WindPACT Reference Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Rinker, Jennifer
To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor tomore » NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaNier, M. W.
The United States Department of Energy (DOE) Wind Energy Research Program has begun a new effort to partner with U.S. industry to develop wind technology that will allow wind systems to compete in regions of low wind speed. The Class 4 and 5 sites targeted by this effort have annual average wind speeds of 5.8 m/s (13 mph), measured at 10 m (33 ft) height. Such sites are abundant in the United States and would increase the land area available for wind energy production twenty-fold. The new program is targeting a levelized cost of energy of 3 cents/kWh at thesemore » sites by 2010. A three-element approach has been initiated. These efforts are concept design, component development, and system development. This work builds on previous activities under the WindPACT program and the Next Generation Turbine program. If successful, DOE estimates that his new technology could result in 35 to 45 gigawatts of additional wind capacity being installed by 2020.« less
Blade system design studies volume II : preliminary blade designs and recommended test matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Dayton A.
2004-06-01
As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including amore » summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.« less
Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces
NASA Astrophysics Data System (ADS)
Rinker, Jennifer M.
2016-09-01
This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.
Structures Technology for Future Aerospace Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.
2000-01-01
An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.
NASA Astrophysics Data System (ADS)
Jiang, Shan; Liu, Shuihua
2004-04-01
Current optical communication systems are more and more relying on the advanced opto-electronic components. A series of revolutionary optical and optoelectronics components technology accounts for the fast progress and field deployment of high-capacity telecommunication and data-transmission systems. Since 1990s, the optical communication industry in China entered a high-speed development period and its wide deployment had already established the solid base for China information infrastructure. In this presentation, the main progress of optoelectronics components and technology in China are reviewed, which includes semiconductor laser diode/photo receiver, fiber optical amplifier, DWDM multiplexer/de-multiplexer, dispersion compensation components and all optical network node components, such as optical switch, OADM, tunable optical filters and variable optical attenuators, etc. Integration discrete components into monolithic/hybrid platform component is an inevitable choice for the consideration of performance, mass production and cost reduction. The current status and the future trends of OEIC and PIC components technology in China will also be discuss mainly on the monolithic integration DFB LD + EA modulator, and planar light-wave circuit (PLC) technology, etc.
Vehicle/Guideway Interaction in Maglev Systems
1992-03-01
Technology Division Materials and Components in Maglev Systems Technology Division Materials and Components Technology Division byY. Cai, S. S. Chen, and D. M...Transportation Systems Reports (UC-330, Vehicle/Guideway Interaction in Maglev Systems by Y. Cai and S. S. Chen Materials and Components Technology Division D. M...Surface Irregularities ...................................... 32 4 Vehicle/Guideway Interaction in Transrapid Maglev System .................. 34 4.1
Component technology for stirling power converters
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.
1991-01-01
NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.
1992-09-01
demonstrating the producibility of optoelectronic components for high-density/high-data-rate processors and accelerating the insertion of this technology...technology development stage, OETC will advance the development of optical components, produce links for a multiboard processor testbed demonstration, and...components that are affordable, initially at <$100 per line, and reliable, with a li~e BER-15 and MTTF >10 6 hours. Under the OETC program, Honeywell will
Dynamic Stability of Maglev Systems,
1992-04-01
AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, A.P.; Rimkevich, V.S.; Dem'yanova, L.P.
2009-05-15
Based on the physico-technical operations involved in the mineral processing technologies, the optimal production conditions are found for refractory fiber materials, aluminium, silicium, their compounds and other valued components. Ecologically safe and efficient aggregate technologies are developed for recovery of valued components from nonmetallic minerals and anthracides (brown coals).
Central Component Descriptors for Levels of Technological Pedagogical Content Knowledge
ERIC Educational Resources Information Center
Niess, Margaret L.
2013-01-01
Technological pedagogical content knowledge (TPACK) proposes a theoretical framework that incorporates four central components: an overarching conception of what it means to teach with technology, knowledge of students' thinking and understandings of specific topics with technologies, knowledge of curricular materials that incorporate…
Efficient Computational Prototyping of Mixed Technology Microfluidic Components and Systems
2002-08-01
AFRL-IF-RS-TR-2002-190 Final Technical Report August 2002 EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC...SUBTITLE EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC COMPONENTS AND SYSTEMS 6. AUTHOR(S) Narayan R. Aluru, Jacob White...Aided Design (CAD) tools for microfluidic components and systems were developed in this effort. Innovative numerical methods and algorithms for mixed
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Petko, Jeannie F.
2004-01-01
Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.
Wahle, Fabian; Bollhalder, Lea; Kowatsch, Tobias; Fleisch, Elgar
2017-05-31
Existing research postulates a variety of components that show an impact on utilization of technology-mediated mental health information systems (MHIS) and treatment outcome. Although researchers assessed the effect of isolated design elements on the results of Web-based interventions and the associations between symptom reduction and use of components across computer and mobile phone platforms, there remains uncertainty with regard to which components of technology-mediated interventions for mental health exert the greatest therapeutic gain. Until now, no studies have presented results on the therapeutic benefit associated with specific service components of technology-mediated MHIS for depression. This systematic review aims at identifying components of technology-mediated MHIS for patients with depression. Consequently, all randomized controlled trials comparing technology-mediated treatments for depression to either waiting-list control, treatment as usual, or any other form of treatment for depression were reviewed. Updating prior reviews, this study aims to (1) assess the effectiveness of technology-supported interventions for the treatment of depression and (2) add to the debate on what components in technology-mediated MHIS for the treatment of depression should be standard of care. Systematic searches in MEDLINE, PsycINFO, and the Cochrane Library were conducted. Effect sizes for each comparison between a technology-enabled intervention and a control condition were computed using the standard mean difference (SMD). Chi-square tests were used to test for heterogeneity. Using subgroup analysis, potential sources of heterogeneity were analyzed. Publication bias was examined using visual inspection of funnel plots and Begg's test. Qualitative data analysis was also used. In an explorative approach, a list of relevant components was extracted from the body of literature by consensus between two researchers. Of 6387 studies initially identified, 45 met all inclusion criteria. Programs analyzed showed a significant trend toward reduced depressive symptoms (SMD -0.58, 95% CI -0.71 to -0.45, P<.001). Heterogeneity was large (I2≥76). A total of 15 components were identified. Technology-mediated MHIS for the treatment of depression has a consistent positive overall effect compared to controls. A total of 15 components have been identified. Further studies are needed to quantify the impact of individual components on treatment effects and to identify further components that are relevant for the design of future technology-mediated interventions for the treatment of depression and other mental disorders. ©Fabian Wahle, Lea Bollhalder, Tobias Kowatsch, Elgar Fleisch. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 31.05.2017.
Fleisch, Elgar
2017-01-01
Background Existing research postulates a variety of components that show an impact on utilization of technology-mediated mental health information systems (MHIS) and treatment outcome. Although researchers assessed the effect of isolated design elements on the results of Web-based interventions and the associations between symptom reduction and use of components across computer and mobile phone platforms, there remains uncertainty with regard to which components of technology-mediated interventions for mental health exert the greatest therapeutic gain. Until now, no studies have presented results on the therapeutic benefit associated with specific service components of technology-mediated MHIS for depression. Objective This systematic review aims at identifying components of technology-mediated MHIS for patients with depression. Consequently, all randomized controlled trials comparing technology-mediated treatments for depression to either waiting-list control, treatment as usual, or any other form of treatment for depression were reviewed. Updating prior reviews, this study aims to (1) assess the effectiveness of technology-supported interventions for the treatment of depression and (2) add to the debate on what components in technology-mediated MHIS for the treatment of depression should be standard of care. Methods Systematic searches in MEDLINE, PsycINFO, and the Cochrane Library were conducted. Effect sizes for each comparison between a technology-enabled intervention and a control condition were computed using the standard mean difference (SMD). Chi-square tests were used to test for heterogeneity. Using subgroup analysis, potential sources of heterogeneity were analyzed. Publication bias was examined using visual inspection of funnel plots and Begg’s test. Qualitative data analysis was also used. In an explorative approach, a list of relevant components was extracted from the body of literature by consensus between two researchers. Results Of 6387 studies initially identified, 45 met all inclusion criteria. Programs analyzed showed a significant trend toward reduced depressive symptoms (SMD –0.58, 95% CI –0.71 to –0.45, P<.001). Heterogeneity was large (I2≥76). A total of 15 components were identified. Conclusions Technology-mediated MHIS for the treatment of depression has a consistent positive overall effect compared to controls. A total of 15 components have been identified. Further studies are needed to quantify the impact of individual components on treatment effects and to identify further components that are relevant for the design of future technology-mediated interventions for the treatment of depression and other mental disorders. PMID:28566267
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2004-01-01
The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.
Technology in Nonformal Education: A Critical Appraisal. Issues in Nonformal Education No. 2.
ERIC Educational Resources Information Center
Evans, David R.
In analyzing efforts to utilize technology in nonformal education programs, the applied communications aspects of instructional technology are most relevant, and locus of control and the technology of educational organization are two major components of analysis. Growing out of these components is the increasing recognition that educational…
Ceramic Matrix Composites for Rotorcraft Engines
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2011-01-01
Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.
NASA Technical Reports Server (NTRS)
Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin
2000-01-01
The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Hirt, Evelyn H.; Pitman, Stan G.
The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components.more » This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.« less
Scalable Power-Component Models for Concept Testing
2011-08-17
Scalable Power-Component Models for Concept Testing, Mazzola, et al . UNCLASSIFIED: Dist A. Approved for public release 2011 NDIA GROUND VEHICLE...Power-Component Models for Concept Testing, Mazzola, et al . UNCLASSIFIED: Dist A. Approved for public release Page 2 of 8 technology that has yet...Technology Symposium (GVSETS) Scalable Power-Component Models for Concept Testing, Mazzola, et al . UNCLASSIFIED: Dist A. Approved for public release
Software Component Technologies and Space Applications
NASA Technical Reports Server (NTRS)
Batory, Don
1995-01-01
In the near future, software systems will be more reconfigurable than hardware. This will be possible through the advent of software component technologies which have been prototyped in universities and research labs. In this paper, we outline the foundations for those technologies and suggest how they might impact software for space applications.
Group Work in a Technology-Rich Environment
ERIC Educational Resources Information Center
Penner, Nikolai; Schulze, Mathias
2010-01-01
This paper addresses several components of successful language-learning methodologies--group work, task-based instruction, and wireless computer technologies--and examines how the interplay of these three was perceived by students in a second-year university foreign-language course. The technology component of our learning design plays a central…
NASA Astrophysics Data System (ADS)
Graves, S. J.; Keiser, K.; Law, E.; Yang, C. P.; Djorgovski, S. G.
2016-12-01
ECITE (EarthCube Integration and Testing Environment) is providing both cloud-based computational testing resources and an Assessment Framework for Technology Interoperability and Integration. NSF's EarthCube program is funding the development of cyberinfrastructure building block components as technologies to address Earth science research problems. These EarthCube building blocks need to support integration and interoperability objectives to work towards a coherent cyberinfrastructure architecture for the program. ECITE is being developed to provide capabilities to test and assess the interoperability and integration across funded EarthCube technology projects. EarthCube defined criteria for interoperability and integration are applied to use cases coordinating science problems with technology solutions. The Assessment Framework facilitates planning, execution and documentation of the technology assessments for review by the EarthCube community. This presentation will describe the components of ECITE and examine the methodology of cross walking between science and technology use cases.
Development of high purity large forgings for nuclear power plants
NASA Astrophysics Data System (ADS)
Tanaka, Yasuhiko; Sato, Ikuo
2011-10-01
The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SPAHN, OLGA B.; GROSSETETE, GRANT D.; CICH, MICHAEL J.
2003-03-01
Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vitalmore » step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.« less
Electrical and electronic devices and components: A compilation
NASA Technical Reports Server (NTRS)
1975-01-01
Components and techniques which may be useful in the electronics industry are described. Topics discussed include transducer technology, printed-circuit technology, solid state devices, MOS transistors, Gunn device, microwave antennas, and position indicators.
MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection
NASA Astrophysics Data System (ADS)
Bierden, Paul; Cornelissen, S.; Ryan, P.
2014-01-01
In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-03-01
The task of developing principles of cyber-physical system constitution at the Industry 4.0 company of the item designing components of mechanical assembly production is being studied. The task has been solved by analyzing the components and technologies, which have some practical application in the digital production organization. The list of components has been defined and the authors proposed the scheme of the components and technologies interconnection in the Industry 4.0 of mechanical assembly production to make an uninterrupted manufacturing route of the item designing components with application of some cyber-physical systems.
ERIC Educational Resources Information Center
Consortium for School Networking (NJ1), 2006
2006-01-01
This Backgrounder Brief is an executive summary of "Telling the Technology Story: PR Strategies for School Leaders," a component of the Consortium for School Networking (CoSN) Essential Leadership Skills Series. Public relations is a critical component of a district's successful technology implementation--and it involves communicating on an…
Advanced component technologies for energy-efficient turbofan engines
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1980-01-01
The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.
van Witteloostuijn, Arjen
2018-01-01
In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).
2002-08-01
An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.
Interactive Television: The State of the Industry.
ERIC Educational Resources Information Center
Galbreath, Jeremy
1996-01-01
Discusses interactive television in the context of the developing information superhighway. Topics include potential applications, including video on demand; telecommunications companies; digital media technologies; content; regulatory issues; the nature of technology users; origination components; distribution/infrastructure components;…
Arthropod surveillance programs: Basic components, strategies, and analysis
USDA-ARS?s Scientific Manuscript database
Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium “Advancements in arthro...
NASA Astrophysics Data System (ADS)
Ye, Ming; Li, Yun; He, Yongning; Daneshmand, Mojgan
2017-05-01
With the development of space technology, microwave components with increased power handling capability and reduced weight have been urgently required. In this work, the perforated waveguide technology is proposed to suppress the multipactor effect of high power microwave components. Meanwhile, this novel method has the advantage of reducing components' weight, which makes it to have great potential in space applications. The perforated part of the waveguide components can be seen as an electron absorber (namely, its total electron emission yield is zero) since most of the electrons impacting on this part will go out of the components. Based on thoroughly benchmarked numerical simulation procedures, we simulated an S band and an X band waveguide transformer to conceptually verify this idea. Both electron dynamic simulations and electrical loss simulations demonstrate that the perforation technology can improve the multipactor threshold at least ˜8 dB while maintaining the acceptable insertion loss level compared with its un-perforated components. We also found that the component with larger minimum gap is easier to achieve multipactor suppression. This effect is interpreted by a parallel plate waveguide model. What's more, to improve the multipactor threshold of the X band waveguide transformer with a minimum gap of ˜0.1 mm, we proposed a perforation structure with the slope edge and explained its mechanism. Future study will focus on further optimization of the perforation structure, size, and distribution to maximize the comprehensive performances of microwave components.
Distillation process using microchannel technology
Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH
2009-11-03
The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.
Shingleton, Rebecca M.; Palfai, Tibor P.
2015-01-01
Objectives The aims of this paper were to describe and evaluate the methods and efficacy of technology-delivered motivational interviewing interventions (TAMIs), discuss the challenges and opportunities of TAMIs, and provide a framework for future research. Methods We reviewed studies that reported using motivational interviewing (MI) based components delivered via technology and conducted ratings on technology description, comprehensiveness of MI, and study methods. Results The majority of studies were fully-automated and included at least one form of media rich technology to deliver the TAMI. Few studies provided complete descriptions of how MI components were delivered via technology. Of the studies that isolated the TAMI effects, positive changes were reported. Conclusion Researchers have used a range of technologies to deliver TAMIs suggesting feasibility of these methods. However, there are limited data regarding their efficacy, and strategies to deliver relational components remain a challenge. Future research should better characterize the components of TAMIs, empirically test the efficacy of TAMIs with randomized controlled trials, and incorporate fidelity measures. Practice Implications TAMIs are feasible to implement and well accepted. These approaches offer considerable potential to reduce costs, minimize therapist and training burden, and expand the range of clients that may benefit from adaptations of MI. PMID:26298219
Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective
Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon
2015-01-01
Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078
Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.
Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon
2015-09-07
Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.
Automated reuseable components system study results
NASA Technical Reports Server (NTRS)
Gilroy, Kathy
1989-01-01
The Automated Reusable Components System (ARCS) was developed under a Phase 1 Small Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of the ARCS program were: (1) to investigate issues associated with automated reuse of software components, identify alternative approaches, and select promising technologies, and (2) to develop tools that support component classification and retrieval. The approach followed was to research emerging techniques and experimental applications associated with reusable software libraries, to investigate the more mature information retrieval technologies for applicability, and to investigate the applicability of specialized technologies to improve the effectiveness of a reusable component library. Various classification schemes and retrieval techniques were identified and evaluated for potential application in an automated library system for reusable components. Strategies for library organization and management, component submittal and storage, and component search and retrieval were developed. A prototype ARCS was built to demonstrate the feasibility of automating the reuse process. The prototype was created using a subset of the classification and retrieval techniques that were investigated. The demonstration system was exercised and evaluated using reusable Ada components selected from the public domain. A requirements specification for a production-quality ARCS was also developed.
14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...
14 CFR § 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...
14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...
Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Alan
2014-10-21
This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.
Roughness and compressive strength of FDM 3D printed specimens affected by acetone vapour treatment
NASA Astrophysics Data System (ADS)
Beniak, Juraj; Križan, Peter; Šooš, Ľubomír; Matúš, Miloš
2018-01-01
Rapid Prototyping technologies are the fastest growing technologies in the manufacturing of components and parts. There are many techniques which can be used with different materials and different purposes of produced part. Gradually, Rapid Prototyping systems have grown into Additive Manufacturing, because technology expansion brings faster production, improved manufactured components, and expanded palette of used materials. So now this techniques are also used for regular production of special parts, where is usual change of part design, where is necessary to produce variety of different designs and shapes. The following article deals with Fused Deposition Modelling (FDM) technology, the core of which is the manufacture models and components from thermoplastic polymers by deposition single fibres of semi-molten plastic material layer by layer. The article focuses on the results of research for testing of manufactured specimens by FDM technology. Components are modified by acetone vapour for surface smoothing. The purpose is to point out how the additional specimen treatment influence the strength properties. Presented paper shows realized experiments and measurements of compressive force on specimens and surface roughness which are influenced by acetone vapour treatment.
High speed photodiodes in standard nanometer scale CMOS technology: a comparative study.
Nakhkoob, Behrooz; Ray, Sagar; Hella, Mona M
2012-05-07
This paper compares various techniques for improving the frequency response of silicon photodiodes fabricated in mainstream CMOS technology for fully integrated optical receivers. The three presented photodiodes, Spatially Modulated Light detectors, Double, and Interrupted P-Finger photodiodes, aim at reducing the low speed diffusive component of the photo generated current. For the first photodiode, Spatially Modulated Light (SML) detectors, the low speed current component is canceled out by converting it to a common mode current driving a differential transimpedance amplifier. The Double Photodiode (DP) uses two depletion regions to increase the fast drift component, while the Interrupted-P Finger Photodiode (IPFPD) redirects the low speed component towards a different contact from the main fast terminal of the photodiode. Extensive device simulations using 130 nm CMOS technology-parameters are presented to compare their performance using the same technological platform. Finally a new type of photodiode that uses triple well CMOS technology is introduced that can achieve a bandwidth of roughly 10 GHz without any process modification or high reverse bias voltages that would jeopardize the photodetector and subsequent transimpedance amplifier reliability.
Fundamental Technology Development for Gas-Turbine Engine Health Management
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Simon, Donald L.; Hunter, Gary W.; Arnold, Steven M.; Reveley, Mary S.; Anderson, Lynn M.
2007-01-01
Integrated vehicle health management technologies promise to dramatically improve the safety of commercial aircraft by reducing system and component failures as causal and contributing factors in aircraft accidents. To realize this promise, fundamental technology development is needed to produce reliable health management components. These components include diagnostic and prognostic algorithms, physics-based and data-driven lifing and failure models, sensors, and a sensor infrastructure including wireless communications, power scavenging, and electronics. In addition, system assessment methods are needed to effectively prioritize development efforts. Development work is needed throughout the vehicle, but particular challenges are presented by the hot, rotating environment of the propulsion system. This presentation describes current work in the field of health management technologies for propulsion systems for commercial aviation.
Recent advances in Ni-H2 technology at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Gonzalezsanabria, O. D.; Britton, D. L.; Smithrick, J. J.; Reid, M. A.
1986-01-01
The NASA Lewis Research Center has concentrated its efforts on advancing the Ni-H2 system technology for low Earth orbit applications. Component technology as well as the design principles were studied in an effort to understand the system behavior and failure mechanisms in order to increase performance and extend cycle life. The design principles were previously addressed. The component development is discussed, in particular the separator and nickel electrode and how these efforts will advance the Ni-H2 system technology.
Life assessment of structural components using inelastic finite element analyses
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
NASA Astrophysics Data System (ADS)
Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.
2005-06-01
The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.
NASA/ESTO investments in remote sensing technologies (Conference Presentation)
NASA Astrophysics Data System (ADS)
Babu, Sachidananda R.
2017-02-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
ESTO Investments in Innovative Sensor Technologies for Remote Sensing
NASA Technical Reports Server (NTRS)
Babu, Sachidananda R.
2017-01-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
NASA Technical Reports Server (NTRS)
Hayakawa, K. K.; Udell, D. R.; Iwata, M. M.; Lytle, C. F.; Chrisco, R. M.; Greenough, C. S.; Walling, J. A.
