical simulation and bifurcation analysis. In particular, we study the effect of an increase in population size as well as the spatio-temporal behaviour of the model. Our results demonstrate that oscillations are possible only in the presence of a high concentration of the coupling chemical and are due to a time scale separation in key regulatory components of the system. The model suggests that the population establishes oscillatory behaviour as the system's preferred stable state. This is achieved via an effective increase in coupling across the population. We conclude that population effects in GRN design need to be taken into consideration and be part of the design process. This is important in planning intervention strategies or designing specific cell behaviours.
Ancona, Veronica; Lee, Jae Hoon; Zhao, Youfu
2016-01-01
The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA. PMID:27845410
Ancona, Veronica; Lee, Jae Hoon; Zhao, Youfu
2016-11-15
The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA.
High throughput and miniaturised systems for biodegradability assessments.
Cregut, Mickael; Jouanneau, Sulivan; Brillet, François; Durand, Marie-José; Sweetlove, Cyril; Chenèble, Jean-Charles; L'Haridon, Jacques; Thouand, Gérald
2014-01-01
The society demands safer products with a better ecological profile. Regulatory criteria have been developed to prevent risks for human health and the environment, for example, within the framework of the European regulation REACH (Regulation (EC) No 1907, 2006). This has driven industry to consider the development of high throughput screening methodologies for assessing chemical biodegradability. These new screening methodologies must be scalable for miniaturisation, reproducible and as reliable as existing procedures for enhanced biodegradability assessment. Here, we evaluate two alternative systems that can be scaled for high throughput screening and conveniently miniaturised to limit costs in comparison with traditional testing. These systems are based on two dyes as follows: an invasive fluorescent dyes that serves as a cellular activity marker (a resazurin-like dye reagent) and a noninvasive fluorescent oxygen optosensor dye (an optical sensor). The advantages and limitations of these platforms for biodegradability assessment are presented. Our results confirm the feasibility of these systems for evaluating and screening chemicals for ready biodegradability. The optosensor is a miniaturised version of a component already used in traditional ready biodegradability testing, whereas the resazurin dye offers an interesting new screening mechanism for chemical concentrations greater than 10 mg/l that are not amenable to traditional closed bottle tests. The use of these approaches allows generalisation of high throughput screening methodologies to meet the need of developing new compounds with a favourable ecological profile and also assessment for regulatory purpose.
Sweet, Burgunda V; Tamer, Helen R; Siden, Rivka; McCreadie, Scott R; McGregory, Michael E; Benner, Todd; Tankanow, Roberta M
2008-05-15
The development of a computerized system for protocol management, dispensing, inventory accountability, and billing by the investigational drug service (IDS) of a university health system is described. After an unsuccessful search for a commercial system that would accommodate the variation among investigational protocols and meet regulatory requirements, the IDS worked with the health-system pharmacy's information technology staff and informatics pharmacists to develop its own system. The informatics pharmacists observed work-flow and information capture in the IDS and identified opportunities for improved efficiency with an automated system. An iterative build-test-design process was used to provide the flexibility needed for individual protocols. The intent was to design a system that would support most IDS processes, using components that would allow automated backup and redundancies. A browser-based system was chosen to allow remote access. Servers, bar-code scanners, and printers were integrated into the final system design. Initial implementation involved 10 investigational protocols chosen on the basis of dispensing volume and complexity of study design. Other protocols were added over a two-year period; all studies whose drugs were dispensed from the IDS were added, followed by those for which the drugs were dispensed from decentralized pharmacy areas. The IDS briefly used temporary staff to free pharmacist and technician time for system implementation. Decentralized pharmacy areas that rarely dispense investigational drugs continue to use manual processes, with subsequent data transcription into the system. Through the university's technology transfer division, the system was licensed by an external company for sale to other IDSs. The WebIDS system has improved daily operations, enhanced safety and efficiency, and helped meet regulatory requirements for investigational drugs.
Strategic analysis for safeguards systems: a feasibility study. Volume 2. Appendix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, A J
1984-12-01
This appendix provides detailed information regarding game theory (strategic analysis) and its potential role in safeguards to supplement the main body of this report. In particualr, it includes an extensive, though not comprehensive review of literature on game theory and on other topics that relate to the formulation of a game-theoretic model (e.g. the payoff functions). The appendix describes the basic form and components of game theory models, and the solvability of various models. It then discusses three basic issues related to the use of strategic analysis in material accounting: (1) its understandability; (2) its viability in regulatory settings; andmore » (3) difficulties in the use of mixed strategies. Each of the components of a game theoretic model are then discussed and related to the present context.« less
Metabolic networks in motion: 13C-based flux analysis
Sauer, Uwe
2006-01-01
Many properties of complex networks cannot be understood from monitoring the components—not even when comprehensively monitoring all protein or metabolite concentrations—unless such information is connected and integrated through mathematical models. The reason is that static component concentrations, albeit extremely informative, do not contain functional information per se. The functional behavior of a network emerges only through the nonlinear gene, protein, and metabolite interactions across multiple metabolic and regulatory layers. I argue here that intracellular reaction rates are the functional end points of these interactions in metabolic networks, hence are highly relevant for systems biology. Methods for experimental determination of metabolic fluxes differ fundamentally from component concentration measurements; that is, intracellular reaction rates cannot be detected directly, but must be estimated through computer model-based interpretation of stable isotope patterns in products of metabolism. PMID:17102807
Vakulskas, Christopher A.; Pannuri, Archana; Cortés-Selva, Diana; Zere, Tesfalem R.; Ahmer, Brian M.; Babitzke, Paul; Romeo, Tony
2014-01-01
Summary In Escherichia coli, activity of the global regulatory RNA binding protein CsrA is antagonized by two noncoding sRNAs, CsrB and CsrC, which sequester it away from its lower affinity mRNA targets. Transcription of csrB/C requires the BarA-UvrY two component signal transduction system, which responds to short chain carboxylates. We show that two DEAD-box RNA helicases, DeaD and SrmB, activate csrB/C expression by different pathways. DeaD facilitates uvrY translation by counteracting the inhibitory effect of long distance basepairing between the uvrY mRNA leader and coding region, while SrmB does not affect UvrY or UvrY-phosphate levels. Contrary to the prevailing notion that these helicases act primarily at low temperatures, DeaD and SrmB activated csrB expression over a wide temperature range. High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) revealed in vivo interactions of DeaD with 39 mRNAs, including those of uvrY and 9 other regulatory genes. Studies on the expression of several of the identified genes revealed regulatory effects of DeaD in all cases and diverse temperature response patterns. Our findings uncover an expanded regulatory role for DeaD, which is mediated through novel mRNA targets, important global regulators and under physiological conditions that were considered to be incompatible with its function. PMID:24708042
Qing, Xiao-Yu; Steenackers, Hans; Venken, Tom; De Maeyer, Marc; Voet, Arnout
2017-11-01
The response regulator PhoP is part of the PhoP/PhoQ two-component system, which is responsible for regulating the expression of multiple genes involved in controlling virulence, biofilm formation, and resistance to antimicrobial peptides. Therefore, modulating the transcriptional function of the PhoP protein is a promising strategy for developing new antimicrobial agents. There is evidence suggesting that phosphorylation-mediated dimerization in the regulatory domain of PhoP is essential for its transcriptional function. Disruption or stabilization of protein-protein interactions at the dimerization interface may inhibit or enhance the expression of PhoP-dependent genes. In this study, we performed molecular dynamics simulations on the active and inactive dimers and monomers of the PhoP regulatory domains, followed by pocket-detecting screenings and a quantitative hot-spot analysis in order to assess the druggability of the protein. Consistent with prior hypothesis, the calculation of the binding free energy shows that phosphorylation enhances dimerization of PhoP. Furthermore, we have identified two different putative binding sites at the dimerization active site (the α4-β5-α5 face) with energetic "hot-spot" areas, which could be used to search for modulators of protein-protein interactions. This study delivers insight into the dynamics and druggability of the dimerization interface of the PhoP regulatory domain, and may serve as a basis for the rational identification of new antimicrobial drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-04-01
... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...
Code of Federal Regulations, 2011 CFR
2011-04-01
... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...
Code of Federal Regulations, 2013 CFR
2013-04-01
... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...
Code of Federal Regulations, 2012 CFR
2012-04-01
... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...
Code of Federal Regulations, 2014 CFR
2014-04-01
... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...
Contemplating the plasmalemmal control center model
NASA Technical Reports Server (NTRS)
Pickard, B. G.
1994-01-01
An abundant epidermal mechanosensory calcium-selective ion channel appears able not only to detect mechanical stimuli such as those that initiate gravitropism but also to detect thermal, electrical, and various chemical stimuli. Because it responds to multimodal input with a second messenger output, this channel system seems likely to be an integrator that can engage in feedbacks with many other systems of the cell--and feedback is the hallmark of regulation. In general, the mechanical tension required for channel activation is likely transmitted from the relatively rigid cell wall to the plasma membrane system via linkage or adhesion sites that display antigenicities recognized by antibodies to animal beta-1 integrin, vitronectin, and fibronectin and which have mechanical connections to the cytoskeleton. Thus, functionally, leverage exerted against any given adhesion site will tend to control channels within a surrounding domain. Reactions initiated by passage of calcium ions through the channels could presumably be more effectively regulated if channels within the domains were somewhat clustered and if appropriate receptors, kinases, porters, pumps, and some key cytoskeletal anchoring sites were in turn clustered about them. Accumulating evidence suggests not only that activity of clusters of channels may contribute to control of cytoskeletal architecture and of regulatory protein function within their domain, but also that both a variety of regulatory proteins and components of the cortical cytoskeleton may contribute to control of channel activity. The emerging capabilities of electronic optical microscopy are well suited for resolving the spatial distributions of many of these cytoskeletal and regulatory molecules in living cells, and for following some of their behaviors as channels are stimulated to open and cytosolic calcium builds in their vicinity. Such microscopy, coupled with biochemical and physiological probing, should help to establish the nature of the feedback loops putatively controlled by the linkage sites and their channel domains.
Lazzaro, Martina; Feldman, Mario F.
2017-01-01
ABSTRACT The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens, it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter, which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia’s RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. PMID:28830939
Ibarra-Arellano, Miguel A; Campos-González, Adrián I; Treviño-Quintanilla, Luis G; Tauch, Andreas; Freyre-González, Julio A
2016-01-01
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy ( A: cross- BA: cteria SY: stems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them.Database URL: http://abasy.ccg.unam.mx. © The Author(s) 2016. Published by Oxford University Press.
Ramsay, Angus; Magnusson, Carin; Fulop, Naomi
2010-12-01
'Organisational governance'--the systems, processes, behaviours and cultures by which an organisation leads and controls its functions to achieve its objectives--is seen as an important influence on patient safety. The features of 'good' governance remain to be established, partly because the relationship between governance and safety requires more investigation. To describe external governance systems--for example, national targets and regulatory bodies--and an NHS Trust's formal governance systems for Health Care Associated Infections (HCAIs) and medication errors; to consider the relationships between these systems. External governance systems and formal internal governance systems for both medication errors and HCAIs were analysed based on documentary analysis and interviews with relevant hospital staff. Nationally, HCAIs appeared to be a higher priority than medication errors, reflected in national targets and the focus of regulatory bodies. Locally, HCAIs were found to be the focus of committees at all levels of the organisation and, unlike medication errors, a central component of the Trust's performance management system; medication errors were discussed in appropriate governance committees, but most governance of medication errors took place at divisional or ward level. The data suggest a relationship between national and local prioritisation of the safety issues examined: national targets on HCAIs influence the behaviour of regulators and professional organisations; and these, in turn, have a significant impact on Trust activity. A contributory factor might be that HCAIs are more amenable to measurement than medication errors, meaning HCAIs lend themselves better to target-setting.
Pechenick, Dov A.; Payne, Joshua L.; Moore, Jason H.
2011-01-01
Gene regulatory networks (GRNs) drive the cellular processes that sustain life. To do so reliably, GRNs must be robust to perturbations, such as gene deletion and the addition or removal of regulatory interactions. GRNs must also be robust to genetic changes in regulatory regions that define the logic of signal-integration, as these changes can affect how specific combinations of regulatory signals are mapped to particular gene expression states. Previous theoretical analyses have demonstrated that the robustness of a GRN is influenced by its underlying topological properties, such as degree distribution and modularity. Another important topological property is assortativity, which measures the propensity with which nodes of similar connectivity are connected to one another. How assortativity influences the robustness of the signal-integration logic of GRNs remains an open question. Here, we use computational models of GRNs to investigate this relationship. We separately consider each of the three dynamical regimes of this model for a variety of degree distributions. We find that in the chaotic regime, robustness exhibits a pronounced increase as assortativity becomes more positive, while in the critical and ordered regimes, robustness is generally less sensitive to changes in assortativity. We attribute the increased robustness to a decrease in the duration of the gene expression pattern, which is caused by a reduction in the average size of a GRN’s in-components. This study provides the first direct evidence that assortativity influences the robustness of the signal-integration logic of computational models of GRNs, illuminates a mechanistic explanation for this influence, and furthers our understanding of the relationship between topology and robustness in complex biological systems. PMID:22155134
Bioattractors: dynamical systems theory and the evolution of regulatory processes
Jaeger, Johannes; Monk, Nick
2014-01-01
In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812
Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J
2013-01-01
Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential for the obesity-induced changes in insulin expression/secretion observed in mice, suggesting that CORT is a key regulatory component of the pancreatic function.
