Maderbacher, Guenther; Keshmiri, Armin; Springorum, Hans R; Maderbacher, Hermann; Grifka, Joachim; Baier, Clemens
2017-09-01
Physiological tibiofemoral kinematics have been shown to be important for good knee function after total knee arthroplasty (TKA). The purpose of the present study was to investigate the influence of component rotation on tibiofemoral kinematics during knee flexion. We asked which axial component alignment best reconstructs physiological tibiofemoral kinematics and which combinations should be avoided. Ten healthy cadaveric knees were examined. By means of a navigational device, tibiofemoral kinematics between 0° and 90° of flexion were assessed before and after TKA using the following different rotational component alignment: femoral components: ligament balanced, 6° internal, 3° external rotation, and 6° external rotation in relation to the posterior condylar line; tibial components: self-adapted, 6° internal rotation, and 6° external rotation. Physiological tibiofemoral kinematics could be partly reconstructed by TKA. Ligament-balanced femoral rotation and 6° femoral external rotation both in combination with 6° tibial component external rotation, and 3° femoral external rotation in combination with 6° tibial component internal rotation or self-aligning tibial component were able to restore tibial longitudinal rotation. Largest kinematical differences were found for the combination femoral component internal and tibial component external rotations. From a kinematic-based view, surgeons should avoid internal rotation of femoral components. However, even often recommended combinations of rotational component alignment (3° femoral external and tibial external rotation) significantly change tibiofemoral kinematics. Self-aligning tibial components solely restored tibiofemoral kinematics with the combination of 3° femoral component of external rotation. For the future, navigational devices might help to axially align components to restore patient-specific and natural tibiofemoral kinematics. Copyright © 2017 Elsevier Inc. All rights reserved.
Mochizuki, Tomoharu; Sato, Takashi; Tanifuji, Osamu; Watanabe, Satoshi; Kobayashi, Koichi; Endo, Naoto
2018-02-13
This study aimed to identify the factors affecting postoperative rotational limb alignment of the tibia relative to the femur. We hypothesized that not only component positions but also several intrinsic factors were associated with postoperative rotational limb alignment. This study included 99 knees (90 women and 9 men) with a mean age of 77 ± 6 years. A three-dimensional (3D) assessment system was applied under weight-bearing conditions to biplanar long-leg radiographs using 3D-to-2D image registration technique. The evaluation parameters were (1) component position; (2) preoperative and postoperative coronal, sagittal, and rotational limb alignment; (3) preoperative bony deformity, including femoral torsion, condylar twist angle, and tibial torsion; and (4) preoperative and postoperative range of motion (ROM). In multiple linear regression analysis using a stepwise procedure, postoperative rotational limb alignment was associated with the following: (1) rotation of the component position (tibia: β = 0.371, P < .0001; femur: β = -0.327, P < .0001), (2) preoperative rotational limb alignment (β = 0.253, P = .001), (3) postoperative flexion angle (β = 0.195, P = .007), and (4) tibial torsion (β = 0.193, P = .010). In addition to component positions, the intrinsic factors, such as preoperative rotational limb alignment, ROM, and tibial torsion, affected postoperative rotational limb alignment. On a premise of correct component positions, the intrinsic factors that can be controlled by surgeons should be taken care. In particular, ROM is necessary to be improved within the possible range to acquire better postoperative rotational limb alignment. Copyright © 2018 Elsevier Inc. All rights reserved.
Tibesku, C O; Innocenti, B; Wong, P; Salehi, A; Labey, L
2012-02-01
Long-term success of contemporary total knee replacements relies to a large extent on proper implant alignment. This study was undertaken to test whether specimen-matched cutting blocks based on computed axial tomography (CT) scans could provide accurate rotational alignment of the femoral component. CT scans of five fresh frozen full leg cadaver specimens, equipped with infrared reflective markers, were used to produce a specimen-matched femoral cutting block. Using those blocks, the bone cuts were made to implant a bi-compartmental femoral component. Rotational alignment of the components in the horizontal plane was determined using an optical measurement system and compared with all relevant rotational reference axes identified on the CT scans. Average rotational alignment for the bi-compartmental component in the horizontal plane was 1.9° (range 0°-6.3°; standard deviation 2.6°). One specimen that showed the highest deviation from the planned alignment also featured a completely degraded medial articular surface. The CT-based specimen-matched cutting blocks achieved good rotational alignment accuracy except for one specimen with badly damaged cartilage. In such cases, imaging techniques that visualize the cartilage layer might be more suitable to design cutting blocks, as they will provide a better fit and increased surface support.
Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok
2014-12-01
The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.
Effect of rotational alignment on outcome of total knee arthroplasty
Breugem, Stefan J; van den Bekerom, Michel PJ; Tuinebreijer, Willem E; van Geenen, Rutger C I
2015-01-01
Background and purpose Poor outcomes have been linked to errors in rotational alignment of total knee arthroplasty components. The aims of this study were to determine the correlation between rotational alignment and outcome, to review the success of revision for malrotated total knee arthroplasty, and to determine whether evidence-based guidelines for malrotated total knee arthroplasty can be proposed. Patients and methods We conducted a systematic review including all studies reporting on both rotational alignment and functional outcome. Comparable studies were used in a correlation analysis and results of revision were analyzed separately. Results 846 studies were identified, 25 of which met the inclusion criteria. From this selection, 11 studies could be included in the correlation analysis. A medium positive correlation (ρ = 0.44, 95% CI: 0.27–0.59) and a large positive correlation (ρ = 0.68, 95% CI: 0.64–0.73) were found between external rotation of the tibial component and the femoral component, respectively, and the Knee Society score. Revision for malrotation gave positive results in all 6 studies in this field. Interpretation Medium and large positive correlations were found between tibial and femoral component rotational alignment on the one hand and better functional outcome on the other. Revision of malrotated total knee arthroplasty may be successful. However, a clear cutoff point for revision for malrotated total knee arthroplasty components could not be identified. PMID:25708694
Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki
2018-02-01
Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P < 0.01). We concluded that combined CT-based and image-free navigation systems decreased the number of rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.
Effect of limb rotation on radiographic alignment in total knee arthroplasties.
Radtke, Kerstin; Becher, Christoph; Noll, Yvonne; Ostermeier, Sven
2010-04-01
Even in a well-aligned total knee arthroplasty (TKA), limb rotation at the time of radiographic assessment will alter the measurement of alignment. This could influence the radiographic outcome of TKA. The purpose of this study was to evaluate the effect of limb rotation on radiographic alignment after TKA and to establish a re-calculation of this rotation by using existing radiographic landmarks. Synthetic femur and tibia (Sawbones), Inc. Vashon Island, WA) were used to create a TKA of the Triathlon knee prosthesis system (Stryker), Limerick, Ireland). The femoral alignment was 6.5 degrees valgus. The model was fixed in an upright stand. Five series of nine anteroposterior (AP) long leg radiographs were taken on a 30 cm x 120 cm plates in full extension with the limb rotated, in 5 degrees increments, from 20 degrees external rotation to 20 degrees internal rotation. After digitizing each radiograph (Scanner Hewlett Packard XJ 527), an observer measured the anatomic mechanical angle of the femur [AMA ( degrees )], the mechanical lateral proximal femur angle [mLPFA ( degrees )], the mechanical lateral distal femur angle [mLDFA ( degrees )], the mechanical medial proximal tibia angle [mMPTA ( degrees )] and the mechanical lateral distal tibia angle [mLDTA ( degrees )] using a digital measurement software (MediCAD, Hectec, Altfraunhofen, Germany). Besides, the observer measured the geometrical distances of the femoral component figured on the long leg radiograph. A ratio of one distance to another was measured (called femoral component distance ratio). The average radiographic anatomic alignment ranged from 6.827 degrees AMA (SD = 0.22 degrees ) in 20 degrees internal rotation to 4.627 degrees AMA (SD = 0.22 degrees ) in 20 degrees external rotation. Average mLPFA ( degrees ) ranged from 101.63 degrees (SD = 0.63) in 20 degrees internal rotation to 93.60 degrees (SD = 0.74 degrees ) in 20 degrees external rotation. Average mLDFA ( degrees ) ranged from 90.59 degrees (SD = 3.01 degrees ) in 20 degrees internal rotation to 86.76 degrees (SD = 0.36 degrees ) in 20 degrees external rotation. Average mMPTA ( degrees ) ranged from 90.35 degrees (SD = 0.81 degrees ) in 20 degrees internal rotation to 88.49 degrees (SD = 0.52 degrees ) in 20 degrees external rotation. Average mLDTA ( degrees ) ranged from 98.89 degrees (SD = 2.3 degrees ) in 20 degrees internal rotation to 90.53 degrees (SD = 3.39 degrees ) in 20 degrees external rotation. Without an application of limb rotation, the femoral component distance ratio was measured to be 0.89 (SD = 0.01), in 20 degrees internal rotation 0.63 (SD = 0.01) and in 20 degrees external rotation 1.16 (SD = 0.01). Limb rotation had a highly statistically significant effect on measured anatomic alignment and mechanical angles. A correlation between limb rotation, anatomic mechanical angle, mechanical angles measured at femur and tibia and the femoral component distance ratio was established. As the anatomic mechanical angle and the femoral component distance ratio change linearly in the range of 20 degrees internal and external limb rotation, a calculation of the femoral component distance ratio could be used to re-calculate the limb rotation at the time of radiographic assessment to evaluate the evidence of a long leg radiograph.
Pourgiezis, N; Reddy, S P; Nankivell, M; Morrison, G; VanEssen, J
2016-08-01
To compare patient-matched instrumentation (PMI) with conventional total knee arthroplasty (TKA) in terms of limb alignment and component position. Nine men and 36 women (mean age, 69.5 years) who underwent PMI TKA were compared with 20 men and 25 women (mean age, 69.3 years) who underwent conventional TKA by the same team of surgeons with the same prosthesis and protocols in terms of limb alignment and component position using the Perth protocol computed tomography, as well as bone resection measurements, operating time, and the number of trays used. The PMI and conventional TKA groups were comparable in terms of age, body mass index, tourniquet time, operating time, and the number of trays used. For limb alignment and component position, the 2 groups differed significantly in sagittal femoral component position (2.4º vs. 0.9º, p=0.0008) and the percentage of knees with femoral component internally rotated ≥1° with respect to the transepicondylar axis (20% vs. 55%, p=0.001). The difference was not significant in terms of limb alignment, coronal and rotational femoral component position, or coronal and sagittal tibial component position. Intra-operatively, all patient-matched cutting blocks demonstrated acceptable fit and stability. No instrument-related adverse events or complications were encountered. One (2.2%) femur and 6 (13.3%) tibiae were recut 2 mm for optimal ligament balancing. Two femoral components were upsized to the next size, and 2 tibial components were upsized and 2 downsized to the next size. PMI was as accurate as conventional instrumentation in TKA. There was no significant difference in limb alignment or femoral and tibial component position in the coronal and sagittal planes between PMI and conventional TKA. PMI had a higher tendency to achieve correct femoral component rotation.
Femoral component rotation in patellofemoral joint replacement.
van Jonbergen, Hans-Peter W; Westerbeek, Robin E
2018-06-01
Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.
Howell, Stephen M; Hodapp, Esther E; Vernace, Joseph V; Hull, Maury L; Meade, Thomas D
2013-10-01
Tibiofemoral contact kinematics or knee implant motions have a direct influence on patient function and implant longevity and should be evaluated for any new alignment technique such as kinematically aligned total knee arthroplasty (TKA). Edge loading of the tibial liner and external rotation (reverse of normal) and adduction of the tibial component on the femoral component are undesirable contact kinematics that should be minimized. Accordingly, this study determined whether the overall prevalence of undesirable contact kinematics during standing, mid kneeling near 90 degrees and full kneeling with kinematically aligned TKA are minimal and not different between groups of consecutive patients treated by different surgeons. Three surgeons were asked to perform cemented, kinematically aligned TKA with patient-specific guides in a consecutive series of patients with their preferred cruciate-retaining (CR) implant. In vivo tibiofemoral contact positions were obtained using a 3- to 2-dimensional image registration technique in 69 subjects (Vanguard CR-TKA N = 22, and Triathlon CR-TKA N = 47). Anterior or posterior edge loading of the tibial liner was not observed. The overall prevalence of external rotation of the tibial component on the femoral component of 6 % was low and not different between surgeons (n.s.). The overall prevalence of adduction of the tibial component on the femoral component of 4 % was low and not different between surgeons (n.s.). Kinematically aligned TKA minimized the undesirable contact kinematics of edge loading of the tibial liner, and external rotation and adduction of the tibial component on the femoral component during standing and kneeling, which suggests an optimistic prognosis for durable long-term function. III.
Inui, Hiroshi; Taketomi, Shuji; Nakamura, Kensuke; Sanada, Takaki; Tanaka, Sakae; Nakagawa, Takumi
2013-05-01
Few studies have demonstrated improvement in accuracy of rotational alignment using image-free navigation systems mainly due to the inconsistent registration of anatomical landmarks. We have used an image-free navigation for total knee arthroplasty, which adopts the average algorithm between two reference axes (transepicondylar axis and axis perpendicular to the Whiteside axis) for femoral component rotation control. We hypothesized that addition of another axis (condylar twisting axis measured on a preoperative radiograph) would improve the accuracy. One group using the average algorithm (double-axis group) was compared with the other group using another axis to confirm the accuracy of the average algorithm (triple-axis group). Femoral components were more accurately implanted for rotational alignment in the triple-axis group (ideal: triple-axis group 100%, double-axis group 82%, P<0.05). Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Paloski, W. H. (Principal Investigator)
1996-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.
Merfeld, D M
1996-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.
Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan
2017-06-01
An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.
An isocenter estimation tool for proton gantry alignment
NASA Astrophysics Data System (ADS)
Hansen, Peter; Hu, Dongming
2017-12-01
A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.
Schroeder, Lennart; Martin, Gregory
2018-05-25
In total knee arthroplasty (TKA), surgeons often face the decision of maximizing tibial component fit and achieving correct rotational alignment at the same time. Customized implants (CIMs) address this difficulty by aiming to replicate the anatomical joint structure, utilizing data from patient-specific knee geometry during the manufacturing. We intraoperatively compared component fit in four tibial zones of a CIM to that of three different off-the-shelf (OTS) TKA designs in 44 knees. Additionally, we assessed the rotational alignment of the tibia using computed tomography (CT)-based computer aided design model analysis. Overall the CIM device showed significantly better component fit than the OTS TKAs. While 18% of OTS designs presented an implant overhang of 3 mm or more, none of the CIM components did ( p < 0.05). There was a larger percentage of CIMs seen with optimal fit (≤1 mm implant overhang to ≤1 mm tibial bone undercoverage) than in OTS TKAs. Also, OTS implants showed significantly more component underhang of ≥3 mm than the CIM design (37 vs. 18%). The rotational analysis revealed that 45% of the OTS tibial components showed a rotational deviation of more than 5 degrees and 4% of more than 10 degrees to a tibial rotational axis described by Cobb et al. No deviation was seen for the CIM, as the device is designed along this axis. Using the medial one-third of the tibial tubercle as the rotational landmark, 95% of the OTS trays demonstrated a rotational deviation of more than 5 degrees and 73% of more than 10 degrees compared with 73% of CIM tibial trays with more than 5 degrees and 27% with more than 10 degrees. Based on our findings, we believe that the CIM TKA provides both better rotational alignment and tibial fit without causing overhang of the tibial tray than the three examined OTS implants. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Keshmiri, Armin; Springorum, Hans; Baier, Clemens; Zeman, Florian; Grifka, Joachim; Maderbacher, Günther
2015-03-01
Several authors emphasise that the appearance of patellar maltracking after total knee arthroplasty (TKA) is caused by rotational malalignment of the femoral and tibial components. Ligament-balanced femoral component rotation was not found to be associated with abnormal postoperative patellar position. We hypothesised that a ligament-balanced technique in TKA has the ability to best re-establish patellar kinematics. In ten cadaveric knees TKA was performed assessing femoral rotation in ligament-balanced and different femoral and tibial component rotation alignments. Patellar kinematics after different component rotations were analysed using a commercial computer navigation system. Ligament-balanced femoral rotation showed the best re-establishment of patellar kinematics after TKA compared to the healthy pre-operative knee. In contrast to tibial component rotation, femoral component rotation had a major impact on patellofemoral kinematics. This investigation suggests that a ligament-balanced technique in TKA is most likely to re-establish natural patellofemoral kinematics. Tibial component rotation did not influence patellar kinematics.
Zimmermann, Frauke; Schwenninger, Christoph; Nolten, Ulrich; Firmbach, Franz Peter; Elfring, Robert; Radermacher, Klaus
2012-05-06
Preservation and recovery of the mechanical leg axis as well as good rotational alignment of the prosthesis components and well-balanced ligaments are essential for the longevity of total knee arthroplasty (TKA). In the framework of the OrthoMIT project, the genALIGN system, a new navigated implantation approach based on intra-operative force-torque measurements, has been developed. With this system, optical or magnetic position tracking as well as any fixation of invasive rigid bodies are no longer necessary. For the alignment of the femoral component along the mechanical axis, a sensor-integrated instrument measures the torques resulting from the deviation between the instrument's axis and the mechanical axis under manually applied axial compression load. When both axes are coaxial, the resulting torques equal zero, and the tool axis can be fixed with respect to the bone. For ligament balancing and rotational alignment of the femoral component, the genALIGN system comprises a sensor-integrated tibial trial inlay measuring the amplitude and application points of the forces transferred between femur and tibia. Hereby, the impact of ligament tensions on knee joint loads can be determined over the whole range of motion. First studies with the genALIGN system, including a comparison with an imageless navigation system, show the feasibility of the concept.
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes
1986-01-01
Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.
Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?
Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D
2017-07-01
A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.
Cetera, Maureen; Ramirez-San Juan, Guillermina R.; Oakes, Patrick W.; Lewellyn, Lindsay; Fairchild, Michael J.; Tanentzapf, Guy; Gardel, Margaret L.; Horne-Badovinac, Sally
2014-01-01
Tissues use numerous mechanisms to change shape during development. The Drosophila egg chamber is an organ-like structure that elongates to form an elliptical egg. During elongation the follicular epithelial cells undergo a collective migration that causes the egg chamber to rotate within its surrounding basement membrane. Rotation coincides with the formation of a “molecular corset”, in which actin bundles in the epithelium and fibrils in the basement membrane are all aligned perpendicular to the elongation axis. Here we show that rotation plays a critical role in building the actin-based component of the corset. Rotation begins shortly after egg chamber formation and requires lamellipodial protrusions at each follicle cell’s leading edge. During early stages, rotation is necessary for tissue-level actin bundle alignment, but it becomes dispensable after the basement membrane is polarized. This work highlights how collective cell migration can be used to build a polarized tissue organization for organ morphogenesis. PMID:25413675
Barbadoro, P; Ensini, A; Leardini, A; d'Amato, M; Feliciangeli, A; Timoncini, A; Amadei, F; Belvedere, C; Giannini, S
2014-12-01
Unicompartmental knee arthroplasty (UKA) has shown a higher rate of revision compared with total knee arthroplasty. The success of UKA depends on prosthesis component alignment, fixation and soft tissue integrity. The tibial cut is the crucial surgical step. The hypothesis of the present study is that tibial component malalignment is correlated with its risk of loosening in UKA. This study was performed in twenty-three patients undergoing primary cemented unicompartmental knee arthroplasties. Translations and rotations of the tibial component and the maximum total point motion (MTPM) were measured using radiostereometric analysis at 3, 6, 12 and 24 months. Standard radiological evaluations were also performed immediately before and after surgery. Varus/valgus and posterior slope of the tibial component and tibial-femoral axes were correlated with radiostereometric micro-motion. A survival analysis was also performed at an average of 5.9 years by contacting patients by phone. Varus alignment of the tibial component was significantly correlated with MTPM, anterior tibial sinking, varus rotation and anterior and medial translations from radiostereometry. The posterior slope of the tibial component was correlated with external rotation. The survival rate at an average of 5.9 years was 89%. The two patients who underwent revision presented a tibial component varus angle of 10° for both. There is correlation between varus orientation of the tibial component and MTPM from radiostereometry in unicompartmental knee arthroplasties. Particularly, a misalignment in varus larger than 5° could lead to risk of loosening the tibial component. Prognostic studies-retrospective study, Level II.
Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM
Zhao, Zhizhen; Singer, Amit
2014-01-01
We introduce a new rotationally invariant viewing angle classification method for identifying, among a large number of cryo-EM projection images, similar views without prior knowledge of the molecule. Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed using steerable principal component analysis (PCA) such that rotating an image is equivalent to phase shifting the expansion coefficients. Thus we are able to extend the theory of bispectrum of 1D periodic signals to 2D images. The randomized PCA algorithm is then used to efficiently reduce the dimensionality of the bispectrum coefficients, enabling fast computation of the similarity between any pair of images. The nearest neighbors provide an initial classification of similar viewing angles. In this way, rotational alignment is only performed for images with their nearest neighbors. The initial nearest neighbor classification and alignment are further improved by a new classification method called vector diffusion maps. Our pipeline for viewing angle classification and alignment is experimentally shown to be faster and more accurate than reference-free alignment with rotationally invariant K-means clustering, MSA/MRA 2D classification, and their modern approximations. PMID:24631969
Comparison of custom to standard TKA instrumentation with computed tomography.
Ng, Vincent Y; Arnott, Lindsay; Li, Jia; Hopkins, Ronald; Lewis, Jamie; Sutphen, Sean; Nicholson, Lisa; Reader, Douglas; McShane, Michael A
2014-08-01
There is conflicting evidence whether custom instrumentation for total knee arthroplasty (TKA) improves component position compared to standard instrumentation. Studies have relied on long-limb radiographs limited to two-dimensional (2D) analysis and subjected to rotational inaccuracy. We used postoperative computed tomography (CT) to evaluate preoperative three-dimensional templating and CI to facilitate accurate and efficient implantation of TKA femoral and tibial components. We prospectively evaluated a single-surgeon cohort of 78 TKA patients (51 custom, 27 standard) with postoperative CT scans using 3D reconstruction and contour-matching technology to preoperative imaging. Component alignment was measured in coronal, sagittal and axial planes. Preoperative templating for custom instrumentation was 87 and 79 % accurate for femoral and tibial component size. All custom components were within 1 size except for the tibial component in one patient (2 sizes). Tourniquet time was 5 min longer for custom (30 min) than standard (25 min). In no case was custom instrumentation aborted in favour of standard instrumentation nor was original alignment of custom instrumentation required to be adjusted intraoperatively. There were more outliers greater than 2° from intended alignment with standard instrumentation than custom for both components in all three planes. Custom instrumentation was more accurate in component position for tibial coronal alignment (custom: 1.5° ± 1.2°; standard: 3° ± 1.9°; p = 0.0001) and both tibial (custom: 1.4° ± 1.1°; standard: 16.9° ± 6.8°; p < 0.0001) and femoral (custom: 1.2° ± 0.9°; standard: 3.1° ± 2.1°; p < 0.0001) rotational alignment, and was similar to standard instrumentation in other measurements. When evaluated with CT, custom instrumentation performs similar or better to standard instrumentation in component alignment and accurately templates component size. Tourniquet time was mildly increased for custom compared to standard.
Lee, Sung-Sahn; Lee, Yong-In; Kim, Dong-Uk; Lee, Dae-Hee; Moon, Young-Wan
2018-01-01
Achieving proper rotational alignment of the femoral component in total knee arthroplasty (TKA) for valgus knee is challenging because of lateral condylar hypoplasia and lateral cartilage erosion. Gap-based navigation-assisted TKA enables surgeons to determine the angle of femoral component rotation (FCR) based on the posterior condylar axis. This study evaluated the possible factors that affect the rotational alignment of the femoral component based on the posterior condylar axis. Between 2008 and 2016, 28 knees were enrolled. The dependent variable for this study was FCR based on the posterior condylar axis, which was obtained from the navigation system archives. Multiple regression analysis was conducted to identify factors that might predict FCR, including body mass index (BMI), Kellgren-Lawrence grade (K-L grade), lateral distal femoral angles obtained from the navigation system and radiographs (NaviLDFA, XrayLDFA), hip-knee-ankle (HKA) axis, lateral gap under varus stress (LGVS), medial gap under valgus stress (MGVS), and side-to-side difference (STSD, MGVS - LGVS). The mean FCR was 6.1° ± 2.0°. Of all the potentially predictive factors evaluated in this study, only NaviLDFA (β = -0.668) and XrayLDFA (β = -0.714) predicted significantly FCR. The LDFAs, as determined using radiographs and the navigation system, were both predictive of the rotational alignment of the femoral component based on the posterior condylar axis in gap-based TKA for valgus knee. A 1° increment with NaviLDFA led to a 0.668° decrement in FCR, and a 1° increment with XrayLDFA led to a 0.714° decrement. This suggests that symmetrical lateral condylar hypoplasia of the posterior and distal side occurs in lateral compartment end-stage osteoarthritis with valgus deformity.
Airfoil seal system for gas turbine engine
None, None
2013-06-25
A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.
Witoolkollachit, Polawat; Seubchompoo, Onuma
2008-07-01
The tibial axis referencing method with a balanced tension flexion gap at 90 degrees knee flexion provides adequate femoral component rotation usually in external rotation, the trans-epicondylar line being parallel to the proximal tibial cut. The LCS mobile bearing TKA uses this technique to automatically determine the femoral component rotation with desired tension. The determination of the epicondyles may lead to some confusion. On the lateral side, the prominence of the lateral condyle makes it easy to define. However on the medial side, some surgeons use the prominent part of the medial epicondyle (well recognized on CT scan as the most proximal ridge that gives insertion to the superficial collateral ligament) and use the anatomical transepicondylar axis (aTEA). Other surgeons use the depression below called sulcus that defines the surgical transepicondylar axis (sTEA). The authors evaluated 40 clinically successful mobile bearing TKA in 33 patients. All the knees were performed by single surgeon and the rotational alignment of the femoral component was applied with balanced flexion gap technique. Post-op CT-scans were done in all knees with 2-mm interval and measurement of the different angles (between aTEA and the prosthetic posterior condylar line and between the sTEA and the prosthetic posterior condylar line) with the UTHSCSA Imagetool (IT) version 3 from the University of Texas Health Science Center at San Antonio. The authors found that the mean femoral implant angle was in 2.39 degrees (SD = 2.80) of internal rotation with reference to the aTEA and in 1.34 degrees (SD = 1.57 degrees) of external rotation with reference to the sTEA when the medial sulcus was perfectly detected (nine knees, 22.5%). The angle between the aTEA and the sTEA was -3.98 degrees (SD = 1.05 degrees). No patella subluxation was identified. Nineteen or 47.5% of the femoral components were in internal or external femoral rotation of more than 3 degrees to the aTEA. When sTEA was detected, no knee was in internal or external rotation more than 3 degrees to sTEA. The balanced flexion gap technique positions the femoral component in external rotation with the LCS TKA. Within 3 degrees to aTEA or sTEA, this technique produced femoral rotational angle closer to sTEA when the sulcus was detected and produced a wide range of different angles when compared to aTEA. However sTEA is not the consistent bony landmark. This technique is a reliable method to determine femoral rotational alignment.
Gap-balancing technique combined with patient-specific instrumentation in TKA.
Hommel, Hagen; Perka, Carsten
2015-11-01
Combining patient-specific instrumentation (PSI) with a balancer device in total knee arthroplasty (TKA) to achieve functional femoral rotational alignment is a novel technique. The primary goal of this study was to introduce a new method to combine PSI with a gap-balancing technique and to determine the impact of the technique on rotation of the femoral component. Twenty-five primary TKAs (15 women, 10 men) were prospectively studied. All TKAs involved PSI with an associated gap-balancing device. Front plane alignment was performed intraoperatively with the PSI, followed by rectangular, symmetrical extension and creation of a flexion gap using the balancer device to set the femoral rotation. Femoral component rotation was between 3° internal and 6° external rotation versus the transepicondylar axis. There were no postoperative signs of patellofemoral dysfunction. In no cases was the resulting joint line displacement >3 mm. The mean elevation was 1.2 ± 0.9 mm (range 0-3). The leg axis was straight in all cases (±3°), at a mean of 1.6° ± 1.0° varus (range 0°-3° varus). PSI was with the gap-balancing technique was successfully used without affecting anatomical alignment. With the balancer device, PSI can be used more widely than techniques based solely on landmarks, as the soft-tissue tension can be taken into account, thus virtually eliminating flexion instabilities.
Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror
NASA Technical Reports Server (NTRS)
Li, Steven
2011-01-01
A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.
Theoferometer for the Construction of Precision Optomechanical Assemblies
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.
2006-01-01
The increasing difficulty of metrology requirements on projects involving optics and the alignment of instrumentation on spacecraft has reached a turning point. Requirements as low as 0.1 arcseconds for the static, rotational alignment of components within a coordinate system cannot be met with a theodolite, the alignment tool currently in use. A "theoferometer" is an interferometer mounted on a rotation stage with degrees of freedom in azimuth and elevation for metrology and alignment applications. The success of a prototype theoferometer in approaching these metrology requirements led to a redesign stressing mechanical, optical, and software changes to increase the sensitivity and portability of the unit. This paper covers the improvements made to the first prototype theoferometer, characteristic testing, and demonstration of the redesigned theoferometer s capabilities as a "theodolite replacement" and low-uncertainty metrology tool.
Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N
2018-01-01
Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.
Kia, Mohammad; Wright, Timothy M; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Sculco, Peter K; Westrich, Geoffrey H; Imhauser, Carl W
2018-01-01
The correct amount of external rotation of the femoral component during TKA is controversial because the resulting changes in biomechanical knee function associated with varying degrees of femoral component rotation are not well understood. We addressed this question using a computational model, which allowed us to isolate the biomechanical impact of geometric factors including bony shapes, location of ligament insertions, and implant size across three different knees after posterior-stabilized (PS) TKA. Using a computational model of the tibiofemoral joint, we asked: (1) Does external rotation unload the medial collateral ligament (MCL) and what is the effect on lateral collateral ligament tension? (2) How does external rotation alter tibiofemoral contact loads and kinematics? (3) Does 3° external rotation relative to the posterior condylar axis align the component to the surgical transepicondylar axis (sTEA) and what anatomic factors of the femoral condyle explain variations in maximum MCL tension among knees? We incorporated a PS TKA into a previously developed computational knee model applied to three neutrally aligned, nonarthritic, male cadaveric knees. The computational knee model was previously shown to corroborate coupled motions and ligament loading patterns of the native knee through a range of flexion. Implant geometries were virtually installed using hip-to-ankle CT scans through measured resection and anterior referencing surgical techniques. Collateral ligament properties were standardized across each knee model by defining stiffness and slack lengths based on the healthy population. The femoral component was externally rotated from 0° to 9° relative to the posterior condylar axis in 3° increments. At each increment, the knee was flexed under 500 N compression from 0° to 90° simulating an intraoperative examination. The computational model predicted collateral ligament forces, compartmental contact forces, and tibiofemoral internal/external and varus-valgus rotation through the flexion range. The computational model predicted that femoral component external rotation relative to the posterior condylar axis unloads the MCL and the medial compartment; however, these effects were inconsistent from knee to knee. When the femoral component was externally rotated by 9° rather than 0° in knees one, two, and three, the maximum force carried by the MCL decreased a respective 55, 88, and 297 N; the medial contact forces decreased at most a respective 90, 190, and 570 N; external tibial rotation in early flexion increased by a respective 4.6°, 1.1°, and 3.3°; and varus angulation of the tibia relative to the femur in late flexion increased by 8.4°, 8.0°, and 7.9°, respectively. With 3° of femoral component external rotation relative to the posterior condylar axis, the femoral component was still externally rotated by up to 2.7° relative to the sTEA in these three neutrally aligned knees. Variations in MCL force from knee to knee with 3° of femoral component external rotation were related to the ratio of the distances from the femoral insertion of the MCL to the posterior and distal cuts of the implant; the closer this ratio was to 1, the more uniform were the MCL tensions from 0° to 90° flexion. A larger ratio of distances from the femoral insertion of the MCL to the posterior and distal cuts may cause clinically relevant increases in both MCL tension and compartmental contact forces. To obtain more consistent ligament tensions through flexion, it may be important to locate the posterior and distal aspects of the femoral component with respect to the proximal insertion of the MCL such that a ratio of 1 is achieved.
Alcelik, Ilhan; Blomfield, Mark; Öztürk, Cenk; Soni, Ashish; Charity, Richard; Acornley, Alex
2017-05-01
The aim of this study was to review the radiological alignment outcomes of patient Specific (PS) cutting blocks and Standard Instrumentation in Primary Total Knee Arthroplasty. We hypothesized that the use of PS techniques would significantly improve sagittal, coronal and rotational alignment of the prosthesis on short term. We performed a systematic review and a meta-analysis including all the randomised controlled trials (RCT) using PS and standard (ST) total knee arthroplasty to date. A total of 538 PS TKA and 549 ST TKA were included in the study. Statistical analysis of the outliers for femoral component sagittal, coronal and rotational positioning, tibial component sagittal and coronal positioning and the overall mechanical axis were assessed. We found that there was no significant benefit from using PS instrumentation in primary knee arthroplasty to aid in the positioning of either the tibial or femoral components. Furthermore sagittal plane tibial component positioning was worse in the PS than the traditional ST group. Our results suggest that at present PS instrumentation is not superior to ST instrumentation in primary total knee arthroplasty. Level 1, Systematic review of therapeutic studies. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Nam, Denis; Vajapey, Sravya; Nunley, Ryan M; Barrack, Robert L
2016-10-01
The optimal coronal alignment after total knee arthroplasty (TKA) has become an area of increased debate. Sources of variability among investigations include the radiographic technique used for both preoperative surgical planning and postoperative alignment assessments. This study's purpose was to assess the impact of the imaging modality used on the measurement of coronal plane alignment after TKA. A consecutive series of patients undergoing TKA using the same cruciate-retaining prosthesis were included for analysis. Postoperatively, all patients received both a rotationally controlled, scout computed tomography scan and a hip-knee-ankle (HKA) image using the EOS Imaging system (EOS Inc., Paris, France). Two, independent observers measured the HKA angle, and femoral and tibial component alignment from each image. After classifying overall and component alignment as neutral, varus, or valgus, 40.6% (65 of 160) of knees had a discordant alignment classification for HKA, 28.1% (45 of 160) for femoral component alignment, and 26.9% (43 of 160) for tibial component alignment between their computed tomography and EOS images. Overall, 24.4% (39 of 160) of patients had a HKA difference of ≥3° between the 2 images, whereas 18.8% (30 of 160) and 20.0% (32 of 160) of patients had a femoral and tibial component alignment difference of ≥2°, respectively. Significant differences are present when comparing 2 measurement techniques of mechanical alignment after TKA. The impact of imaging modality on postoperative assessments must be accounted for and be consistent when comparing the results of different investigations. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheng, Tao; Zhang, Guoyou; Zhang, Xianlong
2011-12-01
The aim of computer-assisted surgery is to improve accuracy and limit the range of surgical variability. However, a worldwide debate exists regarding the importance and usefulness of computer-assisted navigation for total knee arthroplasty (TKA). The main purpose of this study is to summarize and compare the radiographic outcomes of TKA performed using imageless computer-assisted navigation compared with conventional techniques. An electronic search of PubMed, EMBASE, Web of Science, and Cochrane library databases was made, in addition to manual search of major orthopedic journals. A meta-analysis of 29 quasi-randomized/randomized controlled trials (quasi-RCTs/RCTs) and 11 prospective comparative studies was conducted through a random effects model. Additional a priori sources of clinical heterogeneity were evaluated by subgroup analysis with regard to radiographic methods. When the outlier cut-off value of lower limb axis was defined as ±2° or ±3° from the neutral, the postoperative full-length radiographs demonstrated that the risk ratio was 0.54 or 0.39, respectively, which were in favor of the navigated group. When the cut-off value used for the alignment in the coronal and sagittal plane was 2° or 3°, imageless navigation significantly reduced the outlier rate of the femoral and tibial components compared with the conventional group. Notably, computed tomography scans demonstrated no statistically significant differences between the two groups regarding the outliers in the rotational alignment of the femoral and tibial components; however, there was strong statistical heterogeneity. Our results indicated that imageless computer-assisted navigation systems improve lower limb axis and component orientation in the coronal and sagittal planes, but not the rotational alignment in TKA. Further multiple-center clinical trials with long-term follow-up are needed to determine differences in the clinical and functional outcomes of knee arthroplasties performed using computer-assisted techniques. Copyright © 2011 Elsevier Inc. All rights reserved.
Brar, Abheetinder S; Howell, Stephen M; Hull, Maury L; Mahfouz, Mohamed R
2016-08-01
Kinematically aligned total knee arthroplasty uses a femoral component designed for mechanical alignment (MA) and sets the component in more internal, valgus, and flexion rotation than MA. It is unknown how much kinematic alignment (KA) and flexion of the femoral component reduce the proximal and lateral reach of the trochlea; two reductions that could increase the risk of abnormal patella tracking. We simulated MA and KA of the femoral component in 0° of flexion on 20 3-dimensional bone models of normal femurs. The mechanically and kinematically aligned components were then aligned in 5°, 10°, and 15° of flexion and downsized until the flange contacted the anterior femur. The reductions in the proximal and lateral reach from the proximal point of the trochlea of the MA component set in 0° of flexion were computed. KA at 0° of flexion did not reduce the proximal reach and reduced the lateral reach an average of 3 mm. Flexion of the MA and KA femoral component 5°, 10°, and 15° reduced the proximal reach an average of 4 mm, 8 mm, and 12 mm, respectively (0.8 mm/degree of flexion), and reduced the lateral reach an average of 1 mm and 4 mm regardless of the degree of flexion, respectively. Arthroplasty surgeons and biomechanical engineers striving to optimize patella tracking might consider developing surgical techniques to minimize flexion of the femoral component when performing KA and MA total knee arthroplasty to promote early patella engagement and consider designing a femoral component with a trochlea shaped specifically for KA. Copyright © 2016 Elsevier Inc. All rights reserved.
Müller, Michael; Duda, Georg; Perka, Carsten; Tohtz, Stephan
2016-03-01
The component alignment in total hip arthroplasty influences the impingement-free range of motion (ROM). While substantiated data is available for the cup positioning, little is known about the stem alignment. Especially stem rotation and the sagittal alignment influence the position of the cone in relation to the edge of the socket and thus the impingement-free functioning. Hence, the question arises as to what influence do these parameters have on the impingement-free ROM? With the help of a computer model the influence of the sagittal stem alignment and rotation on the impingement-free ROM were investigated. The computer model was based on the CT dataset of a patient with a non-cemented THA. In the model the stem version was set at 10°/0°/-10° and the sagittal alignment at 5°/0°/-5°, which resulted in nine alternative stem positions. For each position, the maximum impingement-free ROM was investigated. Both stem version and sagittal stem alignment have a relevant influence on the impingement-free ROM. In particular, flexion and extension as well as internal and external rotation capability present evident differences. In the position intervals of 10° sagittal stem alignment and 20° stem version a difference was found of about 80° in the flexion and 50° in the extension capability. Likewise, differences were evidenced of up to 72° in the internal and up to 36° in the external rotation. The sagittal stem alignment and the stem torsion have a relevant influence on the impingement-free ROM. To clarify the causes of an impingement or accompanying problems, both parameters should be examined and, if possible, a combined assessment of these factors should be made.
Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.
Papenbrock, T; Reimann, S M; Kavoulakis, G M
2012-02-17
We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.
The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.
1995-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in six male squirrel monkeys during eccentric rotation. Monkeys were rotated in the dark at a constant velocity of 200 degrees/s (centrally or 79 cm off axis) with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's orientation (facing-motion or back-to-motion) had a dramatic influence on the VOR. These experiments show that: (a) the axis of eye rotation always shifted toward alignment with gravito-inertial force; (b) the peak value of horizontal slow phase eye velocity was greater with the monkey facing-motion than with back-to-motion; and (c) the time constant of horizontal eye movement decay was smaller with the monkey facing-motion than with back-to-motion. All of these findings were statistically significant and consistent across monkeys. In another set of tests, the same monkeys were rapidly tilted about their naso-occipital (roll) axis. Tilted orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the angular rotation, no consistent eye velocity response was observed during or following the tilt for any of the six monkeys. The absence of any eye movement response following tilt weighs against the possibility that translational linear VOR responses are due to simple high-pass filtering of the otolith signals. The VOR response during eccentric rotation was divided into the more familiar angular VOR and linear VOR components. The angular component is known to depend upon semicircular canal dynamics and central influences. The linear component of the response decays rapidly with a mean duration of only 6.6 s, while the axis of eye rotation rapidly aligns (< 10 s) with gravito-inertial force. These results are consistent with the hypothesis that the measurement of gravito-inertial force by the otolith organs is resolved into central estimates of linear acceleration and gravity, such that the central estimate of gravitational force minus the central estimate of linear acceleration approximately equals the otolith measurement of gravito-inertial force.
A Robust Self-Alignment Method for Ship's Strapdown INS Under Mooring Conditions
Sun, Feng; Lan, Haiyu; Yu, Chunyang; El-Sheimy, Naser; Zhou, Guangtao; Cao, Tong; Liu, Hang
2013-01-01
Strapdown inertial navigation systems (INS) need an alignment process to determine the initial attitude matrix between the body frame and the navigation frame. The conventional alignment process is to compute the initial attitude matrix using the gravity and Earth rotational rate measurements. However, under mooring conditions, the inertial measurement unit (IMU) employed in a ship's strapdown INS often suffers from both the intrinsic sensor noise components and the external disturbance components caused by the motions of the sea waves and wind waves, so a rapid and precise alignment of a ship's strapdown INS without any auxiliary information is hard to achieve. A robust solution is given in this paper to solve this problem. The inertial frame based alignment method is utilized to adapt the mooring condition, most of the periodical low-frequency external disturbance components could be removed by the mathematical integration and averaging characteristic of this method. A novel prefilter named hidden Markov model based Kalman filter (HMM-KF) is proposed to remove the relatively high-frequency error components. Different from the digital filters, the HMM-KF barely cause time-delay problem. The turntable, mooring and sea experiments favorably validate the rapidness and accuracy of the proposed self-alignment method and the good de-noising performance of HMM-KF. PMID:23799492
Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.
Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic
2011-01-01
This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.
Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann
2018-02-17
Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.
NASA Astrophysics Data System (ADS)
Ene, Irina; Ma, Chung-Pei; Veale, Melanie; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Foster, Caroline; Walsh, Jonelle L.; Ito, Jennifer; Goulding, Andy D.
2018-06-01
We use spatially resolved two-dimensional stellar velocity maps over a 107″ × 107″ field of view to investigate the kinematic features of 90 early-type galaxies above stellar mass 1011.5M⊙ in the MASSIVE survey. We measure the misalignment angle Ψ between the kinematic and photometric axes and identify local features such as velocity twists and kinematically distinct components. We find 46% of the sample to be well aligned (Ψ < 15°), 33% misaligned, and 21% without detectable rotation (non-rotators). Only 24% of the sample are fast rotators, the majority of which (91%) are aligned, whereas 57% of the slow rotators are misaligned with a nearly flat distribution of Ψ from 15° to 90°. 11 galaxies have Ψ ≳ 60° and thus exhibit minor-axis ("prolate") rotation in which the rotation is preferentially around the photometric major axis. Kinematic misalignments occur more frequently for lower galaxy spin or denser galaxy environments. Using the observed misalignment and ellipticity distributions, we infer the intrinsic shape distribution of our sample and find that MASSIVE slow rotators are consistent with being mildly triaxial, with mean axis ratios of b/a = 0.88 and c/a = 0.65. In terms of local kinematic features, 51% of the sample exhibit kinematic twists of larger than 20°, and 2 galaxies have kinematically distinct components. The frequency of misalignment and the broad distribution of Ψ reported here suggest that the most massive early-type galaxies are mildly triaxial, and that formation processes resulting in kinematically misaligned slow rotators such as gas-poor mergers occur frequently in this mass range.
The anteroposterior axis of the tibia in Korean patients undergoing total knee replacement.
Kim, C W; Seo, S S; Kim, J H; Roh, S M; Lee, C R
2014-11-01
The aim of this study was to find anatomical landmarks for rotational alignment of the tibial component in total knee replacement (TKR) in a CT-based study. Pre-operative CT scanning was performed on 94 South Korean patients (nine men, 85 women, 188 knees) with osteoarthritis of the knee joint prior to TKR. The tibial anteroposterior (AP) axis was defined as a line perpendicular to the femoral surgical transepicondylar axis and passing through the centre of the posterior cruciate ligament (PCL). The angles between the defined tibial AP axis and anatomical landmarks at various levels of the tibia were measured. The mean values of the angles between the defined tibial AP axis and the line connecting the anterior border of the proximal third of the tibia to the centre of the PCL was -0.2° (-17 to 14.1, sd 4.1). This was very close to the defined tibial axis, and remained so regardless of lower limb alignment and the degree of tibial bowing. Therefore, AP axis defined as described, is a reliable anatomical landmark for rotational alignment of tibial components. ©2014 The British Editorial Society of Bone & Joint Surgery.
Effects of alignment on the roll-over shapes of prosthetic feet.
Hansen, Andrew
2008-12-01
Recent work suggests that a prosthetic ankle-foot component's roll-over shape - the effective rocker it conforms to between initial contact and opposite initial contact (the 'roll-over' interval of walking) - is closely linked to its final alignment in the prosthesis (as determined by a skilled prosthetist using heuristic techniques). If true, this information may help to determine the appropriate alignment for a lower limb prosthesis before it is built, or a priori. Knowledge is needed for future models that will incorporate the roll-over shape including the relative effect of alignment on the roll-over shape's radius of curvature and arc length. The purpose of this study was to evaluate the hypotheses that: (i) Changes in prosthesis alignment alter the position and orientation of a foot's roll-over shape in prosthesis-based coordinates, and (ii) these changes occur without changing the radius of curvature or arc length of the roll-over shape. To examine the hypotheses, this study examined the effects of nine alignment settings on the roll-over shapes of two prosthetic feet. The idea that alignment changes move and rotate roll-over shapes of prosthetic feet in prosthesis coordinates is supported by this work, but the hypothesis that the radius of curvature and arc length do not change for different alignments is not strongly supported by the data. A revised approach is presented that explains some of the changes to the roll-over shape parameters due to changes in rotational alignment.
Ultrafast Nonlinear Response of Atomic and Molecular Gases in Near-IR and Mid-IR Regions
NASA Astrophysics Data System (ADS)
Zahedpour Anaraki, Sina
There is a dynamical interaction between an ultrashort laser pulse and the medium it propagates through. At the shortest timescales, the near-instantaneous electronic response of the medium contributes to an induced polarization nonlinearity. On a longer timescale, the vibrational response can contribute, followed on even longer timescales by the rotational response. One of the major consequences of these nonlinearities is that they can induce the collapse and filamentation of the laser pulse, leading to ionization and plasma generation. In this dissertation, measurements and theory are presented for both the fundamental atomic and molecular nonlinearities themselves (electronic, rovibrational, and ionization rates) in the range lambda=400nm-2600nm, and their applications. The media investigated are air constituents (Ar, N 2, O2), H2, D2, and common transparent optical materials. In particular, in one application it is shown that in molecular gases like N2 and O2, the propagating laser electric field can pump a rotational wavepacket, producing molecular ensembles with both transient and long-lived ("permanent") alignment components. This alignment, which generates quantum echoes (rotational revivals), can interact with the pulse that generated it (rotational nonlinearity) and with any pulses that may follow. We show that a properly timed train of ultrashort laser pulses can resonate with the rotational revivals, causing a "permanent" alignment in the gas which thermalizes and then drives a strong hydrodynamic response which can exceed that from the plasma heating by a filament.
Indexing system for optical beam steering
NASA Technical Reports Server (NTRS)
Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.
1990-01-01
This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.
Kotlyar, Oleg M.
2001-01-01
An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.
Kotlyar, Oleg M.
2002-01-01
An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.
Edinger, Janick; Pai, Dinesh K; Spering, Miriam
2017-01-01
The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.
Dissipation dynamics of field-free molecular alignment for symmetric-top molecules: Ethane (C2H6)
NASA Astrophysics Data System (ADS)
Zhang, H.; Billard, F.; Yu, X.; Faucher, O.; Lavorel, B.
2018-03-01
The field-free molecular alignment of symmetric-top molecules, ethane, induced by intense non-resonant linearly polarized femtosecond laser pulses is investigated experimentally in the presence of collisional relaxation. The dissipation dynamics of field-free molecular alignment are measured by the balanced detection of ultrafast molecular birefringence of ethane gas samples at high pressures. By separating the molecular alignment into the permanent alignment and the transient alignment, the decay time-constants of both components are quantified at the same pressure. It is observed that the permanent alignment always decays slower compared to the transient alignment within the measured pressure range. This demonstrates that the propensity of molecules to conserve the orientation of angular momentum during collisions, previously observed for linear species, is also applicable to symmetric-top molecules. The results of this work provide valuable information for further theoretical understanding of collisional relaxation within nonlinear polyatomic molecules, which are expected to present interesting and nontrivial features due to an extra rotational degree of freedom.
Femoral rotational asymmetry is a common anatomical variant.
Newman, Christopher R; Walter, William L; Talbot, Simon
2018-05-01
The sulcus line (SL) is a three-dimensional landmark that corrects for individual variation in the coronal alignment of the trochlear groove in contrast to the traditional Whiteside's line (WL). Femoral rotational asymmetry (FRA) is an anatomical variation in which the posterior condyles and trochlear groove are not perpendicular to each other. This study aims to measure the SL and assess its reliability relative to WL, in addition to measuring and classifying the FRA. A retrospective analysis of a series of 191 CT scans of nonarthritic knees was performed. Measurements were taken of rotational landmarks in three-dimensional reconstructions. The variability and outlier rate of SL was less than WL (P < 0.05), however, it was also greater than the posterior condylar line (PC) (P < 0.05). Averaging the PC + 3° and the SL did not change the rate of femoral malrotation relative to the surgical epicondylar axis (SEA) (P > 0.05), however it decreased the rate of change of the rotational alignment of the trochlear groove between the native knee and the prosthetic knee from 31% to 5% (P < 0.05). FRA was classified and was >5° in 56/191 (29%) of cases. The SL technique is more accurate than WL for determining the rotational alignment of the trochlear groove. Nonarthritic femora have a high rate of rotational asymmetry. Identifying and classifying FRA in individual cases allows the femoral component to be inserted in a position which gives the best possible match to both the native posterior condyles and trochlear groove. Clin. Anat. 31:551-559, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Eigenbeam analysis of the diversity in bat biosonar beampatterns.