1972-01-01
The results are presented of an investigation into the availability and performance capability of measurement components in the area of cryogenic temperature, pressure, flow and liquid detection components and high temperature strain gages. In addition, technical subjects allied to the components were researched and discussed. These selected areas of investigation were: (1) high pressure flange seals, (2) hydrogen embrittlement of pressure transducer diaphragms, (3) The effects of close-coupled versus remote transducer installation on pressure measurement, (4) temperature transducer configuration effects on measurements, and (5) techniques in temperature compensation of strain gage pressure transducers. The purpose of the program was to investigate the latest design and application techniques in measurement component technology and to document this information along with recommendations for upgrading measurement component designs for future S-2 derivative applications. Recommendations are provided for upgrading existing state-of-the-art in component design, where required, to satisfy performance requirements of S-2 derivative vehicles.
Making Ceramic Components For Advanced Aircraft Engines
NASA Technical Reports Server (NTRS)
Franklin, J. E.; Ezis, A.
1994-01-01
Lightweight, oxidation-resistant silicon nitride components containing intricate internal cooling and hydraulic passages and capable of withstanding high operating temperatures made by ceramic-platelet technology. Used to fabricate silicon nitride test articles of two types: components of methane-cooled regenerator for air turbo ramjet engine and components of bipropellant injector for rocket engine. Procedures for development of more complex and intricate components established. Technology has commercial utility in automotive, aircraft, and environmental industries for manufacture of high-temperature components for use in regeneration of fuels, treatment of emissions, high-temperature combustion devices, and application in which other high-temperature and/or lightweight components needed. Potential use in fabrication of combustors and high-temperature acoustic panels for suppression of noise in future high-speed aircraft.
Cost/benefit analysis of advanced material technologies for small aircraft turbine engines
NASA Technical Reports Server (NTRS)
Comey, D. H.
1977-01-01
Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.
Conceptual design study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Warren, J. R.
1986-01-01
An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
Miniaturization of components and systems for space using MEMS-technology
NASA Astrophysics Data System (ADS)
Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin
2007-06-01
Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty of this micropropulsion system is that all critical components such as thrust chamber/nozzle assembly including internal heaters, valves and filters are manufactured using MEMS technology. Moreover, miniaturized pressure sensors, relying on MEMS technology, is also part of the system as a self-standing component. The flight opportunity on PRISMA represents one of the few and thus important opportunities to demonstrate MEMS technology in space. The present paper aims at describing this development effort and highlights the benefits of miniaturized components and systems for space using MEMS technology.
Zhang, Wenxuan; Xu, Chengjian; He, Wenzhi; Li, Guangming; Huang, Juwen
2018-02-01
The wide use of lithium ion batteries (LIBs) has brought great numbers of discarded LIBs, which has become a common problem facing the world. In view of the deleterious effects of spent LIBs on the environment and the contained valuable materials that can be reused, much effort in many countries has been made to manage waste LIBs, and many technologies have been developed to recycle waste LIBs and eliminate environmental risks. As a review article, this paper introduces the situation of waste LIB management in some developed countries and in China, and reviews separation technologies of electrode components and refining technologies of LiCoO 2 and graphite. Based on the analysis of these recycling technologies and the structure and components characteristics of the whole LIB, this paper presents a recycling strategy for all components from obsolete LIBs, including discharge, dismantling, and classification, separation of electrode components and refining of LiCoO 2 /graphite. This paper is intended to provide a valuable reference for the management, scientific research, and industrial implementation on spent LIBs recycling, to recycle all valuable components and reduce the environmental pollution, so as to realize the win-win situation of economic and environmental benefits.
Photonics technology development for optical fuzing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.J.; Geib, Kent Martin; von der Lippe, C.M.
2005-07-01
This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employmore » discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.« less
NASA Technical Reports Server (NTRS)
Adams, Marc A.; Zwissler, James G.; Hayes, Charles; Fabensky, Beth; Cornelison, Charles; Alexander, Lesley; Bishop, Karen
2005-01-01
A new technology is being developed that can protect spacecraft and satellite components against damage from meteoroid strikes and control the thermal environment of the protected components. This technology, called Foam Core Shield (FCS) systems, has the potential to replace the multi-layer insulation blankets (MLI) that have been used on spacecraft for decades. In order to be an attractive candidate for replacing MLI, FCS systems should not only provide superior protection against meteoroid strikes but also provide an equal or superior ability to control the temperature of the protected component. Properly designed FCS systems can provide these principal functions, meteoroid strike protection and thermal control, with lower system mass and a smaller system envelope than ML.
Applications of statistical physics to technology price evolution
NASA Astrophysics Data System (ADS)
McNerney, James
Understanding how changing technology affects the prices of goods is a problem with both rich phenomenology and important policy consequences. Using methods from statistical physics, I model technology-driven price evolution. First, I examine a model for the price evolution of individual technologies. The price of a good often follows a power law equation when plotted against its cumulative production. This observation turns out to have significant consequences for technology policy aimed at mitigating climate change, where technologies are needed that achieve low carbon emissions at low cost. However, no theory adequately explains why technology prices follow power laws. To understand this behavior, I simplify an existing model that treats technologies as machines composed of interacting components. I find that the power law exponent of the price trajectory is inversely related to the number of interactions per component. I extend the model to allow for more realistic component interactions and make a testable prediction. Next, I conduct a case-study on the cost evolution of coal-fired electricity. I derive the cost in terms of various physical and economic components. The results suggest that commodities and technologies fall into distinct classes of price models, with commodities following martingales, and technologies following exponentials in time or power laws in cumulative production. I then examine the network of money flows between industries. This work is a precursor to studying the simultaneous evolution of multiple technologies. Economies resemble large machines, with different industries acting as interacting components with specialized functions. To begin studying the structure of these machines, I examine 20 economies with an emphasis on finding common features to serve as targets for statistical physics models. I find they share the same money flow and industry size distributions. I apply methods from statistical physics to show that industries cluster the same way according to industry type. Finally, I use these industry money flows to model the price evolution of many goods simultaneously, where network effects become important. I derive a prediction for which goods tend to improve most rapidly. The fastest-improving goods are those with the highest mean path lengths in the money flow network.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... Technologies'') to amend the complaint and notice of investigation (``NOI''). FOR FURTHER INFORMATION CONTACT... Fiber Optic Communications, Components Thereof, and Products Containing Same; Commission Determination Not To Review an Initial Determination Granting Complainants Avago Technologies General IP (Singapore...
NASA Technical Reports Server (NTRS)
Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.
1996-01-01
This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.
Annual Science and Engineering Technology Conference Presentations (8th)
2007-04-19
Technology 11:30 am Wrap Up & Adjourn 12:00 pm BUFFET LUNCHEON Session III: Army Future Combat System (Brigade Combat Team) (FCS(BCT)) Program The Future...acquisitions by firms from other nations. Non UK/Canada transactions accounted for 58% of all CFIUS filings. 19 Outline • Industrial Policy • Emerging...requirements are accounted for Document and model the component Minimize inter-component dependencies Support rapid, affordable technology
Electrical/electronics working group summary
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.
1984-01-01
The electrical/electronics, technology area was considered. It was found that there are no foreseeable circuit or component problems to hinder the implementation of the flywheel energy storage concept. The definition of the major component or technology developments required to permit a technology ready date of 1987 was addressed. Recommendations: motor/generators, suspension electronics, power transfer, power conditioning and distribution, and modeling. An introduction to the area of system engineering is also included.
Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components
NASA Technical Reports Server (NTRS)
Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul
2014-01-01
Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.
Noncontacting measurement technologies for space propulsion condition monitoring
NASA Technical Reports Server (NTRS)
Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.
1987-01-01
This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.
Spaceborne sensors (1983-2000 AD): A forecast of technology
NASA Technical Reports Server (NTRS)
Kostiuk, T.; Clark, B. P.
1984-01-01
A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Sellappan, V.; He, T.; Seyr, Norbert; Obieglo, Andreas; Erdmann, Marc; Holzleitner, Jochen
2009-03-01
Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic injection molding subcomponents are integrated into a singular component/module. Due to attending synergetic effects, the performance of the PMH component typically exceeds that attainable by an alternative single-material technologies. In the present work, a total life cycle (TLC) approach to the selection of metallic and thermoplastic materials (as well as the selection of structural adhesives, where appropriate) is considered. The TLC material selection approach considers the consequences and ramifications of material selection at each major stage of the vehicle manufacturing process chain (press shop, injection molding shop, body shop, paint shop, and assembly), as well as relation to the vehicle performance, durability and the end-of-the-life-of-the-vehicle considerations. The approach is next applied to the case of injection overmolding technology to identify the optimal grade of short glass-fiber reinforced nylon when used in a prototypical PMH load-bearing automotive body-in-white component.
Role of design complexity in technology improvement.
McNerney, James; Farmer, J Doyne; Redner, Sidney; Trancik, Jessika E
2011-05-31
We study a simple model for the evolution of the cost (or more generally the performance) of a technology or production process. The technology can be decomposed into n components, each of which interacts with a cluster of d - 1 other components. Innovation occurs through a series of trial-and-error events, each of which consists of randomly changing the cost of each component in a cluster, and accepting the changes only if the total cost of the cluster is lowered. We show that the relationship between the cost of the whole technology and the number of innovation attempts is asymptotically a power law, matching the functional form often observed for empirical data. The exponent α of the power law depends on the intrinsic difficulty of finding better components, and on what we term the design complexity: the more complex the design, the slower the rate of improvement. Letting d as defined above be the connectivity, in the special case in which the connectivity is constant, the design complexity is simply the connectivity. When the connectivity varies, bottlenecks can arise in which a few components limit progress. In this case the design complexity depends on the details of the design. The number of bottlenecks also determines whether progress is steady, or whether there are periods of stasis punctuated by occasional large changes. Our model connects the engineering properties of a design to historical studies of technology improvement.
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: INNOVATION MAKING A DIFFERENCE
The Superfund Innovative Technology Evaluation (SITE) Program encourages commercialization of innovative technologies for characterizing and remediating hazardous waste site contamination through four components: Demonstration, Emerging Technology, and Monitoring & Measurement Pr...
Embedded 100 Gbps Photonic Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznia, Charlie
This innovation to fiber optic component technology increases the performance, reduces the size and reduces the power consumption of optical communications within dense network systems, such as advanced distributed computing systems and data centers. VCSEL technology is enabling short-reach (< 100 m) and >100 Gbps optical interconnections over multi-mode fiber in commercial applications.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1994-01-01
Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.
Component improvement of free-piston Stirling engine key technology for space power
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1988-01-01
The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Design, Fabrication and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200 C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. This paper provides an overview of the turboelectric and hybrid electric technologies being developed under NASA's Advanced Air Transportation Technology (AATT) Project and discusses how these technologies can impact vehicle design. The discussion includes an overview of key hybrid electric studies and technology investments, the approach to making informed investment decisions based on key performance parameters and mission studies, and the power system architectures for two candidate aircraft. Finally, the power components for a single-aisle turboelectric aircraft with an electrically driven tail cone thruster and for a hybrid-electric nine-passenger aircraft with a range extender are parametrically sized, and the sensitivity of these components to key parameters is presented.
NASA Technical Reports Server (NTRS)
2002-01-01
The Optical Vector Analyzer (OVA) 1550 significantly reduces the time and cost of testing sophisticated optical components. The technology grew from the research Luna Technologies' Dr. Mark Froggatt conducted on optical fiber strain measurement while working at Langley Research Center. Dr. Froggatt originally developed the technology for non- destructive evaluation testing at Langley. The new technique can provide 10,000 independent strain measurements while adding less than 10 grams to the weight of the vehicle. The OVA is capable of complete linear characterization of single-mode optical components used in high- bit-rate applications. The device can test most components over their full range in less than 30 seconds, compared to the more than 20 minutes required by other testing methods. The dramatically shortened measurement time results in increased efficiency in final acceptance tests of optical devices, and the comprehensive data produced by the instrument adds considerable value for component consumers. The device eliminates manufacturing bottlenecks, while reducing labor costs and wasted materials during production.
Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation
NASA Technical Reports Server (NTRS)
Hoffman, T.; Mack, J.; Mount, R.
1994-01-01
This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.
Study of multi-megawatt technology needs for photovoltaic space power systems, volume 2
NASA Technical Reports Server (NTRS)
Peterson, D. M.; Pleasant, R. L.
1981-01-01
Possible missions requiring multimegawatt photovoltaic space power systems in the 1990's time frame and power system technology needs associated with these missions are examined. Four specific task areas were considered: (1) missions requiring power in the 1-10 megawatt average power region; (2) alternative power systems and component technologies; (3) technology goals and sensitivity trades and analyses; and (4) technology recommendations. Specific concepts for photovoltaic power approaches considered were: planar arrays, concentrating arrays, hybrid systems using Rankine engines, thermophotovoltaic approaches; all with various photovoltaic cell component technologies. Various AC/DC power management approaches, and battery, fuel cell, and flywheel energy storage concepts are evaluated. Interactions with the electrical ion engine injection and stationkeeping system are also considered.
From advanced driver assistance to autonomous driving: perspectives for photonics sensors
NASA Astrophysics Data System (ADS)
Cochard, Jacques; Bouyé, Clémentine
2016-03-01
Optics components entered in the automotive vehicle one century ago with headlamps and since then move towards even more sophisticated designs in lighting functions. Photonics sensors are just entering now in this market through driver assistance, in complement of incumbent ultrasonic and radar technologies. Gain of market shares is expected for this components with autonomous driving, that was few years ago a nice dream and whose early results exceed surprisingly expectations of roadmaps and historic OEM have quickly joined the course launched by Google Company 5 years ago. Technological components, among them CMOS camera followed by Laser Scanners, cost-effective flash LIDAR are already experimenting their first miles in real condition and new consumers in South Asia plebiscite this new way to drive cars .The issue is still for photonics companies to move from well suited technological solution to mass-production components with corresponding cost reduction. MEMS components that follow the same curve 15 years ago (with market entries in airbags, tire pressure monitoring systems…) experimented the hard pressure on price for wide market adoption. Besides price, which is a CFO issue, photonic technologies will keep in place if they can both reassure OEM CEO and let CTO and designers dream. Reassurance will be through higher level of standardization and reliability of these components whereas dream will be linked to innovative sensing application, e.g spectroscopy.
NASA Technical Reports Server (NTRS)
Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.
1981-01-01
The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.
A Practical Approach to Starting Fission Surface Power Development
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2006-01-01
The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.
Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.
2015-01-01
The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.
Energy harvesting concepts for small electric unmanned systems
NASA Astrophysics Data System (ADS)
Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.
2004-07-01
In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.
The Dairy Technology System in Venezuela. Summary of Research 79.
ERIC Educational Resources Information Center
Nieto, Ruben D.; Henderson, Janet L.
A study examined the agricultural technology system in Venezuela with emphasis on the dairy industry. An analytical framework was used to identify the strengths and weaknesses of the following components of Venezuela's agricultural technology system: policy, technology development, technology transfer, and technology use. Selected government…
Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments
NASA Technical Reports Server (NTRS)
Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.
1987-01-01
The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.
Power management and distribution technology
NASA Astrophysics Data System (ADS)
Dickman, John Ellis
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Power management and distribution technology
NASA Technical Reports Server (NTRS)
Dickman, John Ellis
1993-01-01
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Materials technology assessment for stirling engines
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.
1977-01-01
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.
Dual use of photonic components in radiation environments
NASA Astrophysics Data System (ADS)
Taylor, Edward W.
1994-06-01
The steady evolution of and increased requirement for using photonic technologies within the commercial market coupled with decreased defense spending has brought forth new national philosophies regarding widespread use of the technology in both military and commercial sectors. Many commercially available photonic components (i.e., optical fibers, laser diodes, semiconductor detectors, detector arrays, spatial light modulators, integrated optic circuitry and other similar optoelectronic and electro-optic devices are being scrutinized for utility, cost effectiveness and dual-use in a variety of applications. One important area of application is space. This paper will discuss the current state-of-the-art and utility of qualifying and using several mature photonic component technologies in commercial and defense application areas.
Technological Alternatives to Paper-Based Components of Team-Based Learning
ERIC Educational Resources Information Center
Robinson, Daniel H.; Walker, Joshua D.
2008-01-01
The authors have been using components of team-based learning (TBL) in two undergraduate courses at the University of Texas for several years: an educational psychology survey course--Cognition, Human Learning and Motivation--and Introduction to Statistics. In this chapter, they describe how they used technology in classes of fifty to seventy…
Laser rapid forming technology of high-performance dense metal components with complex structure
NASA Astrophysics Data System (ADS)
Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin
2005-01-01
Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.
Changing Technology and Work: Northern Telecom. CAW Technology Project.
ERIC Educational Resources Information Center
Robertson, David; Wareham, Jeff
A project to examine the implications of technological change at Northern Telecom consisted of two major components: a technological survey and case study research. A questionnaire that contained more than 90 questions on technological change was distributed through local union technology committee meetings in Brampton, London, Belleville, and…
Ultralightweight optics for space applications
NASA Astrophysics Data System (ADS)
Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.
2000-07-01
Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.
Supporting learner-centered technology integration through situated mentoring
NASA Astrophysics Data System (ADS)
Rosenberg, Marian Goode
Situated mentoring was used as a professional development method to help 11 high school science teachers integrate learner-centered technology. The teachers' learner-centered technology beliefs and practices as well as their perception of barriers to learner-centered technology integration were explored before and after participating in the mentoring program. In addition, the participants' thoughts about the effectiveness of various components of the mentoring program were analyzed along with the mentor's observations of their practices. Situated mentoring can be effective for supporting learner-centered technology integration, in particular decreasing the barriers teachers experience. Goal setting, collaborative planning, reflection, and onsite just-in-time support were thought to be the most valuable components of the mentoring program.
VERIFICATION OF HIGH-RATE DISINFECTION TECHNOLOGIES FOR WET-WEATHER FLOWS
This paper describes the critical components of the USEPA's Environmental Technology Verification Program for two specific technologies categories: ultraviolet disinfection technologies for treating combined sewer overflow (CSO) and sanitary sewer overflow (SSO), and; induction m...
Study of advanced techniques for determining the long-term performance of components
NASA Technical Reports Server (NTRS)
1972-01-01
A study was conducted of techniques having the capability of determining the performance and reliability of components for spacecraft liquid propulsion applications for long term missions. The study utilized two major approaches; improvement in the existing technology, and the evolution of new technology. The criteria established and methods evolved are applicable to valve components. Primary emphasis was placed on the propellants oxygen difluoride and diborane combination. The investigation included analysis, fabrication, and tests of experimental equipment to provide data and performance criteria.
New dynamic silicon photonic components enabled by MEMS technology
NASA Astrophysics Data System (ADS)
Errando-Herranz, Carlos; Edinger, Pierre; Colangelo, Marco; Björk, Joel; Ahmed, Samy; Stemme, Göran; Niklaus, Frank; Gylfason, Kristinn B.
2018-02-01
Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.
Communication and Cultural Change in University Technology Transfer
ERIC Educational Resources Information Center
Wright, David
2013-01-01
Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…
Government/industry response to questionnaire on space mechanisms/tribology technology needs
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1991-01-01
President Bush has proposed that the U.S. undertake an ambitious mission of manned and robotic exploration of the solar system. This mission will require advanced mechanical moving components, such as bearings, gears, seals, lubricants, etc. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of such a mission. To attempt to answer this, NASA-Lewis has sent out a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Missions needs and goals. If they deemed that the technology base inadequate, they were asked to specify the areas of greatest need. The unedited remarks of those who responded to the survey are presented.
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.
NASA Technical Reports Server (NTRS)
Jacobs, J. A.
1976-01-01
A project was initiated to develop, implement, and evaluate a prototype component for self-pacing, individualized instruction on basic materials science. Results of this project indicate that systematically developed, self-paced instruction provides an effective means for orienting nontraditional college students and secondary students, especially minorities, to both engineering technology and basic materials science. In addition, students using such a system gain greater chances for mastering subject matter than with conventional modes of instruction.
Overview of NASA/OAST efforts related to manufacturing technology
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1976-01-01
Activities of the Office of Aeronautics and Space Technology (OAST) in a number of areas related to manufacturing technology are considered. In the computer-aided design area improved approaches are developed for the design of specific classes of components or structural subsystems. A generalized approach for the design of a complete aerospace vehicle is also developed. Efforts directed toward an increased use of composite materials in aerospace structures are also discussed and attention is given to projects concerned with the manufacture of turbine engine components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.
2012-10-05
This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.
Environmental Aspects Of The Green Surface Plastic Deformation Technology Of Car Parts
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Bobrovskij, N. M.; Bobrovskij, I. N.; Melnikov, P. A.; Lukyanov, A. A.
2017-01-01
Foreign and domestic experience in development of dry processing technologies are considered. The results of the introduction of dry processing technologies (cutting, boring, milling, drilling) on the industrial companies in Germany are given. The negative impact on the environment and human health is shown. The possible ways of leakage of lubricoolant components in the atmosphere and soil are considered. Lubricoolants are considered as a required permanent component. Three main tasks for lubricoolant: cooling, lubricating and chip disposal are discribed.
Compare Vehicle Technologies | Transportation Research | NREL
electric car diagramming energy storage, power electronics, and climate control components, as well as storage, power electronics, and climate control components, as well as energy flow among components. 3-D control components, as well as energy flow among components. 3-D illustration of electric car diagramming
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
VERIFICATION OF HIGH-RATE DISINFECTION TECHNOLOGIES FOR WET-WEATHER FLOW APPLICATIONS
This paper describes the critical components of the USEPA's Environmental Technology Verification Program for two specific technologies categories: ultraviolet disinfection technologies for treating combined sewer overflow (CSO) and sanitary sewer overflow (SSO), and; and mechani...
ERIC Educational Resources Information Center
Laine, Teemu H.; Nygren, Eeva
2016-01-01
Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.
1984-01-01
The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Gender Preferences in Technology Student Association Competitions
ERIC Educational Resources Information Center
Mitts, Charles R.