Scofield, Simon; Murison, Alexander; Jones, Angharad; Fozard, John; Aida, Mitsuhiro; Band, Leah R; Bennett, Malcolm; Murray, James A H
2018-04-30
The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is crucial for shoot apical meristem (SAM) function, yet the components and structure of the STM gene regulatory network (GRN) are largely unknown. Here, we show that transcriptional regulators are overrepresented among STM-regulated genes and, using these as GRN components in Bayesian network analysis, we infer STM GRN associations and reveal regulatory relationships between STM and factors involved in multiple aspects of SAM function. These include hormone regulation, TCP-mediated control of cell differentiation, AIL/PLT-mediated regulation of pluripotency and phyllotaxis, and specification of meristem-organ boundary zones via CUC1. We demonstrate a direct positive transcriptional feedback loop between STM and CUC1, despite their distinct expression patterns in the meristem and organ boundary, respectively. Our further finding that STM activates expression of the CUC1-targeting microRNA miR164c combined with mathematical modelling provides a potential solution for this apparent contradiction, demonstrating that these proposed regulatory interactions coupled with STM mobility could be sufficient to provide a mechanism for CUC1 localisation at the meristem-organ boundary. Our findings highlight the central role for the STM GRN in coordinating SAM functions. © 2018. Published by The Company of Biologists Ltd.
GATE: software for the analysis and visualization of high-dimensional time series expression data.
MacArthur, Ben D; Lachmann, Alexander; Lemischka, Ihor R; Ma'ayan, Avi
2010-01-01
We present Grid Analysis of Time series Expression (GATE), an integrated computational software platform for the analysis and visualization of high-dimensional biomolecular time series. GATE uses a correlation-based clustering algorithm to arrange molecular time series on a two-dimensional hexagonal array and dynamically colors individual hexagons according to the expression level of the molecular component to which they are assigned, to create animated movies of systems-level molecular regulatory dynamics. In order to infer potential regulatory control mechanisms from patterns of correlation, GATE also allows interactive interroga-tion of movies against a wide variety of prior knowledge datasets. GATE movies can be paused and are interactive, allowing users to reconstruct networks and perform functional enrichment analyses. Movies created with GATE can be saved in Flash format and can be inserted directly into PDF manuscript files as interactive figures. GATE is available for download and is free for academic use from http://amp.pharm.mssm.edu/maayan-lab/gate.htm
Voyich, Jovanka M; Sturdevant, Daniel E; Braughton, Kevin R; Kobayashi, Scott D; Lei, Benfang; Virtaneva, Kimmo; Dorward, David W; Musser, James M; DeLeo, Frank R
2003-02-18
Group A Streptococcus (GAS) evades polymorphonuclear leukocyte (PMN) phagocytosis and killing to cause human disease, including pharyngitis and necrotizing fasciitis (flesh-eating syndrome). We show that GAS genes differentially regulated during phagocytic interaction with human PMNs comprise a global pathogen-protective response to innate immunity. GAS prophage genes and genes involved in virulence, oxidative stress, cell wall biosynthesis, and gene regulation were up-regulated during PMN phagocytosis. Genes encoding novel secreted proteins were up-regulated, and the proteins were produced during human GAS infections. We discovered an essential role for the Ihk-Irr two-component regulatory system in evading PMN-mediated killing and promoting host-cell lysis, processes that would facilitate GAS pathogenesis. Importantly, the irr gene was highly expressed during human GAS pharyngitis. We conclude that a complex pathogen genetic program circumvents human innate immunity to promote disease. The gene regulatory program revealed by our studies identifies previously undescribed potential vaccine antigens and targets for therapeutic interventions designed to control GAS infections.
Neuroendocrinology of Sexual Plasticity in Teleost Fishes
Godwin, John
2010-01-01
The study of sex differences has produced major insights into the organization of animal phenotypes and the regulatory mechanisms generating phenotypic variation from similar genetic templates. Teleost fishes display the greatest diversity of sexual expression among vertebrate animals. This diversity appears to arise from diversity in the timing of sex determination and less functional interdependence among the components of sexuality relative to tetrapod vertebrates. Teleost model systems therefore provide powerful models for understanding gonadal and non-gonadal influences on behavioral and physiological variation. This review addresses socially controlled sex change and alternate male phenotypes in fishes. These sexual patterns are informative natural experiments that illustrate how variation in conserved neuroendocrine pathways can give rise to a wide range of reproductive adaptations. Key regulatory factors underlying sex change and alternative male phenotypes that have been identified to date include steroid hormones and the neuropeptides GnRH and arginine vasotocin, but genomic approaches are now implicating a diversity of other influences as well. PMID:20176046
Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens.
Gimenez-Ibanez, Selena; Solano, Roberto
2013-01-01
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.
Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens
Gimenez-Ibanez, Selena; Solano, Roberto
2013-01-01
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease. PMID:23577014
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
... lower the minimum component stock weight requirement from 90% to 70% of the weight of the underlying... component stock trading volumes are determined on a global basis. Finally, as an option for meeting the... minimize potential manipulation. The Commission also believes that the proposed use of minimum notional...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
Laomettachit, Teeraphan; Chen, Katherine C; Baumann, William T; Tyson, John J
2016-01-01
To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.
NASA Astrophysics Data System (ADS)
Isaeva, Olga; Zenchenko, Tatiana; Breus, Tamara; Chernikova, Anna; Baevsky, Roman
It was previously shown [Baevsky, Petrov, 1998] that during space flight under influence of geomagnetic disturbances there are both specific response of the autonomic regulation system in the form of vasomotor cardiovascular center activation (LF spectral components) and non-specific stress response, which depends on the actual autonomic balance [Breus, Baevsky, 2002]. Within the project "Mars-500" the parallel medical-ecological studies were conducted in 10 groups (10-16 people), that lived in different regions of the world under the influence of various environmental factors - climatic, geographic, industrial, social and other. It allowed us to obtain a sufficiently large number of variants of adaptive reactions caused by differences in external impacts. The main research method was the heart rate variability (HRV) analysis in short ECG samples (5 minutes) for assessing heart rate chronostructure and functional status of autonomic regulation. Results of studies have demonstrated that environmental loads on the regulatory mechanisms is higher in the northern and north-eastern regions of Russia - Magadan and Syktyvkar. Stress-index of regulatory systems and adaptive risk indicator is significantly higher in these groups [Baevsky, Berseneva, 2013]. The preliminary search of weather factors (atmospheric pressure, air temperature, humidity and magnetic index Kp) influence on the autonomic regulation of heart rate showed that there are no any significant changes and relationships in the entire group of participants. We have assumed that the character of adaptive responses, including responses to changing weather and geomagnetic conditions, is associated with the individual characteristics and the initial functional state of autonomic regulation. To test this hypothesis, we have identified two groups of subjects with different autonomic balance. The first group included individuals with a pronounced predominance of sympathetic regulation (n = 127), the second - with a strong predominance of parasympathetic activity (n = 64). The analysis of correlations between weather and heart rate chronostructure and functional condition of autonomic regulation revealed that attitude of low frequency (LF) and high frequency (HF) of heart rhythm spectrum higher in both groups at declining geomagnetic activity and lower at its growth. The comparison of other HRV indicators at decreasing and increasing geomagnetic activity displayed the opposite trends in these groups. Stress-index of regulatory systems (SI), which reflects the sympathetic activity, rises in group with sympathetic dominance at reducing geomagnetic activity, and at its growth - in group with parasympathetic dominance. So, we can see that specific adaptive reaction as response to changing geomagnetic situation, which manifested in activation of vasomotor cardiovascular center, is the similar in subjects with different autonomic balance. Non-specific component depends on initial dominance of one or another regulatory mechanism.
Ball, Murray A; Noble, Bram F; Dubé, Monique G
2013-07-01
The accumulating effects of human development are threatening water quality and availability. In recognition of the constraints to cumulative effects assessment (CEA) under traditional environmental impact assessment (EIA), there is an emerging body of research dedicated to watershed-based cumulative effects assessment (WCEA). To advance the science of WCEA, however, a standard set of ecosystem components and indicators is required that can be used at the watershed scale, to inform effects-based understanding of cumulative change, and at the project scale, to inform regulatory-based project based impact assessment and mitigation. A major challenge, however, is that it is not clear how such ecosystem components and indicators for WCEA can or should be developed. This study examined the use of aquatic ecosystem components and indicators in EIA practice in the South Saskatchewan River watershed, Canada, to determine whether current practice at the project scale could be "scaled up" to support ecosystem component and indicator development for WCEA. The hierarchy of assessment components and indicators used in a sample of 35 environmental impact assessments was examined and the factors affecting aquatic ecosystem component selection and indicator use were identified. Results showed that public environmental impact statements are not necessarily publically accessible, thus limiting opportunities for data and information sharing from the project to the watershed scale. We also found no consistent terminology across the sample of impact statements, thus making comparison of assessment processes and results difficult. Regulatory compliance was found to be the dominant factor influencing the selection of ecosystem components and indicators for use in project assessment, rather than scientific reasoning, followed by the mandate of the responsible government agency for the assessment, public input to the assessment process, and preexisting water licensing arrangements external to the assessment process. The current approach to project-based assessment offered little support for WCEA initiatives. It did not provide a standard set of aquatic ecosystem components and indicators or allow the sharing of information across projects and from the project to the watershed scale. We suggest that determining priority assessment parameters for WCEA requires adoption of a standardized framework of component and indicator terminology, which can then be populated for the watershed of concern based on both watershed-based priorities and project-specific regulatory requirements. Copyright © 2012 SETAC.
Regulation of host-pathogen interactions via the post-transcriptional Csr/Rsm system.
Kusmierek, Maria; Dersch, Petra
2018-02-01
A successful colonization of specific hosts requires a rapid and efficient adaptation of the virulence-relevant gene expression program by bacterial pathogens. An important element in this endeavor is the Csr/Rsm system. This multi-component, post-transcriptional control system forms a central hub within complex regulatory networks and coordinately adjusts virulence properties with metabolic and physiological attributes of the pathogen. A key function is elicited by the RNA-binding protein CsrA/RsmA. CsrA/RsmA interacts with numerous target mRNAs, many of which encode crucial virulence factors, and alters their translation, stability or elongation of transcription. Recent studies highlighted that important colonization factors, toxins, and bacterial secretion systems are under CsrA/RsmA control. CsrA/RsmA deficiency impairs host colonization and attenuates virulence, making this post-transcriptional regulator a suitable drug target. The CsrA/RsmA protein can be inactivated through sequestration by non-coding RNAs, or via binding to specific highly abundant mRNAs and interacting proteins. The wide range of interaction partners and RNA targets, as well as the overarching, interlinked genetic control circuits illustrate the complexity of this regulatory system in the different pathogens. Future work addressing spatio-temporal changes of Csr/Rsm-mediated control during the course of an infection will help us to understand how bacteria reprogram their expression profile to cope with continuous changes experienced in colonized niches. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis
1999-01-01
As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.
Inflammation, Self-Regulation, and Health: An Immunologic Model of Self-Regulatory Failure.
Shields, Grant S; Moons, Wesley G; Slavich, George M
2017-07-01
Self-regulation is a fundamental human process that refers to multiple complex methods by which individuals pursue goals in the face of distractions. Whereas superior self-regulation predicts better academic achievement, relationship quality, financial and career success, and lifespan health, poor self-regulation increases a person's risk for negative outcomes in each of these domains and can ultimately presage early mortality. Given its centrality to understanding the human condition, a large body of research has examined cognitive, emotional, and behavioral aspects of self-regulation. In contrast, relatively little attention has been paid to specific biologic processes that may underlie self-regulation. We address this latter issue in the present review by examining the growing body of research showing that components of the immune system involved in inflammation can alter neural, cognitive, and motivational processes that lead to impaired self-regulation and poor health. Based on these findings, we propose an integrated, multilevel model that describes how inflammation may cause widespread biobehavioral alterations that promote self-regulatory failure. This immunologic model of self-regulatory failure has implications for understanding how biological and behavioral factors interact to influence self-regulation. The model also suggests new ways of reducing disease risk and enhancing human potential by targeting inflammatory processes that affect self-regulation.