Caspers, Philip; Müller, Rolf
2015-03-01
A quantitative analysis of the interspecific variability in bat biosonar beampatterns has been carried out on 267 numerical predictions of emission and reception beampatterns from 98 different species. Since these beampatterns did not share a common orientation, an alignment was necessary to analyze the variability in the shape of the patterns. To achieve this, beampatterns were aligned using a pairwise optimization framework based on a rotation-dependent cost function. The sum of the p-norms between beam-gain functions across frequency served as a figure of merit. For a representative subset of the data, it was found that all pairwise beampattern alignments resulted in a unique global minimum. This minimum was found to be contained in a subset of all possible beampattern rotations that could be predicted by the overall beam orientation. Following alignment, the beampatterns were decomposed into principal components. The average beampattern consisted of a symmetric, positionally static single lobe that narrows and became progressively asymmetric with increasing frequency. The first three "eigenbeams" controlled the beam width of the beampattern across frequency while higher rank eigenbeams account for symmetry and lobe motion. Reception and emission beampatterns could be distinguished (85% correct classification) based on the first 14 eigenbeams.
Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.
Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K
2011-06-10
Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.
2004-01-01
The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 Angstroms, and the grain rotation rates are obtained by analyzing the low frequency (approximately 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.
NASA Astrophysics Data System (ADS)
Campbell, Andrew I.; Wittkowski, Raphael; ten Hagen, Borge; Löwen, Hartmut; Ebbens, Stephen J.
2017-08-01
The self-propulsion mechanism of active colloidal particles often generates not only translational but also rotational motion. For particles with an anisotropic mass density under gravity, the motion is usually influenced by a downwards oriented force and an aligning torque. Here we study the trajectories of self-propelled bottom-heavy Janus particles in three spatial dimensions both in experiments and by theory. For a sufficiently large mass anisotropy, the particles typically move along helical trajectories whose axis is oriented either parallel or antiparallel to the direction of gravity (i.e., they show gravitaxis). In contrast, if the mass anisotropy is small and rotational diffusion is dominant, gravitational alignment of the trajectories is not possible. Furthermore, the trajectories depend on the angular self-propulsion velocity of the particles. If this component of the active motion is strong and rotates the direction of translational self-propulsion of the particles, their trajectories have many loops, whereas elongated swimming paths occur if the angular self-propulsion is weak. We show that the observed gravitational alignment mechanism and the dependence of the trajectory shape on the angular self-propulsion can be used to separate active colloidal particles with respect to their mass anisotropy and angular self-propulsion, respectively.
Boonen, Bert; Schotanus, Martijn G M; Kerens, Bart; Hulsmans, Frans-Jan; Tuinebreijer, Wim E; Kort, Nanne P
2017-09-01
To assess whether there is a significant difference between the alignment of the individual femoral and tibial components (in the frontal, sagittal and horizontal planes) as calculated pre-operatively (digital plan) and the actually achieved alignment in vivo obtained with the use of patient-specific positioning guides (PSPGs) for TKA. It was hypothesised that there would be no difference between post-op implant position and pre-op digital plan. Twenty-six patients were included in this non-inferiority trial. Software permitted matching of the pre-operative MRI scan (and therefore calculated prosthesis position) to a pre-operative CT scan and then to a post-operative full-leg CT scan to determine deviations from pre-op planning in all three anatomical planes. For the femoral component, mean absolute deviations from planning were 1.8° (SD 1.3), 2.5° (SD 1.6) and 1.6° (SD 1.4) in the frontal, sagittal and transverse planes, respectively. For the tibial component, mean absolute deviations from planning were 1.7° (SD 1.2), 1.7° (SD 1.5) and 3.2° (SD 3.6) in the frontal, sagittal and transverse planes, respectively. Absolute mean deviation from planned mechanical axis was 1.9°. The a priori specified null hypothesis for equivalence testing: the difference from planning is >3 or <-3 was rejected for all comparisons except for the tibial transverse plane. PSPG was able to adequately reproduce the pre-op plan in all planes, except for the tibial rotation in the transverse plane. Possible explanations for outliers are discussed and highlight the importance for adequate training surgeons before they start using PSPG in their day-by-day practise. Prospective cohort study, Level II.
Do modern total knee replacements improve tibial coverage?
Meier, Malin; Webb, Jonathan; Collins, Jamie E; Beckmann, Johannes; Fitz, Wolfgang
2018-01-25
The purpose of the present study is to compare newer designs of various symmetric and asymmetric tibial components and measure tibial bone coverage using the rotational safe zone defined by two commonly utilized anatomic rotational landmarks. Computed tomography scans (CT scans) of one hundred consecutive patients scheduled for total knee arthroplasty were obtained pre-operatively. A virtual proximal tibial cut was performed and two commonly used rotational axes were added for each image: the medio-lateral axis (ML-axis) and the medial 1/3 tibial tubercle axis (med-1/3-axis). Different symmetric and asymmetric implant designs were then superimposed in various rotational positions for best cancellous and cortical coverage. The images were imported to a public domain imaging software, and cancellous and cortical bone coverage was computed for each image, with each implant design in various rotational positions. One single implant type could not be identified that provided the best cortical and cancellous coverage of the tibia, irrespective of using the med-1/3-axis or the ML-axis for rotational alignment. However, it could be confirmed that the best bone coverage was dependent on the selected rotational landmark. Furthermore, improved bone coverage was observed when tibial implant positions were optimized between the two rotational axes. Tibial coverage is similar for symmetric and asymmetric designs, but depends on the rotational landmark for which the implant is designed. The surgeon has the option to improve tibial coverage by optimizing placement between the two anatomic rotational alignment landmarks, the medial 1/3 and the ML-axis. Surgeons should be careful assessing intraoperative rotational tibial placement using the described anatomic rotational landmarks to optimize tibial bony coverage without compromising patella tracking. III.
NASA Technical Reports Server (NTRS)
Ye, Gang; Voigt, Gerd-Hannes
1989-01-01
A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.
The gap technique does not rotate the femur parallel to the epicondylar axis.
Matziolis, Georg; Boenicke, Hinrich; Pfiel, Sascha; Wassilew, Georgi; Perka, Carsten
2011-02-01
In the analysis of painful total knee replacements, the surgical epicondylar axis (SEA) has become established as a standard in the diagnosis of femoral component rotation. It remains unclear whether the gap technique widely used to determine femoral rotation, when applied correctly, results in a rotation parallel to the SEA. In this prospective study, 69 patients (69 joints) were included who received a navigated bicondylar surface replacement due to primary arthritis of the knee joint. In 67 cases in which a perfect soft-tissue balancing of the extension gap (<1° asymmetry) was achieved, the flexion gap and the rotation of the femoral component necessary for its symmetry was determined and documented. The femoral component was implanted additionally taking into account the posterior condylar axis and the Whiteside's line. Postoperatively, the rotation of the femoral component to the SEA was determined and this was used to calculate the angle between a femur implanted according to the gap technique and the SEA. If the gap technique had been used consistently, it would have resulted in a deviation of the femoral components by -0.6° ± 2.9° (-7.4°-5.9°) from the SEA. The absolute deviation would have been 2.4° ± 1.8°, with a range between 0.2° and 7.4°. Even if the extension gap is perfectly balanced, the gap technique does not lead to a parallel alignment of the femoral component to the SEA. Since the clinical results of this technique are equivalent to those of the femur first technique in the literature, an evaluation of this deviation as a malalignment must be considered critically.
Manzi, Luigi; Villafañe, Jorge Hugo; Indino, Cristian; Tamini, Jacopo; Berjano, Pedro; Usuelli, Federico Giuseppe
2017-11-08
The purpose of this study was to investigate the test-retest reliability of the Phi angle in patients undergoing total ankle replacement (TAR) for end stage ankle osteoarthritis (OA) to assess the rotational alignment of the talar component. Retrospective observational cross-sectional study of prospectively collected data. Post-operative anteroposterior radiographs of the foot of 170 patients who underwent TAR for the ankle OA were evaluated. Three physicians measured Phi on the 170 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), inter and intra-observer agreement were evaluated. Test-retest reliability of Phi angle measurement was excellent for patients with Hintegra TAR (ICC=0.995; p<0.001) and Zimmer TAR (ICC=0.995; p<0.001) on radiographs of subjects with ankle OA. There were no significant differences in the reliability of the Phi angle measurement between patients with Hintegra vs. Zimmer implants (p>0.05). Measurement of Phi angle on weight-bearing dorsoplantar radiograph showed an excellent reliability among orthopaedic surgeons in determining the position of the talar component in the axial plane. Level II, cross sectional study. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Kuriyama, Shinichi; Ishikawa, Masahiro; Nakamura, Shinichiro; Furu, Moritoshi; Ito, Hiromu; Matsuda, Shuichi
2015-08-01
During cruciate-retaining total knee arthroplasty, surgeons sometimes encounter increased tension of the posterior cruciate ligament. This study investigated the effects of femoral size, posterior tibial slope, and rotational alignment of the femoral and tibial components on forces at the posterior cruciate ligament in cruciate-retaining total knee arthroplasty using a musculoskeletal computer simulation. Forces at the posterior cruciate ligament were assessed with the standard femoral component, as well as with 2-mm upsizing and 2-mm downsizing in the anterior-posterior dimension. These forces were also determined with posterior tibial slope angles of 5°, 7°, and 9°, and lastly, were measured in 5° increments when the femoral (tibial) components were positioned from 5° (15°) of internal rotation to 5° (15°) of external rotation. Forces at the posterior cruciate ligament increased by up to 718N with the standard procedure during squatting. The 2-mm downsizing of the femoral component decreased the force at the posterior cruciate ligament by up to 47%. The 2° increment in posterior tibial slope decreased the force at the posterior cruciate ligament by up to 41%. In addition, posterior cruciate ligament tension increased by 11% during internal rotation of the femoral component, and increased by 18% during external rotation of the tibial component. These findings suggest that accurate sizing and bone preparation are very important to maintain posterior cruciate ligament forces in cruciate-retaining total knee arthroplasty. Care should also be taken regarding malrotation of the femoral and tibial components because this increases posterior cruciate ligament tension. Copyright © 2015 Elsevier Ltd. All rights reserved.
Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base
Chen, Zhiyong; Yang, Haotian; Wang, Chengbin; Lin, Zhihui; Guo, Meifeng
2018-01-01
The micro-electro-mechanical-system (MEMS) inertial measurement unit (IMU) has been widely used in the field of inertial navigation due to its small size, low cost, and light weight, but aligning MEMS IMUs remains a challenge for researchers. MEMS IMUs have been conventionally aligned on a static base, requiring other sensors, such as magnetometers or satellites, to provide auxiliary information, which limits its application range to some extent. Therefore, improving the alignment accuracy of MEMS IMU as much as possible under swing conditions is of considerable value. This paper proposes an alignment method based on the rotation modulation technique (RMT), which is completely self-aligned, unlike the existing alignment techniques. The effect of the inertial sensor errors is mitigated by rotating the IMU. Then, inertial frame-based alignment using the rotation modulation technique (RMT-IFBA) achieved coarse alignment on the swing base. The strong tracking filter (STF) further improved the alignment accuracy. The performance of the proposed method was validated with a physical experiment, and the results of the alignment showed that the standard deviations of pitch, roll, and heading angle were 0.0140°, 0.0097°, and 0.91°, respectively, which verified the practicality and efficacy of the proposed method for the self-alignment of the MEMS IMU on a swing base. PMID:29649150
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.
2004-01-01
The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.
Rotational Alignment Altered by Source Position Correlations
NASA Technical Reports Server (NTRS)
Jacobs, Chris S.; Heflin, M. B.; Lanyi, G. E.; Sovers, O. J.; Steppe, J. A.
2010-01-01
In the construction of modern Celestial Reference Frames (CRFs) the overall rotational alignment is only weakly constrained by the data. Therefore, common practice has been to apply a 3-dimensional No-Net-Rotation (NNR) constraint in order to align an under-construction frame to the ICRF. We present evidence that correlations amongst source position parameters must be accounted for in order to properly align a CRF at the 5-10 (mu)as level of uncertainty found in current work. Failure to do so creates errors at the 10-40 (mu)as level.
Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules
NASA Astrophysics Data System (ADS)
Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik
2018-04-01
A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.
Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.
2004-01-01
The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.
Ion imaging studies of product rotational alignment in collisions of NO ( X2Π1/2, j=0.5) with Ar
NASA Astrophysics Data System (ADS)
Wade, Elisabeth A.; Thomas Lorenz, K.; Chandler, David W.; Barr, James W.; Barnes, George L.; Cline, Joseph I.
2004-06-01
The collision-induced rotational alignment of NO ( X2Π1/2, v=0, j=4.5 , 8.5, 11.5, 12.5, and 15.5) is measured for rotationally inelastic scattering of NO ( X2Π1/2, v=0, j=0.5) with Ar at 520 ± 70 cm -1 of center-of-mass collision energy. The experiments are performed by velocity-mapped ion imaging with polarized 1+1 ' REMPI of the scattered NO product. Differential cross-sections (DCSs), corrected for alignment effects, are also reported. While the alignment correction is important, it does not change the positions of the observed rotational rainbows. The alignment moments and DCSs are compared with calculations using Alexander's CCSD(T) PESs. The theoretical and experimental DCSs show excellent agreement, as do the theoretical and experimental alignment moments for low Δ j. For high Δ j collisions and back-scattered trajectories, which sample the hard wall of the PES, the theoretical and experimental alignment moments show less agreement.
Evolution of Binary Supermassive Black Holes in Rotating Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasskazov, Alexander; Merritt, David
The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less
Maximizing tibial coverage is detrimental to proper rotational alignment.
Martin, Stacey; Saurez, Alex; Ismaily, Sabir; Ashfaq, Kashif; Noble, Philip; Incavo, Stephen J
2014-01-01
Traditionally, the placement of the tibial component in total knee arthroplasty (TKA) has focused on maximizing coverage of the tibial surface. However, the degree to which maximal coverage affects correct rotational placement of symmetric and asymmetric tibial components has not been well defined and might represent an implant design issue worthy of further inquiry. Using four commercially available tibial components (two symmetric, two asymmetric), we sought to determine (1) the overall amount of malrotation that would occur if components were placed for maximal tibial coverage; and (2) whether the asymmetric designs would result in less malrotation than the symmetric designs when placed for maximal coverage in a computer model using CT reconstructions. CT reconstructions of 30 tibial specimens were used to generate three-dimensional tibia reconstructions with attention to the tibial anatomic axis, the tibial tubercle, and the resected tibial surface. Using strict criteria, four commercially available tibial designs (two symmetric, two asymmetric) were placed on the resected tibial surface. The resulting component rotation was examined. Among all four designs, 70% of all tibial components placed in orientation maximizing fit to resection surface were internally malrotated (average 9°). The asymmetric designs had fewer cases of malrotation (28% and 52% for the two asymmetric designs, 100% and 96% for the two symmetric designs; p < 0.001) and less malrotation on average (2° and 5° for the asymmetric designs, 14° for both symmetric designs; p < 0.001). Maximizing tibial coverage resulted in implant malrotation in a large percentage of cases. Given similar amounts of tibial coverage, correct rotational positioning was more likely to occur with the asymmetric designs. Malrotation of components is an important cause of failure in TKA. Priority should be given to correct tibial rotational positioning. This study suggested that it is easier to balance rotation and coverage with asymmetric tibial baseplates; clinical research will need to determine whether the observed difference affects patellar tracking, loosening rates, or the likelihood of revisions after TKA.
Ohoyama, H
2013-12-21
The vector correlation between the alignment of reactant N2 (A (3)Σu(+)) and the alignment of product NO (A (2)Σ(+)) rotation has been studied in the energy transfer reaction of aligned N2 (A (3)Σu(+)) + NO (X (2)Π) → NO (A (2)Σ(+)) + N2 (X (1)Σg(+)) under the crossed beam condition at a collision energy of ~0.07 eV. NO (A (2)Σ(+)) emission in the two linear polarization directions (i.e., parallel and perpendicular with respect to the relative velocity vector v(R)) has been measured as a function of the alignment of N2 (A (3)Σu(+)) along its molecular axis in the collision frame. The degree of polarization of NO (A (2)Σ(+)) emission is found to depend on the alignment angle (θ(v(R))) of N2 (A (3)Σu(+)) in the collision frame. The shape of the steric opacity function at the two polarization conditions turns out to be extremely different from each other: The steric opacity function at the parallel polarization condition is more favorable for the oblique configuration of N2 (A (3)Σu(+)) at an alignment angle of θ(v(R)) ~ 45° as compared with that at the perpendicular polarization condition. The alignment of N2 (A (3)Σu(+)) is found to give a significant effect on the alignment of NO (A (2)Σ(+)) rotation in the collision frame: The N2 (A (3)Σu(+)) configuration at an oblique alignment angle θ(v(R)) ~ 45° leads to a parallel alignment of NO (A (2)Σ(+)) rotation (J-vector) with respect to v(R), while the axial and sideways configurations of N2 (A (3)Σu(+)) lead to a perpendicular alignment of NO (A (2)Σ(+)) rotation with respect to vR. These stereocorrelated alignments of the product rotation have a good correlation with the stereocorrelated reactivity observed in the multi-dimensional steric opacity function [H. Ohoyama and S. Maruyama, J. Chem. Phys. 137, 064311 (2012)].
Do small changes in rotation affect measurements of lower extremity limb alignment?
Jamali, Amir A; Meehan, John P; Moroski, Nathan M; Anderson, Matthew J; Lamba, Ramit; Parise, Carol
2017-05-22
The alignment of the lower extremity has important implications in the development of knee arthritis. The effect of incremental rotations of the limb on common parameters of alignment has not been studied. The purpose of the study was to (1) determine the standardized neutral position measurements of alignment and (2) determine the effect of rotation on commonly used measurements of alignment. Eighty-seven full length CT angiography studies (49 males and 38 females, average age 66 years old) were included. Three-dimensional models were created using a rendering software program and placed on a virtual plane. An image of the extremity was obtained. Thirty scans were randomly selected, and those models were rotated in 3° intervals around the longitudinal axis and additional images were obtained. In the neutral position, the mechanical lateral distal femoral articular angle (mLDFA) was 85.6 ± 2.3°, medial proximal tibial angle (MPTA) was 86.1 ± 2.8°, and mechanical tibiofemoral angle (mTFA) was -0.7 ± 3.1°. Females had a more valgus alignment with a mTFA of 0.5 ± 2.9° while males had a more varus alignment with a mTFA of -1.7 ± 2.9°. The anatomic tibiofemoral angle (aTFA) was 4.8 ± 2.6°, the anatomic lateral distal femoral angle (aLDFA) measured 80.2 ± 2.2°, and the anatomical-mechanical angle (AMA) was 5.4 ± 0.7°. The prevalence of constitutional varus was 18%. The effect of rotation on the rotated scans led to statistically significant differences relative to the 0° measurement for all measurements. These effects may be small, and their clinical importance is unknown. This study provides new information on standardized measures of lower extremity alignment and the relationship between discreet axial rotations of the entire lower extremity and these parameters.
Li, Yun; Wu, Wenqi; Jiang, Qingan; Wang, Jinling
2016-01-01
Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU) is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ) is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment. PMID:27983585
Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G
2016-02-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.
Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.
2016-01-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446
2015-06-01
kinematic viscocity , and speed-of-sound; wing geometric characteristics (area, mean aerodynamic chord and taper ratio); and its motion (free-stream...computed by integrating the vehicle’s velocity components expressed in a "trajectory" coordinate system which is fixed in space and aligned with the system...yawing motion is superfluous . The pitching motion results presented in Table 3-5 are interesting, though. Recall that the rotation rates are body
Quick-connect threaded attachment joint
NASA Technical Reports Server (NTRS)
Lucy, M. H.; Messick, W. R.; Vasquez, P.
1979-01-01
Joint is self-aligning and tightens with only sixty-five degrees of rotation for quick connects and disconnects. Made of injection-molded plastics or cast or machined aluminum, joint can carry wires, tubes, liquids, or gases. When two parts of joint are brought together, their shapes align them. Small projections on male section and slots on female section further aid alignment; slight rotation of male form engages projections in slots. At this point, threads engage and male section is rotated until joint is fully engaged.
Ha, Sung-min; Kwon, Oh-yun; Yi, Chung-hwi; Cynn, Heon-seock; Weon, Jong-hyuck; Kim, Tae-ho
2016-02-01
The purpose of this study was to investigate the effects of a 6-week scapular upward rotation exercise (SURE) on scapular and clavicular alignment and scapular upward rotators strength in subjects with scapular downward rotation syndrome (SDRS). Seventeen volunteer subjects with SDRS were recruited from university populations. The alignment of the scapula and clavicle was measured using radiographic analysis and compared in subjects before and after a 6-week self-SURE program. A hand-held dynamometer was used to measure the strength of the scapular upward rotators. The subjects were instructed how to perform the self-SURE program at home. The 6-week self-SURE program was divided into two sections (the first section with non-resistive SURE during weeks 1-3, and the second section with resistive SURE using thera-band during weeks 4-6). The significance of the difference between pre- and post-program was assessed using a paired t-test, with the level of statistical significance set at p<0.05. Significant differences between pre- and post-program were found for scapular and clavicular alignment (p<0.05). Additionally, the comparison between pre- and post-program measurements of the strength of the scapular upward rotators showed significant differences (p<0.05). The results of this study showed that a 6-week self-SURE program is effective for improving scapular and clavicular alignment and increasing the strength of scapular upward rotator muscles in subjects with SDRS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dual processing of visual rotation for bipedal stance control.
Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene
2016-10-01
When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
The Alignment of the Mean Wind and Stress Vectors in the Unstable Surface Layer
NASA Astrophysics Data System (ADS)
Bernardes, M.; Dias, N. L.
2010-01-01
A significant non-alignment between the mean horizontal wind vector and the stress vector was observed for turbulence measurements both above the water surface of a large lake, and over a land surface (soybean crop). Possible causes for this discrepancy such as flow distortion, averaging times and the procedure used for extracting the turbulent fluctuations (low-pass filtering and filter widths etc.), were dismissed after a detailed analysis. Minimum averaging times always less than 30 min were established by calculating ogives, and error bounds for the turbulent stresses were derived with three different approaches, based on integral time scales (first-crossing and lag-window estimates) and on a bootstrap technique. It was found that the mean absolute value of the angle between the mean wind and stress vectors is highly related to atmospheric stability, with the non-alignment increasing distinctively with increasing instability. Given a coordinate rotation that aligns the mean wind with the x direction, this behaviour can be explained by the growth of the relative error of the u- w component with instability. As a result, under more unstable conditions the u- w and the v- w components become of the same order of magnitude, and the local stress vector gives the impression of being non-aligned with the mean wind vector. The relative error of the v- w component is large enough to make it undistinguishable from zero throughout the range of stabilities. Therefore, the standard assumptions of Monin-Obukhov similarity theory hold: it is fair to assume that the v- w stress component is actually zero, and that the non-alignment is a purely statistical effect. An analysis of the dimensionless budgets of the u- w and the v- w components confirms this interpretation, with both shear and buoyant production of u- w decreasing with increasing instability. In the v- w budget, shear production is zero by definition, while buoyancy displays very low-intensity fluctuations around zero. As local free convection is approached, the turbulence becomes effectively axisymetrical, and a practical limit seems to exist beyond which it is not possible to measure the u- w component accurately.
Apparatus for high speed rotation of electrically operated devices
Williams, Keith E.; Rogus, Arnold J.
1976-10-26
Most high speed centrifuges employ a relatively small diameter elongate flexible drive shaft, sometimes called a "quill" shaft. These relatively slender shafts are flexible to absorb vibration as the assembly passes through speeds of resonance and to permit re-alignment of the axis of rotation of the shaft and the rotor driven thereby in the event the center of mass of the rotor and shaft assembly is displaced from the nominal axis of the rotation. To use such an apparatus for testing electrical devices and components, electrical conductors for wires are passed from a slip ring assembly located at an end of the quill shaft remote from the rotor and longitudinally alongside the quill shaft to the electrical device mounted on the rotor. The longitudinally extending conductors are supported against the radially outward directed centrifugal forces by a plurality of strong, self-lubricating, slightly compressible wafers or washers co-axially stacked on the slender shaft and provided with radially offset longitudinally aligned openings to support the longitudinally extending conductors. The conductors are supported against the centrifugal forces and thus protected from rupture or other damage without restricting or constraining the essential flexure or bending of the drive shaft.
Fluid signatures of rotational discontinuities at Earth's magnetopause
NASA Technical Reports Server (NTRS)
Scudder, J. D.
1983-01-01
Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.
Ahmed, Mohammed M; Otto, Thomas J; Moed, Berton R
2016-04-22
Limited-incision total hip arthroplasty (THA) preserves hip abductors, posterior capsule, and external rotators potentially diminishing dislocation risk. However, potential complications also exist, such as component malposition. Specific implants have been manufactured that enhance compatibility with this technique, while preserving metaphyseal bone; however, little data exists documenting early complications and component position. The purpose was to evaluate primary THA using a curved, bone-sparing stem inserted through the anterior approach with respect to component alignment and early complications. In a retrospective analysis of 108 cases, the surgical technique was outlined and the occurrence of intraoperative fractures, postoperative dislocations, infection, and limb length inequality was determined. Femoral stem and acetabular cup alignment was quantified using the initial postoperative radiographs. Patient follow-up averaged 12.9 (range 2 to 36) months. There were eight (7.4 %) complications requiring revision surgery in three (2.8 %) patients with three (2.8 %) infections and three (2.8 %) dislocations. Intraoperative complications included one calcar fracture above the lesser trochanter. Leg length inequality >5 mm was present in three (2.8 %) patients. Radiographic analysis showed that femoral neutral alignment was achieved in 95 hips (88.0 %). All femoral stems demonstrated satisfactory fit and fill and no evidence of subsidence, osteolysis, or loosening. An average abduction angle of 44.8° (± 5.3) and average cup anteversion of 16.2° (± 4.2) were also noted. Although the technique with this implant and approach is promising, it does not appear to offer important advantages over standard techniques. However, the findings merit further, long-term study.
Patient-specific instrumentation for total knee arthroplasty.
Nabavi, Arash; Olwill, Caroline M; Do, Mike; Wanasawage, Tanya; Harris, Ian A
2017-01-01
To assess the accuracy of total knee replacements (TKRs) performed using CT-based patient-specific instrumentation by postoperative CT scan. Approval from the Ethics Committee was granted prior to commencement of this study. Fifty prospective and consecutive patients who had undergone TKR (Evolis, Medacta International) using CT-based patient-specific instrumentation (MY KNEE, Medacta International) were assessed postoperatively using a CT scan and the validated Perth protocol measurement technique. The hip-knee-ankle (HKA) angle of the lower limb in the coronal plane; the coronal, sagittal, and rotational orientation of the femoral component; and the coronal and sagittal orientation of the tibial component were measured. These results were then compared to each patient's preoperative planning. The percentage of patients found to be less than or equal to 3° of planned alignment was calculated. One patient was excluded as the femoral cutting block did not fit the femur as predicted by planning and therefore underwent a conventional TKR. Ninety-eight percent of patients were within 3° of planned alignment in the coronal plane reproducing the predicted HKA angle. Predicted coronal plane orientation of the tibial and femoral component was achieved in 100% and 96% of patients, respectively. The sagittal orientation of the femoral component was within 3° in 98% of patients. The planned sagittal positioning of the tibial component was achieved in 92% of patients. Furthermore, 90% of patients were found to have a femoral rotation within 3° of planning. Eighty-six percent of patients achieved good-to-excellent outcome at 12 months (Oxford Knee Score > 34). We have found that TKR using this patient-specific instrumentation accurately reproduces preoperative planning in all six of the parameters measured in this study.
NASA Astrophysics Data System (ADS)
Lawrence, G.; Barnard, C.; Viswanathan, V.
1986-11-01
Historically, wave optics computer codes have been paraxial in nature. Folded systems could be modeled by "unfolding" the optical system. Calculation of optical aberrations is, in general, left for the analyst to do with off-line codes. While such paraxial codes were adequate for the simpler systems being studied 10 years ago, current problems such as phased arrays, ring resonators, coupled resonators, and grazing incidence optics require a major advance in analytical capability. This paper describes extension of the physical optics codes GLAD and GLAD V to include a global coordinate system and exact ray aberration calculations. The global coordinate system allows components to be positioned and rotated arbitrarily. Exact aberrations are calculated for components in aligned or misaligned configurations by using ray tracing to compute optical path differences and diffraction propagation. Optical path lengths between components and beam rotations in complex mirror systems are calculated accurately so that coherent interactions in phased arrays and coupled devices may be treated correctly.
Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula.
Wearne, S; Raphan, T; Cohen, B
1998-05-01
Spatial orientation of the angular vestibuloocular reflex (aVOR) was studied in rhesus monkeys after complete and partial ablation of the nodulus and ventral uvula. Horizontal, vertical, and torsional components of slow phases of nystagmus were analyzed to determine the axes of eye rotation, the time constants (Tcs) of velocity storage, and its orientation vectors. The gravito-inertial acceleration vector (GIA) was tilted relative to the head during optokinetic afternystagmus (OKAN), centrifugation, and reorientation of the head during postrotatory nystagmus. When the GIA was tilted relative to the head in normal animals, horizontal Tcs decreased, vertical and/or roll time constants (Tc(vert/roll)) lengthened according to the orientation of the GIA, and vertical and/or roll eye velocity components appeared (cross-coupling). This shifted the axis of eye rotation toward alignment with the tilted GIA. Horizontal and vertical/roll Tcs varied inversely, with T(chor) being longest and T(cvert/roll) shortest when monkeys were upright, and the reverse when stimuli were around the vertical or roll axes. Vertical or roll Tcs were longest when the axes of eye rotation were aligned with the spatial vertical, respectively. After complete nodulo-uvulectomy, T(chor) became longer, and periodic alternating nystagmus (PAN) developed in darkness. T(chor) could not be shortened in any of paradigms tested. In addition, yaw-to-vertical/roll cross-coupling was lost, and the axes of eye rotation remained fixed during nystagmus, regardless of the tilt of the GIA with respect to the head. After central portions of the nodulus and uvula were ablated, leaving lateral portions of the nodulus intact, yaw-to-vertical/roll cross-coupling and control of Tc(vert/roll) was lost or greatly reduced. However, control of Tchor was maintained, and T(chor) continued to vary as a function of the tilted GIA. Despite this, the eye velocity vector remained aligned with the head during yaw axis stimulation after partial nodulo-uvulectomy, regardless of GIA orientation to the head. The data were related to a three-dimensional model of the aVOR, which simulated the experimental results. The model provides a basis for understanding how the nodulus and uvula control processing within the vestibular nuclei responsible for spatial orientation of the aVOR. We conclude that the three-dimensional dynamics of the velocity storage system are determined in the nodulus and ventral uvula. We propose that the horizontal and vertical/roll Tcs are separately controlled in the nodulus and uvula with the dynamic characteristics of vertical/roll components modulated in central portions and the horizontal components laterally, presumably in a semicircular canal-based coordinate frame.
Absolute Measurement of Tilts via Fourier Analysis of Interferograms
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2004-01-01
The Fourier method of interferogram analysis requires the introduction of a constant tilt into the inteferogram to serve as a 'carrier signal' for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.
Absolute Measurement of Tilts via Fourier Analysis of Interferograms
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2004-01-01
The Fourier method of interferogram analysis requires the introduction of a constant tilt into the interferogram to serve as a carrier signal for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.
Pair aligning improved motility of Quincke rollers.
Lu, Shi Qing; Zhang, Bing Yue; Zhang, Zhi Chao; Shi, Yan; Zhang, Tian Hui
2018-06-06
Density-dependent speed is studied in a two-dimensional active colloid in which the colloidal particles are propelled by an external electric field via a Quincke rotation. Above the critcal electric field, dense dynamic clusters form spotaneously, in which the particles are highly aligned in velocity and move much faster than isolated units. Detailed observations on pair collision reveal that the alignment of velocity is induced by the long-ranged hydrodynamic interactions and the improvement of speed in the clusters arises from pair aligning in which two particles are closely paired and rotate synchronically. In the aligning state, the short-range in-plane dipole-dipole attraction enhances the rotation torque and gives rises to a larger rolling speed. The pair aligning becomes difficult and unstable at high electric field where the normal dipole-dipole repulsion becomes dominant. As a consequence, the dependence of speed on density becomes weak increasingly upon the increase of the electric field. This result offers an interpretation for the discrepancy between our and previous observations on Quincke rollers.
Improved Ball-and-Socket Docking Mechanism
NASA Technical Reports Server (NTRS)
Cloyd, Richard; Bryan, Tom
2004-01-01
A proposed docking mechanism would form a ball-and-socket joint in the docked condition. The mechanism could tolerate significant initial misalignment because it would include an alignment cone that would guide the ball into the socket. Like other ball-and-socket joints, the joint would have three rotational degrees of freedom. This docking mechanism would be a successor to the one described in Passive Capture Joint With Three Degrees of Freedom (MFS-31146), NASA Tech Briefs, Vol. 22, No. 7 (July 1998), page 65. It would contain most of the components of the prior mechanism, plus some additional components that would expand its capabilities.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
A two-in-one Faraday rotator mirror exempt of active optical alignment.
Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming
2014-02-10
A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.
Running and rotating: modelling the dynamics of migrating cell clusters
NASA Astrophysics Data System (ADS)
Copenhagen, Katherine; Gov, Nir; Gopinathan, Ajay
Collective motion of cells is a common occurrence in many biological systems, including tissue development and repair, and tumor formation. Recent experiments have shown cells form clusters in a chemical gradient, which display three different phases of motion: translational, rotational, and random. We present a model for cell clusters based loosely on other models seen in the literature that involves a Vicsek-like alignment as well as physical collisions and adhesions between cells. With this model we show that a mechanism for driving rotational motion in this kind of system is an increased motility of rim cells. Further, we examine the details of the relationship between rim and core cells, and find that the phases of the cluster as a whole are correlated with the creation and annihilation of topological defects in the tangential component of the velocity field.
NASA Astrophysics Data System (ADS)
Halevi, Goni; Mösta, Philipp
2018-06-01
We investigate r-process nucleosynthesis in three-dimensional general relativistic magnetohydrodynamic simulations of jet-driven supernovae resulting from rapidly rotating, strongly magnetized core-collapse. We explore the effect of misaligning the pre-collapse magnetic field with respect to the rotation axis by performing four simulations: one aligned model and models with 15°, 30°, and 45° misalignments. The simulations we present employ a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to post-bounce neutrino emission and absorption. We track the thermodynamic properties of the ejected material with Lagrangian tracer particles and analyse its composition with the nuclear reaction network SKYNET. By using different neutrino luminosities in post-processing the tracer data with SKYNET, we constrain the impact of uncertainties in neutrino luminosities. We find that, for the aligned model considered here, the use of an approximate leakage scheme results in neutrino luminosity uncertainties corresponding to a factor of 100-1000 uncertainty in the abundance of third peak r-process elements. Our results show that for misalignments of 30° or less, r-process elements are robustly produced as long as neutrino luminosities are reasonably low (≲ 5 × 1052 erg s-1). For a more extreme misalignment of 45°, we find the production of r-process elements beyond the second peak significantly reduced. We conclude that robust r-process nucleosynthesis in magnetorotational supernovae requires a progenitor stellar core with a large poloidal magnetic field component that is at least moderately (within ˜30°) aligned with the rotation axis.
MEMS Actuators for Improved Performance and Durability
NASA Astrophysics Data System (ADS)
Yearsley, James M.
Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high-speed alignment capability. The superhydrophobic coatings developed for droplet containment are also discussed and measurements of contact angle are shown to affect device performance through correlation to models of bearing friction and stiffness.
Søndergaard, Anders Aspegren; Shepperson, Benjamin; Stapelfeldt, Henrik
2017-07-07
We present an efficient, noise-robust method based on Fourier analysis for reconstructing the three-dimensional measure of the alignment degree, ⟨cos 2 θ⟩, directly from its two-dimensional counterpart, ⟨cos 2 θ 2D ⟩. The method applies to nonadiabatic alignment of linear molecules induced by a linearly polarized, nonresonant laser pulse. Our theoretical analysis shows that the Fourier transform of the time-dependent ⟨cos 2 θ 2D ⟩ trace over one molecular rotational period contains additional frequency components compared to the Fourier transform of ⟨cos 2 θ⟩. These additional frequency components can be identified and removed from the Fourier spectrum of ⟨cos 2 θ 2D ⟩. By rescaling of the remaining frequency components, the Fourier spectrum of ⟨cos 2 θ⟩ is obtained and, finally, ⟨cos 2 θ⟩ is reconstructed through inverse Fourier transformation. The method allows the reconstruction of the ⟨cos 2 θ⟩ trace from a measured ⟨cos 2 θ 2D ⟩ trace, which is the typical observable of many experiments, and thereby provides direct comparison to calculated ⟨cos 2 θ⟩ traces, which is the commonly used alignment metric in theoretical descriptions. We illustrate our method by applying it to the measurement of nonadiabatic alignment of I 2 molecules. In addition, we present an efficient algorithm for calculating the matrix elements of cos 2 θ 2D and any other observable in the symmetric top basis. These matrix elements are required in the rescaling step, and they allow for highly efficient numerical calculation of ⟨cos 2 θ 2D ⟩ and ⟨cos 2 θ⟩ in general.
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2012-12-01
The Coriolis force provides dominant control over the motion of atmospheres and oceans, both on Earth and on many other worlds. At any point on a planet's surface, the planetary rotation vector has both a vertical component and a horizontal (north-south) component. We typically ignore the horizontal component, which is justified if vertical motions are hydrostatic and the fluid is relatively shallow. Neither of these conditions is true for hydrothermal convection within the thick ocean layers of Europa and other icy worlds. Using the MITGCM ocean model, we explore the behavior of buoyant hydrothermal plumes in a deep unstratified ocean, including both components of the planetary rotation vector. We find that warm water does not rise vertically: instead, it spirals along the axis of planetary rotation. Eddies form which are tilted with respect to the local vertical, but parallel to the rotation axis: turbulent exchange of heat between these canted eddies carries the warm water toward the surface. This is not an entirely new idea: however, the implications for icy worlds have not been previously discussed. We observe that when these tilted plumes heat the ice layer above the ocean, the heating "footprint" of these tilted plumes will be more circular near the pole, more ellipsoidal in the tropics. If surface features of the ice crust were created by plume heating, their shapes ought to show consistent latitude trends. Also, we observe that if warm fluid were totally constrained to move along the planetary rotation axis, geothermal heat generated in the icy world's interior could never reach the ice crust near the equator. (For Europa, the "forbidden zone" could extend as far as +/- 20-25° latitude.) In practice, we find that turbulent eddies do allow heat to move perpendicular to the rotation vector, so the "forbidden zone" is not a tight constraint; still, it may affect the overall heating pattern of icy world crusts. Snapshot of ascent of buoyant hydrothermal plume in Europa's ocean (Seafloor heat source = 4 GW; ocean depth = 100 km; rotation period = 3.55 days; latitude = 30° N). Left: elevation section through plume. Right: 3-d isosurface of constant temperature (1 microkelvin above ambient). Note alignment of geostrophic eddies along angular rotation axis.
Gate-tunable resonant tunneling in double bilayer graphene heterostructures.
Fallahazad, Babak; Lee, Kayoung; Kang, Sangwoo; Xue, Jiamin; Larentis, Stefano; Corbet, Christopher; Kim, Kyounghwan; Movva, Hema C P; Taniguchi, Takashi; Watanabe, Kenji; Register, Leonard F; Banerjee, Sanjay K; Tutuc, Emanuel
2015-01-14
We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.
Hollow fiber clinostat for simulating microgravity in cell culture
NASA Technical Reports Server (NTRS)
Rhodes, Percy H. (Inventor); Miller, Teresa Y. (Inventor); Snyder, Robert S. (Inventor)
1992-01-01
A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohoyama, H., E-mail: ohyama@chem.sci.osaka-u.ac.jp
2013-12-21
The vector correlation between the alignment of reactant N{sub 2} (A {sup 3}Σ{sub u}{sup +}) and the alignment of product NO (A {sup 2}Σ{sup +}) rotation has been studied in the energy transfer reaction of aligned N{sub 2} (A {sup 3}Σ{sub u}{sup +}) + NO (X {sup 2}Π) → NO (A {sup 2}Σ{sup +}) + N{sub 2} (X {sup 1}Σ{sub g}{sup +}) under the crossed beam condition at a collision energy of ∼0.07 eV. NO (A {sup 2}Σ{sup +}) emission in the two linear polarization directions (i.e., parallel and perpendicular with respect to the relative velocity vector v{sub R}) hasmore » been measured as a function of the alignment of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) along its molecular axis in the collision frame. The degree of polarization of NO (A {sup 2}Σ{sup +}) emission is found to depend on the alignment angle (θ{sub v{sub R}}) of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) in the collision frame. The shape of the steric opacity function at the two polarization conditions turns out to be extremely different from each other: The steric opacity function at the parallel polarization condition is more favorable for the oblique configuration of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) at an alignment angle of θ{sub v{sub R}} ∼ 45° as compared with that at the perpendicular polarization condition. The alignment of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) is found to give a significant effect on the alignment of NO (A {sup 2}Σ{sup +}) rotation in the collision frame: The N{sub 2} (A {sup 3}Σ{sub u}{sup +}) configuration at an oblique alignment angle θ{sub v{sub R}} ∼ 45° leads to a parallel alignment of NO (A {sup 2}Σ{sup +}) rotation (J-vector) with respect to v{sub R}, while the axial and sideways configurations of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) lead to a perpendicular alignment of NO (A {sup 2}Σ{sup +}) rotation with respect to v{sub R}. These stereocorrelated alignments of the product rotation have a good correlation with the stereocorrelated reactivity observed in the multi-dimensional steric opacity function [H. Ohoyama and S. Maruyama, J. Chem. Phys. 137, 064311 (2012)].« less
Angle-dependent rotation of calcite in elliptically polarized light
NASA Astrophysics Data System (ADS)
Herne, Catherine M.; Cartwright, Natalie A.; Cattani, Matthew T.; Tracy, Lucas A.
2017-08-01
Calcite crystals trapped in an elliptically polarized laser field exhibit intriguing rotational motion. In this paper, we show measurements of the angle-dependent motion, and discuss how the motion of birefringent calcite can be used to develop a reliable and efficient process for determining the polarization ellipticity and orientation of a laser mode. The crystals experience torque in two ways: from the transfer of spin angular momentum (SAM) from the circular polarization component of the light, and from a torque due to the linear polarization component of the light that acts to align the optic axis of the crystal with the polarization axis of the light. These torques alternatingly compete with and amplify each other, creating an oscillating rotational crystal velocity. We model the behavior as a rigid body in an angle-dependent torque. We experimentally demonstrate the dependence of the rotational velocity on the angular orientation of the crystal by placing the crystals in a sample solution in our trapping region, and observing their behavior under different polarization modes. Measurements are made by acquiring information simultaneously from a quadrant photodiode collecting the driving light after it passes through the sample region, and by imaging the crystal motion onto a camera. We finish by illustrating how to use this model to predict the ellipticity of a laser mode from rotational motion of birefringent crystals.
NASA Astrophysics Data System (ADS)
Reznikov, Mitya; Lopatina, Lena M.; O'Callaghan, Michael J.; Bos, Philip J.
2011-03-01
The effect of surface alignment on the achievement of analog ("V"-shaped) electric field control of director rotation in SmC* liquid crystal devices is investigated experimentally and through numerical modeling. Ferroelectric SmC* liquid crystals are intrinsically analog and thresholdless, i.e. the director can be rotated freely around the tilt cone. Whether or not a SmC* liquid crystal cell exhibits thresholdless switching depends strongly on the influence of the cell's alignment layers, on the magnitude of the liquid crystal's spontaneous polarization, and on whether smectic layers adopt a bookshelf or chevron configuration. To study the effect of the surface alignment layers, we have exploited a technique for the vertical (bookshelf) alignment of the smectic layers that does not depend on surface anisotropy. The alignment technique allows an experimental study of the influence of surfaces spanning a wide range of pretilt angles, azimuthal and zenithal anchoring energies. This technique is used to study the effect of surfaces on the threshold behavior of director rotation in SmC* materials under the influence of an electric field. The alignment technique also allowed us to use a high-PS liquid crystal material having an I-A-C phase sequence and reduced layer shrinkage thought to be well suited to thresholdless switching. We show that the alignment layer has a strong effect, and that excellent analog response can be achieved for the case of alignment layers which promote homeotropic director orientation. We further model and discuss the potential effect of a thin layer of nematic at the surface and the possibility of gliding of the easy axis during switching.
Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles
NASA Astrophysics Data System (ADS)
Hoang, Thiem; Lazarian, Alex
2016-04-01
Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flying magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.
POLARIZATION OF MAGNETIC DIPOLE EMISSION AND SPINNING DUST EMISSION FROM MAGNETIC NANOPARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Thiem; Lazarian, Alex
2016-04-20
Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flyingmore » magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.« less
Spatial cognition and navigation
NASA Technical Reports Server (NTRS)
Aretz, Anthony J.
1989-01-01
An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.
A Palmprint Recognition Algorithm Using Phase-Only Correlation
NASA Astrophysics Data System (ADS)
Ito, Koichi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo
This paper presents a palmprint recognition algorithm using Phase-Only Correlation (POC). The use of phase components in 2D (two-dimensional) discrete Fourier transforms of palmprint images makes it possible to achieve highly robust image registration and matching. In the proposed algorithm, POC is used to align scaling, rotation and translation between two palmprint images, and evaluate similarity between them. Experimental evaluation using a palmprint image database clearly demonstrates efficient matching performance of the proposed algorithm.
Self-Noise of the STS-2 and sensitivity of its computation to errors in alignment of sensors
NASA Astrophysics Data System (ADS)
Gerner, Andreas; Sleeman, Reinoud; Grasemann, Bernhard; Lenhardt, Wolfgang
2016-04-01
The assessment of a seismometer's self-noise is an important part of establishing its health, quality, and suitability. A spectral coherence technique proposed by Sleeman et al. (2006) using synchronously recorded data of triples of collocated and co-aligned seismometers has shown to be a very robust and reliable way to estimate the self-noise of modern broadband seismic sensors. It has been demonstrated in previous works that the resulting self-noise spectra, primarily in the frequency range of Earth's microseisms, are considerably affected by small errors in the alignment of sensors. Further, due to the sensitivity of the 3-channel correlation technique to misalignment, numerical rotation of the recorded traces prior to self-noise computation can be performed to find best possible alignment by searching for minimum self-noise values. In this study we focus on the sensitivity of the 3-channel correlation technique to misalignment, and investigate the possibility of complete removal of the microseism signal from self-noise estimates for the sensors' three components separately. Data from a long-term installation of four STS-2 sensors, specifically intended for self-noise studies, at the Conrad Observatory (Austria) in a collaboration between the KNMI (Netherlands) and the ZAMG (Austria) provides a reliable basis for an accurate sensitivity analysis and self-noise assessment. Our work resulted in undisturbed self-noise estimates for the vertical components, and our current focus is on improving alignment of horizontal axes, and verification of the manufacturer's specification regarding orthogonality of all three components. The tools and methods developed within this research can help to quickly establish consistent self-noise models, including estimates of orthogonality and alignment, which facilitates comparison of different models and provides us with a means to test quality and accuracy of a seismic sensor over its life span.
Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge.
Korobenko, A; Milner, V
2016-05-06
We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.
Kosse, Nienke M; Heesterbeek, Petra J C; Schimmel, Janneke J P; van Hellemondt, Gijs G; Wymenga, Ate B; Defoort, Koen C
2018-06-01
The primary aim of the study was to examine stability and alignment after total knee arthroplasty (TKA) using patient-specific instrumentation (PSI) and conventional instrumentation (CI). The hypothesis was that stability and alignment would be better using PSI than CI, 12 months postoperatively. The secondary aim included the evaluation of clinical outcomes after TKA. In this prospective randomized controlled trial, 42 patients with knee osteoarthritis received a Genesis II PS prosthesis with either PSI or CI. Patients visited the hospital preoperatively and postoperatively after 6 weeks and 3 and 12 months. To evaluate stability, varus-valgus laxity was determined in extension and flexion using stress radiographs 12 months postoperatively. Three months postoperatively, a long-leg radiograph and CT scan were obtained to measure hip-knee-ankle (HKA) alignment and component rotation. Furthermore, frontal and sagittal alignment of the components, the Knee Society Score, VAS Pain, VAS Satisfaction, Knee injury and Osteoarthritis Outcome score, Patella score (Kujala), University of California Los Angeles activity score, anterior-posterior laxity, (serious) adverse device-related events, and intraoperative complications were reported. The clinical outcomes were compared using independent t tests or non-parametric alternatives, and repeated measurements ANOVA with a significance level of p < 0.05. No significant differences were found between the two groups regarding stability, HKA angle, and rotational alignment. In four patients, the PSI did not fit correctly on the tibia and/or femur requiring intraoperative modifications. Both groups improved significantly over time on all clinical outcomes, with no significant differences between the groups 12 months postoperatively. The PSI group showed less tibial slope than the patients in the CI group [PSI 2.6° versus CI 4.8° (p = 0.02)]. Finally, the PSI group more frequently received a thinner insert size than the CI group (p = 0.03). Patients operated with PSI did not differ from CI in terms of stability and alignment. However, in the PSI group ligament releases were more often required intraoperatively. Furthermore, the two methods did not show different clinical results. It seems that the preoperative planning for the PSI facilitates more conservative bone cuts than CI, but whether this is clinically relevant should be investigated. Since PSI is more expensive and time consuming than CI, and does not outperform CI with regard to clinical results, we recommend to use CI. I.
Automation of the targeting and reflective alignment concept
NASA Technical Reports Server (NTRS)
Redfield, Robin C.
1992-01-01
The automated alignment system, described herein, employs a reflective, passive (requiring no power) target and includes a PC-based imaging system and one camera mounted on a six degree of freedom robot manipulator. The system detects and corrects for manipulator misalignment in three translational and three rotational directions by employing the Targeting and Reflective Alignment Concept (TRAC), which simplifies alignment by decoupling translational and rotational alignment control. The concept uses information on the camera and the target's relative position based on video feedback from the camera. These relative positions are converted into alignment errors and minimized by motions of the robot. The system is robust to exogenous lighting by virtue of a subtraction algorithm which enables the camera to only see the target. These capabilities are realized with relatively minimal complexity and expense.
NASA Technical Reports Server (NTRS)
Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.
1986-01-01
The interaction between the solar wind and the earth's magnetosphere has been studied by using a time-dependent three-dimensional MHD model in which the IMF pointed in several directions between dawnward and southward. When the IMF is dawnward, the dayside cusp and the tail lobes shift toward the morningside in the northern magnetosphere. The plasma sheet rotates toward the north on the dawnside of the tail and toward the south on the duskside. For an increasing southward IMF component, the plasma sheet becomes thinner and subsequently wavy because of patchy or localized tail reconnection. At the same time, the tail field-aligned currents have a filamentary layered structure. When projected onto the northern polar cap, the filamentary field-aligned currents are located in the same area as the region 1 currents, with a pattern similar to that associated with auroral surges. Magnetic reconnection also occurs on the dayside magnetopause for southward IMF.