2008-01-01
Society is increasingly dominated by rapidly evolving systems of technology. The goal of technology education, as an academic component of public education, is to ensure that students become "technologically literate" members of society who are able to understand, access, use, manage, and control these technological systems.…
Trajectory correction propulsion for TOPS
NASA Technical Reports Server (NTRS)
Long, H. R.; Bjorklund, R. A.
1972-01-01
A blowdown-pressurized hydrazine propulsion system was selected to provide trajectory correction impulse for outer planet flyby spacecraft as the result of cost/mass/reliability tradeoff analyses. Present hydrazine component and system technology and component designs were evaluated for application to the Thermoelectric Outer Planet Spacecraft (TOPS); while general hydrazine technology was adequate, component design changes were deemed necessary for TOPS-type missions. A prototype hydrazine propulsion system was fabricated and fired nine times for a total of 1600 s to demonstrate the operation and performance of the TOPS propulsion configuration. A flight-weight trajectory correction propulsion subsystem (TCPS) was designed for the TOPS based on actual and estimated advanced components.
Ad hoc Laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi
2016-03-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Ad hoc laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Shen, Jingshi
2017-10-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... technologies, namely safety-critical processor-based signal or train control systems, including subsystems and... or train control system (including a subsystem or component thereof) that was in service as of June 6... processor-based signal or train control system, subsystem, or component.'' See 49 CFR 236.903. Under Subpart...
Exploration Systems Health Management Facilities and Testbed Workshop
NASA Technical Reports Server (NTRS)
Wilson, Scott; Waterman, Robert; McCleskey, Carey
2004-01-01
Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).
Technology Assessment for Powertrain Components Final Report CRADA No. TC-1124-95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarz, F.; Gough, C.
LLNL utilized its defense technology assessment methodologies in combination with its capabilities in the energy; manufacturing, and transportation technologies to demonstrate a methodology that synthesized available but incomplete information on advanced automotive technologies into a comprehensive framework.
Exploring Students' Technology Acceptance in College Developmental Mathematics
ERIC Educational Resources Information Center
Williams, Handan
2012-01-01
Technology has become a large component of teaching and learning in mathematics education. Gaining insight into students' technology acceptance factors is a crucial step in understanding instructional design and implementation of technology-based learning programs. Despite the widespread use of technology in education, few research efforts…
Entrepreneurship. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on entrepreneurship for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on introduction to animation for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Section components are described next. The…
Audiovisual Programming. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on audiovisual programming for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections…
Health Occupations. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on health occupations for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
Electronic Publishing. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on electronic publishing for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor and student sections are…
Career Search. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on career search for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
Innovation processes in technologies for the processing of refractory mineral raw materials
NASA Astrophysics Data System (ADS)
Chanturiya, V. A.
2008-12-01
Analysis of the grade of mineral resources of Russia and other countries shows that end products that are competitive in terms of both technological and environmental criteria in the world market can only be obtained by the development and implementation of progressive technologies based on the up-to-date achievements of fundamental sciences. The essence of modern innovation processes in technologies developed in Russia for the complex and comprehensive processing of refractory raw materials with a complex composition is ascertained. These processes include (i) radiometric methods of concentration of valuable components, (ii) high-energy methods of disintegration of highly dispersed mineral components, and (iii) electrochemical methods of water conditioning to obtain target products for solving specific technological problems.
A compendium of solar dish/Stirling technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stine, W.B.; Diver, R.B.
1994-01-01
This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less
Emerging technologies in arthroplasty: additive manufacturing.
Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A
2014-06-01
Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2004-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
The WCSAR telerobotics test bed
NASA Technical Reports Server (NTRS)
Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.
1988-01-01
Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.
School-Based Technology Use Planning.
ERIC Educational Resources Information Center
Cradler, John
1994-01-01
Describes how to conduct systematic planning for technology use. The components of an effective technology use plan, derived from a comprehensive study of school-based technology, are given. Planning development, implementation, and evaluation steps are provided. Ten planning resource books are listed. (Contains five references.) (KRN)
ERIC Educational Resources Information Center
Avsec, Stanislav; Jamšek, Janez
2016-01-01
Technological literacy is identified as a vital achievement of technology- and engineering-intensive education. It guides the design of technology and technical components of educational systems and defines competitive employment in technological society. Existing methods for measuring technological literacy are incomplete or complicated,…
ERIC Educational Resources Information Center
Stewart, James; Williams, Robin
1998-01-01
Criticizes "technologically deterministic" approaches, which seek to extrapolate social change from technological potential. Shows how a three-layer model of component, system, and application technologies can be used to integrate findings from the use and development of technology in specific sectors. Examines three cases of…
Wang, Chen; Zhao, Wu; Wang, Jie; Chen, Ling; Luo, Chun-Jing
2016-06-01
The printed circuit boards basis of electronic equipment have seen a rapid growth in recent years and played a significant role in modern life. Nowadays, the fact that electronic devices upgrade quickly necessitates a proper management of waste printed circuit boards. Non-destructive desoldering of waste printed circuit boards becomes the first and the most crucial step towards recycling electronic components. Owing to the diversity of materials and components, the separation process is difficult, which results in complex and expensive recovery of precious materials and electronic components from waste printed circuit boards. To cope with this problem, we proposed an innovative approach integrating Theory of Inventive Problem Solving (TRIZ) evolution theory and technology maturity mapping system to forecast the evolution trends of desoldering technology of waste printed circuit boards. This approach can be applied to analyse the technology evolution, as well as desoldering technology evolution, then research and development strategy and evolution laws can be recommended. As an example, the maturity of desoldering technology is analysed with a technology maturity mapping system model. What is more, desoldering methods in different stages are analysed and compared. According to the analysis, the technological evolution trends are predicted to be 'the law of energy conductivity' and 'increasing the degree of idealisation'. And the potential technology and evolutionary state of waste printed circuit boards are predicted, offering reference for future waste printed circuit boards recycling. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Mayo, L. H.
1975-01-01
An analysis is presented for the Congress of the relationships between an institutionalized assessment function and legislative information gathering and decisionmaking needs. The study was directed to the following topics: (1) the positing of a hypothetical technology assessment component for legislative support; (2) the posing of a number of questions relating to the operational context of this assessment component including the organization/operational framework, general operational problems, access to relevant information, and the utilization of assessment data and analyses; and (3) some selected comments relevant to the questions posed.
Lasers in automobile production
NASA Astrophysics Data System (ADS)
Pizzi, P.
There is a trend in mechanical equipment to replace complicated mechanical components with electronics, especially microprocessors, laser technology represents an important new tool. The effects of laser technology can be seen in production systems concerned with cutting, welding, heat treatment, and the alloying of mechanical components. Applications in the automobile industry today are not very widespread and are concerned essentially with welding and cutting.
NASA Technical Reports Server (NTRS)
Kermode, A. W.; Boreham, J. F.
1974-01-01
This paper discusses the utilization of acoustic surface wave filters, beam lead components, and thin film metallized ceramic substrate technology as applied to the design of deep space, long-life, multimission transponder. The specific design to be presented is for a second mixer local oscillator module, operating at frequencies as high as 249 MHz.
ERIC Educational Resources Information Center
Anderson, Frank; And Others
The Satellite Technology Demonstration (STD) of the Federation of Rocky Mountain States (FRMS) employed a technical delivery system to merge effectively hardware and software, products and services. It also needed a nontechnical component to insure product and service acceptance. Accordingly, the STD's Utilization Component was responsible for…
Propulsion system research and development for electric and hybrid vehicles
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1980-01-01
An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.
NASA Technical Reports Server (NTRS)
1991-01-01
Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.
Space Power Management and Distribution Status and Trends
NASA Technical Reports Server (NTRS)
Reppucci, G. M.; Biess, J. J.; Inouye, L.
1984-01-01
An overview of space power management and distribution (PMAD) is provided which encompasses historical and current technology trends. The PMAD components discussed include power source control, energy storage control, and load power processing electronic equipment. The status of distribution equipment comprised of rotary joints and power switchgear is evaluated based on power level trends in the public, military, and commercial sectors. Component level technology thrusts, as driven by perceived system level trends, are compared to technology status of piece-parts such as power semiconductors, capacitors, and magnetics to determine critical barriers.
Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.
The impact of fuels on aircraft technology through the year 2000
NASA Technical Reports Server (NTRS)
Grobman, J.; Reck, G. M.
1980-01-01
The impact that the supply, quality, and processing costs of future fuels may have on aircraft technology is assessed. The potential range of properties for future jet fuels is discussed along with the establishment of a data base of fuel property effects on propulsion system components. Also, the evolution and evaluation of advanced component technology that would permit the use of broader property fuels and the identification of technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties are examined.
Solar thermal program summary. Volume 1: Overview, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-02-01
The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.
Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid
NASA Technical Reports Server (NTRS)
Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick
2015-01-01
The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.
Understanding Preservice Teachers' Technology Use through TPACK Framework
ERIC Educational Resources Information Center
Pamuk, S.
2012-01-01
This study discusses preservice teachers' achievement barriers to technology integration, using principles of technological pedagogical content knowledge (TPACK) as an evaluative framework. Technology-capable participants each freely chose a content area to comprise project. Data analysis based on interactions among core components of TPACK…
Rajarathinam, Vetrickarthick; Chellappa, Swarnalatha; Nagarajan, Asha
2015-01-01
This study on component framework reveals the importance of management process and technology mapping in a business environment. We defined ERP as a software tool, which has to provide business solution but not necessarily an integration of all the departments. Any business process can be classified as management process, operational process and the supportive process. We have gone through entire management process and were enable to bring influencing components to be mapped with a technology for a business solution. Governance, strategic management, and decision making are thoroughly discussed and the need of mapping these components with the ERP is clearly explained. Also we suggest that implementation of this framework might reduce the ERP failures and especially the ERP misfit was completely rectified.
Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components
NASA Astrophysics Data System (ADS)
Dong, Z. H.; Ye, X.; Yang, F.
2018-05-01
Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.
Chellappa, Swarnalatha; Nagarajan, Asha
2015-01-01
This study on component framework reveals the importance of management process and technology mapping in a business environment. We defined ERP as a software tool, which has to provide business solution but not necessarily an integration of all the departments. Any business process can be classified as management process, operational process and the supportive process. We have gone through entire management process and were enable to bring influencing components to be mapped with a technology for a business solution. Governance, strategic management, and decision making are thoroughly discussed and the need of mapping these components with the ERP is clearly explained. Also we suggest that implementation of this framework might reduce the ERP failures and especially the ERP misfit was completely rectified. PMID:25861688
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
..., as amended, 19 U.S.C. 1337, on behalf of Avago Technologies Fiber IP (Singapore) Pte. Ltd. of Singapore; Avago Technologies General IP (Singapore) Pte. Ltd. of Singapore; and Avago Technologies U.S. Inc... Technologies Fiber IP, (Singapore) Pte. Ltd., 1 Yishun Avenue 7, Singapore 768923. Avago Technologies General...
ERIC Educational Resources Information Center
Hallström, Jonas; Klasander, Claes
2017-01-01
Technological systems are included as a component of national technology curricula and standards for primary and secondary education as well as corresponding teacher education around the world. Little is known, however, of how pupils, students, and teachers conceive of technological systems. In this article we report on a study investigating…
Aerospace and Flight. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on aerospace and flight for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
Progression in Technology Education in New Zealand: Components of Practice as a Way Forward
ERIC Educational Resources Information Center
Compton, Vicki; Harwood, Cliff
2005-01-01
Understanding and undertaking technological practice is fundamental to student learning in technology education in New Zealand, and the enhancement of student technological literacy. The implementation of technology into New Zealand's core curriculum has reached the stage where it has become critical that learning programmes are based on student…
ERIC Educational Resources Information Center
Lee, Chwee Beng
2018-01-01
With the rapid developments in emerging technologies and the emphasis on technologies in learning environments, the connection between technologies and meaningful learning has strengthened. Developing an understanding of the components of meaningful learning with technology is pivotal, as this may enable educators to make more informed decisions…
Todhunter, Fern
2015-07-01
To report on the relationship between competence and confidence in nursing students as users of information and communication technologies, using principal components analysis. In nurse education, learning about and learning using information and communication technologies is well established. Nursing students are one of the undergraduate populations in higher education required to use these resources for academic work and practice learning. Previous studies showing mixed experiences influenced the choice of an exploratory study to find out about information and communication technologies competence and confidence. A 48-item survey questionnaire was administered to a volunteer sample of first- and second-year nursing students between July 2008-April 2009. The cohort ( N = 375) represented 18·75% of first- and second-year undergraduates. A comparison between this work and subsequent studies reveal some similar ongoing issues and ways to address them. A principal components analysis (PCA) was carried out to determine the strength of the correlation between information and communication technologies competence and confidence. The aim was to show the presence of any underlying dimensions in the transformed data that would explain any variations in information and communication technologies competence and confidence. Cronbach's alpha values showed fair to good internal consistency. The five component structure gave medium to high results and explained 44·7% of the variance in the original data. Confidence had a high representation. The findings emphasized the shift towards social learning approaches for information and communication technologies. Informal social collaboration found favour with nursing students. Learning through talking, watching and listening all play a crucial role in the development of computing skills.
Millimeter-wave MMIC technology for smart weapons
NASA Astrophysics Data System (ADS)
Seashore, Charles R.
1994-12-01
Millimeter wave MMIC component technology has made dramatic progress over the last ten years largely due to funding stimulation received under the ARPA Tri-Service MIMIC program. In several smart weapon systems, MMIC components are now specified as the baseline approach for millimeter wave radar transceiver hardware. Availability of this new frontier in microelectronics has also enabled realization of sensor fusion for multispectral capability to defeat many forms of known countermeasures. The current frequency range for these MMIC-based components is approximately 30 to 100 GHz. In several cases, it has been demonstrated that the MMIC component performance has exceeded that available from hybrid microstrip circuits using selected discrete devices. However, challenges still remain in chip producibility enhancement and cost reduction since many of the essential device structure candidates are themselves emerging technologies with a limited wafer fabrication history and accumulated test databases. It is concluded that smart weapons of the future will rely heavily on advanced microelectronics to satisfy performance requirements as well as meeting stringent packaging and power source constraints.
Flow Induced Vibration Program at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
1984-01-01
The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.
Advanced Electrical Materials and Components Being Developed
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2004-01-01
All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
Space mechanisms needs for future NASA long duration space missions
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1991-01-01
Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.
Improving the Reliability of Technological Subsystems Equipment for Steam Turbine Unit in Operation
NASA Astrophysics Data System (ADS)
Brodov, Yu. M.; Murmansky, B. E.; Aronson, R. T.
2017-11-01
The authors’ conception is presented of an integrated approach to reliability improving of the steam turbine unit (STU) state along with its implementation examples for the various STU technological subsystems. Basing on the statistical analysis of damage to turbine individual parts and components, on the development and application of modern methods and technologies of repair and on operational monitoring techniques, the critical components and elements of equipment are identified and priorities are proposed for improving the reliability of STU equipment in operation. The research results are presented of the analysis of malfunctions for various STU technological subsystems equipment operating as part of power units and at cross-linked thermal power plants and resulting in turbine unit shutdown (failure). Proposals are formulated and justified for adjustment of maintenance and repair for turbine components and parts, for condenser unit equipment, for regeneration subsystem and oil supply system that permit to increase the operational reliability, to reduce the cost of STU maintenance and repair and to optimize the timing and amount of repairs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derewonko, H.; Bosella, A.; Pataut, G.
1996-06-01
An evaluation program of Thomson CSF-TCS GaAs low noise and power MMIC technologies to 1 MeV equivalent neutron fluence levels, up to 1 {times} 10{sup 15} n/cm{sup 2}, ionizing 1.17--1.33 MeV CO{sup 60} dose levels in excess of 200 Mrad(GaAs) and dose rate levels reaching 1.89 {times} 10{sup 11} rad(GaAs)/s is presented in terms of proper components and parameter choices, DC/RF electrical measurements and test methods under irradiation. Experimental results are explained together with drift analyses of electrical parameters that have determined threshold limits of component degradations. Modelling the effects of radiation on GaAs components relies on degradation analysis ofmore » active layer which appears to be the most sensitive factor. MMICs degradation under neutron fluence was simulated from irradiated FET data. Finally, based on sensitivity of technological parameters, rad-hard design including material, technology and MMIC design enhancement is discussed.« less
NASA Technical Reports Server (NTRS)
Carrio, Miguel A., Jr.
1988-01-01
Rapidly emerging technology and methodologies have out-paced the systems development processes' ability to use them effectively, if at all. At the same time, the tools used to build systems are becoming obsolescent themselves as a consequence of the same technology lag that plagues systems development. The net result is that systems development activities have not been able to take advantage of available technology and have become equally dependent on aging and ineffective computer-aided engineering tools. New methods and tools approaches are essential if the demands of non-stop and Mission and Safety Critical (MASC) components are to be met.
A Resource Guide Identifying Technology Tools for Schools. Appendix
ERIC Educational Resources Information Center
Fox, Christine; Jones, Rachel
2009-01-01
SETDA and NASTID's "Technology Tools for Schools Resource Guide" provides definitions of key technology components and relevant examples, where appropriate as a glossary for educators. The guide also presents essential implementation and infrastructure considerations that decision makers should think about when implementing technology in schools.…
Assessing for Technological Literacy
ERIC Educational Resources Information Center
Engstrom, Daniel E.
2004-01-01
Designing standards-based assessment is a key component of a quality technology education program. For students to become technologically literate, it is important that the teacher understands how to measure student understandings and abilities in the study of technology. This article is written to help teachers and teacher educators recognize the…
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Impact of broad-specification fuels on future jet aircraft. [engine components and performance
NASA Technical Reports Server (NTRS)
Grobman, J. S.
1978-01-01
The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.
Tribology and Mechanical Components Branch Overview
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
2010-01-01
An overview of NASA Glenn Research Center's Tribology & Mechanical Components Branch is provided. Work in space mechanisms, seals, oil-free turbomachinery, and mechanical components is presented. An overview of current research for these technology areas is contained in this overview.
Microwave/millimeter wave technology
NASA Astrophysics Data System (ADS)
Abita, Joseph L.
1988-09-01
The microwave/millimeter-wave monolithic integrated-circuit (MIMIC) technology and systems are discussed along with the application of MIMICs in electronic warfare. The components of a MIMIC are described, with particular attention given to the active-array antenna transmit/receive module, which is at the focus of the MIMIC, and to the features of a typical MIMIC chip. The typical performance characteristics of MIMIC components are presented in tabular form.
ERIC Educational Resources Information Center
Thompson, B. M.; Schielack, J. F.; Vestal, T. A.
2004-01-01
Decades of research have provided evidence that food irradiation is a safe technology that can decrease the incidence of foodborne diseases; however, adoption of this technology has been slow. The purpose of our study was to qualitatively explore the effectiveness of various components of a professional development training on family and consumer…
Space flight requirements for fiber optic components: qualification testing and lessons learned
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2006-04-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2007-01-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
NASA Astrophysics Data System (ADS)
Valle, Fabio
The paper analyzes the satellite broadband systems for consumer from the perspective of technological innovation. The suggested interpretation relies upon such concepts as technological paradigm, technological trajectory and salient points. Satellite technology for broadband is a complex system on which each component (i.e. the satellite, the end-user equipment, the on-ground systems and related infrastructure) develops at different speed. Innovation in this industry concentrates recently on satellite space aircraft that seemed to be the component with the highest perceived opportunity for improvement. The industry has designed recently satellite systems with continuous dimensional increase of capacity available, suggesting that there is a technological trajectory in this area, similar to Moore’s law in the computer industry. The implications for industry players, Ka-band systems, and growth of future applications are also examined.
NASA Astrophysics Data System (ADS)
Thylén, Lars
2006-07-01
The design and manufacture of components and systems underpin the European and indeed worldwide photonics industry. Optical materials and photonic components serve as the basis for systems building at different levels of complexity. In most cases, they perform a key function and dictate the performance of these systems. New products and processes will generate economic activity for the European photonics industry into the 21 st century. However, progress will rely on Europe's ability to develop new and better materials, components and systems. To achieve success, photonic components and systems must: •be reliable and inexpensive •be generic and adaptable •offer superior functionality •be innovative and protected by Intellectual Property •be aligned to market opportunities The challenge in the short-, medium-, and long-term is to put a coordinating framework in place which will make the European activity in this technology area competitive as compared to those in the US and Asia. In the short term the aim should be to facilitate the vibrant and profitable European photonics industry to further develop its ability to commercialize advances in photonic related technologies. In the medium and longer terms the objective must be to place renewed emphasis on materials research and the design and manufacturing of key components and systems to form the critical link between science endeavour and commercial success. All these general issues are highly relevant for the component intensive broadband communications industry. Also relevant for this development is the convergence of data and telecom, where the low cost of data com meets with the high reliability requirements of telecom. The text below is to a degree taken form the Strategic Research Agenda of the Technology Platform Photonics 21 [1], as this contains a concerted effort to iron out a strategy for EU in the area of photonics components and systems.
The Next Technology Revolution - Nano Electronic Technology
NASA Astrophysics Data System (ADS)
Turlik, Iwona
2004-03-01
Nanotechnology is a revolutionary engine that will engender enormous changes in a vast majority of today's industries and markets, while potentially creating whole new industries. The impact of nanotechnology is particularly significant in the electronics industry, which is constantly driven by the need for higher performance, increased functionality, smaller size and lower cost. Nanotechnology can influence many of the hundreds of components that are typically assembled to manufacture modern electronic devices. Motorola manufactures electronics for a wide range of industries and communication products. In this presentation, the typical components of a cellular phone are outlined and technology requirements for future products, the customer benefits, and the potential impact of nanotechnology on many of the components are discussed. Technology needs include reliable materials supply, processes for high volume production, experimental and simulation tools, etc. For example, even routine procedures such as failure characterization may require the development of new tools for investigating nano-scale phenomena. Business needs include the development of an effective, high volume supply chain for nano-materials and devices, disruptive product platforms, and visible performance impact on the end consumer. An equally significant long-term industry need is the availability of science and engineering graduates with a multidisciplinary focus and a deep understanding of the fundamentals of nano-technology, that can harness the technology to create revolutionary products.
