Sample records for component rig testing

  1. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.

  2. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.

  3. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Byrd, J. A.; Janovicz, M. A.; Thrasher, S. R.

    1981-01-01

    Development testing activities on the 1900 F-configuration ceramic parts were completed, 2070 F-configuration ceramic component rig and engine testing was initiated, and the conceptual design for the 2265 F-configuration engine was identified. Fabrication of the 2070 F-configuration ceramic parts continued, along with burner rig development testing of the 2070 F-configuration metal combustor in preparation for 1132 C (2070 F) qualification test conditions. Shakedown testing of the hot engine simulator (HES) rig was also completed in preparation for testing of a spin rig-qualified ceramic-bladed rotor assembly at 1132 C (2070 F) test conditions. Concurrently, ceramics from new sources and alternate materials continued to be evaluated, and fabrication of 2070 F-configuration ceramic component from these new sources continued. Cold spin testing of the critical 2070 F-configuration blade continued in the spin test rig to qualify a set of ceramic blades at 117% engine speed for the gasifier turbine rotor. Rig testing of the ceramic-bladed gasifier turbine rotor assembly at 108% engine speed was also performed, which resulted in the failure of one blade. The new three-piece hot seal with the nickel oxide/calcium fluoride wearface composition was qualified in the regenerator rig and introduced to engine operation wiwth marginal success.

  4. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  5. Advanced Gas Turbine (AGT) technology report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and producibility experiments at Pontiac comprised AGT 100 activities of this period, January to December 1984. Two experimental engines were available and allowed the evaluation of eight experimental assemblies. Operating time accumulated was 115 hr of burning and 156 hr total. Total cumulative engine operating time is now 225 hr. Build number 11 and 12 of engine S/N 1 totaled 28 burning hours and constituted a single assembly of the engine core--the compressor, both turbines, and the gearbox. Build number 11 of engine S/N 1 included a 1:07 hr continuous test at 100% gasifier speed (86,000 rpm). Build number 8 of engine S/N 2 was the first engine test with a ceramic turbine rotor. A mechanical loss test of an engine assembly revealed the actual losses to be near the original design allowance. Component development activity included rig testing of the compressor, combustor, and regenerator. Compressor testing was initiated on a rig modified to control the transfer of heat between flow path, lubricating oil, and structure. Results show successful thermal decoupling of the rig and lubricating/cooling oil. Rig evaluation of a reduced-friction compressor was initiated. Combustor testing covered qualification of ceramic parts for engine use, mapping of operating range limits, and evaluation of a relocated igniter plug. Several seal refinements were tested on the hot regenerator rig. An alternate regenerator disk, extruded MAS, was examined and found to be currently inadequate for the AGT 100 application. Also, a new technique for measuring leakage was explored on the regenerator rig. Ceramic component activity has focused on the development of state-of-the-art material strength characteristics in full-scale hardware. Injection-molded sintered alpha-SiC rotors were produced at Carborundum in an extensive process and tool optimization study.

  6. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  7. Energy efficient engine high-pressure turbine component rig performance test report

    NASA Technical Reports Server (NTRS)

    Leach, K. P.

    1983-01-01

    A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.

  8. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.

  9. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Leese, G. E.

    1985-01-01

    This program has its primary objective: the development of hot corrosion life prediction methodology based on a combination of laboratory test data and evaluation of field service turbine components which show evidence of hot corrosion. The laboratory program comprises burner rig testing by TRW. A summary of results is given for two series of burner rig tests. The life prediction methodology parameters to be appraised in a final campaign of burner rig tests are outlined.

  10. Low Frequency Noise Contamination in Fan Model Testing

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Schifer, Nicholas A.

    2008-01-01

    Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.

  11. High pressure compressor component performance report

    NASA Technical Reports Server (NTRS)

    Cline, S. J.; Fesler, W.; Liu, H. S.; Lovell, R. C.; Shaffer, S. J.

    1983-01-01

    A compressor optimization study defined a 10 stage configuration with a 22.6:1 pressure ratio, an adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/s. Subsequent component testing included three full scale tests: a six stage rig test, a 10 stage rig test, and another 10 stage rig test completed in the second quarter of 1982. Information from these tests is used to select the configuration for a core engine test and an integrated core/low spool test. The test results will also provide data base for the flight propulsion system. The results of the test series with both aerodynamic and mechanical performance of each compressor build are presented. The second 10 stage compressor adiabatic efficiency was 0.848 at a cruise operating point versus a test goal of 0.846.

  12. A New High-Speed Oil-Free Turbine Engine Rotordynamic Simulator Test Rig

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    A new test rig has been developed for simulating high-speed turbomachinery rotor systems using Oil-Free foil air bearing technology. Foil air bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. The goal of applying this bearing technology to other classes of turbomachinery has prompted the fabrication of this test rig. The facility gives bearing designers the capability to test potential bearing designs with shafts that simulate the rotating components of a target machine without the high cost of building "make-and-break" hardware. The data collected from this rig can be used to make design changes to the shaft and bearings in subsequent design iterations. This paper describes the new test rig and demonstrates its capabilities through the initial run with a simulated shaft system.

  13. A New Design of the Test Rig to Measure the Transmission Error of Automobile Gearbox

    NASA Astrophysics Data System (ADS)

    Hou, Yixuan; Zhou, Xiaoqin; He, Xiuzhi; Liu, Zufei; Liu, Qiang

    2017-12-01

    Noise and vibration affect the performance of automobile gearbox. And transmission error has been regarded as an important excitation source in gear system. Most of current research is focused on the measurement and analysis of single gear drive, and few investigations on the transmission error measurement in complete gearbox were conducted. In order to measure transmission error in a complete automobile gearbox, a kind of electrically closed test rig is developed. Based on the principle of modular design, the test rig can be used to test different types of gearbox by adding necessary modules. The test rig for front engine, rear-wheel-drive gearbox is constructed. And static and modal analysis methods are taken to verify the performance of a key component.

  14. Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batheja, P.; Meier, W.J.; Rau, P.J.

    A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 90/sup 0/C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as wellmore » as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system.« less

  15. Scaled centrifugal compressor, collector and running gear program

    NASA Technical Reports Server (NTRS)

    Kenehan, J. G.

    1983-01-01

    The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.

  16. Analysis and modification of a single-mesh gear fatigue rig for use in diagnostic studies

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Townsend, Dennis P.; Oswald, Fred B.; Decker, Harry J.

    1992-01-01

    A single-mesh gear fatigue rig was analyzed and modified for use in gear mesh diagnostic research. The fatigue rig allowed unwanted vibration to mask the test-gear vibration signal, making it difficult to perform diagnostic studies. Several possible sources and factors contributing to the unwanted components of the vibration signal were investigated. Sensor mounting location was found to have a major effect on the content of the vibration signal. In the presence of unwanted vibration sources, modal amplification made unwanted components strong. A sensor location was found that provided a flatter frequency response. This resulted in a more useful vibration signal. A major network was performed on the fatigue rig to reduce the influence of the most probable sources of the noise in the vibration signal. The slave gears were machined to reduce weight and increase tooth loading. The housing and the shafts were modified to reduce imbalance, looseness, and misalignment in the rotating components. These changes resulted in an improved vibration signal, with the test-gear mesh frequency now the dominant component in the signal. Also, with the unwanted sources eliminated, the sensor mounting location giving the most robust representation of the test-gear meshing energy was found to be at a point close to the test gears in the load zone of the bearings.

  17. Nondestructive evaluation of ceramic matrix composite combustor components.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. G.; Verrilli, M. J.; Stephan, R.

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.

  18. Magnetic Suspension for Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter

    1998-01-01

    NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.

  19. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  20. Investigation of Spiral Bevel Gear Condition Indicator Validation Via AC-29-2C Using Damage Progression Tests

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2014-01-01

    This report documents the results of spiral bevel gear rig tests performed under a NASA Space Act Agreement with the Federal Aviation Administration (FAA) to support validation and demonstration of rotorcraft Health and Usage Monitoring Systems (HUMS) for maintenance credits via FAA Advisory Circular (AC) 29-2C, Section MG-15, Airworthiness Approval of Rotorcraft (HUMS) (Ref. 1). The overarching goal of this work was to determine a method to validate condition indicators in the lab that better represent their response to faults in the field. Using existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a "Case Study," to better understand the differences between both systems, and the availability of the NASA Glenn Spiral Bevel Gear Fatigue Rig, a plan was put in place to design, fabricate and test comparable gear sets with comparable failure modes within the constraints of the test rig. The research objectives of the rig tests were to evaluate the capability of detecting gear surface pitting fatigue and other generated failure modes on spiral bevel gear teeth using gear condition indicators currently used in fielded HUMS. Nineteen final design gear sets were tested. Tables were generated for each test, summarizing the failure modes observed on the gear teeth for each test during each inspection interval and color coded based on damage mode per inspection photos. Gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS), +/- 1 Sideband Index (SI1) and +/- 3 Sideband Index (SI3) were plotted along with rig operational parameters. Statistical tables of the means and standard deviations were calculated within inspection intervals for each CI. As testing progressed, it became clear that certain condition indicators were more sensitive to a specific component and failure mode. These tests were clustered together for further analysis. Maintenance actions during testing were also documented. Correlation coefficients were calculated between each CI, component, damage state and torque. Results found test rig and gear design, type of fault and data acquisition can affect CI performance. Results found FM4, SI1 and SI3 can be used to detect macro pitting on two more gear or pinion teeth as long as it is detected prior to progressing to other components or transitioning to another failure mode. The sensitivity of RMS to system and operational conditions limit its reliability for systems that are not maintained at steady state. Failure modes that occurred due to scuffing or fretting were challenging to detect with current gear diagnostic tools, since the damage is distributed across all the gear and pinion teeth, smearing the impacting signatures typically used to differentiate between a healthy and damaged tooth contact. This is one of three final reports published on the results of this project. In the second report, damage modes experienced in the field will be mapped to the failure modes created in the test rig. The helicopter CI data will then be re-processed with the same analysis techniques applied to spiral bevel rig test data. In the third report, results from the rig and helicopter data analysis will be correlated. Observations, findings and lessons learned using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented.

  1. Energy Efficient Engine: High-pressure compressor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Marchant, R. D.

    1988-01-01

    The objective of the NASA Energy Efficient Engine program is to identify and verify the technology required to achieve significant reductions in fuel consumption and operating cost for future commercial gas turbine engines. The design and analysis is documented of the high pressure compressor which was tested as part of the Pratt and Whitney effort under the Energy Efficient Engine program. This compressor was designed to produce a 14:1 pressure ratio in ten stages with an adiabatic efficiency of 88.2 percent in the flight propulsion system. The corresponding expected efficiency for the compressor component test rig is 86.5 percent. Other performance goals are a surge margin of 20 percent, a corrected flow rate of 35.2 kg/sec (77.5 lb/sec), and a life of 20,000 missions and 30,000 hours. Low loss, highly loaded airfoils are used to increase efficiency while reducing the parts count. Active clearance control and case trenches in abradable strips over the blade tips are included in the compressor component design to further increase the efficiency potential. The test rig incorporates variable geometry stator vanes in all stages to permit maximum flexibility in developing stage-to-stage matching. This provision precluded active clearance control on the rear case of the test rig. Both the component and rig designs meet or exceed design requirements with the exception of life goals, which will be achievable with planned advances in materials technology.

  2. Computational Modeling Develops Ultra-Hard Steel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.

  3. A method for testing railway wheel sets on a full-scale roller rig

    NASA Astrophysics Data System (ADS)

    Liu, Binbin; Bruni, Stefano

    2015-09-01

    Full-scale roller rigs for tests on a single axle enable the investigation of several dynamics and durability problems related with the design and operation of the railway rolling stock. In order to exploit the best potential of this test equipment, appropriate test procedures need to be defined, particularly in terms of actuators' references, to make sure that meaningful wheel -rail contact conditions can be reproduced. The aim of this paper is to propose a new methodology to define the forces to be generated by the actuators in the rig in order to best reproduce the behaviour of a wheel set and especially the wheel -rail contact forces in a running condition of interest as obtained either from multi-body system (MBS) simulation or from on-track measurements. The method is supported by the use of a mathematical model of the roller rig and uses an iterative correction scheme, comparing the time histories of the contact force components from the roller rig test as predicted by the mathematical model to a set of target contact force time histories. Two methods are introduced, the first one considering a standard arrangement of the roller rig, the second one assuming that a differential gear is introduced in the rig, allowing different rolling speeds of the two rollers. Results are presented showing that the deviation of the roller rig test results from the considered targets can be kept within low tolerances (1% approximately) as far as the vertical and lateral contact forces on both wheels are concerned. For the longitudinal forces, larger deviations are obtained except in the case where a differential gear is introduced.

  4. Dynamic Spin Rig Upgraded With a Five- Axis-Controlled Three-Magnetic-Bearing Support System With Forward Excitation

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Mehmed, Oral

    2003-01-01

    The NASA Glenn Research Center Dynamic Spin Rig is used for experimental evaluation of vibration analysis methods and dynamic characteristics for rotating systems. Measurements are made while rotors are spun and vibrated in a vacuum chamber. The rig has been upgraded with a new active magnetic bearing rotor support and excitation system. This design is expected to provide operational improvements over the existing rig. The rig will be able to be operated in either the old or new configuration. In the old configuration, two ball bearings support the vertical shaft of the rig, with the test article located between the bearings. Because the bearings operate in a vacuum, lubrication is limited to grease. This limits bearing life and speed. In addition, the old configuration employs two voice-coil electromagnetic shakers to apply oscillatory axial forces or transverse moments to the rotor shaft through a thrust bearing. The excitation amplitudes that can be imparted to the test article with this system are not adequate for components that are highly damped. It is expected that the new design will overcome these limitations.

  5. Validation of structural analysis methods using the in-house liner cyclic rigs

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.

    1982-01-01

    Test conditions and variables to be considered in each of the test rigs and test configurations, and also used in the validation of the structural predictive theories and tools, include: thermal and mechanical load histories (simulating an engine mission cycle; different boundary conditions; specimens and components of different dimensions and geometries; different materials; various cooling schemes and cooling hole configurations; several advanced burner liner structural design concepts; and the simulation of hot streaks. Based on these test conditions and test variables, the test matrices for each rig and configurations can be established to verify the predictive tools over as wide a range of test conditions as possible using the simplest possible tests. A flow chart for the thermal/structural analysis of a burner liner and how the analysis relates to the tests is shown schematically. The chart shows that several nonlinear constitutive theories are to be evaluated.

  6. High-Flow Jet Exit Rig Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Buehrle, Robert J.; Trimarchi, Paul A.

    2003-01-01

    The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.

  7. Development of a turbojet engine gearbox test rig for prognostics and health management

    NASA Astrophysics Data System (ADS)

    Rezaei, Aida; Dadouche, Azzedine

    2012-11-01

    Aircraft engine gearboxes represent one of the many critical systems/elements that require special attention for longer and safer operation. Reactive maintenance strategies are unsuitable as they usually imply higher repair costs when compared to condition based maintenance. This paper discusses the main prognostics and health management (PHM) approaches, describes a newly designed gearbox experimental facility and analyses preliminary data for gear prognosis. The test rig is designed to provide full capabilities of performing controlled experiments suitable for developing a reliable diagnostic and prognostic system. The rig is based on the accessory gearbox of the GE J85 turbojet engine, which has been slightly modified and reconfigured to replicate real operating conditions such as speeds and loads. Defect to failure tests (DTFT) have been run to evaluate the performance of the rig as well as to assess prognostic metrics extracted from sensors installed on the gearbox casing (vibration and acoustic). The paper also details the main components of the rig and describes the various challenges encountered. Successful DTFT results were obtained during an idle engine performance test and prognostic metrics associated with the sensor suite were evaluated and discussed.

  8. Entropy Generation/Availability Energy Loss Analysis Inside MIT Gas Spring and "Two Space" Test Rigs

    NASA Technical Reports Server (NTRS)

    Ebiana, Asuquo B.; Savadekar, Rupesh T.; Patel, Kaushal V.

    2006-01-01

    The results of the entropy generation and availability energy loss analysis under conditions of oscillating pressure and oscillating helium gas flow in two Massachusetts Institute of Technology (MIT) test rigs piston-cylinder and piston-cylinder-heat exchanger are presented. Two solution domains, the gas spring (single-space) in the piston-cylinder test rig and the gas spring + heat exchanger (two-space) in the piston-cylinder-heat exchanger test rig are of interest. Sage and CFD-ACE+ commercial numerical codes are used to obtain 1-D and 2-D computer models, respectively, of each of the two solution domains and to simulate the oscillating gas flow and heat transfer effects in these domains. Second law analysis is used to characterize the entropy generation and availability energy losses inside the two solution domains. Internal and external entropy generation and availability energy loss results predicted by Sage and CFD-ACE+ are compared. Thermodynamic loss analysis of simple systems such as the MIT test rigs are often useful to understand some important features of complex pattern forming processes in more complex systems like the Stirling engine. This study is aimed at improving numerical codes for the prediction of thermodynamic losses via the development of a loss post-processor. The incorporation of loss post-processors in Stirling engine numerical codes will facilitate Stirling engine performance optimization. Loss analysis using entropy-generation rates due to heat and fluid flow is a relatively new technique for assessing component performance. It offers a deep insight into the flow phenomena, allows a more exact calculation of losses than is possible with traditional means involving the application of loss correlations and provides an effective tool for improving component and overall system performance.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Hagberg, Aric; Hengartner, Nick

    We analyze component evolution in general random intersection graphs (RIGs) and give conditions on existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts from the study on component evolution in Erdos-Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial distribution with a different number of nodes andmore » different rate at each step during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs as an important random structure which has already found applications in social networks, epidemic networks, blog readership, or wireless sensor networks.« less

  10. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    NASA Astrophysics Data System (ADS)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  11. Energy efficient engine: High pressure turbine uncooled rig technology report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

  12. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  13. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  14. Preliminary design of a supercritical CO2 wind tunnel

    NASA Astrophysics Data System (ADS)

    Re, B.; Rurale, A.; Spinelli, A.; Guardone, A.

    2017-03-01

    The preliminary design of a test-rig for non-ideal compressible-fluid flows of carbon dioxide is presented. The test-rig is conceived to investigate supersonic flows that are relevant to the study of non-ideal compressible-fluid flows in the close proximity of the critical point and of the liquid-vapor saturation curve, to the investigation of drop nucleation in compressors operating with supercritical carbon dioxide and and to the study of flow conditions similar to those encountered in turbines for Organic Rankine Cycle applications. Three different configurations are presented and examined: a batch-operating test-rig, a closed-loop Brayton cycle and a closed-loop Rankine cycle. The latter is preferred for its versatility and for economic reasons. A preliminary design of the main components is reported, including the heat exchangers, the chiller, the pumps and the test section.

  15. Development of a test rig for a helium twin-screw compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B. M.; Hu, Z. J.; Zhang, P.

    2014-01-29

    A large helium cryogenic system is being developed for use in great science projects, such as the International Thermonuclear Experimental Reactor (ITER), Large Helical Device (LHD), and the Experimental Advanced Superconducting Tokamak (EAST). In this cryogenic system, a twin-screw compressor is a key component. Therefore, it is necessary to obtain the compressor performance. To obtain the performance characteristics, a test rig for the compressor has been built. All the important performance parameters, including adiabatic efficiency, volumetric efficiency, oil injection characteristic, and noise characteristic can be acquired with the rig when sensors are installed in the test system. With the testmore » performance, the helium twin-screw compressor can be evaluated. Using these results, the design of the compressor can be improved.« less

  16. Wear resistance of ductile irons

    NASA Astrophysics Data System (ADS)

    Lerner, Y. S.

    1994-06-01

    This study was undertaken to evaluate the wear resistance of different grades of ductile iron as alterna-tives to high- tensile- strength alloyed and inoculated gray irons and bronzes for machine- tool and high-pressure hydraulic components. Special test methods were employed to simulate typical conditions of reciprocating sliding wear with and without abrasive- contaminated lubricant for machine and press guideways. Quantitative relationships were established among wear rate, microstructure and micro-hardness of structural constituents, and nodule size of ductile iron. The frictional wear resistance of duc-tile iron as a bearing material was tested with hardened steel shafts using standard test techniques under continuous rotating movement with lubricant. Lubricated sliding wear tests on specimens and compo-nents for hydraulic equipment and apparatus were carried out on a special rig with reciprocating motion, simulating the working conditions in a piston/cylinder unit in a pressure range from 5 to 32 MPa. Rig and field tests on machine- tool components and units and on hydraulic parts have confirmed the test data.

  17. Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Branning, Jeremy; Wade, Daniel R.

    2010-01-01

    Research to correlate bearing remaining useful life (RUL) predictions with Helicopter Health Usage Monitoring Systems (HUMS) condition indicators (CI) to indicate the damage state of a transmission component has been developed. Condition indicators were monitored and recorded on UH-60M (Black Hawk) tail gearbox output shaft thrust bearings, which had been removed from helicopters and installed in a bearing spall propagation test rig. Condition indicators monitoring the tail gearbox output shaft thrust bearings in UH-60M helicopters were also recorded from an on-board HUMS. The spal-lpropagation data collected in the test rig was used to generate condition indicators for bearing fault detection. A damage progression model was also developed from this data. Determining the RUL of this component in a helicopter requires the CI response to be mapped to the damage state. The data from helicopters and a test rig were analyzed to determine if bearing remaining useful life predictions could be correlated with HUMS condition indicators (CI). Results indicate data fusion analysis techniques can be used to map the CI response to the damage levels.

  18. Component qualification and initial build of the AGT 100 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1983-01-01

    In advance of initial dynamometer testing of the AGT 100 engine, all prime components and subsystems were bench/rig tested. Included were compressor, combustor, turbines, regenerator, ceramic components, and electronic control system. Results are briefly reviewed. Initial engine buildup was completed and rolled-out for test cell installation in July 1982. Shakedown testing included motoring and sequential firing of the combustor's three fuel nozzles.

  19. Fully Suspended, Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig With Forced Excitation

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Montague, Gerald; Duffy, Kirsten; Mehmed, Oral; Johnson, Dexter; Jansen, Ralph

    2004-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig, a significant advancement in the Dynamic Spin Rig (DSR), is used to perform vibration tests of turbomachinery blades and components under rotating and nonrotating conditions in a vacuum. The rig has as its critical components three magnetic bearings: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feed-forward control feature, which will enable the excitation of various natural blade modes in bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and nonrotating, unbladed rotor and a fully levitated, rotating and nonrotating, bladed rotor in which a pair of blades was arranged 180 degrees apart from each other. These tests include the bounce mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For nonrotating blades, a blade-tip excitation amplitude of approximately 100 g/A was achieved at the first-bending critical (approximately 144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 70 mils was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 908 relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.

  20. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).

  1. Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1996-01-01

    This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.

  2. Product Module Rig Test

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Chiappetta, Louis, Jr.; Hautman, Donald J.; Ols, John T.; Padget, Frederick C., IV; Peschke, William O. T.; Shirley, John A.; Siskind, Kenneth S.

    2004-01-01

    The low emissions potential of a Rich-Quench-Lean (RQL) combustor for use in the High Speed Civil Transport (HSCT) application was evaluated as part of Work Breakdown Structure (WBS) 1.0.2.7 of the NASA Critical Propulsion Components (CPC) Program under Contract NAS3-27235. Combustion testing was conducted in cell 1E of the Jet Burner Test Stand at United Technologies Research Center. Specifically, a Rich-Quench-Lean combustor, utilizing reduced scale quench technology implemented in a quench vane concept in a product-like configuration (Product Module Rig), demonstrated the capability of achieving an emissions index of nitrogen oxides (NOx EI) of 8.5 gm/Kg fuel at the supersonic flight condition (relative to the program goal of 5 gm/Kg fuel). Developmental parametric testing of various quench vane configurations in the more fundamental flametube, Single Module Rig Configuration, demonstrated NOx EI as low as 5.2. All configurations in both the Product Module Rig configuration and the Single Module Rig configuration demonstrated exceptional efficiencies, greater than 99.95 percent, relative to the program goal of 99.9 percent efficiency at supersonic cruise conditions. Sensitivity of emissions to quench orifice design parameters were determined during the parametric quench vane test series in support of the design of the Product Module Rig configuration. For the rectangular quench orifices investigated, an aspect ratio (length/width) of approximately 2 was found to be near optimum. An optimum for orifice spacing was found to exist at approximately 0.167 inches, resulting in 24 orifices per side of a quench vane, for the 0.435 inch quench zone channel height investigated in the Single Module Rig. Smaller quench zone channel heights appeared to be beneficial in reducing emissions. Measurements were also obtained in the Single Module Rig configuration on the sensitivity of emissions to the critical combustor parameters of fuel/air ratio, pressure drop, and residence time. Minimal sensitivity was observed for all of these parameters.

  3. Application of active magnetic bearings in flexible rotordynamic systems - A state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Siva Srinivas, R.; Tiwari, R.; Kannababu, Ch.

    2018-06-01

    In this paper a critical review of literature on applications of Active Magnetic Bearings (AMBs) systems in flexible rotordynamic systems have been presented. AMBs find various applications in rotating machinery; however, this paper mainly focuses on works in vibration suppression and associated with the condition monitoring using AMBs. It briefly introduces reader to the AMB working principle, provides details of various hardware components of a typical rotor-AMB test rig, and presents a background of traditional methods of vibration suppression in flexible rotors and the condition monitoring. It then moves on to summarize the basic features of AMB integrated flexible rotor test rigs available in literature with necessary instrumentation and its main objectives. A couple of lookup tables provide summary of important information of test rigs in papers within the scope of this article. Finally, future directions in AMB research within the paper's scope have been suggested.

  4. An in situ tensile tester for studying electrochemical repassivation behavior: Fabrication and challenges

    NASA Astrophysics Data System (ADS)

    Neelakantan, Lakshman; Schönberger, Bernd; Eggeler, Gunther; Hassel, Achim Walter

    2010-03-01

    An in situ tensile rig is proposed, which allows performing electrochemical (repassivation) experiments during dynamic mechanical testing of wires. Utilizing the basic components of a conventional tensile tester, a custom-made minitensile rig was designed and fabricated. The maximal force that can be measured by the force sensor is 80 N, with a sensitivity of 0.5 mV/V. The maximum travel range of the crosshead induced by the motor is 10 mm with a minimum step size of 0.5 nm. The functionality of the tensile test rig was validated by investigating Cu and shape memory NiTi wires. Wires of lengths between 40 and 50 mm with varying gauge lengths can be tested. An interface between wire and electrochemical setup (noncontact) with a smart arrangement of electrodes facilitated the electrochemical measurements during tensile loading. Preliminary results on the repassivation behavior of Al wire are reported.

  5. Energy efficient engine pin fin and ceramic composite segmented liner combustor sector rig test report

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Lohmann, R. P.; Tanrikut, S.; Morris, P. M.

    1986-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt and Whitney has successfully completed a comprehensive test program using a 90-degree sector combustor rig that featured an advanced two-stage combustor with a succession of advanced segmented liners. Building on the successful characteristics of the first generation counter-parallel Finwall cooled segmented liner, design features of an improved performance metallic segmented liner were substantiated through representative high pressure and temperature testing in a combustor atmosphere. This second generation liner was substantially lighter and lower in cost than the predecessor configuration. The final test in this series provided an evaluation of ceramic composite liner segments in a representative combustor environment. It was demonstrated that the unique properties of ceramic composites, low density, high fracture toughness, and thermal fatigue resistance can be advantageously exploited in high temperature components. Overall, this Combustor Section Rig Test program has provided a firm basis for the design of advanced combustor liners.

  6. Pressurized fluidized-bed component test program shows good promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-04-01

    The test program described has involved extensive theoretical and laboratory work since 1976, which culminated in a series of PFBC rig tests at the Coal Utilization Research Laboratories (CURL) in Leatherhead, England, and eventually in the design and construction of a component test facility (CTF) at the Oresund Power Station of Sydkraft in Malmo, Sweden. The rig tests are listed. Those preceding the 1000-hr test in 1979 were carried out with and without cooling tubes in the bed, and with different bed characteristics; the main emphasis was on gas clean-up, combustion efficiency, and emission of sulfur and nitrogen oxides. Inmore » these tests, the exhaust gases from the PFBC were passed through a cyclone train containing two cyclones to remove particulate matter, and then through a static cascade that contained parts of turbine blades from an ASEA STAL GT-120 machine. Good performance data, for the most part, are reported. 4 references, 3 figures.« less

  7. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane-association and innate antiviral immunity

    PubMed Central

    Liu, Helene Minyi; Loo, Yueh-Ming; Horner, Stacy M.; Zornetzer, Gregory A.; Katze, Michael G.; Gale, Michael

    2012-01-01

    Summary RIG-I is a cytosolic pathogen recognition receptor that initiates immune responses against RNA viruses. Upon viral RNA recognition, anti-viral signalling requires RIG-I redistribution from the cytosol to membranes where it binds the adaptor protein, MAVS. Here we identify the mitochondrial targeting chaperone protein, 14-3-3ε, as a RIG-I-binding partner and essential component of a translocation complex or “translocon” containing RIG-I, 14-3-3ε, and the TRIM25 ubiquitin ligase. The RIG-I translocon directs RIG-I redistribution from the cytosol to membranes where it mediates MAVS-dependent innate immune signalling during acute RNA virus infection. 14-3-3ε is essential for the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of innate immunity against hepatitis C virus and other pathogenic RNA viruses. Our results define 14-3-3ε as a key component of a RIG-I translocon required for innate antiviral immunity. PMID:22607805

  8. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity.

    PubMed

    Liu, Helene Minyi; Loo, Yueh-Ming; Horner, Stacy M; Zornetzer, Gregory A; Katze, Michael G; Gale, Michael

    2012-05-17

    RIG-I is a cytosolic pathogen recognition receptor that initiates immune responses against RNA viruses. Upon viral RNA recognition, antiviral signaling requires RIG-I redistribution from the cytosol to membranes where it binds the adaptor protein, MAVS. Here we identify the mitochondrial targeting chaperone protein, 14-3-3ε, as a RIG-I-binding partner and essential component of a translocation complex or "translocon" containing RIG-I, 14-3-3ε, and the TRIM25 ubiquitin ligase. The RIG-I translocon directs RIG-I redistribution from the cytosol to membranes where it mediates MAVS-dependent innate immune signaling during acute RNA virus infection. 14-3-3ε is essential for the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of innate immunity against hepatitis C virus and other pathogenic RNA viruses. Our results define 14-3-3ε as a key component of a RIG-I translocon required for innate antiviral immunity. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  10. Vapor Deposition Rig

    NASA Image and Video Library

    2015-01-27

    The Plasma Spray-Physical Vapor Deposition (PS-PVD) Rig at NASA Glenn Research Center. The rig helps develop coatings for next-generation aircraft turbine components and create more efficient engines.

  11. Design and Analysis of Tooth Impact Test Rig for Spur Gear

    NASA Astrophysics Data System (ADS)

    Ghazali, Wafiuddin Bin Md; Aziz, Ismail Ali Bin Abdul; Daing Idris, Daing Mohamad Nafiz Bin; Ismail, Nurazima Binti; Sofian, Azizul Helmi Bin

    2016-02-01

    This paper is about the design and analysis of a prototype of tooth impact test rig for spur gear. The test rig was fabricated and analysis was conducted to study its’ limitation and capabilities. The design of the rig is analysed to ensure that there will be no problem occurring during the test and reliable data can be obtained. From the result of the analysis, the maximum amount of load that can be applied, the factor of safety of the machine, the stresses on the test rig parts were determined. This is important in the design consideration of the test rig. The materials used for the fabrication of the test rig were also discussed and analysed. MSC Nastran Patran software was used to analyse the model, which was designed by using SolidWorks 2014 software. Based from the results, there were limitations found from the initial design and the test rig design needs to be improved in order for the test rig to operate properly.

  12. Hollow shaft integrated health monitoring system for railroad wheels

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Hentschel, D.; Pridoehl, E.; Schubert, F.

    2005-05-01

    The economic efficiency and competitiveness of environment-friendly rail transportation depends on safety, availability and maintenance of single highly loaded structure components. Until now these components have been changed in fixed maintenance intervals irrespective of any usage related conditions. With the knowledge and evaluation of the component conditions, life cycle costs can be reduced by means of optimized maintenance and/or "fit for purpose" design. For example, rail-bound vehicle wheel sets are among the most highly stressed travelling gear components of the bogie. if such a component fails, a serious accident may occur. For this reason, a health monitoring system based on the interpretation of ultrasonic sound signatures has been developed. First, the ultrasonic waves generated by an artificial defect on the outer wheel tread of a railroad wheel towards an acoustic sensor, placed inside the hollow shaft of the railroad axis were simulated with a EFIT (Elastodynamic Finite Integration Technique). The results achieved proved that relevant signals can be found in a frequency range up to 300 kHz. Based on this a diagnostic unit was designed and built for application under rotation conditions, which consists of a piezo-electric sensor, primary electronics, an analog-to-digital converter, a digital signal processor, a trigger unit, and a telemetric transmitter. This diagnostic unit was integrated in the hollow shaft of a railroad wheel axis, a component of a special laboratory test rig. Algorithms which allow for the rotation-synchronized processing of acoustic signals were implemented into the rotating diagnostic unit. After successfully completing a campaign for this test rig, a second test was performed inside the wheel/railroad simulation test rig of the Deutsche Bahn AG under railroad-like conditions. The data generated inside the hollow shaft of the railroad wheel axis by the diagnostic unit were telemetrically transmitted to an industrial computer. The detection of artificial defects of different sizes is shown in correlation with theoretical assumptions.

  13. A Comparison Study of Magnetic Bearing Controllers for a Fully Suspended Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Morrison, Carlos; Mehmed, Oral; Huff, Dennis (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center (GRC) has developed a fully suspended magnetic bearing system for the Dynamic Spin Rig (DSR) that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust bearing and the associated control system were integrated into the DSR to provide noncontact magnetic suspension and mechanical excitation of the 35 lb vertical rotor with blades to induce turbomachinery blade vibration. A simple proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked very well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, and energy savings for the system. The test results of a variety of controllers we demonstrated up to the rig's maximum allowable speed of 10,000 rpm are shown.

  14. Jet Exit Rig Six Component Force Balance

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wolter, John; Woike, Mark; Booth, Dennis

    2012-01-01

    A new six axis air balance was delivered to the NASA Glenn Research Center. This air balance has an axial force capability of 800 pounds, primary airflow of 10 pounds per second, and a secondary airflow of 3 pounds per second. Its primary use was for the NASA Glenn Jet Exit Rig, a wind tunnel model used to test both low-speed, and high-speed nozzle concepts in a wind tunnel. This report outlines the installation of the balance in the Jet Exit Rig, and the results from an ASME calibration nozzle with an exit area of 8 square-inches. The results demonstrated the stability of the force balance for axial measurements and the repeatability of measurements better than 0.20 percent.

  15. ADAPTATION OF CRACK GROWTH DETECTION TECHNIQUES TO US MATERIAL TEST REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis

    2015-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some test reactors outside the United States, such as the Halden Boiling Water Reactor (HBWR), have developed techniques to measure crack growth propagation during irradiation. The basic approach is to use a custom-designed compact loading mechanism to stress the specimen during irradiation, while the crack in the specimen is monitored in-situ using the Direct Currentmore » Potential Drop (DCPD) method. In 2012 the US Department of Energy commissioned the Idaho National Laboratory and the MIT Nuclear Reactor Laboratory (MIT NRL) to take the basic concepts developed at the HBWR and adapt them to a test rig capable of conducting in-pile IASCC tests in US Material Test Reactors. The first two and half years of the project consisted of designing and testing the loader mechanism, testing individual components of the in-pile rig and electronic support equipment, and autoclave testing of the rig design prior to insertion in the MIT Reactor. The load was applied to the specimen by means of a scissor like mechanism, actuated by a miniature metal bellows driven by pneumatic pressure and sized to fit within the small in-core irradiation volume. In addition to the loader design, technical challenges included developing robust connections to the specimen for the applied current and voltage measurements, appropriate ceramic insulating materials that can endure the LWR environment, dealing with the high electromagnetic noise environment of a reactor core at full power, and accommodating material property changes in the specimen, due primarily to fast neutron damage, which change the specimen resistance without additional crack growth. The project culminated with an in-pile demonstration at the MIT Reactor. The test rig and associated support equipment were used to apply loads to a representative Compact Tensile specimen during one MITR operating cycle, while measuring crack growth using the DCPD method. Although the test period was short (approximately 70 days), and the accumulated neutron dose relatively small, successful operation of the test rig was demonstrated. The specimen was cycled more than 8000 times (more than would be typical for a long term IASCC test), which was sufficient to propagate a crack of over 2 mm.« less

  16. Numerical Simulation of the RTA Combustion Rig

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad; Buehrle, Robert; Liu, Nan-Suey; Winslow, Ralph

    2005-01-01

    The Revolutionary Turbine Accelerator (RTA)/Turbine Based Combined Cycle (TBCC) project is investigating turbine-based propulsion systems for access to space. NASA Glenn Research Center and GE Aircraft Engines (GEAE) planned to develop a ground demonstrator engine for validation testing. The demonstrator (RTA-1) is a variable cycle, turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle from Sea Level Static (SLS) to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratios from sea level static to Mach 4 conditions. Key components of this engine are new, such as a nickel alloy fan, advanced trapped vortex combustor, a Variable Area Bypass Injector (VABI), radial flameholders, and multiple fueling zones. A means to mitigate risks to the RTA development program was the use of extensive component rig tests and computational fluid dynamics (CFD) analysis.

  17. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  18. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  19. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  20. Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Watts, Carly

    2011-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.

  1. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  2. Photogrammetric Deflection Measurements for the Tiltrotor Test Rig (TTR) Multi-Component Rotor Balance Calibration

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Meyn, Larry

    2016-01-01

    Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.

  3. Advanced Gas Turbine (AGT): Power-train system development

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Johnson, R. A.; Gibson, R. K.; Smith, L. B.

    1983-01-01

    Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine is described. The general effort was concentrated on building an engine for test starting in July. The buildup progressed with only routine problems and the engine was delivered to the test stand 9 July. In addition to the engine build effort, work continued in selected component areas. Ceramic turbine parts were built and tested. Burst tests of ceramic rotors show strengths are approaching that achieved in test bars; proof testing is required for acceptable strength ceramic vanes. Over 25 hours was accumulated on the combustor rig in three test modes: pilot nozzle only, start nozzle, and main nozzle operation. Satisfactory ignition was achieved for a wide range of starting speeds and the lean blowout limit was as low as 0.06 kg/b (0.14 lb/hr). Lean blowout was more a function of nozzle atomization than fuel/air ratio. A variety of cycle points were tested. Transition from start nozzle flow to main nozzle flow was done manually without difficulty. Regenerator parts were qualification tested without incident and the parts were assembled on schedule. Rig based performance matched first build requirements. Repeated failures in the harmonic drive gearbox during rig testing resulted in that concept being abandoned for an alternate scheme.