Camley, Brian A.; Zhang, Yunsong; Zhao, Yanxiang; Li, Bo; Ben-Jacob, Eshel; Levine, Herbert; Rappel, Wouter-Jan
2014-01-01
Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell’s internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell’s methods for coordinating collective cell motility. PMID:25258412
3D Reconstruction of a Rotating Erupting Prominence
NASA Technical Reports Server (NTRS)
Thompson, W. T.; Kliem, B.; Torok, T.
2011-01-01
A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight as it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48 deg, it was possible to match some sharp features in the later part of the eruption as seen in the 304 Angstrom line in EUVI and in the H alpha-sensitive bandpass of COR1 by both STEREO Ahead and Behind. These features could then be traced out in three dimensional space, and reprojected into a view in which the eruption is directed towards the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of approximately equals 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115 deg. from the original filament orientation inferred from H alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation is reached within approximately equals 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.
Modeling human vestibular responses during eccentric rotation and off vertical axis rotation
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Paloski, W. H. (Principal Investigator)
1995-01-01
A mathematical model has been developed to help explain human multi-sensory interactions. The most important constituent of the model is the hypothesis that the nervous system incorporates knowledge of sensory dynamics into an "internal model" of these dynamics. This internal model allows the nervous system to integrate the sensory information from many different sensors into a coherent estimate of self-motion. The essence of the model is unchanged from a previously published model of monkey eye movement responses; only a few variables have been adjusted to yield the prediction of human responses. During eccentric rotation, the model predicts that the axis of eye rotation shifts slightly toward alignment with gravito-inertial force. The model also predicts that the time course of the perception of tilt following the acceleration phase of eccentric rotation is much slower than that during deceleration. During off vertical axis rotation (OVAR) the model predicts a small horizontal bias along with small horizontal, vertical, and torsional oscillations. Following OVAR stimulation, when stopped right- or left-side down, a small vertical component is predicted that decays with the horizontal post-rotatory response. All of the predictions are consistent with measurements of human responses.
Ohoyama, H
2014-10-16
We have studied the collision energy dependent cross section and alignment of NO (A (2)Σ(+)) rotation in the energy-transfer reaction of N2 (A (3)Σ(u)(+)) + NO (X (2)Π) → N2 (X (1)Σ(g)(+)) + NO (A (2)Σ(+)) at the collision energy (E) region of 0.03-0.2 eV. NO (A (2)Σ(+)) emission in two linear polarization directions in the collision frame (parallel (∥) and perpendicular (⊥) with respect to the relative velocity vector (vR)) has been measured as a function of collision energy. NO (A (2)Σ(+)) rotation (J-vector) turns out to be aligned perpendicular to vR. In addition, collision energy is found to enhance the degree of alignment of NO (A (2)Σ(+)) rotation. The collision energy dependent cross sections σ(∥,(⊥))(E) (excitation functions) show a rapid fall-off following an initial rise with a threshold less than 0.02 eV. The excitation function at the parallel alignment of NO (A (2)Σ(+)) rotation, σ(J∥v(R), (E), is slightly shifted to the low collision energy region as compared with σ(J ⊥ vR, E). We propose that the rapid fall-off feature in the excitation function is attributed to the multidimensional nonadiabatic transitions.
NASA Astrophysics Data System (ADS)
Hartinger, Klaus; Bartels, Randy A.
2008-01-01
We demonstrate a single-shot measurement of the transient phase modulation due to field free molecular alignment at the revival times of a rotational wave packet. The wave packet is excited by an arbitrarily polarized ultrashort laser pulse in CO2 at room temperature. With this technique the time dependence along the eigenpolarization directions of the linear susceptibility tensor, i.e., the time dependence of its principle components, can be directly observed with high sensitivity.
Fixture for aligning motor assembly
Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.
2009-12-08
An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.
NASA Astrophysics Data System (ADS)
Liu, Chang; Cai, Jun; Duan, Yubing; Li, Xinghao; Zhang, Deyuan
2018-07-01
In order to enhance the microwave-absorbing and shielding properties of the composites, the flaky FeSiAl particles embedded in an epoxy polymer were aligned with a two-dimensional rotating magnetic field. The morphologies, electromagnetic (EM) characteristics, and microwave-absorbing and shielding properties of the unaligned and aligned FeSiAl/epoxy composites were investigated. The results showed that after alignment treatment, the flaky FeSiAl particles tend to orient uniformly in the rotating magnetic field, and the permittivity and permeability of the aligned composites were increased in the frequency range of 1-18 GHz compared with that of randomly distributed composites. The calculated microwave-absorbing properties indicated that the peak value of the return loss (RL) of the aligned composites can reach 8.8 dB, compared with 5.8 dB of the unaligned composites of 2.5 mm in thickness (60 wt%); and the bandwidth with RL value more than 6 dB is in a wider frequency range from 1 to 2.8 GHz. And the calculated shielding effectiveness (SE) of the aligned composites is 1.1-3 times higher than that of unaligned one in every thickness, and the maximum SE of the aligned one is 31.8 dB at 18 GHz with a thickness of 2.5 mm.
Parallel alignment of bacteria using near-field optical force array for cell sorting
NASA Astrophysics Data System (ADS)
Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.
2017-08-01
This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.
Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.
NASA Astrophysics Data System (ADS)
Ohta, Masamichi; Itaya, Shunsuke; Ozawa, Shintaro; Binti, M. Azmi; Dianah, Nada; Fujieda, Ichiro
2016-09-01
One can convert a Luminescent Solar Concentrator (LSC) to an energy-harvesting display by scanning a laser beam on it. By incorporating a guest-host system of liquid crystal (LC) and dye materials in an LSC, the power of photoluminescence (PL) utilized for either display or energy-harvesting can be adjusted to the changes in ambient lighting conditions. We have measured basic characteristics of an LC/dye cell with twisted-nematic (TN) alignment. These are absorption of the laser light, PL radiation pattern, contrast of luminance, spreading of the PL generated by a narrow laser beam, and their dependencies on the bias. The results are similar to those of the LC/dye cell with antiparallel (AP) alignment with the following exceptions. First, absorption by the TN cell depends on the bias for both polarization components of the excitation light, while the AP cell exhibits a bias dependency only for the component polarized along the alignment direction. Second, the PL from the TN cell is mostly polarized along the alignment direction on the exit side of the cell while the PL from the AP cell is mostly polarized along its alignment direction. These observations can be attributed to the fact that the polarization plane of a linearly polarized light rotates as it propagated the TN-LC layer. For both AP and TN cells, low-intensity PL is observed from the whole cell surfaces. This can degrade the contrast of a displayed image. Bias application to the cell suppresses this effect.
The ATLAS3D project - X. On the origin of the molecular and ionized gas in early-type galaxies
NASA Astrophysics Data System (ADS)
Davis, Timothy A.; Alatalo, Katherine; Sarzi, Marc; Bureau, Martin; Young, Lisa M.; Blitz, Leo; Serra, Paolo; Crocker, Alison F.; Krajnović, Davor; McDermid, Richard M.; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L.; Duc, Pierre-Alain; de Zeeuw, P. Tim; Emsellem, Eric; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Weijmans, Anne-Marie
2011-10-01
We make use of interferometric CO and H I observations, and optical integral-field spectroscopy from the ATLAS3D survey, to probe the origin of the molecular and ionized interstellar medium (ISM) in local early-type galaxies. We find that 36 ± 5 per cent of our sample of fast-rotating early-type galaxies have their ionized gas kinematically misaligned with respect to the stars, setting a strong lower limit on the importance of externally acquired gas (e.g. from mergers and cold accretion). Slow rotators have a flat distribution of misalignments, indicating that the dominant source of gas is external. The molecular, ionized and atomic gas in all the detected galaxies are always kinematically aligned, even when they are misaligned from the stars, suggesting that all these three phases of the ISM share a common origin. In addition, we find that the origin of the cold and warm gas in fast-rotating early-type galaxies is strongly affected by environment, despite the molecular gas detection rate and mass fractions being fairly independent of group/cluster membership. Galaxies in dense groups and the Virgo cluster nearly always have their molecular gas kinematically aligned with the stellar kinematics, consistent with a purely internal origin (presumably stellar mass loss). In the field, however, kinematic misalignments between the stellar and gaseous components indicate that at least 42 ± 5 per cent of local fast-rotating early-type galaxies have their gas supplied from external sources. When one also considers evidence of accretion present in the galaxies' atomic gas distributions, ≳46 per cent of fast-rotating field ETGs are likely to have acquired a detectable amount of ISM from accretion and mergers. We discuss several scenarios which could explain the environmental dichotomy, including preprocessing in galaxy groups/cluster outskirts and the morphological transformation of spiral galaxies, but we find it difficult to simultaneously explain the kinematic misalignment difference and the constant detection rate. Furthermore, our results suggest that galaxy mass may be an important independent factor associated with the origin of the gas, with the most massive fast-rotating galaxies in our sample (MK≲-24 mag; stellar mass of ≈8 × 1010 M⊙) always having kinematically aligned gas. This mass dependence appears to be independent of environment, suggesting it is caused by a separate physical mechanism.
NASA Astrophysics Data System (ADS)
Chen, Jincai; Jin, Guodong; Zhang, Jian
2016-03-01
The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.
Patel, Ekta; Muthusamy, Veena; Young, John Q
2018-06-01
Residency programs must provide training in patient safety. Yet, significant gaps exist among published patient safety curricula. The authors developed a rotation designed to be scalable to an entire residency, built on sound pedagogy, aligned with hospital safety processes, and effective in improving educational outcomes. From July 2015 to May 2017, each second-year resident completed the two-week rotation. Residents engaged the foundational science asynchronously via multiple modalities and then practiced applying key concepts during a mock root cause analysis. Next, each resident performed a special review of an actual adverse patient event and presented findings to the hospital's Special Review Committee (SRC). Multiple educational outcomes were assessed, including resident satisfaction and attitudes (postrotation survey), changes in knowledge via pre- and posttest, quality of the residents' written safety analyses and oral presentations (per survey of SRC members), and organizational changes that resulted from the residents' reviews. Twenty-two residents completed the rotation. Most components were rated favorably; 80% (12/15 respondents) indicated interest in future patient safety work. Knowledge improved by 44.3% (P < .0001; pretest mean 23.7, posttest mean 34.2). Compared to faculty, SRC members rated the quality of residents' written reviews as superior and the quality of the rated oral presentations as either comparable or superior. The reviews identified a variety of safety vulnerabilities and led to multiple corrective actions. The authors will evaluate the curriculum in a controlled trial with better measures of change in behavior. Further tests of the curriculum's scalability to other contexts are needed.
Nedopil, Alexander J; Howell, Stephen M; Hull, Maury L
2017-02-01
Thirteen patients presented with patellofemoral instability out of 3212 knees treated with kinematically aligned total knee arthroplasty (KA TKA) during a nine year period. We determined the clinical characteristics and post-operative radiographic parameters associated with patellofemoral instability, and whether re-operation and patient reported outcome measures are different between patients with and without patellofemoral instability. Patients with patellofemoral instability were matched 1:3 to a control cohort based on date of surgery (±3 months), age (±10 years), sex, pre-operative knee deformity (varus or valgus), and implant brand. We analyzed clinical characteristics and seven post-operative radiographic parameters. Patellofemoral instability presented atraumatically (12 of 13) at 5 ± 4.7 months for a 0.4 % incidence at a mean follow-up of 43 ± 36 months. No pre-operative clinical characteristics were associated with instability. Patients with patellofemoral instability had greater flexion of the femoral component (11° versus 5°; p = 0.0012), a trend toward greater external rotation of the tibial component (2° versus 0°; p = 0.2704), more reoperations (9 versus 0; p = 0.0026) and a lower Oxford Knee Score (36 versus 42; p = 0.0045) than controls. Patellofemoral instability after kinematically aligned TKA is infrequent, presents atraumatically, and is associated with greater flexion of the femoral component than the control group. Minimizing flexion of the femoral component might reduce the risk of patellofemoral instability by promoting early engagement of the patella in the trochlear during knee flexion.
Computer-assisted revision total knee replacement.
Sikorski, J M
2004-05-01
A technique for performing allograft-augmented revision total knee replacement (TKR) using computer assistance is described, on the basis of the results in 14 patients. Bone deficits were made up with impaction grafting. Femoral grafting was made possible by the construction of a retaining wall or dam which allowed pressurisation and retention of the graft. Tibial grafting used a mixture of corticocancellous and morsellised allograft. The position of the implants was monitored by the computer system and adjusted while the cement was setting. The outcome was determined using a six-parameter, quantitative technique (the Perth CT protocol) which measured the alignment of the prosthesis and provided an objective score. The final outcomes were not perfect with errors being made in femoral rotation and in producing a mismatch between the femoral and tibial components. In spite of the shortcomings the alignments were comparable in accuracy with those after primary TKR. Computer assistance shows considerable promise in producing accurate alignment in revision TKR with bone deficits.
Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.
2003-01-01
The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head movements.
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Non-linear tides in a homogeneous rotating planet or star: global modes and elliptical instability
NASA Astrophysics Data System (ADS)
Barker, Adrian J.; Braviner, Harry J.; Ogilvie, Gordon I.
2016-06-01
We revisit the global modes and instabilities of homogeneous rotating ellipsoidal fluid masses, which are the simplest global models of rotationally and tidally deformed gaseous planets or stars. The tidal flow in a short-period planet may be unstable to the elliptical instability, a hydrodynamic instability that can drive tidal evolution. We perform a global (and local WKB) analysis to study this instability using the elegant formalism of Lebovitz & Lifschitz. We survey the parameter space of global instabilities with harmonic orders ℓ ≤ 5, for planets with spins that are purely aligned (prograde) or anti-aligned (retrograde) with their orbits. In general, the instability has a much larger growth rate if the planetary spin and orbit are anti-aligned rather than aligned. We have identified a violent instability for anti-aligned spins outside of the usual frequency range for the elliptical instability (when n/Ω ≲ -1, where n and Ω are the orbital and spin angular frequencies, respectively) if the tidal amplitude is sufficiently large. We also explore the instability in a rigid ellipsoidal container, which is found to be quantitatively similar to that with a realistic free surface. Finally, we study the effect of rotation and tidal deformation on mode frequencies. We find that larger rotation rates and larger tidal deformations both decrease the frequencies of the prograde sectoral surface gravity modes. This increases the prospect of their tidal excitation, potentially enhancing the tidal response over expectations from linear theory. In a companion paper, we use our results to interpret global simulations of the elliptical instability.
Dawn-dusk asymmetries in rotating magnetospheres: Lessons from modeling Saturn
NASA Astrophysics Data System (ADS)
Jia, Xianzhe; Kivelson, Margaret G.
2016-02-01
Spacecraft measurements reveal perplexing dawn-dusk asymmetries of field and plasma properties in the magnetospheres of Saturn and Jupiter. Here we describe a previously unrecognized source of dawn-dusk asymmetry in a rapidly rotating magnetosphere. We analyze two magnetohydrodynamic simulations, focusing on how flows along and across the field vary with local time in Saturn's dayside magnetosphere. As plasma rotates from dawn to noon on a dipolarizing flux tube, it flows away from the equator along the flux tube at roughly half of the sound speed (Cs), the maximum speed at which a bulk plasma can flow along a flux tube into a lower pressure region. As plasma rotates from noon to dusk on a stretching flux tube, the field-aligned component of its centripetal acceleration decreases and it flows back toward the equator at speeds typically smaller than 1/2 Cs. Correspondingly, the plasma sheet remains far thicker and the field less stretched in the afternoon than in the morning. Different radial force balance in the morning and afternoon sectors produce asymmetry in the plasma sheet thickness and a net dusk-to-dawn flow inside of L = 15 or equivalently, a large-scale electric field (E) oriented from postnoon to premidnight, as reported from observations. Morning-afternoon asymmetry analogous to that found at Saturn has been observed at Jupiter, and a noon-midnight component of E cannot be ruled out.
Lee, J; Rovira, P I; An, I; Collins, R W
2001-08-01
Biplate compensators made from MgF2 are being used increasingly in rotating-element single-channel and multichannel ellipsometers. For the measurement of accurate ellipsometric spectra, the compensator must be carefully (i) aligned internally to ensure that the fast axes of the two plates are perpendicular and (ii) calibrated to determine the phase retardance delta versus photon energy E. We present alignment and calibration procedures for multichannel ellipsometer configurations with special attention directed to the precision, accuracy, and reproducibility in the determination of delta (E). Run-to-run variations in external compensator alignment, i.e., alignment with respect to the incident beam, can lead to irreproducibilities in delta of approximately 0.2 degrees . Errors in the ellipsometric measurement of a sample can be minimized by calibrating with an external compensator alignment that matches as closely as possible that used in the measurement.
Talbot, Simon; Dimitriou, Pandelis; Radic, Ross; Zordan, Rachel; Bartlett, John
2015-11-01
The sulcus line (SL) is a three-dimensional curve produced from multiple points along the trochlear groove. Whiteside's Line, also known as the anteroposterior axis (APA), is derived from single anterior and posterior points. The purposes of the two studies presented in this paper are to (1) assess the results from the clinical use of the SL in a large clinical series, (2) measure the SL and the APA on three-dimensional CT reconstructions, (3) demonstrate the effect of parallax error on the use of the APA and (4) determine the accuracy of an axis derived by combining the SL and the posterior condylar axis (PCA). In the first study, we assessed the SL using a large, single surgeon series of consecutive patients undergoing primary total knee arthroplasties. The post-operative CT scans of patients (n = 200) were examined to determine the final rotational alignment of the femoral component. In the second study, measurements were taken in a series of 3DCT reconstructions of osteoarthritic knees (n = 44). The mean position of the femoral component in the clinical series was 0.6° externally rotated to the surgical epicondylar axis, with a standard deviation of 2.9° (ranges from -7.2° to 6.7°). On the 3DCT reconstructions, the APA (88.2° ± 4.2°) had significantly higher variance than the SL (90.3° ± 2.7°) (F = 5.82 and p = 0.017). An axis derived by averaging the SL and the PCA+3° produced a significant decrease in both the number of outliers (p = 0.03 vs. PCA and p = 0.007 vs. SL) and the variance (F = 6.15 and p = 0.015 vs. SL). The coronal alignment of the SL varied widely relative to the mechanical axis (0.4° ± 3.8°) and the distal condylar surface (2.6° ± 4.3°). The multiple points used to determine the SL confer anatomical and geometrical advantages, and therefore, it should be considered a separate rotational landmark to the APA. These findings may explain the high degree of variability in the measurement of the APA which is documented in the literature. Combining a geometrically correct SL and the PCA is likely to further improve accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Jason W., E-mail: jwbarnes@uidaho.ed
Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbitmore » alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.« less
Dual annular rotating "windowed" nuclear reflector reactor control system
Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.
1994-01-01
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.
Effects of interfacial alignments on the stability of graphene on Ru(0001) substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lei; Liu, Yanmin; Ma, Tianbao, E-mail: mtb@mail.tsinghua.edu.cn
2016-06-27
Structure and electronic properties of two-dimensional materials could be tuned by interfacial misfit or orientation angles. However, graphene grown on Ru(0001) substrate usually shows stable moiré superlattice with a periodicity of 3.0 nm indicating an aligned geometry. The reason for the absence of misaligned structure is still unknown. We have performed first-principles calculation to investigate the microstructure and morphology of graphene on Ru(0001) substrate in both aligned and misaligned geometries with rotation angles of 0°, 7.6°, and 23.4°, respectively. Our results indicate that both the graphene corrugation and moiré superlattice periodicity decrease as the rotation angle increases. Meanwhile the interaction energymore » between graphene and Ru(0001) substrate also becomes weakened with the rotation angle, as the decrease and discretization of intense charge transfer sites at the graphene/Ru interface, which is closely related to the interface stacking structure. Counterintuitively, the strain energy in graphene also increases anomalously with the rotation angle, which is attributed to the highly distorted local deformation of graphene due to the strong but discrete covalent bonding with Ru substrate. The simultaneous increase in both the interaction energy and strain energy in graphene/Ru(0001) heterostructure with rotation angle contributes to the preferred configuration in the aligned state.« less
Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles
NASA Astrophysics Data System (ADS)
Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.
2017-03-01
Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.
A multidimensional model of the effect of gravity on the spatial orientation of the monkey
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Oman, C. M.; Shelhamer, M. J.
1993-01-01
A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).
A line-source method for aligning on-board and other pinhole SPECT systems
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-01-01
Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. PMID:24320537
A line-source method for aligning on-board and other pinhole SPECT systems.
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-12-01
In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system-to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)-is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.
Electric alignment of plate shaped clay aggregates in oils
NASA Astrophysics Data System (ADS)
Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik
2016-01-01
We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.
Turbine blade tip flow discouragers
Bunker, Ronald Scott
2000-01-01
A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.
Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-01-29
The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by 2° and 4° of varus-valgus (V-V) malalignment of the femoral component in kinematically aligned total knee arthroplasty (TKA) and use the results to detemine sensitivities to errors in making the distal femoral resections. Because V-V malalignment would introduce the greatest changes in the alignment of the articular surfaces at 0° flexion, the hypotheses were that the greatest increases in tibial force imbalance would occur at 0° flexion, that primarily V-V laxity would significantly change at this flexion angle, and that the tibial force imbalance would increase and laxities would change in proportion to the degree of V-V malalignment. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced V-V malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured during passive knee flexion-extension between 0° to 120° using a custom tibial force sensor. Eight laxities were measured from 0° to 120° flexion using a six degree-of-freedom load application system. With the tibial component kinematically aligned, the increase in the tibial force imbalance from that of the reference component at 0° of flexion was sensitive to the degree of V-V malalignment of the femoral component. Sensitivities were 54 N/deg (medial tibial force increasing > lateral tibial force) (p < 0.0024) and 44 N/deg (lateral tibial force increasing > medial tibial force) (p < 0.0077) for varus and valgus malalignments, respectively. Varus-valgus malalignment did not significantly change varus, internal-external rotation, anterior-posterior, and compression-distraction laxities from 0° to 120° flexion. At only 30° of flexion, 4° of varus malalignment increased valgus laxity 1° (p = 0.0014). At 0° flexion, V-V malalignment of the femoral component caused the tibial force imbalance to increase significantly, whereas the laxities were relatively unaffected. Because tibial force imbalance has the potential to adversely affect patient-reported outcomes and satisfaction, surgeons should strive to limit errors in resecting the distal femoral condyles to within ± 0.5 mm which in turn limits the average increase in tibial force imbalance to 68 N. Because laxities were generally unaffected, instability resulting from large increases in laxity is not a clinical concern within the ± 4° range tested. Therapeutic, Level II.
Kinematic alignment technique for total hip and knee arthroplasty
Rivière, Charles; Lazic, Stefan; Villet, Loïc; Wiart, Yann; Allwood, Sarah Muirhead; Cobb, Justin
2018-01-01
Conventional techniques for hip and knee arthroplasty have led to good long-term clinical outcomes, but complications remain despite better surgical precision and improvements in implant design and quality. Technological improvements and a better understanding of joint kinematics have facilitated the progression to ‘personalized’ implant positioning (kinematic alignment) for total hip (THA) and knee (TKA) arthroplasty, the true value of which remains to be determined. By achieving a true knee resurfacing, the kinematic alignment (KA) technique for TKA aims at aligning the components with the physiological kinematic axes of the knee and restoring the constitutional tibio-femoral joint line frontal and axial orientation and soft-tissue laxity. The KA technique for THA aims at restoring the native ‘combined femoro-acetabular anteversion’ and the hip’s centre of rotation, and occasionally adjusting the cup position and design based on the assessment of the individual spine-hip relation. The key element for optimal prosthetic joint kinematics (hip or knee) is to reproduce the femoral anatomy. The transverse acetabular ligament (TAL) is the reference landmark to adjust the cup position. Cite this article: EFORT Open Rev 2018;3:98-105. DOI: 10.1302/2058-5241.3.170022 PMID:29657851
NASA Technical Reports Server (NTRS)
Barranger, John P.
1990-01-01
A novel optical method of measuring 2-D surface strain is proposed. Two linear strains along orthogonal axes and the shear strain between those axes is determined by a variation of Yamaguchi's laser-speckle strain gage technique. It offers the advantages of shorter data acquisition times, less stringent alignment requirements, and reduced decorrelation effects when compared to a previously implemented optical strain rosette technique. The method automatically cancels the translational and rotational components of rigid body motion while simplifying the optical system and improving the speed of response.
Spin-stabilized magnetic levitation without vertical axis of rotation
Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM
2009-06-09
The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.
NASA Technical Reports Server (NTRS)
Mann, C. W. (Inventor)
1984-01-01
A device used in the optical alignment of machinery to maintain a measuring scale in the proper position for optical readings to be taken is described. The device consists of a block containing a notch in the shape of an inverted ""v'' and a rotatable plug positioned over the centerline of notch. The block is placed on the object to be aligned, the notch allows the block to be securely placed upon flat or curved surfaces. A weighted measuring scale is inserted through plug so that it contacts the object to be aligned. The scale and plug combination can be rotated so that the scale faces an optical aligning instrument. The instrument is then used in conjunction with the scale to measure the distance of the machinery from a reference plane.
Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system
Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.
1994-03-29
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.
NASA Astrophysics Data System (ADS)
Zhang, ZhenHua
2016-07-01
The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency hω are reproduced very well by the particle-number conserving calculations, which provides a reliable support to the configuration assignments in previous works for these bands. The backbendings in these two-quasiparticle bands are analyzed by the calculated occupation probabilities and the contributions of each orbital to the total angular momentum alignments. The moments of inertia and alignments for the Gallagher-Moszkowski partners of these observed two-quasiparticle rotational bands are also predicted.
A line-source method for aligning on-board and other pinhole SPECT systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-12-15
Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignmentmore » parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.« less
Predictability of orthodontic movement with orthodontic aligners: a retrospective study.
Lombardo, Luca; Arreghini, Angela; Ramina, Fabio; Huanca Ghislanzoni, Luis T; Siciliani, Giuseppe
2017-11-13
The aim of this study was to evaluate the predictability of F22 aligners (Sweden & Martina, Due Carrare, Italy) in guiding teeth into the positions planned using digital orthodontic setup. Sixteen adult patients (6 males and 10 females, mean age 28 years 7 months) were selected, and a total of 345 teeth were analysed. Pre-treatment, ideal post-treatment-as planned on digital setup-and real post-treatment models were analysed using VAM software (Vectra, Canfield Scientific, Fairfield, NJ, USA). Prescribed and real rotation, mesiodistal tip and vestibulolingual tip were calculated for each tooth and, subsequently, analysed by tooth type (right and left upper and lower incisors, canines, premolars and molars) to identify the mean error and accuracy of each type of movement achieved with the aligner with respect to those planned using the setup. The mean predictability of movements achieved using F22 aligners was 73.6%. Mesiodistal tipping showed the most predictability, at 82.5% with respect to the ideal; this was followed by vestibulolingual tipping (72.9%) and finally rotation (66.8%). In particular, mesiodistal tip on the upper molars and lower premolars were achieved with the most predictability (93.4 and 96.7%, respectively), while rotation on the lower canines was the least efficaciously achieved (54.2%). Without the use of auxiliaries, orthodontic aligners are unable to achieve programmed movement with 100% predictability. In particular, although tipping movements were efficaciously achieved, especially at the molars and premolars, rotation of the lower canines was an extremely unpredictable movement.
Can We Really "Feel" a Balanced Total Knee Arthroplasty?
Elmallah, Randa K; Mistry, Jaydev B; Cherian, Jeffrey J; Chughtai, Morad; Bhave, Anil; Roche, Martin W; Mont, Michael A
2016-09-01
Balancing techniques in total knee arthroplasty are often based on surgeons' subjective judgment. However, newer technologies have allowed for objective measurements of soft tissue balancing. This study compared the use of sensor technology to the 30-year surgeon experience regarding (1) compartment loads, (2) soft tissue releases, and (3) component rotational alignments. Patients received either sensor-guided soft tissue balancing (n = 10) or manual gap balancing (n = 12). Wireless, intraoperative sensor tibial inserts were used to measure intracompartmental loads. The surgeon was blinded to values in the manual gap-balancing cohort. In the sensor cohort, the surgeon was unblinded, and implant trials were placed after normal releases were performed to guide further ligament releases after femoral and tibial resections, as needed. Load measurements were taken at 10°, 45°, and 90°. The sensor cohort had lower medial and lateral compartment loading at 10°, 45°, and 90°. The sensor group had lower mean differences in intercompartment loading at 10° (-5.6 vs -51.7 lbs), 45° (-9.8 vs -45.9 lbs), and 90° (-4.3 vs -27 lbs) compared to manually balanced patients. There were 10 additional soft tissue releases in the sensor cohort (2 initial ones before sensor use), compared to 2 releases in the gap-balanced cohort. In the gap-balanced cohort, tibial trays were positioned at a mean 9° external rotation, compared to a mean 1° internal rotation in the sensor-guided cohort. Sensor-balanced total knee arthroplasties provide objective feedback to perform releases and potentially improve knee balancing and rotational alignment. Future work may clarify whether these changes are beneficial for our patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Earth Rotation Parameters from DSN VLBI: 1994
NASA Technical Reports Server (NTRS)
Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.
1994-01-01
In this report, Earth Rotation Parameter (ERP) estimates ahve been obtained from an analysis of Deep Space Network (DSN) VLBI data that directly aligns its celestial and terrestrial reference frames with those of the International Earth Rotation Service (IERS).
Electrostatically Induced Carbon Nanotube Alignment for Polymer Composite Applications
NASA Astrophysics Data System (ADS)
Chapkin, Wesley Aaron
We have developed a non-invasive technique utilizing polarized Raman spectroscopy to measure changes in carbon nanotube (CNT) alignment in situ and in real time in a polymer matrix. With this technique, we have confirmed the prediction of faster alignment for CNTs in higher electric fields. Real-time polarized Raman spectroscopy also allows us to demonstrate the loss of CNT alignment that occurs after the electric field is removed, which reveals the need for fast polymerization steps or the continued application of the aligning force during polymerization to lock in CNT alignment. Through a study on the effect of polymer viscosity on the rate of CNT alignment, we have determined that shear viscosity serves as the controlling mechanism for CNT rotation. This finding matches literature modeling of rigid rod mobility in a polymer melt and demonstrates that the rotational mobility of CNTs can be explained by a continuum model even though the diameters of single-walled CNTs are 1-2 nm. The viscosity dependence indicates that the manipulation of temperature (and indirectly viscosity) will have a direct effect on the rate of CNT alignment, which could prove useful in expediting the manufacturing of CNT-reinforced composites cured at elevated temperatures. Using real-time polarized Raman spectroscopy, we also demonstrate that electric fields of various strengths lead not only to different speeds of CNT rotation but also to different degrees of alignment. We hypothesize that this difference in achievable alignment results from discrete populations of nanotubes based on their length. The results are then explained by balancing the alignment energy for a given electric field strength with the randomizing thermal energy of the system. By studying the alignment dynamics of different CNT length distributions, we show that different degrees of alignment achieved as a function of the applied electric field strength are directly related to the square of the nanotube length. This finding matches an electrostatic potential energy model for CNT rotation. Lastly, we investigate the effects of conductive carbon fibers on electrostatically induced alignment of CNTs within carbon fiber composites. The relative electric field strength throughout the composite is modeled using COMSOL Multiphysics. We show the ability to generate enhanced electric field gradients within the gaps between carbon fibers for various fiber orientations. Using polarized Raman spectroscopy, increased levels of CNT alignment are observed between carbon fiber tows, which is consistent with the modeled higher electric field strengths in these regions. These findings could potentially lead to the development of carbon fiber composites with CNT additions that selectively enhance the composite properties outside the carbon fiber interphase in the neat epoxy.
A self-aligning knee joint for walking assistance devices.
Byungjune Choi; Younbaek Lee; Jeonghun Kim; Minhyung Lee; Jongwon Lee; Se-Gon Roh; Hyundo Choi; Yong-Jae Kim; Jung-Yun Choi
2016-08-01
This paper presents a novel self-aligning knee mechanism for walking assistance devices for the elderly to provide physical gait assistance. Self-aligning knee joints can assist in flexion/extension motions of the knee joint and compensate the knee's transitional movements in the sagittal plane. In order to compensate the center of rotation, which moves with the flexion/extension motion of the human knee joint, a self-aligning knee joint is proposed that adds redundant degrees of freedom (i.e., 2-DoF) to the 1-DoF revolute joint. The key idea of the proposed mechanism is to decouple joint rotations and translations for use in lower-extremity wearable devices. This paper describes the mechanical design of this self-aligning knee mechanism and its implementation on a wearable robot and in preliminary experiments. The performance of the proposed mechanism is verified by simulations and experiments.
Mannan, A; Smith, T O
2016-03-01
Implant malposition in total knee arthroplasty (TKA) often results in unsatisfactory outcomes. Rotational malalignment leads to impaired patellar tracking, stability and joint biomechanics. Patient-specific instrumentation aims to improve three-dimensional implant positioning while reducing overall costs of instrumentation. A PRISMA compliant search of all relevant literature between 2000 and 2014 was performed. The primary outcome of interest was deviation from a neutral femoral and tibial axial alignment of patient-specific instrumentation (PSI) vs conventional instrumentation. Femoral rotation was measured with reference to the transepicondylar axis. Tibial rotation was reported with reference to the anterior tibial tuberosity and a "best fit" with the anterior tibial cortex. Six randomised studies met the inclusion criteria reporting on a total of 444 knees. Computed tomography (CT) based PSI systems were used exclusively in three studies, and two further studies in association with magnetic resonance imaging (MRI). MRI was used exclusively in one study. Mean femoral rotation in the conventional group was: -1.7 to 1.6° (vs -1.7 to 1° in the PSI group). Meta-analysis demonstrated a significant treatment effect favouring PSI with increased accuracy in "three-degree outliers" with femoral rotation: Z=2.07, P=0.04. A single study reported tibial rotational outcomes with no significant difference demonstrated in conventional instrumentation vs PSI. This Level 1 meta-analysis demonstrates favourable femoral rotational alignment outcomes in PSI knee arthroplasty. Only limited data is available for tibial rotational outcomes. Further studies with standardised "gold-standard" measurement criteria are required to clarify tibial rotational outcomes in PSI TKA. 1. Copyright © 2015 Elsevier B.V. All rights reserved.
Radio-planetary from tie from Phobos-2 VLBI data
NASA Technical Reports Server (NTRS)
Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.
1994-01-01
In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).
NASA Astrophysics Data System (ADS)
Shepperson, Benjamin; Chatterley, Adam S.; Christiansen, Lars; Søndergaard, Anders A.; Stapelfeldt, Henrik
2018-01-01
A 160-ps near-Gaussian, linearly polarized laser pulse is used to align iodine (I2) molecules embedded in helium nanodroplets. The rise time of the laser pulse is sufficiently long and smooth that the alignment, characterized by
A design of a high speed dual spectrometer by single line scan camera
NASA Astrophysics Data System (ADS)
Palawong, Kunakorn; Meemon, Panomsak
2018-03-01
A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.
Spent fuel container alignment device and method
Jones, Stewart D.; Chapek, George V.
1996-01-01
An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.
Huijbregts, Henricus J T A M; Khan, Riaz J K; Sorensen, Emma; Fick, Daniel P; Haebich, Samantha
2016-08-01
Background and purpose - Patient-specific instrumentation (PSI) for total knee arthroplasty (TKA) has been introduced to improve alignment and reduce outliers, increase efficiency, and reduce operation time. In order to improve our understanding of the outcomes of patient-specific instrumentation, we conducted a meta-analysis. Patients and methods - We identified randomized and quasi-randomized controlled trials (RCTs) comparing patient-specific and conventional instrumentation in TKA. Weighted mean differences and risk ratios were determined for radiographic accuracy, operation time, hospital stay, blood loss, number of surgical trays required, and patient-reported outcome measures. Results - 21 RCTs involving 1,587 TKAs were included. Patient-specific instrumentation resulted in slightly more accurate hip-knee-ankle axis (0.3°), coronal femoral alignment (0.3°, femoral flexion (0.9°), tibial slope (0.7°), and femoral component rotation (0.5°). The risk ratio of a coronal plane outlier (> 3° deviation of chosen target) for the tibial component was statistically significantly increased in the PSI group (RR =1.64). No significance was found for other radiographic measures. Operation time, blood loss, and transfusion rate were similar. Hospital stay was significantly shortened, by approximately 8 h, and the number of surgical trays used decreased by 4 in the PSI group. Knee Society scores and Oxford knee scores were similar. Interpretation - Patient-specific instrumentation does not result in clinically meaningful improvement in alignment, fewer outliers, or better early patient-reported outcome measures. Efficiency is improved by reducing the number of trays used, but PSI does not reduce operation time.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2009-01-01
A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.
Apparatus and method for harvesting woody plantations
Eggen, David L.
1988-11-15
A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester.
Apparatus and method for harvesting woody plantations
Eggen, D.L.
1988-11-15
A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester. 8 figs.
NASA Astrophysics Data System (ADS)
Pirani, F.; Cappelletti, D.; Vecchiocattivi, F.; Vattuone, L.; Gerbi, A.; Rocca, M.; Valbusa, U.
2004-02-01
A light and compact mechanical velocity selector, of novel design, for applications in supersonic molecular-beam studies has been developed. It represents a simplified version of the traditional, 50 year old, slotted disks velocity selector. Taking advantage of new materials and improved machining techniques, the new version has been realized with only two rotating slotted disks, driven by an electrical motor with adjustable frequency of rotation, and thus has a much smaller weight and size with respect to the original design, which may allow easier implementation in most of the available molecular-beam apparatuses. This new type of selector, which maintains a sufficiently high velocity resolution, has been developed for sampling molecules with different degrees of rotational alignment, like those emerging from a seeded supersonic expansion. This sampling is the crucial step to realize new molecular-beam experiments to study the effect of molecular alignment in collisional processes.
van der Waals Heterostructures with High Accuracy Rotational Alignment.
Kim, Kyounghwan; Yankowitz, Matthew; Fallahazad, Babak; Kang, Sangwoo; Movva, Hema C P; Huang, Shengqiang; Larentis, Stefano; Corbet, Chris M; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; LeRoy, Brian J; Tutuc, Emanuel
2016-03-09
We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.
Fully Anisotropic Rotational Diffusion Tensor from Molecular Dynamics Simulations.
Linke, Max; Köfinger, Jürgen; Hummer, Gerhard
2018-05-31
We present a method to calculate the fully anisotropic rotational diffusion tensor from molecular dynamics simulations. Our approach is based on fitting the time-dependent covariance matrix of the quaternions that describe the rigid-body rotational dynamics. Explicit analytical expressions have been derived for the covariances by Favro, which are valid irrespective of the degree of anisotropy. We use these expressions to determine an optimal rotational diffusion tensor from trajectory data. The molecular structures are aligned against a reference by optimal rigid-body superposition. The quaternion covariances can then be obtained directly from the rotation matrices used in the alignment. The rotational diffusion tensor is determined by a fit to the time-dependent quaternion covariances, or directly by Laplace transformation and matrix diagonalization. To quantify uncertainties in the fit, we derive analytical expressions and compare them with the results of Brownian dynamics simulations of anisotropic rotational diffusion. We apply the method to microsecond long trajectories of the Dickerson-Drew B-DNA dodecamer and of horse heart myoglobin. The anisotropic rotational diffusion tensors calculated from simulations agree well with predictions from hydrodynamics.
Rotational joint assembly and method for constructing the same
NASA Technical Reports Server (NTRS)
Bandera, Pablo (Inventor); Buchele, Paul (Inventor)
2012-01-01
A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.
Intensity modulated operating mode of the rotating gamma system.
Sengupta, Bishwambhar; Gulyas, Laszlo; Medlin, Donald; Koroknai, Tibor; Takacs, David; Filep, Gyorgy; Panko, Peter; Godo, Bence; Hollo, Tamas; Zheng, Xiao Ran; Fedorcsak, Imre; Dobai, Jozsef; Bognar, Laszlo; Takacs, Endre
2018-05-01
The purpose of this work was to explore two novel operation modalities of the rotating gamma systems (RGS) that could expand its clinical application to lesions in close proximity to critical organs at risk (OAR). The approach taken in this study consists of two components. First, a Geant4-based Monte Carlo (MC) simulation toolkit is used to model the dosimetric properties of the RGS Vertex 360™ for the normal, intensity modulated radiosurgery (IMRS), and speed modulated radiosurgery (SMRS) operation modalities. Second, the RGS Vertex 360™ at the Rotating Gamma Institute in Debrecen, Hungary is used to collect experimental data for the normal and IMRS operation modes. An ion chamber is used to record measurements of the absolute dose. The dose profiles are measured using Gafchromic EBT3 films positioned within a spherical water equivalent phantom. A strong dosimetric agreement between the measured and simulated dose profiles and penumbra was found for both the normal and IMRS operation modes for all collimator sizes (4, 8, 14, and 18 mm diameter). The simulated falloff and maximum dose regions agree better with the experimental results for the 4 and 8 mm diameter collimators. Although the falloff regions align well in the 14 and 18 mm collimators, the maximum dose regions have a larger difference. For the IMRS operation mode, the simulated and experimental dose distributions are ellipsoidal, where the short axis aligns with the blocked angles. Similarly, the simulated dose distributions for the SMRS operation mode also adopt an ellipsoidal shape, where the short axis aligns with the angles where the orbital speed is highest. For both modalities, the dose distribution is highly constrained with a sharper penumbra along the short axes. Dose modulation of the RGS can be achieved with the IMRS and SMRS modes. By providing a highly constrained dose distribution with a sharp penumbra, both modes could be clinically applicable for the treatment of lesions in close proximity to critical OARs. © 2018 American Association of Physicists in Medicine.
Seamless, axially aligned, fiber tubes, meshes, microbundles and gradient biomaterial constructs
Elia, Roberto; Firpo, Matthew A.; Kaplan, David L.; Peattie, Robert A.
2012-01-01
A new electrospinning apparatus was developed to generate nanofibrous materials with improved organizational control. The system functions by oscillating the deposition signal (ODS) of multiple collectors, allowing significantly improved nanofiber control by manipulating the electric field which drives the electrospinning process. Other electrospinning techniques designed to impart deposited fiber organizational control, such as rotating mandrels or parallel collector systems, do not generate seamless constructs with high quality alignment in sizes large enough for medical devices. In contrast, the ODS collection system produces deposited fiber networks with highly pure alignment in a variety of forms and sizes, including flat (8 × 8 cm2), tubular (1.3 cm diameter), or rope-like microbundle (45 μm diameter) samples. Additionally, the mechanism of our technique allows for scale-up beyond these dimensions. The ODS collection system produced 81.6 % of fibers aligned within 5° of the axial direction, nearly a four-fold improvement over the rotating mandrel technique. The meshes produced from the 9 % (w/v) fibroin/PEO blend demonstrated significant mechanical anisotropy due to the fiber alignment. In 37 °C PBS, aligned samples produced an ultimate tensile strength of 16.47 ± 1.18 MPa, a Young's modulus of 37.33 MPa, and a yield strength of 7.79 ± 1.13 MPa. The material was 300 % stiffer when extended in the direction of fiber alignment and required 20 times the amount of force to be deformed, compared to aligned meshes extended perpendicular to the fiber direction. The ODS technique could be applied to any electrospinnable polymer to overcome the more limited uniformity and induced mechanical strain of rotating mandrel techniques, and greatly surpasses the limited length of standard parallel collector techniques. PMID:22890517
Henry, Tania; Kim, Kyungkon; Ren, Zaiyuan; Yerino, Christopher; Han, Jung; Tang, Hong X
2007-11-01
We report the growth of horizontally aligned arrays and networks of GaN nanowires (NWs) as resonant components in nanoelectromechanical systems (NEMS). A combination of top-down selective area growth (SAG) and bottom-up vapor-liquid-solid (VLS) synthesis enables flexible fabrication of highly ordered nanowire arrays in situ with no postgrowth dispersion. Mechanical resonance of free-standing nanowires are measured, with quality factors (Q) ranging from 400 to 1000. We obtained a Young's modulus (E) of approximately 338 GPa from an array of NWs with varying diameters and lengths. The measurement allows detection of nanowire motion with a rotating frame and reveals dual fundamental resonant modes in two orthogonal planes. A universal ratio between the resonant frequencies of these two fundamental modes, irrespective of their dimensions, is observed and attributed to an isosceles cross section of GaN NWs.
Tumbling in Turbulence: How much does particle shape effect particle motion?
NASA Astrophysics Data System (ADS)
Variano, E. A.; Andersson, H. I.; Zhao, L.; Byron, M.
2014-12-01
Natural particles suspended in surface water are often non-spherical. We explore the ways in which particle shape effects particle motion, focusing specifically on how particle rotation is divided into spinning and tumbling components. This, in turn, will effect particle collision, clustering, and settling rates. We focus on idealized axisymmetric particles shaped as rods, discs, and spheroids. They are chosen so as to explain the physics of aspherical-particle motion that will be relevant for natural particles such as plankton, sediment, or aggregates (e.g. oil-mineral aggregates, clay flocs, or bio-sediment aggregates held together by TEP). Our work begins with laboratory measurements of particle motion in a turbulence tank built to mimic the flow found in rivers, estuaries, and the ocean surface mixed layer. We then proceed to direct numerical simulation of particle-flow interactions in sheared turbulence similar to that which is found in the surface water of creeks and rivers. We find that shape has only a very weak effect on particle angular velocity, which is a quantity calculated with respect the global reference frame (i.e. east/north/up). If we analyze rotation in a particle's local frame (i.e. the particle's principle axes of rotation), then particle shape has a strong effect on rotation. In the local frame, rotation is described by two components: tumbling and spinning. We find that rod-shaped particles spin more than they tumble, and we find that disc-shaped particles tumble more than they spin. Such behavior is indicative of how particles respond the the directional influence of vortex tubes in turbulence, and such response has implications for particle motion other than rotation. Understanding particle alignment is relevant for predicting particle-particle collision rates, particle-wall collision rates, and the shear-driven breakup of aggregates. We discuss these briefly in the context of what can be concluded from the rotation data discussed above.
Kort, N P; van Raay, J J A M; Thomassen, B J W
2007-08-01
Use of an intramedullary rod is advised for the alignment of the femoral component of an Oxford phase-III prosthesis. There are users moving toward extramedullary alignment, which is merely an indicator of frustration with accuracy of intramedullary alignment. The results of our study with 10 cadaver femora demonstrate that use of a short and long intramedullary femoral rod may result in excessive flexion alignment error of the femoral component. Understanding of the extramedullary alignment possibility and experience with the visual alignment of the femoral drill guide is essential toward minimizing potential errors in the alignment of the femoral component.
System for automatically aligning a support roller system under a rotating body
Singletary, B. Huston
1983-01-01
Two support rings on a rotatable drum respectively engage conically tapered nd surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.
System for automatically aligning a support roller system under a rotating body
Singletary, B.H.
1982-07-21
Two support rings on a rotatable drum respectively engage conically tapered end surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.
Remote pivot decoupler pylon: Wing/store flutter suppressor
NASA Technical Reports Server (NTRS)
Hassler, J. M., Jr. (Inventor)
1986-01-01
A device for suspending a store from an aerodynamic support surface, such an an aircraft wing, and more specifically, for improving upon singlet pivot decoupler pylons by reducing both frequency of active store, alignment, and alignment system space and power requirements. Two links suspend a lower pylon/rack section and releasable attached store from an upper pylon section mounted under the wing. The links allow the lower pylon section to rotate in pitch about a remote pivot point. A leaf spring connected between the lower section and electrical alignment system servomechanism provides pitch alignment of the lower section/store combination. The servomechanism utilizes an electric servomotor to drive the gear train and reversibly move the leaf spring, thereby maintaining the pitch attitude of the store within acceptable limits. The damper strokes when the lower section rotates to damp large oscillations of store.
Field-free molecular orientation of nonadiabatically aligned OCS
NASA Astrophysics Data System (ADS)
Sonoda, Kotaro; Iwasaki, Atsushi; Yamanouchi, Kaoru; Hasegawa, Hirokazu
2018-02-01
We investigate an enhancement of the orientation of OCS molecules by irradiating them with a near IR (ω) ultrashort laser pulse for alignment followed by another ultrashort laser pulse for orientation, which is synthesized by a phase-locked coherent superposition of the near IR laser pulse and its second harmonic (2ω). On the basis of the asymmetry in the ejection direction of S3+ fragment ions generated by the Coulomb explosion of multiply charged OCS, we show that the extent of the orientation of OCS is significantly enhanced when the delay between the alignment pulse and the orientation pulse is a quarter or three quarters of the rotational period. The recorded enhanced orientation was interpreted well by a numerical simulation of the temporal evolution of a rotational wave packet prepared by the alignment and orientation pulses.
Lee, Seung-Yup; Bae, Ji-Hoon; Suh, Dong-Won; Kim, Han-Ju; Lim, Hong-Chul
2017-02-01
This mediolateral excursion of the bearing during knee motion is supposed to be caused by external rotation of the tibia during knee extension. However, to our knowledge, there is no published clinical evidence supporting these hypotheses. The current study aimed to evaluate the mediolateral excursion of the bearing during flexion-extension motion of the knee after medial unicompartmental knee arthroplasty (UKA). In 52 knees, varus/valgus (F-VarVal) or rotational position (F-Rot) of the femoral component and relative location of the bearing were measured with the standing anteroposterior and modified axial view, respectively. We adopted the modified axial radiographs that are simple to assess the bearing position in the flexed knee. The modified axial view showed excellent inter- and intraobserver agreements. F-Rot in the modified axial view and CT showed a high agreement in terms of validity (r = 0.98; p < 0.0001). On average, the bearing showed more medial position in extension than flexion of the knee. No correlation was found between the femoral component positions (F-VarVal and F-Rot) and mediolateral bearing excursion ( p = 0.68 and 0.80, respectively). In conclusion, coronal location of bearing according to flexion-extension of the knee is not influenced by the coronal and axial alignment of the femoral component. With simple radiographic method, more medial position of the bearing according to flexion-extension of the knee. Our method could be used to assess axial rotation of the femoral component and spin-out phenomenon of the bearing following the medial UKA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Deuteron NMR (Nuclear Magnetic Resonance) in relation to the glass transition in polymers
NASA Technical Reports Server (NTRS)
Roessler, E.; Sillescu, H.; Spiess, H. W.; Wallwitz, R.