ERIC Educational Resources Information Center
Flaherty, William
2011-01-01
Technology is a critical component in the success of any high-functioning school district, thus it is important that education leaders should examine it closely. Simply put, the purpose of a technology audit is to assess the effectiveness of the technology for administrative or instructional use. Rogers Public Schools in Rogers, Arkansas, recently…
Technology User Groups and Early Childhood Education: A Preliminary Study
ERIC Educational Resources Information Center
Parette, Howard P.; Hourcade, Jack J.; Blum, Craig; Watts, Emily H.; Stoner, Julia B.; Wojcik, Brian W.; Chrismore, Shannon B.
2013-01-01
This article presents a preliminary examination of the potential of Technology User Groups as a professional development venue for early childhood education professionals in developing operational and functional competence in using hardware and software components of a Technology toolkit. Technology user groups are composed of varying numbers of…
30 CFR 7.510 - New technology.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false New technology. 7.510 Section 7.510 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.510 New technology. MSHA may approve a refuge alternative or a component that incorporates new knowledge or technology, if the...
30 CFR 7.510 - New technology.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false New technology. 7.510 Section 7.510 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.510 New technology. MSHA may approve a refuge alternative or a component that incorporates new knowledge or technology, if the...
30 CFR 7.510 - New technology.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false New technology. 7.510 Section 7.510 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.510 New technology. MSHA may approve a refuge alternative or a component that incorporates new knowledge or technology, if the...
30 CFR 7.510 - New technology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false New technology. 7.510 Section 7.510 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.510 New technology. MSHA may approve a refuge alternative or a component that incorporates new knowledge or technology, if the...
Finding the Education in Educational Technology with Early Learners
ERIC Educational Resources Information Center
McManis, Lilla Dale; Gunnewig, Susan B.
2012-01-01
As many educators and parents have observed, today's children are exposed to advanced technology at an early age, with tablets, e-readers, and smartphones being some prevalent choices. Experiences with technology can pave the way for unprecedented learning opportunities. However, without an education component, technology cannot reach its full…
ERIC Educational Resources Information Center
Cooper, Thomas W.
Attempting to introduce a new viewpoint to communication studies, this speculative and philosophical paper posits technology as an "echo of consciousness." Section one examines technology as a manifestation of attitude, presenting the premise that technologies, consciousness, and systems are not separate components, but products of…
The Use of Technology by Nonformal Environmental Educators
ERIC Educational Resources Information Center
Peffer, Tamara Elizabeth; Bodzin, Alec M.; Smith, Judith Duffield
2013-01-01
This study examined the use of instructional and learning technologies by nonformal environmental educators. A 40-question survey was developed to inquire about practitioner demographics, technology use in practice, and beliefs about technology. The survey consisted of multiple choice, open-ended questions, and a Likert-type scale component--the…
Technology-Mediated Learning 10 Years Later: Emphasizing Pedagogical or Utilitarian Applications?
ERIC Educational Resources Information Center
Arnold, Nike
2007-01-01
In recent years, educational technology has come a long way. Technological advancements and significant investments in computer equipment and training have opened new opportunities for foreign language teachers. In addition, instructional technology (IT) is now an accepted component of teacher training and foreign language teaching. This study…
Heterogeneous Integration Technology
2017-05-19
Distribution A. Approved for public release; distribution unlimited. (APRS-RY-17-0383) Heterogeneous Integration Technology Dr. Burhan...2013 and 2015 [4]. ...................................... 9 Figure 3: 3D integration of similar or diverse technology components follows More Moore and...10 Figure 4: Many different technologies are used in the implementation of modern microelectronics systems can benefit from
30 CFR 7.510 - New technology.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false New technology. 7.510 Section 7.510 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.510 New technology. MSHA may approve a refuge alternative or a component that incorporates new knowledge or technology, if the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.
2015-03-01
Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performancemore » of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.« less
Advanced optical components for next-generation photonic networks
NASA Astrophysics Data System (ADS)
Yoo, S. J. B.
2003-08-01
Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.
2011-01-01
The Fission Power System (FPS) project is developing a Technology Demonstration Unit (TDU) to verify the performance and functionality of a subscale version of the FPS reference concept in a relevant environment, and to verify component and system models. As hardware is developed for the TDU, component and system models must be refined to include the details of specific component designs. This paper describes the development of a Sage-based pseudo-steady-state Stirling convertor model and its implementation into a system-level model of the TDU.
Improved components for engine fuel savings
NASA Technical Reports Server (NTRS)
Antl, R. J.; Mcaulay, J. E.
1980-01-01
NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.
Connecting Learners: The South Carolina Educational Technology Plan.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia.
This educational technology plan for South Carolina contains the following sections: (1) statewide progress related to the telecommunications infrastructure, professional development, video infrastructure, administrative infrastructure, and funding; (2) introduction to educational technology concepts, including major components and factors…
FRAMES and Other IEM Technologies
A presentation package is developed that describes the FRAMES software technology system. The philosophy of FRAMES is discussed; its components and editors are reviewed; its relationship to integrated environmental modeling technologies; such as D4EM and SuperMUSE, are described;...
A Status of the Advanced Space Transportation Program from Planning to Action
NASA Technical Reports Server (NTRS)
Lyles, Garry; Griner, Carolyn
1998-01-01
A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and dramatically reduce the propellant and structural mass of orbit transfer and deep space systems. Flight demonstration of ion propulsion is progressing towards launch. Ion propulsion is the primary propulsion for Deep Space 1; a flyby of comet West-kohoutek-lkemura and asteroid 3352 McAuliffe. Testing of critical solar-thermal propulsion subsystems have been accomplished and planning is continuing for the flight demonstration of an electrodynamic tether orbit transfer system. The forth and final element of the program, Space Transportation Research, has progressed in several areas of propulsion research. This element of the program is focused at long-term (25 years) breakthrough concepts that could bring launch costs to a factor of one hundred below today's cost or dramatically expand planetary travel and enable interstellar travel.
Fernandez, A M; Schrogie, J J; Wilson, W W; Nash, D B
1997-01-01
Technology assessment has become a rapidly growing component of the healthcare system. It has assumed a functional role in operational settings and is rapidly impacting decisions involving purchasing, coverage, and reimbursement. This review is intended to assist the healthcare decision maker in considering the application of technology assessment in healthcare, so as to maximize the efficiency of future purchasing decisions. This "best practice" was synthesized after identifying key institutions performing technology assessment in healthcare and analyzing their working processes, including literature review, consensus panel discussions, and expert opinion. We describe this best practice on a reiterative loop that consists of five processes: awareness, strategic appropriateness, analysis versus need, acquisition and implementation, and reassessment. Typical barriers to adoption of technology assessment are also identified and discussed. This review suggests a common terminology for the core processes involved in technology assessment, thereby facilitating a more uniform understanding among the different components of the healthcare system (i.e., payer, provider, and society) while recognizing their different perspectives.
Positive Attitudes towards Technologies and facets of Well-being in Older Adults.
Zambianchi, Manuela; Carelli, Maria Grazia
2018-03-01
The current study investigates the relevance of positive attitudes toward Internet technologies for psychological well-being and social well-being in old age. A sample of 245 elderly people ( Mean age = 70; SD =9.1) filled in the Psychological Well-Being Questionnaire, the Social Well-Being Questionnaire, and Attitudes Toward Technologies Questionnaire (ATTQ). Favorable attitudes toward Internet technologies showed positive correlations with overall social well-being and all its components with the exception of social acceptance. Positive correlations with overall psychological well-being and two of its components, namely, personal growth and purpose in life, were also found. Two hierarchical multiple regression models underscored that positive attitudes toward Internet technologies constitute the most important predictor of social well-being, and it appears to be a significant predictor for psychological well-being as well. Results are discussed and integrated into the Positive Technology theoretical framework that sustains the value of technological resources for improving the quality of personal experience and well-being.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
NASA Astrophysics Data System (ADS)
Fontana, Robert E.; Decad, Gary M.
2018-05-01
This paper describes trends in the storage technologies associated with Linear Tape Open (LTO) Tape cartridges, hard disk drives (HDD), and NAND Flash based storage devices including solid-state drives (SSD). This technology discussion centers on the relationship between cost/bit and bit density and, specifically on how the Moore's Law perception that areal density doubling and cost/bit halving every two years is no longer being achieved for storage based components. This observation and a Moore's Law Discussion are demonstrated with data from 9-year storage technology trends, assembled from publically available industry reporting sources.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
Klotzsche, M. (Compiler)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.
Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains
NASA Technical Reports Server (NTRS)
Roberts, Gary D.
2011-01-01
This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.
Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project
NASA Technical Reports Server (NTRS)
2004-01-01
During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.
Free-piston Stirling component test power converter test results and potential Stirling applications
NASA Technical Reports Server (NTRS)
Dochat, G. R.
1992-01-01
As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.
Parameters modelling of amaranth grain processing technology
NASA Astrophysics Data System (ADS)
Derkanosova, N. M.; Shelamova, S. A.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.
2018-03-01
The article presents a technique that allows calculating the structure of a multicomponent bakery mixture for the production of enriched products, taking into account the instability of nutrient content, and ensuring the fulfilment of technological requirements and, at the same time considering consumer preferences. The results of modelling and analysis of optimal solutions are given by the example of calculating the structure of a three-component mixture of wheat and rye flour with an enriching component, that is, whole-hulled amaranth flour applied to the technology of bread from a mixture of rye and wheat flour on a liquid leaven.
Forest fire advanced system technology (FFAST) conceptual design study
NASA Technical Reports Server (NTRS)
Nichols, J. David; Warren, John R.
1987-01-01
The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
NASA Astrophysics Data System (ADS)
Takada, Yoshihiro; Fukui, Matoko; Sai, Tsunehiro
2008-11-01
Recent progresses in the photoresists and photolithography for LCD industry applications have been primarily driven by the following two factors: advancement in the material performances (high resolution, high contrast ratio, low dielectric constant) for higher display quality, and cost reduction in the fabrication process. Along with crucial demand for cost competitiveness by improving production efficiency, environmental consciousness has been a major priority at fabrication process design to minimize the amount of waste produced. Having said the above, integration of two or more fabrication processes into a single process by using multi-tone mask technology has been the interest of research, due to its obvious advantage of reducing fabrication processes and cost. For example, multi-tone mask technology application has been widely employed on the TFT side to reduce the different types of photomasks being used. Similar trend has been employed on the CF side as well, where application of multi-tone mask technology is being investigated to integrate fabrication of multiple CF micro-components into a single process. In this presentation, we demonstrate a new approach of fabricating photospacer and peripheral CF components (MVA protrusion, sub-photospacers) in a single integrated process through multi-tone mask technology.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
NASA Technical Reports Server (NTRS)
Turk, M. A.; Zeiner, P. K.
1986-01-01
In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.
Additive Manufacturing Technology for Biomedical Components: A review
NASA Astrophysics Data System (ADS)
Aimi Zaharin, Haizum; Rani, Ahmad Majdi Abdul; Lenggo Ginta, Turnad; Azam, Farooq I.
2018-03-01
Over the last decades, additive manufacturing has shown potential application in ranging fields. No longer a prototyping technology, it is now being utilised as a manufacturing technology for giant industries such as the automotive, aircraft and recently in the medical industry. It is a very successful method that provides health-care solution in biomedical sectors by producing patient-specific prosthetics, improve tissues engineering and facilitate pre-operating session. This paper thus presents a brief overview of the most commercially important additive manufacturing technologies, which is currently available for fabricating biomedical components such as Stereolithography (SLA), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Fused Deposition Modelling (FDM) and Electron Beam Melting (EBM). It introduces the basic principles of the main process, highlights some of the beneficial applications in medical industry and the current limitation of applied technology.
Future superconductivity applications in space - A review
NASA Astrophysics Data System (ADS)
Krishen, Kumar; Ignatiev, Alex
High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.
Ceramic Technology for Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-01
The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svetlana Shasharina
The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.
Reducing Risk in DoD Software-Intensive Systems Development
2016-03-01
intensive systems development risk. This research addresses the use of the Technical Readiness Assessment (TRA) using the nine-level software Technology...The software TRLs are ineffective in reducing technical risk for the software component development. • Without the software TRLs, there is no...effective method to perform software TRA or reduce the technical development risk. The software component will behave as a new, untried technology in nearly
Overview of microoptics: Past, present, and future
NASA Technical Reports Server (NTRS)
Veldkamp, Wilfrid B.
1993-01-01
Through advances in semiconductor miniaturization technology, microrelief patterns, with characteristic dimensions as small as the wavelength of light, can now be mass reproduced to form high-quality and low-cost optical components. In a unique example of technology transfer, from electronics to optics, this capability is allowing optics designers to create innovative optical components that promise to solve key problems in optical sensors, optical communication channels, and optical processors.
NASA Technical Reports Server (NTRS)
Price, Jennifer; Harris, Philip; Hochstetler, Bruce; Guerra, Mark; Mendez, Israel; Healy, Matthew; Khan, Ahmed
2013-01-01
International Space Station Live! (ISSLive!) is a Web application that uses a proprietary commercial technology called Lightstreamer to push data across the Internet using the standard http port (port 80). ISSLive! uses the push technology to display real-time telemetry and mission timeline data from the space station in any common Web browser or Internet- enabled mobile device. ISSLive! is designed to fill a unique niche in the education and outreach areas by providing access to real-time space station data without a physical presence in the mission control center. The technology conforms to Internet standards, supports the throughput needed for real-time space station data, and is flexible enough to work on a large number of Internet-enabled devices. ISSLive! consists of two custom components: (1) a series of data adapters that resides server-side in the mission control center at Johnson Space Center, and (2) a set of public html that renders the data pushed from the data adapters. A third component, the Lightstreamer server, is commercially available from a third party and acts as an intermediary between custom components (1) and (2). Lightstreamer also provides proprietary software libraries that are required to use the custom components. At the time of this reporting, this is the first usage of Web-based, push streaming technology in the aerospace industry.
Small Engine Component Technology (SECT) studies
NASA Technical Reports Server (NTRS)
Meyer, P. K.; Harbour, L.
1986-01-01
A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.
Melli, Virginia; Rondelli, Gianni; Sandrini, Enrico; Altomare, Lina; Bolelli, Giovanni; Bonferroni, Benedetta; Lusvarghi, Luca; Cigada, Alberto; De Nardo, Luigi
2013-10-01
Industrial manufacturing of prosthesis components could take significant advantage by the introduction of new, cost-effective manufacturing technologies with near net-shape capabilities, which have been developed during the last years to fulfill the needs of different technological sectors. Among them, metal injection molding (MIM) appears particularly promising for the production of orthopedic arthroplasty components with significant cost saving. These new manufacturing technologies, which have been developed, however, strongly affect the chemicophysical structure of processed materials and their resulting properties. In order to investigate this relationship, here we evaluated the effects on electrochemical properties, ion release, and in vitro response of medical grade CoCrMo alloy processed via MIM compared to conventional processes. MIM of the CoCrMo alloy resulted in coarser polygonal grains, with largely varying sizes; however, these microstructural differences between MIM and forged/cast CoCrMo alloys showed a negligible effect on electrochemical properties. Passive current densities values observed were 0.49 µA cm(-2) for MIM specimens and 0.51 µA cm(-2) for forged CoCrMo specimens, with slightly lower transpassive potential in the MIM case; open circuit potential and Rp stationary values showed no significant differences. Moreover, in vitro biocompatibility tests resulted in cell viability levels not significantly different for MIM and conventionally processed alloys. Although preliminary, these results support the potential of MIM technology for the production of CoCrMo components of implantable devices. Copyright © 2013 Wiley Periodicals, Inc.
Ceramic Technology Project semiannual progress report, April 1992--September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-07-01
This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less
The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
Sputtering and ion plating for aerospace applications
NASA Technical Reports Server (NTRS)
Spalvins, T.
1981-01-01
Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.
Thermoelectric Energy Conversion: Future Directions and Technology Development Needs
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre
2007-01-01
This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.
Sputtering and ion plating for aerospace applications
NASA Technical Reports Server (NTRS)
Spalvins, T.
1981-01-01
Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3-dimensional coverage are the primary attributes of this technology.
Periodic Cellular Structure Technology for Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Chen, Edward Y.
2015-01-01
Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: TECHNOLOGY WITH AN IMPACT
SITE promotes the development and implementation of innovative technologies for remediating hazardous waste sites and for evaluating the nature and extent of hazardous waste site contamination through four component segments. The SITE Program is a key element in EPA's efforts...
Recent Technology Advances in Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis
2017-01-01
This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.
Meeting the Technology Portion of the Science and Technology Goal of Quality Education.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.
One of the goals of quality education in Pennsylvania is to help every student acquire knowledge, understanding, and appreciation of science and technology. This publication, which focuses on the technology component of this goal, is an initial effort by a team of scientists and science educators to define technology as it should be presented in…
Knowledge-based reusable software synthesis system
NASA Technical Reports Server (NTRS)
Donaldson, Cammie
1989-01-01
The Eli system, a knowledge-based reusable software synthesis system, is being developed for NASA Langley under a Phase 2 SBIR contract. Named after Eli Whitney, the inventor of interchangeable parts, Eli assists engineers of large-scale software systems in reusing components while they are composing their software specifications or designs. Eli will identify reuse potential, search for components, select component variants, and synthesize components into the developer's specifications. The Eli project began as a Phase 1 SBIR to define a reusable software synthesis methodology that integrates reusabilityinto the top-down development process and to develop an approach for an expert system to promote and accomplish reuse. The objectives of the Eli Phase 2 work are to integrate advanced technologies to automate the development of reusable components within the context of large system developments, to integrate with user development methodologies without significant changes in method or learning of special languages, and to make reuse the easiest operation to perform. Eli will try to address a number of reuse problems including developing software with reusable components, managing reusable components, identifying reusable components, and transitioning reuse technology. Eli is both a library facility for classifying, storing, and retrieving reusable components and a design environment that emphasizes, encourages, and supports reuse.
Introduction to Satellite Communications Technology for NREN
NASA Technical Reports Server (NTRS)
Stone, Thom
2004-01-01
NREN requirements for development of seamless nomadic networks necessitates that NREN staff have a working knowledge of basic satellite technology. This paper addresses the components required for a satellite-based communications system, applications, technology trends, orbits, and spectrum, and hopefully will afford the reader an end-to-end picture of this important technology.
Marginalized Student Access to Technology Education
ERIC Educational Resources Information Center
Kurtcu, Wanda M.
2017-01-01
The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the…
NASA Technical Reports Server (NTRS)
1975-01-01
Research and technology investigations are identified in eleven discipline technologies which require or which could significantly benefit from an in-space experiment, systems demonstrations, or component test using the Space Transportation System. Synopses of the eleven technology panels reports are presented.
ERIC Educational Resources Information Center
Lee, Kathryn S.; Smith, Shaunna; Bos, Beth
2014-01-01
This article reports a heuristic case study that explored how components of Technological Pedagogical Knowledge (TPK) manifested in the artifacts of post-Baccalaureate pre-service teachers. Self-reported perceptions of their technology integration competencies were high. End-of-semester presentations reflected three distinct views of technology…
ERIC Educational Resources Information Center
Shapley, Kelly; Sheehan, Daniel; Maloney, Catherine; Caranikas-Walker, Fanny
2010-01-01
In the study of the Technology Immersion model, high-need middle schools were "immersed" in technology by providing laptops for each teacher and student, instructional and learning resources, professional development, and technical and pedagogical support. This article reports third-year findings for the teacher component of the…
Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |
NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as
Teen Culture, Technology and Literacy Instruction: Urban Adolescent Students' Perspectives
ERIC Educational Resources Information Center
Li, Jia; Snow, Catherine; White, Claire
2015-01-01
Modern teens have pervasively integrated new technologies into their lives, and technology has become an important component of teen popular culture. Educators have pointed out the promise of exploiting technology to enhance students' language and literacy skills and general academic success. However, there is no consensus on the effect of…
Advanced High Pressure O2/H2 Technology
NASA Technical Reports Server (NTRS)
Morea, S. F. (Editor); Wu, S. T. (Editor)
1985-01-01
Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.
Using Educational Technology in Applications as Element of Teaching for Special Disciplines
ERIC Educational Resources Information Center
Neupokoeva, Elena E.; Chapaev, Nikolay K.; Akimova, Olga B.; Shcherbin, Matthew D.; Borovikov, Evgenij A.
2016-01-01
The relevance of research problem due to high growth of information technologies roles in industrial activity and low level of teachers professionalism in topics related with information technology. Purpose of article is to show main components of a learning technology aimed at improving level teachers skills to solve didactic problems associated…
ERIC Educational Resources Information Center
Haynie, W. J.; DeLuca, V. W.; Matthews, B.
2005-01-01
A study conducted in 1989 surveyed Technology Student Association (TSA) advisors to find their perceptions concerning characteristics of technology education programs with a TSA component and the relationship between participation in co-curricular organizations and the teaching methods used by TSA technology teachers (DeLuca & Haynie, 1991).…
11. Interior view of control room in Components Test Laboratory ...
11. Interior view of control room in Components Test Laboratory (T-27), looking north. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
A component-based problem list subsystem for the HOLON testbed. Health Object Library Online.
Law, V.; Goldberg, H. S.; Jones, P.; Safran, C.