  4. 46 CFR 162.050-17 - Separator test rig.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...

  5. 46 CFR 162.050-17 - Separator test rig.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...

  6. 46 CFR 162.050-17 - Separator test rig.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...

  7. 46 CFR 162.050-17 - Separator test rig.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...

  8. 46 CFR 162.050-17 - Separator test rig.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...

  9. Advanced Combustor in the Four Burner Area

    NASA Image and Video Library

    1966-03-21

    Engineer Frank Kutina and a National Aeronautics and Space Administration (NASA) mechanic examine the setup of an advanced combustor rig inside one of the test cells at the Lewis Research Center’s Four Burner Area in the Engine Research Building. Kutina, of the Research Operations Branch, served as go-between for the researchers and the mechanics. He helped develop the test configurations and get the hardware installed. At the time of this photograph, Lewis Center Director Abe Silverstein had just established the Airbreathing Engine Division to address the new propulsion of the 1960s. After nearly a decade of focusing almost exclusively on space, NASA Lewis began tackling issues relating to the new turbofan engine, noise reduction, energy efficiency, supersonic transport, and the never-ending quest for higher performance levels with smaller and more lightweight engines. The Airbreathing Engine Division’s Combustion Branch was dedicated to the study and mitigation of the high temperatures and pressures found in advanced combustor designs. These high temperatures and pressures could destroy engine components. The Lewis investigation included film cooling, diffuser flow, and jet mixing. Components were tested in smaller test cells, but a full-scale augmenting burner rig, seen here, was tested extensively in the Four Burner Area test cell.

  10. Surface protection overview

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1982-01-01

    A first-cut integrated environmental attack life prediction methodology for hot section components is addressed. The HOST program is concerned with oxidation and hot corrosion attack of metallic coatings as well as their degradation by interdiffusion with the substrate. The effects of the environment and coatings on creep/fatigue behavior are being addressed through a joint effort with the Fatigue sub-project. An initial effort will attempt to scope the problem of thermal barrier coating life prediction. Verification of models will be carried out through benchmark rig tests including a 4 atm. replaceable blade turbine and a 50 atm. pressurized burner rig.

  11. Improved Main Shaft Seal Life in Gas Turbines Using Laser Surface Texturing

    NASA Astrophysics Data System (ADS)

    McNickle, Alan D.; Etsion, Izhak

    2002-10-01

    This paper presents a general overview of the improved main shaft seal life in gas turbines using laser surface texturing (LST). The contents include: 1) Laser Surface Texturing System; 2) Seal Schematic with LST applied; 3) Dynamic Rig Tests; 4) Surface Finish Definitions; 5) Wear Test Rig; 6) Dynamic Test Rig; 7) Seal Cross Section-Rig Test; and 8) Typical Test Results. This paper is in viewgraph form.

  12. Verification and Validation Testing of the Parachute Decelerator System Prior to the First Supersonic Flight Dynamics Test for the Low Density Supersonic Decelerator Program

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Witkowski, Allen

    2015-01-01

    The Parachute Decelerator System (PDS) is comprised of all components associated with the supersonic parachute and its associated deployment. During the Supersonic Flight Dynamics Test (SFDT), for the Low Density Supersonic Decelerators Program, the PDS was required to deploy the supersonic parachute in a defined fashion. The PDS hardware includes three major subsystems that must function together. The first subsystem is the Parachute Deployment Device (PDD), which acts as a modified pilot deployment system. It is comprised of a pyrotechnic mortar, a Kevlar ballute, a lanyard actuated pyrotechnic inflation aid, and rigging with its associated thermal protection material (TPS). The second subsystem is the supersonic parachute deployment hardware. This includes all of the parachute specific rigging that includes the parachute stowage can and the rigging including TPS and bridle stiffeners for bridle management during deployment. The third subsystem is the Supersonic Parachute itself, which includes the main parachute and deployment bags. This paper summarizes the verification and validation of the deployment process, from the initialization of the PDS system through parachute bag strip that was done prior to the first SFDT.

  13. Engine-Scale Combustor Rig Designed, Fabricated, and Tested for Combustion Instability Control Research

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.

    2000-01-01

    Low-emission combustor designs are prone to combustor instabilities. Because active control of these instabilities may allow future combustors to meet both stringent emissions and performance requirements, an experimental combustor rig was developed for investigating methods of actively suppressing combustion instabilities. The experimental rig has features similar to a real engine combustor and exhibits instabilities representative of those in aircraft gas turbine engines. Experimental testing in the spring of 1999 demonstrated that the rig can be tuned to closely represent an instability observed in engine tests. Future plans are to develop and demonstrate combustion instability control using this experimental combustor rig. The NASA Glenn Research Center at Lewis Field is leading the Combustion Instability Control program to investigate methods for actively suppressing combustion instabilities. Under this program, a single-nozzle, liquid-fueled research combustor rig was designed, fabricated, and tested. The rig has many of the complexities of a real engine combustor, including an actual fuel nozzle and swirler, dilution cooling, and an effusion-cooled liner. Prior to designing the experimental rig, a survey of aircraft engine combustion instability experience identified an instability observed in a prototype engine as a suitable candidate for replication. The frequency of the instability was 525 Hz, with an amplitude of approximately 1.5-psi peak-to-peak at a burner pressure of 200 psia. The single-nozzle experimental combustor rig was designed to preserve subcomponent lengths, cross sectional area distribution, flow distribution, pressure-drop distribution, temperature distribution, and other factors previously found to be determinants of burner acoustic frequencies, mode shapes, gain, and damping. Analytical models were used to predict the acoustic resonances of both the engine combustor and proposed experiment. The analysis confirmed that the test rig configuration and engine configuration had similar longitudinal acoustic characteristics, increasing the likelihood that the engine instability would be replicated in the rig. Parametric analytical studies were performed to understand the influence of geometry and condition variations and to establish a combustion test plan. Cold-flow experiments verified that the design values of area and flow distributions were obtained. Combustion test results established the existence of a longitudinal combustion instability in the 500-Hz range with a measured amplitude approximating that observed in the engine. Modifications to the rig configuration during testing also showed the potential for injector independence. The research combustor rig was developed in partnership with Pratt & Whitney of West Palm Beach, Florida, and United Technologies Research Center of East Hartford, Connecticut. Experimental testing of the combustor rig took place at United Technologies Research Center.

  14. Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of an aircraft secondary structure

    NASA Astrophysics Data System (ADS)

    Crump, D. A.; Dulieu-Barton, J. M.; Savage, J.

    2010-01-01

    This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model.

  15. Multi-Axis Test Facility

    NASA Image and Video Library

    1959-11-01

    Multi-Axis Test Facility, Space Progress Report, November 1, 1959: The Multi Axis Space Test Inertia Facility [MASTIF], informally referred to as the Gimbal Rig, was installed inside the Altitude Wind Tunnel. The rig, which spun on three axis simultaneously, was used to train the Mercury astronauts on how to bring a spinning spacecraft under control and to determine the effects of rapid spinning on the astronaut's eyesight and psyche. Small gaseous nitrogen jets were operated by the pilot to gain control of the rig after it had been set in motion. Part 1 shows pilot Joe Algranti in the rig as it rotates over one, two, and three axis. It also has overall views of the test set-up with researchers and technicians on the test platform. Part 2 shows Algranti being secured in the rig prior to the test. The rig is set in motion and the pilot slowly brings it under control. The Mercury astronauts trained on the MASTIF in early spring of 1960.

  16. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  17. The Aging of Engines: An Operator’s Perspective

    DTIC Science & Technology

    2000-10-01

    internal HCF failures of blades . Erosion of compressor gas path 2-3 components can be minimized through the use of inlet aluminide intermetallic...fatigue problems in the dovetails durability in accelerated burner rig tests [2,35]. areas of titanium alloy fan and compressor blades . Shot peening in...Criticality Analysis replacement of durability-critical components, such as FOD Foreign object damage blades and vanes. The need to balance risk and escalating

  18. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070 ...

  19. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070 ...

  20. History of Space Shuttle Main Engine Turbopump Bearing Testing at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Thom, Robert; Moore, Chip; Haluck, Dave

    2010-01-01

    The Space Shuttle is propelled into orbit by two solid rocket motors and three liquid fed main engines. After the solid motors fall away, the shuttle engines continue to run for a total time of 8 minutes. These engines are fed propellants by low and high pressure turbopumps. A critical part of the turbopump is the main shaft that supports the drive turbine and the pump inducer and impeller. Rolling element bearings hold the shaft in place during rotation. If the bearings were to fail, the shaft would move, allowing components to rub in a liquid oxygen or hydrogen environment, which could have catastrophic results. These bearings are required to spin at very high speeds, support radial and axial loads, and have high wear resistance without the benefit of a conventional means of lubrication. The Rocketdyne built Shuttle turbopumps demonstrated their capability to perform during launches; however, the seven hour life requirement was not being met. One of the limiting factors was the bearings. In the late 1970's, an engineering team was formed at the Marshall Space Flight Center (MSFC), to develop a test rig and plan for testing the Shuttle s main engine high pressure oxygen turbopump (HPOTP) bearings. The goals of the program were to better understand the operation of bearings in a cryogenic environment and to further develop and refine existing computer models used to predict the operational limits of these bearings. In 1982, testing began in a rig named the Bearing and Seal Material Tester or BSMT as it was commonly called. The first testing investigated the thermal margin and thermal runaway limits of the HPOTP bearings. The test rig was later used to explore potential bearing improvements in the area of increased race curvatures, new cage materials for better lubrication, new wear resistant rolling element materials, and other ideas to improve wear life. The most notable improvements during this tester s time was the incorporation of silicon nitride balls and bronze filled polytetrafluoroethylene (PTFE) cage inserts into the bearings and the anchoring of the SHABERTH bearing model and SINDA thermal computer model for cryogenic bearing analysis. In the mid 1990's, Pratt and Whitney (P&W) won the contract to deliver new high pressure turbopumps for the Shuttle s engines. P&W used two new bearing materials for the rings, Cronidur 30 and AISI 9310 steel and testing was needed on these new materials. A test rig had been designed and delivered to MSFC for testing hydrostatic bearings but with the need by Pratt to validate their bearings, the rig was reconfigured for testing of two ball bearings or a ball bearing and a roller bearing. The P&W bearings are larger than the Rocketdyne bearings and could not be installed in the BSMT. This new test rig was called the LH2 test rig and began operation in 1995. The LH2 test rig accumulated 75,000 seconds of run time in hydrogen. This test rig was valuable in two areas: validating the use of silicon nitride balls and rollers in Alternate Turbopump Development (ATD) bearings, which Pratt eventually used, and in proving the robustness of the balls and rollers after river marks appeared on the surface of the rolling elements. Individual test reports have been presented at conferences and symposiums throughout the years. This paper is a comprehensive report of all the bearing testing done at Marshall. It represents thousands of hours of dedication and labor in all engineering and technical fields that made this program a success.

  1. High-temperature test facility at the NASA Lewis engine components research laboratory

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1990-01-01

    The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

  2. RQL Sector Rig Testing of SiC/SiC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Martin, Lisa C.; Brewer, David N.

    2002-01-01

    Combustor liners, manufactured from silicon carbide fiber-reinforced silicon carbide (SiC/SiC) were tested for 260 hr using a simulated gas turbine engine cycle. This report documents the results of the last 56 hr of testing. Damage occurred in one of the six different components that make up the combustor liner set, the rich zone liner. Cracks in the rich zone liner initiated at the leading edge due to stresses resulting from the component attachment configuration. Thin film thermocouples and fiber optic pyrometers were used to measure the rich zone liner's temperature and these results are reported.

  3. Internally Cooled Monolithic Silicon Nitride Aerospace Components

    NASA Technical Reports Server (NTRS)

    Best, Jonathan E.; Cawley, James D.; Bhatt, Ramakrishna T.; Fox, Dennis S.; Lang, Jerry (Technical Monitor)

    2000-01-01

    A set of rapid prototyping (RP) processes have been combined with gelcasting to make ceramic aerospace components that contain internal cooling geometry. A mold and core combination is made using a MM6Pro (Sanders Prototyping, Inc.) and SLA-250/40 (3Dsystems, Inc.). The MM6Pro produces cores from ProtoBuild (trademarked) wax that are dissolved in room temperature ethanol following gelcasting. The SLA-250/40 yields epoxy/acrylate reusable molds. Parts produced by this method include two types of specimens containing a high density of thin long cooling channels, thin-walled cylinders and plates, as well as a model hollow airfoil shape that can be used for burner rig evaluation of coatings. Both uncoated and mullite-coated hollow airfoils has been tested in a Mach 0.3 burner rig with cooling air demonstrating internal cooling and confirming the effectiveness of mullite coatings.

  4. Advances in measuring techniques for turbine cooling test rigs

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.

    1972-01-01

    Surface temperature distribution measurements for turbine vanes and blades were obtained by measuring the infrared energy emitted by the airfoil. The IR distribution can be related to temperature distribution by suitable calibration methods and the data presented in the form of isotherm maps. Both IR photographic and real time electro-optical methods are being investigated. The methods can be adapted to rotating as well as stationary targets, and both methods can utilize computer processing. Pressure measurements on rotating components are made with a rotating system incorporating 10 miniature transducers. A mercury wetted slip ring assembly was used to supply excitation power and as a signal transfer device. The system was successfully tested up to speeds of 9000 rpm and is now being adapted to measure rotating blade airflow quantities in a spin rig and a research engine.

  5. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  6. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology.

    PubMed

    Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y

    2014-11-13

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.

  7. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    PubMed Central

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  8. Development of a low cost test rig for standalone WECS subject to electrical faults.

    PubMed

    Himani; Dahiya, Ratna

    2016-11-01

    In this paper, a contribution to the development of low-cost wind turbine (WT) test rig for stator fault diagnosis of wind turbine generator is proposed. The test rig is developed using a 2.5kW, 1750 RPM DC motor coupled to a 1.5kW, 1500 RPM self-excited induction generator interfaced with a WT mathematical model in LabVIEW. The performance of the test rig is benchmarked with already proven wind turbine test rigs. In order to detect the stator faults using non-stationary signals in self-excited induction generator, an online fault diagnostic technique of DWT-based multi-resolution analysis is proposed. It has been experimentally proven that for varying wind conditions wavelet decomposition allows good differentiation between faulty and healthy conditions leading to an effective diagnostic procedure for wind turbine condition monitoring. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Regenerative Fuel Cell Test Rig at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.

    2003-01-01

    The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.

  10. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  11. HLH Drive System

    DTIC Science & Technology

    1977-09-01

    Material Comparison ....... .. 359 D-16 Comparison Chart - Rotor Brake Designs, Boeing Vertol, HLH ........... 360 D-17 Conventional Steel Disk Dynamic ...engines off. 0 In the event of a rotor brake caliper or disc failure, the system shall preclude damage to critical dynamic components. * The rotor brake... Dynamic System Test Rig (DSTR) shown in Figure. .8 provided a means for integrating and testing the aft and conbiner trans- missions, the aft rotor , thr’ee

  12. Laboratory facility for testing electric-vehicle batteries Test rig for simulating duty cycles with different discharge modes

    NASA Astrophysics Data System (ADS)

    Hamilton, J. A.; Rand, D. A. J.

    1983-03-01

    A test rig has been designed and constructed to examine the performance of batteries under laboratory conditions that simulate the power characteristics of electric vehicles. Each station in the rig subjects a battery to continuous charge/discharge cycles, with an equalising charge every eighth cycle. The battery discharge follows the current-verse-time profile of a given vehicle operating under a driving schedule normal to road service. The test rig allows both smooth- and pulsed-current discharge to be investigated. Data collection is accomplished either with multi-pen recorders or with a computer-based information logger.

  13. Thermal barrier coating life prediction model development, phase 2

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Sheffler, Keith D.; Nissley, David M.

    1991-01-01

    The objective of this program was to generate a life prediction model for electron-beam-physical vapor deposited (EB-PVD) zirconia thermal barrier coating (TBC) on gas turbine engine components. Specific activities involved in development of the EB-PVD life prediction model included measurement of EB-PVD ceramic physical and mechanical properties and adherence strength, measurement of the thermally grown oxide (TGO) growth kinetics, generation of quantitative cyclic thermal spallation life data, and development of a spallation life prediction model. Life data useful for model development was obtained by exposing instrumented, EB-PVD ceramic coated cylindrical specimens in a jet fueled burner rig. Monotonic compression and tensile mechanical tests and physical property tests were conducted to obtain the EB-PVD ceramic behavior required for burner rig specimen analysis. As part of that effort, a nonlinear constitutive model was developed for the EB-PVD ceramic. Spallation failure of the EB-PVD TBC system consistently occurred at the TGO-metal interface. Calculated out-of-plane stresses were a small fraction of that required to statically fail the TGO. Thus, EB-PVD spallation was attributed to the interfacial cracking caused by in-plane TGO strains. Since TGO mechanical properties were not measured in this program, calculation of the burner rig specimen TGO in-plane strains was performed by using alumina properties. A life model based on maximum in-plane TGO tensile mechanical strain and TGO thickness correlated the burner rig specimen EB-PVD ceramic spallation lives within a factor of about plus or minus 2X.

  14. Enabling Technologies for Ceramic Hot Section Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkat Vedula; Tania Bhatia

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navymore » applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehra, S.; Bryce, T.

    Sedco Forex has recently completed a new land drilling rig, currently deployed in Gabon, that integrates well construction activities with multiskilling to create cost savings across the board in drilling operations. Historically, operators have produced a comprehensive tender package specifying strictly the type and size of individual rig components and the number of personnel required to drill. In this case, the drilling contractor provides a fit-for-purpose rig, consistent with field location, well profile, operator`s priorities, and local constraints.

  16. Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.

    2016-01-01

    This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).

  17. iLIDS Simulations and Videos for Docking TIM

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2010-01-01

    The video shows various aspects of the International Low Impact Docking System, including team members, some production, configuration, mated androgynous iLIDS, SCS Lockdown system, thermal analysis, electrical engineering aspects, the iLIDS control box and emulator, radiation testing at BNL, component environmental testing, component vibration testing, 3G processor board delivery system, GTA vibe test, EMA testbed, hook and hook disassembly, flex shaftdrive assembly, GSE cradle MISSE-6 Columbus, MISSE 6 and 7 seal experiments, actuated full scale seal test rig, LIDS on Hubble, dynamics test prep, EDU 54 mass emulation and SCS, load ring characterization, 6DOF proof test, SCS at 6DOF, machining EEMS and inner ring assembly, APAS assembly, inner ring fitting, rotation stand assembly, EEMS mating, and EEMS proof of concept demonstration.

  18. Influence of stationary components on unsteady flow in industrial centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Bonciani, L.; Terrinoni, L.

    1984-01-01

    An experimental investigation was performed to determine the characteristics of the onset and the growth of rotating nonuniform flow in a standard low specific speed stage, normally utilized in high pressure applications, in relation to change of stationary component geometry. Four configurations, differing only in the return channel and crossover geometry were tested on an atmospheric pressure open loop test rig. Experimental results make conspicious the effect of return channel geometry and give the possibility of shifting the unstable zone onset varying such geometry. An attempt was made to interpret the experimental results in the Emmons - Stenning's rotating stall theory.

  19. Experimental impact testing and analysis of composite fan cases

    NASA Astrophysics Data System (ADS)

    Vander Klok, Andrew Joe

    For aircraft engine certification, one of the requirements is to demonstrate the ability of the engine to withstand a fan blade-out (FBO) event. A FBO event may be caused by fatigue failure of the fan blade itself or by impact damage of foreign objects such as bird strike. An un-contained blade can damage flight critical engine components or even the fuselage. The design of a containment structure is related to numerous parameters such as the blade tip speed; blade material, size and shape; hub/tip diameter; fan case material, configuration, rigidity, etc. To investigate all parameters by spin experiments with a full size rotor assembly can be prohibitively expensive. Gas gun experiments can generate useful data for the design of engine containment cases at much lower costs. To replicate the damage modes similar to that on a fan case in FBO testing, the gas gun experiment has to be carefully designed. To investigate the experimental procedure and data acquisition techniques for FBO test, a low cost, small spin rig was first constructed. FBO tests were carried out with the small rig. The observed blade-to-fan case interactions were similar to those reported using larger spin rigs. The small rig has the potential in a variety of applications from investigating FBO events, verifying concept designs of rotors, to developing spin testing techniques. This rig was used in the developments of the notched blade releasing mechanism, a wire trigger method for synchronized data acquisition, high speed video imaging and etc. A relationship between the notch depth and the release speed was developed and verified. Next, an original custom designed spin testing facility was constructed. Driven by a 40HP, 40,000rpm air turbine, the spin rig is housed in a vacuum chamber of phi72inx40in (1829mmx1016mm). The heavily armored chamber is furnished with 9 viewports. This facility enables unprecedented investigations of FBO events. In parallel, a 15.4ft (4.7m) long phi4.1inch (105mm) diameter single stage gas gun was developed. A thermodynamic based relationship between the required gas pressure and targeted velocity was proposed. The predicted velocity was within +/-7%. Quantitative measurements of force and displacement were attempted. The transmitted impact force was measured with load cells. The out-of-plane deformation was measured with a projection grating profilometry method. The composite panels and fan cases used in this work were made of S2-glass plain weave fabrics with API SC-15 toughened epoxy resin using the vacuum assisted resin transfer molding (VARTM) method. Using the gas gun, the impact behavior of the composite was investigated at velocities ranging from 984ft/s to 1502ft/s (300m/s to 458m/s) following a draft ASTM testing standard. To compare the ballistic protection capability of different materials, a new parameter EBL, the projectile kinetic energy at the target ballistic limit normalized by the contact area of the projectile, was proposed. S2-glass/epoxy composite is ranked very high in EBL per areal weight. Finally, a testing method for replicating spin pit testing with a gas gun test was developed. Major differences between the two tests are the initial conditions of the blade upon contact with the target. In spin testing, the released blade has two velocity components, rotational and translational whereas in gas gun testing, the projectile has only the translational velocity. To account for the influence of the rotational velocity, three projectile designs were experimentally investigated. The results show that to generate similar damage modes in gas gun testing, it is critical to ensure the deformation of the projectile before testing is similar to that of a released blade. With the pre-bent blade, the gas gun experiment was able to replicate the damage modes of the fan case in FBO test on flat composite panels.

  20. Life prediction of turbine components: On-going studies at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Grisaffe, S. J.

    1973-01-01

    An overview is presented of the many studies at NASA-Lewis that form the turbine component life prediction program. This program has three phases: (1) development of life prediction methods for major failure modes through materials studies, (2) evaluation and improvement of these methods through a variety of burner rig studies on simulated components in research engines and advanced rigs. These three phases form a cooperative, interdisciplinary program. A bibliography of Lewis publications on fatigue, oxidation and coatings, and turbine engine alloys is included.

  1. Blade pressure measurements

    NASA Astrophysics Data System (ADS)

    Chivers, J. W. H.

    Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.

  2. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  3. Design and Implementation of a Characterization Test Rig for Evaluating High Bandwidth Liquid Fuel Flow Modulators

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; Chang, Clarence T.; DeLaat, John C.; Vrnak, Daniel R.

    2010-01-01

    A test rig was designed and developed at the NASA Glenn Research Center (GRC) for the purpose of characterizing high bandwidth liquid fuel flow modulator candidates to determine their suitability for combustion instability control research. The test rig is capable of testing flow modulators at up to 600 psia supply pressure and flows of up to 2 gpm. The rig is designed to provide a quiescent flow into the test section in order to isolate the dynamic flow modulations produced by the test article. Both the fuel injector orifice downstream of the test article and the combustor are emulated. The effect of fuel delivery line lengths on modulator dynamic performance can be observed and modified to replicate actual fuel delivery systems. For simplicity, water is currently used as the working fluid, although future plans are to use jet fuel. The rig is instrumented for dynamic pressures and flows and a high-speed data system is used for dynamic data acquisition. Preliminary results have been obtained for one candidate flow modulator.

  4. Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.

    1999-01-01

    Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.

  5. Understanding electrostatic charge behaviour in aircraft fuel systems

    NASA Astrophysics Data System (ADS)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  6. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    PubMed Central

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  7. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  8. RQL Fuel Shifting Sector Rig Test

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Haid, Daniel A.; Koopman, Frederick S.; Peschke, William O. T.; Siskind, Kenneth S.

    2004-01-01

    The low emissions potential of a Rich-Quench-Lean (RQL) combustor for use in the HIgh Speed Civil transport (HSCT) application was evaluated as part of the NASA Critical Propulsion Components (CPC) Program. Fuel shifting as an approach to combustor control was evaluated in a multiple bank RQL combustor, utilizing reduced scale quench technology implemented in a convoluted linear with quench plate concept.

  9. Advances in measuring techniques for turbine cooling test rigs - Status report

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.

    1974-01-01

    Instrumentation development pertaining to turbine cooling research has resulted in the design and testing of several new systems. Pressure measurements on rotating components are being made with a rotating system incorporating ten miniature transducers and a slip-ring assembly. The system has been tested successfully up to speeds of 9000 rpm. An advanced system development combining pressure transducer and thermocouple signals is also underway. Thermocouple measurements on rotating components are transferred off the shaft by a 72-channel rotating data system. Thermocouple data channels are electronically processed on board and then removed from the shaft in the form of a digital serial train by one winding of a rotary transformer.

  10. The reflection of evolving bearing faults in the stator current's extended park vector approach for induction machines

    NASA Astrophysics Data System (ADS)

    Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan

    2018-07-01

    Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.

  11. Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph

    2005-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.

  12. Design and Checkout of a High Speed Research Nozzle Evaluation Rig

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Wolter, John D.

    1997-01-01

    The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.

  13. Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2004-01-01

    A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting fixture that rotates to accommodate a laserbased alignment system. This can measure the misalignment of the bearing centers in each of 2 translational degrees of freedom and 2 rotational degrees of freedom. In the initial configuration, with roughly a 30.5-cm- (12-in.-) long shaft, two simulated aerocomponent disks, and two 50.8-cm (2-in.) foil journal bearings, the rig can operate at 65,000 rpm at room temperature. The test facility can measure shaft displacements in both the vertical and horizontal directions at each bearing location. Horizontal and vertical structural vibrations are monitored using accelerometers mounted on the bearing support structures. This information is used to determine system rotordynamic response, including critical speeds, mode shapes, orbit size and shape, and potentially the onset of instabilities. Bearing torque can be monitored as well to predict the power loss in the foil bearings. All of this information is fed back and forth between NASA and the foil bearing designers in an iterative fashion to converge on a final bearing and shaft design for a given engine application. In addition to its application development capabilities, the test rig offers several unique capabilities for basic bearing research. Using the laser alignment system mentioned earlier, the facility will be used to map foil air journal bearing performance. A known misalignment of increasing severity will be induced to determine the sensitivity of foil bearings to misalignment. Other future plans include oil-free integral starter generator testing and development, and dynamic load testing of foil journal bearings.

  14. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  15. Application of differential similarity to finding nondimensional groups important in tests of cooled engine components

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1977-01-01

    The method of differential similarity is applied to the partial differential equations and boundary conditions which govern the temperature, velocity, and pressure fields in the flowing gases and the solid stationary components in air-cooled engines. This procedure yields the nondimensional groups which must have the same value in both the test rig and the engine to produce similarity between the test results and the engine performance. These results guide the experimentalist in the design and selection of test equipment that properly scales quantities to actual engine conditions. They also provide a firm fundamental foundation for substantiation of previous similarity analyses which employed heuristic, physical reasoning arguments to arrive at the nondimensional groups.

  16. A New Foil Air Bearing Test Rig for Use to 700 C and 70,000 rpm

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1997-01-01

    A new test rig has been developed for evaluating foil air bearings at high temperatures and speeds. These bearings are self acting hydrodynamic air bearings which have been successfully applied to a variety of turbomachinery operating up to 650 C. This unique test rig is capable of measuring bearing torque during start-up, shut-down and high speed operation. Load capacity and general performance characteristics, such as durability, can be measured at temperatures to 700 C and speeds to 70,000 rpm. This paper describes the new test rig and demonstrates its capabilities through the preliminary characterization of several bearings. The bearing performance data from this facility can be used to develop advanced turbomachinery incorporating high temperature oil-free air bearing technology.

  17. A Passive Magnetic Bearing Flywheel

    NASA Technical Reports Server (NTRS)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  18. Skylab

    NASA Image and Video Library

    1971-11-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, was one of four major components comprising the Skylab (1973-1979). The ATM housed the first manned scientific telescope in space. This photograph shows the ATM rigged for altitude and space simulation tests at the Space Environment Simulation Laboratory of the Manned Spacecraft Center (MSC). The MSC was renamed the Johnson Space Center (JSC) in early 1973.

  19. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    NASA Technical Reports Server (NTRS)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  20. Analysis, design, fabrication and testing of an optical tip clearance sensor. [turbocompressor blade tips

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Marple, D. T. F.; Kingsley, J. D.

    1981-01-01

    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed.

  1. Small Hot Jet Acoustic Rig Validation

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Bridges, James

    2006-01-01

    The Small Hot Jet Acoustic Rig (SHJAR), located in the Aeroacoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center in Cleveland, Ohio, was commissioned in 2001 to test jet noise reduction concepts at low technology readiness levels (TRL 1-3) and develop advanced measurement techniques. The first series of tests on the SHJAR were designed to prove its capabilities and establish the quality of the jet noise data produced. Towards this goal, a methodology was employed dividing all noise sources into three categories: background noise, jet noise, and rig noise. Background noise was directly measured. Jet noise and rig noise were separated by using the distance and velocity scaling properties of jet noise. Effectively, any noise source that did not follow these rules of jet noise was labeled as rig noise. This method led to the identification of a high frequency noise source related to the Reynolds number. Experiments using boundary layer treatment and hot wire probes documented this noise source and its removal, allowing clean testing of low Reynolds number jets. Other tests performed characterized the amplitude and frequency of the valve noise, confirmed the location of the acoustic far field, and documented the background noise levels under several conditions. Finally, a full set of baseline data was acquired. This paper contains the methodology and test results used to verify the quality of the SHJAR rig.

  2. Hybrid Bearing Prognostic Test Rig

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Certo, Joseph M.; Handschuh, Robert F.; Dimofte, Florin

    2005-01-01

    The NASA Glenn Research Center has developed a new Hybrid Bearing Prognostic Test Rig to evaluate the performance of sensors and algorithms in predicting failures of rolling element bearings for aeronautics and space applications. The failure progression of both conventional and hybrid (ceramic rolling elements, metal races) bearings can be tested from fault initiation to total failure. The effects of different lubricants on bearing life can also be evaluated. Test conditions monitored and recorded during the test include load, oil temperature, vibration, and oil debris. New diagnostic research instrumentation will also be evaluated for hybrid bearing damage detection. This paper summarizes the capabilities of this new test rig.

  3. Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results

    NASA Technical Reports Server (NTRS)

    Watts, Carly A.; Vogel, Matt

    2012-01-01

    A multi-year effort has been carried out at the Johnson Space Center to develop an advanced EVA PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off-the-shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). PLSS 1.0 was tested from June 17th through September 30th, 2011. Testing accumulated 233 hours over 45 days, while executing 119 test points. An additional 164 hours of operational time were accrued during the test series, bringing the total operational time for PLSS 1.0 testing to 397 hours. Specific PLSS 1.0 test objectives assessed during this testing include: (1) Confirming prototype components perform in a system level test as they have performed during component level testing, (2) Identifying unexpected system-level interactions (3) Operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions (4) Simulating nominal transient EVA operational scenarios (5) Simulating contingency EVA operational scenarios (6) Further evaluating prototype technology development components Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected. Documented anomalies and observations include: (1) Ventilation loop fan controller issues at high fan speeds (near 70,000 rpm, whereas the fan speed during nominal operations would be closer to 35,000 rpm) (2) RCA performance at boundary conditions, including carbon dioxide and water vapor saturation events, as well as reduced vacuum quality (3) SWME valve anomalies (4 documented cases where the SWME failed to respond to a control signal or physically jammed, preventing SWME control) (4) Reduction of SWME hollow fiber hydrophobicity and significant reduction of the SWME degassing capability after significant accumulated test time.

  4. Acoustic Characteristics of Various Treatment Panel Designs Specific to HSCT Mixer-Ejector Application

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Kinzie, K.; Vu, D. D.; Langenbrunner, L. E.; Szczepkowski, G. T.

    2006-01-01

    The development process of liner design methodology is described in several reports. The results of the initial effort of concept development, screening, laboratory testing of various liner concepts, and preliminary correlation (generic data) are presented in a report Acoustic Characteristics of Various Treatment Panel Designs for HSCT Ejector Liner Acoustic Technology Development Program. The second phase of laboratory test results of more practical concepts and their data correlations are presented in this report (product specific). In particular, this report contains normal incidence impedance measurements of several liner types in both a static rig and in a high temperature flow duct rig. The flow duct rig allows for temperatures up to 400 F with a grazing flow up to Mach 0.8. Measurements of impedance, DC flow resistance, and in the flow rig cases, impact of the liner on boundary layer profiles are documented. In addition to liner rig tests, a limited number of tests were made on liners installed in a mixer-Ejector nozzle to confirm the performance of the liner prediction in an installed configuration.

  5. RIG-I in RNA virus recognition

    PubMed Central

    Kell, Alison M.; Gale, Michael

    2015-01-01

    Antiviral immunity is initiated upon host recognition of viral products via non-self molecular patterns known as pathogen-associated molecular patterns (PAMPs). Such recognition initiates signaling cascades that induce intracellular innate immune defenses and an inflammatory response that facilitates development of the acquired immune response. The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein family are key cytoplasmic pathogen recognition receptors that are implicated in the recognition of viruses across genera and virus families, including functioning as major sensors of RNA viruses, and promoting recognition of some DNA viruses. RIG-I, the charter member of the RLR family, is activated upon binding to PAMP RNA. Activated RIG-I signals by interacting with the adapter protein MAVS leading to a signaling cascade that activates the transcription factors IRF3 and NF-κB. These actions induce the expression of antiviral gene products and the production of type I and III interferons that lead to an antiviral state in the infected cell and surrounding tissue. RIG-I signaling is essential for the control of infection by many RNA viruses. Recently, RIG-I crosstalk with other pathogen recognition receptors and components of the inflammasome has been described. In this review, we discuss the current knowledge regarding the role of RIG-I in recognition of a variety of virus families and its role in programming the adaptive immune response through cross-talk with parallel arms of the innate immune system, including how RIG-I can be leveraged for antiviral therapy. PMID:25749629

  6. Control Study for Five-axis Dynamic Spin Rig Using Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Provenza, Andrew; Morrison, Carlos; Montague, Gerald

    2003-01-01

    The NASA Glenn Research Center (GRC) has developed a magnetic bearing system for the Dynamic Spin Rig (DSR) with a fully suspended shaft that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the DSR to provide magnetic excitation as well as non-contact mag- netic suspension of a 15.88 kg (35 lb) vertical rotor with blades to induce turbomachinery blade vibration. For rotor levitation, a proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, more blade vibration amplitude, and energy savings for the system. The test results of a variety of controllers that were demonstrated up to 10.000 rpm are shown. Furthermore, rotor excitation operation and conceptual study of active blade vibration control are addressed.

  7. Tow Tank Dynamic Test Rig Drawings and Bill of Materials for the Aquantis 2.5 MW Ocean Current Generation Device

    DOE Data Explorer

    Swales, Henry; Banko, Richard; Coakley, David

    2015-06-03

    Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Test Rig Drawings and Bill of Materials. This submission contains information on the equipment for the scaled model tow tank testing. The information includes hardware, test protocols, and plans.

  8. Single shaft automotive gas turbine engine characterization test

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1979-01-01

    An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.

  9. Ranking protective coatings: Laboratory vs. field experience

    NASA Astrophysics Data System (ADS)

    Conner, Jeffrey A.; Connor, William B.

    1994-12-01

    Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.

  10. NASA Lewis Research Center lean-, rich-burn materials test burner rig

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Robinson, R. C.

    1994-01-01

    The lean-, rich-burn materials test burner rig at NASA LeRC is used to evaluate the high temperature environmental durability of aerospace materials. The rig burns jet fuel and pressurized air, and sample materials can be subjected to both lean-burn and rich-burn environments. As part of NASA's Enabling Propulsion Materials (EPM) program, an existing rig was adapted to simulate the rich-burn quick-quench lean-burn (RQL) combustor concept which is being considered for the HSCT (high speed civil transport) aircraft. RQL materials requirements exceed that of current superalloys, thus ceramic matrix composites (CMC's) emerged as the leading candidate materials. The performance of these materials in the quasi reducing environment of the rich-burn section of the RQL is of fundamental importance to materials development. This rig was developed to conduct such studies, and its operation and capabilities are described.

  11. Design and development of a high-speed bearing test rig

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.

    1995-01-01

    The development of a high-speed test rig, to be used for compiling an experimental data base of bearing signatures for bearings with known faults, is described. This bearing test rig can be adapted to test oil-film bearings as well as rolling element bearings. This is achieved by mounting the test bearing in one of two special test housings, either of which can be mounted onto a common test shaft which can be driven up to 30,000 rpm. The test bearing housing for rolling element bearings can accommodate proximity displacement transducers, accelerometers, thermocouples, and acoustic emission sensors. The test bearing housing for the fluid-film bearings can accommodate the same instrumentation as well as Bourdon tube-type transducers for measuring oil film pressures around the bearing circumference.