1983-01-01
H-2NMR is introduced as a tool for investigating slow molecular motion in the glass transition region of amorphous polymers. In particular, we compare H-2 spin alignment echo spectra of chain deuterated polystyrene with model calculations for restricted rotational Brownian motion. Molecular motion in the polyztyrene-toluene system has been investigated by analyzing H-2NMR of partially deuterated polystyrene and toluene, respectively. The diluent mobility in the mixed glass has been decomposed into solid and liquid components where the respective average correlation times differ by more than 5 decades.
Measuring Speed Of Rotation With Two Brushless Resolvers
NASA Technical Reports Server (NTRS)
Howard, David E.
1995-01-01
Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.
N=151Pu,Cm and Cf nuclei under rotational stress: Role of higher-order deformations
Hota, S. S.; Chowdhury, P.; Khoo, T. L.; ...
2014-10-18
The fast-rotating N=151 isotones 245Pu, 247Cm and 249Cf have been studied through inelastic excitation and transfer reactions with radioactive targets. While all have a ground-state band built on a νj 15/2[734]9/2 - Nilsson configuration, new excited bands have also been observed in each isotone. These odd-N excited bands allow a comparison of the alignment behavior for two different configurations, where the νj 15/2 alignment is either blocked or allowed. The effect of higher order deformations is explored through cranking calculations, which help clarify the elusive nature of νj 15/2 alignments.
Kalkan, Erol; Kwong, Neal S.
2014-01-01
According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.
ERIC Educational Resources Information Center
Lutke, Nikolay; Lange-Kuttner, Christiane
2015-01-01
This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters…
Ohmori, Takaaki; Kabata, Tamon; Kajino, Yoshitomo; Taga, Tadashi; Inoue, Daisuke; Yamamoto, Takashi; Takagi, Tomoharu; Yoshitani, Junya; Ueno, Takuro; Tsuchiya, Hiroyuki
2018-01-01
The "grand-piano sign" is a well-known indicator of proper rotational femoral alignment. We investigated changes in the shape of the femoral anterior cutting plane by changing the rotational alignment, anterior portion depth, and cutting plane flexion angle. We simulated various cutting planes after cutting the anterior portion of the femur next to the distal femoral osteotomy in 50 patients with varus knee and also a femoral anterior osteotomy with four degree (S group) and seven degree (T group) flexion angles regarding the mechanical axis. We defined the final cutting plane as the farthest position that we could reach without making a notch and the precutting plane as two millimeters anterior from the final cutting plane. The simulated resection plane was rotated to produce external and internal rotation angles of 0°, three degrees, and five degrees relative to the surgical transepicondylar axis (SEA). We investigated medial and lateral portions of the femoral anterior cutting plane length ratio (M/L). When we cut parallel to SEA, M/L was 0.67±0.09 and 0.62±0.12 in the T and S groups, respectively. M/L was approximately 0.8 and 0.5 with five degree internal and external rotations, respectively (P<0.01). On comparing final cutting and precutting planes, there were no significant differences in M/L without five degree external rotation in the T group and no significant difference in any case in the S group (P>0.01). The ideal M/L of the femoral anterior cutting plane was 0.62-0.67. M/L did not change with a precutting plane in almost all rotational patterns. Copyright © 2017. Published by Elsevier B.V.
Takagi, Shigeru; Sato, Takashi; Watanabe, Satoshi; Tanifuji, Osamu; Mochizuki, Tomoharu; Omori, Go; Endo, Naoto
2017-11-17
Abnormalities of lower extremity alignment (LEA) in recurrent patella dislocation (RPD) have been studied mostly by two-dimensional (2D) procedures leaving three-dimensional (3D) factors unknown. This study aimed to three-dimensionally examine risk factors for RPD in lower extremity alignment under the weight-bearing conditions. The alignment of 21 limbs in 15 RPD subjects was compared to the alignment of 24 limbs of 12 healthy young control subjects by an our previously reported 2D-3D image-matching technique. The sagittal, coronal, and transverse alignment in full extension as well as the torsional position of the femur (anteversion) and tibia (tibial torsion) under weight-bearing standing conditions were assessed by our previously reported 3D technique. The correlations between lower extremity alignment and RPD were assessed using multiple logistic regression analysis. The difference of lower extremity alignment in RPD between under the weight-bearing conditions and under the non-weight-bearing conditions was assessed. In the sagittal and coronal planes, there was no relationship (statistically or by clinically important difference) between lower extremity alignment angle and RPD. However, in the transverse plane, increased external tibial rotation [odds ratio (OR) 1.819; 95% confidence interval (CI) 1.282-2.581], increased femoral anteversion (OR 1.183; 95% CI 1.029-1.360), and increased external tibial torsion (OR 0.880; 95% CI 0.782-0.991) were all correlated with RPD. The tibia was more rotated relative to femur at the knee joint in the RPD group under the weight-bearing conditions compared to under the non-weight-bearing conditions (p < 0.05). This study showed that during weight-bearing, alignment parameters in the transverse plane related to the risk of RPD, while in the sagittal and coronal plane alignment parameters did not correlate with RPD. The clinical importance of this study is that the 3D measurements more directly, precisely, and sensitively detect rotational parameters associated with RPD and hence predict risk of RPD. III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sick, J; Rancilio, N; Fulkerson, C
Purpose: Ultrasound (US) is a noninvasive, nonradiographic imaging technique with high spatial and temporal resolution that can be used for localizing soft-tissue structures and tumors in real-time during radiotherapy (inter- and intra-fraction). A detailed methodology integrating 3D-US within RT is presented. This method is easier to adopt into current treatment protocol than current US based systems and reduces user variability for image acquisition, thus eliminating transducer induced changes that limit CT planning system. Methods: We designed an in-house integrated US manipulator and platform to relate CT, 3D-US and linear accelerator coordinate systems. To validate the platform, an agar-based phantom withmore » measured densities and speed-of-sound consistent with tissues surrounding the bladder, was rotated (0–45°) resulting in translations (up to 55mm) relative to the CT and US coordinate systems. After acquiring and integrating CT and US images into the treatment planning system, US-to-US and US-to-CT images were co-registered to re-align the phantom relative to the linear accelerator. Errors in the transformation matrix components were calculate to determine precision of this method under different patient positions. Results: Statistical errors from US-US registrations for different patient orientations ranged from 0.06–1.66mm for x, y, and z translational components, and 0.00–1.05° for rotational components. Statistical errors from US-CT registrations were 0.23–1.18mm for the x, y and z translational components, and 0.08–2.52° for the rotational components. Conclusion: Based on our result, this is consistent with currently used techniques for positioning prostate patients if couch re-positioning is less than a 5 degree rotation. We are now testing this on a dog patient to obtain both inter and intra-fractional positional errors. Additional design considerations include the future use of ultrasound-based functionality (photoacoustics, radioacoustics, Doppler) to monitor blood flow and hypoxia and/or in-vivo dosimetry for applications in other therapeutic techniques, such as hyperthermia, anti-angiogenesis, and particle therapy.« less
An anisotropic elastoplasticity model implemented in FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Miles Allen; Canfield, Thomas R.
2017-10-12
Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the materialmore » will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.« less
Structure of 29F in the rotation-aligned coupling scheme of the particle-rotor model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macchiavelli, A. O.; Crawford, H. L.; Fallon, P.
Recent results from RIKEN/RIBF on the low-lying level structure of 29F are interpreted within the Particle-Rotor Model. We show that the experimental data can be understood in the Rotation-aligned Coupling Scheme, with the 5/2 + ground state as the bandhead of a decoupled band. In this picture, the energy of the observed 1/2more » $$+\\atop{1}$$ state correlates strongly with the rotational energy of the core and provides an estimate of the 2 + energy in 28O. Our analysis suggests a moderate deformation, ϵ 2 ~ 0.16, and places the 2 + in 28O at ~ 2.5 MeV.« less
Electrostrictive Graft Elastomers
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)
2003-01-01
An electrostrictive graft elastomer has a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules. The polar graft moieties have been rotated by an applied electric field, e.g., into substantial polar alignment. The rotation is sustained until the electric field is removed. In another embodiment, a process for producing strain in an elastomer includes: (a) providing a graft elastomer having a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules; and (b) applying an electric field to the graft elastomer to rotate the polar graft moieties, e.g., into substantial polar alignment.
NASA Technical Reports Server (NTRS)
Aretz, Anthony J.
1990-01-01
This paper presents a cognitive model of a pilot's navigation task and describes an experiment comparing a visual momentum map display to the traditional track-up and north-up approaches. The data show the advantage to a track-up map is its congruence with the ego-centered forward view; however, the development of survey knowledge is hindered by the inconsistency of the rotating display. The stable alignment of a north-up map aids the acquisition of survey knowledge, but there is a cost associated with the mental rotation of the display to a track-up alignment for ego-centered tasks. The results also show that visual momentum can be used to reduce the mental rotation costs of a north-up display.
Structure of 29F in the rotation-aligned coupling scheme of the particle-rotor model
Macchiavelli, A. O.; Crawford, H. L.; Fallon, P.; ...
2017-10-23
Recent results from RIKEN/RIBF on the low-lying level structure of 29F are interpreted within the Particle-Rotor Model. We show that the experimental data can be understood in the Rotation-aligned Coupling Scheme, with the 5/2 + ground state as the bandhead of a decoupled band. In this picture, the energy of the observed 1/2more » $$+\\atop{1}$$ state correlates strongly with the rotational energy of the core and provides an estimate of the 2 + energy in 28O. Our analysis suggests a moderate deformation, ϵ 2 ~ 0.16, and places the 2 + in 28O at ~ 2.5 MeV.« less
Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry
NASA Astrophysics Data System (ADS)
Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.
2016-11-01
To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.
Brar, Abheetinder S; Howell, Stephen M; Hull, Maury L
2016-06-01
Internal-external (I-E) malrotation of the tibial component is associated with poor function after total knee arthroplasty (TKA). Kinematically aligned (KA) TKA uses a functionally defined flexion-extension (F-E) tibial reference line, which is parallel to the F-E plane of the extended knee, to set I-E rotation of the tibial component. Sixty-two, three-dimensional bone models of normal knees were analyzed. We computed the bias (mean), imprecision (±standard deviation), and limits of agreement (mean±2 standard deviations) of the angle between five anatomically defined tibial reference lines used in mechanically aligned (MA) TKA and the F-E tibial reference line (+external). The following are the bias, imprecision, and limits of agreement of the angle between the F-E tibial reference line and 1) the tibial reference lines connecting the medial border (-2°±6°, -14° to 10°), medial 1/3 (6°±6°, -6° to 18°), and the most anterior point of the tibial tubercle (9°±4°, -1° to 17°) with the center of the posterior cruciate ligament, and 2) the tibial reference lines perpendicular to the posterior condylar axis of the tibia (-3°±4°, -11° to 5°), and a line connecting the centers of the tibial condyles (1°±4°, -7° to 9°). Based on these in vitro findings, it might be prudent to reconsider setting the I-E rotation of the tibial component to tibial reference lines that have bias, imprecision, and limits of agreement that fall outside the -7° to 10° range associated with high function after KA TKA. Copyright © 2016 Elsevier B.V. All rights reserved.
Effectiveness of Hip External Rotator Strengthening Exercise in Korean Postural Bowleg Women.
Park, Seong Hoon; Lee, Jun Won; Kim, Joo Hyun; Tak, Kyoung Seok; Lee, Byeong Ho; Suh, In Suck
2017-08-01
Postural bowleg is a subclinical entity with both aesthetic and functional outcomes and appears to be common in East Asian countries. Internal rotation of the hip joint is associated with varus alignment at the knee joint of the bowleg. Strengthening exercise for the hip external rotator muscles seems to be effective in improving varus alignment of bowleg, but no standardized exercise program exists. A standardized active resistance strengthening exercise for hip external rotator muscles could improve varus alignment of the lower limb in bowlegged Korean women. In this article, a case series study was conducted to observe changes following a standardized 3-month program using equipment designed for strengthening of the hip external rotator muscles. Photogrammetric and radiographic data were used to compare the gap between knees and tibiofemoral (TF) angles before and after the exercise program. As a result, on average, the knee gap decreased by 1.6 cm. The TF angle decreased by 1.5°. Regression analysis revealed a statistically significant association between changes in knee gap and TF angle. The standardized 3-month active resistance strengthening exercise program of hip external rotator muscles was effective in improving postural deviation and cosmetic outcomes in bowlegged Korean women. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Analysis of the Postoperative Displacement of Trochanteric Fractures on Lateral View Radiographs.
Furui, Atsuo; Terada, Nobuki
2017-08-01
Achieving sufficient support of the anterior cortex of the femoral neck is a fundamental goal of the reduction of trochanteric fractures. However, anterior-cortex support is often lost after the fracture reduction. Our aim was to analyze factors contributing to the postoperative displacement of an acceptably reduced trochanteric fracture. The cases of 40 patients with a post-reduction Ikuta subtype N fracture alignment were reviewed. All fractures were fixed with 135° free-sliding plates. On postoperative day 14, patients were classified into two groups: those with retention of the Ikuta subtype N alignment, and those with progression to Ikuta subtype P alignment. The clinical and radiological factors were evaluated between the groups. In addition, to define one of the factors, i.e., the postoperative rotational displacement between the proximal and distal fragments, the relationship between radiographic findings and computed tomography image measurements was assessed in 15 of the 40 patients. Angulation at the fracture site on lateral view radiographs was defined as postoperative rotational displacement, and unstable trochanteric fractures and postoperative rotational displacement were identified as significant risk factors for the postoperative displacement. Therefore, cautious and careful follow-up is warranted for patients with unstable trochanteric fractures or fractures having rotational displacement.
NASA Astrophysics Data System (ADS)
Lopez-Rodriguez, E.; Packham, C.; Jones, T. J.; Nikutta, R.; McMaster, L.; Mason, R. E.; Elvis, M.; Shenoy, D.; Alonso-Herrero, A.; Ramírez, E.; González Martín, O.; Hönig, S. F.; Levenson, N. A.; Ramos Almeida, C.; Perlman, E.
2015-09-01
We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5 arcsec (30 pc) aperture at K', we find that polarization arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarization mechanism, with an intrinsic polarization of 7.0 ± 2.2 per cent. This result yields a torus magnetic field strength in the range of 4-82 mG through paramagnetic alignment, and 139^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarization at K' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis on to the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate ≤0.17 M⊙ yr-1 at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a time-scale of ≥105 yr with a rotational velocity of ≤1228 km s-1 at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.
An image‐based method to synchronize cone‐beam CT and optical surface tracking
Schaerer, Joël; Riboldi, Marco; Sarrut, David; Baroni, Guido
2015-01-01
The integration of in‐room X‐ray imaging and optical surface tracking has gained increasing importance in the field of image guided radiotherapy (IGRT). An essential step for this integration consists of temporally synchronizing the acquisition of X‐ray projections and surface data. We present an image‐based method for the synchronization of cone‐beam computed tomography (CBCT) and optical surface systems, which does not require the use of additional hardware. The method is based on optically tracking the motion of a component of the CBCT/gantry unit, which rotates during the acquisition of the CBCT scan. A calibration procedure was implemented to relate the position of the rotating component identified by the optical system with the time elapsed since the beginning of the CBCT scan, thus obtaining the temporal correspondence between the acquisition of X‐ray projections and surface data. The accuracy of the proposed synchronization method was evaluated on a motorized moving phantom, performing eight simultaneous acquisitions with an Elekta Synergy CBCT machine and the AlignRT optical device. The median time difference between the sinusoidal peaks of phantom motion signals extracted from the synchronized CBCT and AlignRT systems ranged between ‐3.1 and 12.9 msec, with a maximum interquartile range of 14.4 msec. The method was also applied to clinical data acquired from seven lung cancer patients, demonstrating the potential of the proposed approach in estimating the individual and daily variations in respiratory parameters and motion correlation of internal and external structures. The presented synchronization method can be particularly useful for tumor tracking applications in extracranial radiation treatments, especially in the field of patient‐specific breathing models, based on the correlation between internal tumor motion and external surface surrogates. PACS number: 87
NASA Astrophysics Data System (ADS)
Chu, Jiyoung; Cho, Sungwhi; Joo, Won Don; Jang, Sangdon
2017-08-01
One of the most popular methods for high precision lens assembly of an optical system is using an autocollimator and a rotation stage. Some companies provide software for calculating the state of the lens along with their lens assembly systems, but the calculation algorithms used by the software are unknown. In this paper, we suggest a calculation method for lens alignment errors using ray transfer matrices. Alignment errors resulting from tilting and decentering of a lens element can be calculated from the tilts of the front and back surfaces of the lens. The tilt of each surface can be obtained from the position of the reticle image on the CCD camera of the autocollimator. Rays from a reticle of the autocollimator are reflected from the target surface of the lens, which rotates with the rotation stage, and are imaged on the CCD camera. To obtain a clear image, the distance between the autocollimator and the first lens surface should be adjusted according to the focusing lens of the autocollimator and the lens surfaces from the first to the target surface. Ray propagations for the autocollimator and the tilted lens surfaces can be expressed effectively by using ray transfer matrices and lens alignment errors can be derived from them. This method was compared with Zemax simulation for various lenses with spherical or flat surfaces and the error was less than a few percent.
Symmetry of oculomotor burst neuron coordinates about Listing's plane.
Crawford, J D; Vilis, T
1992-08-01
1. The purpose of this investigation was to determine the axes of eye rotation generated by oculomotor burst neuron populations and the coordinate system that they collectively define. In particular, we asked if such coordinates might be related to constraints in the emergent behavior, i.e., Listing's law for saccades. 2. The mesencephalic rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) was identified in four monkeys with the use of single-unit recording, and then explored with the use of electrical microstimulation and pharmacological inactivation with the inhibitory gamma-aminobutyric acid (GABA) agonist muscimol. Three-dimensional (3-D) eye positions and velocities were recorded in one or both eyes while alert animals made eye movements in response to visual stimuli and head rotation. 3. Unilateral stimulation of the riMLF (20 microA, 200 Hz, 300-600 ms) produced conjugate, constant velocity eye rotations, which then stopped abruptly and held their final positions. This is expected if the riMLF produces phasic signals upstream from the oculomotor integrator. 4. Units that burst before upward or downward saccades were recorded intermingled in each side of the riMLF. Unilateral stimulation of the same riMLF sites produced eye rotations about primarily torsional axes, clockwise (CW) during right riMLF stimulation and counterclockwise (CCW) during left stimulation. Only small and inconsistent vertical components were observed, supporting the view that the riMLF carries intermingled up and down signals. 5. The torsional axes of eye rotation produced by riMLF stimulation did not correlate to external anatomic landmarks. Instead, stimulation axes from both riMLF sides aligned with the primary gaze direction orthogonal to Listing's plane of eye positions recorded during saccades. 6. Injection of muscimol into one side of the riMLF produced a conjugate deficit in saccades and quick phases, including a 50% reduction in all vertical velocities and complete loss of one torsional direction. CW was lost after right riMLF inactivation, and CCW was lost after left inactivation. 7. The plane that separated the intact torsional axes from the missing axes correlated with the orientation of Listing's plane. Thus, during left or right riMLF inactivation, the vertical axes of intact horizontal saccades were abnormally aligned with Listing's plane. The orientation of these axes was not correlated with external anatomic landmarks. 8. As suggested by their alignment with Listing's plane, the intact vertical axes of horizontal saccades following riMLF inactivation were orthogonal to torsional riMLF stimulation axes.(ABSTRACT TRUNCATED AT 400 WORDS)
Uncovering the cognitive processes underlying mental rotation: an eye-movement study.
Xue, Jiguo; Li, Chunyong; Quan, Cheng; Lu, Yiming; Yue, Jingwei; Zhang, Chenggang
2017-08-30
Mental rotation is an important paradigm for spatial ability. Mental-rotation tasks are assumed to involve five or three sequential cognitive-processing states, though this has not been demonstrated experimentally. Here, we investigated how processing states alternate during mental-rotation tasks. Inference was carried out using an advanced statistical modelling and data-driven approach - a discriminative hidden Markov model (dHMM) trained using eye-movement data obtained from an experiment consisting of two different strategies: (I) mentally rotate the right-side figure to be aligned with the left-side figure and (II) mentally rotate the left-side figure to be aligned with the right-side figure. Eye movements were found to contain the necessary information for determining the processing strategy, and the dHMM that best fit our data segmented the mental-rotation process into three hidden states, which we termed encoding and searching, comparison, and searching on one-side pair. Additionally, we applied three classification methods, logistic regression, support vector model and dHMM, of which dHMM predicted the strategies with the highest accuracy (76.8%). Our study did confirm that there are differences in processing states between these two of mental-rotation strategies, and were consistent with the previous suggestion that mental rotation is discrete process that is accomplished in a piecemeal fashion.
Quality control methods for linear accelerator radiation and mechanical axes alignment.
Létourneau, Daniel; Keller, Harald; Becker, Nathan; Amin, Md Nurul; Norrlinger, Bernhard; Jaffray, David A
2018-06-01
The delivery accuracy of highly conformal dose distributions generated using intensity modulation and collimator, gantry, and couch degrees of freedom is directly affected by the quality of the alignment between the radiation beam and the mechanical axes of a linear accelerator. For this purpose, quality control (QC) guidelines recommend a tolerance of ±1 mm for the coincidence of the radiation and mechanical isocenters. Traditional QC methods for assessment of radiation and mechanical axes alignment (based on pointer alignment) are time consuming and complex tasks that provide limited accuracy. In this work, an automated test suite based on an analytical model of the linear accelerator motions was developed to streamline the QC of radiation and mechanical axes alignment. The proposed method used the automated analysis of megavoltage images of two simple task-specific phantoms acquired at different linear accelerator settings to determine the coincidence of the radiation and mechanical isocenters. The sensitivity and accuracy of the test suite were validated by introducing actual misalignments on a linear accelerator between the radiation axis and the mechanical axes using both beam steering and mechanical adjustments of the gantry and couch. The validation demonstrated that the new QC method can detect sub-millimeter misalignment between the radiation axis and the three mechanical axes of rotation. A displacement of the radiation source of 0.2 mm using beam steering parameters was easily detectable with the proposed collimator rotation axis test. Mechanical misalignments of the gantry and couch rotation axes of the same magnitude (0.2 mm) were also detectable using the new gantry and couch rotation axis tests. For the couch rotation axis, the phantom and test design allow detection of both translational and tilt misalignments with the radiation beam axis. For the collimator rotation axis, the test can isolate the misalignment between the beam radiation axis and the mechanical collimator rotation axis from the impact of field size asymmetry. The test suite can be performed in a reasonable time (30-35 min) due to simple phantom setup, prescription-based beam delivery, and automated image analysis. As well, it provides a clear description of the relationship between axes. After testing the sensitivity of the test suite to beam steering and mechanical errors, the results of the test suite were used to reduce the misalignment errors of the linac to less than 0.7-mm radius for all axes. The proposed test suite offers sub-millimeter assessment of the coincidence of the radiation and mechanical isocenters and the test automation reduces complexity with improved efficiency. The test suite results can be used to optimize the linear accelerator's radiation to mechanical isocenter alignment by beam steering and mechanical adjustment of gantry and couch. © 2018 American Association of Physicists in Medicine.
Landing Biomechanics in Participants With Different Static Lower Extremity Alignment Profiles
Nguyen, Anh-Dung; Shultz, Sandra J.; Schmitz, Randy J.
2015-01-01
Context: Whereas static lower extremity alignment (LEA) has been identified as a risk factor for anterior cruciate ligament injury, little is known about its influence on joint motion and moments commonly associated with anterior cruciate ligament injury. Objective: To cluster participants according to combinations of LEA variables and compare these clusters in hip- and knee-joint kinematics and kinetics during the landing phase of a drop-jump task. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: A total of 141 participants (50 men: age = 22.2 ± 2.8 years, height = 177.9 ± 9.3 cm, weight = 80.9 ± 13.3 kg; 91 women: age = 21.2 ± 2.6 years, height = 163.9 ± 6.6 cm, weight = 61.1 ± 8.7 kg). Main Outcome Measure(s): Static LEA included pelvic angle, femoral anteversion, quadriceps angle, tibiofemoral angle, genu recurvatum, tibial torsion, and navicular drop. Cluster analysis grouped participants according to their static LEA profiles, and these groups were compared on their hip- and knee-joint kinematics and external moments during the landing phase of a double-legged drop jump. Results: Three distinct clusters (C1–C3) were identified based on their static LEAs. Participants in clusters characterized with static internally rotated hip and valgus knee posture (C1) and externally rotated knee and valgus knee posture (C3) alignments demonstrated greater knee-valgus motion and smaller hip-flexion moments than the cluster with more neutral static alignment (C2). Participants in C1 also experienced greater hip internal-rotation and knee external-rotation moments than those in C2 and C3. Conclusions: Static LEA clusters that are positioned anatomically with a more rotated and valgus knee posture experienced greater dynamic valgus along with hip and knee moments during landing. Whereas static LEA contributes to differences in hip and knee rotational moments, sex may influence the differences in frontal-plane knee kinematics and sagittal-plane hip moments. PMID:25658815
Numerical simulation of supersonic and hypersonic inlet flow fields
NASA Technical Reports Server (NTRS)
Mcrae, D. Scott; Kontinos, Dean A.
1995-01-01
This report summarizes the research performed by North Carolina State University and NASA Ames Research Center under Cooperative Agreement NCA2-719, 'Numerical Simulation of Supersonic and Hypersonic Inlet Flow Fields". Four distinct rotated upwind schemes were developed and investigated to determine accuracy and practicality. The scheme found to have the best combination of attributes, including reduction to grid alignment with no rotation, was the cell centered non-orthogonal (CCNO) scheme. In 2D, the CCNO scheme improved rotation when flux interpolation was extended to second order. In 3D, improvements were less dramatic in all cases, with second order flux interpolation showing the least improvement over grid aligned upwinding. The reduction in improvement is attributed to uncertainty in determining optimum rotation angle and difficulty in performing accurate and efficient interpolation of the angle in 3D. The CCNO rotational technique will prove very useful for increasing accuracy when second order interpolation is not appropriate and will materially improve inlet flow solutions.
Rotating states of self-propelling particles in two dimensions.
Chen, Hsuan-Yi; Leung, Kwan-Tai
2006-05-01
We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.
The simple procedure for the fluxgate magnetometers calibration
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2014-05-01
The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the Coil Calibration system reveals, that the achieved accuracy (<0.04 % for scale factors and 0.03 degrees of arc for angle errors) is sufficient for many applications, particularly for satisfying the INTERMAGNET requirements to 1-second instruments.
Rotation measure synthesis at the 2 m wavelength of the FAN region: unveiling screens and bubbles
NASA Astrophysics Data System (ADS)
Iacobelli, M.; Haverkorn, M.; Katgert, P.
2013-01-01
Context. Rotation measure synthesis of the Westerbork Synthesis Radio Telescope (WSRT) observations at λ ~ 2 m of the FAN region at l = 137°, b = +7° shows the morphology of structures in the ionized interstellar medium. Aims: We interpret the diffuse polarized synchrotron emission in terms of coherent structures in the interstellar medium and the properties of the interstellar magnetic field. Methods: We performed statistical analysis of the polarization data cube obtained through rotation measure synthesis. For the first time, cross-correlation is applied to identify and characterize polarized structures in Faraday depth space. Complementary information about the medium are derived from Hα emission, properties of nearby pulsars, and optical polarized starlight measurements. Results: We find an overall asymmetric Faraday dispersion function in a Faraday depth range of [-13, +5] rad m-2, which is peaked around -1 rad m-2. Three morphological patterns are recognized, showing structures on scales from degrees down to the beam size. The first structure is a nearby synchrotron emission component with low Faraday depth, filling the entire field of view. The second pattern is a circular polarization structure with enhanced (negative) Faraday depth, which has the same morphology as a low-emission region within the third component. This third component is interpreted as the background in which the circular structure is embedded. At low Faraday depth values, a low gradient across the imaged field is detected, almost aligned with the Galactic plane. Power spectra of polarized structures in Faraday depth space provide evidence of turbulence. Conclusions: A sign reversal in Faraday depth from the nearby component to the circular component indicates a reversal of the magnetic field component along the line of sight, from towards the observer and nearby to away from the observer at large distances. The distance to the nearby, extended component is estimated as ≲100 pc, which suggests that this structure corresponds to the Local Bubble wall. For the circular component, various physical interpretations are discussed. The most likely explanation is that the circular component seems to be the presence of a nearby (~200 pc away) relic Strömgren sphere, associated with an old unidentified white dwarf star and expanding in a low-density environment. Faraday rotation datacubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A56
Major, Matthew J; Howard, David; Jones, Rebecca; Twiste, Martin
2012-06-01
Unlike sagittal plane prosthesis alignment, few studies have observed the effects of transverse plane alignment on gait and prosthesis behaviour. Changes in transverse plane rotation angle will rotate the points of loading on the prosthesis during stance and may alter its mechanical behaviour. This study observed the effects of increasing the external transverse plane rotation angle, or toe-out, on foot compression and effective lever arm of three commonly prescribed prosthetic feet. The roll-over shape of a SACH, Flex and single-axis foot was measured at four external rotation angle conditions (0°, 5°, 7° and 12° relative to neutral). Differences in foot compression between conditions were measured as average distance between roll-over shapes. Increasing the transverse plane rotation angle did not affect foot compression. However, it did affect the effective lever arm, which was maximized with the 5° condition, although differences between conditions were small. Increasing the transverse plane rotation angle of prosthetic feet by up to 12° beyond neutral has minimal effects on their mechanical behaviour in the plane of walking progression during weight-bearing.
Ollivier, M; Tribot-Laspiere, Q; Amzallag, J; Boisrenoult, P; Pujol, N; Beaufils, P
2016-11-01
The aim of this study was to analyze first intraoperative alignment and reason to abandon the use of patient-specific instrumentation using intraoperative CAS measurement, secondly assess by postoperative CT analysis if CI, based on preoperative 3D-MRI data, improved postoperative component positioning (including femoral rotation) and lower limb alignment as compared with results obtained with CAS. In this randomized controlled trial, 80 consecutive patients scheduled to undergo TKA were enrolled. Eligible knees were randomized to the group of PSI-TKAs (n = 40) or to the group of CAS-TKAs (n = 40). In the CAS group, CAS determined and controlled cutting block positioning in each plane. In the PSI group, CAS allowed to measure adequacy of intraoperative alignment including femoral component rotation. At 3 months after surgery, implants position were measured and analyzed with full-weight bearing plain radiographs and CT scan. Intraoperatively, there was a significant difference concerning Sagittal Femoral mechanical, Frontal tibial mechanical angle and tibial slope between the two groups (respectively p = 0.01, p = 0.02, p = 0.046). Custom instrumentation was abandoned intraoperatively in seven knees (17.5 %). Abnormal tibial cuts were responsible of the abandon in three out of seven cases, femoral cut in 1/7 and dual abnormalities in 3/7. Postoperatively, tibial slope outliers percentage was higher in the patient specific instrumentation group with six patients (18.18 %) versus one patient (2.5 %) in the CAS group (p = 0.041). Patient specific instrumentation was associated with an important number of hazardous cut and a higher rate of outliers in our series and thus should be used with caution as related to. This study is the first to our acknowledgement to compare intra-operative ancillary and implant positioning of PSI-TKA and CAS-TKA. High rate of malposition are sustained by our findings, as such PSI-TKA should be used with caution, by surgeons capable to switch to conventional instrumentation intra-operatively. Randomized control trial, Level I.
Self-Aligning Mechanical And Electrical Coupling
NASA Technical Reports Server (NTRS)
Vranish, John M.
1993-01-01
Two mating assemblies of mechanical and electrical coupling designed to align itself and so easy to use that robot can operate it. Rollers and v-grooves enforce required alignment when upper and lower assemblies brought into firm contact. Mechanism inside lower assembly provides spring preload between two assemblies plus mating of electrical connectors, all actuated by rotation of driver engaged with bolt via splines.
Fast and accurate reference-free alignment of subtomograms.
Chen, Yuxiang; Pfeffer, Stefan; Hrabe, Thomas; Schuller, Jan Michael; Förster, Friedrich
2013-06-01
In cryoelectron tomography alignment and averaging of subtomograms, each dnepicting the same macromolecule, improves the resolution compared to the individual subtomogram. Major challenges of subtomogram alignment are noise enhancement due to overfitting, the bias of an initial reference in the iterative alignment process, and the computational cost of processing increasingly large amounts of data. Here, we propose an efficient and accurate alignment algorithm via a generalized convolution theorem, which allows computation of a constrained correlation function using spherical harmonics. This formulation increases computational speed of rotational matching dramatically compared to rotation search in Cartesian space without sacrificing accuracy in contrast to other spherical harmonic based approaches. Using this sampling method, a reference-free alignment procedure is proposed to tackle reference bias and overfitting, which also includes contrast transfer function correction by Wiener filtering. Application of the method to simulated data allowed us to obtain resolutions near the ground truth. For two experimental datasets, ribosomes from yeast lysate and purified 20S proteasomes, we achieved reconstructions of approximately 20Å and 16Å, respectively. The software is ready-to-use and made public to the community. Copyright © 2013 Elsevier Inc. All rights reserved.
Kalkan, Erol; Kwong, Neal S.
2012-01-01
According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.
Study of an orbiting tethered dumbbell system having positive orbital energy
NASA Technical Reports Server (NTRS)
Arnold, David A.
1988-01-01
For very long tethered systems the sum of the kinetic and potential energy can be positive. The system remains in a circular orbit as long as the masses remain vertically aligned. The system is unstable without constant control of the alignment. If the upper mass rotates forward in the direction of the orbital motion, the system escapes out of orbit. If the upper mass rotates backward, the system falls out of orbit and the lower mass impacts the body around which the system is orbiting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bono, M J; Hibbard, R L
2005-12-05
A tool holder was designed to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-{micro}m accuracy on a four-axis lathe. A four-axis lathe incorporates a rotary table that allows the cutting tool to swivel with respect to the workpiece to enable the machining of complex workpiece forms, and accurately machining complex meso-scale parts often requires that the cutting tool be aligned precisely along the axis of rotation of the rotary table. The tool holder designed in this study has greatly simplified the process of setting the tool in the correct location with sub-{micro}m precision. The toolmore » holder adjusts the tool position using flexures that were designed using finite element analyses. Two flexures adjust the lateral position of the tool to align the center of the nose of the tool with the axis of rotation of the B-axis, and another flexure adjusts the height of the tool. The flexures are driven by manual micrometer adjusters, each of which provides a minimum increment of motion of 20 nm. This tool holder has simplified the process of setting a tool with sub-{micro}m accuracy, and it has significantly reduced the time required to set a tool.« less
Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.
Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai
2014-01-01
A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.
Optimal and fast rotational alignment of volumes with missing data in Fourier space.
Shatsky, Maxim; Arbelaez, Pablo; Glaeser, Robert M; Brenner, Steven E
2013-11-01
Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution corresponding to individual macromolecular complexes. Characterization of macromolecular complexes in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biological interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of computational methods that optimize alignment between two sub-tomographic volumes. The alignment optimization is hampered by the fact that the missing data in Fourier space has to be taken into account during the rotational search. A similar problem appears in single particle electron microscopy where the random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We present a fast implementation of a method guaranteed to find an optimal rotational alignment that maximizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fourier space. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; ...
2016-01-06
Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictionsmore » for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6–7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies. Fast axis of anisotropy in the central part of the inner core aligned with Earth's axis of rotation Lastly, the structure of iron in the inner core is most likely hcp, not bcc Not currently possible to distinguish between hcp and bcc structures from seismic observations« less
Automated estimation of hip prosthesis migration: a feasibility study
NASA Astrophysics Data System (ADS)
Vandemeulebroucke, Jef; Deklerck, Rudi; Temmermans, Frederik; Van Gompel, Gert; Buls, Nico; Scheerlinck, Thierry; de Mey, Johan
2013-09-01
A common complication associated with hip arthoplasty is prosthesis migration, and for most cemented components a migration greater than 0.85 mm within the first six months after surgery, are an indicator for prosthesis failure. Currently, prosthesis migration is evaluated using X-ray images, which can only reliably estimate migrations larger than 5 mm. We propose an automated method for estimating prosthesis migration more accurately, using CT images and image registration techniques. We report on the results obtained using an experimental set-up, in which a metal prosthesis can be translated and rotated with respect to a cadaver femur, over distances and angles applied using a combination of positioning stages. Images are first preprocessed to reduce artefacts. Bone and prosthesis are extracted using consecutive thresholding and morphological operations. Two registrations are performed, one aligning the bones and the other aligning the prostheses. The migration is estimated as the difference between the found transformations. We use a robust, multi-resolution, stochastic optimization approach, and compare the mean squared intensity differences (MS) to mutual information (MI). 30 high-resolution helical CT scans were acquired for prosthesis translations ranging from 0.05 mm to 4 mm, and rotations ranging from 0.3° to 3° . For the translations, the mean 3D registration error was found to be 0.22 mm for MS, and 0.15 mm for MI. For the rotations, the standard deviation of the estimation error was 0.18° for MS, and 0.08° for MI. The results show that the proposed approach is feasible and that clinically acceptable accuracies can be obtained. Clinical validation studies on patient images will now be undertaken.
The design of electronic map displays
NASA Technical Reports Server (NTRS)
Aretz, Anthony J.
1991-01-01
This paper presents a cognitive analysis of a pilot's navigation task and describes an experiment comparing a new map display that employs the principle of visual momentum with the two traditional approaches, track-up and north-up. The data show that the advantage of a track-up alignment is its congruence with the egocentered forward view; however, the inconsistency of the rotating display hinders development of a cognitive map. The stability of a north-up alignment aids the acquisition of a cognitive map, but there is a cost associated with the mental rotation of the display to a track-up alignment for tasks involving the ego-centered forward view. The data also show that the visual momentum design captures the benefits and reduces the costs associated with the two traditional approaches.
Femtosecond-laser-induced nonadiabatic alignment in photoexcited pyrimidine
NASA Astrophysics Data System (ADS)
Li, Shuai; Ling, Fengzi; Wang, Yanmei; Long, Jinyou; Deng, Xulan; Jin, Bing; Zhang, Bing
2017-09-01
The rotational wave-packet dynamics in electronically excited pyrimidine induced by a femtosecond laser pulse at 321.5 nm has been studied by time-resolved mass spectroscopy and photoelectron velocity-map imaging. The rotational revival features at 81.3 ps, which are the direct manifestation of field-free nonadiabatic alignment, are clearly observed in both the time-dependent ion yields and photoelectron angular distributions. In particular, the out-of-phase recurrences in the parent-ion and fragment-ions transients indicate the different directions of the ionization transition-dipole moments for the generation of the parent ion and fragment ions. By tuning the polarization of the probe light parallel or perpendicular to that of the pump light, we demonstrate the potential application of nonadiabatic alignment to manipulate the branching ratio of photoionization products.
Hybrid vehicle motor alignment
Levin, Michael Benjamin
2001-07-03
A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Alexander Y.; Beloborodov, Andrei M., E-mail: amb@phys.columbia.edu
2014-11-01
We present the first self-consistent global simulations of pulsar magnetospheres with operating e {sup ±} discharge. We focus on the simple configuration of an aligned or anti-aligned rotator. The star is spun up from a zero (vacuum) state to a high angular velocity, and we follow the coupled evolution of its external electromagnetic field and plasma particles using the ''particle-in-cell'' method. A plasma magnetosphere begins to form through the extraction of particles from the star; these particles are accelerated by the rotation-induced electric field, producing curvature radiation and igniting e {sup ±} discharge. We follow the system evolution for severalmore » revolution periods, longer than required to reach a quasi-steady state. Our numerical experiment puts to test previous ideas for the plasma flow and gaps in the pulsar magnetosphere. We first consider rotators capable of producing pairs out to the light cylinder through photon-photon collisions. We find that their magnetospheres are similar to the previously obtained force-free solutions with a Y-shaped current sheet. The magnetosphere continually ejects e {sup ±} pairs and ions. Pair creation is sustained by a strong electric field along the current sheet. We observe powerful curvature and synchrotron emission from the current sheet, consistent with Fermi observations of gamma-ray pulsars. We then study pulsars that can only create pairs in the strong-field region near the neutron star, well inside the light cylinder. We find that both aligned and anti-aligned rotators relax to the ''dead'' state with suppressed pair creation and electric currents, regardless of the discharge voltage.« less
Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning
NASA Astrophysics Data System (ADS)
Cohen, Yachin; Dror, Yael; Khalfin, Rafail L.; Salalha, Wael; Yarin, Alexander L.; Zussman, Eyal
2004-03-01
The electrospinning process was used successfully to fabricate nanofibers of poly(ethylene oxide) [PEO] in which carbon nanotubes, either multi-walled (MWCNT) or single-walled (SWCNT) are embedded. MWCNTs were dispersed in water using SDS or Gum Arabic - a highly branched polyelectrolyte. Aqueous dispersion of SWCNT's was achieved using an alternating copolymer of styrene and maleic anhydride, hydrolyzed with NaOH. The focus of this work is on the development of axial orientations in the multi-component nanofibers. The degree of orientation of polymers, surfactants and nanotubes was studied using X-ray diffraction and transmission electron microscopy. Individual nanotubes were successfully embedded in the polymer nanofibers with good axial alignment. A high degree of alignment of PEO crystals and SDS layers was also found in the electrospun nanofibers containing SWCNT's. Oriented ropes of the nanofibers were fabricated in a converging electric field by a rotating disc with a tapered edge. These results can lead to further usage of the nanofibers with embedded carbon nanotubes in applications such as nano-scale energy storage devices.
Nakasone, Cass K; Abdeen, Ayesha; Khachatourians, Armond G; Sugimori, Tanzo; Vince, Kelly G
2008-12-01
We performed a retrospective study of the radiographic position of femoral and tibial components in a series of revision total knee arthroplasties using diaphyseal-engaging, press fit, modular stems. Fifty-two consecutive revision cases were performed. Femoral and tibial component alignment was measured preoperatively and postoperatively. The canal-filling ratio was measured and correlated with anatomic alignment. There was a trend toward improved alignment with increasing canal fill, suggesting that uncemented diaphyseal engaging press-fit modular stems facilitate accurate alignment for both femoral and tibial components in revision surgery.
Dani, Raj Kumar; Wang, Hongwang; Bossmann, Stefan H; Wysin, Gary; Chikan, Viktor
2011-12-14
Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles. © 2011 American Institute of Physics
Figueroa, José; Guarachi, Juan Pablo; Matas, José; Arnander, Magnus; Orrego, Mario
2016-04-01
Computed tomography (CT) is widely used to assess component rotation in patients with poor results after total knee arthroplasty (TKA). The purpose of this study was to simultaneously determine the accuracy and reliability of CT in measuring TKA component rotation. TKA components were implanted in dry-bone models and assigned to two groups. The first group (n = 7) had variable femoral component rotations, and the second group (n = 6) had variable tibial tray rotations. CT images were then used to assess component rotation. Accuracy of CT rotational assessment was determined by mean difference, in degrees, between implanted component rotation and CT-measured rotation. Intraclass correlation coefficient (ICC) was applied to determine intra-observer and inter-observer reliability. Femoral component accuracy showed a mean difference of 2.5° and the tibial tray a mean difference of 3.2°. There was good intra- and inter-observer reliability for both components, with a femoral ICC of 0.8 and 0.76, and tibial ICC of 0.68 and 0.65, respectively. CT rotational assessment accuracy can differ from true component rotation by approximately 3° for each component. It does, however, have good inter- and intra-observer reliability.
Null test fourier domain alignment technique for phase-shifting point diffraction interferometer
Naulleau, Patrick; Goldberg, Kenneth Alan
2000-01-01
Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.
Placement accuracy gauge for electrical components and method of using same
Biggs, Peter M.; Dancer, Linda K.; Yerganian, Simon S.
1988-10-11
Surface mounted electrical components are typically assembled on printed wiring boards by automatic machines. It is important that the machines accurately move with respect to both X and Y rotational axes in order to insure that components are positioned precisely on connector pads of the printed wiring board being assembled. In accordance with the instant invention, a gauge is used to facilitate convenient accuracy checks. The gauge is a glass substrate on which grids of 0.005 inch lines are scribed to form location and orientation fields where components are to be placed. The grids are referenced from either fiducial marks or the edge of the substrate to establish known positions within the grids. The equipment to be evaluated is programmed to place components in known positions and the components are held in place by tacky adhesive that is sprayed on the substrate prior to placing the components. The accuracy of the component position is then compared to the programmed position by placing the substrate on a light table and observing the component location. If a significant inaccuracy with respect to any of the axes exists, the inaccuracy is apparent because the component is not aligned properly with the grid. If a precise measurement of an axis inaccuracy is desired, a measuring microscope may be utilized.
Placement accuracy gauge for electrical components and method of using same
Biggs, P.M.; Dancer, L.K.; Yerganian, S.S.
1987-11-12
Surface mounted electrical components are typically assembled on printed wiring board by automatic machines. It is important that the machines accurately move with respect to both X and Y rotational axes in order to insure that components are positioned precisely on connector pads of the printed wiring board being assembled. In accordance with the instant invention, a gauge is used to facilitate convenient accuracy checks. The gauge is a glass substrate on which grids of 0.005 inch lines are scribed to form location and orientation fields where components are to be placed. The grids are referenced from ether fiducial marks or the edge of the substrate to establish known positions within the grids. The equipment to be evaluated is programmed to place components in known positions and the components are held in place by tacky adhesive that is sprayed on the substrate prior to placing the components. The accuracy of the component position is then compared to the programmed position by placing the substrate on a light table and observing the component location. If a significant inaccuracy with respect to any of the axes exists, the inaccuracy is apparent because the component is not aligned properly with the grid. If a precise measurement of an axis inaccuracy is desired, a measuring microscope may be utilized. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Teruyuki; Sanchis-Ojeda, Roberto; Winn, Joshua N.
We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the Kepler spacecraft. The inclination angle of each star's rotation axis was estimated from its rotation period, rotational line broadening, and radius. The rotation periods were determined using the Kepler photometric time series. The rotational line broadening was determined from high-resolution optical spectra with the Subaru High Dispersion Spectrograph. Those same spectra were used to determine the star's photospheric parameters (effective temperature, surface gravity, metallicity), which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample withmore » the seven stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90°, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally, these systems should be scrutinized with complementary techniques, such as the Rossiter-McLaughlin effect, starspot-crossing anomalies, or asteroseismology, but the measurements will be difficult owing to the relatively faint apparent magnitudes and small transit signals in these systems.« less
Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.
Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili
2015-12-15
Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.
Sofikitis, Dimitris; Rubio-Lago, Luis; Martin, Marion R; Ankeny Brown, Davida J; Bartlett, Nathaniel C-M; Alexander, Andrew J; Zare, Richard N; Rakitzis, T Peter
2007-10-14
H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.
Reschke, Millard F; Wood, Scott J; Clément, Gilles
2018-01-01
Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.
NASA Astrophysics Data System (ADS)
Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.
2017-03-01
A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.
Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus
Green, L.A.; Heck, J.L. Jr.
1985-04-23
A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.
Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus
Green, Lanny A.; Heck, Jr., Joaquim L.
1987-01-01
A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.
Partial Automated Alignment and Integration System
NASA Technical Reports Server (NTRS)
Kelley, Gary Wayne (Inventor)
2014-01-01
The present invention is a Partial Automated Alignment and Integration System (PAAIS) used to automate the alignment and integration of space vehicle components. A PAAIS includes ground support apparatuses, a track assembly with a plurality of energy-emitting components and an energy-receiving component containing a plurality of energy-receiving surfaces. Communication components and processors allow communication and feedback through PAAIS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Simon; Winn, Joshua N.; Setiawan, Johny
With observations of the EP Cru system, we continue our series of measurements of spin-orbit angles in eclipsing binary star systems, the BANANA project (Binaries Are Not Always Neatly Aligned). We find a close alignment between the sky projections of the rotational and orbital angular momentum vectors for both stars ({beta}{sub p} = -1. Degree-Sign 8 {+-} 1. Degree-Sign 6 and |{beta}{sub s}| < 17 Degree-Sign ). We also derive precise absolute dimensions and stellar ages for this system. The EP Cru and DI Her systems provide an interesting comparison: they have similar stellar types and orbital properties, but DImore » Her is younger and has major spin-orbit misalignments, raising the question of whether EP Cru also had a large misalignment at an earlier phase of evolution. We show that tidal dissipation is an unlikely explanation for the good alignment observed today, because realignment happens on the same timescale as spin-orbit synchronization, and the stars in EP Cru are far from synchronization (they are spinning nine times too quickly). Therefore it seems that some binaries form with aligned axes, while other superficially similar binaries are formed with misaligned axes.« less
Goldmann, Louis H.
1986-01-01
A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.
A New Shape Description Method Using Angular Radial Transform
NASA Astrophysics Data System (ADS)
Lee, Jong-Min; Kim, Whoi-Yul
Shape is one of the primary low-level image features in content-based image retrieval. In this paper we propose a new shape description method that consists of a rotationally invariant angular radial transform descriptor (IARTD). The IARTD is a feature vector that combines the magnitude and aligned phases of the angular radial transform (ART) coefficients. A phase correction scheme is employed to produce the aligned phase so that the IARTD is invariant to rotation. The distance between two IARTDs is defined by combining differences in the magnitudes and aligned phases. In an experiment using the MPEG-7 shape dataset, the proposed method outperforms existing methods; the average BEP of the proposed method is 57.69%, while the average BEPs of the invariant Zernike moments descriptor and the traditional ART are 41.64% and 36.51%, respectively.
I-line stepper based overlay evaluation method for wafer bonding applications
NASA Astrophysics Data System (ADS)
Kulse, P.; Sasai, K.; Schulz, K.; Wietstruck, M.