Regulatory ozone modeling: status, directions, and research needs.
Georgopoulos, P G
1995-01-01
The Clean Air Act Amendments (CAAA) of 1990 have established selected comprehensive, three-dimensional, Photochemical Air Quality Simulation Models (PAQSMs) as the required regulatory tools for analyzing the urban and regional problem of high ambient ozone levels across the United States. These models are currently applied to study and establish strategies for meeting the National Ambient Air Quality Standard (NAAQS) for ozone in nonattainment areas; State Implementation Plans (SIPs) resulting from these efforts must be submitted to the U.S. Environmental Protection Agency (U.S. EPA) in November 1994. The following presentation provides an overview and discussion of the regulatory ozone modeling process and its implications. First, the PAQSM-based ozone attainment demonstration process is summarized in the framework of the 1994 SIPs. Then, following a brief overview of the representation of physical and chemical processes in PAQSMs, the essential attributes of standard modeling systems currently in regulatory use are presented in a nonmathematical, self-contained format, intended to provide a basic understanding of both model capabilities and limitations. The types of air quality, emission, and meteorological data needed for applying and evaluating PAQSMs are discussed, as well as the sources, availability, and limitations of existing databases. The issue of evaluating a model's performance in order to accept it as a tool for policy making is discussed, and various methodologies for implementing this objective are summarized. Selected interim results from diagnostic analyses, which are performed as a component of the regulatory ozone modeling process for the Philadelphia-New Jersey region, are also presented to provide some specific examples related to the general issues discussed in this work. Finally, research needs related to a) the evaluation and refinement of regulatory ozone modeling, b) the characterization of uncertainty in photochemical modeling, and c) the improvement of the model-based ozone-attainment demonstration process are presented to identify future directions in this area. Images Figure 7. Figure 7. Figure 7. Figure 8. Figure 9. PMID:7614934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Ronghui; Satkovich, John; Hu, Jianping
Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less
Expanding the B Cell Centric View of Systemic Lupus Erythematosus
Morawski, Peter A.; Bolland, Silvia
2017-01-01
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this Review, we consider recent advances regarding both pathogenic and regulatory roles of lymphocytes in SLE, beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel targeted therapeutics. PMID:28274696
T-cell selection and intestinal homeostasis
Ai, Teresa L.; Solomon, Benjamin D.; Hsieh, Chyi-Song
2014-01-01
Summary Although intestinal bacteria live deep within the body, they are topographically on the exterior surface and thus outside the host. According to the classic notion that the immune system targets non-self rather than self, these intestinal bacteria should be considered foreign and therefore attacked and eliminated. While this appears to be true for some commensal bacterial species, recent data suggests that the immune system actively becomes tolerant to many bacterial organisms. The induction or activation of regulatory T (Treg) cells that inhibit, rather than promote, inflammatory responses to commensal bacteria appears to be a central component of mucosal tolerance. Loss of this mechanism can lead to inappropriate immune reactivity toward commensal organisms, perhaps contributing to mucosal inflammation characteristic of disorders such as inflammatory bowel disease. PMID:24712459
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Three Mile Island (TMI) Unit 2 accident on March 28, 1979 was and is of great concern to the nuclear industry; electric power generating companies and their customers, regulatory and other government agencies, the entire nuclear community, and to the country as a whole. While the accident resulted in only limited external plant radiation exposure, the plant itself suffered extensive damage with high radiation contamination within the reactor and auxiliary system facilities. The GEND Planning Report for cleanup activities at TMI-2 covers the areas of: instrumentation and electrical equipment survivability; fission product transport; decontamination/radiation dose reduction technology; data bankmore » organization and sample archive facility; characterization of primary system pressure boundary and mechanical components; core damage assessment; and fuel handling, removal, examination and disposal.« less
Morero, Natalia R; Botti, Horacio; Nitta, Kazuhiro R; Carrión, Federico; Obal, Gonzalo; Picardeau, Mathieu; Buschiazzo, Alejandro
2014-10-01
Several Leptospira species cause leptospirosis, the most extended zoonosis worldwide. In bacteria, two-component systems constitute key signalling pathways, some of which are involved in pathogenesis. The physiological roles of two-component systems in Leptospira are largely unknown, despite identifying several dozens within their genomes. Biochemical confirmation of an operative phosphorelaying two-component system has been obtained so far only for the Hklep/Rrlep pair. It is known that hklep/rrlep knockout strains of Leptospira biflexa result in haem auxotrophy, although their de novo biosynthesis machinery remains fully functional. Haem is essential for Leptospira, but information about Hklep/Rrlep effector function(s) and target(s) is still lacking. We are now reporting a thorough molecular characterization of this system, which we rename HemK/HemR. The DNA HemR-binding motif was determined, and found within the genomes of saprophyte and pathogenic Leptospira. In this way, putative HemR-regulated genes were pinpointed, including haem catabolism-related (hmuO - haem oxygenase) and biosynthesis-related (the hemA/C/D/B/L/E/N/G operon). Specific HemR binding to these two promoters was quantified, and a dual function was observed in vivo, inversely repressing the hmuO, while activating the hemA operon transcription. The crystal structure of HemR receiver domain was determined, leading to a mechanistic model for its dual regulatory role. © 2014 John Wiley & Sons Ltd.
40 CFR 142.304 - For which of the regulatory requirements is a small system variance available?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false For which of the regulatory requirements is a small system variance available? 142.304 Section 142.304 Protection of Environment... REGULATIONS IMPLEMENTATION Variances for Small System General Provisions § 142.304 For which of the regulatory...
Regulatory Guidance for Lightning Protection in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Wilgen, John B; Ewing, Paul D
2006-01-01
Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.« less
Regulatory guidance for lightning protection in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.
2006-07-01
Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)« less
Bioattractors: dynamical systems theory and the evolution of regulatory processes.
Jaeger, Johannes; Monk, Nick
2014-06-01
In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait--such as attractors with associated basins and their bifurcations--define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Architectural and functional commonalities between enhancers and promoters
Kim, Tae-Kyung; Shiekhattar, Ramin
2015-01-01
Summary With the explosion of genome-wide studies of regulated transcription, it has become clear that traditional definitions of enhancers and promoters need to be revisited. These control elements can now be characterized in terms of their local and regional architecture, their regulatory components including histone modifications and associated binding factors and their functional contribution to transcription. This review discusses unifying themes between promoters and enhancers in transcriptional regulatory mechanisms. PMID:26317464
A Stakeholder-Based System Dynamics Model of Return-to-Work: A Research Protocol.
Jetha, Arif; Pransky, Glenn; Fish, Jon; Jeffries, Susan; Hettinger, Lawrence J
2015-07-16
Returning to work following a job-related injury or illness can be a complex process, influenced by a range of interrelated personal, psychosocial, and organizational components. System dynamics modelling (SDM) takes a sociotechnical systems perspective to view return-to-work (RTW) as a system made up of multiple feedback relationships between influential components. To build the RTW SDM, a mixed-method approach will be used. The first stage, that has already been completed, involved creating a baseline model using key informant interviews. Second, in two manufacturing companies, stakeholder-based models will be developed through interviews and focus groups with senior management, frontline workers, and frontline supervisors. Participants will be asked about the RTW process in general and more targeted questions regarding influential components. Participants will also be led through a reference mode exercise where they will be asked to estimate the direction, shape and magnitude of relationships between influential components. Data will be entered into the software program Vensim that provides a platform for visualizing system-structure and simulating the effects of adapting components. Finally, preliminary model validity testing will be conducted to provide insights on model generalizability and sensitivity. The proposed methodology will create a SDM of the RTW process using feedback relationships of influential components. It will also provide an important simulation tool to understand system behaviour that underlies complex RTW cases, and examine anticipated and unanticipated consequences of disability management policies. Significance for public healthWhile the incidence of occupational injuries and illnesses has declined over the past two decades, the proportion resulting in sickness absence has actually increased. Implementing strategies to address sickness absences and promote return-to-work (RTW) can significantly benefit physical and mental health, and work outcomes like worker engagement, job satisfaction and job strain. As a key social determinant of health, participation in paid work can also ensure that work-disabled individuals generate income necessary for access to housing, education, food, and social services that also benefit health. Improving RTW outcomes can also have significant societal benefits such as a reduction in workers compensation costs, increased economic activity and less burden on social assistance programs. Despite its benefits, returning to work after injury or illness is not a straightforward process and can be complicated by the individual, psychosocial, organizational and regulatory components that influence a disabled person's ability to resume work activities.
Regulation of virulence by a two-component system in group B streptococcus.
Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R
2005-02-01
Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.
Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD).
Marino, M; Ramos, H C; Hoffmann, T; Glaser, P; Jahn, D
2001-12-01
Bacillus subtilis grows under anaerobic conditions utilizing nitrate ammonification and various fermentative processes. The two-component regulatory system ResDE and the redox regulator Fnr are the currently known parts of the regulatory system for anaerobic adaptation. Mutation of the open reading frame ywiD located upstream of the respiratory nitrate reductase operon narGHJI resulted in elimination of the contribution of nitrite dissimilation to anaerobic nitrate respiratory growth. Significantly reduced nitrite reductase (NasDE) activity was detected, while respiratory nitrate reductase activity was unchanged. Anaerobic induction of nasDE expression was found to be significantly dependent on intact ywiD, while anaerobic narGHJI expression was ywiD independent. Anaerobic transcription of hmp, encoding a flavohemoglobin-like protein, and of the fermentative operons lctEP and alsSD, responsible for lactate and acetoin formation, was partially dependent on ywiD. Expression of pta, encoding phosphotransacetylase involved in fermentative acetate formation, was not influenced by ywiD. Transcription of the ywiD gene was anaerobically induced by the redox regulator Fnr via the conserved Fnr-box (TGTGA-6N-TCACT) centered 40.5 bp upstream of the transcriptional start site. Anaerobic induction of ywiD by resDE was found to be indirect via resDE-dependent activation of fnr. The ywiD gene is subject to autorepression and nitrite repression. These results suggest a ResDE --> Fnr --> YwiD regulatory cascade for the modulation of genes involved in the anaerobic metabolism of B. subtilis. Therefore, ywiD was renamed arfM for anaerobic respiration and fermentation modulator.
Site-specific DNA Inversion by Serine Recombinases
2015-01-01
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275
Bartholow, Bruce D; Henry, Erika A; Lust, Sarah A; Saults, J Scott; Wood, Phillip K
2012-02-01
Alcohol is known to impair self-regulatory control of behavior, though mechanisms for this effect remain unclear. Here, we tested the hypothesis that alcohol's reduction of negative affect (NA) is a key mechanism for such impairment. This hypothesis was tested by measuring the amplitude of the error-related negativity (ERN), a component of the event-related brain potential (ERP) posited to reflect the extent to which behavioral control failures are experienced as distressing, while participants completed a laboratory task requiring self-regulatory control. Alcohol reduced both the ERN and error positivity (Pe) components of the ERP following errors and impaired typical posterror behavioral adjustment. Structural equation modeling indicated that effects of alcohol on both the ERN and posterror adjustment were significantly mediated by reductions in NA. Effects of alcohol on Pe amplitude were unrelated to posterror adjustment, however. These findings indicate a role for affect modulation in understanding alcohol's effects on self-regulatory impairment and more generally support theories linking the ERN with a distress-related response to control failures. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
.... For example, to calculate the daily total return today, the previous day's closing market price for the component would be subtracted from today's closing market price for the component to determine a... dividend if today were an ``ex-dividend'' date to yield the Price Plus Dividend Difference for the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... daily total return today, the previous trading day's closing market price for the component would be subtracted from today's closing market price for the component to determine a price difference (the ``Price Difference''). The Price Difference would be added to any declared dividend, if today were an ``ex-dividend...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... risk factor component of its credit default swap (``CDS'') margin model. CME proposes to use an index... with the liquidity risk factor component. The proposed rule change was published for comment in the... on Proposed Rule Change Related to the Liquidity Factor of CME's CDS Margin Methodology February 14...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
...-growing (yet extremely volatile) semiconductor industry. When investors want information and investment... Number of Components in the PHLX Semiconductor Sector\\SM\\ Known as SOX\\SM\\, on Which Options Are Listed... Commission a proposal to expand the number of components in the PHLX Semiconductor Sector\\SM\\ known as SOX\\SM...