  12. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  13. The Influence of Sliding and Contact Severity on the Generation of White Etching Cracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Benjamin; Greco, Aaron

    2015-10-17

    White etching cracks (WECs) have been identified as the dominant mechanism of premature failure for bearings within wind turbine gearboxes. Though WECs have been observed in the field for over a decade, the exact mechanisms which lead to this failure are still debated, and benchtop replication has proven difficult. In previously published work, WECs have been replicated only through the use of component level test rigs, where complete bearings are tested. In these tests, the factors that are thought to drive the formation of WECs, such as slide-to-roll ratio (SRR) and lubricant film thickness, cannot not be easily altered ormore » controlled. In this paper, WECs have been replicated on a three rings on roller, benchtop test rig, which allowed for a direct investigation into the influence that SRR magnitude, sliding direction, and the lubricant film thickness have on surface failures and WEC generation. It was determined that WEC were formed in samples that experienced -30% SRR at various lubrication conditions, however, at lower levels of negative SRR and positive SRR up to 30% no white-etching cracks were observed.« less

  14. Testing for voter rigging in small polling stations

    PubMed Central

    Jimenez, Raúl; Hidalgo, Manuel; Klimek, Peter

    2017-01-01

    Nowadays, a large number of countries combine formal democratic institutions with authoritarian practices. Although in these countries the ruling elites may receive considerable voter support, they often use several manipulation tools to control election outcomes. A common practice of these regimes is the coercion and mobilization of large numbers of voters. This electoral irregularity is known as voter rigging, distinguishing it from vote rigging, which involves ballot stuffing or stealing. We develop a statistical test to quantify the extent to which the results of a particular election display traces of voter rigging. Our key hypothesis is that small polling stations are more susceptible to voter rigging because it is easier to identify opposing individuals, there are fewer eyewitnesses, and interested parties might reasonably expect fewer visits from election observers. We devise a general statistical method for testing whether voting behavior in small polling stations is significantly different from the behavior in their neighbor stations in a way that is consistent with the widespread occurrence of voter rigging. On the basis of a comparative analysis, the method enables third parties to conclude that an explanation other than simple variability is needed to explain geographic heterogeneities in vote preferences. We analyze 21 elections in 10 countries and find significant statistical anomalies compatible with voter rigging in Russia from 2007 to 2011, in Venezuela from 2006 to 2013, and in Uganda in 2011. Particularly disturbing is the case of Venezuela, where the smallest polling stations were decisive to the outcome of the 2013 presidential elections. PMID:28695193

  15. Testing for voter rigging in small polling stations.

    PubMed

    Jimenez, Raúl; Hidalgo, Manuel; Klimek, Peter

    2017-06-01

    Nowadays, a large number of countries combine formal democratic institutions with authoritarian practices. Although in these countries the ruling elites may receive considerable voter support, they often use several manipulation tools to control election outcomes. A common practice of these regimes is the coercion and mobilization of large numbers of voters. This electoral irregularity is known as voter rigging, distinguishing it from vote rigging, which involves ballot stuffing or stealing. We develop a statistical test to quantify the extent to which the results of a particular election display traces of voter rigging. Our key hypothesis is that small polling stations are more susceptible to voter rigging because it is easier to identify opposing individuals, there are fewer eyewitnesses, and interested parties might reasonably expect fewer visits from election observers. We devise a general statistical method for testing whether voting behavior in small polling stations is significantly different from the behavior in their neighbor stations in a way that is consistent with the widespread occurrence of voter rigging. On the basis of a comparative analysis, the method enables third parties to conclude that an explanation other than simple variability is needed to explain geographic heterogeneities in vote preferences. We analyze 21 elections in 10 countries and find significant statistical anomalies compatible with voter rigging in Russia from 2007 to 2011, in Venezuela from 2006 to 2013, and in Uganda in 2011. Particularly disturbing is the case of Venezuela, where the smallest polling stations were decisive to the outcome of the 2013 presidential elections.

  16. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. L. Davis; D. L. Knudson; J. L. Rempe

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less

  17. Test rig and particulate deposit and cleaning evaluation processes using the same

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

  18. Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2004-01-01

    This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.

  19. Investigation of Spiral Bevel Gear Condition Indicator Validation via AC-29-2C Combining Test Rig Damage Progression Data with Fielded Rotorcraft Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2015-01-01

    This is the final of three reports published on the results of this project. In the first report, results were presented on nineteen tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig on spiral bevel gear sets designed to simulate helicopter fielded failures. In the second report, fielded helicopter HUMS data from forty helicopters were processed with the same techniques that were applied to spiral bevel rig test data. Twenty of the forty helicopters experienced damage to the spiral bevel gears, while the other twenty helicopters had no known anomalies within the time frame of the datasets. In this report, results from the rig and helicopter data analysis will be compared for differences and similarities in condition indicator (CI) response. Observations and findings using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented. In the helicopter, gear health monitoring data was measured when damage occurred and after the gear sets were replaced at two helicopter regimes. For the helicopters or tails, data was taken in the flat pitch ground 101 rotor speed (FPG101) regime. For nine tails, data was also taken at 120 knots true airspeed (120KTA) regime. In the test rig, gear sets were tested until damage initiated and progressed while gear health monitoring data and operational parameters were measured and tooth damage progression documented. For the rig tests, the gear speed was maintained at 3500RPM, a one hour run-in was performed at 4000 in-lb gear torque, than the torque was increased to 8000 in-lbs. The HUMS gear condition indicator data evaluated included Figure of Merit 4 (FM4), Root Mean Square (RMS) or Diagnostic Algorithm 1(DA1), + 3 Sideband Index (SI3) and + 1 Sideband Index (SI1). These were selected based on their sensitivity in detecting contact fatigue damage modes from analytical, experimental and historical helicopter data. For this report, the helicopter dataset was reduced to fourteen tails and the test rig data set was reduced to eight tested gear sets. The damage modes compared were separated into three cases. For case one, both the gear and pinion showed signs of contact fatigue or scuffing damage. For case two, only the pinion showed signs of contact fatigue damage or scuffing. Case three was limited to the gear tests when scuffing occurred immediately after the gear run-in. Results of this investigation highlighted the importance of understanding the complete monitored systems, for both the helicopter and test rig, before interpreting health monitoring data. Further work is required to better define these two systems that include better state awareness of the fielded systems, new sensing technologies, new experimental methods or models that quantify the effect of system design on CI response and new methods for setting thresholds that take into consideration the variance of each system.

  20. Wave Energy Prize -- Carderock Test Design and Rigging to Accommodate Diversity of Device Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Frederick R

    Wave Energy Prize Carderock Test Design and Rigging to Accommodate Diversity of Device Types presentation from the Water Power Technologies Office Peer Review, FY14-FY16. The challenge was to determine testing conditions, develop processing algorithms, and execute tests for equitable and consistent evaluation of different wave energy converter (WEC) technologies.

  1. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  2. Space Shuttle Tail Service Mast Concept Verification

    NASA Technical Reports Server (NTRS)

    Uda, R. T.

    1976-01-01

    Design studies and analyses were performed to describe the loads and dynamics of the space shuttle tail service masts (TSMs). Of particular interest are the motion and interaction of the umbilical carrier plate, lanyard system, vacuum jacketed hoses, latches, links, and masthead. A development test rig was designed and fabricated to obtain experimental data. The test program is designed to (1) verify the theoretical dynamics calculations, (2) prove the soundness of design concepts, and (3) elucidate problem areas (if any) in the design of mechanisms and structural components. Design, fabrication, and initiation of TSM development testing at Kennedy Space Center are described.

  3. Oscillating-flow regenerator test rig

    NASA Technical Reports Server (NTRS)

    Wood, J. G.; Gedeon, D. R.

    1994-01-01

    This report summarizes work performed in setting up and performing tests on a regenerator test rig. An earlier status report presented test results, together with heat transfer correlations, for four regenerator samples (two woven screen samples and two felt metal samples). Lessons learned from this testing led to improvements to the experimental setup, mainly instrumentation as well as to the test procedure. Given funding and time constraints for this project it was decided to complete as much testing as possible while the rig was set up and operational, and to forego final data reduction and analysis until later. Additional testing was performed on several of the previously tested samples as well an on five newly fabricated samples. The following report is a summary of the work performed at OU, with many of the final test results included in raw data form.

  4. Experimental clean combustor program, phase 3: Noise measurement addendum. [CF6-50 high bypass turbofan engine noise

    NASA Technical Reports Server (NTRS)

    Doyle, V. L.

    1978-01-01

    The acoustic characteristics of the double annular combustor in a CF6-50 high bypass turbofan engine were investigated. Internal fluctuating pressure measurements were made in the combustor region and in the core exhaust. The transmission loss across the turbine and nozzle was determined from the measurements and compared to previous component results and present theory. The primary noise source location in the combustor was investigated. Spectral comparisons of test rig results were made with the engine results. The measured overall power level was compared with component and engine correlating parameters.

  5. Dynamics of the McDonnell Douglas Large Scale Dynamic Rig and Dynamic Calibration of the Rotor Balance

    DOT National Transportation Integrated Search

    1994-10-01

    A shake test was performed on the Large Scale Dynamic Rig in the 40- by 80-Foot Wind Tunnel in support of the McDonnell Douglas Advanced Rotor Technology (MDART) Test Program. The shake test identifies the hub modes and the dynamic calibration matrix...

  6. Small-scale rotor test rig capabilities for testing vibration alleviation algorithms

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Leyland, Jane Anne

    1987-01-01

    A test was conducted to assess the capabilities of a small scale rotor test rig for implementing higher harmonic control and stability augmentation algorithms. The test rig uses three high speed actuators to excite the swashplate over a range of frequencies. The actuator position signals were monitored to measure the response amplitudes at several frequencies. The ratio of response amplitude to excitation amplitude was plotted as a function of frequency. In addition to actuator performance, acceleration from six accelerometers placed on the test rig was monitored to determine whether a linear relationship exists between the harmonics of N/Rev control input and the least square error (LSE) identification technique was used to identify local and global transfer matrices for two rotor speeds at two batch sizes each. It was determined that the multicyclic control computer system interfaced very well with the rotor system and kept track of the input accelerometer signals and their phase angles. However, the current high speed actuators were found to be incapable of providing sufficient control authority at the higher excitation frequencies.

  7. Advanced Lubrication for Energy Efficiency, Durability and Lower Maintenance Costs of Advanced Naval Components and Systems

    DTIC Science & Technology

    2010-08-20

    for transmitting the required power and torque. The proper gear set has also been sized to insure life expectancy of the test rig. The shaft design ...these at minimal cost and great environmental safety. These materials specifically designed on antiwear and extreme pressure chemistries can...nanolubricant additives are designed as surface-stabilized nanomaterials that are dispersed in a hydrocarbon medium for maximum effectiveness. This

  8. Development of a Free-to-Roll Transonic Test Capability (Invited)

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Owens, D. B.; Hall, R. M.

    2003-01-01

    As part of the NASA/Navy Abrupt Wing Stall Program, a relatively low-cost, rapid-access wind-tunnel free-to-roll rig was developed. This rig combines the use of conventional models and test apparatuses to evaluate both transonic performance and wing-drop/rock tendencies in a single tunnel entry. A description of the test hardware as well as a description of the experimental procedures is given. The free-to-roll test rig has been used successfully to assess the static and dynamic characteristics of three different configurations--two configurations that exhibit uncommanded lateral motions, (pre-production F/A-18E and AV-8B), and one that did not (F/A-18C).

  9. Preliminary Investigation of Curved Liner Sample in the NASA LaRC Curved Duct Test Rig

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.

    2007-01-01

    This viewgraph presentation reviews the preliminary investigation of the curved liner sample in the NASA LaRC Curved Duct Test Rig (CDTR). It reviews the purpose of the Curved Duct Test Rig. Its purpose is to develop capability to investigate acoustic and aerodynamic properties in ducts. It has several features to accomplish that purpose: (1) Large scale (2) Flow rate to M = 0.275 (3) Higher order mode control (4) Curved flow path (5) Adaptable test section (6) Flexible test configurations. The liner has minimal effect on turbulence or boundary layer growth in duct. The curved duct sample attenuation is affected by mode scattering. In conclusion, the CDTR is valid tool for aerodynamic and acoustic evaluation of duct treatment

  10. Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.

    2003-01-01

    A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.

  11. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing and parametrics were performed at NASA / Glenn Research Center (GRC) and NASA / Langley Research Center (LaRC) for both the Aerojet and Rocketdyne concepts. LaRC conducted an Air-Breathing Launch Vehicle (ABLV) study for several vehicle concepts with RBCC propulsion systems. LaRC is also performing a CFD analysis of the ramjet mode for both flowpaths based on GASL test conditions. A study was performed in 1999 to investigate the feasibility of performing an RBCC flight test on the NASA / Dryden Flight Research Center (DFRC) SR-71 aircraft. Academia involvement in the ART project includes parametric RBCC flowpath testing by Pennsylvania State University (PSU). In addition to thrust and wall static pressure measurements, PSU is also using laser diagnostics to analyze the flowfield in the test rig. MSFC is performing CFD analysis of the PSU rig at select test conditions for model baseline and validation. Also, Georgia Institute of Technology (GT) conducted a vision vehicle study using the Aerojet RBCC concept. Overall, the ART project has been very successful in advancing RBCC technology. Along the way, several major milestones were achieved and "firsts" accomplished. For example, under the ART project, the first dynamic trajectory simulation testing was performed and the Rocketdyne engine A5 logged over one hour of accumulated test time. The next logical step is to develop and demonstrate a flight-weight RBCC engine system.

  12. Innovative workover/drilling rigs to utilize hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noran, D.

    1975-09-29

    While Western Gear Corp., Everett, Wash., is currently building 2 models of a hydraulic workover/drilling rig (one offshore and the other a trailer-mounted land rig), Bender Co., Bakersfield, Calif., already has an all-hydraulic servicing/drilling rig undergoing tests. The rigs are similar in that they eliminate the traveling block, crown block, draw works, chains, and sprockets found on the conventional rig. The major design innovation on the Western Gear model is the 260,000-lb-capacity hoisting system in which 2 hydraulic rams are anchored to the rig floor and carry all the pipe weight, thus eliminating the danger of the derrick's being pulledmore » in. Other changes involve the tripping system, a power swivel/elevator, and the control valves. Maintenance and labor cost reductions are expected to be substantial. The Bender Co. rig has a single-section mast that is a lever-lift-type derrick which serves as a guide for the rams and a support for the pipe-racking platform. Hoisting capacity depends on the number and size of the lifting rods (which support the crown sheaves) and the hydraulic pressure applied. Manufacturing and operating costs are expected to be less than for conventional rigs.« less

  13. Hot corrosion testing of Ni-based alloys and coatings in a modified Dean rig

    NASA Astrophysics Data System (ADS)

    Steward, Jason Reid

    Gas turbine blades are designed to withstand a variety of harsh operating conditions. Although material and coating improvements are constantly administered to increase the mean time before turbine refurbishment or replacement, hot corrosion is still considered as the major life-limiting factor in many industrial and marine gas turbines. A modified Dean rig was designed and manufactured at Tennessee Technological University to simulate the accelerated hot corrosion conditions and to conduct screening tests on the new coatings on Ni-based superalloys. Uncoated Ni-based superalloys, Rene 142 and Rene 80, were tested in the modified Dean rig to establish a testing procedure for Type I hot corrosion. The influence of surface treatments on the hot corrosion resistance was then investigated. It was found that grit-blasted specimens showed inferior hot corrosion resistance than that of the polished counterpart. The Dean rig was also used to test model MCrAlY alloys, pack cementation NiAl coatings, and electro-codeposited MCrAlY coatings. Furthermore, the hot corrosion attack on the coated-specimens were also assessed using a statistical analysis approach.

  14. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)

    2000-01-01

    As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.

  15. Status of the Combined Cycle Engine Rig

    NASA Technical Reports Server (NTRS)

    Saunders, Dave; Slater, John; Dippold, Vance

    2009-01-01

    Status for the past year is provided of the turbine-based Combined-Cycle Engine (CCE) Rig for the hypersonic project. As part of the first stage propulsion of a two-stage-to-orbit vehicle concept, this engine rig is designed with a common inlet that supplies flow to a turbine engine and a dual-mode ramjet / scramjet engine in an over/under configuration. At Mach 4 the inlet has variable geometry to switch the airflow from the turbine to the ramjet / scramjet engine. This process is known as inlet mode-transition. In addition to investigating inlet aspects of mode transition, the rig will allow testing of turbine and scramjet systems later in the test series. Fully closing the splitter cowl "cocoons" the turbine engine and increases airflow to the scramjet duct. The CCE Rig will be a testbed to investigate integrated propulsion system and controls technology objectives. Four phases of testing are planned to 1) characterize the dual inlet database, 2) collect inlet dynamics using system identification techniques, 3) implement an inlet control to demonstrate mode-transition scenarios and 4) demonstrate integrated inlet/turbine engine operation through mode-transition. Status of the test planning and preparation activities is summarized with background on the inlet design and small-scale testing, analytical CFD predictions and some details of the large-scale hardware. The final stages of fabrication are underway.

  16. Rolling contact fatigue of surface modified 440C using a 'Ge-Polymet' type disc rod test rig

    NASA Technical Reports Server (NTRS)

    Thom, Robert L.

    1989-01-01

    Through hardened 440 C martensitic stainless steel test specimens were surface modified and tested for changes in rolling contact fatigue using a disc on rod test rig. The surface modifications consisted of nitrogen, boron, titanium, chromium, tantalum, carbon, or molybdenum ion implantation at various ion fluences and energies. Tests were also performed on specimens reactively sputtered with titanium nitride.

  17. Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

    2011-01-01

    This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

  18. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    PubMed

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  19. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    PubMed Central

    Ramachandran, Rahul; Menezes, Pradeep L.

    2017-01-01

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint. PMID:28956819

  20. Water droplet erosion of stainless steel steam turbine blades

    NASA Astrophysics Data System (ADS)

    Kirols, H. S.; Kevorkov, D.; Uihlein, A.; Medraj, M.

    2017-08-01

    Steam turbine blades are highly subjected to water droplet erosion (WDE) caused by high energy impingement of liquid water droplets. However, most of the published research on this wear phenomenon is performed on laboratory test rigs, instead of addressing WDE of actual steam turbine blades. In this work, the progression of erosion on the surface of ex-service low pressure steam turbine blades was investigated using scanning electron microscopy. The erosion appearance and mechanisms are compared with laboratory test rig results that are carried out using a rotating disk rig according to ASTM G73 standard. Initial and advanced erosion stages could be observed on the steam turbine blades. Similar to the WDE rig coupons, initial pits and cracks were preceded by blade surface roughening through the formation of asperities and depressions. In addition, it was also observed that the twist angle of the turbine blade around its diagonal, is an important parameter that influences its WDE. Twist angle has an effect on: impact angle, erosion appearance, impact speed, and the affected area. Furthermore, according to the current experimental results, multi-ray rig erosion test results are considered the closest simulation to the actual ex-service blade in terms of damage appearance.

  1. 46 CFR 162.050-19 - Oil content meter and bilge alarm test rig.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Oil content meter and bilge alarm test rig. 162.050-19 Section 162.050-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment...

  2. Advanced Gas Turbine (AGT) Technology Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.

  3. Demonstration of laser speckle system on burner liner cyclic rig

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1986-01-01

    A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.

  4. Overview of Glenn Mechanical Components Branch Research

    NASA Astrophysics Data System (ADS)

    Zakrajsek, James

    2002-09-01

    Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.

  5. Methods to Measure, Predict and Relate Friction, Wear and Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gravante, Steve; Fenske, George; Demas, Nicholas

    High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAKmore » and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110°C.« less

  6. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Corman; Krishan Luthra; Jill Jonkowski

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000more » hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.« less

  7. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  8. Comparative Study of Impedance Eduction Methods. Part 1; DLR Tests and Methodology

    NASA Technical Reports Server (NTRS)

    Busse-Gerstengarbe, Stefan; Bake, Friedrich; Enghardt, Lars; Jones, Michael G.

    2013-01-01

    The absorption efficiency of acoustic liners used in aircraft engines is characterized by the acoustic impedance. World wide, many grazing ow test rigs and eduction methods are available that provide values for that impedance. However, a direct comparison and assessment of the data of the di erent rigs and methods is often not possible because test objects and test conditions are quite di erent. Only a few papers provide a direct comparison. Therefore, this paper together with a companion paper, present data measured with a reference test object under similar conditions in the DLR and NASA grazing ow test rigs. Additionally, by applying the in-house methods Liner Impedance Non-Uniform ow Solving algorithm (LINUS, DLR) and Convected Helmhholtz Equation approach (CHE, NASA) on the data sets, similarities and differences due to underlying theory are identi ed and discussed.

  9. A numerical model of a HIL scaled roller rig for simulation of wheel-rail degraded adhesion condition

    NASA Astrophysics Data System (ADS)

    Conti, Roberto; Meli, Enrico; Pugi, Luca; Malvezzi, Monica; Bartolini, Fabio; Allotta, Benedetto; Rindi, Andrea; Toni, Paolo

    2012-05-01

    Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel-roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel-rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel-roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.

  10. Validation of Helicopter Gear Condition Indicators Using Seeded Fault Tests

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula; Brandon, E. Bruce

    2013-01-01

    A "seeded fault test" in support of a rotorcraft condition based maintenance program (CBM), is an experiment in which a component is tested with a known fault while health monitoring data is collected. These tests are performed at operating conditions comparable to operating conditions the component would be exposed to while installed on the aircraft. Performance of seeded fault tests is one method used to provide evidence that a Health Usage Monitoring System (HUMS) can replace current maintenance practices required for aircraft airworthiness. Actual in-service experience of the HUMS detecting a component fault is another validation method. This paper will discuss a hybrid validation approach that combines in service-data with seeded fault tests. For this approach, existing in-service HUMS flight data from a naturally occurring component fault will be used to define a component seeded fault test. An example, using spiral bevel gears as the targeted component, will be presented. Since the U.S. Army has begun to develop standards for using seeded fault tests for HUMS validation, the hybrid approach will be mapped to the steps defined within their Aeronautical Design Standard Handbook for CBM. This paper will step through their defined processes, and identify additional steps that may be required when using component test rig fault tests to demonstrate helicopter CI performance. The discussion within this paper will provide the reader with a better appreciation for the challenges faced when defining a seeded fault test for HUMS validation.

  11. Development of spiral-groove self-acting seals for helicopter engines

    NASA Technical Reports Server (NTRS)

    Obrien, M.

    1979-01-01

    A spiral-groove, self-acting face seal was rig tested at advanced gas turbine operating conditions to determine wear and leakage rates. The spiral-groove, self-acting geometry was located in the rotating seal seat. Seal component wear induced by start-stop operation was measured after subjecting the test seal to 176 start-stop cycles. Wear occurring during normal operation was documented throughout a 75-hour endurance test. Seal air leakage was also measured. During endurance operation, the seal was subjected to operating conditions bounded by the values surface speed - 244 m/s (800 ft/sec), air pressure - 148 N/sq cm abs (215 psia), and air temperature - 622 K (660 F). The post-test condition of the seal components was documented. Wear data is presented in tabular form, while seal air leakage is presented graphically, as a function of pressure and speed.

  12. PS300 Tribomaterials Evaluated at 6500C by Bushing Test Rig

    NASA Technical Reports Server (NTRS)

    Striebing, Donald R.; DellaCorte, Christopher

    2004-01-01

    A new facility has been developed to test the tribological behavior (friction and wear) of PS300 solid lubricant bushings at high temperatures. PS300 is a commercially available solid lubricant invented at the NASA Glenn Research Center. It can be prepared as a plasma spray coating or as a free-standing powder metallurgy component, designated PM300. PS300 and PM300 composites are designed to lubricate sliding components at temperatures above the capability of today's best oils, greases, and solid lubricants. One of the primary applications being pursued for PM300 is the development of bushings for use in high-temperature machinery. Examples include inlet guide vane bushings for gas turbines and conveyors, and bearings for industrial furnaces and ovens. Encouraging preliminary field trials indicate that PS300 and PM300 lubricant materials have been commercialized successfully in several industrial applications. However, the lack of laboratory performance data has hindered further commercialization especially for new applications that differ significantly from the established experience base. The purpose of the newly developed bushing test rig will be to determine the performance characteristics of PM300, and other materials, under conditions closely matching intended applications. The data will be used to determine engineering friction and wear rates and to estimate the life expectancy of bushings for new applications. In the new rig, the bushing is loaded against a rotating shaft inside a furnace enclosure (see the preceding photograph). Loads can vary from 5 to 200 N, speeds from 1 to 400 rpm, and temperatures from 25 to 800 C. Furnace temperature, bushing temperature, shaft speed, and torque are monitored during the test, and wear of both the bushing and the shaft is measured after testing is completed. Initially, PM300 bushings will be evaluated and compared with lower temperature, traditional bushing materials like graphite and porous bronze. The baseline PM304 composition is 60 wt% NiCr (a binder), 20 wt% Cr2O3 (a hardener), 10 wt% BaF2/CaF2 (a high-temperature lubricant), and 10 wt% Ag (a low-temperature lubricant). Future research efforts will include determining the effects of load, sliding speed, and temperature on tribological performance and, possibly, tailoring composition for specific applications. We expect that the availability of measured performance data will enhance the market penetration of PM300 technology.

  13. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.

  14. An alternate lining scheme for solar ponds - Results of a liner test rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, P.; Kishore, V.V.N.

    1990-01-01

    Solar pond lining schemes consisting of combinations of clays and Low Density Polyethylene (LDPE) films have been experimentally evaluated by means of a Solar Pond Liner Test Rig. Results indicate that LDPE film sandwiched between two layers of clay can be effectively used for lining solar ponds.

  15. BURNER RIG TESTING OF A500 C/SiC

    DTIC Science & Technology

    2018-03-17

    test program characterized the durability behavior of A500® C/SiC ceramic matrix composite material at room and elevated temperature . Specimens were...7 Figure 6. Typical Room- Temperature Tensile Stress-Versus-Strain Trace for As-Manufactured A500...Operation ......................................... 18 Figure 17. Example of the Burner Rig Temperature Profiles Used

  16. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  17. A comparative analysis of passive twin tube and skyhook MRF dampers for motorcycle front suspensions

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi; Gravatt, John

    2004-07-01

    A comparative analysis between conventional passive twin tube dampers and skyhook-controlled magneto-rheological fluid (MRF) dampers for motorcycle front suspensions is provided, based on single axis testing in a damper test rig and suspension performance testing in road trials. Performance motorcycles, while boasting extremely light suspension components and competition-ready performance, have an inherent weakness in comfort, as the suspension systems are designed primarily for racing purposes. Front suspension acceleration and shock loading transmit directly through the front suspension triple clamp into the rider's arms and shoulders, causing rapid fatigue in shoulder muscles. Magneto-rheological fluid dampers and skyhook control systems offer an alternative to conventional sport motorcycle suspensions - both performance and comfort can be combined in the same package. Prototype MRF dampers designed and manufactured specifically for this application require no more space than conventional twin tube designs while adding only 1.7 pounds total weight to the system. The MRF dampers were designed for high controllability and low power consumption, two vital considerations for a motorcycle application. The tests conducted include the dampers' force-velocity curve testing in a damper test rig and suspension performance based on damper position, velocity, and acceleration measurement. Damper test rig results show the MRF dampers have a far greater range of adjustability than the test vehicle's OEM dampers. Combined with a modified sky-hook control system, the MRF dampers can greatly decrease the acceleration and shock loading transmitted to the rider through the handlebars while contributing performance in manners such as anti-dive under braking. Triple clamp acceleration measurements from a variety of staged road conditions, such as sinusoidal wave inputs, will be compared to subjective test-rider field reports to establish a correlation between rider fatigue and the front suspension performance. This testing will be conducted on the OEM vehicle suspension, the passive MRF dampers, and the skyhook-controlled MRF damper front suspension. The results of this test will determine the viability of skyhook-controlled MRF damper systems on motorcycles for performance gain and fatigue reduction.

  18. Modernization of the Transonic Axial Compressor Test Rig

    DTIC Science & Technology

    2017-12-01

    13. ABSTRACT (maximum 200 words) This work presents the design and simulation process of modernizing the Naval Postgraduate School’s transonic...fabricate the materials. Stiffness tests and modal analysis were conducted via Finite Element Analysis (FEA) software. This analysis was used to design ...work presents the design and simulation process of modernizing the Naval Postgraduate School’s transonic compressor test rig (TCR). The TCR, which

  19. New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.

    2004-01-01

    A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and install the new compact arena in fiscal year 2002 has paid dividends in fiscal year 2003 and will for many years to come. It has provided a dedicated, high-quality acoustic arena to support low-speed fan testing for ANCF while minimizing scheduling impacts and improving operational productivity in the AAPL facility.

  20. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gadeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2007-01-01

    An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use.

  1. Burner Rig Laboratory

    NASA Image and Video Library

    2015-05-12

    The Fuel Burner Rig is a test laboratory at NASA Glenn, which subjects new jet engine materials, treated with protective coatings, to the hostile, high temperature, high velocity environment found inside aircraft turbine engines. These samples face 200-mile per hour flames to simulate the temperatures of aircraft engines in flight. The rig can also simulate aircraft carrier and dusty desert operations where salt and sand can greatly reduce engine life and performance.

  2. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses.

    PubMed

    Santiago, Felix W; Covaleda, Lina M; Sanchez-Aparicio, Maria T; Silvas, Jesus A; Diaz-Vizarreta, Ana C; Patel, Jenish R; Popov, Vsevolod; Yu, Xue-jie; García-Sastre, Adolfo; Aguilar, Patricia V

    2014-04-01

    Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-β) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions.

  3. Hijacking of RIG-I Signaling Proteins into Virus-Induced Cytoplasmic Structures Correlates with the Inhibition of Type I Interferon Responses

    PubMed Central

    Santiago, Felix W.; Covaleda, Lina M.; Sanchez-Aparicio, Maria T.; Silvas, Jesus A.; Diaz-Vizarreta, Ana C.; Patel, Jenish R.; Popov, Vsevolod; Yu, Xue-jie; García-Sastre, Adolfo

    2014-01-01

    ABSTRACT Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-β) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. IMPORTANCE The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions. PMID:24478431

  4. Design and Testing of Suit Regulator Test Rigs

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2010-01-01

    The next generation space suit requires additional capabilities for controlling and adjusting internal pressure compared to that of historical designs. Next generation suit pressures will range from slight pressure, for astronaut prebreathe comfort, to hyperbaric pressure levels for emergency medical treatment of decompression sickness. In order to test these regulators through-out their development life cycle, novel automated test rigs are being developed. This paper addresses the design philosophy, performance requirements, physical implementation, and test results with various units under test.

  5. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  6. The Development of Environmental Barrier Coating Systems for SiC-SiC Ceramic Matrix Composites: Environment Effects on the Creep and Fatigue Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.

    2014-01-01

    Topics covered include: Environmental barrier coating system development: needs, challenges and limitations; Advanced environmental barrier coating systems (EBCs) for CMC airfoils and combustors; NASA EBC systems and material system evolutions, Current turbine and combustor EBC coating emphases, Advanced development, processing, testing and modeling, EBC and EBC bond coats: recent advances; Design tool and life prediction of coated CMC components; Advanced CMC-EBC rig demonstrations; Summary and future directions.

  7. Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Corrigan, Bob (Technical Monitor); DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    Active control of high-frequency (greater than 500 Hz) combustion instability has been demonstrated in the NASA single-nozzle combustor rig at United Technologies Research Center. The combustor rig emulates an actual engine instability and has many of the complexities of a real engine combustor (i.e. actual fuel nozzle and swirler, dilution cooling, etc.) In order to demonstrate control, a high-frequency fuel valve capable of modulating the fuel flow at up to 1kHz was developed. Characterization of the fuel delivery system was accomplished in a custom dynamic flow rig developed for that purpose. Two instability control methods, one model-based and one based on adaptive phase-shifting, were developed and evaluated against reduced order models and a Sectored-1-dimensional model of the combustor rig. Open-loop fuel modulation testing in the rig demonstrated sufficient fuel modulation authority to proceed with closed-loop testing. During closed-loop testing, both control methods were able to identify the instability from the background noise and were shown to reduce the pressure oscillations at the instability frequency by 30%. This is the first known successful demonstration of high-frequency combustion instability suppression in a realistic aero-engine environment. Future plans are to carry these technologies forward to demonstration on an advanced low-emission combustor.

  8. Progress on Variable Cycle Engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Howlett, R. A.; Lohmann, R. P.

    1979-01-01

    Progress in the development and future requirements of the Variable Stream Control Engine (VSCE) are presented. The two most critical components of this advanced system for future supersonic transports, the high performance duct burner for thrust augmentation, and the low jet coannular nozzle were studied. Nozzle model tests substantiated the jet noise benefit associated with the unique velocity profile possible with a coannular nozzle system on a VSCE. Additional nozzle model performance tests have established high thrust efficiency levels only at takeoff and supersonic cruise for this nozzle system. An experimental program involving both isolated component and complete engine tests has been conducted for the high performance, low emissions duct burner with good results and large scale testing of these two components is being conducted using a F100 engine as the testbed for simulating the VSCE. Future work includes application of computer programs for supersonic flow fields to coannular nozzle geometries, further experimental testing with the duct burner segment rig, and the use of the Variable Cycle Engine (VCE) Testbed Program for evaluating the VSCE duct burner and coannular nozzle technologies.

  9. An investigation of noise produced by unsteady gas flow through silencer elements

    NASA Astrophysics Data System (ADS)

    Mawhinney, Graeme Hugh

    This thesis presents an investigation of the noise produced by unsteady gas flow through silencer elements. The central aim of the research project was to produce a tool for assistance in the design of the exhaust systems of diesel powered electrical generator sets, with the modelling techniques developed having a much wider application in reciprocating internal combustion engine exhaust systems. An automotive cylinder head was incorporated in a purpose built test rig to supply exhaust pulses, typical of those found in the exhaust system of four stroke diesel engines, to various experimental exhaust systems. Exhaust silencer elements evaluated included expansion, re- entrant, concentric tube resonator and absorptive elements. Measurements taken on the test rig included, unsteady superposition pressure in the exhaust ducting, cyclically averaged mass flow rate through the system and exhaust noise levels radiated into a semi-anechoic measurement chamber. The entire test rig was modelled using the 1D finite volume method developed previously developed at Queen's University Belfast. Various boundary conditions, developed over the years, were used to model the various silencer elements being evaluated. The 1D gas dynamic simulation thus estimated the mass flux history at the open end of the exhaust system. The mass flux history was then broken into its harmonic components and an acoustic radiation model was developed to model the sound pressure level produced by an acoustic monopole over a reflecting plane. The accuracy of the simulation technique was evaluated by correlation of measured and simulated superposition pressure and noise data. In general correlation of superposition pressure was excellent for all of the silencer elements tested. Predicted sound pressure level radiated from the open end of the exhaust tailpipe was seen to be accurate in the 100 Hz to 1 kHz frequency range for all of the silencer elements tested.

  10. A Study of the Fluid-Dynamic Pressure Fields on Compressor Reed Valves.

    DTIC Science & Technology

    1985-12-01

    AIR FORCE INSTITUTE OF TECHNOLOGY ": Wright-Patterson Air Force Base, Ohio . . .. " . _ .01 1...mixture containing white pigment, the test rig was painted black to insure better contrast for photography. The oil was dotted on the base plate of...test rig black roughened the Eurtace and slightly reduced the sharpness ox the shock line. For con.iiuration ., three test pressures were chosen. Fhe

  11. Terrain Characterization for Trafficability

    DTIC Science & Technology

    1993-06-01

    pensive and less time-consuming. Although carefully raphy, on vehicle operation. This report focuses on the controlled laboratory tests may be more...relating indentation to soil strength. on a portable test rig or on an off-road vehicle where it A series of controlled experiments to determine the is... Controls and setting values for hydraulic pressures and flow Figure 10. Wheel are test rig (after Wasterhund 1990). 7 Vertical Proximity L ock-Oit~u

  12. Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1994-01-01

    Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.

  13. "Fan-Tip-Drive" High-Power-Density, Permanent Magnet Electric Motor and Test Rig Designed for a Nonpolluting Aircraft Propulsion Program

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.

    2004-01-01

    A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.

  14. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  15. Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1982-01-01

    The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.

  16. Evaluation of EXPLOSAFE. Explosion Suppression System for Aircraft Fuel Tank Protection

    DTIC Science & Technology

    1980-07-01

    between the Baffles,4 after Test 142 66 Test 2: Batt at Mouth of Tail Cone Rotated 3 Degrees 143 67 Test 2: No Rotation of Sealant Anchored Batts in Nose...Data 85 16 One "G" Drop Test Data 87 17 Vent Icing Test Data 911 18 Slosh Rig Transducer Calibration 103 19 Slosh Rig Test Data - Dry Run without Test...airborne applications. xxix Even though the dry weight of the material is somewhat greater 𔃻 d than that of other e,.:plosion suppressant materials

  17. Benchmark Calibration Tests Completed for Stirling Convertor Heater Head Life Assessment

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2005-01-01

    A major phase of benchmark testing has been completed at the NASA Glenn Research Center (http://www.nasa.gov/glenn/), where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive experimentation to aid the development of an analytical life-prediction methodology. Two special-purpose test rigs subjected SRG heater-head pressure-vessel test articles to accelerated creep conditions, using the standard design temperatures to stay within the wall material s operating creep-response regime, but increasing wall stresses up to 7 times over the design point. This resulted in well-controlled "ballooning" of the heater-head hot end. The test plan was developed to provide critical input to analytical parameters in a reasonable period of time.

  18. Characterization of the Tribological Behavior of Oxide-Based NanoMaterials: Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenske, George

    2017-01-04

    Under the Argonne/Pixelligent cooperative research and development agreement (CRADA – C1200801), Argonne performed labscale tribological tests on proprietary nano-sized ZrO 2 material developed by Pixelligent. Pixelligent utilized their proprietary process to prepare variants with different surfactants at different loadings in different carrier fluids for testing and evaluation at Argonne. Argonne applied a range of benchtop tribological test rigs to evaluate friction and wear under a range of conditions (contact geometry, loads, speeds, and temperature) that simulated a broad range of conditions experienced in engines and driveline components. Post-test analysis of worn surfaces provided information on the structure and chemistry ofmore » the tribofilms produced during the tests.« less

  19. Burner rig corrosion of SiC at 1000 deg C

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Stearns, C. A.; Smialek, J. L.

    1985-01-01

    Sintered alpha-SiC was examined in both oxidation and hot corrosion with a burner rig at 400 kPa (4 atm) and 1000 C with a flow velocity of 310 ft/sec. Oxidation tests for times to 46 hr produced virtually no attack, whereas tests with 4 ppm Na produced extensive corrosion in 13-1/2 hr. Thick glassy layers composed primarily of sodium silicate formed in the salt corrosion tests. This corrosion attack caused severe pitting of the silicon carbide substrate which led to a 32 percent strength decrease below the as-received material. Parallel furnace tests of Na2SO4/air induced attacked yielded basically similar results with some slight product composition differences. The differences are explained in terms of the continuous sulfate deposition which occurs in a burner rig.

  20. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  1. Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Robinson, Craig

    2017-01-01

    This presentation summarizes NASA's advanced thermal barrier and environmental barrier coating systems, and the coating performance improvements that has recently been achieved and documented in laboratory simulated rig test conditions. One of the emphases has been placed on the toughness and impact resistance enhancements of the low conductivity, defect cluster thermal barrier coating systems. The advances in the next generation environmental barrier coatings for SiCSiC ceramic matrix composites have also been highlighted, particularly in the design of a new series of oxide-silicate composition systems to be integrated with next generation SiC-SiC turbine engine components for 2700F coating applications. Major technical barriers in developing the thermal and environmental barrier coating systems are also described. The performance and model validations in the rig simulated turbine combustion, heat flux, steam and calcium-magnesium-aluminosilicate (CMAS) environments have helped the current progress in improved temperature capability, environmental stability, and long-term fatigue-environment system durability of the advanced thermal and environmental barrier coating systems.

  2. Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein

    PubMed Central

    Rajsbaum, Ricardo; Albrecht, Randy A.; Wang, May K.; Maharaj, Natalya P.; Versteeg, Gijs A.; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U.

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. PMID:23209422

  3. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.