2018-03-01
In the last decades the semiconductor technology has been driven by Moore's law leading to high performance CMOS technologies with feature sizes of less than 10 nm [1]. It has been pointed out that not only scaling but also the integration of novel components and technology modules into CMOS/BiCMOS technologies is becoming more attractive to realize smart and miniaturized systems [2]. Driven by new applications in the area of communication, health and automation, new components and technology modules such as BiCMOS embedded RF-MEMS, high-Q passives, Sibased microfluidics and InP-SiGe BiCMOS heterointegration have been demonstrated [3-6]. In contrast to standard VLSI processes fabricated on front side of the silicon wafer, these new technology modules additionally require to process the backside of the wafer; thus require an accurate alignment between the front and backside of the wafer. In previous work an advanced back to front side alignment technique and implementation into IHP's 0.25/0.13 µm high performance SiGe:C BiCMOS backside process module has been presented [7]. The developed technique enables a high resolution and accurate lithography on the backside of BiCMOS wafer for additional backside processing. In addition to the aforementioned back side process technologies, new applications like Through-Silicon Vias (TSV) for interposers and advanced substrate technologies for 3D heterogeneous integration demand not only single wafer fabrication but also processing of wafer stacks provided by temporary and permanent wafer bonding [8-9]. In this work, the non-contact infrared alignment system of the Nikon® i-line Stepper NSR-SF150 for both alignment and the overlay determination of bonded wafer stacks with embedded alignment marks are used to achieve an accurate alignment between the different wafer sides. The embedded field image alignment (FIA) marks of the interface and the device wafer top layer are measured in a single measurement job. By taking the offsets between all different FIA's into account, after correcting the wafer rotation induced FIA position errors, hence an overlay for the stacked wafers can be determined. The developed approach has been validated by a standard front side resist in resist experiment. After the successful validation of the developed technique, special wafer stacks with FIA alignment marks in the bonding interface are fabricated and exposed. Following overlay calculation shows an overlay of less than 200 nm, which enables very accurate process condition for highly scaled TSV integration and advanced substrate integration into IHP's 0.25/0.13 µm SiGe:C BiCMOS technology. The developed technique also allows using significantly smaller alignment marks (i.e. standard FIA alignment marks). Furthermore, the presented method is used, in case of wafer bow related overlay tool problems, for the overlay evaluation of the last two metal layers from production wafers prepared in IHP's standard 0.25/0.13 µm SiGe:C BiCMOS technology. In conclusion, the exposure and measurement job can be done with the same tool, minimizing the back to front side/interface top layer misalignment which leads to a significant device performance improvement of backside/TSV integrated components and technologies.
Niki, Yasuo; Takeda, Yuki; Harato, Kengo; Suda, Yasunori
2015-11-01
Achievement of very deep knee flexion after total knee arthroplasty (TKA) can play a critical role in the satisfaction of patients who demand a floor-sitting lifestyle and engage in high-flexion daily activities (e.g., seiza-sitting). Seiza-sitting is characterized by the knees flexed >145º and feet turned sole upwards underneath the buttocks with the tibia internally rotated. The present study investigated factors affecting the achievement of seiza-sitting after TKA using posterior-stabilized total knee prosthesis with high-flex knee design. Subjects comprised 32 patients who underwent TKA with high-flex knee prosthesis and achieved seiza-sitting (knee flexion >145º) postoperatively. Another 32 patients served as controls who were capable of knee flexion >145º preoperatively, but failed to achieve seiza-sitting postoperatively. Accuracy of femoral and tibial component positions was assessed in terms of deviation from the ideal position using a two-dimensional to three-dimensional matching technique. Accuracies of the component position, posterior condylar offset ratio and intraoperative gap length were compared between the two groups. The proportion of patients with >3º internally rotated tibial component was significantly higher in patients who failed at seiza-sitting (41 %) than among patients who achieved it (13 %, p = 0.021). Comparison of intraoperative gap length between patient groups revealed that gap length at 135º flexion was significantly larger in patients who achieved seiza-sitting (4.2 ± 0.4 mm) than in patients who failed at it (2.7 ± 0.4 mm, p = 0.007). Conversely, no significant differences in gap inclination were seen between the groups. From the perspective of surgical factors, accurate implant positioning, particularly rotational alignment of the tibial component, and maintenance of a sufficient joint gap at 135º flexion appear to represent critical factors for achieving >145º of deep knee flexion after TKA.
Friedman, Y; Yudkin, E; Nowik, I; Felner, I; Wille, H-C; Röhlsberger, R; Haber, J; Wortmann, G; Arogeti, S; Friedman, M; Brand, Z; Levi, N; Shafir, I; Efrati, O; Frumson, T; Finkelstein, A; Chumakov, A I; Kantor, I; Rüffer, R
2015-05-01
Many Mössbauer spectroscopy (MS) experiments have used a rotating absorber in order to measure the second-order transverse Doppler (TD) shift, and to test the validity of the Einstein time dilation theory. From these experiments, one may also test the clock hypothesis (CH) and the time dilation caused by acceleration. In such experiments the absorption curves must be obtained, since it cannot be assumed that there is no broadening of the curve during the rotation. For technical reasons, it is very complicated to keep the balance of a fast rotating disk if there are moving parts on it. Thus, the Mössbauer source on a transducer should be outside the disk. Friedman and Nowik have already predicted that the X-ray beam finite size dramatically affects the MS absorption line and causes its broadening. We provide here explicit formulas to evaluate this broadening for a synchrotron Mössbauer source (SMS) beam. The broadening is linearly proportional to the rotation frequency and to the SMS beam width at the rotation axis. In addition, it is shown that the TD shift and the MS line broadening are affected by an additional factor assigned as the alignment shift which is proportional to the frequency of rotation and to the distance between the X-ray beam center and the rotation axis. This new shift helps to align the disk's axis of rotation to the X-ray beam's center. To minimize the broadening, one must focus the X-ray on the axis of the rotating disk and/or to add a slit positioned at the center, to block the rays distant from the rotation axis of the disk. Our experiment, using the (57)Fe SMS, currently available at the Nuclear Resonance beamline (ID18) at the ESRF, with a rotating stainless steel foil, confirmed our predictions. With a slit installed at the rotation axis (reducing the effective beam width from 15.6 µm to 5.4 µm), one can measure a statistically meaningful absorption spectrum up to 300 Hz, while, without a slit, such spectra could be obtained up to 100 Hz only. Thus, both the broadening and the alignment shift are very significant and must be taken into consideration in any rotating absorber experiment. Here a method is offered to measure accurately the TD shift and to test the CH.
SU-E-J-165: Dosimetric Impact of Liver Rotations in Stereotactic Body Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinnaduwage, D; Paulsson, A; Sudhyadhom, A
2015-06-15
Purpose: Often in liver stereotactic body radiotherapy a single fiducial is implanted near the tumor for image-guided treatment delivery. In such cases, rotational corrections are calculated based on the spine. This study quantifies rotational differences between the spine and liver, and investigates the corresponding dosimetric impact. Methods: Seven patients with 3 intrahepatic fiducials and 4DCT scans were identified. The planning CT was separately co-registered with 4 phases of the 4DCT (0%, 50%, 100% inhale and 50% exhale) by 1) rigid registration of the spine, and 2) point-based registration of the 3 fiducials. Rotation vectors were calculated for each registration. Translationalmore » differences in fiducial positions between the 2 registrations methods were investigated. Dosimetric impact due to liver rotations and deformations was assessed using critical structures delineated on the 4DCT phases. For dose comparisons, a single fiducial was translationally aligned following spine alignment to represent what is typically done in the clinic. Results: On average, differences between spine and liver rotations during the 0%, 50%, 100% inhale, and 50% exhale phases were 3.23°, 3.27°, 2.26° and 3.11° (pitch), 3.00°, 2.24°, 3.12° and 1.73° (roll), and 1.57°, 1.98°, 2.09° and 1.36° (yaw), respectively. The maximum difference in rotations was 12°, with differences of >3° seen in 14/28 (pitch), 10/28 (roll), and 6/28 (yaw) cases. Average fiducial displacements of 2.73 (craniocaudal), 1.04 (lateral) and 1.82 mm (vertical) were seen. Evaluating percent dose differences for 5 patients at the peaks of the respiratory cycle, the maximum dose to the duodenum, stomach, bowel and esophagus differed on average by 11.4%, 5.3%, 11.2% and 49.1% between the 2 registration methods. Conclusion: Lack of accounting for liver rotation during treatment might Result in clinically significant dose differences to critical structures. Both rotational and translational deviations should be considered in planning margins when using spine alignment for liver treatments.« less
Dislocation mediated alignment during metal nanoparticle coalescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, A. P.; Samanta, A.; Majidi, H.
2016-09-13
Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (~315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leadingmore » to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. As a result, this constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results presented here and elsewhere.« less
Malenda, R F; Price, T J; Stevens, J; Uppalapati, S L; Fragale, A; Weiser, P M; Kuczala, A; Talbi, D; Hickman, A P
2015-06-14
We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A(1)Σ(+)) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B(λ)(j, j') for each j → j' transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j' between 0 and 50, and total (translational and rotational) energies in the range 0.0002-0.0025 a.u. (∼44-550 cm(-1)). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j'. Finally, we compare the exact quantum results for j → j' transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.
Macroscopic self-reorientation of interacting two-dimensional crystals
Woods, C. R.; Withers, F.; Zhu, M. J.; Cao, Y.; Yu, G.; Kozikov, A.; Ben Shalom, M.; Morozov, S. V.; van Wijk, M. M.; Fasolino, A.; Katsnelson, M. I.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Mishchenko, A.; Novoselov, K. S.
2016-01-01
Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures. PMID:26960435
NASA Astrophysics Data System (ADS)
Leclerc, Melanie R.; Côté, Patrice; Duchesne, François; Bastien, Pierre; Hernandez, Olivier; Colonna d'Istria, Pierre; Demers, Mathieu; Girard, Marc; Savard, Maxime; Lemieux, Dany; Thibault, Simon; Brousseau, Denis
2014-08-01
A polarimeter, to observe exoplanets in the visible and infrared, was built for the "Observatoire du Mont Mégantic" (OMM) to replace an existing instrument and reach 10-6 precision, a factor 100 improvement. The optical and mechanical designs are presented, with techniques used to precisely align the optical components and rotation axes to achieve the targeted precision. A photo-elastic modulator (PEM) and a lock-in amplifier are used to measure the polarization. The typical signal is a high DC superimposed to a very faint sinusoidal oscillation. Custom electronics was developed to measure the AC and DC amplitudes, and characterization results are presented.
Goldmann, L.H.
1984-12-06
This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.
Dai, Chenkai; Fridman, Gene Y; Chiang, Bryce; Rahman, Mehdi A; Ahn, Joong Ho; Davidovics, Natan S; Della Santina, Charles C
2013-12-01
Bilateral loss of vestibular sensation can be disabling. We have shown that a multichannel vestibular prosthesis (MVP) can partly restore vestibular sensation as evidenced by improvements in the 3-dimensional angular vestibulo-ocular reflex (3D VOR). However, a key challenge is to minimize misalignment between the axes of eye and head rotation, which is apparently caused by current spread beyond each electrode's targeted nerve branch. We recently reported that rodents wearing a MVP markedly improve 3D VOR alignment during the first week after MVP activation, probably through the same central nervous system adaptive mechanisms that mediate cross-axis adaptation over time in normal individuals wearing prisms that cause visual scene movement about an axis different than the axis of head rotation. We hypothesized that rhesus monkeys would exhibit similar improvements with continuous prosthetic stimulation over time. We created bilateral vestibular deficiency in four rhesus monkeys via intratympanic injection of gentamicin. A MVP was mounted to the cranium, and eye movements in response to whole-body passive rotation in darkness were measured repeatedly over 1 week of continuous head motion-modulated prosthetic electrical stimulation. 3D VOR responses to whole-body rotations about each semicircular canal axis were measured on days 1, 3, and 7 of chronic stimulation. Horizontal VOR gain during 1 Hz, 50 °/s peak whole-body rotations before the prosthesis was turned on was <0.1, which is profoundly below normal (0.94 ± 0.12). On stimulation day 1, VOR gain was 0.4-0.8, but the axis of observed eye movements aligned poorly with head rotation (misalignment range ∼30-40 °). Substantial improvement of axis misalignment was observed after 7 days of continuous motion-modulated prosthetic stimulation under normal diurnal lighting. Similar improvements were noted for all animals, all three axes of rotation tested, for all sinusoidal frequencies tested (0.05-5 Hz), and for high-acceleration transient rotations. VOR asymmetry changes did not reach statistical significance, although they did trend toward slight improvement over time. Prior studies had already shown that directional plasticity reduces misalignment when a subject with normal labyrinths views abnormal visual scene movement. Our results show that the converse is also true: individuals receiving misoriented vestibular sensation under normal viewing conditions rapidly adapt to restore a well-aligned 3D VOR. Considering the similarity of VOR physiology across primate species, similar effects are likely to occur in humans using a MVP to treat bilateral vestibular deficiency.
Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation
NASA Astrophysics Data System (ADS)
Lewis, Bryan; Cimbala, John; Wouden, Alex
2012-11-01
Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.
Differential rotation in solar-like stars from global simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, G.; Kosovichev, A. G.; Smolarkiewicz, P. K.
2013-12-20
To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridionalmore » cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.« less
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Angelaki, D. E.
1999-01-01
During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattarivand, Mike; Summers, Clare; Robar, James
Purpose: To evaluate the validity of using spine as a surrogate for tumor positioning with ExacTrac stereoscopic imaging in lung stereotactic body radiation therapy (SBRT). Methods: Using the Novalis ExacTrac x-ray system, 39 lung SBRT patients (182 treatments) were aligned before treatment with 6 degrees (6D) of freedom couch (3 translations, 3 rotations) based on spine matching on stereoscopic images. The couch was shifted to treatment isocenter and pre-treatment CBCT was performed based on a soft tissue match around tumor volume. The CBCT data were used to measure residual errors following ExacTrac alignment. The thresholds for re-aligning the patients basedmore » on CBCT were 3mm shift or 3° rotation (in any 6D). In order to evaluate the effect of tumor location on residual errors, correlations between tumor distance from spine and individual residual errors were calculated. Results: Residual errors were up to 0.5±2.4mm. Using 3mm/3° thresholds, 80/182 (44%) of the treatments required re-alignment based on CBCT soft tissue matching following ExacTrac spine alignment. Most mismatches were in sup-inf, ant-post, and roll directions which had larger standard deviations. No correlation was found between tumor distance from spine and individual residual errors. Conclusion: ExacTrac stereoscopic imaging offers a quick pre-treatment patient alignment. However, bone matching based on spine is not reliable for aligning lung SBRT patients who require soft tissue image registration from CBCT. Spine can be a poor surrogate for lung SBRT patient alignment even for proximal tumor volumes.« less
Vaquette, Cédryck; Kahn, Cyril; Frochot, Céline; Nouvel, Cécile; Six, Jean-Luc; De Isla, Natalia; Luo, Li-Hua; Cooper-White, Justin; Rahouadj, Rachid; Wang, Xiong
2010-09-15
We developed a novel technique involving knitting and electrospinning to fabricate a composite scaffold for ligament tissue engineering. Knitted structures were coated with poly(L-lactic-co-e-caprolactone) (PLCL) and then placed onto a rotating cylinder and a PLCL solution was electrospun onto the structure. Highly aligned 2-microm-diameter microfibers covered the space between the stitches and adhered to the knitted scaffolds. The stress-strain tensile curves exhibited an initial toe region similar to the tensile behavior of ligaments. Composite scaffolds had an elastic modulus (150 +/- 14 MPa) similar to the modulus of human ligaments. Biological evaluation showed that cells proliferated on the composite scaffolds and they spontaneously orientated along the direction of microfiber alignment. The microfiber architecture also induced a high level of extracellular matrix secretion, which was characterized by immunostaining. We found that cells produced collagen type I and type III, two main components found in ligaments. After 14 days of culture, collagen type III started to form a fibrous network. We fabricated a composite scaffold having the mechanical properties of the knitted structure and the morphological properties of the aligned microfibers. It is difficult to seed a highly macroporous structure with cells, however the technique we developed enabled an easy cell seeding due to presence of the microfiber layer. Therefore, these scaffolds presented attractive properties for a future use in bioreactors for ligament tissue engineering. (c) 2010 Wiley Periodicals, Inc.
Automated assembly of camera modules using active alignment with up to six degrees of freedom
NASA Astrophysics Data System (ADS)
Bräuniger, K.; Stickler, D.; Winters, D.; Volmer, C.; Jahn, M.; Krey, S.
2014-03-01
With the upcoming Ultra High Definition (UHD) cameras, the accurate alignment of optical systems with respect to the UHD image sensor becomes increasingly important. Even with a perfect objective lens, the image quality will deteriorate when it is poorly aligned to the sensor. For evaluating the imaging quality the Modulation Transfer Function (MTF) is used as the most accepted test. In the first part it is described how the alignment errors that lead to a low imaging quality can be measured. Collimators with crosshair at defined field positions or a test chart are used as object generators for infinite-finite or respectively finite-finite conjugation. The process how to align the image sensor accurately to the optical system will be described. The focus position, shift, tilt and rotation of the image sensor are automatically corrected to obtain an optimized MTF for all field positions including the center. The software algorithm to grab images, calculate the MTF and adjust the image sensor in six degrees of freedom within less than 30 seconds per UHD camera module is described. The resulting accuracy of the image sensor rotation is better than 2 arcmin and the accuracy position alignment in x,y,z is better 2 μm. Finally, the process of gluing and UV-curing is described and how it is managed in the integrated process.
Vane segment support and alignment device
McLaurin, L.D.; Sizemore, J.D.
1999-07-13
A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.
Vane segment support and alignment device
McLaurin, Leroy Dixon; Sizemore, John Derek
1999-01-01
A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Karisa M.; Wood, Lianna F.; Wright, Bob W.
2005-12-01
A comprehensive two-dimensional (2D) retention time alignment algorithm was developed using a novel indexing scheme. The algorithm is termed comprehensive because it functions to correct the entire chromatogram in both dimensions and it preserves the separation information in both dimensions. Although the algorithm is demonstrated by correcting comprehensive two-dimensional gas chromatography (GC x GC) data, the algorithm is designed to correct shifting in all forms of 2D separations, such as LC x LC, LC x CE, CE x CE, and LC x GC. This 2D alignment algorithm was applied to three different data sets composed of replicate GC x GCmore » separations of (1) three 22-component control mixtures, (2) three gasoline samples, and (3) three diesel samples. The three data sets were collected using slightly different temperature or pressure programs to engender significant retention time shifting in the raw data and then demonstrate subsequent corrections of that shifting upon comprehensive 2D alignment of the data sets. Thirty 12-min GC x GC separations from three 22-component control mixtures were used to evaluate the 2D alignment performance (10 runs/mixture). The average standard deviation of the first column retention time improved 5-fold from 0.020 min (before alignment) to 0.004 min (after alignment). Concurrently, the average standard deviation of second column retention time improved 4-fold from 3.5 ms (before alignment) to 0.8 ms (after alignment). Alignment of the 30 control mixture chromatograms took 20 min. The quantitative integrity of the GC x GC data following 2D alignment was also investigated. The mean integrated signal was determined for all components in the three 22-component mixtures for all 30 replicates. The average percent difference in the integrated signal for each component before and after alignment was 2.6%. Singular value decomposition (SVD) was applied to the 22-component control mixture data before and after alignment to show the restoration of trilinearity to the data, since trilinearity benefits chemometric analysis. By applying comprehensive 2D retention time alignment to all three data sets (control mixtures, gasoline samples, and diesel samples), classification by principal component analysis (PCA) substantially improved, resulting in 100% accurate scores clustering.« less
Fiber optic sensor system for detecting movement or position of a rotating wheel bearing
Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.
1997-01-01
An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.
Coding of Velocity Storage in the Vestibular Nuclei.
Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.
Coding of Velocity Storage in the Vestibular Nuclei
Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons. PMID:28861030
A retinal code for motion along the gravitational and body axes
Sabbah, Shai; Gemmer, John A.; Bhatia-Lin, Ananya; Manoff, Gabrielle; Castro, Gabriel; Siegel, Jesse K.; Jeffery, Nathan; Berson, David M.
2017-01-01
Summary Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We show that each subtype of direction-selective ganglion cell (DSGC) adjusts its direction preference topographically to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises, or falls. ON-DSGCs and ON-OFF-DSGCs share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Though retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ. PMID:28607486
Laser-driven clockwise molecular rotation for a transient spinning waveplate.
York, Andrew G
2009-08-03
Our simulations show a copropagating pair of laser pulses polarized in two different directions can selectively excite clockwise or counterclockwise molecular rotation in a gas of linear molecules. The resulting birefringence of the gas rotates on a femtosecond timescale and shows a periodic revival structure. The total duration of the pulse pair can be subpicosecond, allowing molecular alignment at the high densities and temperatures necessary to create a transient spinning waveplate.
[Total and unicompartmental knee replacement. Patient-specific Instrumentation].
Köster, G; Biró, C
2016-04-01
The objective of patient-specific instrumentation (PSI Zimmer®) technology is to optimize positioning and selection of components as well as surgical procedure in uni- and bicompartimental knee replacement. The article contains a description of the planning and surgical technique and evaluates the method based on own results and literature. Using MRI or CT scans a virtual 3D model of the joint is created in order to simulate and plan the implant positioning. According to these data, pin placement and/or cutting guides are produced, which enable the surgeon to transfer the planning to the surgical procedure. In a prospective comparative study 88 patients (44 per each of the two techniques) were operated by one surgeon receiving the same TKA using either MRI-based PSI or a conventional technique. The number of surgical trays, operating time, intraoperative changes and frontal alignment using a full leg x‑ray (70 cases) were compared. In 17 patients the method was applied with unicondylar knee replacement. Anatomical abnormalities could be detected preoperatively and considered during the operation. With PSI the number of trays could be reduced and predictability of the component size was more precise. Intraoperative changes became necessary only for distal femoral (25 %) and proximal tibial (36 %) resection and tibial rotation (40 %). Alignment was more precise in the PSI cases PSI using the applied technique proved to be practicable and reliable. The advantages of precise planning became obvious. Results concerning alignment are inconsistent in the literature. Soft tissue balancing has only been included in the technique to a limited degree so far. PSI is still in an early stage of development and further development opportunities should be exploited before final assessment.
NASA Astrophysics Data System (ADS)
Kivelson, Margaret; Southwood, David
Superimposed on the predominantly dipolar field of Saturn's middle magnetosphere (here taken as between 5 and 10 RS) are perturbations of a few nT amplitude that vary with the SKR periodicity. Andrews and coworkers (2008) have determined that averages of the perturbations of the radial and azimuthal field components vary roughly sinusoidally and in quadrature, with the radial component leading. Thus these two components of the magnetic perturbations can be represented as an approximately uniform field rotating in the sense of Saturn's rotation (Espinosa et al., 2003). This perturbation field is referred to by Southwood and Kivelson (2007) as the cam field. Andrews et al. (2008) show that perturbation of the theta component, (theta is colatitude) is also nearly sinusoidal and in-phase with the radial perturbations. It follows that near the equator variations of the field magnitude are also in phase with the radial perturbations. Provan et al. (2009) and Khurana et al. (2009) have attributed the periodicity of the field magnitude to an asymmetric ring current. Saturn's asymmetric ring current is not fixed in local time,as it is at Earth, but rotates quasi-rigidly at the SKR period. A distributed, rotating field-aligned current (FAC) system must develop between regions with an excess of or a dearth of azimuthal current but, because those FACs spread over a large spatial region, the associated current density will be smaller than the current density of the more localized cam current system. Thus, it is the electrons associated with the latter currents that are likely to drive the periodically modulated SKR signals. The ring current of the middle magnetosphere is dominated by inertial currents carried by the thermal plasma (Sergis et al., 2010), but the variation of azimuthal current may arise either from density variations or variations of plasma beta. In either case, the current pattern must drive a circulation of the plasma in the middle magnetosphere. [A circulating plasma pattern in the inner magnetosphere at distances less than 5 RS has been described by Gurnett et al. (2007) but has not yet been related to the analysis of this talk.] Because of the local time asymmetry of the magnetosphere, the flows and some of the magnetic perturbations are expected to increase in magnitude when the outward flow sector rotates into the post dusk magnetosphere, a phenomenon possibly related to the recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere described by Mitchell et al (2009). In this talk we expand on the description of this abstract and analyze the consequences for plasma circulation of the rotating asymmetry in field and particles in Saturn's middle magnetosphere.
Xu, Yingjie; Yan, Hui; Hu, Zhihui; Ma, Pan; Men, Kuo; Huang, Peng; Ren, Wenting; Dai, Jianrong; Li, Yexiong
2017-01-01
Given the design of the Helical TomoTherapy device, the patient's central axis is routinely aligned with the machine's rotational axis to prevent the patient's body from colliding with the machine walls. However, for treatment of tumors located away from the patient's central axis, this position may not be optimal as the adequate radiation dose may not reach the affected site. Our study aimed to investigate the influence of tumor location on dose quality and delivery efficiency of tomotherapy plans. A phantom and 15 patients were selected for this study. Two plans, A and B, were implemented for each case. In plan A, the patient's central axis was aligned with the machine's rotational axis, whereas in plan B, the center of the planning target volume (PTV) was aligned with the machine's rotational axis. Both plans were optimized with the same planning parameters, and the dose quality of the plans was evaluated using dosimetrics. The delivery efficiency was determined from delivery time and monitor units (MUs). A paired t-test or nonparametric Wilcoxon signed-rank test was performed for statistical comparison. In the phantom study, the median delivery times were 358 and 336 seconds for plans A and B, respectively, and this difference was significant (p = 0.005). In the patient study, the median delivery times were 348 and 317 seconds for plans A and B, respectively, and this difference was also significant (p = 0.001). The dose qualities of both plans for each patient were nearly identical. No significant differences were found in the conformal index, heterogeneity index, and mean dose delivered to normal tissue between the plans. Both phantom and patient studies showed that for normal-sized patients, the delivery time reduced as the distance between the PTV and the patient's central axis increased when the PTV center was aligned with the machine axis. In conclusion, aligning the PTV center with the machine's rotational axis by shifting the patient during tomotherapy reduces the delivery time without compromising the dose quality of intensity-modulated radiation therapy. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Gross, Daniel J; Golijanin, Petar; Dumont, Guillaume D; Parada, Stephen A; Vopat, Bryan G; Reinert, Steven E; Romeo, Anthony A; Provencher, C D R Matthew T
2016-01-01
Computed tomography (CT) scans of the shoulder are often not well aligned to the axis of the scapula and glenoid. The purpose of this paper was to determine the effect of sagittal rotation of the glenoid on axial measurements of anterior-posterior (AP) glenoid width and glenoid version attained by standard CT scan. In addition, we sought to define the angle of rotation required to correct the CT scan to optimal positioning. A total of 30 CT scans of the shoulder were reformatted using OsiriX software multiplanar reconstruction. The uncorrected (UNCORR) and corrected (CORR) CT scans were compared for measurements of both (1) axial AP glenoid width and (2) glenoid version at 5 standardized axial cuts. The mean difference in glenoid version was 2.6% (2° ± 0.1°; P = .0222) and the mean difference in AP glenoid width was 5.2% (1.2 ± 0.42 mm; P = .0026) in comparing the CORR and UNCORR scans. The mean angle of correction required to align the sagittal plane was 20.1° of rotation (range, 9°-39°; standard error of mean, 1.2°). These findings demonstrate that UNCORR CT scans of the glenohumeral joint do not correct for the sagittal rotation of the glenoid, and this affects the characteristics of the axial images. Failure to align the sagittal image to the 12-o'clock to 6-o'clock axis results in measurement error in both glenoid version and AP glenoid width. Use of UNCORR CT images may have notable implications for decision-making and surgical treatment. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Immobilization precision of a modified GTC frame.
Winey, Brian; Daartz, Juliane; Dankers, Frank; Bussière, Marc
2012-05-10
The purpose of this study was to evaluate and quantify the interfraction reproducibility and intrafraction immobilization precision of a modified GTC frame. The error of the patient alignment and imaging systems were measured using a cranial skull phantom, with simulated, predetermined shifts. The kV setup images were acquired with a room-mounted set of kV sources and panels. Calculated translations and rotations provided by the computer alignment software relying upon three implanted fiducials were compared to the known shifts, and the accuracy of the imaging and positioning systems was calculated. Orthogonal kV setup images for 45 proton SRT patients and 1002 fractions (average 22.3 fractions/patient) were analyzed for interfraction and intrafraction immobilization precision using a modified GTC frame. The modified frame employs a radiotransparent carbon cup and molded pillow to allow for more treatment angles from posterior directions for cranial lesions. Patients and the phantom were aligned with three 1.5 mm stainless steel fiducials implanted into the skull. The accuracy and variance of the patient positioning and imaging systems were measured to be 0.10 ± 0.06 mm, with the maximum uncertainty of rotation being ±0.07°. 957 pairs of interfraction image sets and 974 intrafraction image sets were analyzed. 3D translations and rotations were recorded. The 3D vector interfraction setup reproducibility was 0.13 mm ± 1.8 mm for translations and the largest uncertainty of ± 1.07º for rotations. The intrafraction immobilization efficacy was 0.19 mm ± 0.66 mm for translations and the largest uncertainty of ± 0.50º for rotations. The modified GTC frame provides reproducible setup and effective intrafraction immobilization, while allowing for the complete range of entrance angles from the posterior direction.
Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)
Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2007-01-30
Techniques and instrumentation are described for analyses of substances, including complex samples/mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that "locks" the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as .about.3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.
Microwave systems analysis, solar power satellite. [alignment of the antenna array
NASA Technical Reports Server (NTRS)
1979-01-01
Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.
Rabi oscillations in the dissociative continuum: Rotation and alignment effects
NASA Astrophysics Data System (ADS)
Granucci, Giovanni; Magnier, Sylvie; Persico, Maurizio
2002-01-01
We have simulated a set of experiments in which Rabi oscillations are induced in bound-free and free-free transitions of a diatomic molecule. Dissociative vibrational states belonging to different electronic terms are involved. We show analytically and confirm computationally that a simple relationship exists between the one-dimensional dynamics of a molecule with fixed orientation with respect to the polarization of the radiation field and the three-dimensional dynamics of a rotating system. It is demonstrated that sufficiently short laser pulses can induce oscillations in the probabilities of two coupled electronic states, and in the yields of the respective dissociation products, as functions of the radiation intensity. As a result of molecular rotation the oscillations are damped but not washed out. The initial thermal distribution on several rotational levels has a negligible effect on the photodissociation yields and other experimentally relevant quantities. Since the molecule undergoes a strong alignment along the polarization axis of the laser field, the ejection of atoms and ions is anisotropic. We have chosen the well known diatomic ion Na2+ as a convenient example.
NASA Astrophysics Data System (ADS)
Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.
2017-04-01
Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.
Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI
NASA Astrophysics Data System (ADS)
Olyaee, Saeed; Hamedi, Samaneh
2011-02-01
In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.
Flow past an axially aligned spinning cylinder: Experimental Study
NASA Astrophysics Data System (ADS)
Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva
2017-11-01
Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.
Vane segment support and alignment device
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaurin, L.D.; Sizemore, J.D.
1999-07-13
A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pinmore » is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.« less
Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection.
Gürsoy, Doğa; Hong, Young P; He, Kuan; Hujsak, Karl; Yoo, Seunghwan; Chen, Si; Li, Yue; Ge, Mingyuan; Miller, Lisa M; Chu, Yong S; De Andrade, Vincent; He, Kai; Cossairt, Oliver; Katsaggelos, Aggelos K; Jacobsen, Chris
2017-09-18
As x-ray and electron tomography is pushed further into the nanoscale, the limitations of rotation stages become more apparent, leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality three-dimensional images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. With simulated data where we know the alignment error of each projection image, our approach shows a residual alignment error that is a factor of a thousand smaller, and it reaches the same error level in the reconstructed image in less than half the number of iterations. We then show its application to experimental data in x-ray and electron nanotomography.
NASA Astrophysics Data System (ADS)
Bernstein, L. S.; Shroll, R. M.; Galazutdinov, G. A.; Beletsky, Y.
2018-06-01
We explore the common-carrier hypothesis for the 6196 and 6614 Å diffuse interstellar bands (DIBs). The observed DIB spectra are sharpened using a spectral deconvolution algorithm. This reveals finer spectral features that provide tighter constraints on candidate carriers. We analyze a deconvolved λ6614 DIB spectrum and derive spectroscopic constants that are then used to model the λ6196 spectra. The common-carrier spectroscopic constants enable quantitative fits to the contrasting λ6196 and λ6614 spectra from two sightlines. Highlights of our analysis include (1) sharp cutoffs for the maximum values of the rotational quantum numbers, J max = K max, (2) the λ6614 DIB consisting of a doublet and a red-tail component arising from different carriers, (3) the λ6614 doublet and λ6196 DIBs sharing a common carrier, (4) the contrasting shapes of the λ6614 doublet and λ6196 DIBs arising from different vibration–rotation Coriolis coupling constants that originate from transitions from a common ground state to different upper electronic state degenerate vibrational levels, and (5) the different widths of the two DIBs arising from different effective rotational temperatures associated with principal rotational axes that are parallel and perpendicular to the highest-order symmetry axis. The analysis results suggest a puckered oblate symmetric top carrier with a dipole moment aligned with the highest-order symmetry axis. An example candidate carrier consistent with these specifications is corannulene (C20H10), or one of its symmetric ionic or dehydrogenated forms, whose rotational constants are comparable to those obtained from spectral modeling of the DIB profiles.
Holly, Jan E.; Masood, M. Arjumand; Bhandari, Chiran S.
2017-01-01
Head movements during sustained rotation can cause angular cross-coupling which leads to tumbling illusions. Even though angular vectors predict equal magnitude illusions for head movements in opposite directions, the magnitudes of the illusions are often surprisingly asymmetric, such as during leftward versus rightward yaw while horizontal in a centrifuge. This paper presents a comprehensive investigation of the angular-linear stimulus combinations from eight different published papers in which asymmetries were found. Interactions between all angular and linear vectors, including gravity, are taken into account to model the three-dimensional consequences of the stimuli. Three main results followed. First, for every pair of head yaw movements, an asymmetry was found in the stimulus itself when considered in a fully three-dimensional manner, and the direction of the asymmetry matched the subjectively reported magnitude asymmetry. Second, for pitch and roll head movements for which motion sickness was measured, the stimulus was found symmetric in every case except one, and motion sickness generally aligned with other factors such as the existence of a head rest. Third, three-dimensional modeling predicted subjective inconsistency in the direction of perceived rotation when linear and angular components were oppositely-directed, and predicted surplus illusory rotation in the direction of head movement. PMID:27814310
Optical Links and RF Distribution for Antenna Arrays
NASA Technical Reports Server (NTRS)
Huang, Shouhua; Calhoun, Malcolm; Tjoelker, Robert
2006-01-01
An array of three antennas has recently been developed at the NASA Jet Propulsion Laboratory capable of detecting signals at X and Ka band. The array requires a common frequency reference and high precision phase alignment to correlate received signals. Frequency and timing references are presently provided from a remotely located hydrogen maser and clock through a combination of commercially and custom developed optical links. The selected laser, photodetector, and fiber components have been tested under anticipated thermal and simulated antenna rotation conditions. The resulting stability limitations due to thermal perturbations or induced stress on the optical fiber have been characterized. Distribution of the X band local oscillator includes a loop back and precision phase monitor to enable correlation of signals received from each antenna.
Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.
Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre
2014-06-15
We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)
2003-01-01
A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.
NASA Astrophysics Data System (ADS)
Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin
2018-06-01
We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.
Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R
1996-01-01
It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment.
An Open Source Low-Cost Automatic System for Image-Based 3d Digitization
NASA Astrophysics Data System (ADS)
Menna, F.; Nocerino, E.; Morabito, D.; Farella, E. M.; Perini, M.; Remondino, F.
2017-11-01
3D digitization of heritage artefacts, reverse engineering of industrial components or rapid prototyping-driven design are key topics today. Indeed, millions of archaeological finds all over the world need to be surveyed in 3D either to allow convenient investigations by researchers or because they are inaccessible to visitors and scientists or, unfortunately, because they are seriously endangered by wars and terrorist attacks. On the other hand, in case of industrial and design components there is often the need of deformation analyses or physical replicas starting from reality-based 3D digitisations. The paper is aligned with these needs and presents the realization of the ORION (arduinO Raspberry pI rOtating table for image based 3D recostructioN) prototype system, with its hardware and software components, providing critical insights about its modular design. ORION is an image-based 3D reconstruction system based on automated photogrammetric acquisitions and processing. The system is being developed under a collaborative educational project between FBK Trento, the University of Trento and internship programs with high school in the Trentino province (Italy).
Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue.
York, Timothy; Kahan, Lindsey; Lake, Spencer P; Gruev, Viktor
2014-06-01
A technique for creating maps of the direction and strength of fiber alignment in collagenous soft tissues is presented. The method uses a division of focal plane polarimeter to measure circularly polarized light transmitted through the tissue. The architecture of the sensor allows measurement of the retardance and fiber alignment at the full frame rate of the sensor without any moving optics. The technique compares favorably to the standard method of using a rotating polarizer. How the new technique enables real-time capture of the full angular spread of fiber alignment and retardance under various cyclic loading conditions is illustrated.
Werve, Michael E [Modesto, CA
2006-05-16
A system for inspecting a ceramic component. The ceramic component is positioned on a first rotary table. The first rotary table rotates the ceramic component. Light is directed toward the first rotary table and the rotating ceramic component. A detector is located on a second rotary table. The second rotary table is operably connected to the first rotary table and the rotating ceramic component. The second rotary table is used to move the detector at an angle to the first rotary table and the rotating ceramic component.
Crystallization of Stretched Polyimides: A Structure-Property Study
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Dezern, James F.
2002-01-01
A simple rotational isomeric state model was used to detect the degree to which polyimide repeat units might align to give an extended crystal. It was found experimentally that the hallmarks of stretch-crystallization were more likely to occur in materials whose molecules could readily give extended, aligned conformations. A proposed screening criterion was 84% accurate in selecting crystallizing molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malenda, R. F.; Price, T. J.; Stevens, J.
2015-06-14
We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A{sup 1}Σ{sup +}) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B{sub λ}(j, j′) for each j → j′ transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j ormore » j′ between 0 and 50, and total (translational and rotational) energies in the range 0.0002–0.0025 a.u. (∼44–550 cm{sup −1}). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j′. Finally, we compare the exact quantum results for j → j′ transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.« less
Zou, Shiyang; Sanz, Cristina; Balint-Kurti, Gabriel G
2008-09-28
We present an analytic scheme for designing laser pulses to manipulate the field-free molecular alignment of a homonuclear diatomic molecule. The scheme is based on the use of a generalized pulse-area theorem and makes use of pulses constructed around two-photon resonant frequencies. In the proposed scheme, the populations and relative phases of the rovibrational states of the molecule are independently controlled utilizing changes in the laser intensity and in the carrier-envelope phase difference, respectively. This allows us to create the correct coherent superposition of rovibrational states needed to achieve optimal molecular alignment. The validity and efficiency of the scheme are demonstrated by explicit application to the H(2) molecule. The analytically designed laser pulses are tested by exact numerical solutions of the time-dependent Schrodinger equation including laser-molecule interactions to all orders of the field strength. The design of a sequence of pulses to further enhance molecular alignment is also discussed and tested. It is found that the rotating wave approximation used in the analytic design of the laser pulses leads to small errors in the prediction of the relative phase of the rotational states. It is further shown how these errors may be easily corrected.
Lee, Young Jun; Lee, Joo Kang; Jung, Soo Chang; Lee, Hwang-woo; Yin, Chang Shik; Lee, Young Jin
2013-01-01
Objective. The objective of this study was to investigate the effect of a holistic intraoral appliance (OA) on cervical spine alignment and subjective symptom severity. Design. An observational study on case series with holistic OA therapy. Setting. An outpatient clinic for holistic temporomandibular joint (TMJ) therapy under the supervision of the Pain Center, CHA Biomedical center, CHA University. Subjects. Ambulatory patients presenting with diverse chief complaints in the holistic TMJ clinic. Main Measures. Any immediate change in the curvature of cervical spine and the degree of atlantoaxial rotation was investigated in the images of simple X-ray and computed tomography of cervical spine with or without OA. Changes of subjective symptom severity were also analyzed for the holistic OA therapy cases. Results. A total of 59 cases were reviewed. Alignment of upper cervical spine rotation showed an immediate improvement (P < 0.001). Changes of subjective symptom severity also showed significant improvement (P < 0.05). Conclusion. These cases revealed rudimentary clinical evidence that holistic OA therapy may be related to an alleviated symptom severity and an improved cervical spinal alignment. These results show that further researches may warrant for the holistic TMJ therapy. PMID:23935655
Deriving stellar inclination of slow rotators using stellar activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumusque, X., E-mail: xdumusque@cfa.harvard.edu
2014-12-01
Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle.more » For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.« less
Method and apparatus for depositing a coating on a tape carrier
Storer, Jonathan; Matias, Vladimir
2010-06-15
A system and method for depositing ceramic materials, such as nitrides and oxides, including high temperature superconducting oxides on a tape substrate. The system includes a tape support assembly that comprises a rotatable drum. The rotatable drum supports at least one tape substrate axially disposed on the surface of the drum during the deposition of metals on the tape and subsequent oxidation to form the ceramic materials. The drum is located within a stator having a slot that is axially aligned with the drum. A space exists between the drum and stator. The space is filled with a predetermined partial pressure of a reactive gas. The drum, stator, and space are heated to a predetermined temperature. To form the ceramic material on the tape substrate, the drum is first rotated to align the tape substrate with the slot, and at least one metal is deposited on the substrate. The drum then continues to rotate, bringing the tape substrate into the space, where the metal deposited on the tape substrate reacts with the reactive gas to form the ceramic material. In one embodiment, the tape support system also includes a pay-out/take-up system that co-rotates with the drum and provides a continuous length of tape substrate.
NASA Technical Reports Server (NTRS)
Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.
1985-01-01
A three-dimensional MHD simulation code is used to model the magnetospheric configuration when the IMF has both a northward B(z) component and a B(y) component in the east-west direction. Projections of the plasma pressure, the field-aligned velocity, the field-aligned vorticity, and the field-aligned current along the magnetic field lines into the northern ionosphere are shown and discussed. Cross-sectional patterns of these parameters are shown. The results demonstrate that the B(y) component of the IMF strongly influences the plasma sheet configuration and the magnetospheric convection pattern.
Observation of γ-vibrations and alignments built on non-ground-state configurations in ¹⁵⁶Dy
Zhu, C. -H.; Hartley, D. J.; Riedinger, L. L.; ...
2015-03-26
The exact nature of the lowest K π=2⁺ rotational bands in all deformed nuclei remains obscure. Traditionally they are assumed to be collective vibrations of the nuclear shape in the γ degree of freedom perpendicular to the nuclear symmetry axis. Very few such γ-bands have been traced past the usual back-bending rotational alignments of high-j nucleons. We have investigated the structure of positive-parity bands in the N=90 nucleus ¹⁵⁶Dy, using the ¹⁴⁸Nd(¹²C,4n)¹⁵⁶Dy reaction at 65 MeV, observing the resulting γ-ray transitions with the Gammasphere array. The even- and odd-spin members of the π=2⁺ γ-band are observed to 32⁺ and 31⁺more » respectively. This rotational band faithfully tracks the ground-state configuration to the highest spins. The members of a possible γ-vibration built on the aligned yrast S-band are observed to spins 28⁺ and 27⁺. An even-spin positive-parity band, observed to spin 24⁺, is a candidate for an aligned S-band built on the seniority-zero configuration of the 0₂⁺ state at 676 keV. As a result, the crossing of this band with the 0₂⁺ band is at hw c = 0.28(1) MeV and is consistent with the configuration of the 0₂⁺ band not producing any blocking of the monopole pairing.« less
Franklin, Samuel P; Dover, Ryan K; Andrade, Natalia; Rosselli, Desiree; M Clarke, Kevin
2017-11-01
To describe oblique plane inclined osteotomies and report preliminary data on outcomes in dogs treated for antebrachial angulation-rotation deformities. Retrospective clinical study. Six antebrachii from 5 dogs. Records of dogs with antebrachial angulation-rotation deformities treated with oblique plane inclined osteotomies were reviewed. Postoperative frontal, sagittal, and transverse plane alignments were assessed subjectively, and alignment in the frontal and sagittal planes was quantified on radiographs. Outcomes were classified based on owner's and veterinarian's evaluation as full, acceptable, and unacceptable function. Complications were classified as minor, major, or catastrophic. Limb alignment was subjectively considered excellent in 1 case, good in 3 cases, and fair in 2 cases. Osseous union was achieved in all cases (mean 10.5 weeks; range, 6-13 weeks). Outcomes were assessed by the veterinarian as return to full function in 5 cases and acceptable function in 1 case at the final in-hospital follow-up (mean 44 weeks; range, 6-124 weeks). All owners classified their dogs as returning to full function at the final phone/email interview (mean 107 weeks; range, 72-153 weeks). Implants were removed due to infection or irritation in 3/6 limbs, while the other 3 limbs had minor dermatitis secondary to postoperative external coaptation. No catastrophic complications occurred. Oblique plane inclined osteotomies led to a successful outcome in all 6 limbs, but the technique can be challenging and does not always lead to optimal alignment. Future refinement of this technique could focus on the development of patient-specific osteotomy guides to improve accuracy and precision. © 2017 The American College of Veterinary Surgeons.
NASA Astrophysics Data System (ADS)
Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.
2018-05-01
Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.
Circularly polarized attosecond pulse generation and applications to ultrafast magnetism
NASA Astrophysics Data System (ADS)
Bandrauk, André D.; Guo, Jing; Yuan, Kai-Jun
2017-12-01
Attosecond science is a growing new field of research and potential applications which relies on the development of attosecond light sources. Achievements in the generation and application of attosecond pulses enable to investigate electron dynamics in the nonlinear nonperturbative regime of laser-matter interactions on the electron’s natural time scale, the attosecond. In this review, we describe the generation of circularly polarized attosecond pulses and their applications to induce attosecond magnetic fields, new tools for ultrafast magnetism. Simulations are performed on aligned one-electron molecular ions by using nonperturbative nonlinear solutions of the time-dependent Schrödinger equation. We discuss how bichromatic circularly polarized laser pulses with co-rotating or counter-rotating components induce electron-parent ion recollisions, thus producing circularly polarized high-order harmonic generation, the source of circularly polarized attosecond pulses. Ultrafast quantum electron currents created by the generated attosecond pulses give rise to attosecond magnetic field pulses. The results provide a guiding principle for producing circularly polarized attosecond pulses and ultrafast magnetic fields in complex molecular systems for future research in ultrafast magneto-optics.
Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin
2012-10-08
The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.
Waveform Tomography of Two-Dimensional Three-Component Seismic Data for HTI Anisotropic Media
NASA Astrophysics Data System (ADS)
Gao, Fengxia; Wang, Yanghua; Wang, Yun
2018-06-01
Reservoirs with vertically aligned fractures can be represented equivalently by horizontal transverse isotropy (HTI) media. But inverting for the anisotropic parameters of HTI media is a challenging inverse problem, because of difficulties inherent in a multiple parameter inversion. In this paper, when we invert for the anisotropic parameters, we consider for the first time the azimuthal rotation of a two-dimensional seismic survey line from the symmetry of HTI. The established wave equations for the HTI media with azimuthal rotation consist of nine elastic coefficients, expressed in terms of five modified Thomsen parameters. The latter are parallel to the Thomsen parameters for describing velocity characteristics of weak vertical transverse isotropy media. We analyze the sensitivity differences of the five modified Thomsen parameters from their radiation patterns, and attempt to balance the magnitude and sensitivity differences between the parameters through normalization and tuning factors which help to update the model parameters properly. We demonstrate an effective inversion strategy by inverting velocity parameters in the first stage and updates the five modified Thomsen parameters simultaneously in the second stage, for generating reliably reconstructed models.
Yang, Jie; Guehr, Markus; Vecchione, Theodore; ...
2016-04-05
Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule.more » In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Lastly, our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.« less
Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim
2001-01-01
A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.
Godsi, Oded; Corem, Gefen; Alkoby, Yosef; Cantin, Joshua T.; Krems, Roman V.; Somers, Mark F.; Meyer, Jörg; Kroes, Geert-Jan; Maniv, Tsofar; Alexandrowicz, Gil
2017-01-01
The outcome of molecule–surface collisions can be modified by pre-aligning the molecule; however, experiments accomplishing this are rare because of the difficulty of preparing molecules in aligned quantum states. Here we present a general solution to this problem based on magnetic manipulation of the rotational magnetic moment of the incident molecule. We apply the technique to the scattering of H2 from flat and stepped copper surfaces. We demonstrate control of the molecule's initial quantum state, allowing a direct comparison of differences in the stereodynamic scattering from the two surfaces. Our results show that a stepped surface exhibits a much larger dependence of the corrugation of the interaction on the alignment of the molecule than the low-index surface. We also demonstrate an extension of the technique that transforms the set-up into an interferometer, which is sensitive to molecular quantum states both before and after the scattering event. PMID:28480890
Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions
NASA Astrophysics Data System (ADS)
Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.
2016-07-01
We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.
Effective Induction Heating around Strongly Magnetized Stars
NASA Astrophysics Data System (ADS)
Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H.
2018-05-01
Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet.
NASA Technical Reports Server (NTRS)
Scott, W. A.
1984-01-01
The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.
Reactor component automatic grapple
Greenaway, Paul R.
1982-01-01
A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.
Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection
Gürsoy, Doğa; Hong, Young P.; He, Kuan; ...
2017-09-18
As x-ray and electron tomography is pushed further into the nanoscale, the limitations of rotation stages become more apparent, leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality three-dimensional images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. With simulated data where we know the alignment error of each projection image, our approach shows a residual alignment error that is a factor of a thousand smaller, and it reaches the samemore » error level in the reconstructed image in less than half the number of iterations. We then show its application to experimental data in x-ray and electron nanotomography.« less
High Performance Seed Based Optical Computing.
1998-05-01
distances of the lenses must be large to allow space for elements needed for align- ment, such as an afocal pair, a pair of wedges , and a pellicle...minute wedges . Each of the wedges can be rotated independently to bring the spots onto the proper win- 78 dows. Because the wedges have such a small... wedge angle, a large rotation of the wedges causes only a small movement of the spots; a 180 degree rotation of one wedge moves the spots by 74 U\\m
MHD Turbulence Sheared in Fixed and Rotating Frames
NASA Technical Reports Server (NTRS)
Kassinos, S. C.; Knaepen, B.; Wray, A.
2004-01-01
We consider homogeneous turbulence in a conducting fluid that is exposed to a uniform external magnetic field while being sheared in fixed and rotating frames. We take both the frame-rotation axis and the applied magnetic field to be aligned in the direction normal to the plane of the mean shear. Here a systematic parametric study is carried out in a series of Direct Numerical Simulations (DNS) in order to clarify the main effects determining the structural anisotropy and stability of the flow.
Nuclear Storage Overpack Door Actuator and Alignment Apparatus
Andreyko, Gregory M.
2005-05-11
The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.
Nuclear storage overpack door actuator and alignment apparatus
Andreyko, Gregory M.
2005-05-10
The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.
NASA Astrophysics Data System (ADS)
Szidarovszky, Tamás; Jono, Maho; Yamanouchi, Kaoru
2018-07-01
A user-friendly and cross-platform software called Laser-Induced Molecular Alignment and Orientation simulator (LIMAO) has been developed. The program can be used to simulate within the rigid rotor approximation the rotational dynamics of gas phase molecules induced by linearly polarized intense laser fields at a given temperature. The software is implemented in the Java and Mathematica programming languages. The primary aim of LIMAO is to aid experimental scientists in predicting and analyzing experimental data representing laser-induced spatial alignment and orientation of molecules.