Modeling Systems-Level Regulation of Host Immune Responses
Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka
2007-01-01
Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300
Shelburne, Samuel A; Sumby, Paul; Sitkiewicz, Izabela; Granville, Chanel; DeLeo, Frank R; Musser, James M
2005-11-01
The molecular genetic mechanisms used by bacteria to persist in humans are poorly understood. Group A Streptococcus (GAS) causes the majority of bacterial pharyngitis cases in humans and is prone to persistently inhabit the upper respiratory tract. To gain information about how GAS survives in and infects the oropharynx, we analyzed the transcriptome of a serotype M1 strain grown in saliva. The dynamic pattern of changes in transcripts of genes [spy0874/0875, herein named sptR and sptS (sptR/S), for saliva persistence] encoding a two-component gene regulatory system of unknown function suggested that SptR/S contributed to persistence of GAS in saliva. Consistent with this idea, an isogenic nonpolar mutant strain (DeltasptR) was dramatically less able to survive in saliva compared with the parental strain. Iterative expression microarray analysis of bacteria grown in saliva revealed that transcripts of several known and putative GAS virulence factor genes were decreased significantly in the DeltasptR mutant strain. Compared with the parental strain, the isogenic mutant strain also had altered transcripts of multiple genes encoding proteins involved in complex carbohydrate acquisition and utilization pathways. Western immunoblot analysis and real-time PCR analysis of GAS in throat swabs taken from humans with pharyngitis confirmed the findings. We conclude that SptR/S optimizes persistence of GAS in human saliva, apparently by strategically influencing metabolic pathways and virulence factor production. The discovery of a genetic program that significantly increased persistence of a major human pathogen in saliva enhances understanding of how bacteria survive in the host and suggests new therapeutic strategies.
Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.
2014-01-01
Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625
Emerging Concepts of Adaptive Immunity in Leprosy
Sadhu, Soumi; Mitra, Dipendra Kumar
2018-01-01
Leprosy is a chronic intracellular infection caused by the acid-fast bacillus, Mycobacterium leprae. The disease chiefly affects the skin, peripheral nerves, mucosa of the upper respiratory tract, and the eyes. The damage to peripheral nerves results in sensory and motor impairment with characteristic deformities and disability. Presently, the disease remains concentrated in resource-poor countries in tropical and warm temperate regions with the largest number of cases reported from India. Even though innate immunity influences the clinical manifestation of the disease, it is the components of adaptive immune system which seem to tightly correlate with the characteristic spectrum of leprosy. M. leprae-specific T cell anergy with bacillary dissemination is the defining feature of lepromatous leprosy (LL) patients in contrast to tuberculoid leprosy (TT) patients, which is characterized by strong Th1-type cell response with localized lesions. Generation of Th1/Th2-like effector cells, however, cannot wholly explain the polarized state of immunity in leprosy. A comprehensive understanding of the role of various regulatory T cells, such as Treg and natural killer T cells, in deciding the polarized state of T cell immunity is crucial. Interaction of these T cell subsets with effector T cells like Th1 (IFN-γ dominant), Th2 (interluekin-4 dominant), and Th17 (IL-17+) cells through various regulatory cytokines and molecules (programmed death-1/programmed death ligand-1) may constitute key events in dictating the state of immune polarization, thus controlling the clinical manifestation. Studying these important components of the adaptive immune system in leprosy patients is essential for better understanding of immune function, correlate(s) the immunity and mechanism(s) of its containment. PMID:29686668
Genome-wide network of regulatory genes for construction of a chordate embryo.
Shoguchi, Eiichi; Hamaguchi, Makoto; Satoh, Nori
2008-04-15
Animal development is controlled by gene regulation networks that are composed of sequence-specific transcription factors (TF) and cell signaling molecules (ST). Although housekeeping genes have been reported to show clustering in the animal genomes, whether the genes comprising a given regulatory network are physically clustered on a chromosome is uncertain. We examined this question in the present study. Ascidians are the closest living relatives of vertebrates, and their tadpole-type larva represents the basic body plan of chordates. The Ciona intestinalis genome contains 390 core TF genes and 119 major ST genes. Previous gene disruption assays led to the formulation of a basic chordate embryonic blueprint, based on over 3000 genetic interactions among 79 zygotic regulatory genes. Here, we mapped the regulatory genes, including all 79 regulatory genes, on the 14 pairs of Ciona chromosomes by fluorescent in situ hybridization (FISH). Chromosomal localization of upstream and downstream regulatory genes demonstrates that the components of coherent developmental gene networks are evenly distributed over the 14 chromosomes. Thus, this study provides the first comprehensive evidence that the physical clustering of regulatory genes, or their target genes, is not relevant for the genome-wide control of gene expression during development.
Emerging principles of regulatory evolution.
Prud'homme, Benjamin; Gompel, Nicolas; Carroll, Sean B
2007-05-15
Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been proposed that morphological evolution relies predominantly on changes in the architecture of gene regulatory networks and in particular on functional changes within CREs. Here, we discuss recent experimental studies that support this hypothesis and reveal some unanticipated features of how regulatory evolution occurs. From this growing body of evidence, we identify three key operating principles underlying regulatory evolution, that is, how regulatory evolution: (i) uses available genetic components in the form of preexisting and active transcription factors and CREs to generate novelty; (ii) minimizes the penalty to overall fitness by introducing discrete changes in gene expression; and (iii) allows interactions to arise among any transcription factor and downstream CRE. These principles endow regulatory evolution with a vast creative potential that accounts for both relatively modest morphological differences among closely related species and more profound anatomical divergences among groups at higher taxonomical levels.
Gao, Rong
2015-01-01
ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501
A Network-Based Method to Assess the Statistical Significance of Mild Co-Regulation Effects
Horvát, Emőke-Ágnes; Zhang, Jitao David; Uhlmann, Stefan; Sahin, Özgür; Zweig, Katharina Anna
2013-01-01
Recent development of high-throughput, multiplexing technology has initiated projects that systematically investigate interactions between two types of components in biological networks, for instance transcription factors and promoter sequences, or microRNAs (miRNAs) and mRNAs. In terms of network biology, such screening approaches primarily attempt to elucidate relations between biological components of two distinct types, which can be represented as edges between nodes in a bipartite graph. However, it is often desirable not only to determine regulatory relationships between nodes of different types, but also to understand the connection patterns of nodes of the same type. Especially interesting is the co-occurrence of two nodes of the same type, i.e., the number of their common neighbours, which current high-throughput screening analysis fails to address. The co-occurrence gives the number of circumstances under which both of the biological components are influenced in the same way. Here we present SICORE, a novel network-based method to detect pairs of nodes with a statistically significant co-occurrence. We first show the stability of the proposed method on artificial data sets: when randomly adding and deleting observations we obtain reliable results even with noise exceeding the expected level in large-scale experiments. Subsequently, we illustrate the viability of the method based on the analysis of a proteomic screening data set to reveal regulatory patterns of human microRNAs targeting proteins in the EGFR-driven cell cycle signalling system. Since statistically significant co-occurrence may indicate functional synergy and the mechanisms underlying canalization, and thus hold promise in drug target identification and therapeutic development, we provide a platform-independent implementation of SICORE with a graphical user interface as a novel tool in the arsenal of high-throughput screening analysis. PMID:24039936
Chang, Lin-Chau; Kang, Jaw-Jou; Gau, Churn-Shiouh
2015-12-01
Excipients, once considered an inert component, have been shown to greatly influence the characteristics of the drug product, such as quality and safety. Functionality-related characteristics of excipients could affect the performance of the drug product. Moreover, the impact of globalization has complicated the issue and made the supervision of supply chain highly important. Taiwan, a member of the Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme, makes efforts to harmonize with international regulations and to strengthen the protection of patients through regulatory controls. In order to improve the harmonization and the transparency of regulatory requirements, the aim of the present study was to investigate the regulatory framework and considerations of stringent regulatory authorities and to propose the draft regulatory requirements to the Taiwan Food and Drug Administration for jurisdiction. The proposal which was extensively discussed in the expert committee includes the regulatory considerations to ensure the safety and quality of the excipients and may serve as a platform to facilitate the communication with industries about the current thinking on related issues. Moreover, through the review of the recent guidelines published by the stringent regulatory authorities, the trend of the regulatory considerations was revealed and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
A map of terminal regulators of neuronal identity in Caenorhabditis elegans
2016-01-01
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474–498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website. PMID:27136279
NASA Astrophysics Data System (ADS)
Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun
2017-10-01
This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.
Preston, Charles; Chahal, Harinder S; Porrás, Analia; Cargill, Lucette; Hinds, Maryam; Olowokure, Babatunde; Cummings, Rudolph; Hospedales, James
2016-05-01
Improving basic capacities for regulation of medicines and health technologies through regulatory systems strengthening is particularly challenging in resource-constrained settings. "Regionalization"-an approach in which countries with common histories, cultural values, languages, and economic conditions work together to establish more efficient systems-may be one answer. This report describes the Caribbean Regulatory System (CRS), a regionalization initiative being implemented in the mostly small countries of the Caribbean Community and Common Market (CARICOM). This initiative is an innovative effort to strengthen regulatory systems in the Caribbean, where capacity is limited compared to other subregions of the Americas. The initiative's concept and design includes a number of features and steps intended to enhance sustainability in resource-constrained contexts. The latter include 1) leveraging existing platforms for centralized cooperation, governance, and infrastructure; 2) strengthening regulatory capacities with the largest potential public health impact; 3) incorporating policies that promote reliance on reference authorities; 4) changing the system to encourage industry to market their products in CARICOM (e.g., using a centralized portal of entry to reduce regulatory burdens); and 5) building human resource capacity. If implemented properly, the CRS will be self-sustaining through user fees. The experience and lessons learned thus far in implementing this initiative, described in this report, can serve as a case study for the development of similar regulatory strengthening initiatives in resource-constrained environments.
Modular Closed-Loop Control of Diabetes
Magni, L.; Dassau, E.; Hughes-Karvetski, C.; Toffanin, C.; De Nicolao, G.; Del Favero, S.; Breton, M.; Man, C. Dalla; Renard, E.; Zisser, H.; Doyle, F. J.; Cobelli, C.; Kovatchev, B. P.
2015-01-01
Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called “artificial pancreas,” modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient’s basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability. PMID:22481809
Biomathematical modeling of pulsatile hormone secretion: a historical perspective.
Evans, William S; Farhy, Leon S; Johnson, Michael L
2009-01-01
Shortly after the recognition of the profound physiological significance of the pulsatile nature of hormone secretion, computer-based modeling techniques were introduced for the identification and characterization of such pulses. Whereas these earlier approaches defined perturbations in hormone concentration-time series, deconvolution procedures were subsequently employed to separate such pulses into their secretion event and clearance components. Stochastic differential equation modeling was also used to define basal and pulsatile hormone secretion. To assess the regulation of individual components within a hormone network, a method that quantitated approximate entropy within hormone concentration-times series was described. To define relationships within coupled hormone systems, methods including cross-correlation and cross-approximate entropy were utilized. To address some of the inherent limitations of these methods, modeling techniques with which to appraise the strength of feedback signaling between and among hormone-secreting components of a network have been developed. Techniques such as dynamic modeling have been utilized to reconstruct dose-response interactions between hormones within coupled systems. A logical extension of these advances will require the development of mathematical methods with which to approximate endocrine networks exhibiting multiple feedback interactions and subsequently reconstruct their parameters based on experimental data for the purpose of testing regulatory hypotheses and estimating alterations in hormone release control mechanisms.
Programmable in vivo selection of arbitrary DNA sequences.
Ben Yehezkel, Tuval; Biezuner, Tamir; Linshiz, Gregory; Mazor, Yair; Shapiro, Ehud
2012-01-01
The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.
2011-05-10
Environmental Management Information System to Meet Regulatory Compliance and Reporting Requirements for a Major Source Title V Facility. Tannis Danley...AND SUBTITLE Work Smarter Not Harder: Utilizing an Environmental Management Information System to Meet Regulatory Compliance and Reporting...Carson) – EMS (Hawaii Garrison, West Virginia National Guard) Environmental Management Information System (EMIS) National Defense Center for Energy and
Curry, Wayne; Conway, Samuel; Goodfield, Clara; Miller, Kimberly; Mueller, Ronald L; Polini, Eugene
2010-12-01
The preparation of sterile parenteral products requires careful control of all ingredients, materials, and processes to ensure the final product has the identity and strength, and meets the quality and purity characteristics that it purports to possess. Contamination affecting these critical properties of parenteral products can occur in many ways and from many sources. The use of closures supplied by manufacturers in a ready-to-use state can be an effective method for reducing the risk of contamination and improving the quality of the drug product. This article will address contamination attributable to elastomeric container closure components and the regulatory requirements associated with container closure systems. Possible contaminants, including microorganisms, endotoxins, and chemicals, along with the methods by which these contaminants can enter the product will be reviewed. Such methods include inappropriate material selection, improper closure preparation processes, compromised container closure integrity, degradation of closures, and leaching of compounds from the closures.