    PubMed

    Rajsbaum, Ricardo; Albrecht, Randy A; Wang, May K; Maharaj, Natalya P; Versteeg, Gijs A; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

  4. Occupational exposure to airborne contaminants during offshore oil drilling.

    PubMed

    Kirkhus, Niels E; Thomassen, Yngvar; Ulvestad, Bente; Woldbæk, Torill; Ellingsen, Dag G

    2015-07-01

    The aim was to study exposure to airborne contaminants in oil drillers during ordinary work. Personal samples were collected among 65 drill floor workers on four stationary and six moveable rigs in the Norwegian offshore sector. Air concentrations of drilling mud were determined based on measurements of the non-volatile mud components Ca and Fe. The median air concentration of mud was 140 μg m(-3). Median air concentrations of oil mist (180 μg m(-3)), oil vapour (14 mg m(-3)) and organic carbon (46 μg m(-3)) were also measured. All contaminants were detected in all work areas (drill floor, shaker area, mud pits, pump room, other areas). The highest air concentrations were measured in the shaker area, but the differences in air concentrations between working areas were moderate. Oil mist and oil vapour concentrations were statistically higher on moveable rigs than on stationary rigs, but after adjusting for differences in mud temperature the differences between rig types were no longer of statistical significance. Statistically significant positive associations were found between mud temperature and the concentrations of oil mist (Spearman's R = 0.46) and oil vapour (0.39), and between viscosity of base oil and oil mist concentrations. Use of pressure washers was associated with higher air concentrations of mud. A series of 18 parallel stationary samples showed a high and statistically significant association between concentrations of organic carbon and oil mist (r = 0.98). This study shows that workers are exposed to airborne non-volatilized mud components. Air concentrations of volatile mud components like oil mist and oil vapour were low, but were present in all the studied working areas.

  5. Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David, B.

    2013-01-01

    Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.

  6. Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1982-01-01

    The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs.

  7. Virtual test rig to improve the design and optimisation process of the vehicle steering and suspension systems

    NASA Astrophysics Data System (ADS)

    Mántaras, Daniel A.; Luque, Pablo

    2012-10-01

    A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.

  8. Comparison of High-Speed Operating Characteristics of Size 215 Cylindrical-Roller Bearings as Determined in Turbojet Engine and in Laboratory Test Rig

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Nemeth, Zolton N

    1952-01-01

    A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made by means of a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and the outer-race bearing operating temperatures are computed for the laboratory test rig and the turbojet engine. A method is given that enables the designer to predict the inner- and outer-race turbine roller-bearing temperatures from single curves, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter, or any combination of these parameters.

  9. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

  10. Oxidizer heat exchanger component testing

    NASA Technical Reports Server (NTRS)

    Kmiec, T.; Kanic, P.

    1986-01-01

    As part of the RL10 Rocket Engine Product Improvement Program, Oxidizer Heat Exchanger (OHE) stages 1, 2, and 3 were designed and fabricated during late 1983 and early 1984. The purpose of the OHE is to provide gaseous oxygen to the propellant injector for stable engine operation at tank head idle and pumped idle operating modes. This report summarizes the OHE stages 1 and 3 rig testing, and includes the separation of the stage 1-and-2 assembly and the remanifolding of stage 1. The OHE performance analysis and analytical model modifications for both stages are also presented. The flow tests were accomplished during the time period from 9 October 1984 to 12 November 1984.

  11. Blowout Prevention System Events and Equipment Component Failures : 2016 SafeOCS Annual Report

    DOT National Transportation Integrated Search

    2017-09-22

    The SafeOCS 2016 Annual Report, produced by the Bureau of Transportation Statistics (BTS), summarizes blowout prevention (BOP) equipment failures on marine drilling rigs in the Outer Continental Shelf. It includes an analysis of equipment component f...

  12. Dry calibration of electromagnetic flowmeters based on numerical models combining multiple physical phenomena (multiphysics)

    NASA Astrophysics Data System (ADS)

    Fu, X.; Hu, L.; Lee, K. M.; Zou, J.; Ruan, X. D.; Yang, H. Y.

    2010-10-01

    This paper presents a method for dry calibration of an electromagnetic flowmeter (EMF). This method, which determines the voltage induced in the EMF as conductive liquid flows through a magnetic field, numerically solves a coupled set of multiphysical equations with measured boundary conditions for the magnetic, electric, and flow fields in the measuring pipe of the flowmeter. Specifically, this paper details the formulation of dry calibration and an efficient algorithm (that adaptively minimizes the number of measurements and requires only the normal component of the magnetic flux density as boundary conditions on the pipe surface to reconstruct the magnetic field involved) for computing the sensitivity of EMF. Along with an in-depth discussion on factors that could significantly affect the final precision of a dry calibrated EMF, the effects of flow disturbance on measuring errors have been experimentally studied by installing a baffle at the inflow port of the EMF. Results of the dry calibration on an actual EMF were compared against flow-rig calibration; excellent agreements (within 0.3%) between dry calibration and flow-rig tests verify the multiphysical computation of the fields and the robustness of the method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement.

  13. Evaluation of wheel/rail contact mechanics : roller rig concept design review.

    DOT National Transportation Integrated Search

    2014-07-01

    A need exists for a new test rig design with advanced sensing technologies that will allow the railroad industry and regulatory : agencies to better understand the wheel-rail contact dynamics and mechanics, especially as it pertains to high-speed rai...

  14. Unsteady flow phenomena in industrial centrifugal compressor stage

    NASA Technical Reports Server (NTRS)

    Bonciani, L.; Terrinoni, L.; Tesei, A.

    1982-01-01

    The results of an experimental investigation on a typical centrifugal compressor stage running on an atmospheric pressure test rig are shown. Unsteady flow was invariably observed at low flow well before surge. In order to determine the influence of the statoric components, the same impeller was repeatedly tested with the same vaneless diffuser, but varying return channel geometry. Experimental results show the strong effect exerted by the return channel, both on onset and on the behavior of unsteady flow. Observed phenomena have been found to confirm well the observed dynamic behavior of full load tested machines when gas density is high enough to cause appreciable mechanical vibrations. Therefore, testing of single stages at atmospheric pressure may provide a fairly accurate prediction of this kind of aerodynamic excitation.

  15. Evaluation of candidate stirling engine heater tube alloys at 820 deg and 860 deg C

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1982-01-01

    Seven commercial alloys were evaluated in Stirling simulator materials rigs. Five iron base alloys (N-155, A-286, Incoloy 800, 19-9DL, and 316 stainless steel), one nickel base alloy (Inconel 718), and one cobalt base alloy (HS-188) were tested in the form of thin wall tubing in a diesel fuel fired test rig. Tubes filled with hydrogen or helium at gas pressure of 21.6 MPa and temperatures of 820 and 860 C were endurance tested for 1000 and 535 hours, respectively. Results showed that under these conditions hydrogen permeated rapidly through the tube walls, thus requiring refilling during each five hour cycle. Helium was readily contained, exhibiting no measurable loss by permeation. Helium filled tubes tested at 860 C all exhibited creep-rupture failures within the 535 hour endurance test. Subsequent tensile test evaluation after removal from the rig indicated reduced room temperature ductility for some hydrogen-filled tubes compared to helium-filled tubes, suggesting possible hydrogen embrittlement in these alloys.

  16. Magnetic Excitation for Spin Vibration Testing

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Mehmed, Oral; Brown, Gerald V.

    1997-01-01

    The Dynamic Spin Rig Laboratory (DSRL) at the NASA Lewis Research Center is a facility used for vibration testing of structures under spinning conditions. The current actuators used for excitation are electromagnetic shakers which are configured to apply torque to the rig's vertical rotor. The rotor is supported radially and axially by conventional bearings. Current operation is limited in rotational speed, excitation capability, and test duration. In an effort to enhance its capabilities, the rig has been initially equipped with a radial magnetic bearing which provides complementary excitation and shaft support. The new magnetic feature has been used in actual blade vibration tests and its performance has been favorable. Due to the success of this initial modification further enhancements are planned which include making the system fully magnetically supported. This paper reports on this comprehensive effort to upgrade the DSRL with an emphasis on the new magnetic excitation capability.

  17. Blade loss transient dynamics analysis, volume 1. Task 1: Survey and perspective. [aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.

    1981-01-01

    An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.

  18. 78 FR 70326 - Rigging Equipment for Material Handling; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ...OSHA solicits public comments concerning its proposal to extend the OMB approval of the information collection requirements contained in paragraphs (b)(1), (b)(6)(i), (b)(6)(ii), (c)(15)(ii), (e)(1)(i), (ii), and (iii) and (f)(2) of the Standard on Rigging Equipment for Material Handling (29 CFR 1926.251). These paragraphs require affixing identification tags or markings on rigging equipment, developing and maintaining inspection records, and retaining proof- testing certificates.

  19. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER Tank Arrives at NASA’s Marshall Center for Spray-On Foam InsulationSHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.

  20. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.SHIIVER Tank Arrives at NASA’s Marshall Center for Spray-On Foam Insulation

  1. Investigation of Spiral Bevel Gear Condition Indicator Validation via AC-29-2C Using Fielded Rotorcraft HUMS Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Wade, Daniel R.; Antolick, Lance J.; Thomas, Josiah

    2014-01-01

    This report presents the analysis of gear condition indicator data collected on a helicopter when damage occurred in spiral bevel gears. The purpose of the data analysis was to use existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a Case Study, to better understand the differences between HUMS data response in a helicopter and a component test rig, the NASA Glenn Spiral Bevel Gear Fatigue Rig. The reason spiral bevel gear sets were chosen to demonstrate differences in response between both systems was the availability of the helicopter data and the availability of a test rig that was capable of testing spiral bevel gear sets to failure. The objective of the analysis presented in this paper was to re-process helicopter HUMS data with the same analysis techniques applied to the spiral bevel rig test data. The damage modes experienced in the field were mapped to the failure modes created in the test rig. A total of forty helicopters were evaluated. Twenty helicopters, or tails, experienced damage to the spiral bevel gears in the nose gearbox. Vibration based gear condition indicators data was available before and after replacement. The other twenty tails had no known anomalies in the nose gearbox within the time frame of the datasets. These twenty tails were considered the baseline dataset. The HUMS gear condition indicators evaluated included gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS) or Diagnostic Algorithm 1 (DA1) and +/- 3 Sideband Index (SI3). Three additional condition indicators, not currently calculated on-board, were calculated from the archived data. These three indicators were +/- 1 Sideband Index (SI1), the DA1 of the difference signal (DiffDA1) and the peak-to-peak of the difference signal (DP2P). Results found the CI DP2P, not currently available in the on-board HUMS, performed the best, responding to varying levels of damage on thirteen of the fourteen helicopters evaluated. Two additional CIs also not in the on-board system, DiffDA1and SI1, also performed well responding to twelve and ten of the fourteen helicopters evaluated respectively. Of the three CIs currently available in the MSPU, DA1, FM4 and SI3, SI3, responded to eight, DA1 responded to six and FM4 responded to four of the fourteen helicopters evaluated. FM4, the poorest performing CI, was not as responsive to damage as the other five CIs. Conversely, when compared to the other two, it was the only CI that responded to damage on two helicopters. CI response could not be correlated to specific failure modes due to limited pictures and subjective descriptions found within the TDA. Flight regime did affect CI response to some gear faults. Due to the range of operating conditions for each regime, more studies are required to determine their sensitivity to regimes.

  2. Laboratory-based experiments to investigate the impact of glyphosate-containing herbicide on pollution attenuation and biodegradation in a model pervious paving system.

    PubMed

    Mbanaso, F U; Coupe, S J; Charlesworth, S M; Nnadi, E O

    2013-01-01

    An experimental investigation was carried out to determine the effect of glyphosate-containing herbicides (GCHs) on the hydrocarbon retention and biodegradation processes known to occur in pervious pavement systems (PPSs). The PPS test rigs were based on the four-layered design detailed in CIRIA C582. This enabled the pollutant retention capacity of the PPS and biodegradation of retained pollutants by microorganisms to be investigated. The use of test rigs also enabled the impact of GCH on PPS eukaryotic organisms to be studied, by the monitoring of protist bioindicators. Results showed that GCH disrupted hydrocarbon retention by the geotextiles relative to rigs with mineral oil only added, as 9.3% and 24.5% of added hydrocarbon were found in herbicide only rigs and herbicide plus oil rigs respectively. In previous studies, PPS contaminated by mineral oil had been shown to retain 98.7% of added oils and over several weeks, biodegrade this oil in situ. Where GCH was added to experimental models, much higher concentrations of heavy metals, including Pb, Cu, and Zn, were released from the PPS in effluent, particularly where GCH and mineral oil were added together. The source of the majority of the metal contamination was thought to be the used engine oil. The herbicide generally increased the total activity of microbial communities in rig systems and had a stimulating effect on bacterial and fungal population numbers. Although the protists, which are part of the microbial community directly or indirectly responsible for biodegradation, were initially strongly affected by the herbicide, they showed resilience by quickly recovering and increasing their population compared with rigs without added herbicide, including the rigs with mineral oil added to them. However, the presence of herbicide was associated with a decrease in the species richness of recorded protist taxa and a predominance of robust, cosmopolitan or ubiquitous protist genera. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Truncation of the C-terminal region of Toscana Virus NSs protein is critical for interferon-β antagonism and protein stability.

    PubMed

    Gori Savellini, Gianni; Gandolfo, Claudia; Cusi, Maria Grazia

    2015-12-01

    Toscana Virus (TOSV) is a Phlebovirus responsible for central nervous system (CNS) injury in humans. The TOSV non-structural protein (NSs), which interacting with RIG-I leads to its degradation, was analysed in the C terminus fragment in order to identify its functional domains. To this aim, two C-terminal truncated NSs proteins, Δ1C-NSs (aa 1-284) and Δ2C-NSs (aa 1-287) were tested. Only Δ1C-NSs did not present any inhibitory effect on RIG-I and it showed a greater stability than the whole NSs protein. Moreover, the deletion of the TLQ aa sequence interposed between the two ΔC constructs caused a greater accumulation of the protein with a weak inhibitory effect on RIG-I, indicating some involvement of these amino acids in the NSs activity. Nevertheless, all the truncated proteins were still able to interact with RIG-I, suggesting that the domains responsible for RIG-I signaling and RIG-I interaction are mapped on different regions of the protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Barszcz, Eric; Turner, Irem Y.; Lewicki, David; Decker, Harry; Norvig, Peter (Technical Monitor)

    1999-01-01

    As part of a cooperative research program between NASA Ames Research Center, NASA Glenn Research Center, and the U.S. Army Laboratories, a series of experiments are being performed on the 500 HP OH-58a Transmission Test Rig at NASA Glenn Research Center. The findings reported in this paper were drawn from Phase 1 of a two-phase experiment, and are focused on the vibration response of an undamaged pinion gear and planetary system operating in situ in the transmission test rig. Phase 2 of the experiment, which is reported elsewhere, introduced a seeded fault into the pinion gear and tracked its progress in real-time. Based on methods presented here, further experimental research will be conducted to examine planetary system faults.

  5. Local infiltration of rabies immunoglobulins without systemic intramuscular administration: An alternative cost effective approach for passive immunization against rabies

    PubMed Central

    Bharti, Omesh Kumar; Madhusudana, Shampur Narayan; Gaunta, Pyare Lal; Belludi, Ashwin Yajaman

    2016-01-01

    ABSTRACT Presently the dose of rabies immunoglobulin (RIG) which is an integral part of rabies post exposure prophylaxis (PEP) is calculated based on body weight though the recommendation is to infiltrate the wound(s). This practice demands large quantities of RIG which may be unaffordable to many patients. In this background, we conducted this study to know if the quantity and cost of RIG can be reduced by restricting passive immunization to local infiltration alone and avoiding systemic intramuscular administration based on the available scientific evidence. Two hundred and sixty nine category III patients bitten by suspect or confirmed rabid dogs/animals were infiltrated with equine rabies immunoglobulin (ERIGs) in and around the wound. The quantity of ERIG used was proportionate to the size and number of wounds irrespective of their body weight. They were followed with a regular course of rabies vaccination by intra-dermal route. As against 363 vials of RIGs required for all these cases as per current recommendation based on body weight, they required only 42 vials of 5ml RIG. Minimum dose of RIGs given was 0.25 ml and maximum dose given was 8 ml. On an average 1.26 ml of RIGs was required per patient that costs Rs. 150 ($3). All the patients were followed for 9 months and they were healthy and normal at the end of observation period. With local infiltration, that required small quantities of RIG, the RIGs could be made available to all patients in times of short supply in the market. A total of 30 (11%) serum samples of patients were tested for rabies virus neutralizing antibodies by the rapid fluorescent focus inhibition test (RFFIT) and all showed antibody titers >0.5 IU/mL by day 14. In no case the dose was higher than that required based on body weight and no immunosuppression resulted. To conclude, this pilot study shows that local infiltration of RIG need to be considered in times of non-availability in the market or unaffordability by poor patients. This preliminary study needs to be done on larger scale in other centers with long term follow up to substantiate the results of our study. PMID:26317441

  6. Gene expression profile after activation of RIG-I in 5'ppp-dsRNA challenged DF1.

    PubMed

    Chen, Yang; Xu, Qi; Li, Yang; Liu, Ran; Huang, Zhengyang; Wang, Bin; Chen, Guohong

    2016-12-01

    Retinoic acid inducible gene I (RIG-I) can recognize influenza viruses and evoke the innate immune response. RIG-I is absent in the chicken genome, but is conserved in the genome of ducks. Lack of RIG-I renders chickens more susceptible to avian influenza infection, and the clinical symptoms are more prominent than in other poultry. It is unknown whether introduction of duck RIG-I into chicken cells can establish the immunity as is seen in ducks and the role of RIG-I in established immunity is unknown. In this study, a chicken cell strain with stable expression of duRIG-I was established by lentiviral infection, giving DF1/LV5-RIG-I, and a control strain DF1/LV5 was established in parallel. To verify stable, high level expression of duRIG-I in DF1 cells, the levels of duRIG-I mRNA and protein were determined by real-time RT-PCR and Western blot, respectively. Further, 5'triphosphate double stranded RNA (5'ppp-dsRNA) was used to mimic an RNA virus infection and the infected DF1/LV5-RIG-I and DF1/LV5 cells were subjected to high-throughput RNA-sequencing, which yielded 193.46 M reads and 39.07 G bases. A total of 278 differentially expressed genes (DEGs), i.e., duRIG-I-mediated responsive genes, were identified by RNA-seq. Among the 278 genes, 120 DEGs are annotated in the KEGG database, and the most reliable KEGG pathways are likely to be the signaling pathways of RIG-I like receptors. Functional analysis by Gene ontology (GO) indicates that the functions of these DEGs are primarily related to Type I interferon (IFN) signaling, IFN-β-mediated cellular responses and up-regulation of the RIG-I signaling pathway. Based on the shared genes among different pathways, a network representing crosstalk between RIG-I and other signaling pathways was constructed using Cytoscape software. The network suggests that RIG-mediated pathway may crosstalk with the Jak-STAT signaling pathway, Toll-like receptor signaling pathway, Wnt signaling pathway, ubiquitin-mediated proteolysis and MAPK signaling pathway during the transduction of antiviral signals. After screening, a group of key responsive genes in RIG-I-mediated signaling pathways, such as ISG12-2, Mx1, IFIT5, TRIM25, USP18, STAT1, STAT2, IRF1, IRF7 and IRF8, were tested for differential expression by real-time RT-PCR. In summary, by combining our results and the current literature, we propose a RIG-I-mediated signaling network in chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Advanced Noise Control Fan: A 20-Year Retrospective

    NASA Technical Reports Server (NTRS)

    Sutliff, Dan

    2016-01-01

    The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.

  8. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  9. Overview of NASA Multi-dimensional Stirling Convertor Code Development and Validation Effort

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David

    2002-01-01

    A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this

  10. A novel pendulum test for measuring roller chain efficiency

    NASA Astrophysics Data System (ADS)

    Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.

    2018-07-01

    This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.

  11. Stress-life relation of the rolling-contact fatigue spin rig

    NASA Technical Reports Server (NTRS)

    Butler, Robert H; Carter, Thomas L

    1957-01-01

    The rolling-contact fatigue spin rig was used to test groups of SAE 52100 9.16-inch-diameter balls lubricated with a mineral oil at 600,000-, 675,000-, and 750,000-psi maximum Hertz stress. Cylinders of AISI M-1 vacuum and commercial melts and MV-1 (AISI M-50) were used as race specimens. Stress-life exponents produced agree closely with values accepted in industry. The type of failure obtained in the spin rig was similar to the subsurface fatigue spells found in bearings.

  12. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  13. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  14. Modelling and validation of magnetorheological brake responses using parametric approach

    NASA Astrophysics Data System (ADS)

    Z, Zainordin A.; A, Abdullah M.; K, Hudha

    2013-12-01

    Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.

  15. Multi-Axis Test Facility Orientation

    NASA Image and Video Library

    1960-03-01

    Seven Astronauts and William North undergo Multi Axis Space Test Inertia Facility (MASTIF) orientation: This film contains footage Gus Grissom leaving "Astro-Penthouse" and beginning tests, pilot Joe Algranti explaining the MASTIF to Scott Carpenter, Walter Schirra testing the controls and being strapped in, Deke Slayton climbing into the rig, and John Glenn preparing for test and being briefed by Algranti. Also seen are Alan Shepherd talking with Algranti and James Useller prior to climbing into rig and beginning test, Gordon Cooper being strapped in and beginning his test, Cooper and Algranti briefing to William North prior to his test. North was a test pilot on the NASA committee which selected the Mercury 7 astronauts.

  16. Development and Initial Testing of the Tiltrotor Test Rig

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Sheikman, A. L.

    2018-01-01

    The NASA Tiltrotor Test Rig (TTR) is a new, large-scale proprotor test system, developed jointly with the U.S. Army and Air Force, to develop a new, large-scale proprotor test system for the National Full-Scale Aerodynamics Complex (NFAC). The TTR is designed to test advanced proprotors up to 26 feet in diameter at speeds up to 300 knots, and even larger rotors at lower airspeeds. This combination of size and speed is unprecedented and is necessary for research into 21st-century tiltrotors and other advanced rotorcraft concepts. The TTR will provide critical data for validation of state-of-the-art design and analysis tools.

  17. Review of Full-Scale Docking Seal Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.; Steinetz, Bruce M.

    2008-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. To evaluate the performance of the seals under simulated operating conditions, NASA GRC is developing two new test rigs: a non-actuated version that will be used to measure seal leak rates and an actuated test rig that will be able to measure both seal leak rates and loads. Both test rigs will be able to evaluate the seals under seal-on-seal or seal-on-plate configurations at temperatures from -50 to 50 C (-58 to 122 F) under operational and pre-flight checkout pressure gradients in both aligned and misaligned conditions.

  18. UHB Engine Fan Broadband Noise Reduction Study

    NASA Technical Reports Server (NTRS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-01-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  19. UHB engine fan broadband noise reduction study

    NASA Astrophysics Data System (ADS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-06-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  20. Rolling-Element Fatigue Testing and Data Analysis - A Tutorial

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.

    2011-01-01

    In order to rank bearing materials, lubricants and other design variables using rolling-element bench type fatigue testing of bearing components and full-scale rolling-element bearing tests, the investigator needs to be cognizant of the variables that affect rolling-element fatigue life and be able to maintain and control them within an acceptable experimental tolerance. Once these variables are controlled, the number of tests and the test conditions must be specified to assure reasonable statistical certainty of the final results. There is a reasonable correlation between the results from elemental test rigs with those results obtained with full-scale bearings. Using the statistical methods of W. Weibull and L. Johnson, the minimum number of tests required can be determined. This paper brings together and discusses the technical aspects of rolling-element fatigue testing and data analysis as well as making recommendations to assure quality and reliable testing of rolling-element specimens and full-scale rolling-element bearings.

  1. Evaluation of the split cantilever beam for Mode 3 delamination testing

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1989-01-01

    A test rig for testing a thick split cantilever beam for scissoring delamination (mode 3) fracture toughness was developed. A 3-D finite element analysis was conducted on the test specimen to determine the strain energy release rate, G, distribution along the delamination front. The virtual crack closure technique was used to calculate the G components resulting from interlaminar tension, GI, interlaminar sliding shear, GII, and interlaminar tearing shear, GIII. The finite element analysis showed that at the delamination front no GI component existed, but a GII component was present in addition to a GIII component. Furthermore, near the free edges, the GII component was significantly higher than the GIII component. The GII/GIII ratio was found to increase with delamination length but was insensitive to the beam depth. The presence of GII at the delamination front was verified experimentally by examination of the failure surfaces. At the center of the beam, where the failure was in mode 3, there was significant fiber bridging. However, at the edges of the beam where the failure was in mode 3, there was no fiber bridging and mode 2 shear hackles were observed. Therefore, it was concluded that the split cantilever beam configuration does not represent a pure mode 3 test. The experimental work showed that the mode 2 fracture toughness, GIIc, must be less than the mode 3 fracture toughness, GIIIc. Therefore, a conservative approach to characterizing mode 3 delamination is to equate GIIIc to GIIc.

  2. Description of a Pressure Measurement Technique for Obtaining Surface Static Pressures of a Radial Turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet

    1992-01-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  3. Description of a pressure measurement technique for obtaining surface static pressures of a radial turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet

    1992-01-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  4. Composite Matrix Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  5. An Overview of Recent Phased Array Measurements at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2008-01-01

    A review of measurements made at the NASA Glenn Research Center using an OptiNAV Array 48 phased array system is provided. Data were acquired on a series of round convergent and convergent-divergent nozzles using the Small Hot Jet Acoustic Rig. Tests were conducted over a range of jet operating conditions, including subsonic and supersonic and cold and hot jets. Phased array measurements were also acquired on a Williams International FJ44 engine. These measurements show how the noise generated by the engine is split between the inlet-radiated and exhaust-radiated components. The data also show inlet noise being reflected off of the inflow control device used during the test.

  6. Cyclic oxidation of coated Oxide Dispersion Strengthened (ODS) alloys in high velocity gas streams at 1100 deg C

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1978-01-01

    Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).

  7. Low and medium heating value coal gas catalytic combustor characterization

    NASA Technical Reports Server (NTRS)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  8. Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    NASA Technical Reports Server (NTRS)

    Duderstadt, E. C.; Agarwal, P.

    1983-01-01

    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.

  9. An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation

    NASA Technical Reports Server (NTRS)

    Bauman, Steve

    2005-01-01

    New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.

  10. High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie

    2007-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  11. NASA Glenn High Pressure Low NOx Emissions Research

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Wey, Changlie

    2008-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  12. A New Tribological Test for Candidate Brush Seal Materials Evaluation

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; Dellacorte, Christopher

    1994-01-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  13. Study of noise and inflow distortion sources in the NASA QF-1B fan using measured blade and vane pressures

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1977-01-01

    Pressure transducers were installed on the blades and vanes of QF-1B, a transonic-tip-speed fan from the NASA Quiet Fan Program which was tested on the outdoor quiet fan test facility at NASA-Lewis. Signals from the transducers and from far field microphones were analyzed to determine sources of nonuniform inflow and noise. The nonuniform inflow was mostly unsteady with roughly equal contributions from atmospheric turbulence and rig interference. The rig interference was largest at the bottom and appeared to be generated by the support structure which was located behind the inlet lip under the fan. Interaction of this inflow distortion was the dominant source of noise at 1, 2, and 3 times blade passing frequency (BPF) at 60, 70, and 80 percent of design speed. At 90 percent speed, noise at BPF was dominated by the steady rotor field. A broadband spectrum peak centered at about 2.2 times BPF was identified as rotor/stator interaction stemming from a high frequency rotor exit flow component. The remaining broadband energy from 0.3 to 3.5 times BPF was attributed to the better known type of rotor/stator interaction associated with rotor wake turbulence.

  14. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.; DiBiasio, A.; Gunther, W.

    1993-09-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failuremore » modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.« less

  15. John Glenn Prepares for a Test in the Multi-Axis Space Test Inertia Facility

    NASA Image and Video Library

    1960-02-21

    Mercury astronaut John Glenn prepares for a test in the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The MASTIF was a three-axis test rig with a pilot’s chair mounted in the center. The device was designed to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig was then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control. In February and March 1960, the seven Project Mercury astronauts traveled to Cleveland to train on the MASTIF. Warren North and a team of air force physicians were on hand to monitor their health. After being briefed by Lewis pilot Joe Algranti and researcher James Useller, the rider would climb into the rig and be secured in the chair, as seen in this photograph. A Lewis engineer would then slowly set the MASTIF in motion. It was the astronaut’s job to bring it under control. Each individual was required to accumulate 4.5 to 5 hours of MASTIF time. Glenn became the first American to orbit the earth on February 20, 1962 in the Friendship 7 Mercury capsule. In March 1999, the Lewis Research Center was renamed the John H. Glenn Research Center at Lewis Field.

  16. Advanced Gas Turbine (AGT) powertrain system

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Kaufeld, J.; Kordes, R.

    1981-01-01

    A 74.5 kW(100 hp) advanced automotive gas turbine engine is described. A design iteration to improve the weight and production cost associated with the original concept is discussed. Major rig tests included 15 hours of compressor testing to 80% design speed and the results are presented. Approximately 150 hours of cold flow testing showed duct loss to be less than the design goal. Combustor test results are presented for initial checkout tests. Turbine design and rig fabrication is discussed. From a materials study of six methods to fabricate rotors, two have been selected for further effort. A discussion of all six methods is given.

  17. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  18. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  19. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Astrophysics Data System (ADS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  20. Comparison of High-Speed Operating Characteristics of Size 215 Cylindrical-Roller Bearings as Determined in Turbojet Engine and in Laboratory Test Rig

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Nemeth, Zolton N

    1951-01-01

    A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.

  1. Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions

    NASA Technical Reports Server (NTRS)

    Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.

    2013-01-01

    The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.

  2. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2014-01-01

    A shake test of the Large Rotor Test Apparatus (LRTA) was performed in an effort to enhance NASAscapability to measure dynamic hub loads for full-scale rotor tests. This paper documents the results of theshake test as well as efforts to calibrate the LRTA balance system to measure dynamic loads.Dynamic rotor loads are the primary source of vibration in helicopters and other rotorcraft, leading topassenger discomfort and damage due to fatigue of aircraft components. There are novel methods beingdeveloped to reduce rotor vibrations, but measuring the actual vibration reductions on full-scale rotorsremains a challenge. In order to measure rotor forces on the LRTA, a balance system in the non-rotatingframe is used. The forces at the balance can then be translated to the hub reference frame to measure therotor loads. Because the LRTA has its own dynamic response, the balance system must be calibrated toinclude the natural frequencies of the test rig.

  3. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  4. Pilot Overmyer eats on middeck

    NASA Image and Video Library

    1982-11-16

    STS005-15-588 (13 Nov. 1982) --- Astronaut Robert F. Overmyer, STS-5 pilot, enjoys a meal from a jury-rigged set-up in the middeck area of the Earth-orbiting space shuttle Columbia. He wears a T-shirt and the trouser portion of a multi-piece constant wear garment. His feet are positioned in recently-rigged foot restraints to avoid involuntary movement in the micro-gravity environment of space. Behind Overmyer are components of the suit, including helmet, worn during landing and takeoff for shuttle flights. The trousers he is presently wearing are part of that attire. Photo credit: NASA

  5. OpenSim as a preliminary kinematic testing platform for the development of total knee arthroplasty implants.

    PubMed

    Chan, Hao Yang; Walker, Peter S

    2018-05-18

    The design of a total knee replacement implant needs to take account the complex surfaces of the knee which it is replacing. Ensuring design performance of the implant requires in vitro testing of the implant. A considerable amount of time is required to produce components and evaluate them inside an experimental setting. Numerous adjustments in the design of an implant and testing each individual design can be time consuming and expensive. Our solution is to use the OpenSim simulation software to rapidly test multiple design configurations of implants. This study modeled a testing rig which characterized the motion and laxity of knee implants. Three different knee implant designs were used to test and validate the accuracy of the simulation: symmetrical, asymmetric, and anatomic. Kinematics were described as distances measured from the center of each femoral condyle to a plane intersecting the most posterior points of the tibial condyles between 0 and 135° of flexion with 15° increments. Excluding the initial flexion measurement (∼0°) results, the absolute differences between all experimental and simulation results (neutral path, anterior-posterior shear, internal-external torque) for the symmetric, asymmetric, and anatomical designs were 1.98 mm ± 1.15, 1.17 mm ± 0.89, and 1.24 mm ± 0.97, respectively. Considering all designs, the accuracy of the simulation across all tests was 1.46 mm ± 1.07. It was concluded that the results of the simulation were an acceptable representation of the testing rig and hence applicable as a design tool for new total knees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  7. Effect of soot on oil properties and wear of engine components

    NASA Astrophysics Data System (ADS)

    Green, D. A.; Lewis, R.

    2007-09-01

    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present.

  8. Modal simulation of gearbox vibration with experimental correlation

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.

    1992-01-01

    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.

  9. The influence of suspension components friction on race car vertical dynamics

    NASA Astrophysics Data System (ADS)

    Benini, Claudio; Gadola, Marco; Chindamo, Daniel; Uberti, Stefano; Marchesin, Felipe P.; Barbosa, Roberto S.

    2017-03-01

    This work analyses the effect of friction in suspension components on a race car vertical dynamics. It is a matter of fact that race cars aim at maximising their performance, focusing the attention mostly on aerodynamics and suspension tuning: suspension vertical and rolling stiffness and damping are parameters to be taken into account for an optimal setup. Furthermore, friction in suspension components must not be ignored. After a test session carried out with a F4 on a Four Poster rig, friction was detected on the front suspension. The real data gathered allow the validation of an analytical model with friction, confirming that its influence is relevant for low frequency values closed to the car pitch natural frequency. Finally, some setup proposals are presented to describe what should be done on actual race cars in order to correct vehicle behaviour when friction occurs.

  10. Development of a high-efficiency motor/generator for flywheel energy storage

    NASA Astrophysics Data System (ADS)

    Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.

    This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.

  11. Development of a high-efficiency motor/generator for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.

    1991-01-01

    This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.

  12. Modernisation of a test rig for determination of vehicle shock absorber characteristics by considering vehicle suspension elements and unsprung masses

    NASA Astrophysics Data System (ADS)

    Maniowski, M.; Para, S.; Knapczyk, M.

    2016-09-01

    This paper presents a modernization approach of a standard test bench for determination of damping characteristics of automotive shock absorbers. It is known that the real-life work conditions of wheel-suspension dampers are not easy to reproduce in laboratory conditions, for example considering a high frequency damper response or a noise emission. The proposed test bench consists of many elements from a real vehicle suspension. Namely, an original tyre-wheel with additional unsprung mass, a suspension spring, an elastic top mount, damper bushings and a simplified wheel guiding mechanism. Each component was tested separately in order to identify its mechanical characteristics. The measured data serve as input parameters for a numerical simulation of the test bench behaviour by using a vibratory model with 3 degrees of freedom. Study on the simulation results and the measurements are needed for further development of the proposed test bench.

  13. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  14. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most efficient configuration to incorporate into the specific compact jet he1 reformer test rig. Additional information is included in the original extended abstract.

  15. Inlet flow test calibration for a small axial compressor rig. Part 2: CFD compared with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Prahst, P. S.

    1995-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the compressor inlet for a highly loaded two-stage axial compressor test. Several flow conditions and inlet guide vane (IGV) angle settings were established, for which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. Several computational fluid dynamics (CFD) calculations were made for selected flow conditions established during the test. Good agreement between the CFD and test data were obtained for these test conditions.

  16. One-Dimensional Spontaneous Raman Measurements of Temperature Made in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; DeGroot, Wilhelmus A.; Anderson, Robert C.

    2002-01-01

    The NASA Glenn Research Center is working with the aeronautics industry to develop highly fuel-efficient and environmentally friendly gas turbine combustor technology. This effort includes testing new hardware designs at conditions that simulate the high-temperature, high-pressure environment expected in the next-generation of high-performance engines. Glenn has the only facilities in which such tests can be performed. One aspect of these tests is the use of nonintrusive optical and laser diagnostics to measure combustion species concentration, fuel/air ratio, fuel drop size, and velocity, and to visualize the fuel injector spray pattern and some combustion species distributions. These data not only help designers to determine the efficacy of specific designs, but provide a database for computer modelers and enhance our understanding of the many processes that take place within a combustor. Until recently, we lacked one critical capability, the ability to measure temperature. This article summarizes our latest developments in that area. Recently, we demonstrated the first-ever use of spontaneous Raman scattering to measure combustion temperatures within the Advanced Subsonics Combustion Rig (ASCR) sector rig. We also established the highest rig pressure ever achieved for a continuous-flow combustor facility, 54.4 bar. The ASCR facility can provide operating pressures from 1 to 60 bar (60 atm). This photograph shows the Raman system setup next to the ASCR rig. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of air inlet temperatures, pressures, and fuel/air ratios.

  17. Turbine engine rotor health monitoring evaluation by means of finite element analyses and spin tests data

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George Y.

    2014-04-01

    Generally, rotating engine components undergo high centrifugal loading environment which subject them to various types of failure initiation mechanisms. Health monitoring of these components is a necessity and is often challenging to implement. This is primarily due to numerous factors including the presence of scattered loading conditions, flaw sizes, component geometry and materials properties, all which hinder the simplicity of applying health monitoring applications. This paper represents a summary work of combined experimental and analytical modeling that included data collection from a spin test experiment of a rotor disk addressing the aforementioned durability issues. It further covers presentation of results obtained from a finite element modeling study to characterize the structural durability of a cracked rotor as it relates to the experimental findings. The experimental data include blade tip clearance, blade tip timing and shaft displacement measurements. The tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory, a high precision spin rig. The results are evaluated and examined to determine their significance on the development of a health monitoring system to pre-predict cracks and other anomalies and to assist in initiating a supplemental physics based fault prediction analytical model.

  18. The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2007-01-01

    Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.

  19. Lateral Stability Simulation of a Rail Truck on Roller Rig

    NASA Astrophysics Data System (ADS)

    Dukkipati, Rao V.

    The development of experimental facilities for rail vehicle testing is being complemented by analytic studies. The purpose of this effort has been to gain insight into the dynamics of rail vehicles in order to guide development of the Roller Rigs and to establish an analytic framework for the design and interpretation of tests to be conducted on Roller Rigs. The work described here represents initial efforts towards meeting these objectives. Generic linear models were developed of a freight car (with a characteristic North American three-piece truck) on tangent track. The models were developed using the generalized multi body dynamics software MEDYNA. Predictions were made of the theoretical linear model hunting (lateral stability) characteristics of the freight car, i. e., the critical speeds and frequencies, for five different configurations: (a) freight car on track, (b) the freight car's front truck on the roller stand and its rear truck on track, (c) freight car on the roller rig, (d) a single truck on track, and (e) single truck on the roller stand. These were compared with the Association of American Railroads' field test data for an 80-ton hopper car equipped with A-3 ride control trucks. Agreement was reached among all the analytical models, with all models indicating a range of hunting speeds of 2% from the highest to lowest. The largest discrepancy, approximately 6%, was indicated between the models and the field test data. Parametric study results using linear model of freight truck on the roller rig show that (a) increasing roller radius increases critical speed (b) increasing the wheel initial cone angle will decrease the hunting speed (c) increasing the roller cant increases hunting speed (d) decrowning of the wheelset on the rollers will not effect the hunting speed but induces longitudinal destabilizing horizontal forces at the contact and (e) lozenging of wheelset on the rollers induces a yaw moment and the hunting speed decreases with increasing wheelset yaw angle.