1998-01-01
One of the deliverables of the HOLON (Health Object Library Online) project is the specification of a reference architecture for clinical information systems that facilitates the development of a variety of discrete, reusable software components. One of the challenges facing the HOLON consortium is determining what kinds of components can be made available in a library for developers of clinical information systems. To further explore the use of component architectures in the development of reusable clinical subsystems, we have incorporated ongoing work in the development of enterprise terminology services into a Problem List subsystem for the HOLON testbed. We have successfully implemented a set of components using CORBA (Common Object Request Broker Architecture) and Java distributed object technologies that provide a functional problem list application and UMLS-based "Problem Picker." Through this development, we have overcome a variety of obstacles characteristic of rapidly emerging technologies, and have identified architectural issues necessary to scale these components for use and reuse within an enterprise clinical information system. PMID:9929252
A component-based problem list subsystem for the HOLON testbed. Health Object Library Online.
Law, V; Goldberg, H S; Jones, P; Safran, C
1998-01-01
One of the deliverables of the HOLON (Health Object Library Online) project is the specification of a reference architecture for clinical information systems that facilitates the development of a variety of discrete, reusable software components. One of the challenges facing the HOLON consortium is determining what kinds of components can be made available in a library for developers of clinical information systems. To further explore the use of component architectures in the development of reusable clinical subsystems, we have incorporated ongoing work in the development of enterprise terminology services into a Problem List subsystem for the HOLON testbed. We have successfully implemented a set of components using CORBA (Common Object Request Broker Architecture) and Java distributed object technologies that provide a functional problem list application and UMLS-based "Problem Picker." Through this development, we have overcome a variety of obstacles characteristic of rapidly emerging technologies, and have identified architectural issues necessary to scale these components for use and reuse within an enterprise clinical information system.
Teachers' Learning While Constructing Technology-Based Instructional Resources
ERIC Educational Resources Information Center
Polly, Drew
2011-01-01
Grounded in a constructionist paradigm, this study examined elementary school teachers' learning while creating technology-rich instructional materials. Sixteen teachers at an elementary school were interviewed about their experience. Using the components of Technological Pedagogical and Content Knowledge as an analytical framework, inductive…
Telecommunications Technology in the 1980s.
ERIC Educational Resources Information Center
Baer, Walter S.
This paper describes some of the advances in telecommunications technology that can be anticipated during the 1980's in the areas of computer and component technologies, computer influences on telecommunications systems and services, communications terminals, transmission and switching systems, and local distribution. Specific topics covered…
Zhao, Yan; Qu, Hui-Hua; Wang, Qing-Guo
2013-09-01
Study on pharmacodynamic material basis of traditional Chinese medicines is one of the key issues for the modernization of traditional Chinese medicine. Having introduced the monoclonal antibody technology into the study on pharmacodynamic material basis of traditional Chinese medicines, the author prepared the immunoaffinity chromatography column by using monoclonal antibodies in active components of traditional Chinese medicines, so as to selectively knock out the component from herbs or traditional Chinese medicine compounds, while preserving all of the other components and keeping their amount and ratio unchanged. A comparative study on pharmacokinetics and pharmacodynamics was made to explicitly reveal the correlation between the component and the main purpose of traditional Chinese medicines and compounds. The analysis on pharmacodynamic material basis of traditional Chinese medicines by using specific knockout technology with monoclonal antibodies is a new method for study pharmacodynamic material basis in line with the characteristics of traditional Chinese medicines. Its results can not only help study material basis from a new perspective, but also help find the modern scientific significance in single herb or among compounds of traditional Chinese medicines.
NASA Astrophysics Data System (ADS)
Pavolotsky, Alexey
2018-01-01
Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.
High-Power, High-Temperature Superconductor Technology Development
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.
2005-01-01
Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.
Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip
2014-06-11
Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.
NASA Tech Briefs, June 1993. Volume 17, No. 6
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1993. Volume 17, No. 2
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
Integrated optics technology study
NASA Technical Reports Server (NTRS)
Chen, B.; Findakly, T.; Innarella, R.
1982-01-01
The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.
NASA Technical Reports Server (NTRS)
Depauw, J. F.; Reader, K. E.; Staskus, J. V.
1976-01-01
The test program is described for the 200 watt transmitter experiment package and the variable conductance heat pipe system which are components of the high-power transponder aboard the Communications Technology Satellite. The program includes qualification tests to demonstrate design adequacy, acceptance tests to expose latent defects in flight hardware, and development tests to integrate the components into the transponder system and to demonstrate compatibility.
Novel Thin Film Sensor Technology for Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.
2007-01-01
Degradation and damage that develops over time in hot section components can lead to catastrophic failure of the turbine section of aircraft engines. A range of thin film sensor technology has been demonstrated enabling on-component measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Conductive ceramics are beginning to be investigated as new materials for use as thin film sensors in the hot section, leveraging expertise in thin films and high temperature materials. The current challenges are to develop new sensor and insulation materials capable of withstanding the extreme hot section environment, and to develop techniques for applying sensors onto complex high temperature structures for aging studies of hot propulsion materials. The technology research and development ongoing at NASA Glenn Research Center for applications to future aircraft, launch vehicles, space vehicles, and ground systems is outlined.
Operation and maintenance results from ISFOC CPV plants
NASA Astrophysics Data System (ADS)
Gil, Eduardo; Martinez, María; de la Rubia, Oscar
2017-09-01
The analysis of field operation and maintenance data collected during a period of over eight years, from CPV installations consisting of three different CPV technologies (including second generation of one of these technologies), has allowed us to get valuable information about the long-term degradation of the CPV systems. Through the study of the maintenance control ratio previously defined and by applying the root cause analysis methodology, the components responsible for the most unplanned interventions for each technology were identified. Focusing maintenance efforts on these components, a reduction of the unplanned interventions and the total cost of maintenance has been achieved over the years. Therefore, the deployment of an effective maintenance plan, identifying critical components, is essential to minimize the risk for investors and maximize the CPV power plants lifetime and energy output, increasing the availability of CPV installations, boosting market confidence in CPV systems.
NASA Technical Reports Server (NTRS)
Baumann, E. D.
1989-01-01
The technological developments required to reduce the electrical power system component weights from the state-of-the-art 2.0 kg/kW to the range of 0.1 to 0.2 kg/kW are discussed. Power level requirements and their trends in aerospace applications are identified and presented. The projected weight and launch costs for a 1MW power converter built using state-of-the-art technology are established to illustrate the need for reliable, ultralightweight advanced power components. The key factors affecting converter weight are given and some of the tradeoffs between component ratings and circuit topology are identified. The weight and launch costs for a 1MW converter using 0.1 kg/kW technology are presented. Finally, the objectives and goals of the Multi-Megawatt Program at the NASA Lewis Research Center, which is funded by the SDIO through the Air Force, are given.
NASA Astrophysics Data System (ADS)
Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.
2018-02-01
In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.
Martin, J B; Wilkins, A S; Stawski, S K
1998-08-01
The evolving health care environment demands that health care organizations fully utilize information technologies (ITs). The effective deployment of IT requires the development and implementation of a comprehensive IT strategic plan. A number of approaches to health care IT strategic planning exist, but they are outdated or incomplete. The component alignment model (CAM) introduced here recognizes the complexity of today's health care environment, emphasizing continuous assessment and realignment of seven basic components: external environment, emerging ITs, organizational infrastructure, mission, IT infrastructure, business strategy, and IT strategy. The article provides a framework by which health care organizations can develop an effective IT strategic planning process.
The 1985 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Morrow, G. (Editor)
1986-01-01
The subjects covered include: advanced energy storage, lithium cell technology, nickel-cadmium design evaluation and component testing, simulated orbital cycling and flight experience, and nickel-hydrogen technology.
Electrolysis Propulsion for Spacecraft Applications
NASA Technical Reports Server (NTRS)
deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.
1997-01-01
Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.
Beryllium processing technology review for applications in plasma-facing components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, R.G.; Jacobson, L.A.; Stanek, P.W.
1993-07-01
Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itselfmore » and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.« less
Marginalized Student Access to Technology Education
NASA Astrophysics Data System (ADS)
Kurtcu, Wanda M.
The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the United States, if not the world economy, is developing at a rapid pace. Many areas of day to day living, from applying for a job to checking one's bank account online, involve a component of science and technology. The 'gap' in technology education is emphasized between the 'haves and have-nots', which is delineated along socio-economic lines. Marginalized students in alternative education programs use this equipment for little else than remedial programs and credit recovery. This level of inequity further widens in alternative education programs and affects the achievement of marginalized students in credit recovery or alternative education classes instead of participation technology classes. For the purposes of this paper I focus on how can I decrease the inequity of student access to 21st century technology education in an alternative education program by addressing the established curriculum of the program and modifying structural barriers of marginalized student access to a technology focused curriculum.
Bridging Technometric Method and Innovation Process: An Initial Study
NASA Astrophysics Data System (ADS)
Rumanti, A. A.; Reynaldo, R.; Samadhi, T. M. A. A.; Wiratmadja, I. I.; Dwita, A. C.
2018-03-01
The process of innovation is one of ways utilized to increase the capability of a technology component that reflects the need of SME. Technometric method can be used to identify to what extent the level of technology advancement in a SME is, and also which technology component that needs to be maximized in order to significantly deliver an innovation. This paper serves as an early study, which lays out a conceptual framework that identifies and elaborates the principles of innovation process from a well-established innovation model by Martin with the technometric method, based on the initial background research conducted at SME Ira Silver in Jogjakarta, Indonesia.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
Digital imaging technology assessment: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.
NASA helicopter transmission system technology program
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.
1983-01-01
The purpose of the NASA Helicopter Transmission System Technology Program is to improve specific mechanical components and the technology for combining these into advanced drive systems to make helicopters more viable and cost competitive for commerical applications. The history, goals, and elements of the program are discussed.
Bringing Business Intelligence to Health Information Technology Curriculum
ERIC Educational Resources Information Center
Zheng, Guangzhi; Zhang, Chi; Li, Lei
2015-01-01
Business intelligence (BI) and healthcare analytics are the emerging technologies that provide analytical capability to help healthcare industry improve service quality, reduce cost, and manage risks. However, such component on analytical healthcare data processing is largely missed from current healthcare information technology (HIT) or health…
Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers,
Manufacturers | News | NREL Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers, Manufacturers Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers fuel cell and hydrogen components and systems and improve U.S. manufacturing competitiveness. The
The Changing Shape of Technology on Campus from Ermergence to Convergence.
ERIC Educational Resources Information Center
Cunningham, Kevin; Rainey, Sylvia
2001-01-01
Explores the basics in technology convergence in making today's college and university campuses more "intelligent." Two key components required for effective technology convergence are described as are the benefits of convergence on campus safety and security and utility cost management. (GR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.
The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elementsmore » (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.« less
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.
2010-01-01
Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.
ERIC Educational Resources Information Center
Dyer, Thomas; Larson, Elizabeth; Steele, John; Holbeck, Rick
2015-01-01
Technology is one of the most important components in the future of online learning. Instructors in online classes should lead the charge of innovation and integration of technology into the online classroom to ensure that students achieve the best learning outcomes. This article chronicles a theoretical model towards integrating technology as a…
Fuel conservative aircraft engine technology
NASA Technical Reports Server (NTRS)
Nored, D. L.
1978-01-01
Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.
ERIC Educational Resources Information Center
Buchanan, Tom; Sainter, Phillip; Saunders, Gunter
2013-01-01
This study examines factors associated with the use of learning technologies by higher education faculty. In an online survey in a UK university, 114 faculty respondents completed a measure of Internet self-efficacy, and reported on their use of learning technologies along with barriers to their adoption. Principal components analysis suggested…
Huang, Ean-Wen; Chiou, Shwu-Fen; Pan, Mei-Lien; Wu, Hua-Huan; Jiang, Jia-Rong; Lu, Yi-De
2017-08-01
Rapid progress in information and communication technologies and the increasing popularity of healthcare-related applications has increased interest in the topic of intelligent medical care. This topic emphasizes the use of information and communication technologies to collect and analyze a variety of data in order to provide physicians and other healthcare professionals with clinical decision support. At present, so-called smart hospitals are the focal point of most intelligent-systems development activity, with little attention currently being focused on long-term care needs. The present article discusses the application of intelligent systems in the field of long-term care, especially in community and home-based models of care. System-implementation components such as the data entry interface components of mobile devices, the data transmission and synchronization components between the mobile device and file server, the data presentation, and the statistics analysis components are also introduced. These components have been used to develop long-term care service-related applications, including home health nursing, home-care services, meals on wheels, and assistive devices rental. We believe that the findings will be useful for the promotion of innovative long-term care services as well as the improvement of healthcare quality and efficiency.
75 FR 48658 - Notice of Proposed Information Collection Requests
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... individuals who teach science, technology, engineering, and math (STEM). TEACH.gov is an essential component... among minority individuals, and particularly in teaching science, technology, engineering, and math...
Future Concepts for Modular, Intelligent Aerospace Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.; Soeder, James F.
2004-01-01
Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
Enabling MEMS technologies for communications systems
NASA Astrophysics Data System (ADS)
Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne
2001-11-01
Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.
17. Interior view of Test Cell 8 (oxidizer) in Components ...
17. Interior view of Test Cell 8 (oxidizer) in Components Test Laboratory (T-27), showing west and north walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
14. Interior view of Test Cell 10 (environmental) in Components ...
14. Interior view of Test Cell 10 (environmental) in Components Test Laboratory (T-27), showing east and south walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
18. Interior view of HVAC room in Components Test Laboratory ...
18. Interior view of HVAC room in Components Test Laboratory (T-27), showing northwest corner. Photograph shows upgraded instrumentation, piping, and technological modifications for HVAC system installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
19. Interior view of HVAC room in Components Test Laboratory ...
19. Interior view of HVAC room in Components Test Laboratory (T-27), looking toward east wall. Photograph shows upgraded instrumentation, machinery, and technological modifications for HVAC system installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, R.T.; Yamashina, T.
This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.
Laser beam soldering of micro-optical components
NASA Astrophysics Data System (ADS)
Eberhardt, R.
2003-05-01
MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.
NASA Astrophysics Data System (ADS)
Gladkii, V. P.; Nikitin, V. A.; Prokhorov, V. P.; Yakovenko, N. A.
1995-10-01
The results are given of technologic and circuit-engineering development of planar micro-optics components made of glasses and of lithium niobate. These components are intended for devices to be used in logic—arithmetic processing of information.
40 CFR 63.4890 - What emission limits must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... organic HAP-free coating technology can be used on the metal furniture components. The request must be... Standards for Hazardous Air Pollutants: Surface Coating of Metal Furniture Emission Limitations § 63.4890... emission limit for specific metal furniture components or type of components for which you believe the...
Evaluating the Effectiveness of the Self-Test on Structured Classroom Learning
ERIC Educational Resources Information Center
Gilkey, Anthony Dean
1977-01-01
The study focused on the effect of the self-evaluation component of self-instructional packets in radiologic technology programs. It was found that the self-evaluation component clearly had a significant positive effect on learning, although the relative learning contribution of the component was not established. (MF)
Iacovidou, Eleni; Purnell, Phil; Lim, Ming K
2018-06-15
The exploitation of Radio Frequency Identification (RFID) for tracking and archiving the properties of structural construction components could be a potentially innovative disruption for the construction sector. This is because RFID can stimulate the reuse of construction components and reduce their wastage, hence addressing sustainability issues in the construction sector. To test the plausibility of that idea, this study explores the potential pre-conditions for RFID to facilitate construction components reuse, and develops a guidance for promoting their redistribution back to the supply chain. It also looks at how integrating RFID with Building Information Modelling (BIM) can possibly be a valuable extension of its capabilities, providing the opportunity for tracked components to be incorporated into new structures in an informed, sound way. A preliminary assessment of the strengths, weaknesses, opportunities and threats of the RFID technology is presented in order to depict its current and future potential in promoting construction components' sustainable lifecycle management, while emphasis has been laid on capturing their technical, environmental, economic and social value. Findings suggest that the collection of the right amount of information at the design-construction-deconstruction-reuse-disposal stage is crucial for RFID to become a successful innovation in the construction sector. Although a number of limitations related to the technical operability and recycling of RFID tags seem to currently hinder its uptake for structural components' lifecycle management, future technological innovations could provide solutions that would enable it to become a mainstream practice. Taken together these proposals advocate that the use of RFID and its integration with BIM can create the right environment for the development of new business models focused on sustainable resource management. These models may then unlock multiple values that are otherwise dissipated in the system. If the rapid technological development of RFID capability can be allied to policy interventions that control and manage its uptake along the supply chain, the sustainable lifecycle management of construction components could be radically enhanced. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Variable Cycle Engine Technology Program Planning and Definition Study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Stern, A. M.
1978-01-01
The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.
An Assessment of Integrated Flywheel System Technology
NASA Technical Reports Server (NTRS)
Keckler, C. R. (Editor); Bechtel, R. T. (Editor); Groom, N. J. (Editor)
1984-01-01
The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented.
The Clinical Proteomic Technologies for Cancer | Antibody Portal
An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
James, A. M.
1984-01-01
Topics addressed include: strength and hygrothermal response of L-1011 fin components; wing fuel containment and damage tolerance development; impact dynamics; acoustic transmission; fuselage structure; composite transport wing technology development; spar/assembly concepts.
NASA Tech Briefs, January 1994. Volume 18, No. 1
NASA Technical Reports Server (NTRS)
1994-01-01
Topics include: Communications Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
The Microcomputer: Technological Innovation and Transfer
1975-12-16
interest: • How does a naw technology eventually become embodied in user applications? • How fast is this transition effected ? • Dues the innovation...a " bandwagon " response. When a major new component begins to enjoy substantial market penetration, or when it becomes apparent that a component...existing sockets and work exactly as if Brand 1 was still there," only better. ■ •’■■■ ^ ’ — - wmmt*aim^*~^f*m**~immi**^immmmil 1
Wave Rotor Research and Technology Development
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1998-01-01
Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Taylor, A.J.; Weber, G.W.
Progress is described in a research program to develop advanced tooling concepts, processing techniques, and related technology for the economical high-volume manufacture of ceramic engine components. Because of the success of the initial fabrication effort for hot pressing fully dense ceramic turbine blades to shape and/or contour, the effort has been extended to include the fabrication of more complex shapes and the evaluation of alternative pressure-assisted, high-temperature, consolidation methods.
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.;
2002-01-01
This presentation provides an overview of the effort by Metal Matrix Cast Composites, Inc. to redesign turbopump housing joints using metal matrix composite material and a toolless net-shape pressure infiltration casting technology. Topics covered include: advantage of metal matrix composites for propulsion components, baseline pump design and analysis, advanced toolless pressure infiltration casting process, subscale pump housing, preform splicing and joining for large components, and fullscale pump housing redesign.
Varifocal MOEMS fiber scanner for confocal endomicroscopy.
Meinert, Tobias; Weber, Niklas; Zappe, Hans; Seifert, Andreas
2014-12-15
Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.
The Imperative to Integrate Air Force Command and Control Systems into Maritime Plans
2014-08-01
coopera- tion with existing C2 plans? Table. Components of C2 systems and plans C2 Systems C2 Plans People Competencies Platforms Technologies Doctrine...Intent Authorities Functions Tasks Effects C2 Systems The requirements for such a system can be expressed in terms of its components: people ...competencies, platforms, technologies, and doc- trine. The people connect to the human elements of war and leverage their particular knowledge and skills that
Integrated optics technology study
NASA Technical Reports Server (NTRS)
Chen, B.
1982-01-01
The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less
Listening Technologies for Individuals and the Classroom
ERIC Educational Resources Information Center
Marttila, Joan
2004-01-01
Assistive technology has always been an important component of individualized education programs. The individualized education program process can be used to supply hearing assistive technology to students. One goal of audiologists and educators is to improve the acoustic environment of classrooms for all students by constructing school buildings…
Aquaponics and Hydroponics on a Budget
ERIC Educational Resources Information Center
Johanson, Erik K.
2009-01-01
In response to the publication of the "Standards for Technological Literacy" by the International Technology Education Association (ITEA), technology education teachers have scrambled to add biotechnology-related components to the curriculum. This can present a particular challenge in terms of funding. In this article, the author details on a…
"Handy Manny" and the Emergent Literacy Technology Toolkit
ERIC Educational Resources Information Center
Hourcade, Jack J.; Parette, Howard P., Jr.; Boeckmann, Nichole; Blum, Craig
2010-01-01
This paper outlines the use of a technology toolkit to support emergent literacy curriculum and instruction in early childhood education settings. Components of the toolkit include hardware and software that can facilitate key emergent literacy skills. Implementation of the comprehensive technology toolkit enhances the development of these…
Code of Federal Regulations, 2012 CFR
2012-07-01
... new technology components or process modifications and identifying critical path relationships within... degree of effluent reduction attainable by the application of best available technology economically... effluent reduction attainable by the application of best available technology economically achievable (BAT...
Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization
In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
..., Commercial Vehicle Systems, Including On-Site Leased Workers of Johnston Integration Technologies, a... system components. The company reports that workers leased from Johnston Integration Technologies, a... certification to include workers leased from Johnston Integration Technologies, a subsidiary of Johnston...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... technologies and practices, the second component of the BLS Green Jobs definition. This information collection... other technological collection techniques or other forms of information technology, e.g., permitting... DEPARTMENT OF LABOR Office of the Secretary Agency Information Collection Activities; Submission...
Played or Player: Education, Technologies and Organisational Politics
ERIC Educational Resources Information Center
Al Lily, Abdulrahman Essa
2014-01-01
This interdisciplinary work lies at the intersection of education, technology and political sociology. It is intended to contribute to the politicisation of educational technologies, something that so far seems not to have explicitly constituted a major component of the international contemporary theoretical literature. It addresses the research…
Promoting Technology-Assisted Active Learning in Computer Science Education
ERIC Educational Resources Information Center
Gao, Jinzhu; Hargis, Jace
2010-01-01
This paper describes specific active learning strategies for teaching computer science, integrating both instructional technologies and non-technology-based strategies shown to be effective in the literature. The theoretical learning components addressed include an intentional method to help students build metacognitive abilities, as well as…
Neutron Characterization for Additive Manufacturing
NASA Technical Reports Server (NTRS)
Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.