Core components of a comprehensive quality assurance program in anatomic pathology.
Nakhleh, Raouf E
2009-11-01
In this article the core components of a comprehensive quality assurance and improvement plan are outlined. Quality anatomic pathology work comes with focus on accurate, timely, and complete reports. A commitment to continuous quality improvement and a systems approach with a persistent effort helps to achieve this end. Departments should have a quality assurance and improvement plan that includes a risk assessment of real and potential problems facing the laboratory. The plan should also list the individuals responsible for carrying out the program with adequate resources, a defined timetable, and annual assessment for progress and future directions. Quality assurance monitors should address regulatory requirements and be organized by laboratory division (surgical pathology, cytology, etc) as well as 5 segments (preanalytic, analytic, postanalytic phases of the test cycle, turn-around-time, and customer satisfaction). Quality assurance data can also be used to evaluate individual pathologists using multiple parameters with peer group comparison.
Tranbarger, Timothy J.; Dussert, Stéphane; Joët, Thierry; Argout, Xavier; Summo, Marilyne; Champion, Antony; Cros, David; Omore, Alphonse; Nouy, Bruno; Morcillo, Fabienne
2011-01-01
Fruit provide essential nutrients and vitamins for the human diet. Not only is the lipid-rich fleshy mesocarp tissue of the oil palm (Elaeis guineensis) fruit the main source of edible oil for the world, but it is also the richest dietary source of provitamin A. This study examines the transcriptional basis of these two outstanding metabolic characters in the oil palm mesocarp. Morphological, cellular, biochemical, and hormonal features defined key phases of mesocarp development. A 454 pyrosequencing-derived transcriptome was then assembled for the developmental phases preceding and during maturation and ripening, when high rates of lipid and carotenoid biosynthesis occur. A total of 2,629 contigs with differential representation revealed coordination of metabolic and regulatory components. Further analysis focused on the fatty acid and triacylglycerol assembly pathways and during carotenogenesis. Notably, a contig similar to the Arabidopsis (Arabidopsis thaliana) seed oil transcription factor WRINKLED1 was identified with a transcript profile coordinated with those of several fatty acid biosynthetic genes and the high rates of lipid accumulation, suggesting some common regulatory features between seeds and fruits. We also focused on transcriptional regulatory networks of the fruit, in particular those related to ethylene transcriptional and GLOBOSA/PISTILLATA-like proteins in the mesocarp and a central role for ethylene-coordinated transcriptional regulation of type VII ethylene response factors during ripening. Our results suggest that divergence has occurred in the regulatory components in this monocot fruit compared with those identified in the dicot tomato (Solanum lycopersicum) fleshy fruit model. PMID:21487046
Di Poi, Carole; Bélanger, Dominic; Amyot, Marc; Rogers, Sean; Aubin-Horth, Nadia
2016-07-01
The molecular mechanisms underlying behavioural evolution following colonization of novel environments are largely unknown. Molecules that interact to control equilibrium within an organism form physiological regulatory networks. It is essential to determine whether particular components of physiological regulatory networks evolve or if the network as a whole is affected in populations diverging in behavioural responses, as this may affect the nature, amplitude and number of impacted traits. We studied the regulation of four physiological regulatory networks in freshwater and marine populations of threespine stickleback raised in a common environment, which were previously characterized as showing evolutionary divergence in behaviour and stress reactivity. We measured nineteen components of these networks (ligands and receptors) using mRNA and monoamine levels in the brain, pituitary and interrenal gland, as well as hormone levels. Freshwater fish showed higher expression in the brain of adrenergic (adrb2a), serotonergic (htr2a) and dopaminergic (DRD2) receptors, but lower expression of the htr2b receptor. Freshwater fish also showed higher expression of the mc2r receptor of the glucocorticoid axis in the interrenals. Collectively, our results suggest that the inheritance of the regulation of these networks may be implicated in the evolution of behaviour and stress reactivity in association with population divergence. Our results also suggest that evolutionary change in freshwater threespine stickleback may be more associated with the expression of specific receptors rather than with global changes of all the measured constituents of the physiological regulatory networks. © 2016 John Wiley & Sons Ltd.
O'Donnell, Allison N; Williams, Mark; Kilbourne, Amy M
2013-12-01
The Chronic Care Model (CCM) has been shown to improve medical and psychiatric outcomes for persons with mental disorders in primary care settings, and has been proposed as a model to integrate mental health care in the patient-centered medical home under healthcare reform. However, the CCM has not been widely implemented in primary care settings, primarily because of a lack of a comprehensive reimbursement strategy to compensate providers for day-to-day provision of its core components, including care management and provider decision support. Drawing upon the existing literature and regulatory guidelines, we provide a critical analysis of challenges and opportunities in reimbursing CCM components under the current fee-for-service system, and describe an emerging financial model involving bundled payments to support core CCM components to integrate mental health treatment into primary care settings. Ultimately, for the CCM to be used and sustained over time to integrate physical and mental health care, effective reimbursement models will need to be negotiated across payers and providers. Such payments should provide sufficient support for primary care providers to implement practice redesigns around core CCM components, including care management, measurement-based care, and mental health specialist consultation.
A meta-cognitive learning algorithm for a Fully Complex-valued Relaxation Network.
Savitha, R; Suresh, S; Sundararajan, N
2012-08-01
This paper presents a meta-cognitive learning algorithm for a single hidden layer complex-valued neural network called "Meta-cognitive Fully Complex-valued Relaxation Network (McFCRN)". McFCRN has two components: a cognitive component and a meta-cognitive component. A Fully Complex-valued Relaxation Network (FCRN) with a fully complex-valued Gaussian like activation function (sech) in the hidden layer and an exponential activation function in the output layer forms the cognitive component. The meta-cognitive component contains a self-regulatory learning mechanism which controls the learning ability of FCRN by deciding what-to-learn, when-to-learn and how-to-learn from a sequence of training data. The input parameters of cognitive components are chosen randomly and the output parameters are estimated by minimizing a logarithmic error function. The problem of explicit minimization of magnitude and phase errors in the logarithmic error function is converted to system of linear equations and output parameters of FCRN are computed analytically. McFCRN starts with zero hidden neuron and builds the number of neurons required to approximate the target function. The meta-cognitive component selects the best learning strategy for FCRN to acquire the knowledge from training data and also adapts the learning strategies to implement best human learning components. Performance studies on a function approximation and real-valued classification problems show that proposed McFCRN performs better than the existing results reported in the literature. Copyright © 2012 Elsevier Ltd. All rights reserved.
12 CFR 233.7 - Regulatory enforcement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Regulatory enforcement. 233.7 Section 233.7 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING (REGULATION GG) § 233.7 Regulatory...
12 CFR 233.7 - Regulatory enforcement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Regulatory enforcement. 233.7 Section 233.7 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING (REGULATION GG) § 233.7 Regulatory...
12 CFR 233.7 - Regulatory enforcement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Regulatory enforcement. 233.7 Section 233.7 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING (REGULATION GG) § 233.7 Regulatory...
12 CFR 233.7 - Regulatory enforcement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Regulatory enforcement. 233.7 Section 233.7 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING (REGULATION GG) § 233.7 Regulatory enforcement. The...
12 CFR 233.7 - Regulatory enforcement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Regulatory enforcement. 233.7 Section 233.7 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING (REGULATION GG) § 233.7 Regulatory enforcement. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong
Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less
The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF.
Roh, Jung Hyeob; Singh, Kavindra V; La Rosa, Sabina Leanti; Cohen, Ana Luisa V; Murray, Barbara E
2015-01-01
Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Isaka, Masanori; Tatsuno, Ichiro; Maeyama, Jun-Ichi; Matsui, Hideyuki; Zhang, Yan; Hasegawa, Tadao
2016-07-01
In Streptococcus pyogenes, proteins involved in determining virulence are controlled by stand-alone response regulators and by two-component regulatory systems. Previous studies reported that, compared to the parental strain, the yvqE sensor knockout strain showed significantly reduced growth and lower virulence. To determine the function of YvqE, we performed biofilm analysis and pH assays on yvqE mutants, and site-directed mutagenesis of YvqE. The yvqE deletion mutant showed a slower acid production rate, indicating that YvqE regulates acid production from sugar fermentation. The mutant strain, in which the Asp(26) residue in YvqE was replaced with Asn, affected biofilm formation, suggesting that this amino acid senses hydrogen ions produced by fermentative sugar metabolism. Signals received by YvqE were directly or indirectly responsible for inducing pilus expression. This study shows that at low environmental pH, biofilm formation in S. pyogenes is mediated by YvqE and suggests that regulation of pilus expression by environmental acidification could be directly under the control of YvqE. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; ...
2016-03-18
Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less
The CpxRA two-component system contributes to Legionella pneumophila virulence.
Tanner, Jennifer R; Li, Laam; Faucher, Sébastien P; Brassinga, Ann Karen C
2016-06-01
The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation. © 2016 John Wiley & Sons Ltd.
Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming
Colins, Andrea; Gerdtzen, Ziomara P.; Nuñez, Marco T.; Salgado, J. Cristian
2017-01-01
Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex systems. PMID:28072870
Resolving the problem of compliance with the ever increasing and changing regulations
NASA Astrophysics Data System (ADS)
Leigh, Harley
1992-01-01
The most common problem identified at several U.S. Department of Energy (DOE) sites is regulatory compliance. Simply, the project viability depends on identifying regulatory requirements at the beginning of a specific project to avoid possible delays and cost overruns. The Radioisotope Power Systems Facility (RPSF) is using the Regulatory Compliance System (RCS) to deal with the problem that well over 1000 regulatory documents had to be reviewed for possible compliance requirements applicable to the facility. This overwhelming number of possible documents is not atypical of all DOE facilities thus far reviewed using the RCS system. The RCS was developed to provide control and tracking of all the regulatory and institutional requirements on a given project. WASTREN, Inc., developed the RCS through various DOE contracts and continues to enhance and update the system for existing and new contracts. The RCS provides the information to allow the technical expert to assimilate and manage accurate resource information, compile the necessary checklists, and document that the project or facility fulfills all of the appropriate regulatory requirements. The RCS provides on-line information, including status throughout the project life, thereby allowing more intelligent and proactive decision making. Also, consistency and traceability are provided for regulatory compliance documentation.
Landscape of post-transcriptional gene regulation during hepatitis C virus infection
Schwerk, Johannes; Jarret, Abigail P.; Joslyn, Rochelle C.; Savan, Ram
2015-01-01
Post-transcriptional regulation of gene expression plays a pivotal role in various gene regulatory networks including, but not limited to metabolism, embryogenesis and immune responses. Different mechanisms of post-transcriptional regulation, which can act individually, synergistically, or even in an antagonistic manner have been described. Hepatitis C virus (HCV) is notorious for subverting host immune responses and indeed exploits several components of the host’s post-transcriptional regulatory machinery for its own benefit. At the same time, HCV replication is post-transcriptionally targeted by host cell components to blunt viral propagation. This review discusses the interplay of post-transcriptional mechanisms that affect host immune responses in the setting of HCV infection and highlights the sophisticated mechanisms both host and virus have evolved in the race for superiority. PMID:25890065
Challenges posed to the European pharmaceutical regulatory system by highly personalized medicines.
Johnston, John D; Feldschreiber, Peter
2014-03-01
The European pharmaceutical regulatory system has not yet been challenged by issues related to highly personalized medicines such as those to be found with active substances that affect RNA biochemistry. We review the current status of RNA-based pharmacology and present three possible case histories. The implications for the European pharmaceutical regulatory system are discussed. © 2013 The British Pharmacological Society.
Evaluation of a wetland classification system devised for ...