  20. Experimental clean combustor program, alternate fuels addendum, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1976-01-01

    The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.

  1. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Lowell, C. E.

    1982-01-01

    The failure of a ZrO2-8%Y2O3/Ni-14% Al-0.1% Zr coating system on Rene 41 in Mach 0.3 burner rig tests was characterized. High flame and metal temperatures were employed in order to accelerate coating failure. Failure by delamination was shown to precede surface cracking or spalling. This type of failure could be duplicated by cooling down the specimen after a single long duration isothermal high temperature cycle in a burner rig or a furnace, but only if the atmosphere was oxidizing. Stresses due to thermal expansion mismatch on cooling coupled with the effects of plastic deformation of the bond coat and oxidation of the irregular bond coat are the probable life limiting factors. Heat up stresses alone could not fail the coating in the burner rig tests. Spalling eventually occurs on heat up but only after the coating has already failed through delamination.

  2. Ballistic and Cyclic Rig Testing of Braided Composite Fan Case Structures

    NASA Technical Reports Server (NTRS)

    Watson, William R.; Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.

    2015-01-01

    FAA fan blade-out certification testing on turbofan engines occurs very late in an engine's development program and is very costly. It is of utmost importance to approach the FAA Certification engine test with a high degree of confidence that the containment structure will not only contain the high-energy debris, but that it will also withstand the cyclic loads that occur with engine spooldown and continued rotation as the non-running engine maintains a low rotor RPM due to forced airflow as the engine-out aircraft returns to an airport. Accurate rig testing is needed for predicting and understanding material behavior of the fan case structure during all phases of this fan blade-out event.

  3. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss - Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth, and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data/analyses. Recommendations are made for future work.

  4. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max. radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data analyses.

  5. Design review and analysis for a Pratt and Whitney fluid-film bearing and seal testing rig

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1994-01-01

    A design review has been completed for a Pratt and Whitney (P&W)-designed fluid-film bearing and annular-seal test rig to be manufactured and installed at George C. Marshall Space Flight Center (MSFC). Issues covered in this study include: (1) the capacity requirements of the drive unit; (2) the capacity and configuration of the static loading system; (3) the capacity and configuration of the dynamic excitation system; (4) the capacity, configuration, and rotordynamic stability of a test bearing, support bearings, and shaft; and (5) the characteristics and configuration of the measurement transducers and data channels.

  6. Hot section viewing system

    NASA Technical Reports Server (NTRS)

    Morey, W. W.

    1984-01-01

    This report covers the development and testing of a prototype combustor viewing system. The system allows one to see and record images from the inside of an operating gas turbine combustor. The program proceeded through planned phases of conceptual design, preliminary testing to resolve problem areas, prototype design and fabrication, and rig testing. Successful tests were completed with the viewing system in the laboratory, in a high pressure combustor rig, and on a Pratt and Whitney PW20307 jet engine. Both film and video recordings were made during the tests. Digital image analysis techniques were used to enhance images and bring out special effects. The use of pulsed laser illumination was also demonstrated as a means for observing liner surfaces in the presence of luminous flame.

  7. ISTAR: Project Status and Ground Test Engine Design

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  8. Results From a Parametric Acoustic Liner Experiment Using P and W GEN1 HSR Mixer/Ejector Model

    NASA Technical Reports Server (NTRS)

    Boyd, Kathleen C.; Wolter, John D.

    2004-01-01

    This report documents the results of an acoustic liner test performed using a Gen 1 HSR mixer/ejector model installed on the Jet Exit Rig in the Nozzle Acoustic Test Rig in the Aeroacoustic Propulsion Laboratory or NASA Glenn Research Center. Acoustic liner effectiveness and single-component thrust performance results are discussed. Results from 26 different types of single-degree-of-freedom and bulk material liners are compared with each other and against a hardwall baseline. Design parameters involving all aspects of the facesheet, the backing cavity, and the type of bulk material were varied in order to study the effects of these design features on the acoustic impedance, acoustic effectiveness and on nozzle thrust performance. Overall, the bulk absorber liners are more effective at reducing the jet noise than the single-degree-of-freedom liners. Many of the design parameters had little effect on acoustic effectiveness, such as facesheeet hole diameter and honeycomb cell size. A relatively large variation in the impedance of the bulk absorber in a bulk liner is required to have a significant impact on the noise reduction. The thrust results exhibit a number of consistent trends, supporting the validity of this new addition to the facility. In general, the thrust results indicate that thrust performance benefits from increased facesheet thickness and decreased facesheet porosity.

  9. Design Considerations and Experimental Verification of a Rail Brake Armature Based on Linear Induction Motor Technology

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    This paper describes the design considerations and experimental verification of an LIM rail brake armature. In order to generate power and maximize the braking force density despite the limited area between the armature and the rail and the limited space available for installation, we studied a design method that is suitable for designing an LIM rail brake armature; we considered adoption of a ring winding structure. To examine the validity of the proposed design method, we developed a prototype ring winding armature for the rail brakes and examined its electromagnetic characteristics in a dynamic test system with roller rigs. By repeating various tests, we confirmed that unnecessary magnetic field components, which were expected to be present under high speed running condition or when a ring winding armature was used, were not present. Further, the necessary magnetic field component and braking force attained the desired values. These studies have helped us to develop a basic design method that is suitable for designing the LIM rail brake armatures.

  10. High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.

    2007-01-01

    Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.

  11. Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I.

    PubMed

    Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa

    2012-01-01

    RIG-I-like receptors, including RIG-I, MDA5 and LGP2, recognize cytoplasmic viral RNA. The RIG-I protein consists of N-terminal CARDs, central RNA helicase and C-terminal domains. RIG-I activation is regulated by ubiquitination. Three ubiquitin ligases target the RIG-I protein. TRIM25 and Riplet ubiquitin ligases are positive regulators of RIG-I and deliver the K63-linked polyubiquitin moiety to RIG-I CARDs and the C-terminal domain. RNF125, another ubiquitin ligase, is a negative regulator of RIG-I and mediates K48-linked polyubiquitination of RIG-I, leading to the degradation of the RIG-I protein by proteasomes. The K63-linked polyubiquitin chains of RIG-I are removed by a deubiquitin enzyme, CYLD. Thus, CYLD is a negative regulator of RIG-I. Furthermore, TRIM25 itself is regulated by ubiquitination. HOIP and HOIL proteins are ubiquitin ligases and are also known as linear ubiquitin assembly complexes (LUBACs). The TRIM25 protein is ubiquitinated by LUBAC and then degraded by proteasomes. The splice variant of RIG-I encodes a protein that lacks the first CARD of RIG-I, and the variant RIG-I protein is not ubiquitinated by TRIM25. Therefore, ubiquitin is the key regulator of the cytoplasmic viral RNA sensor RIG-I.

  12. Energy efficient engine: Flight propulsion system, preliminary analysis and design update

    NASA Technical Reports Server (NTRS)

    Stearns, E. M.

    1982-01-01

    The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.

  13. Sputter-ion plating of coatings for protection of gas-turbine blades against high-temperature oxidation and corrosion

    NASA Technical Reports Server (NTRS)

    Coad, J. P.; Restall, J. E.

    1982-01-01

    Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.

  14. First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK

    NASA Astrophysics Data System (ADS)

    Gomes, R. B.; Fernandes, H.; Silva, C.; Borba, D.; Carvalho, B.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Mikelsons, A.; Platnieks, I.

    2006-12-01

    The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium jet is generated by hydrostatic pressure and injected in a radial position close to a moveable stainless steel limiter. Both the jet and the limiter positions are variable allowing for a controlled exposure of the liquid Gallium to the edge plasma. The main components of the Gallium loop are a MHD pump, the liquid metal injector and a filtering system. The MHD pump is of the induction type, based on rotating permanent magnets. The injector is build from a ¼″ stainless steel pipe ended by a shaping nozzle. A setup has been developed to introduce oxide-free Gallium inside the loop's main supply tank. Raw liquid metal is placed inside a chamber heated and degassed under high vacuum while clean Gallium is extracted from the main body of the liquefied metal. Prior to installation on the tokamak, the experimental rig has been implemented using a Pyrex tube as test chamber to investigate the stability of the Gallium jet and its break-up length for several nozzle sizes. Results are presented in this paper. This rig was also useful to assess the behavior of the overall implemented apparatus.

  15. Pilot Jerrie Cobb Trains in the Multi-Axis Space Test Inertia Facility

    NASA Image and Video Library

    1960-04-21

    Jerrie Cobb prepares to operate the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The MASTIF was a three-axis rig with a pilot’s chair mounted in the center to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig was then spun on three axes from 2 to 50 rotations per minute. The pilots were tested on each of the three axis individually, then all three simultaneously. The two controllers in Cobb’s hands activated the small nitrogen gas thrusters that were used to bring the MASTIF under control. A makeshift spacecraft control panel was set up in front of the trainee’s face. Cobb was one of several female pilots who underwent the skill and endurance testing that paralleled that of the Project Mercury astronauts. In 1961 Jerrie Cobb was the first female to pass all three phases of the Mercury Astronaut Program. NASA rules, however, stipulated that only military test pilots could become astronauts and there were no female military test pilots. The seven Mercury astronauts had taken their turns on the MASTIF in February and March 1960.

  16. Blade loss transient dynamics analysis, volume 2. Task 2: Theoretical and analytical development. Task 3: Experimental verification

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Storace, A. S.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.

    1981-01-01

    The component element method was used to develop a transient dynamic analysis computer program which is essentially based on modal synthesis combined with a central, finite difference, numerical integration scheme. The methodology leads to a modular or building-block technique that is amenable to computer programming. To verify the analytical method, turbine engine transient response analysis (TETRA), was applied to two blade-out test vehicles that had been previously instrumented and tested. Comparison of the time dependent test data with those predicted by TETRA led to recommendations for refinement or extension of the analytical method to improve its accuracy and overcome its shortcomings. The development of working equations, their discretization, numerical solution scheme, the modular concept of engine modelling, the program logical structure and some illustrated results are discussed. The blade-loss test vehicles (rig full engine), the type of measured data, and the engine structural model are described.

  17. Simulation model of a gear synchronisation unit for application in a real-time HiL environment

    NASA Astrophysics Data System (ADS)

    Kirchner, Markus; Eberhard, Peter

    2017-05-01

    Gear shifting simulations using the multibody system approach and the finite-element method are standard in the development of transmissions. However, the corresponding models are typically large due to the complex geometries and numerous contacts, which causes long calculation times. The present work sets itself apart from these detailed shifting simulations by proposing a much simpler but powerful synchronisation model which can be computed in real-time while it is still more realistic than a pure rigid multibody model. Therefore, the model is even used as part of a Hardware-in-the-Loop (HiL) test rig. The proposed real-time capable synchronization model combines the rigid multibody system approach with a multiscale simulation approach. The multibody system approach is suitable for the description of the large motions. The multiscale simulation approach is using also the finite-element method suitable for the analysis of the contact processes. An efficient contact search for the claws of a car transmission synchronisation unit is described in detail which shortens the required calculation time of the model considerably. To further shorten the calculation time, the use of a complex pre-synchronisation model with a nonlinear contour is presented. The model has to provide realistic results with the time-step size of the HiL test rig. To reach this specification, a particularly adapted multirate method for the synchronisation model is shown. Measured results of test rigs of the real-time capable synchronisation model are verified on plausibility. The simulation model is then also used in the HiL test rig for a transmission control unit.

  18. A novel test rig to investigate under-platform damper dynamics

    NASA Astrophysics Data System (ADS)

    Botto, Daniele; Umer, Muhammad

    2018-02-01

    In the field of turbomachinery, vibration amplitude is often reduced by dissipating the kinetic energy of the blades with devices that utilize dry friction. Under-platform dampers, for example, are often placed in the underside of two consecutive turbine blades. Dampers are kept in contact with the under-platform of the respective blades by means of the centrifugal force. If the damper is well designed, vibration of blades instigate a relative motion between the under-platform and the damper. A friction force, that is a non-conservative force, arises in the contact and partly dissipates the vibration energy. Several contact models are available in the literature to simulate the contact between the damper and the under-platform. However, the actual dynamics of the blade-damper interaction have not fully understood yet. Several test rigs have been previously developed to experimentally investigate the performance of under-platform dampers. The majority of these experimental setups aim to evaluate the overall damper efficiency in terms of reduction in response amplitude of the blade for a given exciting force that simulates the aerodynamic loads. Unfortunately, the experimental data acquired on the blade dynamics do not provide enough information to understand the damper dynamics. Therefore, the uncertainty on the damper behavior remains a big issue. In this work, a novel experimental test rig has been developed to extensively investigate the damper dynamic behavior. A single replaceable blade is clamped in the rig with a specific clamping device. With this device the blade root is pressed against a groove machined in the test rig. The pushing force is controllable and measurable, to better simulate the actual centrifugal load acting on the blade. Two dampers, one on each side of the blade, are in contact with the blade under-platforms and with platforms on force measuring supports. These supports have been specifically designed to measure the contact forces on the damper. The contact forces on the blade are computed by post processing the measured forces and assuming the static equilibrium of the damper. The damper kinematics is rebuilt by using the relative displacement, measured with a differential laser, between the damper and the blade under-platform. This article describes the main concepts behind this new approach and explains the design and working of this novel test rig. Moreover, the influence of the damper contact forces on the dynamic behavior of the blade is discussed in the result section.

  19. Investigation of Liner Characteristics in the NASA Langley Curved Duct Test Rig

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Watson, Willie R.; Jones, Michael G.

    2007-01-01

    The Curved Duct Test Rig (CDTR), which is designed to investigate propagation of sound in a duct with flow, has been developed at NASA Langley Research Center. The duct incorporates an adaptive control system to generate a tone in the duct at a specific frequency with a target Sound Pressure Level and a target mode shape. The size of the duct, the ability to isolate higher order modes, and the ability to modify the duct configuration make this rig unique among experimental duct acoustics facilities. An experiment is described in which the facility performance is evaluated by measuring the sound attenuation by a sample duct liner. The liner sample comprises one wall of the liner test section. Sound in tones from 500 to 2400 Hz, with modes that are parallel to the liner surface of order 0 to 5, and that are normal to the liner surface of order 0 to 2, can be generated incident on the liner test section. Tests are performed in which sound is generated without axial flow in the duct and with flow at a Mach number of 0.275. The attenuation of the liner is determined by comparing the sound power in a hard wall section downstream of the liner test section to the sound power in a hard wall section upstream of the liner test section. These experimentally determined attenuations are compared to numerically determined attenuations calculated by means of a finite element analysis code. The code incorporates liner impedance values educed from measured data from the NASA Langley Grazing Incidence Tube, a test rig that is used for investigating liner performance with flow and with (0,0) mode incident grazing. The analytical and experimental results compare favorably, indicating the validity of the finite element method and demonstrating that finite element prediction tools can be used together with experiment to characterize the liner attenuation.

  20. Application of fault detection techniques to spiral bevel gear fatigue data

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Handschuh, Robert F.; Decker, Harry J.

    1994-01-01

    Results of applying a variety of gear fault detection techniques to experimental data is presented. A spiral bevel gear fatigue rig was used to initiate a naturally occurring fault and propagate the fault to a near catastrophic condition of the test gear pair. The spiral bevel gear fatigue test lasted a total of eighteen hours. At approximately five and a half hours into the test, the rig was stopped to inspect the gears for damage, at which time a small pit was identified on a tooth of the pinion. The test was then stopped an additional seven times throughout the rest of the test in order to observe and document the growth and propagation of the fault. The test was ended when a major portion of a pinion tooth broke off. A personal computer based diagnostic system was developed to obtain vibration data from the test rig, and to perform the on-line gear condition monitoring. A number of gear fault detection techniques, which use the signal average in both the time and frequency domain, were applied to the experimental data. Among the techniques investigated, two of the recently developed methods appeared to be the first to react to the start of tooth damage. These methods continued to react to the damage as the pitted area grew in size to cover approximately 75% of the face width of the pinion tooth. In addition, information gathered from one of the newer methods was found to be a good accumulative damage indicator. An unexpected result of the test showed that although the speed of the rig was held to within a band of six percent of the nominal speed, and the load within eighteen percent of nominal, the resulting speed and load variations substantially affected the performance of all of the gear fault detection techniques investigated.

  1. Effects of interstage diffuser flow distortion on the performance of a 15.41-centimeter tip diameter axial power turbine

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Kofskey, M. G.; Civinskas, K. C.

    1983-01-01

    The performance of a variable-area stator, axial flow power turbine was determined in a cold-air component research rig for two inlet duct configurations. The two ducts were an interstage diffuser duct and an accelerated-flow inlet duct which produced stator inlet boundary layer flow blockages of 11 percent and 3 percent, respectively. Turbine blade total efficiency at design point was measured to be 5.3 percent greater with the accelerated-flow inlet duct installed due to the reduction in inlet blockage. Blade component measurements show that of this performance improvement, 35 percent occurred in the stator and 65 percent occurred in the rotor. Analysis of inlet duct internal flow using an Axisymmetric Diffuser Duct Code (ADD Code) were in substantial agreement with the test data.

  2. Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.

    1999-01-01

    Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.

  3. Development and testing of a Mudjet-augmented PDC bit.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Alan; Chahine, Georges; Raymond, David Wayne

    2006-01-01

    This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.

  4. An in situ thermo-mechanical rig for lattice strain measurement during creep using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.

    2018-05-01

    A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.

  5. An in situ thermo-mechanical rig for lattice strain measurement during creep using neutron diffraction.

    PubMed

    Wang, Y Q; Kabra, S; Zhang, S Y; Truman, C E; Smith, D J

    2018-05-01

    A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.

  6. Drive-train dynamics technology - State-of-the-art and design of a test facility for advanced development

    NASA Technical Reports Server (NTRS)

    Badgley, R. H.; Fleming, D. P.; Smalley, A. J.

    1975-01-01

    A program for the development and verification of drive-train dynamic technology is described along with its basis and the results expected from it. A central feature of this program is a drive-train test facility designed for the testing and development of advanced drive-train components, including shaft systems, dampers, and couplings. Previous efforts in designing flexible dynamic drive-train systems are reviewed, and the present state of the art is briefly summarized. The design of the test facility is discussed with major attention given to the formulation of the test-rig concept, dynamic scaling of model shafts, and the specification of design parameters. Specific efforts envisioned for the test facility are briefly noted, including evaluations of supercritical test shafts, stability thresholds for various sources and types of instabilities that can exist in shaft systems, effects of structural flexibility on the dynamic performance of dampers, and methods for vibration control in two-level and three-level flexible shaft systems.

  7. Thermal barrier coatings for aircraft engines: History and directions

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1995-01-01

    Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined. The discussion focuses on those advances that led first to their use for component life extension and more recently as an integral part of airfoil design. It is noted that development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlY TBC's is emphasized in addition to observations fundamentally related to their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA is also noted.

  8. Underwater manipulator's kinematic analysis for sustainable and energy efficient water hydraulics system

    NASA Astrophysics Data System (ADS)

    Hassan, Siti Nor Habibah; Yusof, Ahmad Anas; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie; Nik, Wan Mohd Norsani Wan

    2015-05-01

    In promoting energy saving and sustainability, this paper presents research development of water hydraulics manipulator test rig for underwater application. Kinematic analysis of the manipulator has been studied in order to identify the workspace of the fabricated manipulator. The workspace is important as it will define the working area suitable to be developed on the test rig, in order to study the effectiveness of using water hydraulics system for underwater manipulation application. Underwater manipulator that has the ability to utilize the surrounding sea water itself as the power and energy carrier should have better advantages over sustainability and performance.

  9. Pollution Reduction Technology Program for Small Jet Aircraft Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1978-01-01

    A series of iterative combustor pressure rig tests were conducted on two combustor concepts applied to the AiResearch TFE731-2 turbofan engine combustion system for the purpose of optimizing combustor performance and operating characteristics consistant with low emissions. The two concepts were an axial air-assisted airblast fuel injection configuration with variable-geometry air swirlers and a staged premix/prevaporization configuration. The iterative rig testing and modification sequence on both concepts was intended to provide operational compatibility with the engine and determine one concept for further evaluation in a TFE731-2 engine.

  10. Test Results from a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results.

  11. Test Results From a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.

  12. Conventional protein kinase C-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction.

    PubMed

    Maharaj, Natalya P; Wies, Effi; Stoll, Andrej; Gack, Michaela U

    2012-02-01

    Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K₆₃-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I's ability to induce an antiviral IFN response, phosphorylation of RIG-I at S₈ or T₁₇₀ suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S₈ and T₁₇₀ phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S₈ or T₁₇₀ potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S₈ and T₁₇₀ phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S₈/T₁₇₀ phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions.

  13. Conventional Protein Kinase C-α (PKC-α) and PKC-β Negatively Regulate RIG-I Antiviral Signal Transduction

    PubMed Central

    Maharaj, Natalya P.; Wies, Effi; Stoll, Andrej

    2012-01-01

    Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K63-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I's ability to induce an antiviral IFN response, phosphorylation of RIG-I at S8 or T170 suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S8 and T170 phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S8 or T170 potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S8 and T170 phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S8/T170 phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions. PMID:22114345

  14. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  15. Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts

    NASA Technical Reports Server (NTRS)

    Gedeon, D.; Wood, J. G.

    1996-01-01

    A number of wire mesh and metal felt test samples, with a range of porosities, yield generic correlations for friction factor, Nusselt number, enhanced axial conduction ratio, and overall heat flux ratio. This information is directed primarily toward stirling cycle regenerator modelers, but will be of use to anyone seeking to better model fluid flow through these porous materials. Behind these results lies an oscillating-flow test rig, which measures pumping dissipation and thermal energy transport in sample matrices, and several stages of data-reduction software, which correlate instantaneous values for the above dimensionless groups. Within the software, theoretical model reduces instantaneous quantifies from cycle-averaged measurables using standard parameter estimation techniques.

  16. Rolling-element fatigue life with traction fluids and automatic transmission fluid in a high-speed rolling-contact rig

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.

    1982-01-01

    Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.

  17. Artistic View of Mercury Astronaut Training

    NASA Image and Video Library

    1959-10-21

    This composite image includes a photograph of pilot Joe Algranti testing the Multi-Axis Space Test Inertia Facility (MASTIF) inside Altitude Wind Tunnel at NASA’s Lewis Research Center with other images designed to simulate the interior of a Mercury space capsule. As part of the space agency’s preparations for Project Mercury missions, the seven Mercury astronauts traveled to Cleveland in early 1960 to train on the MASTIF. Researchers used the device to familiarize the astronauts with the sensations of an out-of-control spacecraft. The MASTIF was a three-axis rig with a pilot’s chair mounted in the center. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. The astronauts used small nitrogen gas thrusters to bring the MASTIF under control. In the fall of 1959, prior to the astronauts’ visit, Lewis researcher James Useller and Algranti perfected and calibrated the MASTIF.

  18. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    NASA Astrophysics Data System (ADS)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  19. Object-oriented approach for gas turbine engine simulation

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  20. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be achieved with 32 microphones available for this purpose. Initial results indicate 32 microphones can provide acceptable measurements to support impedance eduction with this test rig.

  1. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis.

    PubMed

    De Benedictis, Paola; Minola, Andrea; Rota Nodari, Elena; Aiello, Roberta; Zecchin, Barbara; Salomoni, Angela; Foglierini, Mathilde; Agatic, Gloria; Vanzetta, Fabrizia; Lavenir, Rachel; Lepelletier, Anthony; Bentley, Emma; Weiss, Robin; Cattoli, Giovanni; Capua, Ilaria; Sallusto, Federica; Wright, Edward; Lanzavecchia, Antonio; Bourhy, Hervé; Corti, Davide

    2016-04-01

    Currently available rabies post-exposure prophylaxis (PEP) for use in humans includes equine or human rabies immunoglobulins (RIG). The replacement of RIG with an equally or more potent and safer product is strongly encouraged due to the high costs and limited availability of existing RIG. In this study, we identified two broadly neutralizing human monoclonal antibodies that represent a valid and affordable alternative to RIG in rabies PEP. Memory B cells from four selected vaccinated donors were immortalized and monoclonal antibodies were tested for neutralizing activity and epitope specificity. Two antibodies, identified as RVC20 and RVC58 (binding to antigenic site I and III, respectively), were selected for their potency and broad-spectrum reactivity. In vitro, RVC20 and RVC58 were able to neutralize all 35 rabies virus (RABV) and 25 non-RABV lyssaviruses. They showed higher potency and breath compared to antibodies under clinical development (namely CR57, CR4098, and RAB1) and commercially available human RIG. In vivo, the RVC20-RVC58 cocktail protected Syrian hamsters from a lethal RABV challenge and did not affect the endogenous hamster post-vaccination antibody response. © 2016 Humabs BioMed SA Published under the terms of the CC BY 4.0 license.

  2. A durability test rig and methodology for erosion-resistant blade coatings in turbomachinery

    NASA Astrophysics Data System (ADS)

    Leithead, Sean Gregory

    A durability test rig for erosion-resistant gas turbine engine compressor blade coatings was designed, completed and commissioned. Bare and coated 17-4PH steel V103-profile blades were rotated at up to 11500 rpm and impacted with Garnet sand for 5 hours at an average concentration of 2.51 gm3of air , at a blade leading edge Mach number of 0.50. The rig was determined to be an acceptable first stage axial compressor representation. Two types of 16 microm-thick coatings were tested: Titanium Nitride (TiN) and Chromium-Aluminum-Titanium Nitride (CrAlTiN), both applied using an Arc Physical Vapour Deposition technique at the National Research Council in Ottawa, Canada. A Leithead-Allan-Zhao (LAZ) score was created to compare the durability performance of uncoated and coated blades based on mass-loss and blade dimension changes. The bare blades' LAZ score was set as a benchmark of 1.00. The TiN-coated and CrAlTiN-coated blades obtained LAZ scores of 0.69 and 0.41, respectively. A lower score meant a more erosion-resistant coating. Major modes of blade wear included: trailing edge, leading edge and the rear suction surface. Trailing edge thickness was reduced, the leading edge became blunt, and the rear suction surface was scrubbed by overtip and recirculation zone vortices. It was found that the erosion effects of vortex flow were significant. Erosion damage due to reflected particles was not present due to the low blade solidity of 0.7. The rig is best suited for studying the performance of erosion-resistant coatings after they are proven effective in ASTM standardized testing. Keywords: erosion, compressor, coatings, turbomachinery, erosion rate, blade, experimental, gas turbine engine

  3. Experimental Methods for Investigation of Shape Memory Based Elastocaloric Cooling Processes and Model Validation

    PubMed Central

    Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Eggeler, Gunther; Schütze, Andreas; Seelecke, Stefan

    2016-01-01

    Shape Memory Alloys (SMA) using elastocaloric cooling processes have the potential to be an environmentally friendly alternative to the conventional vapor compression based cooling process. Nickel-Titanium (Ni-Ti) based alloy systems, especially, show large elastocaloric effects. Furthermore, exhibit large latent heats which is a necessary material property for the development of an efficient solid-state based cooling process. A scientific test rig has been designed to investigate these processes and the elastocaloric effects in SMAs. The realized test rig enables independent control of an SMA's mechanical loading and unloading cycles, as well as conductive heat transfer between SMA cooling elements and a heat source/sink. The test rig is equipped with a comprehensive monitoring system capable of synchronized measurements of mechanical and thermal parameters. In addition to determining the process-dependent mechanical work, the system also enables measurement of thermal caloric aspects of the elastocaloric cooling effect through use of a high-performance infrared camera. This combination is of particular interest, because it allows illustrations of localization and rate effects — both important for efficient heat transfer from the medium to be cooled. The work presented describes an experimental method to identify elastocaloric material properties in different materials and sample geometries. Furthermore, the test rig is used to investigate different cooling process variations. The introduced analysis methods enable a differentiated consideration of material, process and related boundary condition influences on the process efficiency. The comparison of the experimental data with the simulation results (of a thermomechanically coupled finite element model) allows for better understanding of the underlying physics of the elastocaloric effect. In addition, the experimental results, as well as the findings based on the simulation results, are used to improve the material properties. PMID:27168093

  4. Experimental Methods for Investigation of Shape Memory Based Elastocaloric Cooling Processes and Model Validation.

    PubMed

    Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Eggeler, Gunther; Schütze, Andreas; Seelecke, Stefan

    2016-05-02

    Shape Memory Alloys (SMA) using elastocaloric cooling processes have the potential to be an environmentally friendly alternative to the conventional vapor compression based cooling process. Nickel-Titanium (Ni-Ti) based alloy systems, especially, show large elastocaloric effects. Furthermore, exhibit large latent heats which is a necessary material property for the development of an efficient solid-state based cooling process. A scientific test rig has been designed to investigate these processes and the elastocaloric effects in SMAs. The realized test rig enables independent control of an SMA's mechanical loading and unloading cycles, as well as conductive heat transfer between SMA cooling elements and a heat source/sink. The test rig is equipped with a comprehensive monitoring system capable of synchronized measurements of mechanical and thermal parameters. In addition to determining the process-dependent mechanical work, the system also enables measurement of thermal caloric aspects of the elastocaloric cooling effect through use of a high-performance infrared camera. This combination is of particular interest, because it allows illustrations of localization and rate effects - both important for efficient heat transfer from the medium to be cooled. The work presented describes an experimental method to identify elastocaloric material properties in different materials and sample geometries. Furthermore, the test rig is used to investigate different cooling process variations. The introduced analysis methods enable a differentiated consideration of material, process and related boundary condition influences on the process efficiency. The comparison of the experimental data with the simulation results (of a thermomechanically coupled finite element model) allows for better understanding of the underlying physics of the elastocaloric effect. In addition, the experimental results, as well as the findings based on the simulation results, are used to improve the material properties.

  5. Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling.

    PubMed

    D'Cruz, Akshay A; Kershaw, Nadia J; Chiang, Jessica J; Wang, May K; Nicola, Nicos A; Babon, Jeffrey J; Gack, Michaela U; Nicholson, Sandra E

    2013-12-01

    TRIM (tripartite motif) proteins primarily function as ubiquitin E3 ligases that regulate the innate immune response to infection. TRIM25 [also known as Efp (oestrogen-responsive finger protein)] has been implicated in the regulation of oestrogen receptor α signalling and in the regulation of innate immune signalling via RIG-I (retinoic acid-inducible gene-I). RIG-I senses cytosolic viral RNA and is subsequently ubiquitinated by TRIM25 at its N-terminal CARDs (caspase recruitment domains), leading to type I interferon production. The interaction with RIG-I is dependent on the TRIM25 B30.2 domain, a protein-interaction domain composed of the PRY and SPRY tandem sequence motifs. In the present study we describe the 1.8 Å crystal structure of the TRIM25 B30.2 domain, which exhibits a typical B30.2/SPRY domain fold comprising two N-terminal α-helices, thirteen β-strands arranged into two β-sheets and loop regions of varying lengths. A comparison with other B30.2/SPRY structures and an analysis of the loop regions identified a putative binding pocket, which is likely to be involved in binding target proteins. This was supported by mutagenesis and functional analyses, which identified two key residues (Asp(488) and Trp(621)) in the TRIM25 B30.2 domain as being critical for binding to the RIG-I CARDs.

  6. Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling

    PubMed Central

    D'Cruz, Akshay A.; Kershaw, Nadia J.; Chiang, Jessica J.; Wang, May K.; Nicola, Nicos A.; Babon, Jeffrey J.; Gack, Michaela U.; Nicholson, Sandra E.

    2014-01-01

    TRIM (tripartite motif) proteins primarily function as ubiquitin E3 ligases that regulate the innate immune response to infection. TRIM25 [also known as Efp (oestrogen-responsive finger protein)] has been implicated in the regulation of oestrogen receptor α signalling and in the regulation of innate immune signalling via RIG-I (retinoic acid-inducible gene-I). RIG-I senses cytosolic viral RNA and is subsequently ubiquitinated by TRIM25 at its N-terminal CARDs (caspase recruitment domains), leading to type I interferon production. The interaction with RIG-I is dependent on the TRIM25 B30.2 domain, a protein-interaction domain composed of the PRY and SPRY tandem sequence motifs. In the present study we describe the 1.8 Å crystal structure of the TRIM25 B30.2 domain, which exhibits a typical B30.2/SPRY domain fold comprising two N-terminal α-helices, thirteen β-strands arranged into two β-sheets and loop regions of varying lengths. A comparison with other B30.2/SPRY structures and an analysis of the loop regions identified a putative binding pocket, which is likely to be involved in binding target proteins. This was supported by mutagenesis and functional analyses, which identified two key residues (Asp488 and Trp621) in the TRIM25 B30.2 domain as being critical for binding to the RIG-I CARDs. PMID:24015671

  7. Viral Pseudo Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production

    PubMed Central

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-01-01

    SUMMARY RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologues of phosphoribosylformyglycinamide synthase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homologue thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. PMID:25752576

  8. Ceramic Composite Development for Gas Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; VANrOODE, mARK

    2006-01-01

    The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.

  9. 14 CFR Appendix A to Part 31 - Instructions for Continued Airworthiness

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that covers details regarding servicing of balloon components, including burner nozzles, fuel tanks... envelope, controls, rigging, basket structure, fuel systems, instruments, and heater assembly that provides... preparation including any storage limits. (i) Instructions for repair on the balloon envelope and its basket...

  10. 14 CFR Appendix A to Part 31 - Instructions for Continued Airworthiness

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... that covers details regarding servicing of balloon components, including burner nozzles, fuel tanks... envelope, controls, rigging, basket structure, fuel systems, instruments, and heater assembly that provides... preparation including any storage limits. (i) Instructions for repair on the balloon envelope and its basket...

  11. 14 CFR Appendix A to Part 31 - Instructions for Continued Airworthiness

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... that covers details regarding servicing of balloon components, including burner nozzles, fuel tanks... envelope, controls, rigging, basket structure, fuel systems, instruments, and heater assembly that provides... preparation including any storage limits. (i) Instructions for repair on the balloon envelope and its basket...

  12. 14 CFR Appendix A to Part 31 - Instructions for Continued Airworthiness

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... that covers details regarding servicing of balloon components, including burner nozzles, fuel tanks... envelope, controls, rigging, basket structure, fuel systems, instruments, and heater assembly that provides... preparation including any storage limits. (i) Instructions for repair on the balloon envelope and its basket...

  13. Additive Manufacturing of Ultem Polymers and Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.

  14. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh

    2004-01-01

    The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.

  15. Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production.

    PubMed

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-04-02

    RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here, we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologs of phosphoribosylformylglycinamidine synthetase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homolog thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Finite element elastic-plastic-creep and cyclic life analysis of a cowl lip

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Melis, Matthew E.; Halford, Gary R.

    1990-01-01

    Results are presented of elastic, elastic-plastic, and elastic-plastic-creep analyses of a test-rig component of an actively cooled cowl lip. A cowl lip is part of the leading edge of an engine inlet of proposed hypersonic aircraft and is subject to severe thermal loadings and gradients during flight. Values of stresses calculated by elastic analysis are well above the yield strength of the cowl lip material. Such values are highly unrealistic, and thus elastic stress analyses are inappropriate. The inelastic (elastic-plastic and elastic-plastic-creep) analyses produce more reasonable and acceptable stress and strain distributions in the component. Finally, using the results from these analyses, predictions are made for the cyclic crack initiation life of a cowl lip. A comparison of predicted cyclic lives shows the cyclic life prediction from the elastic-plastic-creep analysis to be the lowest and, hence, most realistic.

  17. Evaluation of the infrared test method for the olympus thermal balance tests

    NASA Technical Reports Server (NTRS)

    Donato, M.; Stpierre, D.; Green, J.; Reeves, M.

    1986-01-01

    The performance of the infrared (IR) rig used for the thermal balance testing of the Olympus S/C thermal model is discussed. Included in this evaluation are the rig effects themselves, the IRFLUX computer code used to predict the radiation inputs, the Monitored Background Radiometers (MBR's) developed to measure the absorbed radiation flux intensity, the Uniform Temperature Reference (UTR) based temperature measurement system and the data acquisition system. A preliminary set of verification tests were performed on a 1 m x 1 m zone to assess the performance of the IR lamps, calrods, MBR's and aluminized baffles. The results were used, in part, to obtain some empirical data required for the IRFLUX code. This data included lamp and calrod characteristics, the absorptance function for various surface types, and the baffle reflectivities.

  18. Coherent Turbulence Rig in the Engine Research Building

    NASA Image and Video Library

    1979-08-21

    An engineer examines the Coherent Turbulence Rig in the Engine Research Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Coherent turbulence occurs when waves of uniform size and alignment are present in airflow. Researchers at NASA Lewis were interested in determining the relation between the size of the waves and their heat transfer properties. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities.

  19. Magnetic Actuators and Suspension for Space Vibration Control

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Allaire, Paul E.; Lewis, David W.

    1993-01-01

    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals.

  20. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 4: Testing of elastomers under a rotating load. [resonance testing

    NASA Technical Reports Server (NTRS)

    Darlow, M. S.; Smalley, A. J.

    1977-01-01

    A test rig designed to measure stiffness and damping of elastomer cartridges under a rotating load excitation is described. The test rig employs rotating unbalance in a rotor which runs to 60,000 RPM as the excitation mechanism. A variable resonant mass is supported on elastomer elements and the dynamic characteristics are determined from measurements of input and output acceleration. Five different cartridges are considered: three of these are buttons cartridges having buttons located in pairs, with 120 between each pair. Two of the cartridges consist of 360 elastomer rings with rectangular cross-sections. Dynamic stiffness and damping are measured for each cartridge and compared with predictions at different frequencies and different strains.

  1. Thermal-barrier coatings for utility gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.

    1982-01-01

    The potential of thermal barrier coatings for use in utility gas turbines was assessed. Pressurized passage and ambient pressure doped fuel burner rig tests revealed that thermal barrier coatings are not resistant to dirty combustion environments. However, present thermal barrier coatings, such as duplex partially stabilized zirconia and duplex Ca2SiO4 have ample resistance to the thermo-mechanical stress and temperature levels anticipated for heavy duty gas turbines firing clean fuel as revealed by clean fuel pressurized passage and ambient pressure burner rig tests. Thus, it is appropriate to evaluate such coatings on blades, vanes and combustors in the field. However, such field tests should be backed up with adequate effort in the areas of coating application technology and design analysis so that the field tests yield unequivocal results.

  2. Turbine airfoil deposition models and their hot corrosion implications

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    This research project deals with the prediction of single- and multi-component salt(-solution) deposition, flow and oxide dissolution and their effects on the lifetime of turbine blades. Goals include rationalizing and helping to predict corrosion patterns on operational gas turbine (GT) rotor blades and stator vanes, and ultimately providing some of the tools required to design laboratory simulators and future corrosion resistant high-performance engines. Necessary background developments are reviewed. Results and tentative conclusions for single species (Na sub 2 SO sub 4 (1)) condensation, binary salt-solution (Na sub 2 SO sub 4-K sub 2 SO sub 4) condensation, and burner-rig testing of alloy materials are outlined.