Outcomes of hip resurfacing in a professional dancer: a case report.
Dunleavy, Kim
2012-02-01
A new surgical option (hip resurfacing arthroplasty) is now available for younger patients with hip osteoarthritis. A more aggressive rehabilitation program than the typical total hip arthroplasty protocol is needed for active individuals. This case report describes interventions used to maximize function in a 46-year-old professional dancer after hip resurfacing with a progressive therapeutic exercise program. Exercise choices were selected to address dance-specific requirements while respecting healing of the posterior capsular incision. Strengthening focused on hip abduction, extension, and external rotation. Precautions included avoiding gluteal stretching until 6 months. Pelvic alignment and weight-bearing distribution were emphasized. The patient was able to return to rehearsal by 7 months, at which time strength was equivalent to the unaffected leg. Range of motion reached unaffected side values at week 8 for internal rotation, week 11 for extension, week 13 for adduction, and week 28 for flexion. External rotation and abduction were still limited at 1 year, which influenced pelvic alignment with resultant pain on the unaffected side. Functional and impairment outcomes are presented with timelines to provide a basis for postoperative benchmarks for active clients after hip resurfacing. Although this case report presents a dance-specific program, exercise progressions for other active individuals may benefit from similar exercise intensity and sports-specific focus. Future rehabilitation programs should take into account possible flexion and external rotation range limitations and the need for gluteal muscle strengthening along with symmetry and pelvic alignment correction. Long-term studies investigating intensity of rehabilitation are warranted for patients intending to participate in higher level athletic activity.
Studies of rotating liquid floating zones on Skylab IV
NASA Technical Reports Server (NTRS)
Carruthers, J. R.; Gibson, E. G.; Klett, M. G.; Facemire, B. R.
1975-01-01
Liquid zones of water, soap solution and soap foam were deployed between two aligned circular disks which were free to rotate about the zone axis in the microgravity environment of Skylab IV. Such a configuration is of interest in the containerless handling of melts for possible future space processing crystal growth experiments. Three basic types of zone surface deformation and instability were observed for these rotational conditions; axisymmetric shape changes under single disk rotation, nonaxisymmetric, whirling, C-modes for long zones with equal rotation of both disks, and capillary wave phenomena for short zones with equal rotation of both disks. The sources of these instabilities and the conditions promoting them are analyzed in detail from video tape recordings of the Skylab experiments.
Historical Variations in Inner Core Rotation and Polar Motion at Decade Timescales
NASA Astrophysics Data System (ADS)
Dumberry, M.
2005-12-01
Exchanges of angular momentum between the mantle, the fluid core and the solid inner core result in changes in the Earth's rotation. Torques in the axial direction produce changes in amplitude, or changes in length of day, while torques in the equatorial direction lead to changes in orientation of the rotation vector with respect to the mantle, or polar motion. In this work, we explore the possibility that a combination of electromagnetic and gravitational torques on the inner core can reproduce the observed decadal variations in polar motion known as the Markowitz wobble. Torsional oscillations, which involve azimuthal motions in the fluid core with typical periods of decades, entrain the inner core by electromagnetic traction. When the inner core is axially rotated, its surfaces of constant density are no longer aligned with the gravitational potential from mantle density heterogeneities, and this results in a gravitational torque between the two. The axial component of this torque has been previously described and is believed to be partly responsible for decadal changes in length of day. In this work, we show that it has also an equatorial component, which produces a tilt of the inner core and results in polar motion. The polar motion produced by this mechanism depends on the density structure in the mantle, the rheology of the inner core, and the time-history of the angle of axial misalignment between the inner core and the mantle. We reconstruct the latter using a model of torsional oscillations derived from geomagnetic secular variation. From this time-history, and by using published models of mantle density structure, we show that we can reproduce the salient characteristics of the Markowitz wobble: an eccentric decadal polar motion of 30-50 milliarcsecs oriented along a specific longitude. We discuss the implications of this result, noting that a match in both amplitude and phase of the observed Markowitz wobble allows the recovery of the historical rotational variations of the inner core, and also provides constraints on structure, rheology and dynamics of the Earth's deep interior that cannot be observed directly.
Mechanized fluid connector and assembly tool system with ball detents
NASA Technical Reports Server (NTRS)
Zentner, Ronald C. (Inventor); Smith, Steven A. (Inventor)
1991-01-01
A fluid connector system is disclosed which includes a modified plumbing union having a rotatable member for drawing said union into a fluid tight condition. A drive tool is electric motor actuated and includes a reduction gear train providing an output gear engaging an integral peripheral spur gear on the rotatable member. Coaxial alignment means are attached to both the connector assembly and the drive tool. A hand lever actuated latching system includes a plurality of circumferentially spaced latching balls selectively wedged against the alignment means attached to the connector assembly or to secure the drive tool with its output gear in mesh with the integral peripheral spur gear. The drive motor is torque, speed, and direction controllable.
NASA Technical Reports Server (NTRS)
Khoshnevis, Behrokh (Inventor)
2010-01-01
An apparatus for coupling with a mating coupling module to facilitate the joining of two disjoined structures without requiring precise alignment between the disjoined structures during the coupling of them may include a rotating drive mechanism, a hollow cylindrical body operatively connected to the rotating drive mechanism, wherein the hollow cylindrical body has at least one internal spiral channel, and at least one connector claw positioned within the hollow cylindrical body and guided by the internal spiral channel, wherein the at least one connector claw is configured to extend outwardly from the coupling module to engage the mating coupling module when brought in close proximity but not necessarily in precise alignment with the mating coupling module.
Symmetry, Statistics and Structure in MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.
Morizane, Kazuki; Takahashi, Toshiaki; Konishi, Fumihiko; Yamamoto, Haruyasu
2011-12-01
A new radiographic method using the anterior and posterior femoral condyles as a landmark to determine the rotational alignment of the femoral component in TKA had been developed. The new radiograph presents an axial view of the distal femur. The patients were asked to lie in the supine position and flex the knee approximately 120° to 130°. Radiographs were applied at an inclination angle of 20° to 30°. The condylar twist angle (CTA), the external rotational angle between the posterior condylar (PC) line and the clinical transepicondylar axis (TEA), and the trochlear line angle (TLA), and the internal rotational angle between the anterior trochlear line and the clinical TEA were measured. Images were taken of 129 knees in 87 patients with osteoarthritis of the knee. The measurement values obtained using our method with those obtained using 3D reconstructed images from a 3-dimensional helical CT system (n = 35) were compared. The average CTA was 5.7° ± 2.8° and the average TLA was -5.6° ± 3.2°. The CTA was negatively correlated with the tibiofemoral angle (TFA). The average TLA was positively correlated with the TFA. The average difference between the TLA values obtained with this view and those obtained using the 3D-CT was 0.5° ± 1.6°. The relationship between the radiograph and 3D-CT in TLA was higher than that in CTA. This radiographic technique allows easy and simultaneous measurement of the CTA and TLA and may provide an alternative method for assessing the TEA of the femur during preoperative planning for TKA.
Upright CT of the knee: the effect of weight-bearing on joint alignment.
Hirschmann, Anna; Buck, Florian M; Fucentese, Sandro F; Pfirrmann, Christian W A
2015-11-01
To prospectively compare patellofemoral and femorotibial alignment in supine non-weight-bearing computed tomography (NWBCT) and upright weight-bearing CT (WBCT) and assess the differences in joint alignment. NWBCT and WBCT images of the knee were obtained in 26 patients (mean age, 57.0 ± 15.9 years; range, 21-81) using multiple detector CT for NWBCT and cone-beam extremity CT for WBCT. Two musculoskeletal radiologists independently quantified joint alignment by measuring femorotibial rotation, tibial tuberosity-trochlear groove distance (TTTG), lateral patellar tilt angle, lateral patellar shift, and medial and lateral femorotibial joint space widths. Significant differences between NWBCT and WBCT were sought using Wilcoxon signed-rank test (P-value < 0.05). Significant differences were found for femorotibial rotation (the NWBCT mean changed from 2.7° ± 5.1 (reader 1)/2.6° ± 5.6 (reader 2) external rotation to WBCT 0.4° ± 7.7/0.2° ± 7.5 internal rotation; P = 0.009/P = 0.004), TTTG (decrease from NWBCT (13.8 mm ± 5.1/13.9 mm ± 3.9) to WBCT (10.5 mm ± 5.0/10.9 mm ± 5.2; P = 0.008/P = 0.002), lateral patellar tilt angle (decrease from NWBCT (15.6° ± 6.7/16.9° ± 7.4) to WBCT (12.5° ± 7.7/15.0° ± 6.2; P = 0.011/P = 0.188). The medial femorotibial joint space decreased from NWBCT (3.9 mm ± 1.4/4.5 mm ± 1.3) to WBCT (2.9 mm ± 2.2/3.5 mm ± 2.2; P = 0.003/P = 0.004). Inter-reader agreement ranged from 0.52-0.97. Knee joint alignment changes significantly in the upright weight-bearing position using CT when compared to supine non-weight-bearing CT. • Cone-beam extremity CT offers upright weight-bearing examinations of the lower extremities. • Knee alignment changes significantly in an upright position compared to supine position. • Tibial tuberosity-trochlear groove distance (TTTG) is less pronounced in a weight-bearing position. • The weight-bearing position leads to a decrease of the lateral patellar tilt angle.
Rambold, H; Helmchen, C
2005-01-01
Spontaneous nystagmus caused by dorsolateral medullary infarction may be of vestibular origin. To test if imbalance of the central pathways of the semicircular canals contributes to spontaneous nystagmus in dorsolateral medullary syndrome. We examined four patients with dorsolateral medullary syndrome and recorded spontaneous nystagmus binocularly at gaze straight ahead with the three-dimensional search coil technique. The median slow phase velocity of the nystagmus was analysed in the light and in the dark, and the normalised velocity axes were compared with the rotation axes as predicted from anatomical data of the semicircular canal. The slow phase rotation axes of all patients aligned best with the rotation axes resulting from stimulation of the contralesional posterior and horizontal semicircular canals. This alignment cannot be explained by pure otolith imbalance. We propose that vestibular imbalance caused by an ipsilesional lesion of the central semicircular canal pathways of the horizontal and anterior semicircular canals largely accounts for spontaneous nystagmus in dorsolateral medullary syndrome.
Lateral position detection and control for friction stir systems
Fleming, Paul; Lammlein, David; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David; Hartman, Daniel A.
2010-12-14
A friction stir system for processing at least a first workpiece includes a spindle actuator coupled to a rotary tool comprising a rotating member for contacting and processing the first workpiece. A detection system is provided for obtaining information related to a lateral alignment of the rotating member. The detection system comprises at least one sensor for measuring a force experienced by the rotary tool or a parameter related to the force experienced by the rotary tool during processing, wherein the sensor provides sensor signals. A signal processing system is coupled to receive and analyze the sensor signals and determine a lateral alignment of the rotating member relative to a selected lateral position, a selected path, or a direction to decrease a lateral distance relative to the selected lateral position or selected path. In one embodiment, the friction stir system can be embodied as a closed loop tracking system, such as a robot-based tracked friction stir welding (FSW) or friction stir processing (FSP) system.
Rotationally Vibrating Electric-Field Mill
NASA Technical Reports Server (NTRS)
Kirkham, Harold
2008-01-01
A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.
Implant alignment in total elbow arthroplasty: conventional vs. navigated techniques
NASA Astrophysics Data System (ADS)
McDonald, Colin P.; Johnson, James A.; King, Graham J. W.; Peters, Terry M.
2009-02-01
Incorrect selection of the native flexion-extension axis during implant alignment in elbow replacement surgery is likely a significant contributor to failure of the prosthesis. Computer and image-assisted surgery is emerging as a useful surgical tool in terms of improving the accuracy of orthopaedic procedures. This study evaluated the accuracy of implant alignment using an image-based navigation technique compared against a conventional non-navigated approach. Implant alignment error was 0.8 +/- 0.3 mm in translation and 1.1 +/- 0.4° in rotation for the navigated alignment, compared with 3.1 +/- 1.3 mm and 5.0 +/- 3.8° for the non-navigated alignment. Five (5) of the 11 non-navigated alignments were malaligned greater than 5° while none of the navigated alignments were placed with an error of greater than 2.0°. It is likely that improved implant positioning will lead to reduced implant loading and wear, resulting in fewer implantrelated complications and revision surgeries.
NASA Astrophysics Data System (ADS)
Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2018-04-01
While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013M⊙. Our results indicate that the distributions of these components are well aligned with the major-axes of the central galaxies, with the root mean square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root mean square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analyzing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.
NASA Astrophysics Data System (ADS)
Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2018-07-01
While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here, we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013 M⊙. Our results indicate that the distributions of these components are well aligned with the major axes of the central galaxies, with the root-mean-square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root-mean-square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analysing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.
Rabin, Alon; Portnoy, Sigal; Kozol, Zvi
2016-11-01
Rabin, A, Portnoy, S, and Kozol, Z. The association between visual assessment of quality of movement and three-dimensional analysis of pelvis, hip, and knee kinematics during a lateral step down test. J Strength Cond Res 30(11): 3204-3211, 2016-Altered movement patterns including contralateral pelvic drop, increased hip adduction, knee abduction, and external rotation have been previously implicated in several lower extremity pathologies. Although various methods exist for assessing movement patterns, real-time visual observation is the most readily available method. The purpose of this study was to determine whether differing visual ratings of trunk, pelvis, and knee alignment, as well as overall quality of movement, are associated with differences in 3-dimensional trunk, pelvis, hip, or knee kinematics during a lateral step down test. Trunk, pelvis, and knee alignment of 30 healthy participants performing the lateral step down were visually rated as "good" or "faulty" based on previously established criteria. An additional categorization of overall quality of movement as either good or moderate was performed based on the aggregate score of each individual rating criterion. Three-dimensional motion analysis of trunk, pelvis, hip, and knee kinematics was simultaneously performed. A faulty pelvis alignment displayed a greater peak contralateral pelvic drop (effect size [ES], 1.65; p < 0.01) and a greater peak hip adduction (ES: 1.04, p = 0.01) compared with participants with a good pelvis alignment. Participants with a faulty knee alignment displayed greater peak knee external rotation compared with participants with a good knee alignment (ES, 0.78; p = 0.02). Participants with an overall moderate quality of movement displayed increased peak contralateral pelvic drop (ES, 1.07; p = 0.01) and peak knee external rotation (ES, 0.72; p = 0.04) compared with those with an overall good quality of movement. Visual rating of quality of movement during a lateral step down test, as performed by an experienced physical therapist, is associated with differences in several kinematics previously implicated in various pathologies.
Dobbe, J G G; du Pré, K J; Blankevoort, L; Streekstra, G J; Kloen, P
2017-08-01
The correction of multiplanar deformity is challenging. We describe preoperative 3-D planning and treatment of a complex tibia malunion using an oblique single-cut rotation osteotomy to correct deformity parameters in the sagittal, coronal and transverse plane. At 5 years postoperatively, the patient ambulates without pain with a well-aligned leg.
Torque Induced on Lipid Microtubules with Optical Tweezers
NASA Astrophysics Data System (ADS)
wichean, T. Na; Charrunchon, S.; Pattanaporkratana, A.; Limtrakul, J.; Chattham, N.
2017-09-01
Chiral Phospholipids are found self-assembled into cylindrical tubules of 500 nm in diameter by helical winding of bilayer stripes under cooling in ethanol and water solution. Theoretical prediction and experimental evidence reported so far confirmed the modulated tilt direction in a helical striped pattern of the tubules. This molecular orientation morphology results in optically birefringent tubules. We investigate an individual lipid microtubule under a single optical trap of 532 nm linearly polarized laser. Spontaneous rotation of a lipid tubule induced by radiation torque was observed with only one sense of rotation caused by chirality of a lipid tubule. Rotation discontinued once the high refractive index axis of a lipid tubule aligned with a polarization axis of the laser. We further explored a lipid tubule under circularly polarized optical trap. It was found that a lipid tubule was continuously rotated confirming the tubule birefringent property. We modified the shape of optical trap by cylindrical lens obtaining an elliptical profile optical trap. A lipid tubule can be aligned along the elongated length of optical trap. We reported an investigation of competition between polarized light torque on a birefringent lipid tubule versus torque from intensity gradient of an elongated optical trap.
A convenient alignment approach for x-ray imaging experiments based on laser positioning devices
Zhang, Da; Donovan, Molly; Wu, Xizeng; Liu, Hong
2008-01-01
This study presents a two-laser alignment approach for facilitating the precise alignment of various imaging and measuring components with respect to the x-ray beam. The first laser constantly pointed to the output window of the source, in a direction parallel to the path along which the components are placed. The second laser beam, originating from the opposite direction, was calibrated to coincide with the first laser beam. Thus, a visible indicator of the direction of the incident x-ray beam was established, and the various components could then be aligned conveniently and accurately with its help. PMID:19070224
Berhouet, J; Garaud, P; Favard, L
2013-12-01
A common disadvantage of reverse shoulder arthroplasty is limitation of the range of arm rotation. Several changes to the prosthesis design and implantation technique have been suggested to improve rotation range of motion (ROM). Glenoid component design and degree of humeral component retroversion influence rotation ROM after reverse shoulder arthroplasty. The Aequalis Reversed™ shoulder prosthesis (Tornier Inc., Edina, MN, USA) was implanted into 40 cadaver shoulders. Eight glenoid component combinations were tested, five with the 36-mm sphere (centred seating, eccentric seating, inferior tilt, centred with a 5-mm thick lateralised spacer, and centred with a 7-mm thick lateralised spacer) and three with the 42-mm sphere (centred with no spacer or with a 7-mm or 10-mm spacer). Humeral component position was evaluated with 0°, 10°, 20°, 30°, and 40° of retroversion. External and internal rotation ROMs to posterior and anterior impingement on the scapular neck were measured with the arm in 20° of abduction. The large glenosphere (42 mm) was associated with significantly (P<0.05) greater rotation ROMs, particularly when combined with a lateralised spacer (46° internal and 66° external rotation). Rotation ROMs were smallest with the 36-mm sphere. Greater humeral component retroversion was associated with a decrease in internal rotation and a significant increase (P<0.05) in external rotation. The best balance between rotation ROMs was obtained with the native retroversion, which was estimated at 17.5° on average in this study. Our anatomic study in a large number of cadavers involved a detailed and reproducible experimental protocol. However, we did not evaluate the variability in scapular anatomy. Earlier studies of the influence of technical parameters did not take humeral component retroversion into account. In addition, no previous studies assessed rotation ROMs. Rotation ROM should be improved by the use of a large-diameter glenosphere with a spacer to lateralise the centre of rotation of the gleno-humeral joint, as well as by positioning the humeral component at the patient's native retroversion value. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Energy and rotation-dependent stereodynamics of reaction
NASA Astrophysics Data System (ADS)
Yong-Qing, Li; Yun-Fan, Yang; Yang, Yu; Yong-Jia, Zhang; Feng-Cai, Ma
2016-02-01
Quasi-classical trajectory calculations are performed to study the stereodynamics of the reaction based on the first excited state NH2(12A‧) potential energy surface reported by Li et al. [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k‧ distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k‧ distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j‧ of the product H2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141and 11274149), the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2015040), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. 2014-1685), and the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil and the China Postdoctoral Science Foundation (Grant No. 2014M550158).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gürsoy, Doğa; Hong, Young P.; He, Kuan
As x-ray and electron tomography is pushed further into the nanoscale, the limitations of rotation stages become more apparent, leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality three-dimensional images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. With simulated data where we know the alignment error of each projection image, our approach shows a residual alignment error that is a factor of a thousand smaller, and it reaches the samemore » error level in the reconstructed image in less than half the number of iterations. We then show its application to experimental data in x-ray and electron nanotomography.« less
Characteristics of ionospheric convection and field-aligned current in the dayside cusp region
NASA Technical Reports Server (NTRS)
Lu, G.; Lyons, L. R.; Reiff, P. H.; Denig, W. F.; Beaujardiere, O. De LA; Kroehl, H. W.; Newell, P. T.; Rich, F. J.; Opgenoorth, H.; Persson, M. A. L.
1995-01-01
The assimilative mapping of ionospheric electrodynamics (AMIE) technique has been used to estimate global distributions of high-latitude ionospheric convection and field-aligned current by combining data obtained nearly simultaneously both from ground and from space. Therefore, unlike the statistical patterns, the 'snapshot' distributions derived by AMIE allow us to examine in more detail the distinctions between field-aligned current systems associated with separate magnetospheric processes, especially in the dayside cusp region. By comparing the field-aligned current and ionospheric convection patterns with the corresponding spectrograms of precipitating particles, the following signatures have been identified: (1) For the three cases studied, which all had an IMF with negative y and z components, the cusp precipitation was encountered by the DMSP satellites in the postnoon sector in the northern hemisphere and in the prenoon sector in the southern hemisphere. The equatorward part of the cusp in both hemispheres is in the sunward flow region and marks the beginning of the flow rotation from sunward to antisunward. (2) The pair of field-aligned currents near local noon, i.e., the cusp/mantle currents, are coincident with the cusp or mantle particle precipitation. In distinction, the field-aligned currents on the dawnside and duskside, i.e., the normal region 1 currents, are usually associated with the plasma sheet particle precipitation. Thus the cusp/mantle currents are generated on open field lines and the region 1 currents mainly on closed field lines. (3) Topologically, the cusp/mantle currents appear as an expansion of the region 1 currents from the dawnside and duskside and they overlap near local noon. When B(sub y) is negative, in the northern hemisphere the downward field-aligned current is located poleward of the upward current; whereas in the southern hemisphere the upward current is located poleward of the downward current. (4) Under the assumption of quasi-steady state reconnection, the location of the separatrix in the ionosphere is estimated and the reconnection velocity is calculated to be between 400 and 550 m/s. The dayside separatrix lies equatorward of the dayside convection throat in the two cases examined.
Star formation in early-type galaxies: the role of stellar winds and kinematics.
NASA Astrophysics Data System (ADS)
Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca
2015-08-01
Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in newly formed stars formed a few Gyr ago; the SF rate at the present epoch is low (≤0.1 M⊙/yr) and agrees well with that observed, at least for ETGs of stellar mass <1011 M⊙.
Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty.
Lee, Yong Seuk; Howell, Stephen M; Won, Ye-Yeon; Lee, O-Sung; Lee, Seung Hoon; Vahedi, Hamed; Teo, Seow Hui
2017-11-01
A systematic review was conducted to answer the following questions: (1) Does kinematically aligned (KA) total knee arthroplasty (TKA) achieve clinical outcomes comparable to those of mechanically aligned (MA) TKA? (2) How do the limb, knee, and component alignments differ between KA and MA TKA? (3) How is joint line orientation angle (JLOA) changed from the native knee in KA TKA compared to that in MA TKA? Nine full-text articles in English that reported the clinical and radiological outcomes of KA TKA were included. Five studies had a control group of patients who underwent MA TKA. Data on patient demographics, clinical scores, and radiological results were extracted. There were two level I, one level II, three level III, and three level IV studies. Six of the nine studies used patient-specific instrumentation, one study used computer navigation, and two studies used manual instrumentation. The clinical outcomes of KA TKA were comparable or superior to those of MA TKA with a minimum 2-year follow-up. Limb and knee alignment in KA TKA was similar to those in MA TKA, and component alignment showed slightly more varus in the tibial component and slightly more valgus in the femoral component. The JLOA in KA TKA was relatively parallel to the floor compared to that in the native knee and not oblique (medial side up and lateral side down) compared to that in MA TKA. The implant survivorship and complication rate of the KA TKA were similar to those of the MA TKA. Similar or better clinical outcomes were produced by using a KA TKA at early-term follow-up and the component alignment differed from that of MA TKA. KA TKA seemed to restore function without catastrophic failure regardless of the alignment category up to midterm follow-up. The JLOA in KA TKA was relatively parallel to the floor similar to the native knee compared to that in MA TKA. The present review of nine published studies suggests that relatively new kinematic alignment is an acceptable and alternative alignment to mechanical alignment, which is better understood. Further validation of these findings requires more randomized clinical trials with longer follow-up. Level II.
On decomposing stimulus and response waveforms in event-related potentials recordings.
Yin, Gang; Zhang, Jun
2011-06-01
Event-related potentials (ERPs) reflect the brain activities related to specific behavioral events, and are obtained by averaging across many trial repetitions with individual trials aligned to the onset of a specific event, e.g., the onset of stimulus (s-aligned) or the onset of the behavioral response (r-aligned). However, the s-aligned and r-aligned ERP waveforms do not purely reflect, respectively, underlying stimulus (S-) or response (R-) component waveform, due to their cross-contaminations in the recorded ERP waveforms. Zhang [J. Neurosci. Methods, 80, pp. 49-63, 1998] proposed an algorithm to recover the pure S-component waveform and the pure R-component waveform from the s-aligned and r-aligned ERP average waveforms-however, due to the nature of this inverse problem, a direct solution is sensitive to noise that disproportionally affects low-frequency components, hindering the practical implementation of this algorithm. Here, we apply the Wiener deconvolution technique to deal with noise in input data, and investigate a Tikhonov regularization approach to obtain a stable solution that is robust against variances in the sampling of reaction-time distribution (when number of trials is low). Our method is demonstrated using data from a Go/NoGo experiment about image classification and recognition.
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2016-01-01
To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex(®)3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform.
Backbendings of superdeformed bands in 36;40Ar
NASA Astrophysics Data System (ADS)
Xiang, Xu-Hui; He, Xiao-Tao
2018-05-01
Experimentally observed superdeformed (SD) rotational bands in 36Ar and 40Ar are studied by the cranked shell model (CSM) with the pairing correlations treated by a particle-number-conserving (PNC) method. This is the first time that PNC-CSM calculations have been performed on the light nuclear mass region around A=40. The experimental kinematic moments of inertia J (1) versus rotational frequency are reproduced well. The backbending of the SD band at frequency around ℏω=1.5 MeV in 36Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton 1d 5/2[202]5/2 pairs and 1f 7/2[321]3/2 pairs, which is a consequence of the band crossing between the 1d 5/2[202]5/2 and 1f 7/2[321]3/2 configuration states. The gentle upbending at low frequency of the SD band in 40Ar is mainly affected by the alignments of the neutron 1f 7/2[321]3/2 pairs and proton 1d 5/2[202]5/2 pairs. The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands. Supported by National Natural Science Foundation of China (11775112 and 11275098) and the Priority Academic Program Development of Jiangsu Higher Education Institutions
Tuning the shear viscosity of a dilute suspension using particle shapes that inhibit rotation
NASA Astrophysics Data System (ADS)
Sinai Borker, Neeraj; Stroock, Abraham; Koch, Donald
2017-11-01
We show that a suspension of slender, rigid-particles that attain an equilibrium orientation in a simple shear flow have a much smaller intrinsic viscosity relative to a suspension of tumbling particles with the same aspect ratio. An axisymmetric particle, such as a ring or a fiber, with certain cross-sections can attain an equilibrium orientation in a low Reynolds number simple shear flow without application of external forces (Singh et al., J. Fluid Mech., 2013; Bretherton, J. Fluid Mech., 1962 a). These particles align such that the slender dimension(s) of the particle is/are almost perpendicular to the velocity gradient direction of the simple shear flow and thus they have much smaller stresslets compared to the time averaged stresslet of a rotating slender particle. While slender fibers, also remain aligned in a similar state for a long time, the major contribution to the average stresslet occurs when the fiber is flipping. Using slender body theory and boundary element method calculations we demonstrate that particle alignment could significantly reduce the intrinsic viscosity of the suspension relative to a suspension of rotating particles. By choosing particle shapes that can be fabricated using manufacturing techniques such as photolithography or 3-D printing, our results open new pathways to control the rheological properties of a particle suspension by altering the shape of the particle. This research was funded by NSF Grant CBET-1435013.
Optical alignment of the JWST ISIM to the OTE simulator (OSIM): current concept and design studies
NASA Astrophysics Data System (ADS)
Frey, Bradley J.; Davila, Pamela S.; Hagopian, John G.; Marsh, James M.; Ohl, Raymond G.; Wilson, Mark E.; Young, Philip J.
2007-09-01
The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) contains the observatory's four science instruments and their support subsystems. During alignment and test of the integrated ISIM at NASA's Goddard Space Flight Center (GSFC), the Optical telescope element SIMulator (OSIM) will be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to align the OSIM to the ISIM during testing at GSFC. These fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, six degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing. These fixtures will allow us to position the OSIM and detect OSIM-ISIM absolute alignment to better than 180 microns in translation and 540 micro-radians in rotation. We will provide a brief overview of the OSIM system and we will also discuss the relevance of these fixtures in the context of the overall ISIM alignment and test plan.
Zhao, Kristin D.; Ben-Abraham, Ephraim I.; Magnuson, Dixon J.; Camp, Jon J.; Berglund, Lawrence J.; An, Kai-Nan; Bronfort, Gert; Gay, Ralph E.
2016-01-01
Spine intersegmental motion parameters and the resultant regional patterns may be useful for biomechanical classification of low back pain (LBP) as well as assessing the appropriate intervention strategy. Because of its availability and reasonable cost, two-dimensional (2D) fluoroscopy has great potential as a diagnostic and evaluative tool. However, the technique of quantifying intervertebral motion in the lumbar spine must be validated, and the sensitivity assessed. The purpose of this investigation was to (1) compare synchronous fluoroscopic and optoelectronic measures of intervertebral rotations during dynamic flexion–extension movements in vitro and (2) assess the effect of C-arm rotation to simulate off-axis patient alignment on intervertebral kinematics measures. Six cadaveric lumbar–sacrum specimens were dissected, and active marker optoelectronic sensors were rigidly attached to the bodies of L2–S1. Fluoroscopic sequences and optoelectronic kinematic data (0.15-mm linear, 0.17–0.20 deg rotational, accuracy) were obtained simultaneously. After images were obtained in a true sagittal plane, the image receptor was rotated in 5 deg increments (posterior oblique angulations) from 5 deg to 15 deg. Quantitative motion analysis (qma) software was used to determine the intersegmental rotations from the fluoroscopic images. The mean absolute rotation differences between optoelectronic values and dynamic fluoroscopic values were less than 0.5 deg for all the motion segments at each off-axis fluoroscopic rotation and were not significantly different (P > 0.05) for any of the off-axis rotations of the fluoroscope. Small misalignments of the lumbar spine relative to the fluoroscope did not introduce measurement variation in relative segmental rotations greater than that observed when the spine and fluoroscope were perpendicular to each other, suggesting that fluoroscopic measures of relative segmental rotation during flexion–extension are likely robust, even when patient alignment is not perfect. PMID:26974192
Zhao, Kristin D; Ben-Abraham, Ephraim I; Magnuson, Dixon J; Camp, Jon J; Berglund, Lawrence J; An, Kai-Nan; Bronfort, Gert; Gay, Ralph E
2016-05-01
Spine intersegmental motion parameters and the resultant regional patterns may be useful for biomechanical classification of low back pain (LBP) as well as assessing the appropriate intervention strategy. Because of its availability and reasonable cost, two-dimensional (2D) fluoroscopy has great potential as a diagnostic and evaluative tool. However, the technique of quantifying intervertebral motion in the lumbar spine must be validated, and the sensitivity assessed. The purpose of this investigation was to (1) compare synchronous fluoroscopic and optoelectronic measures of intervertebral rotations during dynamic flexion-extension movements in vitro and (2) assess the effect of C-arm rotation to simulate off-axis patient alignment on intervertebral kinematics measures. Six cadaveric lumbar-sacrum specimens were dissected, and active marker optoelectronic sensors were rigidly attached to the bodies of L2-S1. Fluoroscopic sequences and optoelectronic kinematic data (0.15-mm linear, 0.17-0.20 deg rotational, accuracy) were obtained simultaneously. After images were obtained in a true sagittal plane, the image receptor was rotated in 5 deg increments (posterior oblique angulations) from 5 deg to 15 deg. Quantitative motion analysis (qma) software was used to determine the intersegmental rotations from the fluoroscopic images. The mean absolute rotation differences between optoelectronic values and dynamic fluoroscopic values were less than 0.5 deg for all the motion segments at each off-axis fluoroscopic rotation and were not significantly different (P > 0.05) for any of the off-axis rotations of the fluoroscope. Small misalignments of the lumbar spine relative to the fluoroscope did not introduce measurement variation in relative segmental rotations greater than that observed when the spine and fluoroscope were perpendicular to each other, suggesting that fluoroscopic measures of relative segmental rotation during flexion-extension are likely robust, even when patient alignment is not perfect.
Optical design of the ATMOS Fourier transform spectrometer
NASA Technical Reports Server (NTRS)
Abel, I. R.; Reynolds, B. R.; Breckinridge, J. B.; Pritchard, J.
1979-01-01
The optical system design of the ATMOS Fourier transform spectrometer to be operated from Spacelab for the measurement of stratospheric trace molecules is described. The design contains features which can achieve the required fringe contrast of 80% and spectral resolution of 0.02/cm over a spectral range of 2-16 microns. In particular, the design is based on the following features which alleviate the usual requirements for alignment precision: (1) 'cat's eye' mirror configuration in the two arms of the interferometer for retroreflection stability, (2) tilt-compensated system of beamsplitter, compensator, and fold mirrors for wavefront directional stability, (3) paraboloidal 'cat's eye' primary mirror for wavefront stability against shear, (4) rotatable compensator for matching chromatic dispersion, and (5) wedged refractive components to avoid channel spectra due to the Fabry-Perot effect.
Dancing Twins: Stellar Hierarchies That Formed Sequentially?
NASA Astrophysics Data System (ADS)
Tokovinin, Andrei
2018-04-01
This paper draws attention to the class of resolved triple stars with moderate ratios of inner and outer periods (possibly in a mean motion resonance) and nearly circular, mutually aligned orbits. Moreover, stars in the inner pair are twins with almost identical masses, while the mass sum of the inner pair is comparable to the mass of the outer component. Such systems could be formed either sequentially (inside-out) by disk fragmentation with subsequent accretion and migration, or by a cascade hierarchical fragmentation of a rotating cloud. Orbits of the outer and inner subsystems are computed or updated in four such hierarchies: LHS 1070 (GJ 2005, periods 77.6 and 17.25 years), HIP 9497 (80 and 14.4 years), HIP 25240 (1200 and 47.0 years), and HIP 78842 (131 and 10.5 years).
Limited rotation of the mobile-bearing in a rotating platform total knee prosthesis.
Garling, E H; Kaptein, B L; Nelissen, R G H H; Valstar, E R
2007-01-01
The hypothesis of this study was that the polyethylene bearing in a rotating platform total knee prosthesis shows axial rotation during a step-up motion, thereby facilitating the theoretical advantages of mobile-bearing knee prostheses. We examined 10 patients with rheumatoid arthritis who had a rotating platform total knee arthroplasty (NexGen LPS mobile, Zimmer Inc. Warsaw, USA). Fluoroscopic data was collected during a step-up motion six months postoperatively. A 3D-2D model fitting technique was used to reconstruct the in vivo 3D kinematics. The femoral component showed more axial rotation than the polyethylene mobile-bearing insert compared to the tibia during extension. In eight knees, the femoral component rotated internally with respect to the tibia during extension. In the other two knees the femoral component rotated externally with respect to the tibia. In all 10 patients, the femur showed more axial rotation than the mobile-bearing insert indicating the femoral component was sliding on the polyethylene of the rotating platform during the step-up motion. Possible explanations are a too limited conformity between femoral component and insert, the anterior located pivot location of the investigated rotating platform design, polyethylene on metal impingement and fibrous tissue formation between the mobile-bearing insert and the tibial plateau.
Lam, Nicholas C K; Fishburn, Steven J; Hammer, Angie R; Petersen, Timothy R; Gerstein, Neal S; Mariano, Edward R
2015-06-01
Achieving the best view of the needle and target anatomy when performing ultrasound-guided interventional procedures requires technical skill, which novices may find difficult to learn. We hypothesized that teaching novice performers to use 4 sequential steps (see, tilt, align, and rotate [STAR] method) to identify the needle under ultrasound guidance is more efficient than training with the commonly described probe movements of align, rotate, and tilt (ART). This study compared 2 instructional methods for transducer manipulation including alignment of a probe and needle by novices during a simulated ultrasound-guided nerve block. Right-handed volunteers between the ages of 18 and 55 years who had no previous ultrasound experience were recruited and randomized to 1 of 2 groups; one group was trained to troubleshoot misalignment with the ART method, and the other was trained with the new STAR maneuver. Participants performed the task, consisting of directing a needle in plane to 3 targets in a standardized gelatin phantom 3 times. The performance assessor and data analyst were blinded to group assignment. Thirty-five participants were recruited. The STAR group was able to complete the task more quickly (P < .001) and visualized the needle in a greater proportion of the procedure time (P = .004) compared to the ART group. All STAR participants were able to complete the task, whereas 41% of ART participants abandoned the task (P = .003). Novices are able to complete a simulated ultrasound-guided nerve block more quickly and efficiently when trained with the 4-step STAR maneuver compared to the ART method. © 2015 by the American Institute of Ultrasound in Medicine.
An error analysis perspective for patient alignment systems.
Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann
2013-09-01
This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.
Kinematic analysis of hip and knee rotation and other contributors to ballet turnout.
Quanbeck, Amy E; Russell, Jeffrey A; Handley, Sara C; Quanbeck, Deborah S
2017-02-01
Turnout, or external rotation (ER) of the lower extremities, is essential in ballet. The purpose of this study was to utilise physical examination and a biomechanical method for obtaining functional kinematic data using hip and knee joint centres to identify the relative turnout contributions from hip rotation, femoral anteversion, knee rotation, tibial torsion, and other sources. Ten female dancers received a lower extremity alignment assessment, including passive hip rotation, femoral anteversion, tibial torsion, weightbearing foot alignment, and Beighton hypermobility score. Next, turnout was assessed using plantar pressure plots and three-dimensional motion analysis; participants performed turnout to ballet first position on both a plantar pressure mat and friction-reducing discs. A retro-reflective functional marker motion capture system mapped the lower extremities and hip and knee joint centres. Mean total turnout was 129±15.7° via plantar pressure plots and 135±17.8° via kinematics. Bilateral hip ER during turnout was 49±10.2° (36% of total turnout). Bilateral knee ER during turnout was 41±5.9° (32% of total turnout). Hip ER contribution to total turnout measured kinematically was less than expected compared to other studies, where hip ER was determined without functional kinematic data. Knee ER contributed substantially more turnout than expected or previously reported. This analysis method allows precise assessment of turnout contributors.
Tidal waves in 102Pd: a rotating condensate of multiple d bosons.
Ayangeakaa, A D; Garg, U; Caprio, M A; Carpenter, M P; Ghugre, S S; Janssens, R V F; Kondev, F G; Matta, J T; Mukhopadhyay, S; Patel, D; Seweryniak, D; Sun, J; Zhu, S; Frauendorf, S
2013-03-08
Low-lying collective excitations in even-even vibrational and transitional nuclei may be described semiclassically as quadrupole running waves on the surface of the nucleus ("tidal waves"), and the observed vibrational-rotational behavior can be thought of as resulting from a rotating condensate of interacting d bosons. These concepts have been investigated by measuring lifetimes of the levels in the yrast band of the (102)Pd nucleus with the Doppler shift attenuation method. The extracted B(E2) reduced transition probabilities for the yrast band display a monotonic increase with spin, in agreement with the interpretation based on rotation-induced condensation of aligned d bosons.
Masks For Deposition Of Aspherical Optical Surfaces
NASA Technical Reports Server (NTRS)
Rogers, John R.; Martin, John D.
1992-01-01
Masks of improved design developed for use in fabrication of aspherical, rotationally symmetrical surfaces of mirrors, lenses, and lens molds by evaporative deposition onto rotating substrates. In deposition chamber, source and mask aligned with axis of rotation of substrate. Mask shadows source of rotating substrate. Azimuthal opening (as function of radius) in mask proportional to desired thickness (as function of radius) to which material deposited on substrate. Combination of improved masks and modern coating chambers provides optical surfaces comparable or superior to those produced by conventional polishing, computer-controlled polishing, replication from polished molds, and diamond turning, at less cost in material, labor, and capital expense.
Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.
2005-01-18
A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.
Immobilization precision of a modified GTC frame
Daartz, Juliane; Dankers, Frank; Bussière, Marc
2012-01-01
The purpose of this study was to evaluate and quantify the interfraction reproducibility and intrafraction immobilization precision of a modified GTC frame. The error of the patient alignment and imaging systems were measured using a cranial skull phantom, with simulated, predetermined shifts. The kV setup images were acquired with a room‐mounted set of kV sources and panels. Calculated translations and rotations provided by the computer alignment software relying upon three implanted fiducials were compared to the known shifts, and the accuracy of the imaging and positioning systems was calculated. Orthogonal kV setup images for 45 proton SRT patients and 1002 fractions (average 22.3 fractions/patient) were analyzed for interfraction and intrafraction immobilization precision using a modified GTC frame. The modified frame employs a radiotransparent carbon cup and molded pillow to allow for more treatment angles from posterior directions for cranial lesions. Patients and the phantom were aligned with three 1.5 mm stainless steel fiducials implanted into the skull. The accuracy and variance of the patient positioning and imaging systems were measured to be 0.10±0.06 mm, with the maximum uncertainty of rotation being ±0.07°.957 pairs of interfraction image sets and 974 intrafraction image sets were analyzed. 3D translations and rotations were recorded. The 3D vector interfraction setup reproducibility was 0.13 mm ±1.8 mm for translations and the largest uncertainty of ±1.07° for rotations. The intrafraction immobilization efficacy was 0.19 mm ±0.66 mm for translations and the largest uncertainty of ±0.50° for rotations. The modified GTC frame provides reproducible setup and effective intrafraction immobilization, while allowing for the complete range of entrance angles from the posterior direction. PACS number: 87.53.Ly, 87.55.Qr PMID:22584167
NASA Astrophysics Data System (ADS)
Coudert, L. H.
2018-03-01
Quantum optimal control theory is applied to determine numerically the terahertz and nonresonant laser pulses leading, respectively, to the highest degree of orientation and alignment of the asymmetric-top H2S molecule. The optimized terahertz pulses retrieved for temperatures of zero and 50 K lead after 50 ps to an orientation with ⟨ΦZx⟩ = 0.959 73 and ⟨⟨ΦZx⟩⟩ = 0.742 30, respectively. For the zero temperature, the orientation is close to its maximum theoretical value; for the higher temperature, it is below the maximum theoretical value. The mechanism by which the terahertz pulse populates high lying rotational levels is elucidated. The 5 ps long optimized laser pulse calculated for a zero temperature leads to an alignment with ⟨ΦZy 2 ⟩ =0.944 16 and consists of several kick pulses with a duration of ≈0.1 ps. It is found that the timing of these kick pulses is such that it leads to an increase of the rotational energy of the molecule. The optimized laser pulse retrieved for a temperature of 20 K is 6 ps long and yields a lower alignment with ⟨⟨ΦZy 2 ⟩ ⟩ =0.717 20 .
NASA Technical Reports Server (NTRS)
Ramsey, John K. (Inventor); Meyn, Erwin H. (Inventor)
1990-01-01
A pair of spaced collars are mounted at right angles on a clamp body by retaining rings which enable the collars to rotate with respect to the clamp body. Mounting posts extend through aligned holes in the collars and clamp body. Each collar can be clamped onto the inserted post while the clamp body remains free to rotate about the post and collar. The clamp body is selectively clamped onto each post.
Poltis, Robert; Stojkovic, Dejan
2010-10-15
The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations.
Distance-Dependent Sign Reversal in the Casimir-Lifshitz Torque
NASA Astrophysics Data System (ADS)
Thiyam, Priyadarshini; Parashar, Prachi; Shajesh, K. V.; Malyi, Oleksandr I.; Boström, Mathias; Milton, Kimball A.; Brevik, Iver; Persson, Clas
2018-03-01
The Casimir-Lifshitz torque between two biaxially polarizable anisotropic planar slabs is shown to exhibit a nontrivial sign reversal in its rotational sense. The critical distance ac between the slabs that marks this reversal is characterized by the frequency ωc˜c /2 ac at which the in-planar polarizabilities along the two principal axes are equal. The two materials seek to align their principal axes of polarizabilities in one direction below ac, while above ac their axes try to align rotated perpendicular relative to their previous minimum energy orientation. The sign reversal disappears in the nonretarded limit. Our perturbative result, derived for the case when the differences in the relative polarizabilities are small, matches excellently with the exact theory for uniaxial materials. We illustrate our results for black phosphorus and phosphorene.
A rate-controlled teleoperator task with simulated transport delays
NASA Technical Reports Server (NTRS)
Pennington, J. E.
1983-01-01
A teleoperator-system simulation was used to examine the effects of two control modes (joint-by-joint and resolved-rate), a proximity-display method, and time delays (up to 2 sec) on the control of a five-degree-of-freedom manipulator performing a probe-in-hole alignment task. Four subjects used proportional rotational control and discrete (on-off) translation control with computer-generated visual displays. The proximity display enabled subjects to separate rotational errors from displacement (translation) errors; thus, when the proximity display was used with resolved-rate control, the simulated task was trivial. The time required to perform the simulated task increased linearly with time delay, but time delays had no effect on alignment accuracy. Based on the results of this simulation, several future studies are recommended.
An atomistic fingerprint algorithm for learning ab initio molecular force fields
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em
2018-01-01
Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.
Guillemot, L.; Johnson, T. J.; Venter, C.; ...
2011-12-12
We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, con rming the X-ray emission properties of PSR B1937+21 and nding evidence (~ 4σ) for pulsed emission from PSR B1957+20 for the rst time. In both cases the gamma-ray emission pro le is characterized bymore » two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillemot, L.; Kramer, M.; Freire, P. C. C.
2012-01-01
We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by twomore » peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.« less
NASA Technical Reports Server (NTRS)
Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.;
2011-01-01
We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.
Human habitat positioning system for NASA's space flight environmental simulator
NASA Technical Reports Server (NTRS)
Caldwell, W. F.; Tucker, J.; Keas, P.
1998-01-01
Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton; Hultgren, Lennart S.
2015-01-01
The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper.
Influence of the axial rotation angle on tool mark striations.
Garcia, Derrel Louis; Pieterman, René; Baiker, Martin
2017-10-01
A tool's axial rotation influences the geometric properties of a tool mark. The larger the axial rotation angle, the larger the compression of structural details like striations. This complicates comparing tool marks at different axial rotations. Using chisels, tool marks were made from 0° to 75° axial rotation and compared using an automated approach Baiker et al. [10]. In addition, a 3D topographic surface of a chisel was obtained to generate virtual tool marks and to test whether the axial rotation angle of a mark could be predicted. After examination of the tool mark and chisel data-sets it was observed that marks lose information with increasing rotation due to the change in relative distance between geometrical details on the tool and the disappearance of smaller details. The similarity and repeatability were high for comparisons between marks with no difference in axial rotation, but decreasing with increased rotation angle from 0° to 75°. With an increasing difference in the rotation angles, the tool marks had to be corrected to account for the different compression factors between them. For compression up to 7.5%, this was obtained automatically by the tool mark alignment method. For larger compression, manually re-sizing the marks to the uncompressed widths at 0° rotation before the alignment was found suitable for successfully comparing even large differences in axial rotation. The similarity and repeatability were decreasing however, with increasing degree of re-sizing. The quality was assessed by determining the similarity at different detail levels within a tool mark. With an axial rotation up to 75°, tool marks were found to reliably represent structural details down to 100μm. The similarity of structural details below 100μm was dependent on the angle, with the highest similarity at small rotation angles and the lowest similarity at large rotation angles. Filtering to remove the details below 100μm lead to consistently higher similarity between tool marks at all angles and allowed for a comparison of marks up to 75° axial rotation. Finally, generated virtual tool mark profiles with an axial rotation were compared to experimental tool marks. The similarity between virtual and experimental tool marks remained high up to 60° rotation after which it decreased due to the loss in quality in both marks. Predicting the rotation angle is possible under certain conditions up to 45° rotation with an accuracy of 2.667±0.577° rotation. Copyright © 2017 Elsevier B.V. All rights reserved.
Nakamura, Shinichiro; Tanaka, Yoshihisa; Kuriyama, Shinichi; Nishitani, Kohei; Ito, Hiromu; Furu, Moritoshi; Matsuda, Shuichi
2017-06-01
Anterior knee pain has been reported as a major postoperative complication after total knee arthroplasty, which may lead to patient dissatisfaction. Rotational alignment and the medial-lateral position correlate with patellar maltracking, which can cause knee pain postoperatively. However, the superior-inferior position of the patellar component has not been investigated. The purpose of the current study was to investigate the effects of the patellar superior-inferior position on patellofemoral kinematics and kinetics. Superior, central, and inferior models with a dome patellar component were constructed. In the superior and inferior models, the position of the patellar component translated superiorly and inferiorly, respectively, by 3mm, relative to the center model. Kinematics of the patellar component, quadriceps force, and patellofemoral contact force were calculated using a computer simulation during a squatting activity in a weight-bearing deep knee bend. In the inferior model, the flexion angle, relative to the tibial component, was the greatest among all models. The inferior model showed an 18.0%, 36.5%, and 22.7% increase in the maximum quadriceps force, the maximum medial patellofemoral force, and the maximum lateral patellofemoral force, respectively, compared with the superior model. Superior-inferior positions affected patellofemoral kinematic and kinetics. Surgeons should avoid the inferior position of the patellar component, because the inferior positioned model showed greater quadriceps and patellofemoral force, resulting in a potential risk for anterior knee pain and component loosening. Copyright © 2017. Published by Elsevier Ltd.
Apparatus for remotely handling components
Szkrybalo, Gregory A.; Griffin, Donald L.
1994-01-01
The inventive apparatus for remotely handling bar-like components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of the first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components.
Construction and assembly of the wire planes for the MicroBooNE Time Projection Chamber
Acciarri, R.; Adams, C.; Asaadi, J.; ...
2017-03-09
As x-ray and electron tomography is pushed further into the nanoscale, the limitations of rotation stages become more apparent, leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality three-dimensional images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. With simulated data where we know the alignment error of each projection image, our approach shows a residual alignment error that is a factor of a thousand smaller, and it reaches the samemore » error level in the reconstructed image in less than half the number of iterations. We then show its application to experimental data in x-ray and electron nanotomography.« less
Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.
Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme
2014-03-01
Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.