2013-01-01
Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components.
On Noise Assessment for Blended Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Guo, Yueping; Burley, Casey L; Thomas, Russell H.
2014-01-01
A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft system noise studies, which include aerodynamic performance, propulsion efficiency, flight profile limitation and many other factors. For a future aircraft concept to achieve the NASA N+2 noise goal it will require a range of fully successful noise reduction technology developments.
ERIC Educational Resources Information Center
Cornelius, Fran; Glasgow, Mary Ellen Smith
2007-01-01
Technology's impact on the delivery of health care mandates that nursing faculty use all technologies at their disposal to better prepare students to work in technology-infused health care environments. Essential components of an infrastructure to grow technology-infused nursing education include a skilled team comprised of tech-savvy faculty and…
Translations from Kommunist, Number 13, September 1978
1978-10-30
programmed machine tool here is merely a component of a more complex reprogrammable technological system. This includes the robot machine tools with...sufficient possibilities for changing technological operations and processes and automated technological lines. 52 The reprogrammable automated sets will...simulate the possibilities of such sets. A new technological level will be developed in industry related to reprogrammable automated sets, their design
Component Technology for High-Performance Scientific Simulation Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epperly, T; Kohn, S; Kumfert, G
2000-11-09
We are developing scientific software component technology to manage the complexity of modem, parallel simulation software and increase the interoperability and re-use of scientific software packages. In this paper, we describe a language interoperability tool named Babel that enables the creation and distribution of language-independent software libraries using interface definition language (IDL) techniques. We have created a scientific IDL that focuses on the unique interface description needs of scientific codes, such as complex numbers, dense multidimensional arrays, complicated data types, and parallelism. Preliminary results indicate that in addition to language interoperability, this approach provides useful tools for thinking about themore » design of modem object-oriented scientific software libraries. Finally, we also describe a web-based component repository called Alexandria that facilitates the distribution, documentation, and re-use of scientific components and libraries.« less
Refinery evaluation of optical imaging to locate fugitive emissions.
Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike
2007-07-01
Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.
AGT (Advanced Gas Turbine) technology project
NASA Technical Reports Server (NTRS)
1988-01-01
An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated; (7) Small turbine engine aerodynamic and mechanical design capability has been initiated; and (8) An infrastructure of manpower, facilities, materials, and fabrication capabilities has been established which is available for continued development of ceramic component technology in gas turbine and other heat engines.
Online Experiential Education for Technological Entrepreneurs
ERIC Educational Resources Information Center
Ermolovich, Thomas R.
2011-01-01
Technological Entrepreneurship is both an art and a science. As such, the education of a technological entrepreneur requires both an academic and an experiential component. One form of experiential education is creating real new ventures with student teams. When these ventures are created in an online modality, students work in virtual teams and…
ERIC Educational Resources Information Center
Glazner, Steve, Comp.
2012-01-01
Technology touches people's lives virtually every second of the day. The work world is especially rich with changing technologies, new innovations, and continually revised processes for greater effectiveness and efficiency. One could easily say that a boiler is a boiler, or a carpet is a carpet, but the reality is that all components of all the…
Introduction to Surgical Technology. Teacher Edition.
ERIC Educational Resources Information Center
Bushey, Vicki; And Others
This instructor's manual contains 14 units of instruction for a course on surgical technology designed to include the entry-level competencies students need to enter any of the more advanced surgical technology courses. Each unit includes some or all of the following basic components of a unit of instruction: objective sheet, suggested activities…
Factors Influencing Cloud-Computing Technology Adoption in Developing Countries
ERIC Educational Resources Information Center
Hailu, Alemayehu
2012-01-01
Adoption of new technology has complicating components both from the selection, as well as decision-making criteria and process. Although new technology such as cloud computing provides great benefits especially to the developing countries, it has challenges that may complicate the selection decision and subsequent adoption process. This study…
The Educational Technology of Ethical Development for Students
ERIC Educational Resources Information Center
Song, Ting; Ustin, Pavel N.; Popov, Leonid M.; Mudarisov, Marat M.
2017-01-01
The relevance of this work was connected with the problem of ethical competencies forming among future psychologists during their learning in university. The first task of research was to work out the technology of ethical development for students-psychologists. The structure of this technology included four main educational components:…
ERIC Educational Resources Information Center
Tatar, Enver; Aldemir, Ruhsen; Niess, Margaret L.
2018-01-01
This qualitative case study investigated teachers' Technological Pedagogical Content Knowledge (TPACK) for teaching high school geometry in Turkey. Four TPACK components and their corresponding five TPACK level descriptions were used for examining three geometry teachers' TPACK through their technological instructional plans, microteaching…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
..., Ninestar Technology Co., Ltd. and Ninestar Technology Company, Ltd. (``Ninestar U.S.'') (collectively... named as respondents 24 companies located in China, Germany, Hong Kong, Korea, and the United States... parties to the proceedings: (1) Complainant Epson; (2) respondents Ninestar Technology Co., Ltd. and...
Teaching and Learning in the Mixed-Reality Science Classroom
ERIC Educational Resources Information Center
Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher
2009-01-01
As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to…
Investigating Pedagogical Value of Wiki Technology
ERIC Educational Resources Information Center
Hazari, Sunil; North, Alexa; Moreland, Deborah
2009-01-01
This exploratory study investigates the potential of Wiki technology as a tool for teaching and learning. Wikis are a component of Web 2.0 technology tools that provide collaborative features and active learning opportunities in a web-based environment. This research study sought to empirically determine the pedagogical value of using Wiki…
Old Assumptions, New Paradigms: Technology, Group Process, and Continuing Professional Education.
ERIC Educational Resources Information Center
Healey, Kathryn N.; Lawler, Patricia A.
2002-01-01
Continuing educators must consider the impact of technology on group processes, including ways in which it affects group pressures, communication patterns, and social and emotional components of learning. Administrators and faculty should integrate group process frameworks with educational technologies in order to provide effective learning…
Project KITES: Kids Interacting with Technology and Education Students.
ERIC Educational Resources Information Center
Taylor, Harriet G.; Stuhlmann, Janice M.
Faculty and administrators at the College of Education at Louisiana State University recognized the need to incorporate technology into all of their programs. Project KITES (Kids Interacting with Technology and Education Students) was developed to give students just beginning their professional education component real experiences with children…
X-33/RLV Program Aerospike Engines
NASA Technical Reports Server (NTRS)
1999-01-01
Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.
CARES/Life Ceramics Durability Evaluation Software Used for Mars Microprobe Aeroshell
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
1998-01-01
The CARES/Life computer program, which was developed at the NASA Lewis Research Center, predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs-which resolve a component's temperature and stress distribution-to-reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength. The capability, flexibility, and uniqueness of CARES/Life has attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer.
Development of a Novel Brayton-Cycle Cryocooler and Key Component Technologies
NASA Astrophysics Data System (ADS)
Nieczkoski, S. J.; Mohling, R. A.
2004-06-01
Brayton-cycle cryocoolers are being developed to provide efficient cooling in the 6 K to 70 K temperature range. The cryocoolers are being developed for use in space and in terrestrial applications where combinations of long lifetime, high efficiency, compactness, low mass, low vibration, flexible interfacing, load variability, and reliability are essential. The key enabling technologies for these systems are a mesoscale expander and an advanced oil-free scroll compressor. Both these components are nearing completion of their prototype development phase. The emphasis on the component and system development has been on invoking fabrication processes and techniques that can be evolved to further reduction in scale tending toward cryocooler miniaturization.
Reusable rocket engine turbopump condition monitoring
NASA Technical Reports Server (NTRS)
Hampson, M. E.; Barkhoudarian, S.
1985-01-01
Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.
Fabrication of micromechanical and microoptical systems by two-photon polymerization
NASA Astrophysics Data System (ADS)
Reinhardt, Carsten; Ovsianikov, A.; Passinger, Sven; Chichkov, Boris N.
2007-01-01
The recently developed two-photon polymerisation technique is used for the fabrication of two- and three-dimensional structures in photosensitive inorganic-organic hybrid material (ORMOCER), in SU8 , and in positive tone resist with resolutions down to 100nm. In this contribution we present applications of this powerful technology for the realization of micromechanical systems and microoptical components. We will demonstrate results on the fabrication of complex movable three-dimensional micromechanical systems and microfluidic components which cannot be realized by other technologies. This approach of structuring photosensitive materials also provides unique possibilities for the fabrication of different microoptical components such as arbitrary shaped microlenses, microprisms, and 3D-photonic crystals with high optical quality.
Use of COTS in the Multimission Advanced Ground Intelligent Control (MAGIC) program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, N.L.
1997-11-01
This tutorial will discuss the experiences of the Space System Technologies Division of the USAF Phillips Laboratory (PL/VTS) in developing a COTS-based satellite control system. The system`s primary use is a testbed for new technologies that are intended for future integration into the operational satellite control system. As such, the control system architecture must be extremely open and flexible so we can integrate new components and functions easily and also provide our system to contractors for their component work. The system is based on commercial hardware, is based on Windows NT, and makes the maximum use of COTS components andmore » industry standards.« less
Closed-cycle gas dynamic laser design investigation
NASA Technical Reports Server (NTRS)
Ketch, G. W.; Young, W. E.
1977-01-01
A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.
NASA Astrophysics Data System (ADS)
1988-05-01
Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
Study of advanced techniques for determining the long term performance of components
NASA Technical Reports Server (NTRS)
1973-01-01
The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.
SIC material and technology for space optics
NASA Astrophysics Data System (ADS)
Bougoin, Michel
2017-11-01
Taking benefit from its very high specific stiffness and its exclusive thermal stability, the SiCSPACE material is now used for the fabrication of scientific and commercial lightweight space telescopes. This paper gives a review of the characteristics of this sintered silicon carbide. The BOOSTEC facilities and the technology described here allow to manufacture large structural components or mirrors (up to several meters) at cost effective condition, from a single part to mass production. Several examples of SiC space optical components are presented.
Liquid Rocket Lines, Bellows, Flexible Hoses, and Filters
NASA Technical Reports Server (NTRS)
1977-01-01
Fluid-flow components in a liquid propellant rocket engine and the rocket vehicle which it propels are interconnected by lines, bellows, and flexible hoses. Elements involved in the successful design of these components are identified and current technologies pertaining to these elements are reviewed, assessed, and summarized to provide a technology base for a checklist of rules to be followed by project managers in guiding a design or assessing its adequacy. Recommended procedures for satisfying each of the design criteria are included.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Reflections on Component Computing from the Boxer Project's Perspective
ERIC Educational Resources Information Center
diSessa, Andrea A.
2004-01-01
The Boxer Project conducted the research that led to the synthetic review "Issues in Component Computing." This brief essay provides a platform from which to develop our general perspective on educational computing and how it relates to components. The two most important lines of our thinking are (1) the goal to open technology's creative…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Prototype Units (DFARS Case 2009-D034) AGENCY: Defense Acquisition Regulations System, Department of Defense... Component Development or Prototype Units.'' Section 819 is intended to prevent a contract for new technology... development of advanced components or the procurement of prototype units. To do so, section 819 places...
16. Interior view of Test Cell 8 (oxidizer) in Components ...
16. Interior view of Test Cell 8 (oxidizer) in Components Test Laboratory (T-27), showing east wall. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. The windows in the wall enable personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical
NASA Technical Reports Server (NTRS)
1983-01-01
The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.
Composite armored vehicle advanced technology demonstator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.
1996-12-31
Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less
Crosstalk quantification, analysis, and trends in CMOS image sensors.
Blockstein, Lior; Yadid-Pecht, Orly
2010-08-20
Pixel crosstalk (CTK) consists of three components, optical CTK (OCTK), electrical CTK (ECTK), and spectral CTK (SCTK). The CTK has been classified into two groups: pixel-architecture dependent and pixel-architecture independent. The pixel-architecture-dependent CTK (PADC) consists of the sum of two CTK components, i.e., the OCTK and the ECTK. This work presents a short summary of a large variety of methods for PADC reduction. Following that, this work suggests a clear quantifiable definition of PADC. Three complementary metal-oxide-semiconductor (CMOS) image sensors based on different technologies were empirically measured, using a unique scanning technology, the S-cube. The PADC is analyzed, and technology trends are shown.
Perspective of Membrane Technology in Dairy Industry: A Review
Kumar, Pavan; Sharma, Neelesh; Ranjan, Rajeev; Kumar, Sunil; Bhat, Z. F.; Jeong, Dong Kee
2013-01-01
Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent. PMID:25049918
Perspective of membrane technology in dairy industry: a review.
Kumar, Pavan; Sharma, Neelesh; Ranjan, Rajeev; Kumar, Sunil; Bhat, Z F; Jeong, Dong Kee
2013-09-01
Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent.
Liquid Oxygen/Liquid Methane Component Technology Development at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2010-01-01
The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. Besides existing in-house risk reduction activities, NASA has solicited from industry their participation on component technologies based on the potential application to the lunar ascent main engine (AME). Contracted and NASA efforts have ranged from valve technologies to engine system testbeds. The application for the AME is anticipated to be an expendable, pressure-fed engine for ascent from the moon at completion of its lunar stay. Additionally, the hardware is expected to provide an abort capability prior to landing, in the event that descent systems malfunction. For the past 4 years, MSFC has been working with the Glenn Research Center and the Johnson Space Center on methane technology development. This paper will focus on efforts specific to MSFC in pursuing ignition, injector performance, chamber material assessments and cryogenic valve technologies. Ignition studies have examined characteristics for torch, spark and microwave systems. Injector testing has yielded insight into combustion performance for shear, swirl and impinging type injectors. The majority of chamber testing has been conducted with ablative and radiatively cooled chambers with planned activities for regenerative and transpiration cooled chambers. Lastly, an effort is underway to examine the long duration exposure issues of cryogenic valve internal components. The paper will summarize the status of these efforts.
Innovations in food technology for health.
Hsieh, Yun-Hwa Peggy; Ofori, Jack Appiah
2007-01-01
Modern nutritional science is providing ever more information on the functions and mechanisms of specific food components in health promotion and/or disease prevention. In response to demands from increasingly health conscious consumers, the global trend is for food industries to translate nutritional information into consumer reality by developing food products that provide not only superior sensory appeal but also nutritional and health benefits. Today's busy life styles are also driving the development of healthy convenience foods. Recent innovations in food technologies have led to the use of many traditional technologies, such as fermentation, extraction, encapsulation, fat replacement, and enzyme technology, to produce new health food ingredients, reduce or remove undesirable food components, add specific nutrient or functional ingredients, modify food compositions, mask undesirable flavors or stabilize ingredients. Modern biotechnology has even revolutionized the way foods are created. Recent discoveries in gene science are making it possible to manipulate the components in natural foods. In combination with biofermentation, desirable natural compounds can now be produced in large amounts at a low cost and with little environmental impact. Nanotechnology is also beginning to find potential applications in the area of food and agriculture. Although the use of new technologies in the production of health foods is often a cause for concern, the possibility that innovative food technology will allow us to produce a wide variety of food with enhanced flavor and texture, while at the same time conferring multiple health benefits on the consumer, is very exciting.
Color imaging technologies in the prepress industry
NASA Astrophysics Data System (ADS)
Silverman, Lee
1992-05-01
Over much of the last half century, electronic technologies have played an increasing role in the prepress production of film and plates prepared for printing presses. The last decade has seen an explosion of technologies capable of supplementing this production. The most outstanding technology infusing this growth has been the microcomputer, but other component technologies have also diversified the capacity for high-quality scanning of photographs. In addition, some fundamental software and affordable laser recorder technologies have provided new approaches to the merging of typographic and halftoned photographic data onto film. The next decade will evolve the methods and the technologies to achieve superior text and image communication on mass distribution media used in the printed page or instead of the printed page. This paper focuses on three domains of electronic prepress classified as the input, transformation, and output phases of the production process. The evolution of the component technologies in each of these three phases is described. The unique attributes in each are defined and then follows a discussion of the pertinent technologies which overlap all three domains. Unique to input is sensor technology and analogue to digital conversion. Unique to the transformation phase is the display on monitor for soft proofing and interactive processing. The display requires special technologies for digital frame storage and high-speed, gamma- compensated, digital to analogue conversion. Unique to output is the need for halftoning and binary recording device linearization or calibration. Specialized direct digital color technologies now allow color quality proofing without the need for writing intermediate separation films, but ultimately these technologies will be supplanted by direct printing technologies. First, dry film processing, then direct plate writing, and finally direct application of ink or toner onto paper at the 20 - 30 thousand impressions per hour now achieved by offset printing. In summary, a review of technological evolution guides industry methodologies that will define a transformation of workflow in graphic arts during the next decade. Prepress production will integrate component technologies with microcomputers in order to optimize the production cycle from graphic design to printed piece. These changes will drastically alter the business structures and tools used to put type and photographs on paper in the volumes expected from printing presses.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain
2011-01-01
The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.
Shape optimization of tibial prosthesis components
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Mraz, P. J.; Davy, D. T.
1993-01-01
NASA technology and optimal design methodologies originally developed for the optimization of composite structures (engine blades) are adapted and applied to the optimization of orthopaedic knee implants. A method is developed enabling the shape tailoring of the tibial components of a total knee replacement implant for optimal interaction within the environment of the tibia. The shape of the implant components are optimized such that the stresses in the bone are favorably controlled to minimize bone degradation, to improve the mechanical integrity of the implant/interface/bone system, and to prevent failures of the implant components. A pilot tailoring system is developed and the feasibility of the concept is demonstrated and evaluated. The methodology and evolution of the existing aerospace technology from which this pilot optimization code was developed is also presented and discussed. Both symmetric and unsymmetric in-plane loading conditions are investigated. The results of the optimization process indicate a trend toward wider and tapered posts as well as thicker backing trays. Unique component geometries were obtained for the different load cases.
Animal-cell culture media: History, characteristics, and current issues.
Yao, Tatsuma; Asayama, Yuta
2017-04-01
Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media. A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical-based synthetic media because naturally derived ingredients have their disadvantages such as large batch-to-batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum-containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.
NASA Astrophysics Data System (ADS)
Sokoloski, Martin M.
1988-09-01
The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.
NASA Technical Reports Server (NTRS)
Sokoloski, Martin M.
1988-01-01
The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.
Affordable, Robust Ceramic Joining Technology (ARCJoinT) for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, M.
1998-01-01
Ceramic joining is recognized as one of the enabling technologies for the successful utilization of silicon carbide-based monolithic ceramic and fiber reinforced composite components in a number of demanding and high temperature applications in aerospace and ground-based systems. An affordable, robust ceramic joining technology (ARCJoinT) for joining of silicon carbide-based ceramics and fiber reinforced composites has been developed. This technique is capable of producing joints with tailorable thickness and composition. A wide variety of silicon carbide-based ceramics and composites, in different shapes and sizes, have been joined using this technique. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. In monolithic silicon carbide ceramics, these joints maintain their mechanical strength up to 1350 C in air. There is no change in the mechanical strength of joints in silicon carbide matrix composites up to 1200 C in air. In composites, simple butt joints yield only about 20% of the ultimate strength of the parent materials. This technology is suitable for the joining of large and complex shaped ceramic and composite components, and with certain modifications, can be applied to repair of ceramic components damaged in service.
Melioli, Giovanni; Passalacqua, Giovanni; Canonica, Giorgio W
2014-12-01
'Allergen microarrays, in poly-sensitized allergic patients, represent a real value added in the accurate IgE profiling and in the identification of allergen(s) to administer for an effective allergen immunotherapy.' Allergen microarrays (AMA) were developed in the early 2000s to improve the diagnostic pathway of patients with allergic reactions. Nowadays, AMA are constituted by more than 100 different components (either purified or recombinant), representing genuine and cross-reacting molecules from plants and animals. The cost of the procedure had suggested its use as third-level diagnostics (following in vivo- and in vitro-specific IgE tests) in poly-sensitized patients. The complexity of the interpretation had inspired the development of in silico technologies to help clinicians in their work. Both machine learning techniques and expert systems are now available. In particular, an expert system that has been recently developed not only identifies positive and negative components but also lists dangerous components and classifies patients based on their potential responsiveness to allergen immunotherapy, on the basis of published algorithms. For these characteristics, AMA represents the state-of-the-art technology for allergy diagnosis in poly-sensitized patients.
Technology efficacy in active prosthetic knees for transfemoral amputees: a quantitative evaluation.
El-Sayed, Amr M; Hamzaid, Nur Azah; Abu Osman, Noor Azuan
2014-01-01
Several studies have presented technological ensembles of active knee systems for transfemoral prosthesis. Other studies have examined the amputees' gait performance while wearing a specific active prosthesis. This paper combined both insights, that is, a technical examination of the components used, with an evaluation of how these improved the gait of respective users. This study aims to offer a quantitative understanding of the potential enhancement derived from strategic integration of core elements in developing an effective device. The study systematically discussed the current technology in active transfemoral prosthesis with respect to its functional walking performance amongst above-knee amputee users, to evaluate the system's efficacy in producing close-to-normal user performance. The performances of its actuator, sensory system, and control technique that are incorporated in each reported system were evaluated separately and numerical comparisons were conducted based on the percentage of amputees' gait deviation from normal gait profile points. The results identified particular components that contributed closest to normal gait parameters. However, the conclusion is limitedly extendable due to the small number of studies. Thus, more clinical validation of the active prosthetic knee technology is needed to better understand the extent of contribution of each component to the most functional development.