  3. Advanced Lubrication for Energy Efficiency, Durability and Lower Maintenance Costs of Advanced Naval Components and Systems

    DTIC Science & Technology

    2011-05-12

    life expectancy of the Figure 47. FZG model 47    test rig. The shaft design and bearing layout have been completed and sizing of the system for...enabling all  these at minimal  cost and great environmental  safety. These materials  specifically  ii    designed  on  antiwear  and extreme pressure...reduce  wear  and  friction.  These  active  nanolubricant additives are  designed  as surface‐stabilized nanomaterials that are dispersed  in a

  4. Development of Experimental and Computational Aeroacoustic Tools for Advanced Liner Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Nark, Douglas N.; Parrott, Tony L.; Gerhold, Carl H.; Brown, Martha C.

    2006-01-01

    Acoustic liners in aircraft engine nacelles suppress radiated noise. Therefore, as air travel increases, increasingly sophisticated tools are needed to maximize noise suppression. During the last 30 years, NASA has invested significant effort in development of experimental and computational acoustic liner evaluation tools. The Curved Duct Test Rig is a 152-mm by 381- mm curved duct that supports liner evaluation at Mach numbers up to 0.3 and source SPLs up to 140 dB, in the presence of user-selected modes. The Grazing Flow Impedance Tube is a 51- mm by 63-mm duct currently being fabricated to operate at Mach numbers up to 0.6 with source SPLs up to at least 140 dB, and will replace the existing 51-mm by 51-mm duct. Together, these test rigs allow evaluation of advanced acoustic liners over a range of conditions representative of those observed in aircraft engine nacelles. Data acquired with these test ducts are processed using three aeroacoustic propagation codes. Two are based on finite element solutions to convected Helmholtz and linearized Euler equations. The third is based on a parabolic approximation to the convected Helmholtz equation. The current status of these computational tools and their associated usage with the Langley test rigs is provided.

  5. A method for measuring the inertia properties of rigid bodies

    NASA Astrophysics Data System (ADS)

    Gobbi, M.; Mastinu, G.; Previati, G.

    2011-01-01

    A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.

  6. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction

    PubMed Central

    Gack, Michaela U.; Kirchhofer, Axel; Shin, Young C.; Inn, Kyung-Soo; Liang, Chengyu; Cui, Sheng; Myong, Sua; Ha, Taekjip; Hopfner, Karl-Peter; Jung, Jae U.

    2008-01-01

    The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5′-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K63-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T55I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K172R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36–80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-β production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway. PMID:18948594

  7. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.

    PubMed

    Gack, Michaela U; Kirchhofer, Axel; Shin, Young C; Inn, Kyung-Soo; Liang, Chengyu; Cui, Sheng; Myong, Sua; Ha, Taekjip; Hopfner, Karl-Peter; Jung, Jae U

    2008-10-28

    The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5'-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K(63)-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T(55)I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K(172)R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36-80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-beta production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway.

  8. Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Steinetz, Bruce M.; Robbie, Malcolm G.; Erker, Arthur H.

    2004-01-01

    The objectives of the research presented in this viewgraph presentation are to 1) Design a mechanical ACC system for HPT tip seal clearance management; 2) Design a test rig to evaluate ACC system concepts. We have focused our efforts on designing mechanical ACC systems that articulate the seal shroud via mechanical linkages connected to actuators that reside outside the extreme environment of the HPT. We opted for this style of design due to a lack of high temperature/low profile actuators that are presently available. We have also selected multiple hydraulic actuators for this first generation ACC system. Fuel-draulic actuators are already a well established technology.

  9. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  10. Testing and Characterization of CMC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    Multiple combustor liner applications, both segmented and fully annular designs, have been configured for exposure in NASA's High Pressure Burner Rig (HPBR). The segmented liners were attached to the rig structure with SiC/SiC fasteners and exposed to simulated gas turbine conditions for nearly 200 hours. Test conditions included pressures of 6 atm., gas velocity of 42 m/s, and gas temperatures near 1450 C. The temperatures of both the cooled and combustion flow sides of the liners were measured using optical and contact measurement techniques. Minor weight loss was observed, but the liners remained structural sound, although damage was noted in some fasteners.

  11. A Magnetic Suspension and Excitation System for Spin Vibration Testing of Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Mehmed, Oral

    1998-01-01

    The Dynamic Spin Rig (DSR) is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. A heteropolar radial active magnetic bearing was integrated into the DSR to provide non-contact magnetic suspension and mechanical excitation of the rotor to induce turbomachinery blade vibrations. The magnetic bearing replaces one of the two existing conventional radial ball bearings. Prior operation of the DSR used two voice-coil type linear electromagnetic shakers which provided axial excitation of the rotor. The new magnetic suspension and excitation system has provided enhanced testing capabilities. Tests were performed at high rotational speeds for longer duration and higher vibration amplitudes. Some characteristics of the system include magnetic bearing stiffness values up to 60,000 lb./in., closed loop control bandwidth around 500 Hz, and multi-directional radial excitation of the rotor. This paper reports on the implementation and operation of this system and presents some test results using this system.

  12. An analysis of booster tone noise using a time-linearized Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Wukie, Nathan A.

    This thesis details a computational investigation of tone noise generated from a booster(low-pressure compressor) in a fan test rig. The computational study consisted of sets of time-linearized Navier-Stokes simulations in the booster region to investigate the blade-wake interactions that act as the primary noise-generating mechanism for the booster blade-passing frequency and harmonics. An acoustic test database existed with data at several operating points for the fan test rig that was used to compare against the predicted noise data from the computational study. It is shown that the computational methodology is able to capture trends in sound power for the 1st and 2nd booster tones along the operating line for the rig. It is also shown that the computational study underpredicts one of the tones at low power and is not able to capture a peak in the data at the Cutback condition. Further investigation of this type is warranted to quantify the source of discrepancies between the computational and experimental data as the reflected transmisison of sound off the fan through the bypass duct was not accounted for in this study.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NEIL K. MCDOUGALD

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this projectmore » was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.« less

  14. Minimum area rig concept update: H and P 101 modifications and first infield move

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigurdson, S.R.

    1987-03-01

    The minimum area rig concept (MARC) is a cost-effective alternative to the typical self-contained platform rig (SCPR). Helmerich and Payne (HandP) built the first MARC rig, HandP 101, to drill and to work over wells up to 16,000 ft (4877 m) measured depth. This rig began operation in May 1983 in the Gulf of Mexico at Arco Oil and Gas Co.'s South Pass Block 61 field and has undergone one infield move. Since the rig's initial mobilization, several rig modifications have been added to increase storage area, to promote safety, to provide a more efficient drilling/workover rig, and to reducemore » overall move time. This paper describes the modifications and recaps the rig's first move. This provides further insight into the MARC rig and show the benefits of the MARC design in relation to a move.« less

  15. Free-to-Roll Testing of Airplane Models in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Owens, D. Bruce; Hall, Robert M.

    2007-01-01

    A free-to-roll (FTR) test technique and test rig make it possible to evaluate both the transonic performance and the wingdrop/ rock behavior of a high-strength airplane model in a single wind-tunnel entry. The free-to-roll test technique is a single degree-of-motion method in which the model is free to roll about the longitudinal axis. The rolling motion is observed, recorded, and analyzed to gain insight into wing-drop/rock behavior. Wing-drop/rock is one of several phenomena symptomatic of abrupt wing stall. FTR testing was developed as part of the NASA/Navy Abrupt Wing Stall Program, which was established for the purposes of understanding and preventing significant unexpected and uncommanded (thus, highly undesirable) lateral-directional motions associated with wing-drop/rock, which have been observed mostly in fighter airplanes under high-subsonic and transonic maneuvering conditions. Before FTR testing became available, wingrock/ drop behavior of high-performance airplanes undergoing development was not recognized until flight testing. FTR testing is a reliable means of detecting, and evaluating design modifications for reducing or preventing, very complex abrupt wing stall phenomena in a ground facility prior to flight testing. The FTR test rig was designed to replace an older sting attachment butt, such that a model with its force balance and support sting could freely rotate about the longitudinal axis. The rig (see figure) includes a rotary head supported in a stationary head with a forward spherical roller bearing and an aft needle bearing. Rotation is amplified by a set of gears and measured by a shaft-angle resolver; the roll angle can be resolved to within 0.067 degrees at a rotational speed up to 1,000 degrees/s. An assembly of electrically actuated brakes between the rotary and stationary heads can be used to hold the model against a rolling torque at a commanded roll angle. When static testing is required, a locking bar is used to fix the rotating head rigidly to the stationary head. Switching between the static and FTR test modes takes only about 30 minutes. The FTR test rig was originally mounted in a 16-ft (approximately 4.0-m) transonic wind tunnel, but could just as well be adapted to use in any large wind tunnel. In one series of tests on the FTR rig, static and dynamic characteristics of models of four different fighter airplanes were measured. Two of the models exhibited uncommanded lateral motions; the other two did not. A figure of merit was developed to discern the severity of lateral motions. Using this figure of merit, it was shown that the FTR test technique enabled identification of conditions under which the uncommanded lateral motions occurred. The wind-tunnel conditions thus identified were found to be correlated with flight conditions under which the corresponding full-size airplanes exhibited uncommanded lateral motions.

  16. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.

    1981-01-01

    A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.

  17. Design and construction of a point-contact spectroscopy rig with lateral scanning capability.

    PubMed

    Tortello, M; Park, W K; Ascencio, C O; Saraf, P; Greene, L H

    2016-06-01

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.

  18. Design and construction of a point-contact spectroscopy rig with lateral scanning capability

    NASA Astrophysics Data System (ADS)

    Tortello, M.; Park, W. K.; Ascencio, C. O.; Saraf, P.; Greene, L. H.

    2016-06-01

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.

  19. Design and construction of a point-contact spectroscopy rig with lateral scanning capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tortello, M.; Park, W. K., E-mail: wkpark@illinois.edu; Ascencio, C. O.

    2016-06-15

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. Amore » semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.« less

  20. Dense depth maps from correspondences derived from perceived motion

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2017-01-01

    Many computer vision applications require finding corresponding points between images and using the corresponding points to estimate disparity. Today's correspondence finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3-D computer vision applications, however, do not produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. We present an image correspondence finding technique that aligns pairs of image sequences using optical flow fields. The optical flow fields provide information about the structure and motion of the scene, which are not available in still images but can be used in image alignment. We apply the technique to a dual focal length stereo camera rig consisting of a visible light-infrared camera pair and to a coaxial camera rig. We test our method on real image sequences and compare our results with the state-of-the-art multimodal and structure from motion (SfM) algorithms. Our method produces more accurate depth and scene velocity reconstruction estimates than the state-of-the-art multimodal and SfM algorithms.

  1. A Study of Ballast Water Treatment Using Engine Waste Heat

    NASA Astrophysics Data System (ADS)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  2. Experimental clean combustor program; noise measurement addendum, Phase 2

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.; Bekofske, K. L.

    1976-01-01

    Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.

  3. Structural and biochemical studies of RIG-I antiviral signaling.

    PubMed

    Feng, Miao; Ding, Zhanyu; Xu, Liang; Kong, Liangliang; Wang, Wenjia; Jiao, Shi; Shi, Zhubing; Greene, Mark I; Cong, Yao; Zhou, Zhaocai

    2013-02-01

    Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.

  4. Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production.

    PubMed

    Nistal-Villán, Estanislao; Gack, Michaela U; Martínez-Delgado, Gustavo; Maharaj, Natalya P; Inn, Kyung-Soo; Yang, Heyi; Wang, Rong; Aggarwal, Aneel K; Jung, Jae U; García-Sastre, Adolfo

    2010-06-25

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.

  5. Hard ceramic coatings: an experimental study on a novel damping treatment

    NASA Astrophysics Data System (ADS)

    Patsias, Sophoclis; Tassini, Nicola; Stanway, Roger

    2004-07-01

    This paper describes a novel damping treatment, namely hard ceramic coatings. These materials can be applied on almost any surface (internal or external) of a component. Their effect is the significant reduction of vibration levels and hence the extension of life expectancy of the component. The damping features of air-plasma-sprayed ceramic coatings (for example amplitude dependence, influence of initial amplitude) are discussed and the experimental procedure employed for testing and characterising such materials is also described. This test procedure is based around a custom-developed rig that allows one to measure the damping (internal friction) of specimens at controlled frequencies, strain amplitudes and, if required, various temperatures. A commonly used Thermal Barrier Coating, Yttria Stabilised Zirconia (8%), is used to demonstrate the above mentioned features. The damping effectiveness of this coating is then compared against two established damping treatments: polymer Free Layer Damping (FLD) and Constrained Layer Damping (CLD). The paper discusses the major issues in characterising ceramic damping coatings and their damping effectiveness when compared against the "traditional" approaches. Finally, the paper concludes with suggestions for further research.

  6. Development of A New Automotive Active Suspension System

    NASA Astrophysics Data System (ADS)

    Yousef Abdulhammed, Eng.; Eng. Hisham Elsherif, Dr, Prof.

    2017-12-01

    The main objective was to develop a smart new vehicle suspension system that minimizes the road irregularities impact on the driver, also to increase performance and stability of the vehicle at high speeds. The central idea is based on modifying the normal passive suspension system into a computer controller hydraulic actuated active suspension system simply by adding a new component such as a hydraulic cylinder on a normal passive system. The new suspension system is economical to be wildly used in consumer’s cars with low prices. The new added components was analytically tested and modeled according to different parameters. A new test rig was implemented to simulate a real quarter suspension system. The new suspension model was controlled by feedback controller according to the road conditions; the controller output controls the cylinder actuator to compensate the road oscillations and increases the vehicle stability for the passenger. Finally, to maximize the aerodynamics coefficients of the vehicle during high speeds by controlling the vehicle clearance level from the ground to achieve full stability, steering and fuel economy.

  7. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Leese, G. E.

    1986-01-01

    Burner rig tests were conducted under the following conditions: 900 C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, and Mach 0.3 velocity. The alloys tested were Udimet 700 (U700) and Rene 80, uncoated and with RT21, Codep, or NiCoCrAlY coatings. The tests, up to 1000 hours, included specimens in the as-processed condition and after aging at 1100 C in oxidizing or inert environments for up to 600 hours. Coil-inductance changes were measured for periodic nondestructive inspection of speciments and found useful in the following course of corrosion. Typical sulfidation observed in all cases was similar to that observed in service-run turbine components. Aging at 1100 C caused severe decrease in the hot corrosion life of RT21 and Codep coatings and a significant but lesser decrease in the life of NiCoCrAlY coatings. The extent of these decreases was much greater for all three coatings on U700 than on Rene substrates. A coating hot corrosion life-predicitin model was proposed. The model requires time/temperature information for a turbine component at takeoff conditions as well as environmental contaminant information.

  8. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  9. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark

    2011-01-01

    A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.

  10. Investigation of Flow Conditioners for Compact Jet Engine Simulator Rig Noise Reduction

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Haskin, Henry H.

    2011-01-01

    The design requirements for two new Compact Jet Engine Simulator (CJES) units for upcoming wind tunnel testing lead to the distinct possibility of rig noise contamination. The acoustic and aerodynamic properties of several flow conditioner devices are investigated over a range of operating conditions relevant to the CJES units to mitigate the risk of rig noise. An impinging jet broadband noise source is placed in the upstream plenum of the test facility permitting measurements of not only flow conditioner self-noise, but also noise attenuation characteristics. Several perforated plate and honeycomb samples of high porosity show minimal self-noise but also minimal attenuation capability. Conversely, low porosity perforated plate and sintered wire mesh conditioners exhibit noticeable attenuation but also unacceptable self-noise. One fine wire mesh sample (DP450661) shows minimal selfnoise and reasonable attenuation, particularly when combined in series with a 15.6 percent open area (POA) perforated plate upstream. This configuration is the preferred flow conditioner system for the CJES, providing up to 20 dB of broadband attenuation capability with minimal self-noise.

  11. Development of monitoring and diagnostic methods for robots used in remediation of waste sites. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tecza, J.

    1998-06-01

    'Safe and efficient clean up of hazardous and radioactive waste sites throughout the DOE complex will require extensive use of robots. This research effort focuses on developing Monitoring and Diagnostic (M and D) methods for robots that will provide early detection, isolation, and tracking of impending faults before they result in serious failure. The utility and effectiveness of applying M and D methods to hydraulic robots has never been proven. The present research program is utilizing seeded faults in a laboratory test rig that is representative of an existing hydraulically-powered remediation robot. This report summarizes activity conducted in the firstmore » 9 months of the project. The research team has analyzed the Rosie Mobile Worksystem as a representative hydraulic robot, developed a test rig for implanted fault testing, developed a test plan and agenda, and established methods for acquiring and analyzing the test data.'« less

  12. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses.

    PubMed

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-07-08

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.

  13. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses

    PubMed Central

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-01-01

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses. PMID:27387525

  14. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-07-01

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.

  15. Friction and Wear Characteristics of a Modified Composite Solid Lubricant Plasma Spray Coating

    NASA Technical Reports Server (NTRS)

    Stanford, M. K.; DellaCorte, C.

    2004-01-01

    LCR304 is a solid lubricant coating composed of Ni-10Cr, Cr2O3, BaF2-CaF2 and Ag and developed for dimensional stability in high temperature air. This coating is a modification of PS304, which differs in that the Ni-Cr constituent contains 20wt% Cr. The tribological characteristics of LCR304 were evaluated by pin-on-disk and foil air bearing rig testing from 25 to 650 C and compared to previous test results with PS304. For both tests, the friction coefficient decreased as temperature increased from 25 to 650 C. Wear generally decreased with increasing temperature for all pin-on-disk tests. LCR304 coated components produced the least wear of Inconel X-750 counterface materials at 427 and 650 C. These results indicate that the LCR304 coating has potential as a replacement for PS304 in, for example, low cycle (minimum wear) applications where dimensional stability is imperative.

  16. Boeing 18-Inch Fan Rig Broadband Noise Test

    NASA Technical Reports Server (NTRS)

    Ganz, Ulrich W.; Joppa, Paul D.; Patten, Timothy J.; Scharpf, Daniel F.

    1998-01-01

    The purposes of the subject test were to identify and quantify the mechanisms by which fan broadband noise is produced, and to assess the validity of such theoretical models of those mechanisms as may be available. The test was conducted with the Boeing 18-inch fan rig in the Boeing Low-Speed Aeroacoustic Facility (LSAF). The rig was designed to be particularly clean and geometrically simple to facilitate theoretical modeling and to minimize sources of interfering noise. The inlet is cylindrical and is equipped with a boundary layer suction system. The fan is typical of modern high-by-pass ratio designs but is capable of operating with or without fan exit guide vanes (stators), and there is only a single flow stream. Fan loading and tip clearance are adjustable. Instrumentation included measurements of fan performance, the unsteady flow field incident on the fan and stators, and far-field and in-duct acoustic fields. The acoustic results were manipulated to estimate the noise generated by different sources. Significant fan broadband noise was found to come from the rotor self-noise as measured with clean inflow and no boundary layer. The rotor tip clearance affected rotor self-noise somewhat. The interaction of the rotor with inlet boundary layer turbulence is also a significant source, and is strongly affected by rotor tip clearance. High level noise can be generated by a high-order nonuniform rotating at a fraction of the fan speed, at least when tip clearance and loading are both large. Stator-generated noise is the loudest of the significant sources, by a small margin, at least on this rig. Stator noise is significantly affected by propagation through the fan.

  17. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    NASA Technical Reports Server (NTRS)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  18. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection.

    PubMed

    Oshiumi, Hiroyuki; Matsumoto, Misako; Hatakeyama, Shigetsugu; Seya, Tsukasa

    2009-01-09

    RIG-I (retinoic acid-inducible gene-I), a cytoplasmic RNA helicase, interacts with IPS-1/MAVS/Cardif/VISA, a protein on the outer membrane of mitochondria, to signal the presence of virus-derived RNA and induce type I interferon production. Activation of RIG-I requires the ubiquitin ligase, TRIM25, which mediates lysine 63-linked polyubiquitination of the RIG-I N-terminal CARD-like region. However, how this modification proceeds for activation of IPS-1 by RIG-I remains unclear. Here we identify an alternative factor, Riplet/RNF135, that promotes RIG-I activation independent of TRIM25. The Riplet/RNF135 protein consists of an N-terminal RING finger domain, C-terminal SPRY and PRY motifs, and shows sequence similarity to TRIM25. Immunoprecipitation analyses demonstrated that the C-terminal helicase and repressor domains of RIG-I interact with the Riplet/RNF135 C-terminal region, whereas the CARD-like region of RIG-I is dispensable for this interaction. Riplet/RNF135 promotes lysine 63-linked polyubiquitination of the C-terminal region of RIG-I, modification of which differs from the N-terminal ubiquitination by TRIM25. Overexpression and knockdown analyses revealed that Riplet/RNF135 promotes RIG-I-mediated interferon-beta promoter activation and inhibits propagation of the negative-strand RNA virus, vesicular stomatitis virus. Our data suggest that Riplet/RNF135 is a novel factor of the RIG-I pathway that is involved in the evoking of human innate immunity against RNA virus infection, and activates RIG-I through ubiquitination of its C-terminal region. We infer that a variety of RIG-I-ubiquitinating molecular complexes sustain RIG-I activation to modulate RNA virus replication in the cytoplasm.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Nistal-Villan; M Gack; G Martinez-Delgado

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity hasmore » not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.« less

  20. High-density fuel effects. Final report, September 1985-April 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizk, N.K.; Oechsie, V.L.; Ross, P.T.

    1988-08-18

    The purpose of this program was to determine, by combustor rig tests and data evaluation, the effects of the high-density fuel properties on the performance and durability of the Allison T56-A-15 combustion system. Four high-density fuels in addition to baseline JP4 were evaluated in the effort. The rig-test program included: nozzle-flow bench testing, aerothermal performance and wall temperature, flame stability and ignition, injector coking and plugging, and flow-transient effect. The data-evaluation effort involved the utilization of empirical correlations in addition to analytical multidimensional tools to analyze the performance of the combustor. The modifications required to optimize the performance with high-densitymore » fuels were suggested and the expected improvement in performance was evaluated.« less

  1. Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.

  2. An Update on Structural Seal Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Dunlap, Pat; Steinetz, Bruce; Finkbeiner, Josh; DeMange, Jeff; Taylor, Shawn; Daniels, Chris; Oswald, Jay

    2006-01-01

    A viewgraph presentation describing advanced structural seal development for NASA exploration is shown. The topics include: 1) GRC Structural Seals Team Research Areas; 2) Research Areas & Objective; 3) Wafer Seal Geometry/Flow Investigations; 4) Wafer Seal Installation DOE Study; 5) Results of Wafer Seal Installation DOE Study; 6) Wafer Geometry Study: Thickness Variations; 7) Wafer Geometry Study: Full-Size vs. Half-Size Wafers; 8) Spring Tube Seal Development; 9) Resiliency Improvement for Rene 41 Spring Tube; 10) Spring Tube Seals: Go-Forward Plan; 11) High Temperature Seal Preloader Development: TZM Canted Coil Spring; 12) TZM Canted Coil Spring Development; 13) Arc Jet Test Rig Development; and 14) Arc Jet Test Rig Status.

  3. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  4. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses.

    PubMed

    Oshiumi, Hiroyuki; Miyashita, Moeko; Matsumoto, Misako; Seya, Tsukasa

    2013-01-01

    The innate immune system is essential for controlling viral infections, but several viruses have evolved strategies to escape innate immunity. RIG-I is a cytoplasmic viral RNA sensor that triggers the signal to induce type I interferon production in response to viral infection. RIG-I activation is regulated by the K63-linked polyubiquitin chain mediated by Riplet and TRIM25 ubiquitin ligases. TRIM25 is required for RIG-I oligomerization and interaction with the IPS-1 adaptor molecule. A knockout study revealed that Riplet was essential for RIG-I activation. However the molecular mechanism underlying RIG-I activation by Riplet remains unclear, and the functional differences between Riplet and TRIM25 are also unknown. A genetic study and a pull-down assay indicated that Riplet was dispensable for RIG-I RNA binding activity but required for TRIM25 to activate RIG-I. Mutational analysis demonstrated that Lys-788 within the RIG-I repressor domain was critical for Riplet-mediated K63-linked polyubiquitination and that Riplet was required for the release of RIG-I autorepression of its N-terminal CARDs, which leads to the association of RIG-I with TRIM25 ubiquitin ligase and TBK1 protein kinase. Our data indicate that Riplet is a prerequisite for TRIM25 to activate RIG-I signaling. We investigated the biological importance of this mechanism in human cells and found that hepatitis C virus (HCV) abrogated this mechanism. Interestingly, HCV NS3-4A proteases targeted the Riplet protein and abrogated endogenous RIG-I polyubiquitination and association with TRIM25 and TBK1, emphasizing the biological importance of this mechanism in human antiviral innate immunity. In conclusion, our results establish that Riplet-mediated K63-linked polyubiquitination released RIG-I RD autorepression, which allowed the access of positive factors to the RIG-I protein.

  5. A Distinct Role of Riplet-Mediated K63-Linked Polyubiquitination of the RIG-I Repressor Domain in Human Antiviral Innate Immune Responses

    PubMed Central

    Oshiumi, Hiroyuki; Miyashita, Moeko; Matsumoto, Misako; Seya, Tsukasa

    2013-01-01

    The innate immune system is essential for controlling viral infections, but several viruses have evolved strategies to escape innate immunity. RIG-I is a cytoplasmic viral RNA sensor that triggers the signal to induce type I interferon production in response to viral infection. RIG-I activation is regulated by the K63-linked polyubiquitin chain mediated by Riplet and TRIM25 ubiquitin ligases. TRIM25 is required for RIG-I oligomerization and interaction with the IPS-1 adaptor molecule. A knockout study revealed that Riplet was essential for RIG-I activation. However the molecular mechanism underlying RIG-I activation by Riplet remains unclear, and the functional differences between Riplet and TRIM25 are also unknown. A genetic study and a pull-down assay indicated that Riplet was dispensable for RIG-I RNA binding activity but required for TRIM25 to activate RIG-I. Mutational analysis demonstrated that Lys-788 within the RIG-I repressor domain was critical for Riplet-mediated K63-linked polyubiquitination and that Riplet was required for the release of RIG-I autorepression of its N-terminal CARDs, which leads to the association of RIG-I with TRIM25 ubiquitin ligase and TBK1 protein kinase. Our data indicate that Riplet is a prerequisite for TRIM25 to activate RIG-I signaling. We investigated the biological importance of this mechanism in human cells and found that hepatitis C virus (HCV) abrogated this mechanism. Interestingly, HCV NS3-4A proteases targeted the Riplet protein and abrogated endogenous RIG-I polyubiquitination and association with TRIM25 and TBK1, emphasizing the biological importance of this mechanism in human antiviral innate immunity. In conclusion, our results establish that Riplet-mediated K63-linked polyubiquitination released RIG-I RD autorepression, which allowed the access of positive factors to the RIG-I protein. PMID:23950712

  6. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.

    PubMed

    Zhang, Hong-Lei; Ye, Han-Qing; Liu, Si-Qing; Deng, Cheng-Lin; Li, Xiao-Dan; Shi, Pei-Yong; Zhang, Bo

    2017-09-15

    West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-β production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-β promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-β promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response. IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes the induction of interferon beta (IFN-β) by interacting with and degrading retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), which are crucial viral sensors in the host innate immune system. Further experiments suggested that NS1-mediated inhibition of the RIG-I-like receptor (RLR) signaling pathway involves inhibition of RIG-I K63-linked polyubiquitination and that the proteasome plays a role in RIG-I degradation. This study provides new insights into the regulation of WNV NS1 in the RLR signaling pathway and reveals a novel mechanism by which WNV evades the host innate immune response. The novel findings may guide us to discover new therapeutic targets and develop effective vaccines for WNV infections. Copyright © 2017 American Society for Microbiology.

  7. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  8. Radioimmunoguided surgery for colorectal cancer.

    PubMed

    Bertsch, D J; Burak, W E; Young, D C; Arnold, M W; Martin, E W

    1996-05-01

    Operations for patients with colorectal cancer are based on traditions established by historical experience. Radioimmunoguided surgery (RIGS) provides new information that challenges these traditions. Thirty-two patients with primary colorectal cancer underwent RIGS after being injected with anti-TAG-72 murine monoclonal antibody CC49 labeled with iodine-125. Sixteen of the patients had all gross tumor and RIGS-positive tissue removed (RIGS-negative group), and 16 had only traditional extirpation of the tumor because RIGS-positive tissue was too diffuse (RIGS-positive group). In the 16 patients having all RIGS-positive tissue removed, five had traditional regional en bloc resections and 11 had additional extraregional tissues resected. Identification of extraregional disease added two liver resections and 25 lymphadenectomies: 10 of the gastrohepatic ligament, five celia axis, six retroperitoneal, and four iliac. With a median follow-up of 37 months, survival in the RIGS-negative group is 100%. In 14 of 16 patients (87.5%) there is no evidence of disease. In the RIGS-positive group, follow-up shows 14 of 16 patients are dead and two are alive with disease (p < 0.0001). These results suggest that RIGS identifies patterns of disease dissemination different from those identified by traditional staging techniques. Removal of additional RIGS-positive tissues in nontraditional areas may improve survival.

  9. RIG-I-like receptor regulation in virus infection and immunity

    PubMed Central

    Chan, Ying Kai; Gack, Michaela U

    2016-01-01

    Mammalian cells have the intrinsic capacity to detect viral pathogens and to initiate an antiviral response that is characterized by the induction of interferons (IFNs) and proinflammatory cytokines. A delicate regulation of the signaling pathways that lead to cytokine production is needed to ensure effective clearance of the virus, while preventing tissue damage caused by excessive cytokine release. Here, we focus on the mechanisms that modulate the signal transduction triggered by RIG-I-like receptors (RLRs) and their adaptor protein MAVS, key components of the host machinery for sensing foreign RNA. Specifically, we summarize recent advances in understanding how RLR signaling is regulated by posttranslational and posttranscriptional mechanisms, microRNAs (miRNAs) and autophagy. We further discuss how viruses target these regulatory mechanisms for immune evasion. PMID:25644461

  10. Methodology for reducing energy and resource costs in construction of trenchless crossover of pipelines

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.

    2018-05-01

    The paper suggests a set of measures to select the equipment and its components in order to reduce energy costs in the process of pulling the pipeline into the well in the constructing the trenchless pipeline crossings of various materials using horizontal directional drilling technology. A methodology for reducing energy costs has been developed by regulating the operation modes of equipment during the process of pulling the working pipeline into a drilled and pre-expanded well. Since the power of the drilling rig is the most important criterion in the selection of equipment for the construction of a trenchless crossover, an algorithm is proposed for calculating the required capacity of the rig when operating in different modes in the process of pulling the pipeline into the well.

  11. Diesel and Truck Certification Needs Assessment: Two Surveys.

    ERIC Educational Resources Information Center

    Broadbent, William A.

    Recommendations for the improvement of the diesel engine and truck components of the Hawaii state certification examination for automobile and truck mechanics were solicited from 14 major private businesses repairing heavy tractor rigs and/or diesel engines on Oahu and a statewide sample of 21 trucking firms and other companies making extensive…

  12. Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses.

    PubMed

    Liu, Wei; Li, Jing; Zheng, Weinan; Shang, Yingli; Zhao, Zhendong; Wang, Shanshan; Bi, Yuhai; Zhang, Shuang; Xu, Chongfeng; Duan, Ziyuan; Zhang, Lianfeng; Wang, Yue L; Jiang, Zhengfan; Liu, Wenjun; Sun, Lei

    2017-06-08

    RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN production and promoted viral replication in human cells and mice. Upon Sendai virus infection, CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the ubiquitination of RIG-I and MAVS.

  13. What Really Rigs Up RIG-I?

    PubMed

    Barik, Sailen

    2016-01-01

    RIG-I (retinoic acid-inducible gene 1) is an archetypal member of the cytoplasmic DEAD-box dsRNA helicase family (RIG-I-like receptors or RLRs), the members of which play essential roles in the innate immune response of the metazoan cell. RIG-I functions as a pattern recognition receptor that detects nonself RNA as a pathogen-associated molecular pattern (PAMP). However, the exact molecular nature of the viral RNAs that act as a RIG-I ligand has remained a mystery and a matter of debate. In this article, we offer a critical review of the actual viral RNAs that act as PAMPs to activate RIG-I, as seen from the perspective of a virologist, including a recent report that the viral Leader-read-through transcript is a novel and effective RIG-I ligand. © 2016 S. Karger AG, Basel.

  14. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform

    PubMed Central

    Nguyen, Nhung T.H.; Now, Hesung; Kim, Woo-Jong; Kim, Nari; Yoo, Joo-Yeon

    2016-01-01

    RIG-I is a key cytosolic RNA sensor that mediates innate immune defense against RNA virus. Aberrant RIG-I activity leads to severe pathological states such as autosomal dominant multi-system disorder, inflammatory myophathies and dermatomyositis. Therefore, identification of regulators that ensure efficient defense without harmful immune-pathology is particularly critical to deal with RIG-I-associated diseases. Here, we presented the inflammatory inducible FAT10 as a novel negative regulator of RIG-I-mediated inflammatory response. In various cell lines, FAT10 protein is undetectable unless it is induced by pro-inflammatory cytokines. FAT10 non-covalently associated with the 2CARD domain of RIG-I, and inhibited viral RNA-induced IRF3 and NF-kB activation through modulating the RIG-I protein solubility. We further demonstrated that FAT10 was recruited to RIG-I-TRIM25 to form an inhibitory complex where FAT10 was stabilized by E3 ligase TRIM25. As the result, FAT10 inhibited the antiviral stress granules formation contains RIG-I and sequestered the active RIG-I away from the mitochondria. Our study presented a novel mechanism to dampen RIG-I activity. Highly accumulated FAT10 is observed in various cancers with pro-inflammatory environment, therefore, our finding which uncovered the suppressive effect of the accumulated FAT10 during virus-mediated inflammatory response may also provide molecular clue to understand the carcinogenesis related with infection and inflammation. PMID:26996158

  15. Paramyxovirus V Proteins Interact with the RIG-I/TRIM25 Regulatory Complex and Inhibit RIG-I Signaling.

    PubMed

    Sánchez-Aparicio, Maria T; Feinman, Leighland J; García-Sastre, Adolfo; Shaw, Megan L

    2018-03-15

    Paramyxovirus V proteins are known antagonists of the RIG-I-like receptor (RLR)-mediated interferon induction pathway, interacting with and inhibiting the RLR MDA5. We report interactions between the Nipah virus V protein and both RIG-I regulatory protein TRIM25 and RIG-I. We also observed interactions between these host proteins and the V proteins of measles virus, Sendai virus, and parainfluenza virus. These interactions are mediated by the conserved C-terminal domain of the V protein, which binds to the tandem caspase activation and recruitment domains (CARDs) of RIG-I (the region of TRIM25 ubiquitination) and to the SPRY domain of TRIM25, which mediates TRIM25 interaction with the RIG-I CARDs. Furthermore, we show that V interaction with TRIM25 and RIG-I prevents TRIM25-mediated ubiquitination of RIG-I and disrupts downstream RIG-I signaling to the mitochondrial antiviral signaling protein. This is a novel mechanism for innate immune inhibition by paramyxovirus V proteins, distinct from other known V protein functions such as MDA5 and STAT1 antagonism. IMPORTANCE The host RIG-I signaling pathway is a key early obstacle to paramyxovirus infection, as it results in rapid induction of an antiviral response. This study shows that paramyxovirus V proteins interact with and inhibit the activation of RIG-I, thereby interrupting the antiviral signaling pathway and facilitating virus replication. Copyright © 2018 American Society for Microbiology.

  16. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform.

    PubMed

    Nguyen, Nhung T H; Now, Hesung; Kim, Woo-Jong; Kim, Nari; Yoo, Joo-Yeon

    2016-03-21

    RIG-I is a key cytosolic RNA sensor that mediates innate immune defense against RNA virus. Aberrant RIG-I activity leads to severe pathological states such as autosomal dominant multi-system disorder, inflammatory myophathies and dermatomyositis. Therefore, identification of regulators that ensure efficient defense without harmful immune-pathology is particularly critical to deal with RIG-I-associated diseases. Here, we presented the inflammatory inducible FAT10 as a novel negative regulator of RIG-I-mediated inflammatory response. In various cell lines, FAT10 protein is undetectable unless it is induced by pro-inflammatory cytokines. FAT10 non-covalently associated with the 2CARD domain of RIG-I, and inhibited viral RNA-induced IRF3 and NF-kB activation through modulating the RIG-I protein solubility. We further demonstrated that FAT10 was recruited to RIG-I-TRIM25 to form an inhibitory complex where FAT10 was stabilized by E3 ligase TRIM25. As the result, FAT10 inhibited the antiviral stress granules formation contains RIG-I and sequestered the active RIG-I away from the mitochondria. Our study presented a novel mechanism to dampen RIG-I activity. Highly accumulated FAT10 is observed in various cancers with pro-inflammatory environment, therefore, our finding which uncovered the suppressive effect of the accumulated FAT10 during virus-mediated inflammatory response may also provide molecular clue to understand the carcinogenesis related with infection and inflammation.

  17. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  18. Whirl Motion of a Seal Test Rig with Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2007-01-01

    This paper presents the experimental behavior and dynamic analysis of a high speed test rig with rolling element bearings mounted in squeeze film oil damper bearings. The test rotor is a double overhung configuration with rolling element ball bearings mounted in uncentered squeeze-film oil dampers. The damper design is similar to that employed with various high-speed aircraft HP gas turbines. The dynamic performance of the test rig with the originally installed dampers with an effective damper length of length 0.23-inch was unacceptable. The design speed of 40,000 RPM could not be safely achieved as nonsynchronous whirling at the overhung seal test disk and high amplitude critical speed response at the drive spline section occurred at 32,000 RPM. In addition to the self excited stability and critical speed problems, it was later seen from FFT data analysis, that a region of supersynchronous dead band whirling occurs between 10,000 to 15,000 RPM which can lead to bearing distress and wear. The system was analyzed using both linear and nonlinear techniques. The extended length damper design resulting from the analysis eliminated the rotor subsynchronous whirling, high amplitude critical speed, and the dead band whirling region allowing the system to achieve a speed of 45,000 RPM. However, nonlinear analysis shows that damper lockup could occur with high rotor unbalance at 33,000 RPM, even with the extended squeeze-film dampers. The control of damper lockup will be addressed in a future paper.

  19. Modifications to Marshall's Annular Seal Test (MAST) Rig and Facility for Improved Rotordynamic Coefficient Testing of Annular Seals and Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    Darden, J. M.; Earhart, E. M.

    2011-01-01

    The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.

  20. Low Speed, 2-D Rotor/Stator Active Noise Control at the Source Demonstration

    NASA Technical Reports Server (NTRS)

    Simonich, John C.; Kousen, Ken A.; Zander, Anthony C.; Bak, Michael; Topol, David A.