Trigo-Mouriño, Pablo; Navarro-Vázquez, Armando; Sánchez-Pedregal, Víctor M
2012-12-01
The dependence of molecular alignment with solvent nature and salt concentration has been investigated for mechanically stretched polyacrylamide copolymer gels. Residual dipolar couplings (RDCs) were recorded for D(2)O, DMSO-d(6), and DMSO-d(6)/D(2)O solutions containing different proportions of the solvents and different sodium chloride concentrations. Alignment tensors were determined by fitting the experimental RDCs to the DFT-computed structure of N-methylcodeinium ion. Analysis of the tensors shows that the degree of alignment decreases with the proportion of DMSO-d(6) as well as with the concentration of sodium chloride, most likely due to enhanced ion-pair aggregation. Furthermore, rotation of the alignment tensor is observed when increasing the salt concentration. Copyright © 2012 John Wiley & Sons, Ltd.
Construction and assembly of the wire planes for the MicroBooNE Time Projection Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; Asaadi, J.
As x-ray and electron tomography is pushed further into the nanoscale, the limitations of rotation stages become more apparent, leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality three-dimensional images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. With simulated data where we know the alignment error of each projection image, our approach shows a residual alignment error that is a factor of a thousand smaller, and it reaches the samemore » error level in the reconstructed image in less than half the number of iterations. We then show its application to experimental data in x-ray and electron nanotomography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Liu, Jie; Gleber, Sophie C.
An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respectivemore » zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.« less
ERIC Educational Resources Information Center
Binzel, Richard P.
1990-01-01
Discussed are details of what is known about the composition, physical characteristics, and formation of the planet Pluto and its satellite, Charon. Alignments of these bodies and details of their rotations and revolutions are described. (CW)
NASA Technical Reports Server (NTRS)
Myrick, Thomas M. (Inventor)
2003-01-01
A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.
Protein structure-structure alignment with discrete Fréchet distance.
Jiang, Minghui; Xu, Ying; Zhu, Binhai
2008-02-01
Matching two geometric objects in two-dimensional (2D) and three-dimensional (3D) spaces is a central problem in computer vision, pattern recognition, and protein structure prediction. In particular, the problem of aligning two polygonal chains under translation and rotation to minimize their distance has been studied using various distance measures. It is well known that the Hausdorff distance is useful for matching two point sets, and that the Fréchet distance is a superior measure for matching two polygonal chains. The discrete Fréchet distance closely approximates the (continuous) Fréchet distance, and is a natural measure for the geometric similarity of the folded 3D structures of biomolecules such as proteins. In this paper, we present new algorithms for matching two polygonal chains in two dimensions to minimize their discrete Fréchet distance under translation and rotation, and an effective heuristic for matching two polygonal chains in three dimensions. We also describe our empirical results on the application of the discrete Fréchet distance to protein structure-structure alignment.
Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation
NASA Technical Reports Server (NTRS)
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1998-01-01
The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence with symmetries broken by rotation and stratification. Such structure is here found to play a crucial role in defining the mean zonal and meridional flows that coexist with the convection. Though they are subject to strong inertial oscillations, the strength and type of the mean flows are determined by a combination of the laminar tilting and the turbulent alignment mechanisms. Varying the parameters produces a wide range of mean motions. Among these, some turbulent solutions exhibit a mean zonal velocity profile that is nearly constant with depth, much as deduced by helioseismology at midlatitudes within the Sun. The solutions exhibit a definite handedness, with the direction of the persistent mean flows often prescribing a spiral with depth near the boundaries, also in accord with helioseismic deductions. The mean helicity has a profile that is positive in the upper portion of the domain and negative in the lower portion, a property bearing on magnetic dynamo processes that may be realized within such rotating layers of turbulent convection.
Pugsley, Haley R.; Swearingen, Kristian E.; Dovichi, Norman J.
2009-01-01
A number of algorithms have been developed to correct for migration time drift in capillary electrophoresis. Those algorithms require identification of common components in each run. However, not all components may be present or resolved in separations of complex samples, which can confound attempts for alignment. This paper reports the use of fluorescein thiocarbamyl derivatives of amino acids as internal standards for alignment of 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ)-labeled proteins in capillary sieving electrophoresis. The fluorescein thiocarbamyl derivative of aspartic acid migrates before FQ-labeled proteins and the fluorescein thiocarbamyl derivative of arginine migrates after the FQ-labeled proteins. These compounds were used as internal standards to correct for variations in migration time over a two-week period in the separation of a cellular homogenate. The experimental conditions were deliberately manipulated by varying electric field and sample preparation conditions. Three components of the homogenate were used to evaluate the alignment efficiency. Before alignment, the average relative standard deviation in migration time for these components was 13.3%. After alignment, the average relative standard deviation in migration time for these components was reduced to 0.5%. PMID:19249052
Kalkan, Erol; ,
2012-01-01
Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.
NASA Astrophysics Data System (ADS)
Lin, Y.; Perez, J. D.
A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.
Using record player demonstrations as analog models for geophysical fluids
NASA Astrophysics Data System (ADS)
Grannan, A. M.; Cheng, J. S.; Hawkins, E. K.; Ribeiro, A.; Aurnou, J. M.
2015-12-01
All celestial bodies, including stars, planets, satellites, and asteroids, rotate. The influence of rotation on the fluid layers in these bodies plays an important and diverse role, affecting many processes including oceanic and atmospheric circulation at the surface and magnetic field generation occurring in the interior. To better understand these large-scale processes, record players and containers of water are used as analog models to demonstrate the basic interplay between rotation and fluid motions. To contrast between rotating and non-rotating fluid motions, coffee creamer and food coloring are used as fluid tracers to provide a hands-on method of understanding the influence of rotation on the shapes of the planets, weather patterns, and the alignment of magnetic fields with rotational axes. Such simple demonstrations have been successfully employed for children in public outreach events and for adults in graduate level fluid dynamics courses.
Harvie, Paul; Larkin, James; Scaddan, Matt; Longstaff, Lee M; Sloan, Karen; Beaver, Richard J
2013-01-01
This study aims to evaluate component alignment in a large cohort of total knee arthroplasties (TKAs) and ascertain whether alignment in TKAs undergoing postoperative manipulation under anesthetic is significantly different from those achieving good function. A retrospective review of 281 consecutive primary TKAs was performed. All TKAs underwent computed tomographic scanning (Perth computed tomography knee protocol). Of 281 TKAs, 21 (7.4%) underwent manipulation, performed at a mean of 8.1 weeks (range, 3-14 weeks) after surgery. No statistically significant difference was seen between groups for any of 12 parameters of alignment. Postoperative stiffness with the need for manipulation under anesthetic is multifactorial in origin. This study found insufficient evidence to support the theory that component alignment contributes significantly to the etiology of this difficult problem. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Optomechanical design of near-null subaperture test system based on counter-rotating CGH plates
NASA Astrophysics Data System (ADS)
Li, Yepeng; Chen, Shanyong; Song, Bing; Li, Shengyi
2014-09-01
In off-axis subapertures of most convex aspheres, astigmatism and coma dominate the aberrations with approximately quadratic and linear increase as the off-axis distance increases. A pair of counter-rotating computer generated hologram (CGH) plates is proposed to generate variable amount of Zernike terms Z4 and Z6, correcting most of the astigmatism and coma for subapertures located at different positions on surfaces of various aspheric shapes. The residual subaperture aberrations are then reduced within the vertical range of measurement of the interferometer, which enables near-null test of aspheres flexibly. The alignment tolerances for the near-null optics are given with optomechanical analysis. Accordingly a novel design for mounting and aligning the CGH plates is proposed which employs three concentric rigid rings. The CGH plate is mounted in the inner ring which is supported by two couples of ball-end screws in connection with the middle ring. The CGH plate along with the inner ring is hence able to be translated in X-axis and tipped by adjusting the screws. Similarly the middle ring is able to be translated in Y-axis and tilted by another two couples of screws orthogonally arranged and connected to the outer ring. This design is featured by the large center-through hole, compact size and capability of four degrees-of-freedom alignment (lateral shift and tip-tilt). It reduces the height measured in the direction of optical axis as much as possible, which is particularly advantageous for near-null test of convex aspheres. The CGH mounts are then mounted on a pair of center-through tables realizing counter-rotation. Alignment of the interferometer, the CGHs, the tables and the test surface is also discussed with a reasonable layout of the whole test system. The interferometer and the near-null optics are translated by a three-axis stage while the test mirror is rotated and tilted by two rotary tables. Experimental results are finally given to show the near-null subaperture test capability of the system for a convex even asphere.
The three-dimensional structure of anosteocytic lamellated bone of fish.
Atkins, Ayelet; Reznikov, Natalie; Ofer, Lior; Masic, Admir; Weiner, Steve; Shahar, Ron
2015-02-01
Fish represent the most diverse and numerous of the vertebrate clades. In contrast to the bones of all tetrapods and evolutionarily primitive fish, many of the evolutionarily more advanced fish have bones that do not contain osteocytes. Here we use a variety of imaging techniques to show that anosteocytic fish bone is composed of a sequence of planar layers containing mainly aligned collagen fibrils, in which the prevailing principal orientation progressively spirals. When the sequence of fibril orientations completes a rotation of around 180°, a thin layer of poorly oriented fibrils is present between it and the next layer. The thick layer of aligned fibrils and the thin layer of non-aligned fibrils constitute a lamella. Although both basic components of mammalian lamellar bone are found here as well, the arrangement is unique, and we therefore call this structure lamellated bone. We further show that the lamellae of anosteocytic fish bone contain an array of dense, small-diameter (1-4 μm) bundles of hypomineralized collagen fibrils that are oriented mostly orthogonal to the lamellar plane. Results of mechanical tests conducted on beams from anosteocytic fish bone and human cortical bone show that the fish bones are less stiff but much tougher than the human bones. We propose that the unique lamellar structure and the orthogonal hypomineralized collagen bundles are responsible for the unusual mechanical properties and mineral distribution in anosteocytic fish bone. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?
NASA Astrophysics Data System (ADS)
Thompson, Kevin P.; Schiesser, Eric; Rolland, Jannick P.
2015-10-01
As freeform optical systems emerge as interesting and innovative solutions for imaging in 3D packages there is an assumption they are going to be more sensitive particularly at assembly. While it is true that the clocking of the component becomes a relatively weak new tolerance, for the most effective new class of freeform systems the alignment sensitivity is actually lower in most cases than for a comparable traditional unobscured three mirror anastigmatic (TMA) telescope. Traditional unobscured TMA telescopes, whose designs emerged in the mid-70s and which begin to appear as hardware in the literature in the early 90s, are based on using increasingly offset apertures with otherwise coaxial rotationally symmetric mirrors. The mirrors (typically 3 to correct spherical, coma, and astigmatism) have evolved to contain more high order terms as the designs are pushed to more compact and wider field packages - the NIRCAM camera for the JWST is an excellent example of this [1]. As the higher order terms are added, the mirrors become increasingly sensitive to decenters and tilts. An emerging class of freeform telescopes that provide wider field of view and/or faster f/numbers than the traditional TMA are based on a strategy where the surface shape remains a low order Zernike-type surface even in compact, unobscured packages. This optical design strategy results in an optical form that is not only higher performance but simultaneously less sensitive to alignment.
Building Strategically Aligned Individualized Education Programs for Transition
ERIC Educational Resources Information Center
Flannery, K. Brigid; Hellemn, Lisa A.
2015-01-01
The Individualized Education Programs (IEPs) for students 16 years of age or above must address specific transition components. Studies to date have focused on the presence and quality of these transition components, yet the alignment of these components and their role in leading the development of the IEP is just as critical. This qualitative…
TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oines, A; Oines, A; Kilian-Meneghin, J
2016-06-15
Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
The development of alignment turning system for precision len cells
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi
2017-08-01
In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Moran, James M.; Young, Ken H.; Ho, Paul T. P.
2004-11-01
We used the Submillimeter Array to image the SiO maser emission in the v=1, J=5-4 transition associated with the peculiar red supergiant VY Canis Majoris. We identified seven maser components and measured their relative positions and linear polarization properties. Five of the maser components are coincident to within about 150 mas (~200 AU at the distance of 1.5 kpc); most of them may originate in the circumstellar envelope at a radius of about 50 mas from the star along with the SiO masers in the lowest rotational transitions. Our measurements show that two of the maser components may be offset from the inner stellar envelope (at the 3 σ level of significance) and may be part of a larger bipolar outflow associated with VY CMa identified by Shinnaga et al. The strongest maser feature at a velocity of 35.9 km s-1 has a 60% linear polarization, and its polarization direction is aligned with the bipolar axis. Such a high degree of polarization suggests that maser inversion is due to radiative pumping. Five of the other maser features have significant linear polarization.
Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.
Beauducel, André
2018-02-01
The misallocation of treatment-variance on the wrong component has been discussed in the context of temporal principal component analysis of event-related potentials. There is, until now, no rotation-method that can perfectly recover Wood and McCarthy's prototypes without making use of additional information on treatment-effects. In order to close this gap, two new methods: for component rotation were proposed. After Varimax-prerotation, the first method identifies very small slopes of successive loadings. The corresponding loadings are set to zero in a target-matrix for event-related orthogonal partial Procrustes- (EPP-) rotation. The second method generates Gaussian normal distributions around the peaks of the Varimax-loadings and performs orthogonal Procrustes-rotation towards these Gaussian distributions. Oblique versions of this Gaussian event-related Procrustes- (GEP) rotation and of EPP-rotation are based on Promax-rotation. A simulation study revealed that the new orthogonal rotations recover Wood and McCarthy's prototypes and eliminate misallocation of treatment-variance. In an additional simulation study with a more pronounced overlap of the prototypes GEP Promax-rotation reduced the variance misallocation slightly more than EPP Promax-rotation. Comparison with Existing Method(s): Varimax- and conventional Promax-rotations resulted in substantial misallocations of variance in simulation studies when components had temporal overlap. A substantially reduced misallocation of variance occurred with the EPP-, EPP Promax-, GEP-, and GEP Promax-rotations. Misallocation of variance can be minimized by means of the new rotation methods: Making use of information on the temporal order of the loadings may allow for improvements of the rotation of temporal PCA components. Copyright © 2017 Elsevier B.V. All rights reserved.
Oriented Scintillation Spectrometer Experiment (OSSE). Revision A. Volume 1
1988-05-19
SYSTEM-LEVEL ENVIRONMENTAL TESTS ................... 108 3.5.1 OPERATION REPORT, PROOF MODEL STRUCTURE TESTS.. .108 3.5.1.1 PROOF MODEL MODAL SURVEY...81 3-21 ALIGNMENT ERROR BUDGET, FOV, A4 ................ 82 3-22 ALIGNMENT ERROR BUDGET, ROTATION AXIS, A4 ...... 83 3-23 OSSE PROOF MODEL MODAL SURVEY...PROOF MODEL MODAL SURVEY .................. 112 3-27-1 OSSE PROOF MODEL STATIC LOAD TEST ............. 116 3-27-2 OSSE PROOF MODEL STATIC LOAD TEST
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1978-01-01
A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.
Fourier-transform and global contrast interferometer alignment methods
Goldberg, Kenneth A.
2001-01-01
Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.
Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong
2016-06-01
This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a "sweet spot" with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of K α1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions.
Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong
2016-01-01
This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a “sweet spot” with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of Kα1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions. PMID:27777787
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph
2014-01-01
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph
2015-01-01
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal. PMID:25620928
Optical system storage design with diffractive optical elements
NASA Technical Reports Server (NTRS)
Kostuk, Raymond K.; Haggans, Charles W.
1993-01-01
Optical data storage systems are gaining widespread acceptance due to their high areal density and the ability to remove the high capacity hard disk from the system. In magneto-optical read-write systems, a small rotation of the polarization state in the return signal from the MO media is the signal which must be sensed. A typical arrangement used for detecting these signals and correcting for errors in tracking and focusing on the disk is illustrated. The components required to achieve these functions are listed. The assembly and alignment of this complex system has a direct impact on cost, and also affects the size, weight, and corresponding data access rates. As a result, integrating these optical components and improving packaging techniques is an active area of research and development. Most designs of binary optic elements have been concerned with optimizing grating efficiency. However, rigorous coupled wave models for vector field diffraction from grating surfaces can be extended to determine the phase and polarization state of the diffracted field, and the design of polarization components. A typical grating geometry and the phase and polarization angles associated with the incident and diffracted fields are shown. In our current stage of work, we are examining system configurations which cascade several polarization functions on a single substrate. In this design, the beam returning from the MO disk illuminates a cascaded grating element which first couples light into the substrate, then introduces a quarter wave retardation, then a polarization rotation, and finally separates s- and p-polarized fields through a polarization beam splitter. The input coupler and polarization beam splitter are formed in volume gratings, and the two intermediate elements are zero-order elements.
Dokos, J.A.
1997-12-30
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokos, J.A.
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.« less
NASA Astrophysics Data System (ADS)
Ringler, A. T.; Anthony, R. E.; Holland, A. A.; Wilson, D. C.
2017-12-01
Characterizing rotational motions from moderate-sized earthquakes in the near-field has the potential to improve earthquake engineering and seismic gradiometry by better characterizing the rotational component of the seismic wavefield, but has remained challenging due to the limited development of portable, low-noise rotational sensors. Here, we test Applied Technology Associate (ATA) Proto-Seismic Magnetohydrodynamic (SMHD) three-component rotational rate sensors at Albuquerque Seismological Laboratory (ASL) for self-noise and sensitivity before deploying them at U.S. Geological Survey (USGS) temporary aftershock station OK38 in Waynoka, Oklahoma. The sensors have low self-noise levels below 2 Hz, making them ideal to record local rotations. From April 11, 2017 to June 6, 2017 we recorded the translational and rotational motions of over 155 earthquakes of ML≥2.0 within 2 degrees of the station. Using the recorded events we compare Peak Ground Velocity (PGV) with Peak Ground Rotation Rate (PG). For example, we measured a maximal PG of 0.00211 radians/s and 0.00186 radians/s for the horizontal components of the two rotational sensors during the Mwr=4.2 event on May 13, 2017 which was 0.5 km from that station. Similarly, our PG for the vertical rotational components were 0.00112 radians/s and 0.00085 radians/s. We also measured Peak Ground Rotations (PGω) as a function of seismic moment, as well as mean vertical Power Spectral Density (PSD) with mean horizontal PSD power levels. We compute apparent phase velocity directly from the rotational data, which may have may improve estimates of local site effects. Finally, by comparing various rotational and translational components we look at potential implications for estimating local event source parameters, which may help in identifying phenomena such as repeating earthquakes by using differences in the rotational components correlation.
Multiplexed Energy Coupler for Rotating Equipment
NASA Technical Reports Server (NTRS)
Zhao, Xiaoliang
2011-01-01
A multiplexing antenna assembly can efficiently couple AC signal/energy into, or out of, rotating equipment. The unit only passes AC energy while blocking DC energy. Concentric tubes that are sliced into multiple pieces are assembled together so that, when a piece from an outer tube aligns well with an inner tube piece, efficient energy coupling is achieved through a capacitive scheme. With N outer pieces and M inner pieces, an effective N x M combination can be achieved in a multiplexed manner. The energy coupler is non-contact, which is useful if isolation from rotating and stationary parts is required. Additionally, the innovation can operate in high temperatures. Applications include rotating structure sensing, non-contact energy transmission, etc.
Initial Alignment for SINS Based on Pseudo-Earth Frame in Polar Regions.
Gao, Yanbin; Liu, Meng; Li, Guangchun; Guang, Xingxing
2017-06-16
An accurate initial alignment must be required for inertial navigation system (INS). The performance of initial alignment directly affects the following navigation accuracy. However, the rapid convergence of meridians and the small horizontalcomponent of rotation of Earth make the traditional alignment methods ineffective in polar regions. In this paper, from the perspective of global inertial navigation, a novel alignment algorithm based on pseudo-Earth frame and backward process is proposed to implement the initial alignment in polar regions. Considering that an accurate coarse alignment of azimuth is difficult to obtain in polar regions, the dynamic error modeling with large azimuth misalignment angle is designed. At the end of alignment phase, the strapdown attitude matrix relative to local geographic frame is obtained without influence of position errors and cumbersome computation. As a result, it would be more convenient to access the following polar navigation system. Then, it is also expected to unify the polar alignment algorithm as much as possible, thereby further unifying the form of external reference information. Finally, semi-physical static simulation and in-motion tests with large azimuth misalignment angle assisted by unscented Kalman filter (UKF) validate the effectiveness of the proposed method.
Ranking and averaging independent component analysis by reproducibility (RAICAR).
Yang, Zhi; LaConte, Stephen; Weng, Xuchu; Hu, Xiaoping
2008-06-01
Independent component analysis (ICA) is a data-driven approach that has exhibited great utility for functional magnetic resonance imaging (fMRI). Standard ICA implementations, however, do not provide the number and relative importance of the resulting components. In addition, ICA algorithms utilizing gradient-based optimization give decompositions that are dependent on initialization values, which can lead to dramatically different results. In this work, a new method, RAICAR (Ranking and Averaging Independent Component Analysis by Reproducibility), is introduced to address these issues for spatial ICA applied to fMRI. RAICAR utilizes repeated ICA realizations and relies on the reproducibility between them to rank and select components. Different realizations are aligned based on correlations, leading to aligned components. Each component is ranked and thresholded based on between-realization correlations. Furthermore, different realizations of each aligned component are selectively averaged to generate the final estimate of the given component. Reliability and accuracy of this method are demonstrated with both simulated and experimental fMRI data. Copyright 2007 Wiley-Liss, Inc.
The Influence Of Component Alignment On The Life Of Total Knee Prostheses
NASA Astrophysics Data System (ADS)
Bugariu, Delia; Bereteu, Liviu
2012-12-01
An arthritic knee affects the patient's life by causing pain and limiting movement. If the cartilage and the bone surfaces are severely affected, the natural joint is replaced with an artificial joint. The procedure is called total knee arthroplasty (TKA). Lately, the numbers of implanted total knee prostheses grow steadily. An important factor in TKA is the perfect alignment of the total knee prosthesis (TKP) components. Component misalignment can lead to the prosthesis loss by producing wear particles. The paper proposes a study on mechanical behaviors of a TKP based on numerical analysis, using ANSYS software. The numerical analysis is based on both the normal and the changed angle of the components alignment.
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2016-01-01
AIM To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. METHODS Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex®3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. RESULTS Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). CONCLUSION Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform. PMID:27275425
NASA Astrophysics Data System (ADS)
Lee, Sang Jin; Heo, Min; Lee, Donghyun; Heo, Dong Nyoung; Lim, Ho-Nam; Kwon, Il Keun
2017-12-01
In this study, we designed highly-aligned thermoplastic polycarbonate urethane (PCU) fibrous scaffolds coated with bioactive compounds, such as Poly-L-Lysine (PLL) and Poly-L-Ornithine (PLO), to enhance cellular adhesion and directivity. These products were characterized by scanning electron microscope (SEM) analysis which demonstrated that highly aligned fiber strands were formed without beads when coated onto a mandrel rotating at 1800 rpm. During in vitro cell test, PLO-coated, aligned PCU scaffolds were found to have significantly higher proliferation rates than PLL coated and bare PCU scaffolds. Interestingly, dental pulp stem cells (DPSCs) were observed to stretch along the longitudinal axis parallel to the cell direction on highly aligned scaffolds. These results clearly confirm that our strategy may suggest a useful paradigm by inducing neural tissue repair as a means to remodeling and healing of tissue for restorative procedures in neural tissue engineering.
Alignment of multiradiation isocenters for megavoltage photon beam
Zhang, Yin; Ding, Kai; Cowan, Garth; Tryggestad, Erik; Armour, Elwood
2015-01-01
The accurate measurement of the linear accelerator (linac) radiation isocenter is critical, especially for stereotactic treatment. Traditional quality assurance (QA) procedure focuses on the measurement of single radiation isocenter, usually of 6 megavoltage (MV) photon beams. Single radiation isocenter is also commonly assumed in treatment planning systems (TPS). Due to different flattening filters and bending magnet and steering parameters, the radiation isocenter of one energy mode can deviate from another if no special effort was devoted. We present the first experience of the multiradiation isocenters alignment on an Elekta linac, as well as its corresponding QA procedure and clinical impact. An 8 mm ball‐bearing (BB) phantom was placed at the 6 MV radiation isocenter using an Elekta isocenter search algorithm, based on portal images. The 3D radiation isocenter shifts of other photon energy modes relative to the 6 MV were determined. Beam profile scanning for different field sizes was used as an independent method to determine the 2D multiradiation isocenters alignment. To quantify the impact of radiation isocenter offset on targeting accuracy, the 10 MV radiation isocenter was manually offset from that for 6 MV by adjusting the bending magnet current. Because our table isocenter was mechanically aligned to the 6 MV radiation isocenter, the deviation of the table isocentric rotation from the "shifted" 10 MV radiation isocenter after bending magnet adjustment was assessed. Winston‐Lutz test was also performed to confirm the overall radiation isocenter positioning accuracy for all photon energies. The portal image method showed the radiation isocenter of the 10 MV flattening filter‐free mode deviated from others before beam parameter adjustment. After the adjustment, the deviation was greatly improved from 0.96 to 0.35 mm relative to the 6 MV radiation isocenter. The same finding was confirmed by the profile‐scanning method. The maximum deviation of the table isocentric rotation from the 10 MV radiation isocenter was observed to linearly increase with the offset between 6 and 10 MV radiation isocenter; 1 mm radiation isocenter offset can translate to almost 2 mm maximum deviation of the table isocentric rotation from the 10 MV radiation isocenter. The alignment of the multiradiation isocenters is particularly important for high‐precision radiotherapy. Our study provides the medical physics community with a quantitative measure of the multiradiation isocenters alignment. A routine QA method should be considered, to examine the radiation isocenters alignment during the linac acceptance. PACS number: 87.55.Qr, 87.56.bd, 87.56.Fc PMID:26699586
The Størmer problem for an aligned rotator
NASA Astrophysics Data System (ADS)
Epp, V.; Pervukhina, O. N.
2018-03-01
The effective potential energy of the particles in the field of rotating uniformly magnetized celestial body is investigated. The axis of rotation coincides with the axis of the magnetic field. Electromagnetic field of the body is composed of a dipole magnetic and quadrupole electric fields. The geometry of the trapping regions is studied as a function of the magnetic field magnitude and the rotation speed of the body. Examples of the potential energy topology for different values of these parameters are given. The main difference from the classical Størmer problem is that the single toroidal trapping region predicted by Størmer is divided into equatorial and off-equatorial trapping regions. Applicability of the idealized model of a rotating uniformly magnetized sphere with a vacuum magnetosphere to real celestial bodies is discussed.
Directing collagen fibers using counter-rotating cone extrusion.
Hoogenkamp, Henk R; Bakker, Gert-Jan; Wolf, Louis; Suurs, Patricia; Dunnewind, Bertus; Barbut, Shai; Friedl, Peter; van Kuppevelt, Toin H; Daamen, Willeke F
2015-01-01
The bio-inspired engineering of tissue equivalents should take into account anisotropic morphology and the mechanical properties of the extracellular matrix. This especially applies to collagen fibrils, which have various, but highly defined, orientations throughout tissues and organs. There are several methods available to control the alignment of soluble collagen monomers, but the options to direct native insoluble collagen fibers are limited. Here we apply a controlled counter-rotating cone extrusion technology to engineer tubular collagen constructs with defined anisotropy. Driven by diverging inner and outer cone rotation speeds, collagen fibrils from bovine skin were extruded and precipitated onto mandrels as tubes with oriented fibers and bundles, as examined by second harmonic generation microscopy and quantitative image analysis. A clear correlation was found whereby the direction and extent of collagen fiber alignment during extrusion were a function of the shear forces caused by a combination of the cone rotation and flow direction. A gradual change in the fiber direction, spanning +50 to -40°, was observed throughout the sections of the sample, with an average decrease ranging from 2.3 to 2.6° every 10μm. By varying the cone speeds, the collagen constructs showed differences in elasticity and toughness, spanning 900-2000kPa and 19-35mJ, respectively. Rotational extrusion presents an enabling technology to create and control the (an)isotropic architecture of collagen constructs for application in tissue engineering and regenerative medicine. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Pollock, Craig; Goldstein, Melvyn L.; Lyatskaya, Sonya Inna; Avanov, Levon Albert
2016-01-01
In this paper, we examined plasma structures (filaments), observed in the dayside magnetosphere but containing magnetosheath plasma. These filaments show the stable antisunward motion (while the ambient magnetospheric plasma moved in the opposite direction) and the existence of a strip of magnetospheric plasma, separating these filaments from the magnetosheath. These results, however, contradict both theoretical studies and simulations by Schindler (1979), Ma et al. (1991), Dai and Woodward (1994, 1998), and other researchers, who reported that the motion of such filaments through the magnetosphere is possible only when their magnetic field is directed very close to the ambient magnetic field, which is not the situation that is observed. In this study, we show that this seeming contradiction may be related to different events as the theoretical studies and simulations are related to the case when the filament magnetic field is about aligned with filament orientation, whereas the observations show that the magnetic field in these filaments may be rotating. In this case, the rotating magnetic field, changing incessantly its direction, drastically affects the penetration of plasma filaments into the magnetosphere. In this case, the filaments with rotating magnetic field, even if in each moment it is significantly inclined to the ambient magnetic field, may propagate through the magnetosphere, if their average (for the rotation period) magnetic field is aligned with the ambient magnetic field. This shows that neglecting the rotation of magnetic field in these filaments may lead to wrong results.
Ecology of dark matter haloes - II. Effects of interactions on the alignment of halo pairs
NASA Astrophysics Data System (ADS)
L'Huillier, Benjamin; Park, Changbom; Kim, Juhan
2017-04-01
We use the Horizon Run 4 cosmological N-body simulation to study the effects of distant and close interactions on the alignments of the shapes, spins and orbits of targets haloes with their neighbours, and their dependence on the local density environment and neighbour separation. Interacting targets have a significantly lower spin and higher sphericity and oblateness than all targets. Interacting pairs initially have antiparallel spins, but the spins develop parallel alignment as time goes on. Neighbours tend to evolve in the plane of rotation of the target, and in the direction of the major axis of prolate haloes. Moreover, interactions are preferentially radial, while pairs with non-radial orbits are preferentially prograde. The alignment signals are stronger at high mass and for close separations, and independent of the large-scale density. Positive alignment signals are found at redshifts up to 4, and increase with decreasing redshifts. Moreover, the orbits tend to become prograde at low redshift, while no alignment is found at high redshift (z = 4).
Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T
1999-05-01
Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.
The difference in age of the two counter-rotating stellar disks of the spiral galaxy NGC 4138
NASA Astrophysics Data System (ADS)
Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontà, E.; Coccato, L.; Sanjana, G.
2014-10-01
Context. Galaxies accrete material from the environment through acquisitions and mergers. These processes contribute to the galaxy assembly and leave their fingerprints on the galactic morphology, internal kinematics of gas and stars, and stellar populations. Aims: The Sa spiral NGC 4138 is known to host two counter-rotating stellar disks, with the ionized gas co-rotating with one of them. We measured the kinematics and properties of the two counter-rotating stellar populations to constrain their formation scenario. Methods: A spectroscopic decomposition of the observed major-axis spectrum was performed to disentangle the relative contribution of the two counter-rotating stellar and one ionized-gas components. The line-strength indices of the two counter-rotating stellar components were measured and modeled with single stellar population models that account for the α/Fe overabundance. Results: The counter-rotating stellar population is younger, marginally more metal poor, and more α-enhanced than the main stellar component. The younger stellar component is also associated with a star-forming ring. Conclusions: The different properties of the counter-rotating stellar components of NGC 4138 rule out the idea that they formed because of bar dissolution. Our findings support the results of numerical simulations in which the counter-rotating component assembled from gas accreted on retrograde orbits from the environment or from the retrograde merging with a gas-rich dwarf galaxy. Based on observation carried out at the Galileo 1.22 m telescope at Padua University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.
The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblatemore » spheroids.« less
Sims, J A; Giorgi, M C; Oliveira, M A; Meneghetti, J C; Gutierrez, M A
2018-04-01
Extract directional information related to left ventricular (LV) rotation and torsion from a 4D PET motion field using the Discrete Helmholtz Hodge Decomposition (DHHD). Synthetic motion fields were created using superposition of rotational and radial field components and cardiac fields produced using optical flow from a control and patient image. These were decomposed into curl-free (CF) and divergence-free (DF) components using the DHHD. Synthetic radial components were present in the CF field and synthetic rotational components in the DF field, with each retaining its center position, direction of motion and diameter after decomposition. Direction of rotation at apex and base for the control field were in opposite directions during systole, reversing during diastole. The patient DF field had little overall rotation with several small rotators. The decomposition of the LV motion field into directional components could assist quantification of LV torsion, but further processing stages seem necessary. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Collymore, Jennifer C.
In a 21st century knowledge society individuals are expected to use their knowledge and skills to think critically, problem solve, make decisions, comprehend new ideas, communicate, and collaborate effectively with others. Helping students achieve this level of performance is no easy task and it brings into focus the fact that the effectiveness of any education system rests on the systemic coordination or alignment of three crucial components: curriculum, instruction and assessment (referred to as the CIA). These components must work in concert to facilitate and enhance student performance. However, educational reform typically targets these components in isolation, often treating only one component, rather than the system as a whole. The misalignment of these components can adversely affect student performance in any discipline. When the CIA components are out of alignment, it is difficult to evaluate student and system performance and achieve improvement in an educational system. Therefore, using geography education in Trinidad & Tobago as a case study, this study examined the nature of the alignment among the CIA components in the advanced geography system in the English- Speaking Caribbean and the extent to which the alignment may be affecting student performance. The study sought to determine the possible sources and causes of misalignment, the challenges to achieving alignment, and ways of achieving greater coordination among the CIA components of the system. The methodology employed in the study involved the use of classroom observations, interviews, and the Surveys of Enacted Curriculum Alignment Model which uses content analyses and surveys. The results showed that there were varying degrees of alignment among the components. There was acceptable alignment (Alignment Index ≥ 0.25) between the curriculum and assessment. However, the alignment between curriculum and instruction or assessment and instruction was poor (Alignment Index ≤ 0.12). The baseline threshold for acceptable alignment was 0.25. The misalignment between the curriculum and assessment stemmed from the fact that there were items tested in the assessment that were not identified in the examination syllabus. In terms of the misalignment between the curriculum/assessment and instruction, teachers were misallocating their teaching time and efforts; spending too much time teaching the skills and practices of the discipline rather than the core content areas and they were spending too much time teaching the content at the lower order cognitive level of recall. In addition, while research promotes student-centered approaches, cooperative learning, dialogic discourse, open informal questioning and discursive forms of writing, teachers still primarily use teacher-centered approaches, individualize instruction, monologic discourse and closed recall questions. The teachers' instructional practices are not affording students the opportunity to acquire and display their knowledge at the higher levels of cognition. The cause of the misalignment was attributed to a vague, overloaded syllabus and limited teaching time; vague evaluative criteria and feedback from the Examination Council; inadequate and insufficient teacher training and professional development; a lack of administrative support and mentorship for inexperienced teachers; and teacher frustration. Subsequently, the study offers a number of evidence based recommendations that range from the modification and refinement of the geography CIA triad to professional development programs and the design of interventions that can advance the teaching and learning of the discipline. Though the study is undertaken in a specific context, the educational issues addressed in the study transcend time, scale, and geographic boundaries and the results can inform the decision-making and practices of educators and education policy-makers everywhere.
Design of New Muzzle for 80mm Diamter Single-Stage Gas Gun
NASA Astrophysics Data System (ADS)
Russell, R. T.; Starks, K. S.; Grote, D. L., II; Vandersall, K. S.; Zhou, M.; Thadhani, N. N.
1999-06-01
In this paper, we describe the design of a new muzzle for the Georgia Institute of Technology's 80mm diameter single-stage gas gun. The muzzle is designed to accommodate both normal and inclined impact experiments. Modular target-holding assemblies are mounted on a hardened tool steel annular plate 3 inches in thickness and 15 inches in diameter. This plate is threaded on to the gun barrel and locked into place by an anti-backlash assembly to prevent loss of alignment. The target mount for normal impact experiments consists of two 4.5 inch diameter semi-cylindrical ring sections with surfaces lapped perpendicular to the major bore axis. The inclined target mount includes a pair of concentric cylinder sections with an inner diameter of 8 inches. Tilt adjustment is achieved around two mutually perpendicular and intersecting axis of rotation, as in a gimbals assembly. Coarse alignment allows for angles between -10 and +30 degrees. Fine alignment is achieved using 3/8 inch machine screws with 40 threads per inch. This mechanism yields a precision of 0.025 inches per revolution, the same precision found in a micrometer. The linear distance between the adjustment mechanisms and the axes of rotation geometrically enhances fine alignment. Velocity measurement assemblies using shear pins, time of arrival pins, and laser/photo-diode circuits are designed as bolt-on modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing
We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less
Technical Note: Unified imaging and robotic couch quality assurance.
Cook, Molly C; Roper, Justin; Elder, Eric S; Schreibmann, Eduard
2016-09-01
To introduce a simplified quality assurance (QA) procedure that integrates tests for the linac's imaging components and the robotic couch. Current QA procedures for evaluating the alignment of the imaging system and linac require careful positioning of a phantom at isocenter before image acquisition and analysis. A complementary procedure for the robotic couch requires an initial displacement of the phantom and then evaluates the accuracy of repositioning the phantom at isocenter. We propose a two-in-one procedure that introduces a custom software module and incorporates both checks into one motion for increased efficiency. The phantom was manually set with random translational and rotational shifts, imaged with the in-room imaging system, and then registered to the isocenter using a custom software module. The software measured positioning accuracy by comparing the location of the repositioned phantom with a CAD model of the phantom at isocenter, which is physically verified using the MV port graticule. Repeatability of the custom software was tested by an assessment of internal marker location extraction on a series of scans taken over differing kV and CBCT acquisition parameters. The proposed method was able to correctly position the phantom at isocenter within acceptable 1 mm and 1° SRS tolerances, verified by both physical inspection and the custom software. Residual errors for mechanical accuracy were 0.26 mm vertically, 0.21 mm longitudinally, 0.55 mm laterally, 0.21° in pitch, 0.1° in roll, and 0.67° in yaw. The software module was shown to be robust across various scan acquisition parameters, detecting markers within 0.15 mm translationally in kV acquisitions and within 0.5 mm translationally and 0.3° rotationally across CBCT acquisitions with significant variations in voxel size. Agreement with vendor registration methods was well within 0.5 mm; differences were not statistically significant. As compared to the current two-step approach, the proposed QA procedure streamlines the workflow, accounts for rotational errors in imaging alignment, and simulates a broad range of variations in setup errors seen in clinical practice.
Alignment of olivine crystals during diffusion creep in oceanic peridotite mylonites
NASA Astrophysics Data System (ADS)
Deems, N. J.; Warren, J. M.; Wolfson-Schwehr, M.
2014-12-01
At small grain sizes (<10 µm), olivine is expected to deform by diffusion creep at lithospheric conditions. Microstructural analysis by electron backscatter diffraction of 13 peridotite mylonites from St. Paul's Rocks (SPR) indicates that olivine has a pronounced axial-[010] lattice preferred orientation (i.e. [010] clusters perpendicular to foliation, while [100] and [001] are dispersed in the foliation plane) and a mean grain size of ~7µm. Holtzman et al. (2003) has observed similar LPOs in partially molten samples experimentally deformed under simple shear at lithospheric conditions. The occurrence of a lattice preferred orientation (LPO) is typically interpreted as indicating deformation by dislocation creep. In addition, compositional maps of the samples show that amphibole (pargasite) is ubiquitous. As the presence of pargasite in peridotites is controlled in part by the activity of plagioclase and water at high temperatures (Lynkins and Jenkins, 1992), we infer this as evidence for the presence of pre- to syn-tectonic trapped melt. In order to explain the observed LPO in SPR mylonites, we evaluate the hypothesis that alignment occurred during diffusion creep, such as observed in experiments by Sundberg and Cooper (2008) and Miyazaki et al., (2013). To explore this hypothesis, we conducted analyses of low angle (2-10°) rotation axis inverse pole figures (IPFs), which can often provide insight into the operative slip system(s). Analyses of low angle IPFs from SPR, however, showed no definitive correlation to any one particular slip system. On the other hand, high angle IPFs showed intense clustering of rotational axes at 75-90° about [010], indicating that [100] and [001] align nearly perpendicular to [010]. Based on the IPF analysis and evidence of pre- to syn-tectonic melt, we conclude that the presence of melt lubricated grain boundaries, which resulted in rigid rotation of grains and alignment of the [010] axes controlled by the orthorhombic crystal habit of olivine. That is, as [010] is shortest in terms of habit, this allows [010] to align perpendicular to the shear plane, while the [100] and [001] axes are dispersed in the plane parallel to shear. Thus, SPR mylonites represent a natural example of olivine LPO formation during diffusion creep.
Physically motivated global alignment method for electron tomography
Sanders, Toby; Prange, Micah; Akatay, Cem; ...
2015-04-08
Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore » new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less
On the large-scale dynamics of rapidly rotating convection zones. [in solar and stellar interiors
NASA Technical Reports Server (NTRS)
Durney, B. R.
1983-01-01
The fact that the values of the eight basic waves present in turbulent flows in the presence of rotation prohibit a tilt of eddy towards the axis of rotation is incorporated into a formalism for rapidly rotating convection zones. Equations for turbulent velocities are defined in a rotating coordinate system, assuming that gravity and grad delta T act in a radial direction. An expression is derived for the lifetime of a basic wave and then for the average velocity vector. A real convective eddy is formulated and the wave vectors are calculated. The velocity amplitude and the stress tensor amplitude are integrated over the eddy domain. Applied to the solar convective zone, it is found that the convective cells are aligned along the axis of rotation at the poles and at the equator, a model that conflicts with nonrotating mixng length theory predictions.
Vortex Flux Pinning in Type-Ii Superconductors
NASA Astrophysics Data System (ADS)
Hasan, Mohammad-Khair A. M.
1995-01-01
Rotational magnetization vector measurements on polycrystalline samples of rm YBa_2Cu _3O_7 (YBCO) and (Ba, K)BiO _3 at various fixed fields (H) and temperatures (T) reveal that the vortex flux density (B) in a rotational state consists of a component B_{rm R}, which rotates rigidly with sample rotation, and a B_{rm F} component, which stays at a fixed frictional angle (theta _{rm F}) relative to H. Also, B_{rm R} decreases and ultimately vanishes with increasing H, while B _{rm F} grows monotonically, implying that the vortex pinning strength have a broad distribution. This has been confirmed by the measurements on YBCO of the remanent flux density B^ {rm rm} which can be decomposed analogously into B_{R} ^{} and B_ {F}^{} at angle theta_{F}^{} relative to H. The quantity Hsin theta_{rm F},, which at equilibrium equals tau_{rm p}/mu (the average pinning torque per vortex of moment mu) decreases with increasing high H. This result and the distribution in the strength of the pinning are shown to be consistent with the collective pinning process of vortex bundling. At fixed H, tau_{rm p} decreases rapidly with increasing T, varying approximately as T^{-0.8} for both samples. For polycrystalline YBCO at 4.2 K, B_ {rm R} and B_{ rm F} are found to relax differently with time. The negative creep sign of B_ {rm R} indicates that the number of rotational vortices decreases with time, whereas B _{rm F} shows a positive creep with a negative change in theta_ {rm F}, which indicates that more frictional vortices enter the sample with a tendency of alignment in the direction of H. For grain-oriented YBCO at 4.2 K, the vortex creep measurements of B along the c-axis at different fields showed that: whenever the hysteretic changes of H are reversed in sign, the vortex flux creep (dB/dlogt) decreases very rapidly to zero, where it lingers before changing sign. At the same turning values of H, (dB/dH) also goes to zero. These properties are attributable to the reversals of the vortex motion which occur at the turning values of H and cause a reversal of frictional pinning forces.
Evaluation of a patient specific femoral alignment guide for hip resurfacing.
Olsen, Michael; Naudie, Douglas D; Edwards, Max R; Sellan, Michael E; McCalden, Richard W; Schemitsch, Emil H
2014-03-01
A novel alternative to conventional instrumentation for femoral component insertion in hip resurfacing is a patient specific, computed tomography based femoral alignment guide. A benchside study using cadaveric femora was performed comparing a custom alignment guide to conventional instrumentation and computer navigation. A clinical series of twenty-five hip resurfacings utilizing a custom alignment guide was conducted by three surgeons experienced in hip resurfacing. Using cadaveric femora, the custom guide was comparable to conventional instrumentation with computer navigation proving superior to both. Clinical femoral component alignment accuracy was 3.7° and measured within ± 5° of plan in 20 of 24 cases. Patient specific femoral alignment guides provide a satisfactory level of accuracy and may be a better alternative to conventional instrumentation for initial femoral guidewire placement in hip resurfacing. Crown Copyright © 2014. All rights reserved.
Counter-rotating accretion discs
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.
2015-01-01
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.
Alignment of the Stanford Linear Collider Arcs: Concepts and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitthan, R.; Bell, B.; Friedsam, H.
1987-02-01
The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with themore » unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components.« less
On the Formation of Filament Channels
NASA Astrophysics Data System (ADS)
Wang, Y.-M.; Muglach, K.
2007-09-01
From the Hα archive of the Big Bear Solar Observatory (BBSO) we have selected three examples showing fibril structures that change their orientation, over 1 or 2 days, from nearly perpendicular to nearly parallel to the polarity inversion line (PIL). In one case, the filament channel forms within a single decaying bipole; in the other two cases, it forms along the boundary between an active region and its surroundings. Comparing the Hα filtergrams with magnetograms from the Michelson Doppler Imager (MDI), we find that the fibrils become aligned with the PIL as supergranular convection brings opposite-polarity magnetic flux together; shearing motions along the PIL, when present, act mainly to accelerate the rate of diffusive annihilation. We conclude that the reorientation of the fibrils is due to the cancellation and submergence of the transverse field component (B⊥), leaving behind the preexisting axial field component (B∥). The latter may have been generated by photospheric differential rotation over longer timescales, or else was already present when the flux emerged. The filament channel forms slowly if B∥/B⊥ is initially small, as along the internal neutral line of a newly emerged bipole, but may appear within hours if this ratio is initially substantial, as where the dipole-like loops of an active region curve around its periphery. In all of our examples, filaments form within a day or so after the fibrils become aligned with the PIL, while barbs appear at a later stage, as flux elements continue to diffuse across the PIL and cancel with the majority-polarity flux on the other side.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)
2001-01-01
The Independent Component Analysis is a recently developed technique for component extraction. This new method requires the statistical independence of the extracted components, a stronger constraint that uses higher-order statistics, instead of the classical decorrelation, a weaker constraint that uses only second-order statistics. This technique has been used recently for the analysis of geophysical time series with the goal of investigating the causes of variability in observed data (i.e. exploratory approach). We demonstrate with a data simulation experiment that, if initialized with a Principal Component Analysis, the Independent Component Analysis performs a rotation of the classical PCA (or EOF) solution. This rotation uses no localization criterion like other Rotation Techniques (RT), only the global generalization of decorrelation by statistical independence is used. This rotation of the PCA solution seems to be able to solve the tendency of PCA to mix several physical phenomena, even when the signal is just their linear sum.
Manning, William A; Ghosh, Kanishka M; Blain, Alasdair P; Longstaff, Lee M; Rushton, Steven P; Deehan, David J
2017-06-01
Tibial component rotation at time of knee arthroplasty can influence conformity, load transmission across the polyethylene surface, and perhaps ultimately determined survivorship. Optimal tibial component rotation on the cut surface is reliant on standard per operative manual stressing. This subjective assessment aims to balance constraint and stability of the articulation through a full arc of movement. Using a cadaveric model, computer navigation and under defined, previously validated loaded conditions mimicking the in vivo setting, the influence of maximal tibial component external rotation compared with the neutral state was examined for changes in laxity and tibiofemoral continuous load using 3D displacement measurement and an orthosensor continuous load sensor implanted within the polyethylene spacer in a simulated single radius total knee arthroplasty. No significant difference was found throughout arc of motion (0-115 degrees of flexion) for maximal varus and/or valgus or rotatory laxity between the 2 states. The neutral state achieved equivalence for mediolateral load distribution at each point of flexion. We have found that external rotation of the tibial component increased medial compartment load in comparison with the neutral position. Compared with the neutral state, external rotation consistently effected a marginal, but not significant reduction in lateral load under similar loading conditions. The effects were most pronounced in midflexion. On the basis of these findings, we would advocate for the midtibial tubercle point to determine tibial component rotation and caution against component external rotation. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhiyun; Krasnopolsky, Ruben; Shang, Hsien
2013-09-01
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al.,more » is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.« less
Harman, Melinda K; Schmitt, Sabine; Rössing, Sven; Banks, Scott A; Sharf, Hans-Peter; Viceconti, Marco; Hodge, W Andrew
2010-07-01
Deviations from nominal alignment of unicondylar knee replacements impact knee biomechanics, including the load and stress distribution at the articular contact surfaces. This study characterizes relationships between the biomechanical environment, distinguished by progressive changes in alignment and fixation, and articular damage and deformation in a consecutive series of retrieved unicondylar knee replacements. Twenty seven fixed-bearing, non-conforming unicondylar knee replacements of one design were retrieved after 2 to 13 years of in vivo function. The in vivo biomechanical environment was characterized by grading component migration measured from full-length radiographs and grading component fixation based on intraoperative manual palpation. Articular damage patterns and linear deformation on the polyethylene inserts were measured using optical photogrammetry and contact point digitization. Articular damage patterns and surface deformation on the explanted polyethylene inserts corresponded to progressive changes in component alignment and fixation. Component migration produced higher deformation rates, whereas loosening contributed to larger damage areas but lower deformation rates. Migration and loosening of the femoral component, but not the tibial component, were factors contributing to large regions of abrasion concentrated on the articular periphery. Classifying component migration and fixation at revision proved useful for distinguishing common biomechanical conditions associated with the varied polyethylene damage patterns and linear deformation for this fixed-bearing, non-conforming design. Pre-clinical evaluations of unicondylar knee replacements that are capable of reproducing variations in clinical alignment and predicting the observed wear mechanisms are necessary to better understand the impact of knee biomechanics and design on unicondylar knee replacement longevity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Mitani, Yasuhiro
2017-01-01
[Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities.
NASA Astrophysics Data System (ADS)
Voth, Greg A.; Kramel, Stefan; Menon, Udayshankar K.; Koch, Donald L.
2017-11-01
We experimentally measure the sedimentation of non-spherical particles in isotropic turbulence. We obtain time-resolved 3D orientations of the particles along with the fluid velocity field around them in a vertical water tunnel. An active jet array with 40 individually controllable jets enables us to adjust the turbulence intensity and observe the transition from strongly aligned to randomized particle orientations. We focus on the orientation statistics of ramified particles formed from several slender arms, including fibers and particles with three arms in planar symmetry (triads), which allows us to study alignment of both fibers and disk-like particles. We can predict the turbulent intensity at which the transition from aligned to randomized particle orientations occurs using a non-dimensional settling factor given by the ratio of rotation timescale of the turbulence at the scale of the particle to the rotation timescale of a particles in quiescent flow due to inertial torques. A model of ramified particle motion based on slender body theory provides accurate predictions of the vertical and horizontal particle velocities relative to the turbulent fluid. Supported by Army Research Office Grant W911NF1510205.
Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.
1984-01-01
A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.
Strong-field ionization of linear molecules by a bicircular laser field: Symmetry considerations
NASA Astrophysics Data System (ADS)
Gazibegović-Busuladžić, A.; Busuladžić, M.; Hasović, E.; Becker, W.; Milošević, D. B.
2018-04-01
Using the improved molecular strong-field approximation, we investigate (high-order) above-threshold ionization [(H)ATI] of various linear polyatomic molecules by a two-color laser field of frequencies r ω and s ω (with integer numbers r and s ) having coplanar counter-rotating circularly polarized components (a so-called bicircular field). Reflection and rotational symmetries for molecules aligned in the laser-field polarization plane, analyzed for diatomic homonuclear molecules in Phys. Rev. A 95, 033411 (2017), 10.1103/PhysRevA.95.033411, are now considered for diatomic heteronuclear molecules and symmetric and asymmetric linear triatomic molecules. There are additional rotational symmetries for (H)ATI spectra of symmetric linear molecules compared to (H)ATI spectra of the asymmetric ones. It is shown that these symmetries manifest themselves differently for r +s odd and r +s even. For example, HATI spectra for symmetric molecules with r +s even obey inversion symmetry. For ATI spectra of linear molecules, reflection symmetry appears only for certain molecular orientation angles ±90∘-j r 180∘/(r +s ) (j integer). For symmetric linear molecules, reflection symmetry appears also for the angles -j r 180∘/(r +s ) . For perpendicular orientation of molecules with respect to the laser-field polarization plane, the HATI spectra are very similar to those of the atomic targets, i.e., both spectra are characterized by the same type of the (r +s )-fold symmetry.
A high-precision miniaturized rotating coil transducer for magnetic measurements
Arpaia, P.; Buzio, M.; De Oliveira, R.; ...
2018-02-08
A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten timesmore » better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are also illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.« less
A high-precision miniaturized rotating coil transducer for magnetic measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P.; Buzio, M.; De Oliveira, R.
A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten timesmore » better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are also illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.« less
Development of a pharmacy resident rotation to expand decentralized clinical pharmacy services.
Hill, John D; Williams, Jonathan P; Barnes, Julie F; Greenlee, Katie M; Cardiology, Bcps-Aq; Leonard, Mandy C
2017-07-15
The development of a pharmacy resident rotation to expand decentralized clinical pharmacy services is described. In an effort to align with the initiatives proposed within the ASHP Practice Advancement Initiative, the department of pharmacy at Cleveland Clinic, a 1,400-bed academic, tertiary acute care medical center in Cleveland, Ohio, established a goal to provide decentralized clinical pharmacy services for 100% of patient care units within the hospital. Patient care units that previously had no decentralized pharmacy services were evaluated to identify opportunities for expansion. Metrics analyzed included number of medication orders verified per hour, number of pharmacy dosing consultations, and number of patient discharge counseling sessions. A pilot study was conducted to assess the feasibility of this service and potential resident learning opportunities. A learning experience description was drafted, and feedback was solicited regarding the development of educational components utilized throughout the rotation. Pharmacists who were providing services to similar patient populations were identified to serve as preceptors. Staff pharmacists were deployed to previously uncovered patient care units, with pharmacy residents providing decentralized services on previously covered areas. A rotating preceptor schedule was developed based on geographic proximity and clinical expertise. An initial postimplementation assessment of this resident-driven service revealed that pharmacy residents provided a comparable level of pharmacy services to that of staff pharmacists. Feedback collected from nurses, physicians, and pharmacy staff also supported residents' ability to operate sufficiently in this role to optimize patient care. A learning experience developed for pharmacy residents in a large medical center enabled the expansion of decentralized clinical services without requiring additional pharmacist full-time equivalents. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Prism Window for Optical Alignment
NASA Technical Reports Server (NTRS)
Tang, Hong
2008-01-01
A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.
Bonny, Daniel P; Howell, Stephen M; Hull, Maury L
2017-04-01
Kinematic alignment is a method of aligning implants in total knee arthroplasty (TKA) that strives to restore the native flexion-extension (F-E) and longitudinal rotation (LR) axes of the tibiofemoral joint. The anterior cruciate ligament (ACL) is typically resected at the time of TKA, which might change the position, and orientation of these axes from that of the native knee. Our objective was to determine whether resecting the ACL causes changes in the F-E and LR axes. A custom designed and validated instrumented spatial linkage (ISL) measured the F-E and LR axes in nine cadaveric knees before and after ACL resection. Changes in these axes were computed for knee flexion from 0° to 120°. For the F-E axis, the two statistically significant yet relatively small changes were internal rotation of 0.5° (p = 0.02) and posterior translation of 0.3 mm (p = 0.04). For the LR axis, the statistically significant and relatively large change was medial translation of 2.1 mm (p = 0.01). Changes to the LR axis in both medial-lateral position and varus-valgus orientation varied widely; 77% of a population of knees would have a medial-lateral position change greater than 1 mm, and 53% of a population of knees would have a varus-valgus orientation change greater than 1°. Knowledge of changes of the F-E and LR axes caused by resecting the ACL provides an important baseline for determining the changes in these axes caused by kinematic alignment and mechanical alignment of bi-cruciate retaining, posterior cruciate retaining, and posterior cruciate substituting implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:886-893, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Steiner, Malte; Volkheimer, David; Meyers, Nicholaus; Wehner, Tim; Wilke, Hans-Joachim; Claes, Lutz; Ignatius, Anita
2015-01-01
For ex vivo measurements of fracture callus stiffness in small animals, different test methods, such as torsion or bending tests, are established. Each method provides advantages and disadvantages, and it is still debated which of those is most sensitive to experimental conditions (i.e. specimen alignment, directional dependency, asymmetric behavior). The aim of this study was to experimentally compare six different testing methods regarding their robustness against experimental errors. Therefore, standardized specimens were created by selective laser sintering (SLS), mimicking size, directional behavior, and embedding variations of respective rat long bone specimens. For the latter, five different geometries were created which show shifted or tilted specimen alignments. The mechanical tests included three-point bending, four-point bending, cantilever bending, axial compression, constrained torsion, and unconstrained torsion. All three different bending tests showed the same principal behavior. They were highly dependent on the rotational direction of the maximum fracture callus expansion relative to the loading direction (creating experimental errors of more than 60%), however small angular deviations (<15°) were negligible. Differences in the experimental results between the bending tests originate in their respective location of maximal bending moment induction. Compared to four-point bending, three-point bending is easier to apply on small rat and mouse bones under realistic testing conditions and yields robust measurements, provided low variation of the callus shape among the tested specimens. Axial compressive testing was highly sensitive to embedding variations, and therefore cannot be recommended. Although it is experimentally difficult to realize, unconstrained torsion testing was found to be the most robust method, since it was independent of both rotational alignment and embedding uncertainties. Constrained torsional testing showed small errors (up to 16.8%, compared to corresponding alignment under unconstrained torsion) due to a parallel offset between the specimens’ axis of gravity and the torsional axis of rotation. PMID:25781027
SU-F-J-53: A 3D Printed Phantom for the Use of Daily Quality Assurance Alignment Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, K; Ayan, A; Woollard, J
Purpose: To discuss experiences and results for a 3D printed QA phantom used for daily alignment purposes for a six degrees-of-freedom (6DoF) table Methods: A 3D model was created using a fused deposition modeling (FDM) printer using free online computer-aided design (CAD) software. The model has been under use for daily QA alignment tests for a 6DoF couch. An aligned and angled baseplate were also printed in order to introduce known angles for 6DoF corrections during image-guidance. Unique registration contours were created on the faces of the phantom in order to achieve a better cone-beam computed tomography (CBCT) match usingmore » an auto-registration algorithm. A BB was also introduced at the center of the phantom in order to deliver an integrated daily Winston-Lutz (WL) test. Translational, rotational, and WL results were tabulated over one month. Results: The ’honeycomb’ structure of the print was apparent in the EPID images for the WL test, which affected the results of the analysis software. This was fixed by inserting a cube made of polyoxymethylene within the 3D phantom that encompass the BB. Auto-registration results for the three translational and three rotational from a known offset to the BB isocenter consistently fell within 1 mm and 0.2°, respectively. WL tests resulted in an average of 0.71 ± 0.14 mm. Conclusion: 3D printed models allow for accurate builds that can be customized to a variety of clinical needs. Results from translational, rotational, and WL show consistent results over a month’s time. Given its relatively cheap and streamlined workflow, 3D printing could be implemented into any clinic looking to create customized phantoms.« less
Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system.
Casino, Daniela; Zaffagnini, Stefano; Martelli, Sandra; Lopomo, Nicola; Bignozzi, Simone; Iacono, Francesco; Russo, Alessandro; Marcacci, Maurilio
2009-04-01
Interest in the kinematics of reconstructed knees has increased since it was shown that the alteration of knee motion could lead to abnormal wear and damage to soft tissues. We performed intraoperative kinematic measurements using a navigation system to study knee kinematics before and after posterior substituting rotating platform total knee arthroplasty (TKA). We verified intraoperatively (1) if varus/valgus (VV) laxity and anterior/posterior (AP) laxity were restored after TKA; (2) if TKA induced abnormal femoral rollback; and (3) how tibial axial rotation was influenced by TKA throughout the range of flexion. We found that TKA improved alignment in preoperative osteoarthritic varus knees which became neutral after surgery and maintained a neutral alignment in neutral knees. The VV stability at 0 degrees was restored while AP laxity at 90 degrees significantly increased after TKA. Following TKA, the femur had an abnormal anterior translation up to 60 degrees of flexion, followed by a small rollback of 12 +/- 5 mm. TKA influenced the tibia rotation pattern during flexion, but not the total amount of internal/external rotation throughout whole range of flexion, which was preserved after TKA (6 degrees +/- 5 degrees ). This study showed that the protocol proposed might be useful to adjust knee stability at time zero and that knee kinematic outcome during total knee replacement can be monitored by a navigation system.
Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation
Trent, Jett B.; Murphy, Jimmy L.
1981-01-01
The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.
Warp-averaging event-related potentials.
Wang, K; Begleiter, H; Porjesz, B
2001-10-01
To align the repeated single trials of the event-related potential (ERP) in order to get an improved estimate of the ERP. A new implementation of the dynamic time warping is applied to compute a warp-average of the single trials. The trilinear modeling method is applied to filter the single trials prior to alignment. Alignment is based on normalized signals and their estimated derivatives. These features reduce the misalignment due to aligning the random alpha waves, explaining amplitude differences in latency differences, or the seemingly small amplitudes of some components. Simulations and applications to visually evoked potentials show significant improvement over some commonly used methods. The new implementation of the dynamic time warping can be used to align the major components (P1, N1, P2, N2, P3) of the repeated single trials. The average of the aligned single trials is an improved estimate of the ERP. This could lead to more accurate results in subsequent analysis.
High-harmonic spectroscopy of aligned molecules
NASA Astrophysics Data System (ADS)
Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee
2017-01-01
High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.
X- And γ-Ray Pulsations Of The Nearby Radio-Faint PSR J1741–2054
Marelli, M.; Belfiore, A.; Saz Parkinson, P.; ...
2014-07-02
The results of a deep XMM-Newton observation of the radio-faint γ-ray pulsar J1741–2054 and its nebula together with the analysis of five years of Fermi Large Area Telescope (LAT) data are reported. The X-ray spectrum of the pulsar is consistent with an absorbed power law plus a blackbody, originating at least partly from the neutron star cooling. The nebular emission is consistent with that of a synchrotron pulsar wind nebula, with hints of spatial spectral variation. We extended the available Fermi LAT ephemeris and folded the γ-ray and X-ray data. We detected X-ray pulsations from the neutron star: both themore » thermal and non-thermal components are ~35%-40% pulsed, with phase-aligned maxima. A sinusoid fits the thermal-folded profile well. A 10 bin phase-resolved analysis of the X-ray emission shows softening of the non-thermal spectrum during the on-pulse phases. The radio, X-ray, and γ-ray light curves are single-peaked, not phase-aligned, with the X-ray peak trailing the γ-ray peak by more than half a rotation. Spectral considerations suggest that the most probable pulsar distance is in the 0.3-1.0 kpc range, in agreement with the radio dispersion measure.« less
Stuelcken, Max C; Mellifont, Daniel B; Gorman, Adam D; Sayers, Mark G L
2016-08-01
This study involved a systematic video analysis of 16 anterior cruciate ligament (ACL) injuries sustained by elite-level netball players during televised games in order to describe the game situation, the movement patterns involved, the player's behaviour, and a potential injury mechanism. Eight of the ACL injuries were classified as "indirect contact" and eight as "non-contact". Two common scenarios were identified. In Scenario A the player was jumping to receive or intercept a pass and whilst competing for the ball experienced a perturbation in the air. As a result the player's landing was unbalanced with loading occurring predominantly on the knee of the injured side. In Scenario B the player was generally in a good position at ground contact, but then noticeably altered the alignment of the trunk before the landing was completed. This involved rotating and laterally flexing the trunk without altering the alignment of the feet. Apparent knee valgus collapse on the knee of the injured side was observed in 3/6 Scenario A cases and 5/6 Scenario B cases. Players may benefit from landing training programmes that incorporate tasks that use a ball and include decision-making components or require players to learn to cope with being unbalanced.
Statistical Theory of the Ideal MHD Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.
ERIC Educational Resources Information Center
Fulmer, Gavin W.; Polikoff, Morgan S.
2014-01-01
An essential component in school accountability efforts is for assessments to be well-aligned with the standards or curriculum they are intended to measure. However, relatively little prior research has explored methods to determine statistical significance of alignment or misalignment. This study explores analyses of alignment as a special case…
The effect of hand position on perceived finger orientation in left- and right-handers.
Fraser, Lindsey E; Harris, Laurence R
2017-12-01
In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.
Orientational ordering of colloidal dispersions by application of time-dependent external forces.
Moths, Brian; Witten, T A
2013-08-01
We discuss a method of organizing incoherent motion of a colloidal suspension to produce synchronized, coherent motion, extending the discussion of our recent Letter [Moths and Witten, Phys. Rev. Lett. 110, 028301 (2013)]. The method does not require interaction between the objects. Instead, the effect is controlled by the "twist matrix" which gives the angular velocity of an asymmetric object in a fluid resulting from a weak external force. We analyze the two types of forcing considered in the Letter: a force alternating between two directions and a continuously rotating force. For the alternating force, we justify the claim of the Letter that under appropriate forcing conditions, the orientational entropy of the objects decreases indefinitely with time, on average. We provide a bound on that rate in terms of the twist matrix. For the case of rotating force, we derive conditions for phased-locked motion of the objects to the force and prove that there is only one stable phase-locked orientation under these conditions. We find numerically that the fastest alignment typically occurs for tilt angles of order unity. We discuss how the alignment effect scales with the object size for external forcing caused by gravity or an electric field. Under practical forcing conditions we estimate that the alignment should persist despite rotational diffusion for objects larger than about 10 microns. Potential misalignment owing to hydrodynamic interaction of the objects is estimated to be negligible at volume fractions smaller than about 10(-4.5) (10(-3)) when the forcing is gravitational (electrophoretic).
Pettorossi, V E; Errico, P; Ferraresi, A; Barmack, N H
1999-02-15
Prolonged binocular optokinetic stimulation (OKS) in the rabbit induces a high-velocity negative optokinetic afternystagmus (OKAN II) that persists for several hours. We have taken advantage of this uniform nystagmus to study how changes in static head orientation in the pitch plane might influence the orientation of the nystagmus. After horizontal OKS, the rotation axis of the OKAN II remained almost constant in space as it was kept aligned with the gravity vector when the head was pitched by as much as 80 degrees up and 35 degrees down. Moreover, during reorientation, slow-phase eye velocity decreased according to the head pitch angle. Thereafter, we analyzed the space orientation of OKAN II after optokinetic stimulation during which the head and/or the OKS were pitched upward and downward. The rotation axis of OKAN II did not remain aligned with an earth vertical axis nor a head vertical axis, but it tended to be aligned with that of the OKS respace. The slow-phase eye velocity of OKAN II was also affected by the head pitch angle during OKS, because maximal OKAN II velocity occurred at the same head pitch angle as that during optokinetic stimulation. We suggest that OKAN II is coded in gravity-centered rather than in head-centered coordinates, but that this coordinate system may be influenced by optokinetic and vestibular stimulation. Moreover, the velocity attenuation of OKAN II seems to depend on the mismatch between the space-centered nystagmus rotation axis orientation and that of the "remembered" head-centered optokinetic pathway activated by OKS.
Bera, Subhabrata; Nie, Craig D; Soskind, Michael G; Harrington, James A
2017-12-10
The effect of misalignments of different optical components in the laser heated pedestal growth apparatus have been modeled using Zemax optical design software. By isolating the misalignments causing the non-uniformity in the melt zone, the alignment of the components was fine-tuned. Using this optimized alignment, low-loss YAG single crystal fibers of 120 μm diameter were grown, with total attenuation loss as low as 0.5 dB/m at 1064 nm.
NASA Astrophysics Data System (ADS)
Larios, Edgar; Yang, Wei Y.; Schulten, K.; Gruebele, M.
2004-12-01
Computing the root-mean-square deviation (RMSD) of a partially folded protein structure from the folded state requires the two structures to be translationally and rotationally aligned. We examine the constraint matrix L that preserves orthogonality of the rotation matrix during minimization of the RMSD. L is proportional to the sensitivity of the RMSD to the rotational alignment matrix. Its trace yields an isotropic reaction coordinate, while its off-diagonal matrix elements are related to the moment of inertia derivative tensor that encodes anisotropic information about the structure. We use L to compare λ-repressor fragment 6-85 (λ 6-85) to several partially folded structures obtained from molecular dynamics simulation (MD), and find that L as a reaction coordinate indeed encodes some information about protein topology. We also apply C α RMSD, L and tryptophan sidechain mobility as criteria for native state structural fluctuations of several λ 6-85 mutants. The mutants' denaturation curves and fluorescence quenching are measured experimentally for comparison. The results are in accord with a recent proposal that structural fluctuations near the chromophore can induce increased native state fluorescence or hyperfluorescence during unfolding of proteins.
Are the gyro-ages of field stars underestimated?
NASA Astrophysics Data System (ADS)
Kovács, Géza
2015-09-01
By using the current photometric rotational data on eight galactic open clusters, we show that the evolutionary stellar model (isochrone) ages of these clusters are tightly correlated with the period shifts applied to the (B - V)0-Prot ridges that optimally align these ridges to the one defined by Praesepe and the Hyades. On the other hand, when the traditional Skumanich-type multiplicative transformation is used, the ridges become far less aligned due to the age-dependent slope change introduced by the period multiplication. Therefore, we employ our simple additive gyro-age calibration on various datasets of Galactic field stars to test its applicability. We show that, in the overall sense, the gyro-ages are systematically greater than the isochrone ages. The difference could exceed several giga years, depending on the stellar parameters. Although the age overlap between the open clusters used in the calibration and the field star samples is only partial, the systematic difference indicates the limitation of the currently available gyro-age methods and suggests that the rotation of field stars slows down with a considerably lower speed than we would expect from the simple extrapolation of the stellar rotation rates in open clusters.
Logo recognition using alpha-rooted phase correlation in the radon transform domain
NASA Astrophysics Data System (ADS)
DelMarco, Stephen
2009-08-01
Alpha-rooted phase correlation (ARPC) is a recently-developed variant of classical phase correlation that includes a Fourier domain image enhancement operation. ARPC combines classical phase correlation with alpha-rooting to provide tunable image enhancement. The alpha-rooting parameters may be adjusted to provide a tradeoff between height and width of the ARPC main lobe. A high narrow main lobe peak provides high matching accuracy for aligned images, but reduced matching performance for misaligned logos. A lower, wider peak trades matching accuracy on aligned logos, for improved matching performance on misaligned imagery. Previously, we developed ARPC and used it in the spatial domain for logo recognition as part of an overall automated document analysis problem. However, spatial domain ARPC performance can be sensitive to logo misalignments, including rotational misalignment. In this paper we use ARPC as a match metric in the radon transform domain for logo recognition. In the radon transform domain, rotational misalignments correspond to translations in the radon transform angle parameter. These translations are captured by ARPC, thereby producing rotation-invariant logo matching. In the paper, we first present an overview of ARPC, and then describe the logo matching algorithm. We present numerical performance results demonstrating matching tolerance to rotational misalignments. We demonstrate robustness of the radon transform domain rotation estimation to noise. We present logo verification and recognition performance results using the proposed approach on a public domain logo database. We compare performance results to performance obtained using spatial domain ARPC, and state-of-the-art SURF features, for logos in salt-and-pepper noise.
Rubenson, Jonas; Lloyd, David G; Besier, Thor F; Heliams, Denham B; Fournier, Paul A
2007-07-01
Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional (3-D) joint axis alignment and joint kinematics during running (at approximately 3.3 m s(-1)) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37 degrees and 21 degrees , respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints' non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the biomechanics and motor control of avian bipedalism.
Multiscale registration algorithm for alignment of meshes
NASA Astrophysics Data System (ADS)
Vadde, Srikanth; Kamarthi, Sagar V.; Gupta, Surendra M.
2004-03-01
Taking a multi-resolution approach, this research work proposes an effective algorithm for aligning a pair of scans obtained by scanning an object's surface from two adjacent views. This algorithm first encases each scan in the pair with an array of cubes of equal and fixed size. For each scan in the pair a surrogate scan is created by the centroids of the cubes that encase the scan. The Gaussian curvatures of points across the surrogate scan pair are compared to find the surrogate corresponding points. If the difference between the Gaussian curvatures of any two points on the surrogate scan pair is less than a predetermined threshold, then those two points are accepted as a pair of surrogate corresponding points. The rotation and translation values between the surrogate scan pair are determined by using a set of surrogate corresponding points. Using the same rotation and translation values the original scan pairs are aligned. The resulting registration (or alignment) error is computed to check the accuracy of the scan alignment. When the registration error becomes acceptably small, the algorithm is terminated. Otherwise the above process is continued with cubes of smaller and smaller sizes until the algorithm is terminated. However at each finer resolution the search space for finding the surrogate corresponding points is restricted to the regions in the neighborhood of the surrogate points that were at found at the preceding coarser level. The surrogate corresponding points, as the resolution becomes finer and finer, converge to the true corresponding points on the original scans. This approach offers three main benefits: it improves the chances of finding the true corresponding points on the scans, minimize the adverse effects of noise in the scans, and reduce the computational load for finding the corresponding points.
Customer-Provider Strategic Alignment: A Maturity Model
NASA Astrophysics Data System (ADS)
Luftman, Jerry; Brown, Carol V.; Balaji, S.
This chapter presents a new model for assessing the maturity of a customer-provider relationship from a collaborative service delivery perspective: the Customer-Provider Strategic Alignment Maturity (CPSAM) Model. This model builds on recent research for effectively managing the customer-provider relationship in IT service outsourcing contexts and a validated model for assessing alignment across internal IT service units and their business customers within the same organization. After reviewing relevant literature by service science and information systems researchers, the six overarching components of the maturity model are presented: value measurements, governance, partnership, communications, human resources and skills, and scope and architecture. A key assumption of the model is that all of the components need be addressed to assess and improve customer-provider alignment. Examples of specific metrics for measuring the maturity level of each component over the five levels of maturity are also presented.
Rotational polarities of sudden impulses in the magnetotail lobe
NASA Technical Reports Server (NTRS)
Kawano, H.; Yamamoto, T.; Kokubun, S.; Lepping, R. P.
1992-01-01
A sudden impulse (SI) is a sudden change in the magnetic field strength which is caused by a change in the solar wind pressure and is observed throughout the magnetosphere. In this report we have examined the rotations of the magnetic field vectors at times of SIs in the magnetotail lobe, by using IMP 6, 7, and 8 magnetometer data. The following properties have been found: (1) at the time of SI the arrowhead of the magnetic vector tends to rotate in one plane; (2) the plane of rotation tends to include the unperturbed magnetic field vector; (3) the plane of rotation tends to be aligned with the radial direction from the magnetotail axis; and (4) the magnetic vectors have a particular rotational polarity: when the plane of rotation is viewed so that the Sun is to the right of the viewed plane and the magnetotail axis is to the bottom, the arrowhead of the vector tends to rotate counterclockwise in this plane. These magnetic vector properties are consistent with those expected when part of an increase in solar wind lateral pressure squeezes the magnetotail axisymmetrically while moving tailward.
Knutson, Gary A
2002-02-01
To determine the incidence of pelvic unleveling, foot rotation, and supine leg length alignment asymmetry in a nonclinical population and to examine the validity (sensitivity, specificity, positive and negative predictive values) of these visual tests and their relationship to self-reported back pain. Volunteers answered a questionnaire regarding back pain and were then examined by a chiropractor who was unaware of the status of their back pain. Seventy-four unscreened volunteers answered the questionnaire. The association of visual tests with back pain and their validity indices; Visual Analogue Scale ratings. Fifty-one percent (n = 74) of volunteers examined had supine leg length alignment asymmetry (LLA). Pain intensity on a Visual Analogue Scale was significantly higher (P <.001) for those demonstrating supine LLA than for those without LLA. Those with back pain and recurrent back pain were significantly (P <.001) more likely to have supine LLA. The validity indices of the supine leg check showed acceptable levels for sensitivity (74%), specificity (78%), and positive predictive value (82%) [corrected] in recurrent back pain. Findings also indicated a high incidence of supine LLA in volunteers with chronic back pain (85%). The results indicated that, in this group of volunteers, the supine leg length alignment check had clinical validity as a stand-alone test for recurring back pain. Further testing on a larger, statistically defined cross-section of the population is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Jeff, E-mail: jmeye3@utsouthwestern.ed; Bluett, Jaques; Amos, Richard
Purpose: Conventional proton therapy with passively scattered beams is used to treat a number of tumor sites, including prostate cancer. Spot scanning proton therapy is a treatment delivery means that improves conformal coverage of the clinical target volume (CTV). Placement of individual spots within a target is dependent on traversed tissue density. Errors in patient alignment perturb dose distributions. Moreover, there is a need for a rational planning approach that can mitigate the dosimetric effect of random alignment errors. We propose a treatment planning approach and then analyze the consequences of various simulated alignment errors on prostate treatments. Methods andmore » Materials: Ten control patients with localized prostate cancer underwent treatment planning for spot scanning proton therapy. After delineation of the clinical target volume, a scanning target volume (STV) was created to guide dose coverage. Errors in patient alignment in two axes (rotational and yaw) as well as translational errors in the anteroposterior direction were then simulated, and dose to the CTV and normal tissues were reanalyzed. Results: Coverage of the CTV remained high even in the setting of extreme rotational and yaw misalignments. Changes in the rectum and bladder V45 and V70 were similarly minimal, except in the case of translational errors, where, as a result of opposed lateral beam arrangements, much larger dosimetric perturbations were observed. Conclusions: The concept of the STV as applied to spot scanning radiation therapy and as presented in this report leads to robust coverage of the CTV even in the setting of extreme patient misalignments.« less
THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Jacob B., E-mail: jbsimon.astro@gmail.com
2016-08-20
Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura and Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α , and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving formore » the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.« less
Mechanical Design of NESSI: New Mexico Tech Extrasolar Spectroscopic Survey Instrument
NASA Technical Reports Server (NTRS)
Santoro, Fernando G.; Olivares, Andres M.; Salcido, Christopher D.; Jimenez, Stephen R.; Jurgenson, Colby A.; Hrynevych, Michael A.; Creech-Eakman, Michelle J.; Boston, Penny J.; Schmidt, Luke M.; Bloemhard, Heather;
2011-01-01
NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument is a ground-based multi-object spectrograph that operates in the near-infrared. It will be installed on one of the Nasmyth ports of the Magdalena Ridge Observatory (MRO) 2.4-meter Telescope sited in the Magdalena Mountains, about 48 km west of Socorro-NM. NESSI operates stationary to the telescope fork so as not to produce differential flexure between internal opto-mechanical components during or between observations. An appropriate mechanical design allows the instrument alignment to be highly repeatable and stable for both short and long observation timescales, within a wide-range of temperature variation. NESSI is optically composed of a field lens, a field de-rotator, re-imaging optics, an auto-guider and a Dewar spectrograph that operates at LN2 temperature. In this paper we report on NESSI's detailed mechanical and opto-mechanical design, and the planning for mechanical construction, assembly, integration and verification.
Darrow, Chris; Seger, Tino
2003-09-30
A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.
Stability of the wobbling motion in the triaxially deformed odd-A nucleus
NASA Astrophysics Data System (ADS)
Tanabe, Kosai; Sugawara-Tanabe, Kazuko
2017-12-01
In order to analyze the content of the exact solutions for particle-rotor models with both the rigid and the hydrodynamical moments of inertia (MoI), as a theoretical probe we apply the Holstein-Primakoff (HP) boson expansion method to the total angular momentum I and the single-particle angular momentum j. We study the competition between Coriolis force and the single-particle potential by employing the different choices of the diagonal HP boson representations for the components of I and j along a common coordinate axis, and along perpendicular axes. We do not find any wobbling level sequence associated with the rotation around the principal axis with the medium MoI. The staggering in the alignments of I about the axis with the medium MoI is found in the limited range of I, while the vector R(=I-j) is confined about the axis with the largest MoI.
Disc valve for sampling erosive process streams
Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.
1986-01-07
A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Kim, Shinwoo; Woodward, Tracey; Wang, T. G.
1992-01-01
The effects on microstructure of crucible orientation with respect to the earth's gravitational vector, g, during directional solidification of low-volume fraction copper and aluminum, Pb-Cu, and Sn-Al alloys are examined. It is demonstrated that horizontal alignment (i.e. perpendicular to g) in combination with axial rotation of the crucible during growth is sufficient to negate factors which initiate macrosegregation, e.g. density gradients attributed to temperature and/or compositional differences, and promotes a uniform microstructure.
Self-aligning lathe chuck jaws
Peterson, William R.
1982-01-01
A lathe chuck jaw for a lathe chuck having a radially moving actuator which radially moves the jaw in to and out from the workpiece. A jaw base part is rigidly connected to the actuator. A jaw shoe part is rotatably attached to the base part. The shoe part has a workpiece-comforming surface which can hold the workpiece. The rotatable attachment of the shoe part allows it to match the general orientation of the workpiece, including a nonlongitudinal orientation due to a workpiece's imperfect shape.
Self-aligning lathe chuck jaws
Not Available
1980-08-26
A lathe chuck jaw for a lathe chuck having a radially moving actuator which radially moves the jaw into and out from the workpiece is described. A jaw base part is rigidly connected to the actuator. A jaw shoe part is rotatably attached to the base part. The shoe part has a workpiece-conforming surface which can hold the workpiece. The rotatable attachment of the shoe part allows it to match the general orientation of the workpiece, including a nonlongitudinal orientation due to a workpiece's imperfect shape.
Rotation of endosomes demonstrates coordination of molecular motors during axonal transport.
Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao
2018-03-01
Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors.
Effects of object asymmetry on visual attention.
Maguire, Anne M; Bates, Timothy C; Boycott, Noël; Corballis, Michael C
2002-01-01
Unilateral neglect has been demonstrated relative to the intrinsic left side of objects, even when presented in the preserved hemispace. These results have been interpreted as evidence of an object-centered reference frame. In the present study, neurologically normal individuals were presented with letter stimuli having distinguishing features to the right (R) or left (J) of their intrinsic midline, shown in normal and mirror parity, and in six angle rotations. RTs confirmed that participants rotated the letters to the upright to decide parity: such rotation would align the object-centered and viewer-centered frames of reference, suggesting that not controlling for mental rotation would confound this effect. In addition, a dot, presented lateral to the main letter stimulus, resulted in quicker parity decisions when on the maximally-informative side of the letter. Together, the results suggest that apparent object-centered neglect may arise from the combined effects of mental rotation and within-object information asymmetries.
Polarized curvature radiation in pulsar magnetosphere
NASA Astrophysics Data System (ADS)
Wang, P. F.; Wang, C.; Han, J. L.
2014-07-01
The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.
Cryotomography x-ray microscopy state
Le Gros, Mark; Larabell, Carolyn A.
2010-10-26
An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.
NASA Astrophysics Data System (ADS)
Jiang, Ying; Zeng, Jie; Liang, Dakai; Ni, Xiaoyu; Luo, Wenyong
2013-06-01
The fibers aligning is very important in fusion splicing process. The core of polarization maintaining photonic crystal fiber(PM-PCF) can not be seen in the splicer due to microhole structure of its cross-section. So it is difficult to align precisely PM-PCF and conventional single-mode fiber(SMF).We demonstrate a novel method for aligning precisely PM-PCF and conventional SMF by online spectrum monitoring. Firstly, the light source of halogen lamp is connected to one end face of conventional SMF.Then align roughly one end face of PM-PCF and the other end face of conventional SMF by observing visible light in the other end face of PM-PCF. If there exists visible light, they are believed to align roughly. The other end face of PM-PCF and one end face of the other conventional SMF are aligned precisely in the other splicer by online spectrum monitoring. Now the light source of halogen lamp is changed into a broadband light source with 52nm wavelength range.The other end face of the other conventional SMF is connected to an optical spectrum analyzer.They are translationally and rotationally adjusted in the splicer by monitoring spectrum. When the transmission spectrum power is maximum, the aligning is precise.
Stevens, D.J.
1962-01-23
A multiple-contact electrical connector is designed for facilitating correct alignment of the contacts of a movable component with the contacts in a normally stationary component. The stationary connector component, which is normally positioned in a panel, is provided with a fiangemount which permits rotary adjustment of the normally stationary connector component to a desired aligned position with respeet to contacts in the other connector component. The fiange-mount which comprises a fiange on the connector component and a clamping ring may then be secured to the panel by drawing the clamping ring tightly against the flange, thus binding the latter between the ring and the panel for securing the eomponent in desired fixed position. (AEC)
Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.
Jiang, Huijun; Hou, Zhonghuai
2014-12-14
We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.
Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-06-01
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
NASA Technical Reports Server (NTRS)
Monford, Leo G. (Inventor)
1990-01-01
Improved techniques are provided for alignment of two objects. The present invention is particularly suited for three-dimensional translation and three-dimensional rotational alignment of objects in outer space. A camera 18 is fixedly mounted to one object, such as a remote manipulator arm 10 of the spacecraft, while the planar reflective surface 30 is fixed to the other object, such as a grapple fixture 20. A monitor 50 displays in real-time images from the camera, such that the monitor displays both the reflected image of the camera and visible markings on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm 10 manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.
Improved docking alignment system
NASA Technical Reports Server (NTRS)
Monford, Leo G. (Inventor)
1988-01-01
Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.
Preparation of uniaxially aligned TiO2 ultrafine fibers by electrospinning.
Nien, Yu-Hsun; Tsai, Yan-Sheng; Wang, Jia-Yi; Syu, Shu-Ping
2012-11-01
TiO2 nanofibers are often produced by electrospinning using a collector consisting of two parallel electrodes. In this work, a high speed rotating drum was used as a collector to produce uniaxially aligned TiO2 ultrafine fibers. The apparatus to manufacture uniaxially aligned TiO2 ultrafine fiber consisted of a high-speed roller, a high-voltage power supply, a controllable syringe pump and a syringe. Titanium (IV) isopropoxide and polyvinylpyrrolidone were used as precursor and auxiliary, respectively. Titanium (IV) isopropoxide and polyvinylpyrrolidone were well mixed with other essential reagents to form the polymer solution. The polymer solution was poured into the syringe and pumped at various flow rates. The electrospun ultrafine fibers collected on the roller were heat treated up to 600 degrees C and the uniaxially aligned TiO2 ultrafine fibers were formed and characterized using scanning electron microscope and X-ray diffraction.
NASA Astrophysics Data System (ADS)
Faedi, F.; Gómez Maqueo Chew, Y.; Fossati, L.; Pollacco, D.; McQuillan, A.; Hebb, L.; Chaplin, W. J.; Aigrain, S.
2013-04-01
The wealth of information rendered by Kepler planets and planet candidates is indispensable for statistically significant studies of distinct planet populations, in both single and multiple systems. Empirical evidences suggest that Kepler's planet population shows different physical properties as compared to the bulk of known exoplanets. The SOAPS project, aims to shed light on Kepler's planets formation, their migration and architecture. By measuring v sini accurately for Kepler hosts with rotation periods measured from their high-precision light curves, we will assess the alignment of the planetary orbit with respect to the stellar spin axis. This degree of alignment traces the formation history and evolution of the planetary systems, and thus, allows to distinguish between different proposed migration theories. SOAPS will increase by a factor of 2 the number of spin-orbit alignment measurements pushing the parameters space down to the SuperEarth domain. Here we present our preliminary results.
Luyckx, T; Peeters, T; Vandenneucker, H; Victor, J; Bellemans, J
2012-09-01
Obtaining a balanced flexion gap with correct femoral component rotation is one of the prerequisites for a successful outcome after total knee replacement (TKR). Different techniques for achieving this have been described. In this study we prospectively compared gap-balancing versus measured resection in terms of reliability and accuracy for femoral component rotation in 96 primary TKRs performed in 96 patients using the Journey system. In 48 patients (18 men and 30 women) with a mean age of 65 years (45 to 85) a tensor device was used to determine rotation. In the second group of 48 patients (14 men and 34 women) with a mean age of 64 years (41 to 86), an 'adapted' measured resection technique was used, taking into account the native rotational geometry of the femur as measured on a pre-operative CT scan. Both groups systematically reproduced a similar external rotation of the femoral component relative to the surgical transepicondylar axis: 2.4° (SD 2.5) in the gap-balancing group and 1.7° (SD 2.1) in the measured resection group (p = 0.134). Both gap-balancing and adapted measured resection techniques proved equally reliable and accurate in determining femoral component rotation after TKR. There was a tendency towards more external rotation in the gap-balancing group, but this difference was not statistically significant (p = 0.134). The number of outliers for our 'adapted' measured resection technique was much lower than reported in the literature.
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1997-01-01
The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.
Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement
Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung
2017-01-01
This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals. PMID:28420219
Components of action representations evoked when identifying manipulable objects
Bub, Daniel N.; Masson, Michael E. J.; Lin, Terry
2015-01-01
We examined the influence of holding planned hand actions in working memory on the time taken to visually identify objects with handles. Features of the hand actions and position of the object's handle were congruent or incongruent on two dimensions: alignment (left vs. right) and orientation (horizontal vs. vertical). When an object was depicted in an upright view, subjects were slower to name it when its handle was congruent with the planned hand actions on one dimension but incongruent on the other, relative to when the object handle and actions were congruent on both or neither dimension. This pattern is consistent with many other experiments demonstrating that a cost occurs when there is partial feature overlap between a planned action and a perceived target. An opposite pattern of results was obtained when the depicted object appeared in a 90° rotated view (e.g., a beer mug on its side), suggesting that the functional goal associated with the object (e.g., drinking from an upright beer mug) was taken into account during object perception and that this knowledge superseded the influence of the action afforded by the depicted view of the object. These results have implications for the relationship between object perception and action representations, and for the mechanisms that support the identification of rotated objects. PMID:25705187
Toward the growth of an aligned single-layer MoS2 film.
Kim, Daeho; Sun, Dezheng; Lu, Wenhao; Cheng, Zhihai; Zhu, Yeming; Le, Duy; Rahman, Talat S; Bartels, Ludwig
2011-09-20
Molybdenum disulfide (molybdenite) monolayer islands and flakes have been grown on a copper surface at comparatively low temperature and mild conditions through sulfur loading of the substrate using thiophenol (benzenethiol) followed by the evaporation of Mo atoms and annealing. The MoS(2) islands show a regular Moiré pattern in scanning tunneling microscopy, attesting to their atomic ordering and high quality. They are all aligned with the substrate high-symmetry directions providing for rotational-domain-free monolayer growth. © 2011 American Chemical Society
A Two-Phase Spherical Electric Machine for Generating Rotating Uniform Magnetic Fields
2007-06-01
data prior to processing in Matlab 65 5-6 Probe and sensor alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be...again using the Biot-Savart Law. The field, B, at a point, P, given in cylindrical geometry by the coordinates (r, ¢J, z), due to a circular loop of...alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be seen; it is flush with the bottom of the milled slot for the
Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test.
Lu, Haojian; Shang, Wanfeng; Wei, Xueyong; Yang, Zhan; Fukuda, Toshio; Shen, Yajing
2017-06-08
In-situ micro/nano characterization is an indispensable methodology for material research. However, the precise in-situ SEM twisting of 1D material with large range is still challenge for current techniques, mainly due to the testing device's large size and the misalignment between specimen and the rotation axis. Herein, we propose an in-situ twist test robot (iTRo) to address the above challenges and realize the precise in-situ SEM twisting test for the first time. Firstly, we developed the iTRo and designed a series of control strategies, including assembly error initialization, triple-image alignment (TIA) method for rotation axis alignment, deformation-based contact detection (DCD) method for sample assembly, and switch control for robots cooperation. After that, we chose three typical 1D material, i.e., magnetic microwire Fe 74 B 13 Si 11 C 2 , glass fiber, and human hair, for twisting test and characterized their properties. The results showed that our approach is able to align the sample to the twisting axis accurately, and it can provide large twisting range, heavy load and high controllability. This work fills the blank of current in-situ mechanical characterization methodologies, which is expected to give significant impact in the fundamental nanomaterial research and practical micro/nano characterization.
The doubling of stellar black hole nuclei
NASA Astrophysics Data System (ADS)
Kazandjian, Mher V.; Touma, J. R.
2013-04-01
It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.
Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces
NASA Astrophysics Data System (ADS)
Takahashi, Misaki; Ohkawa, Takuma; Yoshida, Hiroyuki; Fukuda, Jun-ichi; Kikuchi, Hirostugu; Ozaki, Masanori
2018-03-01
Liquid crystalline cholesteric blue phases (BPs) continue to attract interest due to their fast response times and quasi-polarization-independent phase modulation capabilities. Various approaches have recently been proposed to control the crystal orientation of BPs on substrates; however, their basic orientation properties on standard, unidirectionally orienting alignment layers have not been investigated in detail. Through analysis of the azimuthal orientation of Kossel diagrams, we study the 3D crystal orientation of a BP material—with a phase sequence of cholesteric, BP I, and BP II—on unidirectionally orienting surfaces prepared using two methods: rubbing and photoalignment. BP II grown from the isotropic phase is sensitive to surface conditions, with different crystal planes orienting on the two substrates. On the other hand, strong thermal hysteresis is observed in BPs grown through a different liquid crystal phase, implying that the preceding structure determines the orientation. More specifically, the BP II-I transition is accompanied by a rotation of the crystal such that the crystal direction defined by certain low-value Miller indices transform into different directions, and within the allowed rotations, different azimuthal configurations are obtained in the same cell depending on the thermal process. Our findings demonstrate that, for the alignment control of BPs, the thermal process is as important as the properties of the alignment layer.
Solar radiation induced rotational bursting of interplanetary particles
NASA Technical Reports Server (NTRS)
Sparrow, J. G.
1975-01-01
It is suggested that the magnitudes of the two radiation-induced rotational bursting mechanisms (Radzieskii effect and windmill effect) have been overestimated and that they do not work significantly faster than the Poynting-Robertson effect in removing interplanetary particles. These two mechanisms are described, and serious doubts are raised regarding the derivation of their radiation pressure-torque proportionality constants, which are required for calculating their magnitudes. It is shown that both mechanisms will cause the alignment of elongated particles and, consequently, the polarization of zodiacal light. Since no positive polarization has been measured at the antisolar point, it is concluded that the magnitudes of the rotational bursting mechanisms are smaller than that of the Poynting-Robertson effect.
Rotating concave eddy current probe
Roach, Dennis P [Albuquerque, NM; Walkington, Phil [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Hohman, Ed [Albuquerque, NM
2008-04-01
A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.
NASA Astrophysics Data System (ADS)
Wang, Xu; Le, Anh-Thu; Zhou, Zhaoyan; Wei, Hui; Lin, C. D.
2017-08-01
We provide a unified theoretical framework for recently emerging experiments that retrieve fixed-in-space molecular information through time-domain rotational coherence spectroscopy. Unlike a previous approach by Makhija et al. (V. Makhija et al., arXiv:1611.06476), our method can be applied to the retrieval of both real-valued (e.g., ionization yield) and complex-valued (e.g., induced dipole moment) molecular response information. It is also a direct retrieval method without using iterations. We also demonstrate that experimental parameters, such as the fluence of the aligning laser pulse and the rotational temperature of the molecular ensemble, can be quite accurately determined using a statistical method.
Ultrasound phase rotation beamforming on multi-core DSP.
Ma, Jieming; Karadayi, Kerem; Ali, Murtaza; Kim, Yongmin
2014-01-01
Phase rotation beamforming (PRBF) is a commonly-used digital receive beamforming technique. However, due to its high computational requirement, it has traditionally been supported by hardwired architectures, e.g., application-specific integrated circuits (ASICs) or more recently field-programmable gate arrays (FPGAs). In this study, we investigated the feasibility of supporting software-based PRBF on a multi-core DSP. To alleviate the high computing requirement, the analog front-end (AFE) chips integrating quadrature demodulation in addition to analog-to-digital conversion were defined and used. With these new AFE chips, only delay alignment and phase rotation need to be performed by DSP, substantially reducing the computational load. We implemented the delay alignment and phase rotation modules on a Texas Instruments C6678 DSP with 8 cores. We found it takes 200 μs to beamform 2048 samples from 64 channels using 2 cores. With 4 cores, 20 million samples can be beamformed in one second. Therefore, ADC frequencies up to 40 MHz with 2:1 decimation in AFE chips or up to 20 MHz with no decimation can be supported as long as the ADC-to-DSP I/O requirement can be met. The remaining 4 cores can work on back-end processing tasks and applications, e.g., color Doppler or ultrasound elastography. One DSP being able to handle both beamforming and back-end processing could lead to low-power and low-cost ultrasound machines, benefiting ultrasound imaging in general, particularly portable ultrasound machines. Copyright © 2013 Elsevier B.V. All rights reserved.
Lower extremity control during turns initiated with and without hip external rotation.
Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L
2017-02-08
The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deformation and Rotation of a Drop in a Uniform Electric Field
NASA Astrophysics Data System (ADS)
Salipante, Paul; Hanna, James; Vlahovska, Petia
2009-11-01
Drop deformation in uniform electric fields is a classic problem. The pioneering work of G.I.Taylor demonstrated that for weakly conducting media, the drop fluid undergoes a toroidal flow and the drop adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. However, recent studies have revealed a nonaxisymmetric rotational mode for drops of lower conductivity than the surrounding medium, similar to the rotation of solid dielectric particles observed by Quincke in the 19th century. We will present an experimental and theoretical study of this phenomenon in DC fields. The critical electric field, drop inclination angle, and rate of rotation are measured. For small, high viscosity drops, the threshold field strength is well approximated by the Quincke rotation criterion. Reducing the viscosity ratio shifts the onset for rotation to stronger fields. The drop inclination angle increases with field strength. The rotation rate is approximately given by the inverse Maxwell-Wagner polarization time. We also observe a hysteresis in the tilt angle for low-viscosity drops. The effects of AC fields and surfactants are also explored.
NASA Astrophysics Data System (ADS)
Bradley, T. J.; Cowley, S. W. H.; Provan, G.; Hunt, G. J.; Bunce, E. J.; Wharton, S. J.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Dougherty, M. K.
2018-05-01
We newly analyze Cassini magnetic field data from the 2012/2013 Saturn northern spring interval of highly inclined orbits and compare them with similar data from late southern summer in 2008, thus providing unique information on the seasonality of the currents that couple momentum between Saturn's ionosphere and magnetosphere. Inferred meridional ionospheric currents in both cases consist of a steady component related to plasma subcorotation, together with the rotating current systems of the northern and southern planetary period oscillations (PPOs). Subcorotation currents during the two intervals show opposite north-south polar region asymmetries, with strong equatorward currents flowing in the summer hemispheres but only weak currents flowing to within a few degrees of the open-closed boundary (OCB) in the winter hemispheres, inferred due to weak polar ionospheric conductivities. Currents peak at 1 MA rad-1 in both hemispheres just equatorward of the open-closed boundary, associated with total downward polar currents 6 MA, then fall across the narrow auroral upward current region to small values at subauroral latitudes. PPO-related currents have a similar form in both summer and winter with principal upward and downward field-aligned currents peaking at 1.25 MA rad-1 being essentially collocated with the auroral upward current and approximately equal in strength. Though northern and southern PPO currents were approximately equal during both intervals, the currents in both hemispheres were dual modulated by both systems during 2012/2013, with approximately half the main current closing in the opposite ionosphere and half cross field in the magnetosphere, while only the northern hemisphere currents were similarly dual modulated in 2008.
The research progress of metrological 248nm deep ultraviolent microscope inspection device
NASA Astrophysics Data System (ADS)
Wang, Zhi-xin; Li, Qi; Gao, Si-tian; Shi, Yu-shu; Li, Wei; Li, Shi
2016-01-01
In lithography process, the precision of wafer pattern to a large extent depends on the geometric dimensioning and tolerance of photomasks when accuracy of lithography aligner is certain. Since the minimum linewidth (Critical Dimension) of the aligner exposing shrinks to a few tens of nanometers in size, one-tenth of tolerance errors in fabrication may lead to microchip function failure, so it is very important to calibrate these errors of photomasks. Among different error measurement instruments, deep ultraviolent (DUV) microscope because of its high resolution, as well as its advantages compared to scanning probe microscope restrained by measuring range and scanning electron microscope restrained by vacuum environment, makes itself the most suitable apparatus. But currently there is very few DUV microscope adopting 248nm optical system, means it can attain 80nm resolution; furthermore, there is almost no DUV microscope possessing traceable calibration capability. For these reason, the National Institute of Metrology, China is developing a metrological 248nm DUV microscope mainly consists of DUV microscopic components, PZT and air supporting stages as well as interferometer calibration framework. In DUV microscopic component, the Köhler high aperture transmit condenser, DUV splitting optical elements and PMT pinhole scanning elements are built. In PZT and air supporting stages, a novel PZT actuating flexural hinge stage nested separate X, Y direction kinematics and a friction wheel driving long range air supporting stage are researched. In interferometer framework, a heterodyne multi-pass interferometer measures XY axis translation and Z axis rotation through Zerodur mirror mounted on stage. It is expected the apparatus has the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.
Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series.
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
2001-01-01
Proposes a special rotation procedure for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average.…