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou; Han, Sen; Jin, Tao
2016-11-01
With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
Process technology and effects of spallation products: Circuit components, maintenance, and handling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigg, B.; Haines, S.J.; Dressler, R.
1996-06-01
Working Session D included an assessment of the status of the technology and components required to: (1) remove impurities from the liquid metal (mercury or Pb-Bi) target flow loop including the effects of spallation products, (2) provide the flow parameters necessary for target operations, and (3) maintain the target system. A series of brief presentations were made to focus the discussion on these issues. The subjects of these presentations, and presenters were: (1) Spallation products and solubilities - R. Dressler; (2) Spallation products for Pb-Bi - Y. Orlov; (3) Clean/up/impurity removal components - B. Sigg; (4) {open_quotes}Road-Map{close_quotes} and remote handlingmore » needs - T. McManamy; (5) Remote handling issues and development - M. Holding. The overall conclusion of this session was that, with the exception of (i) spallation product related processing issues, (ii) helium injection and clean-up, and (iii) specialized remote handling equipment, the technology for all other circuit components (excluding the target itself) exists. Operating systems at the Institute of Physics in Riga, Latvia (O. Lielausis) and at Ben-Gurion University in Beer Shiva, Israel (S. Lesin) have demonstrated that other liquid metal circuit components including pumps, heat exchangers, valves, seals, and piping are readily available and have been reliably used for many years. In the three areas listed above, the designs and analysis are not judged to be mature enough to determine whether and what types of technology development are required. Further design and analysis of the liquid metal target system is therefore needed to define flow circuit processing and remote handling equipment requirements and thereby identify any development needs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, R., E-mail: rifky-mec@yahoo.com; Tauviqirrahman, M., E-mail: rifky-mec@yahoo.com; Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Enschede
This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boronmore » nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.« less
NASA Astrophysics Data System (ADS)
Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.
2009-09-01
This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.
ERIC Educational Resources Information Center
Hacker, Michael; Barak, Moshe
2017-01-01
Engineering and technology education (ETE) are receiving increased attention as components of STEM education. Curriculum development should be informed by perceptions of academic engineering educators (AEEs) and classroom technology teachers (CTTs) as both groups educate students to succeed in the technological world. The purpose of this study was…
Evaluation of the Introduction of an e-Health Skills Component for Dietetics Students.
Rollo, Megan E; Collins, Clare E; MacDonald-Wicks, Lesley
2017-11-01
Appropriate and effective use of technology within practice is a key competency outlined in Australian dietetics training standards. An e-health skills component (lecture and workshop) was introduced to undergraduate students enrolled in an Australian nutrition and dietetics program. The lecture orientated students to key e-health terms and concepts relating to telehealth and m-health technologies, while the workshop provided an opportunity to apply knowledge. The workshop consisted of four stations with activities relating to (1) orientation to telehealth equipment; (2) comparison of dietetic consultation components completed in person versus remotely via video call; (3) quality assessment of mobile apps; and (4) exploration of advantages and disadvantages, and the ethical, security, and privacy issues relating to use of e-health technologies in dietetic practice. Student experience of the training was evaluated via questionnaire. Forty-five students (62.2% aged ≤19-24 years, 86.7% female) completed the survey. Following the workshop, the level of understanding relating to each key e-health concept improved significantly (p < 0.001). The aspects relating to the impact and need for initial training and ongoing professional education to support the use of e-health technologies within dietetic practice were rated a high level of importance by most students (78-80%). The majority of students (93.3% to 97.8%) reported a positive experience at each of the four workshop stations, with "informative" the most common word selected to rate each station (37.8% to 44.4% of students across the four stations). The introduction of an e-health skills component resulted in an improved understanding of concepts for using these technologies. These findings provide preliminary support for integration of further e-health training within the dietetics program.
NASA Astrophysics Data System (ADS)
Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang
2017-10-01
Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.
Scaling Impacts in Life Support Architecture and Technology Selection
NASA Technical Reports Server (NTRS)
Lange, Kevin
2016-01-01
For long-duration space missions outside of Earth orbit, reliability considerations will drive higher levels of redundancy and/or on-board spares for life support equipment. Component scaling will be a critical element in minimizing overall launch mass while maintaining an acceptable level of system reliability. Building on an earlier reliability study (AIAA 2012-3491), this paper considers the impact of alternative scaling approaches, including the design of technology assemblies and their individual components to maximum, nominal, survival, or other fractional requirements. The optimal level of life support system closure is evaluated for deep-space missions of varying duration using equivalent system mass (ESM) as the comparative basis. Reliability impacts are included in ESM by estimating the number of component spares required to meet a target system reliability. Common cause failures are included in the analysis. ISS and ISS-derived life support technologies are considered along with selected alternatives. This study focusses on minimizing launch mass, which may be enabling for deep-space missions.
MRMAide: a mixed resolution modeling aide
NASA Astrophysics Data System (ADS)
Treshansky, Allyn; McGraw, Robert M.
2002-07-01
The Mixed Resolution Modeling Aide (MRMAide) technology is an effort to semi-automate the implementation of Mixed Resolution Modeling (MRM). MRMAide suggests ways of resolving differences in fidelity and resolution across diverse modeling paradigms. The goal of MRMAide is to provide a technology that will allow developers to incorporate model components into scenarios other than those for which they were designed. Currently, MRM is implemented by hand. This is a tedious, error-prone, and non-portable process. MRMAide, in contrast, will automatically suggest to a developer where and how to connect different components and/or simulations. MRMAide has three phases of operation: pre-processing, data abstraction, and validation. During pre-processing the components to be linked together are evaluated in order to identify appropriate mapping points. During data abstraction those mapping points are linked via data abstraction algorithms. During validation developers receive feedback regarding their newly created models relative to existing baselined models. The current work presents an overview of the various problems encountered during MRM and the various technologies utilized by MRMAide to overcome those problems.
NASA Astrophysics Data System (ADS)
Guo, Bin; Zhou, Shasha
2016-05-01
This study attempts to re-examine the role of attitude in voluntary information system (IS) acceptance and usage, which has often been discounted in the previous technology acceptance research. We extend the unidimensional view of attitude into a bidimensional one, because of the simultaneous existence of both positive and negative evaluation towards IS in technology acceptance behaviour. In doing so, attitude construct is divided into two components: satisfaction as the positive attitudinal component and dissatisfaction as the negative attitudinal component. We argue that satisfaction and dissatisfaction will interactively affect technology usage intention. Besides, we explore the predictors of satisfaction and dissatisfaction based on the disconfirmation theory. Empirical results from a longitudinal study on bulletin board system (BBS) usage confirm the interaction effect of satisfaction and dissatisfaction on usage intention. Moreover, perceived task-related value has a significant effect on satisfaction, while perceived personal value has a significant effect on dissatisfaction. We also discuss the theoretical and managerial implications of our findings.
Preliminary design of propulsion system for V/STOL research and technology aircraft
NASA Technical Reports Server (NTRS)
1977-01-01
The V/STOL Research and Technology Aircraft (RTA)propulsion system design effort is limited to components of the lift/cruise engines, turboshaft engine modifications, lift fan assembly, and propulsion system performance generation. The uninstalled total net thrust with all engines and fans operating at intermediate power was 37,114 pounds. Uninstalled system total net thrust was 27,102 pounds when one lift/cruise is inoperative. Components have lives above the 500 hours of the RTA duty cycle. The L/C engine used in a fixed nacelle has the cross shaft forward of the reduction gear whereas the cross shaft is aft of the reduction gear in a tilt nacelle L/C engine. The lift/cruise gearbox contains components and technologies from other DDA engines. The rotor has a 62-inch diameter and contains 22 composite blades that have a hub/tip ratio of 0.454. The blade pitch change mechanism contains hydraulic and mechanical redundancy. The lift fan assembly is completely self-contained including oil cooling in 10 exit vanes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less
Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Zwitter; Phillip Nash; Xiaoyan Xu
2011-03-31
This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.« less
Overview of NASA/OAST efforts related to manufacturing technology
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1976-01-01
An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.
32 CFR 34.22 - Federally owned property.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 12999 (3 CFR, 1996 Comp., p. 180), “Educational Technology: Ensuring Opportunity for All Children in the... Components are authorized by 15 U.S.C. 3710(i), the Federal Technology Transfer Act, to donate research...
32 CFR 34.22 - Federally owned property.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 12999 (3 CFR, 1996 Comp., p. 180), “Educational Technology: Ensuring Opportunity for All Children in the... Components are authorized by 15 U.S.C. 3710(i), the Federal Technology Transfer Act, to donate research...
32 CFR 34.22 - Federally owned property.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 12999 (3 CFR, 1996 Comp., p. 180), “Educational Technology: Ensuring Opportunity for All Children in the... Components are authorized by 15 U.S.C. 3710(i), the Federal Technology Transfer Act, to donate research...
32 CFR 34.22 - Federally owned property.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 12999 (3 CFR, 1996 Comp., p. 180), “Educational Technology: Ensuring Opportunity for All Children in the... Components are authorized by 15 U.S.C. 3710(i), the Federal Technology Transfer Act, to donate research...
32 CFR 34.22 - Federally owned property.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 12999 (3 CFR, 1996 Comp., p. 180), “Educational Technology: Ensuring Opportunity for All Children in the... Components are authorized by 15 U.S.C. 3710(i), the Federal Technology Transfer Act, to donate research...
ERIC Educational Resources Information Center
Manning, Jessica; VanDeusen, Karen
2011-01-01
Western Michigan University's Suicide Prevention Program utilizes multiple technological components, including an online training course, a Web site, and 2 social networking Web site profiles, as integral aspects of a comprehensive program. This article discusses the development, maintenance, use, and impact of the technological aspects of this…
Trends in high temperature gas turbine materials
NASA Technical Reports Server (NTRS)
Grisaffe, S. J.; Dreshfield, R. L.
1981-01-01
High performance - high technology materials are among the technologies that are required to allow the fruition of such improvements. Materials trends in hot section components are reviewed, and materials for future use are identified. For combustors, airfoils, and disks, a common trend of using multiple material construction to permit advances in technology is identified.
Food Science and Technology. Teacher's Instructional Guide [and] Reference Book.
ERIC Educational Resources Information Center
Texas Tech Univ., Lubbock. Curriculum Center for Family and Consumer Sciences.
This reference book and teacher's instructional guide are intended for use in one- and two-year food science and technology programs for Texas high school students. The reference book provides information needed by employees in the food science and technology occupational area. Each chapter includes the following components: (1) a list of the…
Clementine. Mining new uses for SDI technology
NASA Astrophysics Data System (ADS)
Rustan, Pedro L.
1994-01-01
Using ballistic missile defense technologies for NASA science missions can dramatically reduce program costs and development time. Described is the Clementine spacecraft scheduled for launch to flight-qualify advanced lightweight technologies. The 500-lb spacecraft, which uses lightweight components and minimal redundancy, was built by the Naval Research Laboratory in less than two years.
Supportive Learning: Linear Learning and Collaborative Learning
ERIC Educational Resources Information Center
Lee, Bih Ni; Abdullah, Sopiah; Kiu, Su Na
2016-01-01
This is a conceptual paper which is trying to look at the educational technology is not limited to high technology. However, electronic educational technology, also known as e-learning, has become an important part of today's society, which consists of a wide variety of approaches to digitization, components and methods of delivery. In the…
New technologies for the actuation and controls of large aperture lightweight quality mirrors
NASA Technical Reports Server (NTRS)
Lih, S. S.; Yang, E. H.; Gullapalli, S. N.; Flood, R.
2003-01-01
This paper presents a set of candidate components: MEMS based large stroke (>100 microns) ultra lightweight (0.01 gm) discrete inch worm actuator technology, and a distributed actuator technology, in the context of a novel lightweight active flexure-hinged substrate concept that uses the nanolaminate face sheet.
MMIC technology for advanced space communications systems
NASA Astrophysics Data System (ADS)
Downey, A. N.; Connolly, D. J.; Anzic, G.
The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.
MMIC technology for advanced space communications systems
NASA Technical Reports Server (NTRS)
Downey, A. N.; Connolly, D. J.; Anzic, G.
1984-01-01
The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.
Knowledge and Cognitive Process Dimensions of Technology Teachers' Lesson Objectives
ERIC Educational Resources Information Center
Mathumbu, David; Rauscher, Willem; Braun, Max
2014-01-01
A clearly stated lesson objective is considered an essential component of a well-planned lesson. Many teachers of Technology, a relatively new subject in South African schools, teach Technology with rather limited training both in content and methodological approaches. This study sought to investigate and classify lesson objectives framed or…
Parental Decision Making about Technology and Quality in Child Care Programs
ERIC Educational Resources Information Center
Rose, Katherine K.; Vittrup, Brigitte; Leveridge, Tinney
2013-01-01
Background: This study investigated parental decision making about non-parental child care programs based on the technological and quality components of the program, both child-focused and parent-focused. Child-focused variables related to children's access to technology such as computers, educational television programming, and the internet.…
Technology Education. Introduction to Technology. Grades 7 & 8.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Occupational Education Programs.
This syllabus contains 10 modules that satisfy the one-unit requirement for technology education to be completed by the end of Grade 8 in New York. An introduction provides information on its use. Suggested content outlines of the modules follow. Module components include suggested teaching time; overview; enabling vocabulary; major concepts;…
Development of a Training Program for Enhancement of Technology Competencies of University Lecturers
ERIC Educational Resources Information Center
Cruthaka, Chomsupak; Pinngern, Ouen
2016-01-01
The objectives were: (1) the components of the technology competencies of university lecturers were studied. The researchers also described and analyzed (2) the development of a training program for enhancement of the technology competencies of these lecturers. Also, the researchers evaluated (3) the program they had constructed. The sample…
WLAN Positioning Methods and Supporting Learning Technologies for Mobile Platforms
ERIC Educational Resources Information Center
Melkonyan, Arsen
2013-01-01
Location technologies constitute an essential component of systems design for autonomous operations and control. The Global Positioning System (GPS) works well in outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of…
Developing a TPCK-SRL Assessment Scheme for Conceptually Advancing Technology in Education
ERIC Educational Resources Information Center
Kohen, Zehavit; Kramarski, Bracha
2012-01-01
The present study aimed to: (a) develop a conceptual TPCK-SRL scheme for assessing teachers' integration of self-regulated learning (SRL) considerations while infusing technology into a TPCK classroom context (blending K = knowledge about T = technology, P = pedagogy, and C = content), which reflects all three knowledge components' dynamic…
Forest Products Technology: A New Direction for "Wood Shop" in Grades 9 to 12
ERIC Educational Resources Information Center
Caron, Marc A.
1976-01-01
The term "forest products technology" suggests means for keeping wood shop curriculum in step with technological change. Silviculture, material harvesting, wood science, and four additional divisions classified by processes used for deriving products from wood form the broad categories of course content and, with their component parts, provide a…
Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.
2017-01-01
In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1990-01-01
Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Lab-on-Fiber devices as an all around platform for sensing
NASA Astrophysics Data System (ADS)
Ricciardi, A.; Consales, M.; Quero, G.; Crescitelli, A.; Esposito, E.; Cusano, A.
2013-12-01
"Lab-on-Fiber" technology is an emerging field envisioning a novel class of advanced, multifunctional photonic devices and components arising from the integration onto optical fibers of different materials at micro and nano-scale with suitable physical, chemical and biological properties. This new fascinating and intriguing research field thus proposes a new technological platform where functionalized materials, devices and components are constructed, embedded all together in a single optical fiber providing the necessary physical connections and light matter interaction, exploitable in both communication and sensing applications. This technological innovation would open the way for the creation of a novel technological world completely integrated in a single optical fiber conferring unique and unprecedented performances and functionality degree. Although, the benefits provided by such a technology can be easily understood, many research efforts are, however, required to translate the vision in a technological reality. Indeed, the main issue to address concerns the identification and definition of viable fabrication methodologies, routes and strategies enabling the integration of a large set of functional materials at sub wavelength scale onto non conventional substrates as the case of optical fibers.
Yang, Fuxia; Xu, Jiangchuan
2018-01-01
Low economic profit usually reduces the incentive of producers to operate their wastewater treatment technologies effectively. It is necessary to investigate the performance of environmentally friendly production technologies that reduce wastewater discharges and generate economic outputs simultaneously (EPTWs) in China over the past decade. In this paper, we apply the Malmquist-Luenberger productivity index widely used in the field of economics to evaluate the productivity change of EPTWs for 30 administrative provinces in China during 2003–2015. The pathways of the productivity change are further identified by decomposing the productivity index into two components: technological change and technical efficiency change. The results show that China's environmental productivity index associated with wastewater reduction had undergone a downward trend, and evident spatial disparities are observed among the 30 provincial regions. Moreover, the changes of China's environmental productivity over the whole studied period can mainly be attributed to technological progress, while the technical efficiency component has contributed little, although its annual contributing rate is in an increasing trend. PMID:29789803
Systems and technologies for high-speed inter-office/datacenter interface
NASA Astrophysics Data System (ADS)
Sone, Y.; Nishizawa, H.; Yamamoto, S.; Fukutoku, M.; Yoshimatsu, T.
2017-01-01
Emerging requirements for inter-office/inter-datacenter short reach links for data center interconnects (DCI) and metro transport networks have led to various inter-office and inter-datacenter optical interface technologies. These technologies are bringing significant changes to systems and network architectures. In this paper, we present a system and ZR optical interface technologies for DCI and metro transport networks, then introduce the latest challenges facing the system framework. There are two trends in reach extension; one is to use Ethernet and the other is to use digital coherent technologies. The first approach achieves reach extension while using as many existing Ethernet components as possible. It offers low costs as reuses the cost-effective components created for the large Ethernet market. The second approach adopts low-cost and low power coherent DSPs that implement the minimal set long haul transmission functions. This paper introduces an architecture that integrates both trends. The architecture satisfies both datacom and telecom needs with a common control and management interface and automated configuration.
NASA Technical Reports Server (NTRS)
Williams, G. M.; Fraser, J. C.
1991-01-01
The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.
The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technologymore » elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.« less
Status of nickel-hydrogen cell technology
NASA Technical Reports Server (NTRS)
Warnock, D. R.
1980-01-01
Nickel hydrogen cell technology has been developed which solves the problems of thermal management, oxygen management, electrolyte management, and electrical and mechanical design peculiar to this new type of battery. This technology was weight optimized for low orbit operation using computer modeling programs but is near optimum for other orbits. Cells ranging in capacity up to about 70 ampere-hours can be made from components of a single standard size and are available from two manufacturers. The knowledge gained is now being applied to the development of two extensions to the basic design: a second set of larger standard components that will cover the capacity range up to 150 ampere-hours; and the development of multicell common pressure vessel modules to reduce volume, cost and weight. A manufacturing technology program is planned to optimize the producibility of the cell design and reduce cost. The most important areas for further improvement are life and reliability which are governed by electrode and separator technology.
Assessment of technological level of stem cell research using principal component analysis.
Do Cho, Sung; Hwan Hyun, Byung; Kim, Jae Kyeom
2016-01-01
In general, technological levels have been assessed based on specialist's opinion through the methods such as Delphi. But in such cases, results could be significantly biased per study design and individual expert. In this study, therefore scientific literatures and patents were selected by means of analytic indexes for statistic approach and technical assessment of stem cell fields. The analytic indexes, numbers and impact indexes of scientific literatures and patents, were weighted based on principal component analysis, and then, were summated into the single value. Technological obsolescence was calculated through the cited half-life of patents issued by the United States Patents and Trademark Office and was reflected in technological level assessment. As results, ranks of each nation's in reference to the technology level were rated by the proposed method. Furthermore we were able to evaluate strengthens and weaknesses thereof. Although our empirical research presents faithful results, in the further study, there is a need to compare the existing methods and the suggested method.
Technology and Occupation: Past, Present, and the Next 100 Years of Theory and Practice.
Smith, Roger O
During the first 100 years of occupational therapy, the profession developed a remarkable practice and theory base. All along, technology was an active and core component of practice, but often technology was mentioned only as an adjunct component of therapy and as if it was a specialty. This lecture proposes a new foundational theory that places technology at the heart of occupational therapy as a fundamental part of human occupation and the human experience. Moreover, this new Metaphysical Physical-Emotive Theory of Occupation pushes the occupational therapy profession and the occupational science discipline to overtly consider occupation on the level of a metaphysical-level reality. The presentation of this theory at the Centennial of the profession charges the field to test and further define the theory over the next 100 years and to leverage technology and its role in optimizing occupational performance into the future. Copyright © 2017 by the American Occupational Therapy Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marker, Terry; Roberts, Michael; Linck, Martin
Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH 2). The IH 2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH 2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH 2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project,more » engineering work on IH 2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH 2 unit. These studies show when using IH 2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH 2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH 2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH 2 technology. Further larger-scale, continuous testing of IH 2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH 2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.« less
SIM Planetquest Science and Technology: A Status Report
NASA Technical Reports Server (NTRS)
Edberg, Stephen J.; Laskin, Robert A.; Marr, James C., IV; Unwin, Stephen C.; Shao, Michael
2007-01-01
Optical interferometry will open new vistas for astronomy over the next decade. The Space Interferometry Mission (SIM-PlanetQuest), operating unfettered by the Earth's atmosphere, will offer unprecedented astrometric precision that promises the discovery of Earth-analog extra-solar planets as well as a wealth of important astrophysics. Results from SIM will permit the determination of stellar masses to accuracies of 2% or better for objects ranging from brown dwarfs through main sequence stars to evolved white dwarfs, neutron stars, and black holes. Studies of star clusters will yield age determinations and internal dynamics. Microlensing measurements will present the mass spectrum of the Milky Way internal to the Sun while proper motion surveys will show the Sun's orbital radius and speed. Studies of the Galaxy's halo component and companion dwarf galaxies permit the determination of the Milky Way's mass distribution, including its Dark Matter component and the mass distribution and Dark Matter component of the Local Group. Cosmology benefits from precision (1-2%) determination of distances to Cepheid and RR Lyrae standard candles. The emission mechanism of supermassive black holes will be investigated. Finally, radio and optical celestial reference frames will be tied together by an improvement of two orders of magnitude. Optical interferometers present severe technological challenges. The Jet Propulsion Laboratory, with the support of Lockheed Martin Advanced Technology Center (LM ATC) and Northrop Grumman Space Technology (NGST), has addressed these challenges with a technology development program that is now complete. The requirements for SIM have been satisfied, based on outside peer review, using a series of laboratory tests and appropriate computer simulations: laser metrology systems perform with 10 picometer precision; mechanical vibrations have been controlled to nanometers, demonstrating orders of magnitude disturbance rejection; and knowledge of component positions throughout the whole test assembly has been demonstrated to the required picometer level. Technology transfer to the SIM flight team is now well along.