    1997-01-01

    Wake/blade-row interaction noise produced by the Annular Cascade Facility at Purdue University has been modeled using the LINFLO analysis. Actuator displacements needed for complete cancellation of the propagating acoustic response modes have been determined, along with the associated actuator power requirements. As an alternative, weighted least squares minimization of the total far-field sound power using individual actuators has also been examined. Attempts were made to translate the two-dimensional aerodynamic results into three-dimensional actuator requirements. The results lie near the limit of present actuator technology. In order to investigate the concept of noise control at the source for active rotor/stator noise control at the source, various techniques for embedding miniature actuators into vanes were examined. Numerous miniature speaker arrangements were tested and analyzed to determine their suitability as actuators for a demonstration test in the Annular Cascade Facility at Purdue. The best candidates demonstrated marginal performance. An alternative concept to using vane mounted speakers as control actuators was developed and tested. The concept uses compression drivers which are mounted externally to the stator vanes. Each compression driver is connected via a tube to an air cavity in the stator vane, from which the driver signal radiates into the working section of the experimental rig. The actual locations and dimensions of the actuators were used as input parameters for a LINFLO computational analysis of the actuator displacements required for complete cancellation of tones in the Purdue experimental rig. The actuators were designed and an arrangement determined which is compatible with the Purdue experimental rig and instrumentation. Experimental tests indicate that the actuators are capable of producing equivalent displacements greater than the requirements predicted by the LINFLO analysis. The acoustic output of the actuators was also found to be unaffected by the presence of air flow representative of the Purdue experimental rig. A test of the active noise control at the source concept for rotor/stator active noise control was demonstrated. This 2-D test demonstrated conclusively the simultaneous reduction of two acoustic modes. Reductions of over 10 dB were obtained over a wide operating range.

  1. Development of an Experimental Rig for Investigation of Higher Order Modes in Ducts

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Cabell, Randolph H.; Brown, Martha C.

    2006-01-01

    Continued progress to reduce fan noise emission from high bypass ratio engine ducts in aircraft increasingly relies on accurate description of the sound propagation in the duct. A project has been undertaken at NASA Langley Research Center to investigate the propagation of higher order modes in ducts with flow. This is a two-pronged approach, including development of analytic models (the subject of a separate paper) and installation of a laboratory-quality test rig. The purposes of the rig are to validate the analytical models and to evaluate novel duct acoustic liner concepts, both passive and active. The dimensions of the experimental rig test section scale to between 25% and 50% of the aft bypass ducts of most modern engines. The duct is of rectangular cross section so as to provide flexibility to design and fabricate test duct liner samples. The test section can accommodate flow paths that are straight through or offset from inlet to discharge, the latter design allowing investigation of the effect of curvature on sound propagation and duct liner performance. The maximum air flow rate through the duct is Mach 0.3. Sound in the duct is generated by an array of 16 high-intensity acoustic drivers. The signals to the loudspeaker array are generated by a multi-input/multi-output feedforward control system that has been developed for this project. The sound is sampled by arrays of flush-mounted microphones and a modal decomposition is performed at the frequency of sound generation. The data acquisition system consists of two arrays of flush-mounted microphones, one upstream of the test section and one downstream. The data are used to determine parameters such as the overall insertion loss of the test section treatment as well as the effect of the treatment on a modal basis such as mode scattering. The methodology used for modal decomposition is described, as is a description of the mode generation control system. Data are presented which demonstrate the performance of the controller to generate the desired mode while suppressing all other cut on modes in the duct.

  2. Induction of interferon-λ contributes to TLR3 and RIG-I activation-mediated inhibition of herpes simplex virus type 2 replication in human cervical epithelial cells.

    PubMed

    Zhou, Li; Li, Jie-Liang; Zhou, Yu; Liu, Jin-Biao; Zhuang, Ke; Gao, Jian-Feng; Liu, Shi; Sang, Ming; Wu, Jian-Guo; Ho, Wen-Zhe

    2015-12-01

    Is it possible to immunologically activate human cervical epithelial cells to produce antiviral factors that inhibit herpes simplex virus type 2 (HSV-2) replication? Our results indicate that human cervical epithelial cells possess a functional TLR3/RIG-I signaling system, the activation of which can mount an Interferon-λ (IFN-λ)-mediated anti-HSV-2 response. There is limited information about the role of cervical epithelial cells in genital innate immunity against HSV-2 infection. We examined the expression of toll-like receptors (TLRs) and retinoic acid-inducible I (RIG-I) in End1/E6E7 cells by real-time PCR. The IFN-λ induced by TLR3 and RIG-I activation of End1/E6E7 cells was also examined by real-time PCR and ELISA. HSV-2 infection of End1/E6E7 cells was evaluated by the real-time PCR detection of HSV-2 gD expression. The antibody to IL-10Rβ was used to determine whether IFN-λ contributes to TLR3/RIG-I mediated HSV-2 inhibition. Expression of interferon regulatory factor 3 (IRF3), IRF7, IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA) were determined by the real-time PCR and western blot. End1/E6E7 cells were transfected with shRNA to knockdown the IRF3, IRF7 or RIG-I expression. Student's t-test and post Newman-Keuls test were used to analyze stabilized differences in the immunological parameters above between TLR3/RIG-I-activated cells and control cells. Human cervical epithelial cells expressed functional TLR3 and RIG-I, which could be activated by poly I:C and 5'ppp double-strand RNAs (5'ppp dsRNA), resulting in the induction of endogenous interferon lambda (IFN-λ). The induced IFN-λ contributed to TLR3/RIG-I-mediated inhibition of HSV-2 replication in human cervical epithelial cells, as an antibody to IL-10Rβ, an IFN-λ receptor subunit, could compromise TLR3/RIG-I-mediated inhibition of HSV-2. Further studies showed that TLR3/RIG-I signaling in the cervical epithelial cells by dsRNA induced the expression of the IFN-stimulated genes (ISGs), ISG56, 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA), the key antiviral elements in the IFN signaling pathway. In addition, we observed that the topical treatment of genital mucosa with poly I:C could protect mice from genital HSV-2 infection. Future prospective studies with primary cells and suitable animal models are needed in order to confirm these outcomes. The findings provide direct and compelling evidence that there is intracellular expression and regulation of IFN-λ in human cervical epithelial cells, which may have a key role in the innate genital protection against viral infections. Not applicable. This work was supported by the National Natural Science Foundation of China (81301428 to L.Z. and 81271334 to W.-Z.H.), the Fundamental Research Funds for the Central Universities (2042015kf0188 to L.Z.), the China Postdoctoral Science Foundation (2013M531745 to L.Z.), the Development Program of China ('973', 2012CB518900 to W.-Z.H.) from the Ministry of Science and Technology of the People's Republic of China, grants (DA12815 and DA022177 to W.-Z.H.) from the National Institute on Drug Abuse (NIDA) and the open project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (WDCM005 to M.S.). The authors declare no competing financial interests. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  4. Phosphorylation-mediated negative regulation of RIG-I antiviral activity.

    PubMed

    Gack, Michaela U; Nistal-Villán, Estanislao; Inn, Kyung-Soo; García-Sastre, Adolfo; Jung, Jae U

    2010-04-01

    Recognition of invading viruses by the host is elicited by cellular sensors which trigger signaling cascades that lead to type I interferon (IFN) gene expression. Retinoic acid-inducible gene I (RIG-I) has emerged as a key receptor for the detection of viral RNA in the cytosol, inducing IFN-mediated innate immune responses to limit viral replication through its interaction with MAVS (also called IPS-1, CARDIF, or VISA). Upon the recognition of viral RNA, the Lys-172 residue of RIG-I undergoes ubiquitination induced by tripartite motif protein 25 (TRIM25), an essential protein for antiviral signal transduction. Here we demonstrate that phosphorylation represents another regulatory mechanism for RIG-I-mediated antiviral activity. Using protein purification and mass spectrometry analysis, we identified three phosphorylation sites in the amino-terminal caspase recruitment domains (CARDs) of RIG-I. One of these residues, Thr-170, is located in close proximity to Lys-172, and we speculated that its phosphorylation may affect Lys-172 ubiquitination and functional activation of RIG-I. Indeed, a RIG-I mutant carrying a phosphomimetic Glu residue in place of Thr-170 loses TRIM25 binding, Lys-172 ubiquitination, MAVS binding, and downstream signaling ability. This suggests that phosphorylation of RIG-I at Thr-170 inhibits RIG-I-mediated antiviral signal transduction. Immunoblot analysis with a phospho-specific antibody showed that the phosphorylation of the RIG-I Thr-170 residue is present under normal conditions but rapidly declines upon viral infection. Our results indicate that Thr-170 phosphorylation and TRIM25-mediated Lys-172 ubiquitination of RIG-I functionally antagonize each other. While Thr-170 phosphorylation keeps RIG-I latent, Lys-172 ubiquitination enables RIG-I to form a stable complex with MAVS, thereby inducing IFN signal transduction.

  5. Order-crossing removal in Gabor order tracking by independent component analysis

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Tan, Kok Kiong

    2009-08-01

    Order-crossing problems in Gabor order tracking (GOT) of rotating machinery often occur when noise due to power-frequency interference, local structure resonance, etc., is prominent in applications. They can render the analysis results and the waveform-reconstruction tasks in GOT inaccurate or even meaningless. An approach is proposed in this paper to address the order-crossing problem by independent component analysis (ICA). With the approach, accurate order analysis results can be obtained and the waveforms of the order components of interest can be reconstructed or extracted from the recorded noisy data series. In addition, the ambiguities (permutation and scaling) of ICA results are also solved with the approach. The approach is amenable to applications in condition monitoring and fault diagnosis of rotating machinery. The evaluation of the approach is presented in detail based on simulations and an experiment on a rotor test rig. The results obtained using the proposed approach are compared with those obtained using the standard GOT. The comparison shows that the presented approach is more effective to solve order-crossing problems in GOT.

  6. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    NASA Technical Reports Server (NTRS)

    Lee, Kang; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2017-01-01

    SiC/SiC Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment because of their light weight, higher temperature capability, and oxidation resistance. Limitations of SiC/SiC CMCs include surface recession and component cracking and associated chemical changes in the CMC. The solutions pursued to improve the life of SiC/SiC CMCs include the incorporation of coating systems that provide surface protection, which has become known as an Environmental Barrier Coating (EBC). The development of EBCs for the protection of gas turbine hot section CMC components was a continuation of coating development work for corrosion protection of silicon-based monolithics. Work on EBC development for SiC/SiC CMCs has been ongoing at several national laboratories and the original gas turbine equipment manufacturers. The work includes extensive laboratory, rig and engine testing, including testing of EBC coated SiC/SiC CMCs in actual field applications. Another EBC degradation issue which is especially critical for CMC components used in aircraft engines is the degradation from glassy deposits of calcium-magnesium-aluminosilicate (CMAS) with other minor oxides. This paper addresses the need for and properties of external coatings on SiC/SiC CMCs to extend their useful life in service and the retention of their properties.

  7. Design and Specification of Low Pressure Sewer Systems for Recreation Areas.

    DTIC Science & Technology

    1985-02-01

    holding tank receives wastewater Iflows by gravity. Level scitsors act ivate the grinder pump operation pump at preset levels. Emergency 40 overf low aid...above the septic 0 Lank floor, the septic tank should be secured against flotation . Test in. 70. Septir t.ank s shouldt Ihe wat’rtight and must be...8217 , pump i rig je,j , aind powt, r cost . Annual power cost can he estimated using the fo I I owi rig express ion: APC =ae PC (4) whe -e 0 APIC annual

  8. Permanent Magnetic Bearing for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  9. Rotational coherent anti-stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements.

    PubMed

    Black, J D; Long, C A

    1992-07-20

    In a rotating cavity rig, which models cooling air flow in the spaces between disks of a gas turbine compressor, the buildup of oxygen concentration after the cooling gas was changed from nitrogen to air was monitored using rotational coherent anti-Stokes Raman spectroscopy (CARS). From this information an estimate of the fraction of the throughflow entering the rotating cavity was obtained. This demonstrates that rotational CARS can be applied as a nonintrusive concentration-measurement technique in a rotating engineering test rig.

  10. KSC-99pc0165

    NASA Image and Video Library

    1999-02-06

    Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory reaches the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe

  11. KSC-99pc0166

    NASA Image and Video Library

    1999-02-06

    Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory waits to be moved inside the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe

  12. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.

    1984-01-01

    Baseline burner rig hot corrosion with Udimet 700, Rene' 80; uncoated and with RT21, Codep, or NiCoCrAlY coatings were tested. Test conditions are: 900C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, velocity 0.3 Mach. The uncoated alloys exhibited substantial typical sulfidation in the range of 140 to 170 hours. The aluminide coatings show initial visual evidence of hot corrosion at about 400 hours, however, there is no such visual evidence for the NiCoCrAlY coatings. The turbine components show sulfidation. The extent of this distress appeared to be inversely related to the average length of mission which may, reflect greater percentage of operating time near ground level or greater percentage of operation time at takeoff conditions (higher temperatures). In some cases, however, the location of maximum distress did not exhibit the structural features of hot corrosion.

  13. Experimental measurement and calculation of losses in planar radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kasarda, M. E. F.; Allaire, P. E.; Hope, R. W.; Humphris, R. R.

    1994-01-01

    The loss mechanisms associated with magnetic bearings have yet to be adequately characterized or modeled analytically and thus pose a problem for the designer of magnetic bearings. This problem is particularly important for aerospace applications where low power consumption of components is critical. Also, losses are expected to be large for high speed operation. The iron losses in magnetic bearings can be divided into eddy current losses and hysteresis losses. While theoretical models for these losses exist for transformer and electric motor applications, they have not been verified for magnetic bearings. This paper presents the results from a low speed experimental test rig and compares them to calculated values from existing theory. Experimental data was taken over a range of 90 to 2,800 rpm for several bias currents and two different pole configurations. With certain assumptions agreement between measured and calculated power losses was within 16 percent for a number of test configurations.

  14. The isentropic light piston annular cascade facil ity at RAE Pyestock

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Colbourne, D. E.; Wedlake, E. T.; Jones, T. V.; Oldfield, M. L. G.; Schultz, D. L.; Loftus, P. J.

    1985-09-01

    An accurate assessment of heat transfer rates to turbine vanes and blades is an important aspect of efficient cooling system design and component life prediction in gas turbines. Techniques have been developed at Oxford University which permit such measurements to be obtained in test rigs which provide short duration steady flow through a turbine cascade. The temperature ratio between the gas stream and the turbine correctly models that found in an engine environment. Reynolds number and Mach numaber can be varied over a wide range to match engine conditions. The design, construction and operation of a new facility at Royal Aircraft Establishment (RAE) Pyestock, incorporating these techniques, is described. Heat transfer and aerodynamic measurements have been made on airfoil surfaces and endwalls of a fully annular cascade of nozzle guide vanes. These results are discussed and compared with those obtained from the same profile in 2-D cascade tests, and with computed 3-D flow predictions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huttrer, G.W.

    This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

  16. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  17. Actively controlled shaft seals for aerospace applications

    NASA Astrophysics Data System (ADS)

    Salant, Richard F.

    The objective of years 4 and 5 of this project (1992 and 1993) is to determine experimentally the behavior and operating characteristics of a controllable mechanical seal, and to identify potential problem areas. A controllable mechanical seal is one in which the thickness of the lubricating film separating the sealing surfaces is adjustable, and can be controlled by an electronic control system, based on information supplied by sensors that monitor the condition of the film. This work builds upon work done during years 1-3, in which a controllable mechanical seal was designed, analyzed, and fabricated. At the beginning of year 4, the mechanical seal and test rig was assembled, and preliminary testing begun. The five major tasks of years 4 and 5 encompass instrumentation, configuration changes of the mechanical seal to optimize its performance, systematic steady state tests, systematic transient tests, and a final report. During this reporting period, significant progress was made on instrumenting the test rig and modifying the design to optimize the seal's performance. Initial steady state tests were also performed.

  18. Novel Engineering and Fabrication Techniques Tested in Low-Noise- Research Fan Blades

    NASA Technical Reports Server (NTRS)

    Cunningham, Cameron C.

    2003-01-01

    A major source of fan noise in commercial turbofan engines is the interaction of the wake from the fan blades with the stationary vanes (stators) directly behind them. The Trailing Edge Blowing (TEB) project team at the NASA Glenn Research Center designed and fabricated new fan blades to study the effects of fan trailing edge blowing as a potential noise-reduction concept. The intent is to fill the rotor wake by supplying air to the rotor blade trailing edge at the proper conditions to minimize the wake deficit, and thus generate less noise. The TEB hardware is designed for the Active Noise Control Fan (ANCF) test rig in Glenn's Aeroacoustic Propulsion Laboratory. For this test, the air is fed from an external supply through the shaft of the rig. It is distributed to the base of each blade through an impeller, where it is forced into a plenum at the core of each blade. In actual engine configuration, air would most likely be bled from the compressor, but only at times when noise is an issue, such as takeoffs and landings. Glenn researchers designed and manufactured the blades in-house, using new techniques and concepts. The skins, which were designed for maximum strength in the directions of highest stress, were molded from multiple layers of carbon fiber. Considerable use was made of rapid prototyping techniques, such as laser sintering. The core was sintered from a lightweight polymer, and the retainer was CNC-machined (computer numerical control machined) from aluminum. All the components were joined with a cold-cure aerospace adhesive. These techniques and processes reduced the overall cost and allowed the new concept to be studied much sooner than would be possible using traditional fabrication methods. Since this test rig did not support the use of blade-monitoring techniques such as strain gauges, extensive bench testing was required to qualify the design. The blades were examined using a variety of methods including holography, pull tests (cyclic and failure), shake tests, rap tests, and nondestructive inspection. Acoustic testing of the ANCF fan using TEB has been ongoing since January of 2001. The fan has completed about 100 hr of testing with no structural, vibrational, or fatigue problems. Far-field acoustic measurements, in-duct mode measurements, precise hot wire surveys, and detailed performance measurements are providing data for evaluating the concept. The far-field noise data show that tone noise was reduced significantly with the initial ANCF TEB fan design. In addition, a significant reduction in unsteady stator loading has been measured, indicating the potential for stator broadband noise reduction. The acoustic benefits will be assessed and important design parameters identified to improve the ability to fully exploit any benefit provided by this technique. On the basis of the success of trailing edge blowing, Glenn plans to continue this research with a higher speed, higher pressure ratio fan operating in an acoustic wind tunnel to simulate flight conditions.

  19. An approach for including the stiffness and damping of elastohydrodynamic point contacts in deep groove ball bearing equilibrium models

    NASA Astrophysics Data System (ADS)

    Nonato, Fábio; Cavalca, Katia L.

    2014-12-01

    This work presents a methodology for including the Elastohydrodynamic (EHD) film effects to a lateral vibration model of a deep groove ball bearing by using a novel approximation for the EHD contacts by a set of equivalent nonlinear spring and viscous damper. The fitting of the equivalent contact model used the results of a transient multi-level finite difference EHD algorithm to adjust the dynamic parameters. The comparison between the approximated model and the finite difference simulated results showed a suitable representation of the stationary and dynamic contact behaviors. The linear damping hypothesis could be shown as a rough representation of the actual hysteretic behavior of the EHD contact. Nevertheless, the overall accuracy of the model was not impaired by the use of such approximation. Further on, the inclusion of the equivalent EHD contact model is equated for both the restoring and the dissipative components of the bearing's lateral dynamics. The derived model was used to investigate the effects of the rolling element bearing lubrication on the vibration response of a rotor's lumped parameter model. The fluid film stiffening effect, previously only observable by experimentation, could be quantified using the proposed model, as well as the portion of the bearing damping provided by the EHD fluid film. Results from a laboratory rotor-bearing test rig were used to indirectly validate the proposed contact approximation. A finite element model of the rotor accounting for the lubricated bearing formulation adequately portrayed the frequency content of the bearing orbits observed on the test rig.

  20. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing replaces the ball bearing in front of the compressor, and the second replaces the roller bearing behind the burner. The rig was made operational to 10,000 rpm under Smart Efficient Components funding, and both position and current adaptive vibration control have been demonstrated. Upon program completion, recommendations will be made as to the efficacy of the conical magnetic bearing for active stall control.

  1. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.

    PubMed

    Gack, Michaela U; Shin, Young C; Joo, Chul-Hyun; Urano, Tomohiko; Liang, Chengyu; Sun, Lijun; Takeuchi, Osamu; Akira, Shizuo; Chen, Zhijian; Inoue, Satoshi; Jung, Jae U

    2007-04-19

    Retinoic-acid-inducible gene-I (RIG-I; also called DDX58) is a cytosolic viral RNA receptor that interacts with MAVS (also called VISA, IPS-1 or Cardif) to induce type I interferon-mediated host protective innate immunity against viral infection. Furthermore, members of the tripartite motif (TRIM) protein family, which contain a cluster of a RING-finger domain, a B box/coiled-coil domain and a SPRY domain, are involved in various cellular processes, including cell proliferation and antiviral activity. Here we report that the amino-terminal caspase recruitment domains (CARDs) of RIG-I undergo robust ubiquitination induced by TRIM25 in mammalian cells. The carboxy-terminal SPRY domain of TRIM25 interacts with the N-terminal CARDs of RIG-I; this interaction effectively delivers the Lys 63-linked ubiquitin moiety to the N-terminal CARDs of RIG-I, resulting in a marked increase in RIG-I downstream signalling activity. The Lys 172 residue of RIG-I is critical for efficient TRIM25-mediated ubiquitination and for MAVS binding, as well as the ability of RIG-I to induce antiviral signal transduction. Furthermore, gene targeting demonstrates that TRIM25 is essential not only for RIG-I ubiquitination but also for RIG-I-mediated interferon- production and antiviral activity in response to RNA virus infection. Thus, we demonstrate that TRIM25 E3 ubiquitin ligase induces the Lys 63-linked ubiquitination of RIG-I, which is crucial for the cytosolic RIG-I signalling pathway to elicit host antiviral innate immunity.

  2. Parallel 3D Multi-Stage Simulation of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Topp, David A.

    1998-01-01

    A 3D multistage simulation of each component of a modern GE Turbofan engine has been made. An axisymmetric view of this engine is presented in the document. This includes a fan, booster rig, high pressure compressor rig, high pressure turbine rig and a low pressure turbine rig. In the near future, all components will be run in a single calculation for a solution of 49 blade rows. The simulation exploits the use of parallel computations by using two levels of parallelism. Each blade row is run in parallel and each blade row grid is decomposed into several domains and run in parallel. 20 processors are used for the 4 blade row analysis. The average passage approach developed by John Adamczyk at NASA Lewis Research Center has been further developed and parallelized. This is APNASA Version A. It is a Navier-Stokes solver using a 4-stage explicit Runge-Kutta time marching scheme with variable time steps and residual smoothing for convergence acceleration. It has an implicit K-E turbulence model which uses an ADI solver to factor the matrix. Between 50 and 100 explicit time steps are solved before a blade row body force is calculated and exchanged with the other blade rows. This outer iteration has been coined a "flip." Efforts have been made to make the solver linearly scaleable with the number of blade rows. Enough flips are run (between 50 and 200) so the solution in the entire machine is not changing. The K-E equations are generally solved every other explicit time step. One of the key requirements in the development of the parallel code was to make the parallel solution exactly (bit for bit) match the serial solution. This has helped isolate many small parallel bugs and guarantee the parallelization was done correctly. The domain decomposition is done only in the axial direction since the number of points axially is much larger than the other two directions. This code uses MPI for message passing. The parallel speed up of the solver portion (no 1/0 or body force calculation) for a grid which has 227 points axially.

  3. Further Characterization of an Active Clearance Control Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2007-01-01

    A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in.

  4. Vibration and noise analysis of a gear transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.

    1993-01-01

    This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.

  5. Test Validation of the Repair to the Space Station Solar Alpha Rotary Joint (SARJ)

    NASA Technical Reports Server (NTRS)

    Allmon, Curtis; Wilkinson, Will; Loewenthal, Stu

    2010-01-01

    The SARJ LITE (Lubrication Interval Test) test rig was built as a method to evaluate the performance of the grease repair on the Starboard SARJ of the International Space Station(ISS). The on-orbit SARJ was temporarily parked after receiving significant degradation on one of its race ring nitrided surfaces as a result of inadequate lubrication ( high dry contact friction) and unaccounted for roller traction kinematics. In a scaled down rig, flight like roller bearings were preloaded and cycled on a nitrided 15-5 race surface. Grease was added to the track and with instrumentation monitoring performance, trending data will be extracted and used to determine lubrication intervals for both Port and Starboard ISS SARJ's. The grease lubrication was found to be effective in eliminating the high friction that contributed to the on-orbit race degradation.

  6. Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses

    PubMed Central

    Liu, Wei; Li, Jing; Zheng, Weinan; Shang, Yingli; Zhao, Zhendong; Wang, Shanshan; Bi, Yuhai; Zhang, Shuang; Xu, Chongfeng; Duan, Ziyuan; Zhang, Lianfeng; Wang, Yue L; Jiang, Zhengfan; Liu, Wenjun; Sun, Lei

    2017-01-01

    RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN production and promoted viral replication in human cells and mice. Upon Sendai virus infection, CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the ubiquitination of RIG-I and MAVS. DOI: http://dx.doi.org/10.7554/eLife.24425.001 PMID:28594325

  7. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  8. Structural features of influenza A virus panhandle RNA enabling the activation of RIG-I independently of 5′-triphosphate

    PubMed Central

    Lee, Mi-Kyung; Kim, Hee-Eun; Park, Eun-Byeol; Lee, Janghyun; Kim, Ki-Hun; Lim, Kyungeun; Yum, Seoyun; Lee, Young-Hoon; Kang, Suk-Jo; Lee, Joon-Hwa; Choi, Byong-Seok

    2016-01-01

    Retinoic acid-inducible gene I (RIG-I) recognizes specific molecular patterns of viral RNAs for inducing type I interferon. The C-terminal domain (CTD) of RIG-I binds to double-stranded RNA (dsRNA) with the 5′-triphosphate (5′-PPP), which induces a conformational change in RIG-I to an active form. It has been suggested that RIG-I detects infection of influenza A virus by recognizing the 5′-triphosphorylated panhandle structure of the viral RNA genome. Influenza panhandle RNA has a unique structure with a sharp helical bending. In spite of extensive studies of how viral RNAs activate RIG-I, whether the structural elements of the influenza panhandle RNA confer the ability to activate RIG-I signaling has been poorly explored. Here, we investigated the dynamics of the influenza panhandle RNA in complex with RIG-I CTD using NMR spectroscopy and showed that the bending structure of the panhandle RNA negates the requirement of a 5′-PPP moiety for RIG-I activation. PMID:27288441

  9. HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.

    2010-01-01

    The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.

  10. Material response from Mach 0.3 burner rig combustion of a coal-oil mixture

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Calfo, F. D.; Kohl, F. J.

    1981-01-01

    Wedge shaped specimens were exposed to the combustion gases of a Mach 0.3 burner rig fueled with a mixture of 40 weight percent micron size coal particles dispersed in No. 2 fuel oil. Exposure temperature was about 900 C and the test duration was about 44 one hour cycles. The alloys tested were the nickel base superalloys, IN-100, U-700 and IN-792, and the cobalt base superalloy, Mar-M509. The deposits on the specimens were analyzed and the extent of corrosion/erosion was measured. The chemical compositions of the deposits were compared with the predictions from an equilibrium thermodynamic analysis. The experimental results were in very good agreement with the predictions.

  11. Involvement of zebrafish RIG-I in NF-κB and IFN signaling pathways: insights into functional conservation of RIG-I in antiviral innate immunity.

    PubMed

    Nie, Li; Zhang, Ying-sheng; Dong, Wei-ren; Xiang, Li-xin; Shao, Jian-zhong

    2015-01-01

    The retinoic acid-inducible gene I (RIG-I) is a critical sensor for host recognition of RNA virus infection and initiation of antiviral signaling pathways in mammals. However, data on the occurrence and functions of this molecule in lower vertebrates are limited. In this study, we characterized an RIG-I homolog (DrRIG-I) from zebrafish. Structurally, this DrRIG-I shares a number of conserved functional domains/motifs with its mammalian counterparts, namely, caspase activation and recruitment domain, DExD/H box, a helicase domain, and a C-terminal domain. Functionally, stimulation with DrRIG-I CARD in zebrafish embryos significantly activated the NF-κB and IFN signaling pathways, leading to the expression of TNF-α, IL-8 and IFN-induced Mx, ISG15, and viperin. However, knockdown of TRIM25 (a pivotal activator for RIG-I receptors) significantly suppressed the induced activation of IFN signaling. Results suggested the functional conservation of RIG-I receptors in the NF-κB and IFN signaling pathways between teleosts and mammals, providing a perspective into the evolutionary history of RIG-I-mediated antiviral innate immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Lapland longspur mortality at an oil well drilling rig site, Laramie County, Wyoming

    USGS Publications Warehouse

    Ramirez, Pedro; Dickerson, Kimberly K.; Lindstrom, Jim; Meteyer, Carol U.; Darrah, Scott

    2015-01-01

    Two hundred fifty-one Lapland longspur (Calcarius lapponicus) carcasses were recovered around an oil well drilling rig in Laramie County, Wyoming, USA, on December 13–14, 2010, apparent victims of a winter storm and “light entrapment” from the lights on the drilling rig during foggy conditions. We found Lapland longspur carcasses distributed around the drilling rig from 33 m to 171 m. Investigators did not find evidence of bird carcasses on the drilling rig deck or equipment immediately adjacent to the drilling rig. We ruled out chemical toxins and disease as a cause of mortality. Weather conditions, the circular depositional pattern of carcasses around the drilling rig, and bird necropsy results led investigators to conclude that the Lapland longspur mortality was the result of the migrating birds entering the area illuminated by the drilling rig lights in freezing fog and the birds repeatedly circling the drilling rig until they fell to the ground in exhaustion and dying from subsequent trauma. Further research is needed to understand how to most effectively adjust lighting of onshore drilling rigs to reduce the potential for avian light entrapment. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  13. Additive Manufacturing and Characterization of Ultem Polymers and Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides - Ultem 9085 and experimental Ultem 1000 mixed with 10 percent chopped carbon fiber. A property comparison between FDM-printed and injection-molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31 percent. Coupons of Ultem 9085 and experimental Ultem 1000 composites were tested at room temperature and 400 degrees Fahrenheit to evaluate their corresponding mechanical properties.

  14. An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig.

    PubMed

    García, Iker; Beloki, Josu; Zubia, Joseba; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Jiménez, Felipe

    2013-06-05

    When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.

  15. An Optical Fiber Bundle Sensor for Tip Clearance and Tip Timing Measurements in a Turbine Rig

    PubMed Central

    García, Iker; Beloki, Josu; Zubia, Joseba; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Jiménez, Felipe

    2013-01-01

    When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions. PMID:23739163

  16. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.; Pearson, J. Boise

    2010-01-01

    The Early Flight Fission Test Facility (EFF-TF) was established by the Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations. The EFF-TF is currently supporting an effort to develop an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled (Sodium-Potassium eutectic, NaK-78) reactor design. This design was derived from the only fission system that the United States has deployed for space operation, the Systems for Nuclear Auxiliary Power (SNAP) 10A reactor, which was launched in 1965. Two prototypical components recently tested at MSFC were a pair of Stirling power conversion units that would be used in a reactor system to convert heat to electricity, and an annular linear induction pump (ALIP) that uses travelling electromagnetic fields to pump the liquid metal coolant through the reactor loop. First ever tests were conducted at MSFC to determine baseline performance of a pair of 1 kW Stirling convertors using NaK as the hot side working fluid. A special test rig was designed and constructed and testing was conducted inside a vacuum chamber at MSFC. This test rig delivered pumped NaK for the hot end temperature to the Stirlings and water as the working fluid on the cold end temperature. These test were conducted through a hot end temperature range between 400 to 550C in increments of 50 C and a cold end temperature range from 30 to 70 C in 20 C increments. Piston amplitudes were varied from 6 to 1 1mm in .5 mm increments. A maximum of 2240 Watts electric was produced at the design point of 550 hot end, 40 C cold end with a piston amplitude of 10.5mm. This power level was reached at a gross thermal efficiency of 28%. A baseline performance map was established for the pair of 1kW Stirling convertors. The performance data will then be used for design modification to the Stirling convertors. The ALIP tested at MSFC has no moving parts and no direct electrical connections to the liquid metal containing components. Pressure is developed by the interaction of the magnetic field produced by the stator and the current which flows as a result of the voltage induced in the liquid metal contained in the pump duct. Flow is controlled by variation of the voltage supplied to the pump windings. Under steady-state conditions, pump performance is measured for flow rates from 0.5-4.3 kg/s. The pressure rise developed by the pump to support these flow rates is roughly 5-65 kPa. The RMS input voltage (phase-to-phase voltage) ranges from 5-120 V, while the frequency can be varied arbitrarily up to 60 Hz. Performance is quantified at different loop temperature levels from 50 C up to 650 C, which is the peak operating temperature of the proposed AFSP reactor. The transient response of the pump is also evaluated to determine its behavior during startup and shut-down procedures.

  17. Mutual Regulation of NOD2 and RIG-I in Zebrafish Provides Insights into the Coordination between Innate Antibacterial and Antiviral Signaling Pathways.

    PubMed

    Nie, Li; Xu, Xiao-Xiao; Xiang, Li-Xin; Shao, Jian-Zhong; Chen, Jiong

    2017-05-27

    Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and retinoic acid-inducible gene I (RIG-I) are two important cytosolic pattern recognition receptors (PRRs) in the recognition of pathogen-associated molecular patterns (PAMPs), initiating innate antibacterial and antiviral signaling pathways. However, the relationship between these PRRs, especially in teleost fish models, is rarely reported. In this article, we describe the mutual regulation of zebrafish NOD2 ( Dr NOD2) and RIG-I ( Dr RIG-I) in innate immune responses. Luciferase assays were conducted to determine the activation of NF-κB and interferon signaling. Morpholino-mediated knockdown and mRNA-mediated rescue were performed to further confirm the regulatory roles between Dr NOD2 and Dr RIG-I. Results showed that Dr NOD2 and Dr RIG-I shared conserved structural hallmarks with their mammalian counterparts, and activated Dr RIG-I signaling can induce Dr NOD2 production. Surprisingly, Dr NOD2-initiated signaling can also induce Dr RIG-I expression, indicating that a mutual regulatory mechanism may exist between them. Studies conducted using HEK293T cells and zebrafish embryos showed that Dr RIG-I could negatively regulate Dr NOD2-activated NF-κB signaling, and Dr NOD2 could inhibit Dr RIG-I-induced IFN signaling. Moreover, knocking down Dr RIG-I expression by morpholino could enhance Dr NOD2-initiated NF-κB activation, and vice versa, which could be rescued by their corresponding mRNAs. Results revealed a mutual feedback regulatory mechanism underlying NOD2 and RIG-I signaling pathways in teleosts. This mechanism reflects the coordination between cytosolic antibacterial and antiviral PRRs in the complex network of innate immunity.

  18. RIG-I overexpression decreases mortality of cigarette smoke exposed mice during influenza A virus infection.

    PubMed

    Wang, Xiaoqiu; Wu, Wenxin; Zhang, Wei; Leland Booth, J; Duggan, Elizabeth S; Tian, Lili; More, Sunil; Zhao, Yan D; Sawh, Ravindranauth N; Liu, Lin; Zou, Ming-Hui; Metcalf, Jordan P

    2017-09-02

    Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines which participate in clearing viral infections. Cigarette smoke (CS) exposure increases the frequency and severity of respiratory tract infections. We generated a RIG-I transgenic (TG) mouse strain that expresses the RIG-I gene product under the control of the human lung specific surfactant protein C promoter. We compared the mortality and host immune responses of RIG-I TG mice and their litter-matched wild type (WT) mice following challenge with influenza A virus (IAV). RIG-I overexpression increased survival of IAV-infected mice. CS exposure increased mortality in WT mice infected with IAV. Remarkably, the effect of RIG-I overexpression on survival during IAV infection was enhanced in CS-exposed animals. CS-exposed IAV-infected WT mice had a suppressed innate response profile in the lung compared to sham-exposed IAV-infected WT mice in terms of the protein concentration, total cell count and inflammatory cell composition in the bronchoalveolar lavage fluid. RIG-I overexpression restored the innate immune response in CS-exposed mice to that seen in sham-exposed WT mice during IAV infection, and is likely responsible for enhanced survival in RIG-I TG mice as restoration preceded death of the animals. Our results demonstrate that RIG-I overexpression in mice is protective for CS enhanced susceptibility of smokers to influenza infection, and that CS mediated RIG-I suppression may be partially responsible for the increased morbidity and mortality of the mice exposed to IAV. Thus, optimizing the RIG-I response may be an important treatment strategy for CS-enhanced lung infections, particularly those due to IAV.

  19. Dual-Band Deramp Radar Design for Ocean Current Measurements

    NASA Technical Reports Server (NTRS)

    Haynes, Mark S.

    2005-01-01

    A mission has been proposed to remotely measure ocean surface currents and surface wind velocities. It will provide the highest resolution and repeat time of these measurements to date for ocean current models with scientific and societal applications. A ground-based experimental radar unit is needed for proof of concept. The proposed experiment set up is to mount the radar on an oil rig to imitate satellite data acquisition. This summer, I completed the radar design. The design employs chirp/deramp topology with simultaneous transmit/receive channels. These two properties allow large system bandwidth, extended sample time, close range imaging, and low sampling rate. The radar operates in the Ku and Ka microwave bands, at 13.5 and 35.5 GHz, respectively, with a system bandwidth of 300 MHz. I completed the radar frequency analysis and research on potential components and antenna configurations. Subsequent work is needed to procure components, as well as to build, test, and deploy the radar.

  20. Advanced Gas Turbine (AGT) Technology Development Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the eleventh in the series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Standard Oil Company, and AiResearch Casting Company. This report covers plans and progress for the period July 1, 1985 through June 30, 1986. Technical progress during the reported period was highlighted by the 85-hour endurance run of an all-ceramic engine operating in the 2000 to 2250 F temperature regime. Component development continued in the areas of the combustion/fuel injection system, regenerator and seals system, and ceramic turbine rotor attachment design. Component rig testing saw further refinements. Ceramic materials showed continued improvements in required properties for gas turbine applications; however, continued development is needed before performance and reliability goals can be set.

  1. Design for On-Sun Evaluation of Evaporator Receivers

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Colozza, Anthony; Sechkar, Edward A.