The manuscript is part of an FY14 RAP product: "Functional Assessment of Alaska Peatlands in Cook Inlet Basin: A report to Region 10". This report included this technical information product which is a manuscript that has now been fully revised, reviewed and published in a scientific peer-reviewed publication with open access (doi:10.1007/s11273-016-9504-0). The journal article scientific abstract is as follows: "Several wetland classification schemes are now commonly used to describe wetlands in the contiguous United States to meet local, regional, and national regulatory requirements. However, these established systems have proven to be insufficient to meet the needs of land managers in Alaska. The wetlands of this northern region are predominantly peatlands, which are not adequately treated by the nationally-used systems, which have few, if any, peatland classes. A new system was therefore devised to classify wetlands in the rapidly urbanizing Cook Inlet Basin of southcentral Alaska, USA. The Cook Inlet Classification (CIC) is based on seven geomorphic and six hydrologic components that incorporate the environmental gradients responsible for the primary sources of variation in peatland ecosystems. The geomorphic and hydrologic components have the added advantage of being detectable on remote sensing imagery, which facilitates regional mapping across large tracts of inaccessible terrain. Three different quantitative measures were used to evaluate the robu
Ahanhanzo, Yolaine Glèlè; Kpozehouen, Alphonse; Sopoh, Ghislain; Sossa-Jérôme, Charles; Ouedraogo, Laurent; Wilmet-Dramaix, Michèle
2016-01-01
The management of health information is a key pillar in both emergencies reception and handling facilities, given the strategic position and the potential of these facilities within hospitals, and in the monitoring of public health and epidemiology. With the technological revolution, computerization made the information systems evolve in emergency departments, especially in developed countries, with improved performance in terms of care quality, productivity and patient satisfaction. This study analyses the situation of Benin in this field, through the case of the Academic Clinic of Emergency Department of the National University Teaching Hospital of Cotonou, the national reference hospital. The study is cross-sectional and evaluative. Collection techniques are literature review and structured interviews. The components rated are resources, indicators, data sources, data management and the use-dissemination of the information through a model adapted from Health Metrics Network framework. We used quantitative and qualitative analysis. The absence of a regulatory framework restricts the operation of the system in all components and accounts for the lack and inadequacy of the dedicated resources. Dedication of more resources for this system for crucial needs such as computerization requires sensitization and greater awareness of the administrative authorities about the fact that an effective health information management system is of prime importance in this type of facility.
Transcriptional regulatory proteins as biosensing tools.
Turner, Kendrick; Joel, Smita; Feliciano, Jessika; Feltus, Agatha; Pasini, Patrizia; Wynn, Daniel; Dau, Peter; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia
2017-06-22
We have developed sensing systems employing different classes of transcriptional regulatory proteins genetically and chemically modified to incorporate a fluorescent reporter molecule for detection of arsenic, hydroxylated polychlorinated biphenyls (OH-PCBs), and cyclic AMP (cAMP). These are the first examples of optical sensing systems based on transcriptional regulatory proteins.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Requirement Specifications for Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... issuing a revised regulatory guide (RG), revision 1 of RG 1.172, ``Software Requirement Specifications for...
From syncitium to regulated pump: a cardiac muscle cellular update
2011-01-01
The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information on Ca2+ microdomains and local control theory, with particular emphasis on the role of Ca2+ sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to local Ca2+ cycling in sinoatrial nodal cells (SANCs) as a mechanism underlying cardiac automaticity is also presented as part of the recently described coupled-clock pacemaker system. The details of this regulation are emerging; however, the notion that the sequestration and release of Ca2+ from internal stores in SANCs (similar to that observed in ventricular myocytes) regulates the rhythmic excitation of the heart (i.e., membrane ion channels) is an important advancement in this area. The regulatory role of cardiac adrenergic receptors on cardiac rate and function is also included, and fundamental concepts related to intracellular signaling are discussed. An important point of emphasis is that whole organ cardiac dynamics can be traced back to cellular events regulating intracellular Ca2+ homeostasis and, as such, provides an important conceptual framework from which students can begin to think about whole organ physiology in health and disease. Greater synchrony of Ca2+-regulatory mechanisms between ventricular and pacemaker cells should enhance student comprehension of complex regulatory phenomenon in cardiac muscle. PMID:21385997
Majoros, William H; Ohler, Uwe
2010-12-16
The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.
Advanced Small Modular Reactor Economics Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis ofmore » the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the analysis shows that the propagation of error method introduces essentially negligible error, especially when compared to the uncertainty associated with some of the estimates themselves. The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can be shown to be an accurate generalization for the current state of reactor cost analysis. However, the detailed analysis on a component-by-component basis helps to demonstrate which components would benefit most from research and development to decrease the uncertainty, as well as which components would benefit from research and development to decrease the absolute cost.« less
Defective control of pre–messenger RNA splicing in human disease
Shkreta, Lulzim
2016-01-01
Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies. PMID:26728853
Morin, Manon; Ropers, Delphine; Cinquemani, Eugenio; Portais, Jean-Charles; Enjalbert, Brice; Cocaign-Bousquet, Muriel
2017-10-31
In the bacterium Escherichia coli , the posttranscriptional regulatory system Csr was postulated to influence the transition from glycolysis to gluconeogenesis. Here, we explored the role of the Csr system in the glucose-acetate transition as a model of the glycolysis-to-gluconeogenesis switch. Mutations in the Csr system influence the reorganization of gene expression after glucose exhaustion and disturb the timing of acetate reconsumption after glucose exhaustion. Analysis of metabolite concentrations during the transition revealed that the Csr system has a major effect on the energy levels of the cells after glucose exhaustion. This influence was demonstrated to result directly from the effect of the Csr system on glycogen accumulation. Mutation in glycogen metabolism was also demonstrated to hinder metabolic adaptation after glucose exhaustion because of insufficient energy. This work explains how the Csr system influences E. coli fitness during the glycolysis-gluconeogenesis switch and demonstrates the role of glycogen in maintenance of the energy charge during metabolic adaptation. IMPORTANCE Glycogen is a polysaccharide and the main storage form of glucose from bacteria such as Escherichia coli to yeasts and mammals. Although its function as a sugar reserve in mammals is well documented, the role of glycogen in bacteria is not as clear. By studying the role of posttranscriptional regulation during metabolic adaptation, for the first time, we demonstrate the role of sugar reserve played by glycogen in E. coli Indeed, glycogen not only makes it possible to maintain sufficient energy during metabolic transitions but is also the key component in the capacity of cells to resume growth. Since the essential posttranscriptional regulatory system Csr is a major regulator of glycogen accumulation, this work also sheds light on the central role of posttranscriptional regulation in metabolic adaptation. Copyright © 2017 Morin et al.
Gomelsky, Larissa; Moskvin, Oleg V; Stenzel, Rachel A; Jones, Denise F; Donohue, Timothy J; Gomelsky, Mark
2008-12-01
In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.
Space ecosynthesis: An approach to the design of closed ecosystems for use in space
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Averner, M. M.
1978-01-01
The use of closed ecological systems for the regeneration of wastes, air, and water is discussed. It is concluded that such systems, if they are to be used for the support of humans in space, will require extensive mechanical and physico-chemical support. The reason for this is that the buffering capacity available in small systems is inadequate, and that natural biological and physical regulatory mechanisms rapidly become inoperative. It is proposed that mathematical models of the dynamics of a closed ecological system may provide the best means of studying the initial problems of ecosystem closure. A conceptual and mathematical model of a closed ecosystem is described which treats the biological components as a farm, calculates the rates of flow of elements through the system by mass-balance techniques and control theory postulates, and can evaluate the requirements for mechanical buffering activities. It is suggested that study of the closure of ecosystems can significantly aid in the establishment of general principles of ecological systems.
Results and Insights on the Impact of Smoke on Digital Instrumentation and Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T. J.; Nowlen, S. P.
2001-01-31
Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The major effect of smoke has been to increase leakage currents (through circuit bridging across contacts and leads) and tomore » cause momentary upsets and failures in digital systems. This report summarizes two previous reports and presents new results from conformal coating, memory chip, and hard drive tests. The report describes practices for mitigation of smoke damage through digital system design, fire barriers, ventilation, fire suppressants, and post fire procedures.« less
Integrating non-coding RNAs in JAK-STAT regulatory networks
Witte, Steven; Muljo, Stefan A
2014-01-01
Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... index composed of fifteen companies that provide oil drilling and production services, oil field... Number of Components in the PHLX Oil Service Sector\\SM\\ Known as OSX \\SM\\, on Which Options Are Listed... Commission a proposal to expand the number of components in the PHLX Oil Service Sector\\SM\\ (the ``Index'' or...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... the Number of Components in the PHLX Semiconductor Sector SM Known as SOX SM , on Which Options are... expand the number of components in the PHLX Semiconductor Sector\\SM\\ known as SOX\\SM\\, on which options... 240.19b-4. \\3\\ PHLX Semiconductor Sector\\SM\\ may also be known as PHLX Semiconductor Index or PHLX...
Behdani, Elham; Bakhtiarizadeh, Mohammad Reza
2017-10-01
The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.
76 FR 32878 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
...-0129] Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Draft Regulatory Guide, DG-1253, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors''. FOR FURTHER INFORMATION CONTACT: Mekonen M...
Code of Federal Regulations, 2010 CFR
2010-04-01
... PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN... regulatory systems means that the systems are sufficiently comparable to assure that the process of... require that the respective regulatory systems have identical procedures. (c) Good Manufacturing Practices...
Subspecies diversity in bacteriocin production by intestinal Lactobacillus salivarius strains
O’ Shea, Eileen F.; O’ Connor, Paula M.; Raftis, Emma J.; O’ Toole, Paul W.; Stanton, Catherine; Cotter, Paul D.; Ross, R. Paul; Hill, Colin
2012-01-01
A recent comparative genomic hybridization study in our laboratory revealed considerable plasticity within the bacteriocin locus of gastrointestinal strains of Lactobacillus salivarius. Most notably, these analyses led to the identification of two novel unmodified bacteriocins, salivaricin L and salivaricin T, produced by the neonatal isolate L. salivarius DPC6488 with immunity, regulatory and export systems analogous to those of abp118, a two-component bacteriocin produced by the well characterized reference strain L. salivarius UCC118. In this addendum we discuss the intraspecific diversity of our seven bacteriocin-producing L. salivarius isolates on a genome-wide level, and more specifically, with respect to their salivaricin loci. PMID:22892690
Subspecies diversity in bacteriocin production by intestinal Lactobacillus salivarius strains.
O' Shea, Eileen F; O' Connor, Paula M; Raftis, Emma J; O' Toole, Paul W; Stanton, Catherine; Cotter, Paul D; Ross, R Paul; Hill, Colin
2012-01-01
A recent comparative genomic hybridization study in our laboratory revealed considerable plasticity within the bacteriocin locus of gastrointestinal strains of Lactobacillus salivarius. Most notably, these analyses led to the identification of two novel unmodified bacteriocins, salivaricin L and salivaricin T, produced by the neonatal isolate L. salivarius DPC6488 with immunity, regulatory and export systems analogous to those of abp118, a two-component bacteriocin produced by the well characterized reference strain L. salivarius UCC118. In this addendum we discuss the intraspecific diversity of our seven bacteriocin-producing L. salivarius isolates on a genome-wide level, and more specifically, with respect to their salivaricin loci.
Allchurch, Martin Harvey; Barbano, Dirceu Brás Aparecido; Pinheiro, Marie-Hélène; Lazdin-Helds, Janis
2016-05-01
This report considers how the experience of the European regulatory system might be applied to help strengthen the regulatory systems for medicines in the Region of the Americas. The work of the European Medicines Agencies (EMA) is carried out through its scientific committees, composed of members from European Economic Area countries. A robust legal framework allows EMA to coordinate resources from Member States' competent authorities, including, for example, assisting candidate countries as they prepare to join the European Union (EU). Capacity-building programs help countries adjust their regulatory systems ahead of full participation in the European medicines regulatory network. These programs facilitate adoption of common technical requirements, identify areas where action might be needed to ensure the smooth transposition of EU pharmaceutical law into national legislation, and prepare candidate countries for participation in EMA committees and the European regulatory network. The methodology of these programs could be of potential interest to the Pan American Health Organization (PAHO), the Regional Office of the World Health Organization for the Americas. Given resolutions adopted by the World Health Assembly and the PAHO Directing Council, there is a strong indication that the countries of the Region of the Americas wish to assemble a system that uses the existing regulatory capacity of some countries to strengthen local regulatory capacities in others.
Expanding the B Cell-Centric View of Systemic Lupus Erythematosus.
Morawski, Peter A; Bolland, Silvia
2017-05-01
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and the production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this review we consider recent advances regarding both the pathogenic and the regulatory role of lymphocytes in SLE beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel, targeted therapeutics. Published by Elsevier Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
...-Regulatory Organizations; Municipal Securities Rulemaking Board; Notice of Filing of Proposed Amendments to the Real-Time Transaction Reporting System Information System and Subscription Service September 6.... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the...