SIM PlanetQuest science and technology: a status report
NASA Astrophysics Data System (ADS)
Edberg, Stephen J.; Laskin, Robert A.; Marr, James C., IV; Unwin, Stephen C.; Shao, Michael
2007-09-01
Optical interferometry will open new vistas for astronomy over the next decade. The Space Interferometry Mission (SIM-PlanetQuest), operating unfettered by the Earth's atmosphere, will offer unprecedented astrometric precision that promises the discovery of Earth-analog extra-solar planets as well as a wealth of important astrophysics. Results from SIM will permit the determination of stellar masses to accuracies of 2% or better for objects ranging from brown dwarfs through main sequence stars to evolved white dwarfs, neutron stars, and black holes. Studies of star clusters will yield age determinations and internal dynamics. Microlensing measurements will present the mass spectrum of the Milky Way internal to the Sun while proper motion surveys will show the Sun's orbital radius and speed. Studies of the Galaxy's halo component and companion dwarf galaxies permit the determination of the Milky Way's mass distribution, including its Dark Matter component and the mass distribution and Dark Matter component of the Local Group. Cosmology benefits from precision (1-2%) determination of distances to Cepheid and RR Lyrae standard candles. The emission mechanism of supermassive black holes will be investigated. Finally, radio and optical celestial reference frames will be tied together by an improvement of two orders of magnitude. Optical interferometers present severe technological challenges. The Jet Propulsion Laboratory, with the support of Lockheed Martin Advanced Technology Center (LM ATC) and Northrop Grumman Space Technology (NGST), has addressed these challenges with a technology development program that is now complete. The requirements for SIM have been satisfied, based on outside peer review, using a series of laboratory tests and appropriate computer simulations: laser metrology systems perform with 10 picometer precision; mechanical vibrations have been controlled to nanometers, demonstrating orders of magnitude disturbance rejection; and knowledge of component positions throughout the whole test assembly has been demonstrated to the required picometer level. Technology transfer to the SIM flight team is now well along.
13. Interior view of Test Cell 9 (fuel) in Components ...
13. Interior view of Test Cell 9 (fuel) in Components Test Laboratory (T-27), showing west and north walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. Two windows in the wall to the left enable personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
15. Interior view of Test Cell 10 (environmental) in Components ...
15. Interior view of Test Cell 10 (environmental) in Components Test Laboratory (T-27), showing north and east walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. The window in the wall to the left enables personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
A technical review of cellular radio and analysis of a possible protocol
NASA Astrophysics Data System (ADS)
Reese, William D.
1992-09-01
Radio and television technology made the field of cellular radio possible. This thesis shows the development of radio and television technology from both a historical and technical aspect. A review of the important researchers and their contributions is followed by a technical explanation of the theories behind electromagnetic radiation of radio and television signals and the technology which was developed to implement such transmissions. The evolution of development which the paper outlines begins with some of the first theories about electricity and magnetism and the subsequent mathematical foundation developed to explain them. This is followed by a number of experimental and developmental researchers and their contributions. The bulk of the paper is concentrated on explaining the earliest generations of radio and all generations of television. The major components of both radio and television are described in detail along with an explanation of what they do and how they work. Such components, in many cases, found important uses in fields outside those for which they were developed. A brief overview of the regulatory environment of each technology and the U.S. and international standardization efforts is also included. Finally, the paper illustrates a modern-day application of radio technology--the cellular radio industry. A description of the components and their functions is followed by a possible cellular radio protocol and analysis.
Corrosion evaluation of novel coatings for steel components of highway bridges.
DOT National Transportation Integrated Search
2015-03-01
The Florida Department of Transportation (FDOT) had expressed interest in gauging the available coating : technologies that may have suitable applications for steel components in highway bridges. The motivation was to : possibly identify coating syst...
Five Year Computer Technology Forecast
DOT National Transportation Integrated Search
1972-12-01
The report delineates the various computer system components and extrapolates past trends in light of industry goals and physical limitations to predict what individual components and entire systems will look like in the second half of this decade. T...
Integration and manufacture of multifunctional planar lightwave circuits
NASA Astrophysics Data System (ADS)
Lipscomb, George F.; Ticknor, Anthony J.; Stiller, Marc A.; Chen, Wenjie; Schroeter, Paul
2001-11-01
The demands of exponentially growing Internet traffic, coupled with the advent of Dense Wavelength Division Multiplexing (DWDM) fiber optic systems to meet those demands, have triggered a revolution in the telecommunications industry. This dramatic change has been built upon, and has driven, improvements in fiber optic component technology. The next generation of systems for the all optical network will require higher performance components coupled with dramatically lower costs. One approach to achieve significantly lower costs per function is to employ Planar Lightwave Circuits (PLC) to integrate multiple optical functions in a single package. PLCs are optical circuits laid out on a silicon wafer, and are made using tools and techniques developed to extremely high levels by the semi-conductor industry. In this way multiple components can be fabricated and interconnected at once, significantly reducing both the manufacturing and the packaging/assembly costs. Currently, the predominant commercial application of PLC technology is arrayed-waveguide gratings (AWG's) for multiplexing and demultiplexing multiple wavelength channels in a DWDM system. Although this is generally perceived as a single-function device, it can be performing the function of more than 100 discrete fiber-optic components and already represents a considerable degree of integration. Furthermore, programmable functions such as variable-optical attenuators (VOAs) and switches made with compatible PLC technology are now moving into commercial production. In this paper, we present results on the integration of active and passive functions together using PLC technology, e.g. a 40 channel AWG multiplexer with 40 individually controllable VOAs.
Optical CDMA components requirements
NASA Astrophysics Data System (ADS)
Chan, James K.
1998-08-01
Optical CDMA is a complementary multiple access technology to WDMA. Optical CDMA potentially provides a large number of virtual optical channels for IXC, LEC and CLEC or supports a large number of high-speed users in LAN. In a network, it provides asynchronous, multi-rate, multi-user communication with network scalability, re-configurability (bandwidth on demand), and network security (provided by inherent CDMA coding). However, optical CDMA technology is less mature in comparison to WDMA. The components requirements are also different from WDMA. We have demonstrated a video transport/switching system over a distance of 40 Km using discrete optical components in our laboratory. We are currently pursuing PIC implementation. In this paper, we will describe the optical CDMA concept/features, the demonstration system, and the requirements of some critical optical components such as broadband optical source, broadband optical amplifier, spectral spreading/de- spreading, and fixed/programmable mask.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C C
The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less
Laser Micromachining Fabrication of THz Components
NASA Technical Reports Server (NTRS)
DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.
2001-01-01
Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.
Biosensors of bacterial cells.
Burlage, Robert S; Tillmann, Joshua
2017-07-01
Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.
1990 fuel cell seminar: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-31
This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.
Progress update of NASA's free-piston Stirling space power converter technology project
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald
1992-01-01
A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.
Evolving Frameworks for Different Communities of Scientists and End Users
NASA Astrophysics Data System (ADS)
Graves, S. J.; Keiser, K.
2016-12-01
Two evolving frameworks for interdisciplinary science will be described in the context of the Common Data Framework for Earth-Observation Data and the importance of standards and protocols. The Event Data Driven Delivery (ED3) Framework, funded by NASA Applied Sciences, provides the delivery of data based on predetermined subscriptions and associated workflows to various communities of end users. ED3's capabilities are used by scientists, as well as policy and resource managers, when event alerts are triggered to respond to their needs. The EarthCube Integration and Testing Environment (ECITE) Assessment Framework for Technology Interoperability and Integration is being developed to facilitate the EarthCube community's assessment of NSF funded technologies addressing Earth science problems. ECITE is addressing the translation of geoscience researchers' use cases into technology use case that apply EarthCube-funded building block technologies (and other existing technologies) for solving science problems. EarthCube criteria for technology assessment include the use of data, metadata and service standards to improve interoperability and integration across program components. The long-range benefit will be the growth of a cyberinfrastructure with technology components that have been shown to work together to solve known science objectives.
NASA Technical Reports Server (NTRS)
Porter, F. J., Jr.
1972-01-01
Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.
Status of the Direct Data Distribution (D(exp 3)) Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence
2001-01-01
NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.
Current technology in ion and electrothermal propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Murch, C. K.
1973-01-01
High performance propulsion devices, such as electrostatic ion engines and electrothermal thrusters, are achieving wide user acceptance. The current technology and projected development trends in the areas of ion and electrothermal propulsion systems and components are surveyed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... Electronics Co., Ltd of Chungchongbuk-do, South Korea; Huizhou Jahwa Electronics Co., Ltd. of Guangdong Province, China; Copy Technologies, Inc. of Atlanta, Georgia; Laser Toner Technology, Inc. of Atlanta...
Full-Scale Dynamic Testing of Locomotive Crashworthy Components.
DOT National Transportation Integrated Search
2015-10-01
The Office of Research, Development, and Technology of the Federal Railroad Administration (FRA) and the Volpe Center are evaluating new occupant protection technologies to increase the safety of passengers and operators in rail equipment. In view of...
Pepper seed variety identification based on visible/near-infrared spectral technology
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen
2016-11-01
Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.
NASA Astrophysics Data System (ADS)
Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo
2012-01-01
One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical components, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in printed circuit baordlevel optical interconnections. These include: high-precision 2-D fiber connectors, discrete out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars and backplane connectors. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillis, D.R.
A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for amore » new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.« less
The Utilization of Urine Processing for the Advancement of Life Support Technologies
NASA Technical Reports Server (NTRS)
Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael
2014-01-01
The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.
Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less
Two-panel LCOS-based projection system: a potentially compact high-resolution avionics display
NASA Astrophysics Data System (ADS)
Sharp, Gary D.; Chen, Jianmin; Robinson, Michael B.; Korah, John K.
2003-09-01
Military displays have been limited first by the availability of CRT and then AMLCD for color multifunctional displays. Projection display technology has been offered as an alternative. With the growth of the LCOS based consumer projection display industry, commercially off the shelf (COTS) components and technology are becoming readily available. A projection display system addresses the lessons learned from the CRT or AMLCD based attempts. This approach presents multiple vendors and user defined aspect ratio, resolution, brightness and color. This paper will present the latest work at ColorLink, Inc. on a two-panel LCOS based projection light engine developed for the consumer industry driven Rear Projection Television (RPTV) market. This engine demonstrates throughput, contrast and color performance that exceeds military requirements using COTS technology and components. We will introduce the core technology and philosophy followed by this industry in defining such a product.
Application of CFCC technology to hot gas filtration applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richlen, S.
1995-06-01
Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurementmore » of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.« less
Nanobonding: A key technology for emerging applications in health and environmental sciences
NASA Astrophysics Data System (ADS)
Howlader, Matiar M. R.; Deen, M. Jamal; Suga, Tadatomo
2015-03-01
In this paper, surface-activation-based nanobonding technology and its applications are described. This bonding technology allows for the integration of electronic, photonic, fluidic and mechanical components into small form-factor systems for emerging sensing and imaging applications in health and environmental sciences. Here, we describe four different nanobonding techniques that have been used for the integration of various substrates — silicon, gallium arsenide, glass, and gold. We use these substrates to create electronic (silicon), photonic (silicon and gallium arsenide), microelectromechanical (glass and silicon), and fluidic (silicon and glass) components for biosensing and bioimaging systems being developed. Our nanobonding technologies provide void-free, strong, and nanometer scale bonding at room temperature or at low temperatures (<200 °C), and do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to covalent bonds, and hydrogen or hydroxyl bonds, respectively.
NASA Technical Reports Server (NTRS)
Beltran, Luis R.; Griffin, Thomas A.
2004-01-01
The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, O J
1978-01-01
The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK componentsmore » and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.
People save for retirement throughout their career because it is virtually impossible to save all youll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is, To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades? Existing models do not includemore » full regulatory constraints due to their often complex, and inflexible approaches to solve for optimal engineering instead of robust and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework or module to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the models capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technologys demand in the marketplace.« less
Promising Electric Aircraft Drive Systems
NASA Technical Reports Server (NTRS)
Dudley, Michael R.
2010-01-01
An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.
Optical detectors for GaAs MMIC integration: Technology assessment
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Bhasin, K. B.
1989-01-01
Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.
Chip in a lab: Microfluidics for next generation life science research
Streets, Aaron M.; Huang, Yanyi
2013-01-01
Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research. PMID:23460772
Technology Assessment Need: Review on Attractiveness and Competitiveness
NASA Astrophysics Data System (ADS)
Salwa Sait, Siti; Merlinda Muharam, Farrah; Chin, Thoo Ai; Sulaiman, Zuraidah
2017-06-01
Technology assessment is crucial in managing technology for the purpose of technology exploitation. With business environment continuously changing, firms have to address this issue critically as technology is considered one of the important elements to evaluate performance and gain competitive advantage. Missteps in deciding the best technology to be developed, employed or maintained would cost the firm overall value. To fulfil the need of finding the appropriate scale to assess suitable technology, this paper summarizes that technology assessment (TA) should cover two main aspects, namely technology attractiveness and competitiveness. These components are seen capable to link the scale suggested towards evaluation of financial and non-financial performance towards competitive advantage.
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
Introduction to the Portable Life Support Schematic and Technology Development Components
NASA Technical Reports Server (NTRS)
Conger, Bruce
2008-01-01
Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.
A comparison of forming technologies for ceramic gas-turbine engine components
NASA Technical Reports Server (NTRS)
Hengst, R. R.; Heichel, D. N.; Holowczak, J. E.; Taglialavore, A. P.; Mcentire, B. J.
1990-01-01
For over ten years, injection molding and slip casting have been actively developed as forming techniques for ceramic gas turbine components. Co-development of these two processes has continued within the U.S. DOE-sponsored Advanced Turbine Technology Application Project (ATTAP). Progress within ATTAP with respect to these two techniques is summarized. A critique and comparison of the two processes are given. Critical aspects of both processes with respect to size, dimensional control, material properties, quality, cost, and potential for manufacturing scale-up are discussed.
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
NASP X-30 Propulsion technology status
NASA Technical Reports Server (NTRS)
Powell, William E.
1992-01-01
The performance goals of the NASP program require an aero-propulsion system with a high effective specific impulse. In order to achieve these goals, the high potential performance of air-breathing engines must be achieved over a very wide Mach number operating range. This, in turn, demands high component performance and involves many important technical issues which must be resolved. Scramjet Propulsion Technology is divided into five major areas: (1) inlets, (2) combustors, (3) nozzles, (4) component integration, and (5) test facilities. A status report covering the five areas is presented.
Hydrogen-bromine fuel cell advance component development
NASA Technical Reports Server (NTRS)
Charleston, Joann; Reed, James
1988-01-01
Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.
Digital dentistry: information technology for today's (and tomorrow's) dental practice.
Hirschinger, R
2001-03-01
Digital dentistry is not the wave of the future; it is occurring now. Whether a dentist embraces new technology will define his or her practice and, possibly, future. The aim of this article is to inform practitioners of the various components that constitute a digital dental practice, the technologies available today, and those on the horizon.
USDA-ARS?s Scientific Manuscript database
A garbage-processing technology has been developed that shreds, sterilizes, and separates inorganic and organic components of municipal solid waste. The technology not only greatly reduces waste volume, but the non-composted byproduct of this process, Fluff®, has the potential to be utilized as a s...
NASA Tech Briefs, Winter 1977. Volume 2, No. 4
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
ERIC Educational Resources Information Center
Leahy, Kevin B.
2013-01-01
The CIO fulfills an important role for most business organizations by leading the information technology department and by aligning the firm's information technology assets with its corporate strategy. There is little research regarding the important components of CIO development and the relationships among these elements. This study examines…
NASA Tech Briefs, Summer 1979. Volume 4, No. 2
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of neW products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Enhancement or Transformation? A Case Study of Preservice Teachers' Use of Instructional Technology
ERIC Educational Resources Information Center
Cherner, Todd; Curry, Kristal
2017-01-01
Instructional technology has become a crucial component of public education. Reflected in the college and career-ready standards being implemented across the United States, an emphasis has been placed on preparing students with both the literacy and technology skills needed to succeed in postsecondary education and the workforce. Though a growing…
NASA Tech Briefs, Summer 1981. Volume 6, No. 2
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1980. Volume 5, No. 4
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1980. Volume 5, No. 3
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovatio.ns of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1978. Volume 3, No. 3
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1984. Volume 8, No. 4
NASA Technical Reports Server (NTRS)
1984-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Science.
NASA Tech Briefs, Fall/Winter 1981. Vol. 6, No. 3
NASA Technical Reports Server (NTRS)
1981-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
ERIC Educational Resources Information Center
Bakir, Nesrin
2016-01-01
Technology integration, an integral component of teaching and learning, has been widely investigated during the past several decades as teacher education programs have struggled to implement and model best teaching technology integration practices in the preparation of pre-service teachers. Initiatives led by educational organizations at the…
The Growth of m-Learning and the Growth of Mobile Computing: Parallel Developments
ERIC Educational Resources Information Center
Caudill, Jason G.
2007-01-01
m-Learning is made possible by the existence and application of mobile hardware and networking technology. By exploring the capabilities of these technologies, it is possible to construct a picture of how different components of m-Learning can be implemented. This paper will explore the major technologies currently in use: portable digital…
NASA Tech Briefs, Spring 1978. Volume 3, No. 1
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact
ERIC Educational Resources Information Center
Fraser, John
2010-01-01
Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…
NASA Tech Briefs, Winter 1978. Volume 3, No. 4
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1983. Volume 8, No. 2
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Winter 1982. Volume 7, No. 2
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Technological Literacy and Its Effects on First-Year Liberal Studies College Students.
ERIC Educational Resources Information Center
Gathercoal, Paul
This study examined the effects of including a technology literacy component in first-year students' programs at a liberal arts college. The program was designed to systematically help students use and critically evaluate the technology and what it can do to enhance the living and learning environment. The study employed a non-equivalent control…
NASA Tech Briefs, Spring 1981. Volume 6, No. 1
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1984. Volume 8, No. 3
NASA Technical Reports Server (NTRS)
1984-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1976. Volume 1, No. 3
NASA Technical Reports Server (NTRS)
1976-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of seloc.ted Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
On Cultivation of Characteristic Talents in Law in Institutes of Technology
ERIC Educational Resources Information Center
Li, Hong
2011-01-01
For the time being, professional education of law offered by institutes of technology has become an important component of cultivation of professional talents in law in China. Only if institutes of technology face up with their disadvantages, make full use of their resource advantages and cultivate characteristic talents in law, are they able to…
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Solar Energy; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
ERIC Educational Resources Information Center
Gibbone, Anne; Mercier, Kevin
2014-01-01
Teacher candidates' use of technology is a component of physical education teacher education (PETE) program learning goals and accreditation standards. The methods presented in this article can help teacher candidates to learn about and apply technology as an instructional tool prior to and during field or clinical experiences. The goal in…
Teaching via Mobile Phone: A Case Study on Malaysian Teachers' Technology Acceptance and Readiness
ERIC Educational Resources Information Center
Ismail, Issham; Bokhare, Siti F.; Azizan, Siti N.; Azman, Nizuwan
2013-01-01
The purpose of this study is to identify the level of technology acceptance among school teachers from the components of awareness and motivation, training and courses, training design, and supports and facilities. This study also aims to investigate whether teachers' acceptance of technology could influence their readiness for the pedagogical use…
NASA Tech Briefs, Winter 1979. Volume 4, No. 4
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1977. Volume 2, No. 3
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1980. Volume 5, No. 2
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1977. Volume 2, No. 1
NASA Technical Reports Server (NTRS)
1977-01-01
Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selted innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1982. Volume 7, No. 1
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the develop ment of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1979. Volume 4, No. 1
NASA Technical Reports Server (NTRS)
1979-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Fall 1983. Volume 8, No. 1
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1976. Volume 1, No. 4
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of val ue to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1977. Volume 2, No. 2
NASA Technical Reports Server (NTRS)
1977-01-01
Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Energy Department Launches National Fuel Cell Technology Evaluation Center
technologies by strengthening data collection from fuel cell systems and components operating under real-world also houses one of the most energy efficient data centers in the world. NFCTEC will use a secure work proprietary hydrogen and fuel cell technologies in real-world operation since 2004. To date, NREL has
NASA Tech Briefs, Spring 1983. Volume 7, No. 3
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Spring 1980. Volume 5, No. 1
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1979. Volume 4, No. 3
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1983. Volume 7, No. 4
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and information Sciences.
Computer-Based Practical Exams in an Applied Information Technology Course
ERIC Educational Resources Information Center
Newhouse, C. Paul
2013-01-01
Worldwide, fewer and fewer work tasks are done using paper and pen, yet most high-stakes assessment in schools continues to use this primitive technology. This paper reports on one component of a project investigating the use of digital technologies to facilitate assessment tasks for high-stakes summative purposes in senior secondary courses. It…
In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV
2004-01-01
An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.