    2011-01-01

    A heat pipe designed for operation as a solar power receiver should be optimized to accept the solar energy flux and transfer this heat into a reactor. Optical properties of the surface, thermal conductance of the receiver wall, contact resistance of the heat pipe wick, and other heat pipe wick properties ultimately define the maximum amount of power that can be extracted from the concentrated sunlight impinging on the evaporator surface. Modeling of solar power receivers utilizing optical and physical properties provides guidance to their design. On-sun testing is another important means of gathering information on performance. A test rig is being designed and built to conduct on-sun testing. The test rig is incorporating a composite strip mirror concentrator developed as part of a Small Business Innovative Research effort and delivered to NASA Glenn Research Center. In the strip concentrator numerous, lightweight composite parabolic strips of simple curvature were combined to form an array 1.5 m x 1.5 m in size. The line focus of each strip is superimposed in a central area simulating a point of focus. A test stand is currently being developed to hold the parabolic strip concentrator, track the sun, and turn the beam downward towards the ground. The hardware is intended to be sufficiently versatile to accommodate on-sun testing of several receiver concepts, including those incorporating heat pipe evaporators. Characterization devices are also being developed to evaluate the effectiveness of the solar concentrator, including a receiver designed to conduct calorimetry. This paper describes the design and the characterization devices of the on-sun test rig, and the prospect of coupling the concentrated sunlight to a heat pipe solar power receiver developed as part of another Small Business Innovative Research effort.

  2. Roller Testing to Mimic Damage of the ISS SARJ Ring and Durability Test to Simulate Fifteen Years of SARJ Operation Using the Damaged Surface

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Elchert, Justin P.; DellaCorte, Christopher; Dube, Michael J.

    2016-01-01

    The International Space Station's starboard Solar Alpha Rotary Joint (SARJ) experienced a breakdown of the joint's race ring surface. The starboard SARJ mechanism was cleaned and lubricated with grease. To provide some guidance on the expected behavior of the damaged SARJ ring with continued operations, experiments were conducted using rollers and a vacuum roller test rig. The approach of the experimental work involved three main steps: (1) initiate damage using conditions representative of the SARJ with inadequate lubrication; (2) propagate the damage by operating the test rollers without lubrication; and (3) assess the durability of the roller by testing to simulate the equivalent of 15 years of SARJ operation on the damaged surface assuming adequate grease lubrication. During the rig testing, additional and/or replacement grease was introduced at regular intervals to maintain good lubrication in the rig. The damage to the nitride layer continued even after application of grease. The grease lubrication proved to be effective for limiting the value of the axial force that can be developed. Limiting the axial force on the SARJ mechanism is important since the larger the axial force the more concentrated the load pressure becomes on the blend-radius location on the SARJ roller. After the testing simulating 15 years of SARJ operations, the wear depths were the order of 0.2 mm for the nitrided 15-5 roller and the order of 0.06 mm for the mating 440C roller. Metallographic inspections were done to search for indications of impending fatigue or other fracture indications that might eventually propagate and cause structural failure. There were no indications or features found that could eventually compromise structural integrity.

  3. Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig.

    PubMed

    Yang, Xiao-Xing; Critchley, Lester A; Joynt, Gavin M

    2011-01-01

    Thermodilution cardiac output using a pulmonary artery catheter is the reference method against which all new methods of cardiac output measurement are judged. However, thermodilution lacks precision and has a quoted precision error of ± 20%. There is uncertainty about its true precision and this causes difficulty when validating new cardiac output technology. Our aim in this investigation was to determine the current precision error of thermodilution measurements. A test rig through which water circulated at different constant rates with ports to insert catheters into a flow chamber was assembled. Flow rate was measured by an externally placed transonic flowprobe and meter. The meter was calibrated by timed filling of a cylinder. Arrow and Edwards 7Fr thermodilution catheters, connected to a Siemens SC9000 cardiac output monitor, were tested. Thermodilution readings were made by injecting 5 mL of ice-cold water. Precision error was divided into random and systematic components, which were determined separately. Between-readings (random) variability was determined for each catheter by taking sets of 10 readings at different flow rates. Coefficient of variation (CV) was calculated for each set and averaged. Between-catheter systems (systematic) variability was derived by plotting calibration lines for sets of catheters. Slopes were used to estimate the systematic component. Performances of 3 cardiac output monitors were compared: Siemens SC9000, Siemens Sirecust 1261, and Philips MP50. Five Arrow and 5 Edwards catheters were tested using the Siemens SC9000 monitor. Flow rates between 0.7 and 7.0 L/min were studied. The CV (random error) for Arrow was 5.4% and for Edwards was 4.8%. The random precision error was ± 10.0% (95% confidence limits). CV (systematic error) was 5.8% and 6.0%, respectively. The systematic precision error was ± 11.6%. The total precision error of a single thermodilution reading was ± 15.3% and ± 13.0% for triplicate readings. Precision error increased by 45% when using the Sirecust monitor and 100% when using the Philips monitor. In vitro testing of pulmonary artery catheters enabled us to measure both the random and systematic error components of thermodilution cardiac output measurement, and thus calculate the precision error. Using the Siemens monitor, we established a precision error of ± 15.3% for single and ± 13.0% for triplicate reading, which was similar to the previous estimate of ± 20%. However, this precision error was significantly worsened by using the Sirecust and Philips monitors. Clinicians should recognize that the precision error of thermodilution cardiac output is dependent on the selection of catheter and monitor model.

  4. RIG-I-like receptor regulation in virus infection and immunity.

    PubMed

    Chan, Ying Kai; Gack, Michaela U

    2015-06-01

    Mammalian cells have the intrinsic capacity to detect viral pathogens and to initiate an antiviral response that is characterized by the induction of interferons (IFNs) and proinflammatory cytokines. A delicate regulation of the signaling pathways that lead to cytokine production is needed to ensure effective clearance of the virus, while preventing tissue damage caused by excessive cytokine release. Here, we focus on the mechanisms that modulate the signal transduction triggered by RIG-I-like receptors (RLRs) and their adaptor protein MAVS, key components of the host machinery for sensing foreign RNA. Specifically, we summarize recent advances in understanding how RLR signaling is regulated by posttranslational and posttranscriptional mechanisms, microRNAs (miRNAs) and autophagy. We further discuss how viruses target these regulatory mechanisms for immune evasion. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Feo, A.; Vargas, M.; Sor, A.

    2012-01-01

    This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.

  6. AI-MSG modification work plan. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, J.P.

    1973-08-20

    This document contains the Work Plan for the modification of the AI Steam Generator for tests in Large Leak Test Rig. This Work Plan describes the objectives, scope of work, schedule and manpower, end items, and meetings and reports required for the modification.

  7. Glenn Extreme Environment Rig (GEER)

    NASA Image and Video Library

    2017-01-17

    NASA Glenn research engineers prepare our extreme environments chamber (GEER) for a test. GEER, which simulates the extreme conditions found in space, tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800˚F.

  8. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  9. The experimental behavior of spinning pretwisted laminated composite plates

    NASA Technical Reports Server (NTRS)

    Kosmatka, John B.; Lapid, Alex J.

    1993-01-01

    The purpose of the research is to gain an understanding of the material and geometric couplings present in advanced composite turbo-propellers. Twelve pre-twisted laminated composite plates are tested. Three different ply lay-ups (2 symmetric and 1 asymmetric) and four different geometries (flat and 30x pre-twist about the mid-chord, quarter-chord, and leading edge) distinguish each plate from one another. Four rotating and non-rotating tests are employed to isolate the material and geometric couplings of an advanced turbo propeller. The first series of tests consist of non-rotating static displacement, strain, and vibrations. These tests examine the effects of ply lay-up and geometry. The second series of tests consist of rotating displacement, strain, and vibrations with various pitch and sweep settings. These tests utilize the Dynamic Spin Rig Facility at the NASA Lewis Research Center. The rig allows the spin testing of the plates in a near vacuum environment. The tests examine how the material and plate geometry interact with the pitch and sweep geometry of an advanced turbo-propeller.

  10. [Innate immune responses against viral infection and its suppression by viral proteins].

    PubMed

    Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa

    2013-01-01

    Retinoic acid-inducible gene-I(RIG-I) is a cytoplasmic RNA helicase and a viral RNA sensor. RIG-I recognizes 5' triphosphate double-stranded RNA (dsRNA) and activates the IPS-1 adaptor molecule. The association of IPS-1 with RIG-I causes the formation of the prion-like structure of IPS-1. This structure is essential for activation of the signaling required for the induction of type I interferon (IFN), which possesses strong antiviral activity. Recent studies have revealed the novel factors involved in the RIG-I-dependent pathway. DDX3 and DDX60 RNA helicases associate with RIG-I and promote its binding to viral RNA. Riplet and TRIM25 ubiquitin ligase deliver Lys63-linked polyubiquitin moiety to RIG-I and result in signal activation. Several pathogenic viruses have evolved excellent systems to suppress type I IFN production. For example, NS3-4A of hepatitis C virus (HCV) cleaves IPS-1, which is the adaptor molecule of RIG-I, while the HCV core protein abrogates DDX3 function to suppress RIG-I-dependent IPS-1 activation, and the NS-1 of flu inhibits TRIM25 function to suppress RIG-I activation.

  11. 46 CFR 162.050-15 - Designation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... This is the mean and standard deviation, respectively, of the differences between the known sample... sample analysis, and the materials necessary to perform the tests; (2) Each facility test rig must be of... facilities. (a) Each request for designation as a facility authorized to perform approval tests must be...

  12. Comparisons of Rig and Engine Dynamic Events in the Compressor of an Axi-Centrifugal Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Owen, A. Karl; Mattern, Duane L.; Le, Dzu K.

    1996-01-01

    Steady state and dynamic data were acquired in a T55-L-712 compressor rig. In addition, a T55-L-12 engine was instrumented and similar data were acquired. Rig and engine stall/surge data were analyzed using modal techniques. This paper compares rig and engine preliminary results for the ground idle (approximately 60% of design speed) point. The results of these analyses indicate both rig and engine dynamic event are preceded by indications of traveling wave energy in front of the compressor face. For both rig and engine, the traveling wave energy contains broad band energy with some prominent narrow peaks and, while the events are similar in many ways, some noticeable differences exist between the results of the analyses of rig data and engine data.

  13. Simulation of 0.3 MWt AFBC test rig burning Turkish lignites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selcuk, N.; Degirmenci, E.; Oymak, O.

    1997-12-31

    A system model coupling bed and freeboard models for continuous combustion of lignite particles of wide size distribution burning in their own ash in a fluidized bed combustor was modified to incorporate: (1) a procedure for faster computation of particle size distributions (PSDs) without any sacrifice in accuracy; (2) energy balance on char particles for the determination of variation of temperature with particle size, (3) plug flow assumption for the interstitial gas. An efficient and accurate computer code developed for the solution of the conservation equations for energy and chemical species was applied to the prediction of the behavior ofmore » a 0.3 MWt AFBC test rig burning low quality Turkish lignites. The construction and operation of the test rig was carried out within the scope of a cooperation agreement between Middle East Technical University (METU) and Babcock and Wilcox GAMA (BWG) under the auspices of Canadian International Development Agency (CIDA). Predicted concentration and temperature profiles and particle size distributions of solid streams were compared with measured data and found to be in reasonable agreement. The computer code replaces the conventional numerical integration of the analytical solution of population balance with direct integration in ODE form by using a powerful integrator LSODE (Livermore Solver for Ordinary Differential Equations) resulting in two orders of magnitude decrease in CPU (Central Processing Unit) time.« less

  14. Analysis of Coupled Seals, Secondary and Powerstream Flow Fields in Aircraft and Aerospace Turbomachines

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Ho, Y. H.; Prezekwas, A. J.

    2005-01-01

    Higher power, high efficiency gas turbine engines require optimization of the seals and secondary flow systems as well as their impact on the powerstream. This work focuses on two aspects: 1. To apply the present day CFD tools (SCISEAL) to different real-life secondary flow applications from different original equipment manufacturers (OEM s) to provide feedback data and 2. Develop a computational methodology for coupled time-accurate simulation of the powerstream and secondary flow with emphasis on the interaction between the disk-cavity and rim seals flows with the powerstream (SCISEAL-MS-TURBO). One OEM simulation was of the Allison Engine Company T-56 turbine drum cavities including conjugate heat transfer with good agreement with data and provided design feedback information. Another was the GE aspirating seal where the 3-D CFD simulations played a major role in analysis and modification of that seal configuration. The second major objective, development of a coupled flow simulation capability was achieved by using two codes MS-TURBO for the powerstream and SCISEAL for the secondary flows with an interface coupling algorithm. The coupled code was tested against data from three differed configurations: 1. bladeless-rotor-stator-cavity turbine test rig, 2. UTRC high pressure turbine test rig, and, 3. the NASA Low-Speed-Air Compressor rig (LSAC) with results and limitations discussed herein.

  15. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  16. Investigation of ELF Signals Associated with Mine Warfare: A University of Idaho and Acoustic Research Detachment Collaboration, Phase Three

    DTIC Science & Technology

    2012-07-01

    from the Scow (a self -propelled barge) and rigged to be suspended in the water at various depths up to 500’. The sensor was deployed upside down...Figure 26). This allowed the e-source barge to change orientation as required in the test run plan. This was a “ soft ” moor so weather conditions were...deployed from the Scow (a self -propelled barge) and rigged to be suspended in the water at various depths up to 500’. Deployment of the sensor was in

  17. Hot Tearing in Aluminium — Copper Alloys

    NASA Astrophysics Data System (ADS)

    Viano, David; StJohn, David; Grandfield, John; Cáceres, Carlos

    For many aluminium alloys, hot tearing susceptibility follows a lambda curve relationship when hot tearing severity is plotted as a function of solute content. In the past, there has been some difficulty quantifying hot tearing. Traditional methods rely upon measuring electrical resistivity or the number and/or length of cracks in tests such as the ring test. In this experimental program, a hot tear test rig was used to investigate a series of binary Al-Cu alloys. This device measures the load imposed on the mushy zone during solidification. Hot tearing susceptibility was quantified in two ways. The first method involved measuring the load at the solidus temperature (548°C). The second method was to radiograph the hot spot and measure the image density of the cracks. Both methods had advantages and disadvantages. It was found that the results from the hot tear rig correlates with other published data using different experimental methods.

  18. Turbo test rig with hydroinertia air bearings for a palmtop gas turbine

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Isomura, Kousuke; Togo, Shin-ichi; Esashi, Masayoshi

    2004-11-01

    This paper describes a turbo test rig to test the compressor of a palmtop gas turbine generator at low temperature (<100 °C). Impellers are 10 mm in diameter and have three-dimensional blades machined using a five-axis NC milling machine. Hydroinertia bearings are employed in both radial and axial directions. The performance of the compressor was measured at 50% (435 000 rpm) and 60% (530 000 rpm) of the rated rotational speed (870 000 rpm) by driving a turbine using compressed air at room temperature. The measured pressure ratio is lower than the predicted value. This could be mainly because impeller tip clearance was larger than the designed value. The measured adiabatic efficiency is unrealistically high due to heat dissipation from compressed air. During acceleration toward the rated rotational speed, a shaft crashed to the bearing at 566 000 rpm due to whirl. At that time, the whirl ratio was 8.

  19. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  20. Test Validation of the Repair to the Space Station Solar Alpha Rotary Joint

    NASA Technical Reports Server (NTRS)

    Allmon, Curtis; Wilkinson, Will; Loewenthal, Stu

    2010-01-01

    The Solar Array Alpha Joint Lubrication Interval Test (SARJ LITE) test rig was built as a method to evaluate the performance of the grease repair on the Starboard SARJ of the International Space Station (ISS) . The on-orbit SARJ was temporarily parked after receiving significant damage on one of its race ring surfaces as a result of inadequate lu brication (high dry contact friction) and unaccounted for roller traction kinematics. In a scaled down rig, flight-like roller bearings wer e preloaded and cycled on a nitrided 15-5 race surface. Grease was ad ded to the track and with instrumentation monitoring performance, trending data will be extracted and used to determine lubrication interva ls for both Port and Starboard ISS SARJ?s. The grease lubrication was found to be effective in eliminating the high friction that contributed to the onorbit race damage.

  1. Axial force and efficiency tests of fixed center variable speed belt drive

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1981-01-01

    An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.

  2. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  3. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  4. Test drilling in basalts, Lalamilo area, South Kohala District, Hawaii

    USGS Publications Warehouse

    Teasdale, Warren E.

    1980-01-01

    Test drilling has determined that a downhole-percussion airhammer can be used effectively to drill basalts in Hawaii. When used in conjunction with a foam-type drilling fluid, the hammer-bit penetration rate was rapid. Continuous drill cuttings from the materials penetrated were obtained throughout the borehole except from extremely fractured or weathered basalt zones where circulation was lost or limited. Cementing of these zones as soon as encountered reduced problems of stuck tools, washouts, and loss of drill-cuttings. Supplies and logistics on the Hawaiian Islands, always a major concern, require that all anticipated drilling supplies, spare rig and tool parts, drilling muds and additives, foam, and miscellaneous hardware be on hand before starting to drill. If not, the resulting rig downtime is costly in both time and money. (USGS)

  5. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  6. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  7. Combustion Dynamics and Stability Modeling of a Liquid Oxygen/RP-2 Oxygen-Rich Staged Combustion Preburner and Thrust Chamber Assembly with Gas-Centered Swirl Coaxial Injector Elements

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.

    2016-01-01

    The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.

  8. The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites

    PubMed Central

    Neufeldt, Christopher J.; Joyce, Michael A.; Van Buuren, Nicholas; Levin, Aviad; Kirkegaard, Karla; Gale Jr., Michael; Tyrrell, D. Lorne J.; Wozniak, Richard W.

    2016-01-01

    Hepatitis C virus (HCV) is a positive-strand RNA virus of the Flaviviridae family and a major cause of liver disease worldwide. HCV replicates in the cytoplasm, and the synthesis of viral proteins induces extensive rearrangements of host cell membranes producing structures, collectively termed the membranous web (MW). The MW contains the sites of viral replication and assembly, and we have identified distinct membrane fractions derived from HCV-infected cells that contain replication and assembly complexes enriched for viral RNA and infectious virus, respectively. The complex membrane structure of the MW is thought to protect the viral genome limiting its interactions with cytoplasmic pattern recognition receptors (PRRs) and thereby preventing activation of cellular innate immune responses. Here we show that PRRs, including RIG-I and MDA5, and ribosomes are excluded from viral replication and assembly centers within the MW. Furthermore, we present evidence that components of the nuclear transport machinery regulate access of proteins to MW compartments. We show that the restricted assess of RIG-I to the MW can be overcome by the addition of a nuclear localization signal sequence, and that expression of a NLS-RIG-I construct leads to increased immune activation and the inhibition of viral replication. PMID:26863439

  9. Sail Plan Configuration Optimization for a Modern Clipper Ship

    NASA Astrophysics Data System (ADS)

    Gerritsen, Margot; Doyle, Tyler; Iaccarino, Gianluca; Moin, Parviz

    2002-11-01

    We investigate the use of gradient-based and evolutionary algorithms for sail shape optimization. We present preliminary results for the optimization of sheeting angles for the rig of the future three-masted clipper yacht Maltese Falcon. This yacht will be equipped with square-rigged masts made up of yards of circular arc cross sections. This design is especially attractive for megayachts because it provides a large sail area while maintaining aerodynamic and structural efficiency. The rig remains almost rigid in a large range of wind conditions and therefore a simple geometrical model can be constructed without accounting for the true flying shape. The sheeting angle optimization studies are performed using both gradient-based cost function minimization and evolutionary algorithms. The fluid flow is modeled by the Reynolds-averaged Navier-Stokes equations with the Spallart-Allmaras turbulence model. Unstructured non-conforming grids are used to increase robustness and computational efficiency. The optimization process is automated by integrating the system components (geometry construction, grid generation, flow solver, force calculator, optimization). We compare the optimization results to those done previously by user-controlled parametric studies using simple cost functions and user intuition. We also investigate the effectiveness of various cost functions in the optimization (driving force maximization, ratio of driving force to heeling force maximization).

  10. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance.

    PubMed

    Yang, Hui; Guo, He-Zhou; Li, Xian-Yang; Lin, Jian; Zhang, Wu; Zhao, Jun-Mei; Zhang, Hong-Xin; Chen, Sai-Juan; Chen, Zhu; Zhu, Jiang

    2017-07-01

    Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4 + T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I -/- CD4 + T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I -/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein.

    PubMed

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Injury Rates on New and Old Technology Oil and Gas Rigs Operated by the Largest United States Onshore Drilling Contractor

    PubMed Central

    Blackley, David J.; Retzer, Kyla D.; Hubler, Warren G.; Hill, Ryan D.; Laney, A. Scott

    2015-01-01

    Background Occupational fatality rates among oil and gas extraction industry and specifically among drilling contractor workers are high compared to the U.S. all-industry average. There is scant literature focused on non-fatal injuries among drilling contractors, some of which have introduced engineering controls to improve rig efficiency and reduce injury risk. Methods We compared injury rates on new and old technology rigs operated by the largest U.S. drilling contractor during 2003–2012, stratifying by job type and grouping outcomes by injury severity and body part affected. Results Six hundred seventy-one injuries were recorded over 77.4 million person-hours. The rate on new rigs was 66% of that on old rigs. Roughnecks had lower injury rates on new rigs, largely through reduced limb injury rates. New rigs had lower rates in each non-fatal injury severity category. Conclusions For this company, new technology rigs appear to provide a safer environment for roughnecks. Future studies could include data from additional companies. PMID:25164118

  13. Injury rates on new and old technology oil and gas rigs operated by the largest United States onshore drilling contractor.

    PubMed

    Blackley, David J; Retzer, Kyla D; Hubler, Warren G; Hill, Ryan D; Laney, A Scott

    2014-10-01

    Occupational fatality rates among oil and gas extraction industry and specifically among drilling contractor workers are high compared to the U.S. all-industry average. There is scant literature focused on non-fatal injuries among drilling contractors, some of which have introduced engineering controls to improve rig efficiency and reduce injury risk. We compared injury rates on new and old technology rigs operated by the largest U.S. drilling contractor during 2003-2012, stratifying by job type and grouping outcomes by injury severity and body part affected. Six hundred seventy-one injuries were recorded over 77.4 million person-hours. The rate on new rigs was 66% of that on old rigs. Roughnecks had lower injury rates on new rigs, largely through reduced limb injury rates. New rigs had lower rates in each non-fatal injury severity category. For this company, new technology rigs appear to provide a safer environment for roughnecks. Future studies could include data from additional companies. © 2014 Wiley Periodicals, Inc.

  14. A Universal Rig for Supporting Large Hammer Drills: Reduced Injury Risk and Improved Productivity

    PubMed Central

    Rempel, David; Barr, Alan

    2015-01-01

    Drilling holes into concrete with heavy hammer and rock drills is one of the most physically demanding tasks performed in commercial construction and poses risks for musculoskeletal disorders, noise induced hearing loss, hand arm vibration syndrome and silicosis. The aim of this study was to (1) use a participatory process to develop a rig to support pneumatic rock drills or large electric hammer drills in order to reduce the health risks and (2) evaluate the usability of the rig. Seven prototype rigs for supporting large hammer drills were developed and modified with feedback from commercial contractors and construction workers. The final design was evaluated by laborers and electricians (N=29) who performed their usual concrete drilling with the usual method and the new rig. Subjective regional fatigue was significantly less in the neck, shoulders, hands and arms, and lower back) when using the universal rig compared to the usual manual method. Usability ratings for the rig were significantly better than the usual method on stability, control, drilling, accuracy, and vibration. Drilling time was reduced by approximately 50% with the rig. Commercial construction contractors, laborers and electricians who use large hammer drills for drilling many holes should consider using such a rig to prevent musculoskeletal disorders, fatigue, and silicosis. PMID:26005290

  15. Rig-I regulates NF-κB activity through binding to Nf-κb1 3′-UTR mRNA

    PubMed Central

    Zhang, Hong-Xin; Liu, Zi-Xing; Sun, Yue-Ping; Lu, Shun-Yuan; Liu, Xue-Song; Huang, Qiu-Hua; Xie, Yin-Yin; Dang, Su-Ying; Zheng, Guang-Yong; Li, Yi-Xue; Kuang, Ying; Fei, Jian; Chen, Zhu; Wang, Zhu-Gang

    2013-01-01

    Retinoic acid inducible gene I (RIG-I) senses viral RNAs and triggers innate antiviral responses through induction of type I IFNs and inflammatory cytokines. However, whether RIG-I interacts with host cellular RNA remains undetermined. Here we report that Rig-I interacts with multiple cellular mRNAs, especially Nf-κb1. Rig-I is required for NF-κB activity via regulating Nf-κb1 expression at posttranscriptional levels. It interacts with the multiple binding sites within 3′-UTR of Nf-κb1 mRNA. Further analyses reveal that three distinct tandem motifs enriched in the 3′-UTR fragments can be recognized by Rig-I. The 3′-UTR binding with Rig-I plays a critical role in normal translation of Nf-κb1 by recruiting the ribosomal proteins [ribosomal protein L13 (Rpl13) and Rpl8] and rRNAs (18S and 28S). Down-regulation of Rig-I or Rpl13 significantly reduces Nf-κb1 and 3′-UTR–mediated luciferase expression levels. These findings indicate that Rig-I functions as a positive regulator for NF-κB signaling and is involved in multiple biological processes in addition to host antivirus immunity. PMID:23553835

  16. Activation of duck RIG-I by TRIM25 is independent of anchored ubiquitin.

    PubMed

    Miranzo-Navarro, Domingo; Magor, Katharine E

    2014-01-01

    Retinoic acid inducible gene I (RIG-I) is a viral RNA sensor crucial in defense against several viruses including measles, influenza A and hepatitis C. RIG-I activates type-I interferon signalling through the adaptor for mitochondrial antiviral signaling (MAVS). The E3 ubiquitin ligase, tripartite motif containing protein 25 (TRIM25), activates human RIG-I through generation of anchored K63-linked polyubiquitin chains attached to lysine 172, or alternatively, through the generation of unanchored K63-linked polyubiquitin chains that interact non-covalently with RIG-I CARD domains. Previously, we identified RIG-I of ducks, of interest because ducks are the host and natural reservoir of influenza viruses, and showed it initiates innate immune signaling leading to production of interferon-beta (IFN-β). We noted that K172 is not conserved in RIG-I of ducks and other avian species, or mouse. Because K172 is important for both mechanisms of activation of human RIG-I, we investigated whether duck RIG-I was activated by TRIM25, and if other residues were the sites for attachment of ubiquitin. Here we show duck RIG-I CARD domains are ubiquitinated for activation, and ubiquitination depends on interaction with TRIM25, as a splice variant that cannot interact with TRIM25 is not ubiquitinated, and cannot be activated. We expressed GST-fusion proteins of duck CARD domains and characterized TRIM25 modifications of CARD domains by mass spectrometry. We identified two sites that are ubiquitinated in duck CARD domains, K167 and K193, and detected K63 linked polyubiquitin chains. Site directed mutagenesis of each site alone, does not alter the ubiquitination profile of the duck CARD domains. However, mutation of both sites resulted in loss of all attached ubiquitin and polyubiquitin chains. Remarkably, the double mutant duck RIG-I CARD still interacts with TRIM25, and can still be activated. Our results demonstrate that anchored ubiquitin chains are not necessary for TRIM25 activation of duck RIG-I.

  17. Pigeon RIG-I Function in Innate Immunity against H9N2 IAV and IBDV.

    PubMed

    Xu, Wenping; Shao, Qiang; Zang, Yunlong; Guo, Qiang; Zhang, Yongchao; Li, Zandong

    2015-07-22

    Retinoic acid-inducible gene I (RIG-I), a cytosolic pattern recognition receptor (PRR), can sense various RNA viruses, including the avian influenza virus (AIV) and infectious bursal disease virus (IBDV), and trigger the innate immune response. Previous studies have shown that mammalian RIG-I (human and mice) and waterfowl RIG-I (ducks and geese) are essential for type I interferon (IFN) synthesis during AIV infection. Like ducks, pigeons are also susceptible to infection but are ineffective propagators and disseminators of AIVs, i.e., "dead end" hosts for AIVs and even highly pathogenic avian influenza (HPAI). Consequently, we sought to identify pigeon RIG-I and investigate its roles in the detection of A/Chicken/Shandong/ZB/2007 (H9N2) (ZB07), Gansu/Tianshui (IBDV TS) and Beijing/CJ/1980 (IBDV CJ-801) strains in chicken DF-1 fibroblasts or human 293T cells. Pigeon mRNA encoding the putative pigeon RIG-I analogs was identified. The exogenous expression of enhanced green fluorescence protein (EGFP)-tagged pigeon RIG-I and caspase activation and recruitment domains (CARDs), strongly induced antiviral gene (IFN-β, Mx, and PKR) mRNA synthesis, decreased viral gene (M gene and VP2) mRNA expression, and reduced the viral titers of ZB07 and IBDV TS/CJ-801 virus strains in chicken DF-1 cells, but not in 293T cells. We also compared the antiviral abilities of RIG-I proteins from waterfowl (duck and goose) and pigeon. Our data indicated that waterfowl RIG-I are more effective in the induction of antiviral genes and the repression of ZB07 and IBDV TS/CJ-801 strain replication than pigeon RIG-I. Furthermore, chicken melanoma differentiation associated gene 5(MDA5)/ mitochondrial antiviral signaling (MAVS) silencing combined with RIG-I transfection suggested that pigeon RIG-I can restore the antiviral response in MDA5-silenced DF-1 cells but not in MAVS-silenced DF-1 cells. In conclusion, these results demonstrated that pigeon RIG-I and CARDs have a strong antiviral ability against AIV H9N2 and IBDV in chicken DF-1 cells but not in human 293T cells.

  18. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  19. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

  20. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  1. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  2. Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-beta induction by disrupting the VISA-associated complex.

    PubMed

    Wang, Xianmiao; Li, Ying; Mao, Aiping; Li, Chao; Li, Yongkui; Tien, Po

    2010-09-01

    Viral RNAs produced during viral infection are recognized by the cytoplasmic RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). A central adapter protein downstream of RIG-I and MDA5 is the mitochondrial membrane protein virus-induced signaling adaptor (VISA), which mediates the induction of type I interferons (IFNs) through the activation of transcription factors such as nuclear factor-kappaB (NF-kappaB) and IFN-regulatory factor-3 (IRF3). Here we found that hepatitis B virus (HBV)-encoded X protein (HBx) acts as an inhibitor of virus-triggered IRF3 activation and IFN-beta induction. Reporter and plaque assays indicate that HBx inhibits signaling by components upstream but not downstream of VISA. Immunoprecipitation experiments indicate that HBx interacts with VISA and disrupts the association of VISA with its upstream and downstream components. These findings suggest that HBx acts as a suppressor of virus-triggered induction of type I IFNs, which explains the observation that HBV causes transient and chronic infection in hepatocytes but fails to activate the pattern recognition receptor-mediated IFN induction pathways.

  3. Evaluating Manufacturing and Assembly Errors in Rotating Machinery to Enhance Component Performance

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Huff, Edward M.; Swanson, Keith (Technical Monitor)

    2001-01-01

    Manufacturing and assembly phases play a crucial role in providing products that meet the strict functional specifications associated with rotating machinery components. The errors resulting during the manufacturing and assembly of such components are correlated with the vibration and noise emanating from the final system during its operational lifetime. Vibration and noise are especially unacceptable elements in high-risk systems such as helicopters, resulting in premature component degradation and an unsafe flying environment. In such applications, individual components often are subject to 100% inspection prior to assembly, as well as during operation through rigorous maintenance, resulting in increased product development cycles and high production and operation costs. In this work, we focus on providing designers and manufacturing engineers with a technique to evaluate vibration modes and levels for each component or subsystem prior to putting them into operation. This paper presents a preliminary investigation of the correlation between vibrations and manufacturing and assembly errors using an experimental test rig, which simulates a simple bearing and shaft arrangement. A factorial design is used to study the effects of: 1) different manufacturing instances; 2) different assembly instances; and, 3) varying shaft speeds. The results indicate a correlation between manufacturing or assembly errors and vibrations measured from accelerometers. Challenges in developing a tool for DFM are identified, followed by a discussion of future work, including a real-world application to helicopter transmission vibrations.

  4. An air bearing system for small high speed gas turbines

    NASA Astrophysics Data System (ADS)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.

    1994-03-01

    This paper describes the second phase of an experimental program concerning the application of air bearings to small turbomachinery test rigs and small gas turbines. The first phase examined externally pressurized (EP) journal bearings, with a novel EP thrust bearing, for application to 'warm air' test rigs, and was entirely successful at rotational speeds in excess of 100,000 rpm. This second phase examined several designs of tilting pad-spiring journal bearings, one with a novel form of externally pressurized pad, but all using the original EP thrust bearing. The designs tested are described, including some oscillogram traces, for tests up to a maximum of 70,000 rpm; the most successful using a carbon pad-titanium beam spring arrangement. The thrust bearing which gave trouble-free operation throughout, is also described. The results of an original experiment to measure the 'runway speed' of a radial inflow turbine are also presented, which show that overspeeds of 58 percent above the design speed can result from free-power turbine coupling failure.

  5. Thin Film Sensors for Surface Measurements

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.

    2001-01-01

    Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.

  6. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    NASA Astrophysics Data System (ADS)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  7. Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce

    2012-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.

  8. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...

  9. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...

  10. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...

  11. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...

  12. Seal Technology Development for Advanced Component for Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    2008-01-01

    Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.

  13. Tires

    DTIC Science & Technology

    2015-12-15

    during shipment, protect the threads of the valve stem, and shield the folded tube against abrasion by the threads . A metal valve cap contains a...Test types include force and moment, rolling resistance , steer frequency response, load-deflection curves, characteristics, endurance, and...several on-vehicle tests. 15. SUBJECT TERMS tire test rig force and moment rolling resistance steer frequency response

  14. 30 CFR 251.7 - Test drilling activities under a permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Test drilling activities under a permit. 251.7... GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 251.7 Test drilling activities... of drilling activities; (ii) A description of your drilling rig, indicating the important features...

  15. Hoisting and Rigging (Formerly Hoisting and Rigging Manual)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This standard is intended as a reference document to be used by supervisors, line managers, safety personnel, equipment operators, and any other personnel responsible for safety of hoisting and rigging operations at DOE sites. It quotes or paraphrases the US OSHA and ANSI requirements. It also encompasses, under one cover,hoisting and rigging requirements, codes, standards, and regulations, eliminating the need to maintain extensive (and often incomplete) libraries of hoisting and rigging standards throughout DOE. The standard occasionally goes beyond the minimum general industry standards established by OSHA and ANSI, and also delineates the more stringent requirements necessary to accomplish themore » complex, diversified, critical, and often hazardous hoisting and rigging work found with the DOE complex.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The worldwide semisubmersible drilling rig fleet is approaching retirement. But replacement is not an attractive option even though dayrates are reaching record highs. In 1991, Schlumberger Sedco Forex managers decided that an alternative might exist if regulators and insurers could be convinced to extend rig life expectancy through restoration. Sedco Forex chose their No. 704 semisubmersible, an 18-year North Sea veteran, to test their process. The first step was to determine what required restoration, meaning fatigue life analysis of each weld on the huge vessel. If inspected, the task would be unacceptably time-consuming and of questionable accuracy. Instead a suitemore » of computer programs modeled the stress seen by each weld, statistically estimated the sea states seen by the rig throughout its North Sea service and calibrated a beam-element model on which to run their computer simulations. The elastic stiffness of the structure and detailed stress analysis of each weld was performed with ANSYS, a commercially available finite-element analysis program. The use of computer codes to evaluate service life extension is described.« less

  17. Rig Diagnostic Tools

    NASA Technical Reports Server (NTRS)

    Soileau, Kerry M.; Baicy, John W.

    2008-01-01

    Rig Diagnostic Tools is a suite of applications designed to allow an operator to monitor the status and health of complex networked systems using a unique interface between Java applications and UNIX scripts. The suite consists of Java applications, C scripts, Vx- Works applications, UNIX utilities, C programs, and configuration files. The UNIX scripts retrieve data from the system and write them to a certain set of files. The Java side monitors these files and presents the data in user-friendly formats for operators to use in making troubleshooting decisions. This design allows for rapid prototyping and expansion of higher-level displays without affecting the basic data-gathering applications. The suite is designed to be extensible, with the ability to add new system components in building block fashion without affecting existing system applications. This allows for monitoring of complex systems for which unplanned shutdown time comes at a prohibitive cost.

  18. Trophic and reproductive ecology of Red Snapper, Lutjanus campechanus, on natural and artificial reefs in the western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ajemian, M. J.; Wetz, J. J.; Brewton, R. A.; Downey, C. H.; Stunz, G. W.

    2016-02-01

    Energy exploration in the Gulf of Mexico (Gulf) has resulted in the addition of numerous oil and gas production rigs that have added structurally complex habitat to an area otherwise dominated by bare bottom. The impact of these artificial structures on fish populations is largely unknown and there is ongoing debate about their functionality. Red Snapper (Lutjanus campechanus), an ecologically and economically important sportfish to the region, use natural as well as the artificial reefs created by standing and reefed (toppled or cutoff) oil and gas rigs. However, little is known about how trophic and reproductive characteristics of Red Snapper vary over these multiple habitat types. We analyzed stable isotopic composition (δ13C, δ 15N) of epaxial muscle and compared reproductive potential of Red Snapper (155-855 mm TL) from standing rigs, reefed rigs, and natural hard-bottom habitats off Texas. Red Snapper from standing rig sites were isotopically enriched in δ 15N compared to lower relief habitats, suggesting they were feeding at a higher trophic level on standing rigs. While gonadosomatic indices (GSI) and comparative histology implied a similar spawning season among structure types, GSI was highest for both sexes at standing rigs. These initial results suggest that while standing rigs appear to provide more enriched food resources leading to higher Red Snapper reproductive capacity, the productivity of this species is similar between currently permitted rig decommissioning options (i.e., cutoff and toppled rigs) and natural hard-bottom habitats in the Gulf of Mexico.

  19. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediatedmore » IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.« less

  20. Hepatitis B virus inhibits intrinsic RIG-I and RIG-G immune signaling via inducing miR146a

    PubMed Central

    Hou, Zhaohua; Zhang, Jian; Han, Qiuju; Su, Chenhe; Qu, Jing; Xu, Dongqing; Zhang, Cai; Tian, Zhigang

    2016-01-01

    Previous studies showed that hepatitis B virus (HBV), as a latency invader, attenuated host anti-viral immune responses. miRNAs were shown to be involved in HBV infection and HBV-related diseases, however, the precise role of miRNAs in HBV-mediated immunosuppression remains unclear. Here, we observed that down-regulated RIG-I like receptors might be one critical mechanism of HBV-induced suppression of type I IFN transcription in both HBV+ hepatoma cell lines and liver cancer tissues. Then, miR146a was demonstrated to negatively regulate the expression of RIG-I-like receptors by directly targeting both RIG-I and RIG-G. Further investigation showed that antagonizing miR146a by anti-sense inhibitors or sponge approach accelerated HBV clearance and reduced HBV load both in vitro and in a HBV-carrying mouse model. Therefore, our findings indicated that HBV-induced miR146a attenuates cell-intrinsic anti-viral innate immunity through targeting RIG-I and RIG-G, and silencing miR146a might be an effective target to reverse HBV-induced immune suppression. PMID:27210312

Top