Effects of nutritional components on aging
Lee, Dongyeop; Hwang, Wooseon; Artan, Murat; Jeong, Dae-Eun; Lee, Seung-Jae
2015-01-01
Nutrients including carbohydrates, proteins, lipids, vitamins, and minerals regulate various physiological processes and are essential for the survival of organisms. Reduced overall caloric intake delays aging in various organisms. However, the role of each nutritional component in the regulation of lifespan is not well established. In this review, we describe recent studies focused on the regulatory role of each type of nutrient in aging. Moreover, we will discuss how the amount or composition of each nutritional component may influence longevity or health in humans. PMID:25339542
Wecke, Tina; Halang, Petra; Staroń, Anna; Dufour, Yann S; Donohue, Timothy J; Mascher, Thorsten
2012-01-01
Bacteria need signal transducing systems to respond to environmental changes. Next to one- and two-component systems, alternative σ factors of the extra-cytoplasmic function (ECF) protein family represent the third fundamental mechanism of bacterial signal transduction. A comprehensive classification of these proteins identified more than 40 phylogenetically distinct groups, most of which are not experimentally investigated. Here, we present the characterization of such a group with unique features, termed ECF41. Among analyzed bacterial genomes, ECF41 σ factors are widely distributed with about 400 proteins from 10 different phyla. They lack obvious anti-σ factors that typically control activity of other ECF σ factors, but their structural genes are often predicted to be cotranscribed with carboxymuconolactone decarboxylases, oxidoreductases, or epimerases based on genomic context conservation. We demonstrate for Bacillus licheniformis and Rhodobacter sphaeroides that the corresponding genes are preceded by a highly conserved promoter motif and are the only detectable targets of ECF41-dependent gene regulation. In contrast to other ECF σ factors, proteins of group ECF41 contain a large C-terminal extension, which is crucial for σ factor activity. Our data demonstrate that ECF41 σ factors are regulated by a novel mechanism based on the presence of a fused regulatory domain. PMID:22950025
Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M.; Mascher, Thorsten; Gebhard, Susanne
2014-01-01
To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators. PMID:24676422
Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M; Mascher, Thorsten; Gebhard, Susanne
2014-01-01
To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.
Plant RNA Regulatory Network and RNA Granules in Virus Infection.
Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija
2017-01-01
Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual components contribute to these processes. In this review we discuss the roles of cellular RNA regulatory mechanisms and RNA granules in plant virus infection in the light of current knowledge and compare the findings to those made in animal virus studies.
Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C.
2014-01-01
Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology. PMID:24921649
Chen, Guocai; Cairelli, Michael J; Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C
2014-06-01
Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology.
2015-05-01
challenging component of assessing human health risks associated with contaminated soil and groundwater since the late 1990s, during which time...and analysis. 1.3 REGULATORY DRIVERS Regulatory guidance for assessment and management of risks associated with VI has been issued by at least 27...requirements to assess potential human health risks , and this possibility exists where VOCs are present in the subsurface near occupied buildings
What makes a natural clay antibacterial?
Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.
2011-01-01
Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals.
Directed evolution of a synthetic phylogeny of programmable Trp repressors.
Ellefson, Jared W; Ledbetter, Michael P; Ellington, Andrew D
2018-04-01
As synthetic regulatory programs expand in sophistication, an ever increasing number of biological components with predictable phenotypes is required. Regulators are often 'part mined' from a diverse, but uncharacterized, array of genomic sequences, often leading to idiosyncratic behavior. Here, we generate an entire synthetic phylogeny from the canonical allosteric transcription factor TrpR. Iterative rounds of positive and negative compartmentalized partnered replication (CPR) led to the exponential amplification of variants that responded with high affinity and specificity to halogenated tryptophan analogs and novel operator sites. Fourteen repressor variants were evolved with unique regulatory profiles across five operators and three ligands. The logic of individual repressors can be modularly programmed by creating heterodimeric fusions, resulting in single proteins that display logic functions, such as 'NAND'. Despite the evolutionarily limited regulatory role of TrpR, vast functional spaces exist around this highly conserved protein scaffold and can be harnessed to create synthetic regulatory programs.
Wang, Fang-Fang; Deng, Chao-Ying; Cai, Zhen; Wang, Ting; Wang, Li; Wang, Xiao-Zheng; Chen, Xiao-Ying; Fang, Rong-Xiang; Qian, Wei
2014-07-01
During adaptation to environments, bacteria employ two-component signal transduction systems, which contain histidine kinases and response regulators, to sense and respond to exogenous and cellular stimuli in an accurate spatio-temporal manner. Although the protein phosphorylation process between histidine kinase and response regulator has been well documented, the molecular mechanism fine-tuning phosphorylation levels of response regulators is comparatively less studied. Here we combined genetic and biochemical approaches to reveal that a hybrid histidine kinase, SreS, is involved in the SreK-SreR phosphotransfer process to control salt stress response in the bacterium Xanthomonas campestris. The N-terminal receiver domain of SreS acts as a phosphate sink by competing with the response regulator SreR to accept the phosphoryl group from the latter's cognate histidine kinase SreK. This regulatory process is critical for bacterial survival because the dephosphorylated SreR protein participates in activating one of the tandem promoters (P2) at the 5' end of the sreK-sreR-sreS-hppK operon, and then modulates a transcriptional surge of the stress-responsive gene hppK, which is required for folic acid synthesis. Therefore, our study dissects the biochemical process of a positive feedback loop in which a 'three-component' signalling system fine-tunes expression kinetics of downstream genes. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
[Regulatory Program for Medical Devices in Cuba: experiences and current challenges].
Pereira, Dulce María Martínez; Rodríguez, Yadira Álvarez; Valdés, Yamila Cedeño; Ribas, Silvia Delgado
2016-05-01
Regulatory control of medical devices in Cuba is conducted through a system based on the Regulatory Program for Medical Devices as a way to ensure the safety, efficacy, and effectiveness of these technologies, which are in use by the National Health System. This program was launched in 1992, when the Regulations for State Evaluation and Registration of Medical Devices were approved. Its successive stages and the merging of regulatory activities for drugs and medical equipment have meant progress toward stronger, more transparent strategies and greater control of industry and the National Health System. Throughout its course the Cuban program has met with challenges and difficulties that it has addressed by drawing on its own experiences. During the new period, the greatest challenges revolve around ensuring that regulatory systems incorporate scientific evaluation, risk levels, maximum rigor through the use of technical standards, and the implementation of international recommendations, together with the application of the ISO 13485 certification scheme, enhanced market monitoring, and classification of medical devices in accordance with their relevance to the country's national health policies. From the regional standpoint, the greatest challenge lies in working toward regulatory convergence. The Collaborating Centre for the Regulation of Health Technologies will support the proposed regulatory strategy and established regional priorities, in particular in connection with the implementation of actions involving medical devices.
Resolving the problem of compliance with the ever increasing and changing regulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, H.
1991-06-01
The most common problem identified at several US Department of Energy (DOE) sites is regulatory compliance. Simply, the project viability depends on identifying regulatory requirements at the beginning of a specific project to avoid possible delays and cost overruns. The Radioisotope Power Systems Facility (RFSP) is using the Regulatory Compliance System (RCS) to deal with the problem that well over 1000 regulatory documents had to be reviewed for possible compliance requirements applicable to the facility. This overwhelming number of possible documents is not atypical of all DOE facilities thus far reviewed using the RCS system. The RCS was developed tomore » provide a control and tracking of all the regulatory and institutional requirements on a given project. WASTREN, Inc., developed the RCS through various DOE contracts and continues to enhance and update the system for existing and new contracts. The RCS provides the information to allow the technical expert to assimilate and manage accurate resource information, compile the checklists, and document that the project or facility fulfills all of the appropriate regulatory requirements. The RCS provides on-line information, including status throughput the project life, thereby allowing more intelligent and proactive decision making. Also, consistency and traceability are provided for regulatory compliance documentation. 1 ref., 1 fig.« less
Mei, Li; Xu, Sanger; Lu, Peng; Lin, Haiping; Guo, Yanbin; Wang, Yongjun
2017-01-01
Rahnella aquatilis is ubiquitous and its certain strains have the applicative potent as a plant growth-promoting rhizobacteria. R. aquatilis HX2 is a biocontrol agent to produce antibacterial substance (ABS) and showed efficient biocontrol against crown gall caused by Agrobacterium vitis on sunflower and grapevine plants. The regulatory network of the ABS production and biocontrol activity is still limited known. In this study, a transposon-mediated mutagenesis strategy was used to investigate the regulators that involved in the biocontrol activity of R. aquatilis HX2. A 366-nt noncoding RNA CsrB was identified in vitro and in vivo, which regulated ABS production and biocontrol activity against crown gall on sunflower plants, respectively. The predicted product of noncoding RNA CsrB contains 14 stem-loop structures and an additional ρ-independent terminator harpin, with 23 characteristic GGA motifs in the loops and other unpaired regions. CsrB is required for ABS production and biocontrol activity in the biocontrol regulation by a two-component regulatory system BarA/UvrY in R. aquatilis HX2. The noncoding RNA CsrB regulates BarA-dependent ABS production and biocontrol activity in R. aquatilis HX2. To the best of our knowledge, this is the first report of noncoding RNA as a regulator for biocontrol function in R. aquatilis.
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.
2015-01-01
Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R
2015-09-15
Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.
Türei, Dénes; Papp, Diána; Fazekas, Dávid; Földvári-Nagy, László; Módos, Dezső; Lenti, Katalin; Csermely, Péter; Korcsmáros, Tamás
2013-01-01
NRF2 is the master transcriptional regulator of oxidative and xenobiotic stress responses. NRF2 has important roles in carcinogenesis, inflammation, and neurodegenerative diseases. We developed an online resource, NRF2-ome, to provide an integrated and systems-level database for NRF2. The database contains manually curated and predicted interactions of NRF2 as well as data from external interaction databases. We integrated NRF2 interactome with NRF2 target genes, NRF2 regulating TFs, and miRNAs. We connected NRF2-ome to signaling pathways to allow mapping upstream NRF2 regulatory components that could directly or indirectly influence NRF2 activity totaling 35,967 protein-protein and signaling interactions. The user-friendly website allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. We illustrated the applicability of the website by suggesting a posttranscriptional negative feedback of NRF2 by MAFG protein and raised the possibility of a connection between NRF2 and the JAK/STAT pathway through STAT1 and STAT3. NRF2-ome can also be used as an evaluation tool to help researchers and drug developers to understand the hidden regulatory mechanisms in the complex network of NRF2.
Zoncu, Roberto; Perera, Rushika M; Sebastian, Rafael; Nakatsu, Fubito; Chen, Hong; Balla, Tamas; Ayala, Guillermo; Toomre, Derek; De Camilli, Pietro V
2007-03-06
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], a phosphoinositide concentrated predominantly in the plasma membrane, binds endocytic clathrin adaptors, many of their accessory factors, and a variety of actin-regulatory proteins. Here we have used fluorescent fusion proteins and total internal reflection fluorescence microscopy to investigate the effect of acute PI(4,5)P(2) breakdown on the dynamics of endocytic clathrin-coated pit components and of the actin regulatory complex, Arp2/3. PI(4,5)P(2) breakdown was achieved by the inducible recruitment to the plasma membrane of an inositol 5-phosphatase module through the rapamycin/FRB/FKBP system or by treatment with ionomycin. PI(4,5)P(2) depletion resulted in a dramatic loss of clathrin puncta, which correlated with a massive dissociation of endocytic adaptors from the plasma membrane. Remaining clathrin spots at the cell surface had only weak fluorescence and were static over time. Dynamin and the p20 subunit of the Arp2/3 actin regulatory complex, which were concentrated at late-stage clathrin-coated pits and in lamellipodia, also dissociated from the plasma membrane, and these changes correlated with an arrest of motility at the cell edge. These findings demonstrate the critical importance of PI(4,5)P(2) in clathrin coat dynamics and Arp2/3-dependent actin regulation.
Lu, Peng; Lin, Haiping; Guo, Yanbin
2017-01-01
Background Rahnella aquatilis is ubiquitous and its certain strains have the applicative potent as a plant growth-promoting rhizobacteria. R. aquatilis HX2 is a biocontrol agent to produce antibacterial substance (ABS) and showed efficient biocontrol against crown gall caused by Agrobacterium vitis on sunflower and grapevine plants. The regulatory network of the ABS production and biocontrol activity is still limited known. Methodology/Principal findings In this study, a transposon-mediated mutagenesis strategy was used to investigate the regulators that involved in the biocontrol activity of R. aquatilis HX2. A 366-nt noncoding RNA CsrB was identified in vitro and in vivo, which regulated ABS production and biocontrol activity against crown gall on sunflower plants, respectively. The predicted product of noncoding RNA CsrB contains 14 stem-loop structures and an additional ρ-independent terminator harpin, with 23 characteristic GGA motifs in the loops and other unpaired regions. CsrB is required for ABS production and biocontrol activity in the biocontrol regulation by a two-component regulatory system BarA/UvrY in R. aquatilis HX2. Conclusion/Significance The noncoding RNA CsrB regulates BarA-dependent ABS production and biocontrol activity in R. aquatilis HX2. To the best of our knowledge, this is the first report of noncoding RNA as a regulator for biocontrol function in R. aquatilis. PMID:29091941
Yoon, Sung Ho; Turkarslan, Serdar; Reiss, David J.; Pan, Min; Burn, June A.; Costa, Kyle C.; Lie, Thomas J.; Slagel, Joseph; Moritz, Robert L.; Hackett, Murray; Leigh, John A.; Baliga, Nitin S.
2013-01-01
Methanogens catalyze the critical methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and noncoding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 58 different steady-state and time-course experiments that were performed in chemostats or batch cultures under a spectrum of environmental perturbations that modulated methanogenesis. Analyses of the EGRIN model have revealed novel components of methanogenesis that included at least three additional protein-coding genes of previously unknown function as well as one noncoding RNA. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to intercoordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel transcription factors in the regulation of phosphate-dependent repression of formate dehydrogenase—a key enzyme in the methanogenesis pathway. The EGRIN model demonstrates regulatory affiliations within methanogenesis as well as between methanogenesis and other cellular functions. PMID:24089473
Knowledge-making distinctions in synthetic biology.
O'Malley, Maureen A; Powell, Alexander; Davies, Jonathan F; Calvert, Jane
2008-01-01
Synthetic biology is an increasingly high-profile area of research that can be understood as encompassing three broad approaches towards the synthesis of living systems: DNA-based device construction, genome-driven cell engineering and protocell creation. Each approach is characterized by different aims, methods and constructs, in addition to a range of positions on intellectual property and regulatory regimes. We identify subtle but important differences between the schools in relation to their treatments of genetic determinism, cellular context and complexity. These distinctions tie into two broader issues that define synthetic biology: the relationships between biology and engineering, and between synthesis and analysis. These themes also illuminate synthetic biology's connections to genetic and other forms of biological engineering, as well as to systems biology. We suggest that all these knowledge-making distinctions in synthetic biology raise fundamental questions about the nature of biological investigation and its relationship to the construction of biological components and systems. (c) 2007 Wiley Periodicals, Inc.
Enzyme-free nucleic acid dynamical systems.
Srinivas, Niranjan; Parkin, James; Seelig, Georg; Winfree, Erik; Soloveichik, David
2017-12-15
Chemistries exhibiting complex dynamics-from inorganic oscillators to gene regulatory networks-have been long known but either cannot be reprogrammed at will or rely on the sophisticated enzyme chemistry underlying the central dogma. Can simpler molecular mechanisms, designed from scratch, exhibit the same range of behaviors? Abstract chemical reaction networks have been proposed as a programming language for complex dynamics, along with their systematic implementation using short synthetic DNA molecules. We developed this technology for dynamical systems by identifying critical design principles and codifying them into a compiler automating the design process. Using this approach, we built an oscillator containing only DNA components, establishing that Watson-Crick base-pairing interactions alone suffice for complex chemical dynamics and that autonomous molecular systems can be designed via molecular programming languages. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spogen, L.R.; Cleland, L.L.
An approach to the development of performance based regulations (PBR's) is described. Initially, a framework is constructed that consists of a function hierarchy and associated measures. The function at the top of the hierarchy is described in terms of societal objectives. Decomposition of this function into subordinate functions and their subsequent decompositions yield the function hierarchy. ''Bottom'' functions describe the roles of system components. When measures are identified for the performance of each function and means of aggregating performances to higher levels are established, the framework may be employed for developing PBR's. Consideration of system flexibility and performance uncertainty guidemore » in determining the hierarchical level at which regulations are formulated. Ease of testing compliance is also a factor. To show the viability of the approach, the framework developed by Lawrence Livermore Laboratory for the Nuclear Regulatory Commission for evaluation of material control systems at fixed facilities is presented.« less
Molecular targets for small-molecule modulators of circadian clocks
He, Baokun; Chen, Zheng
2016-01-01
Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111
SPIKE – a database, visualization and analysis tool of cellular signaling pathways
Elkon, Ran; Vesterman, Rita; Amit, Nira; Ulitsky, Igor; Zohar, Idan; Weisz, Mali; Mass, Gilad; Orlev, Nir; Sternberg, Giora; Blekhman, Ran; Assa, Jackie; Shiloh, Yosef; Shamir, Ron
2008-01-01
Background Biological signaling pathways that govern cellular physiology form an intricate web of tightly regulated interlocking processes. Data on these regulatory networks are accumulating at an unprecedented pace. The assimilation, visualization and interpretation of these data have become a major challenge in biological research, and once met, will greatly boost our ability to understand cell functioning on a systems level. Results To cope with this challenge, we are developing the SPIKE knowledge-base of signaling pathways. SPIKE contains three main software components: 1) A database (DB) of biological signaling pathways. Carefully curated information from the literature and data from large public sources constitute distinct tiers of the DB. 2) A visualization package that allows interactive graphic representations of regulatory interactions stored in the DB and superposition of functional genomic and proteomic data on the maps. 3) An algorithmic inference engine that analyzes the networks for novel functional interplays between network components. SPIKE is designed and implemented as a community tool and therefore provides a user-friendly interface that allows registered users to upload data to SPIKE DB. Our vision is that the DB will be populated by a distributed and highly collaborative effort undertaken by multiple groups in the research community, where each group contributes data in its field of expertise. Conclusion The integrated capabilities of SPIKE make it a powerful platform for the analysis of signaling networks and the integration of knowledge on such networks with omics data. PMID:18289391
E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis
Pan, Ronghui; Satkovich, John; Hu, Jianping
2016-10-31
Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less
Transportation of Large Wind Components: A Review of Existing Geospatial Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, Meghan; Maclaurin, Galen
2016-09-01
This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.
Nkengasong, John N; Mesele, Tsehaynesh; Orloff, Sherry; Kebede, Yenew; Fonjungo, Peter N; Timperi, Ralph; Birx, Deborah
2009-06-01
Medical laboratory services are an essential, yet often neglected, component of health systems in developing countries. Their central role in public health, disease control and surveillance, and patient management is often poorly recognized by governments and donors. However, medical laboratory services in developing countries can be strengthened by leveraging funding from other sources of HIV/AIDS prevention, care, surveillance, and treatment programs. Strengthening these services will require coordinated efforts by national governments and partners and can be achieved by establishing and implementing national laboratory strategic plans and policies that integrate laboratory systems to combat major infectious diseases. These plans should take into account policy, legal, and regulatory frameworks; the administrative and technical management structure of the laboratories; human resources and retention strategies; laboratory quality management systems; monitoring and evaluation systems; procurement and maintenance of equipment; and laboratory infrastructure enhancement. Several countries have developed or are in the process of developing their laboratory plans, and others, such as Ethiopia, have implemented and evaluated their plan.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan
Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.
Vazquez-Anderson, Jorge; Contreras, Lydia M
2013-01-01
RNAs have many important functional properties, including that they are independently controllable and highly tunable. As a result of these advantageous properties, their use in a myriad of sophisticated devices has been widely explored. Yet, the exploitation of RNAs for synthetic applications is highly dependent on the ability to characterize the many new molecules that continue to be discovered by large-scale sequencing and high-throughput screening techniques. In this review, we present an exhaustive survey of the most recent synthetic bacterial riboswitches and small RNAs while emphasizing their virtues in gene expression management. We also explore the use of these RNA components as building blocks in the RNA synthetic biology toolbox and discuss examples of synthetic RNA components used to rewire bacterial regulatory circuitry. We anticipate that this field will expand its catalog of smart devices by mimicking and manipulating natural RNA mechanisms and functions. PMID:24356572
Baines, Janis; Cunningham, Judy; Leemhuis, Christel; Hambridge, Tracy; Mackerras, Dorothy
2011-01-01
The approach used by food regulation agencies to examine the literature and forecast the impact of possible food regulations has many similar features to the approach used in nutritional epidemiological research. We outline the Risk Analysis Framework described by FAO/WHO, in which there is formal progression from identification of the nutrient or food chemical of interest, through to describing its effect on health and then assessing whether there is a risk to the population based on dietary exposure estimates. We then discuss some important considerations for the dietary modeling component of the Framework, including several methodological issues that also exist in research nutritional epidemiology. Finally, we give several case studies that illustrate how the different methodological components are used together to inform decisions about how to manage the regulatory problem. PMID:22254081
Farrell, Kristen B.; Grossman, Caitlin; Di Pietro, Santiago M.
2015-01-01
Despite the importance of clathrin-mediated endocytosis (CME) for cell biology, it is unclear if all components of the machinery have been discovered and many regulatory aspects remain poorly understood. Here, using Saccharomyces cerevisiae and a fluorescence microscopy screening approach we identify previously unknown regulatory factors of the endocytic machinery. We further studied the top scoring protein identified in the screen, Ubx3, a member of the conserved ubiquitin regulatory X (UBX) protein family. In vivo and in vitro approaches demonstrate that Ubx3 is a new coat component. Ubx3-GFP has typical endocytic coat protein dynamics with a patch lifetime of 45 ± 3 sec. Ubx3 contains a W-box that mediates physical interaction with clathrin and Ubx3-GFP patch lifetime depends on clathrin. Deletion of the UBX3 gene caused defects in the uptake of Lucifer Yellow and the methionine transporter Mup1 demonstrating that Ubx3 is needed for efficient endocytosis. Further, the UBX domain is required both for localization and function of Ubx3 at endocytic sites. Mechanistically, Ubx3 regulates dynamics and patch lifetime of the early arriving protein Ede1 but not later arriving coat proteins or actin assembly. Conversely, Ede1 regulates the patch lifetime of Ubx3. Ubx3 likely regulates CME via the AAA-ATPase Cdc48, a ubiquitin-editing complex. Our results uncovered new components of the CME machinery that regulate this fundamental process. PMID:26362318
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Policy. 2001.301 Section 2001.301 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION GENERAL NUCLEAR REGULATORY COMMISSION ACQUISITION REGULATION SYSTEM Agency Acquisition Regulations 2001.301 Policy. Policy...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Policy. 2001.301 Section 2001.301 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION GENERAL NUCLEAR REGULATORY COMMISSION ACQUISITION REGULATION SYSTEM Agency Acquisition Regulations 2001.301 Policy. Policy...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Policy. 2001.301 Section 2001.301 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION GENERAL NUCLEAR REGULATORY COMMISSION ACQUISITION REGULATION SYSTEM Agency Acquisition Regulations 2001.301 Policy. Policy...
Wang, Jilong; Yan, Dalai
2016-01-01
ABSTRACT A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. PMID:27435461
Fitness landscape transformation through a single amino acid change in the rho terminator.
Freddolino, Peter L; Goodarzi, Hani; Tavazoie, Saeed
2012-05-01
Regulatory networks allow organisms to match adaptive behavior to the complex and dynamic contingencies of their native habitats. Upon a sudden transition to a novel environment, the mismatch between the native behavior and the new niche provides selective pressure for adaptive evolution through mutations in elements that control gene expression. In the case of core components of cellular regulation and metabolism, with broad control over diverse biological processes, such mutations may have substantial pleiotropic consequences. Through extensive phenotypic analyses, we have characterized the systems-level consequences of one such mutation (rho*) in the global transcriptional terminator Rho of Escherichia coli. We find that a single amino acid change in Rho results in a massive change in the fitness landscape of the cell, with widely discrepant fitness consequences of identical single locus perturbations in rho* versus rho(WT) backgrounds. Our observations reveal the extent to which a single regulatory mutation can transform the entire fitness landscape of the cell, causing a massive change in the interpretation of individual mutations and altering the evolutionary trajectories which may be accessible to a bacterial population.
Molecular Mechanisms of Stress-Responsive Changes in Collagen and Elastin Networks in Skin.
Aziz, Jazli; Shezali, Hafiz; Radzi, Zamri; Yahya, Noor Azlin; Abu Kassim, Noor Hayaty; Czernuszka, Jan; Rahman, Mohammad Tariqur
2016-01-01
Collagen and elastin networks make up the majority of the extracellular matrix in many organs, such as the skin. The mechanisms which are involved in the maintenance of homeostatic equilibrium of these networks are numerous, involving the regulation of genetic expression, growth factor secretion, signalling pathways, secondary messaging systems, and ion channel activity. However, many factors are capable of disrupting these pathways, which leads to an imbalance of homeostatic equilibrium. Ultimately, this leads to changes in the physical nature of skin, both functionally and cosmetically. Although various factors have been identified, including carcinogenesis, ultraviolet exposure, and mechanical stretching of skin, it was discovered that many of them affect similar components of regulatory pathways, such as fibroblasts, lysyl oxidase, and fibronectin. Additionally, it was discovered that the various regulatory pathways intersect with each other at various stages instead of working independently of each other. This review paper proposes a model which elucidates how these molecular pathways intersect with one another, and how various internal and external factors can disrupt these pathways, ultimately leading to a disruption in collagen and elastin networks. © 2016 S. Karger AG, Basel.